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AbStRAct

Currently, automated and semi-automated industries need multiple objective path planning algorithms for mobile 
robot applications. The multi-objective optimisation algorithm takes more computational effort to provide optimal 
solutions. The proposed grid-based multi-objective global path planning algorithm [Quadrant selection algorithm 
(QSA)] plans the path by considering the direction of movements from starting position to the target position with 
minimum computational effort. Primarily, in this algorithm, the direction of movements is classified into quadrants. 
Based on the selection of the quadrant, the optimal paths are identified. In obstacle avoidance, the generated feasible 
paths are evaluated by the cumulative path distance travelled, and the cumulative angle turned to attain an optimal 
path. Finally, to ease the robot’s navigation, the obtained optimal path is further smoothed to avoid sharp turns 
and reduce the distance. The proposed QSA in total reduces the unnecessary search for paths in other quadrants.  
The developed algorithm is tested in different environments and compared with the existing algorithms based on 
the number of cells examined to obtain the optimal path. Unlike other algorithms, the proposed QSA provides an 
optimal path by dramatically reducing the number of cells examined. The experimental verification of the proposed 
QSA shows that the solution is practically implementable.
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1. INtRoductIoN
Technological advancements and requirements of 

autonomous management activities are increasing day 
by day. The application of autonomous mobile robots in 
various situations encounter considerable problems such as  
simultaneous localisation, path-planning1, navigation, 
collision avoidance, manipulating objects, communication, 
and mapping2-3. When operating a mobile robot in an active 
environment, the map changes very frequently4. Under such 
conditions, the successful navigation of mobile robots in a 
planned path is arduous. Researchers use a motion planning 
algorithm to avoid such situations, which leads to excess 
movement of robots5. Hence, the path planning (PP) and 
replanning have to be done rapidly for every updated map.  
Moreover, the present-day situation demands a path to optimise 
for more than one objective6 simultaneously. To solve these 
issues, the development of an efficient algorithm that ensures 
an optimal path is essential. 

Earlier, PP algorithms were used to increase traversal 
processing speed in the databases of tree data structures7. 
Later, these algorithms were used in video games and are 
currently used for mobile robot applications8. The PP problems 
are solved using classical optimisation techniques9 or soft 
computing methods10. The classical optimisation techniques 

used the graph or grid map to approach the PP problem as the 
base environment. While planning the path, neighbourhood 
exploration techniques select the proper cell that provides the 
shortest route to reach the target position from the starting 
position11. Therefore, the appropriate selection of neighbours 
becomes the most vital step in planning a mobile robot path. In 
the early stages, breadth-first12 and depth-first search13 methods 
were popularly used to find feasible paths without guarantee 
for optimality. Later, the Bellman-Ford algorithm14 was 
developed to provide an optimal path. Dijkstra’s algorithm15 
and A* algorithm16 are widely applied to find the optimal path. 
Dijkstra’s algorithm examines more cells to find the optimal 
path than the A* algorithm..

In the widely practised A* algorithm, the function 
performs repeated investigation of selected neighbours (i.e., 
during the execution of each iteration of all the adjacent eight 
cells are evaluated for the minimum cost). Further, handling 
and avoiding the obstacles in the different environments 
becomes an exhaustive memory search, which leads to high 
computational effort even for simple situations17. JPS (Jump 
Point Search)18 uses a technique to complete the grid’s scanning 
to find the exact jump point in a quick time. Unlike the A* 
algorithm, JPS examines the same cell multiple times during 
each iteration19. In recent times, soft computing approaches 
such as evolutionary computing, fuzzy inference systems 
(FIS), probabilistic model, genetic algorithms (GA), Neural Received : 11 December 2020, Revised : 11 February 2021 
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networks optimisation, particle swarm optimisation algorithm 
(PSO), bio-inspired algorithms, and ant colony optimisation 
algorithm (ACO) are used for PP10.

For multi-objective PP problems (MOPP)20, soft 
computing approaches are generally preferable to random 
search, which results in computationally complex recursive 
cell processing with no guarantee of optimality21. Moreover, 
traditional approaches consume more significant memory and 
time-intensive operations for finding sub-target, which leads to 
computational complications in PP. Soft computing algorithms 
are further combined to solve PP complications to overcome 
the inadequacy of the traditional approach in PP problem-
solving skills.

A combination of the PSO technique with a potential 
field method (PFm) was proposed to resolve the PP problem. 
The authors used PSO to optimise obstacle avoidance and 
PFM to obtain the target position22. PSO is used for finding 
optimal routing and Neural Network algorithms for obstacle 
avoidance23. Another method combines a traditional and 
intelligent approach to obtain PP by combining the PSO 
algorithm for global PP. At the same time, the probabilistic 
roadmap method (PRM) is used for collision avoidance in local 
PP 24. A hybrid method combines ACO to find the optimal path 
and GA with a modified crossover operator to solve the local 
minima problem occurring during searching the optimal path25. 
The max-min Ant System was introduced to solve a path 
planning problem for exploratory tasks to maximise coverage26. 
Another hybridised PP algorithm using PSO with modified 
frequency bat (mFB) algorithm for path smoothness and local 
search (lS) algorithm for finding a viable path is developed27. 
Such a hybridised implementation of the algorithms drastically 
increases the computation effort in obtaining a path. A variation 
of the artificial bee colony algorithm with static and dynamic 
obstacle avoidance in a grid-based environment is proposed28. 
One more combination strategy is studied to resolve the 
navigation problems involved in a multi-agent system and 
multiple target tracking. In this study, an environment using 
an improved artificial bee colony (ABC) technique with 
evolutionary programming29 was used. A modified ABC is 
employed to increase computing speed, and another food 
source method is incorporated into the base methodology to 
solve the path planning problem30. The above listed hybridised 
PP based on soft computing approaches provide an optimal 
path for any static and dynamic environment. However, more 
feasible paths are generated in a broader environment, leading 
to a higher computational effort to find one optimal path31.  
most of the soft computing approaches are fit for the smaller 
static environment. The real-time implementation of such 
strategies is more difficult for the mobile robot to decide the 
optimal path in a split time instance. 

A quadtree32 data structured approach based on spatial/
cells decomposition for mobile robot PP was introduced for 
the graph or grid-based environment. K-Framed Quadtrees 
approach is proposed for the PP of a mobile robot by utilising 
the traditional A* algorithm33. Hilbert curve traversal, neural 
network approach and greedy algorithm based PP algorithm 
developed upon quadtree segmentation34. The authors combined 
several PP techniques to obtain a sub-optimal path for mobile 

robot navigation. A long-distance PP methodology developed 
with modified A* combined with any angle PP algorithm in 
a quadtree structured environment is proposed35. The authors 
claim that quadtree structured cell decomposition is suitable 
for long distanced environments, i.e., over 100 million nodes, 
using a grid map.

Internal analysis based PP and obstacle representation 
method is proposed36. The authors repeatedly change the 
resolution of the quadtree to minimise the configuration space. 
Also, the authors use graph/interval based PP algorithm and 
obstacle representation as a separate procedure. The utilisation 
of such an approach is more complex and time-consuming. 
moreover, the presence of excessive partitions, programming 
on a quadtree structured environment requires extensive 
coding and additional memory size37. Notably, the quadtree 
spatial decomposition changes its grid pattern for change in the 
environment. i.e., a separate quadtree decomposition program 
is essential for each environment that is hugely problematic 
to program for an environment like static and dynamic, which 
contains concentric obstacles and large-sized environments. 
Planning a path using a quadtree leads to more auxiliary turns, 
which cause redundant rapid bends to reach the target location. 
Due to a more significant number of turns, the path length 
becomes sub-optimal, expensive. It needs more memory to 
store the cluster of neighbouring nodes38-39. 

From the above-cited algorithms, the path generated by 
the mobile robot entirely relies on two or more approaches, 
which may be a stand-alone approach (i.e., either traditional 
or soft computing approach) or a hybrid approach. From the 
above-stated methods, we observe that every algorithm(s) can 
produce a successful path. However, most of the algorithms 
address objectives like (i) Planning an optimal path by 
minimising the number of sharp turns, (ii) Finding alternative 
paths, and (iii) Identifying safe paths. The cited algorithms 
take up ample memory space and more computational time 
for dealing with dynamic and outsized environments. Low-
cost mobile robots find a broad spectrum of applications in 
various industries like commercial shopping malls, airports, 
warehouses, and hotels. Such low-cost mobile robots have 
limited processing capabilities, and hence the computational 
effort is a significant concern to be addressed. This uneasiness 
is our research’s prime motivation to find an algorithm with the 
minimum computational effort by minimising the number of 
cells to be examined to find the optimal path with fewer sharp 
turns. A grid-based multi-objective PP algorithm [Quadrant 
selection algorithm (QSA)] is proposed in this research work. 
Our planning rules are made up of simple IF-Else statements, 
which any processor can comply with faster. The proposed 
QSA algorithm developed based on conditional statements 
consumes less time for finding an optimal path.

2. PRobleM StAteMeNt
Path planning in the grid environment, the robot is assumed 

to occupy a grid cell and navigates from the starting to the end 
position using the planned path. A path defined as an ordered set of 
unit cell coordinates ( ) ( ) ( ){ }1 1 2 2, , , ,......, , , ( , ) ;R R R R R R T T

n nX Y X Y X Y X Y   
(( ),R R

i iX Y  - Coordinate of an ith cell where the robot is free 
to move. Where 1i   to n= .) is used by the robot to traverse 
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successively from one cell to another and reach the target 
cell. Ensure the robot’s safety; the obstacles in the map are 
virtually inflated to a larger size to facilitate the free movement 
of robots at the adjacent cells of the obstacle. This research 
aims to attain the smooth optimal path from the starting 
location to the target location for mobile robot navigation with 
the minimum number of cells examined (Nce). 

2.1 Proposed Quadrant Selection Algorithm
In the grid environment, the robots move in any one of 

the eight directions, as represented graphically in Fig. 1. The 
proposed QSA provides a plan to move the robot towards the 
target from the current cell by searching and identifying the next 
adjacent cell. Figure 2 represents the significant steps followed in  
the proposed QSA.

Algorithm 1: logic for the selection of the quadrant in the 
gird environment

Figure 1. Possible positions, directions of movements (Index) of the 
mobile robot and target in the grid environment. 

Figure 2. Major steps in the proposed QSA.

Input(s)   : Robot, obstacles and target locations. 
output    : Smoothened optimal path.
Notations:
( ),R R

i iX Y - Coordinate of an thi  cell where the robot is free 
to move. where, 1i   to n= .  

( ),o o
j jX Y - Coordinate of thj  obstacle. Where 1j   to m= . 

( ),T TX Y -  Coordinate of the target position.

{ }1 2, ,.....,P P P
aP S S S= - Set of the paths that contain ‘a’ 

different feasible path.

( ) ( ){ }1 1 2 2, , , ,......, ( , )P R R R R T T
uS X Y X Y X Y= -Path that 

contains an ordered set of coordinates. Where 1u   to a= .

Step 0: Initialise 

( ) ( ), , , , ( , ),R R o o T T
i i j jX Y X Y and X Y

 
set 

1, 1;i  u= =
Step 1: Create an empty set of paths, { }P = ∅ , and 

ordered open set of coordinates for the path u.      
{ }P

uS = ∅ , where, 1u   to a= ;
Step 2:  Append the coordinates of the current position 

of the robot to set P
uS . i.e., ( ){ }1 ,P R R

i iS X Y= . 
Increment ‘i’ by 1;

Step 3: Check whether the current location is the 
target location ( , )?T TX Y , If yes, go to Step 
11. Else, continue;

Step 4: Quadrant selection

The quadrants, possible robot positions 
and their associated target positions are 
represented in Fig. 1. Based on the logic of 
Algorithm 1, the next quadrant extension of 
the path is selected according to the current 
mobile robot and target position. Once a 
quadrant is selected, the active investigation 
for the latest appended coordinate of 
the  path is restricted only to 3 adjacent 
cells (for example, in Fig. 1, if quadrant 
one is selected, the active investigation is 
limited to cells 1, 2 and 3 in quadrant one 
only) in the selected quadrant instead of all 
possible eight adjacent cells. This procedure 
eliminates the cells of other quadrants 
processed for the search of the path.

Step 5: Identifying the next adjacent cell of the path
Starting from the current position ( ),R R

i iX Y
to target positions ( , ),T TX Y  the path is 
planned by appending the cell coordinates 
to the ordered set P

uS .  After selecting the 
quadrant, the adjacent cell identified using the 
logic given in Fig. 3(a).

Step 6: Check whether the chosen cell, occupied with 
the obstacle? If Yes, continue. Else go to step 2.
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Step 9:  Check whether }.{OE  = ∅  If Yes, 
continue; else go to step 8(d).

Step 10: Check whether 1u > ; If Yes (there exists 
more than one feasible path), continue 
else, go to step 12.

Step 11: optimal path selection

The optimal path selection strategy to find the 
best among the feasible paths discussed in steps 
11a - 11h. The multi-objective parameters that 
decide the optimal path include the number of 
turns and path length, and the sum of turns and 
path length are in different metrics. To overcome 
this problem, path traversing time was chosen as 
a standard metric. During movement, the robot’s 
speed was taken to be 0.24 m/s, and the time of 
turning was assumed as 0.02 sec/degree.

(a) For each feasible path in set P, the time 
required to traverse from the initial position 
to the target position is calculated. A set 

1 2, ,...,{ }uT t t  t=  created to represent the 
feasible paths’ traverse time. 

(b) Initialise a temporary variable 
1, 1, 0ss  i t  = = = ;

(c) From the ordered path set P
uS  with 

the ‘n’ coordinates, the coordinates
( ) ( )1 1, , ,R R R R

i i i iX Y and X Y+ +  are chosen 
for the computation of time to traverse 
between the cells using Eqn (1).

[ ] ( )2 2
1 10.02 0.24 ( )R R R R

s s i i i i it t X X Y Y+ +
 = + ∗∅ + ∗ − + −  

[ ] ( )2 2
1 10.02 0.24 ( )R R R R

s s i i i i it t X X Y Y+ +
 = + ∗∅ + ∗ − + −  

          Eqn  (1)

where i∅  - Angle required to orient the current 
robot pose from the coordinate ( ),R R

i iX Y  to 
coordinate ( )1 1,R R

i iX Y+ + .

(d) If 1i   n+ ≠ , increment i by 1 and go to 
11(c). Else, continue;

(e) If s  u≠ , increment s by 1. Else, 
continue;

(f) From the set T, the path P
xS  with minimum 

traversing time is chosen as the optimal 
path. The optimal path for the scenario 
is depicted in Fig. 3(a) and shown in  
Fig. 3(b).

Step 12: Path smoothing procedure

The optimal path obtained from step 11 contains 
sharp turns that force the robot to decelerate at 
every turning, increasing energy consumption 
and traversing time. To overcome these 
disadvantages, a path smoothing procedure 
is introduced Fig. 3(c) represents a smoothed 
optimal path for the path shown in Fig. 3(b). 

(a) The obtained optimal path P
xS  Containing 

‘n’ ordered coordinates are selected for 
smoothing. Initialise i = 1 and Q = n.

(b) Check whether 2n  >  (to ensure starting 
and ending coordinates are not the same). 
If Yes, continue. Else go to step 13; 

(c) Check if any straight-line path without 
any turns exists between ith coordinate

( ),R R
i iX Y And Qth coordinate( ),R R

y yX Y  
of P

xS . If yes, remove all other coordinates 
in-between ‘i’ and ‘Y’ from the set  P

xS , 
and set i = Q and Q = n. Then, go to 12(b). 
Else, continue;

(d) Decrement Q by 1. Then, go to 12(b).

Step 7:  There existed a possibility of another alternate 
path when an obstacle encountered. Hence, 
increment u by 1 and create a new empty path 
set { },P

uS = and the coordinates in the path 
1

P
uS −  are copied to the new path set.

For example, in Fig. 3(a), let us say the first 
path created is { }1 (1,1), (2, 2)PS =  and the  
next possible cell is (3,3) that contains an 
obstacle. The above step leads to alternate 
path generation and hence, a new empty path 
set { }2

PS =  created and the coordinates from 
1
PS  are copied to the 2

PS  as the path shared up 
to this point.  Hereafter, the coordinates added 
to 1

PS  and 2
PS  Be different that represents 

different alternate paths.

Step 8: obstacle avoidance sequence
(a) Create a set containing the obstacles 

encountered in the path planned 
( )( ) , ;o o

j jOE X Y=

where 1j  to m= , and increment ‘j’. 

(b) The obstacle avoidance sequence starts 
with the identification of the next possible 
adjacent cells to avoid the cell containing 
an obstacle using the logic given in step 5. 
The above step results in the identification 
of two potential cells, one at the clockwise 
direction and another at the counter-
clockwise direction to the current cell. 
The dual direction leads to generating 
two different paths from the current cell 
whenever an obstacle is encountered.

(c) Choose the next cell in the clockwise 
direction and go to step 6.

(d) Remove the coordinate of the obstacle 
( ),o o

j jX Y  
from the set OE, and 

decrement j by 1. Then, choose the cell 
in the counter-clockwise direction and go 
to step 6. 
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 FunctionQuadrant _ select ( )),( , ( , )R R T T
i iX Y X Y

{

If  ( )) &( ( )R T R T
i iX X Y Y≤<

       Quadrant _ select ‘Quadrant 1’; =

Elseif  ( )( () & ;)R T R T
i iX X Y Y≤≥

        Quadrant _ select ‘Quadrant ’; 2=

Elseif  ( )( () & ;)R T R T
i iX X Y Y≥ ≥

        Quadrant _ select ‘Quadrant ’; 3=

Elseif  ( )( () & ;)R T R T
i iX X Y Y≥<

         Quadrant _ select ‘Quadrant  4;=
       End If 

  }
End Function 

Algorithm 2: logic to find the exact next adjacent cell

( )Functionexact _ next _ cell ( , ( ,) ),R R T T
i iX Y X Y

{

If  &R T R T
i iX X Y Y<=

exact _ next _ cell ( , 1);R R
i iX Y= +    _ 1;Next position =

Elseif  &R T R T
i iX X Y Y<<

exact _ next _ cell ( 1, 1);R R
i iX Y= + +

_ 2;Next position =

Elseif  &R T R T
i iX X Y Y=<

exact _ next _ cell ( 1, );R R
i iX Y= + _ 3;Next position =

Elseif  &R T R T
i iX X Y Y><

exact _ next _ cell ( 1, 1);R R
i iX Y= + − _ 4;Next position =

Elseif  &R T R T
i iX X Y Y>=

     exact _ next _ cell ( , 1);R R
i iX Y= −        

_ 5;Next position =
Elseif  &R T R T

i iX X Y Y>>

exact _ next _ cell ( 1, 1);R R
i iX Y= − − _ 6;Next position =

Elseif  &R T R T
i iX X Y Y=>

exact _ next _ cell ( 1, );R R
i iX Y= − _ 7;Next position =

Elseif  &R T R T
i iX X Y Y<>

exact _ next _ cell ( 1, 1);R R
i iX Y= − +

     _ 8;Next position =
End If 
}
End Function 

3. exPeRIMeNtAl VAlIdAtIoN oF the 
PRoPoSed QSA
Most of the simulation-based works fail when it comes 

to real-time implementation. To validate and check the 
application of the proposed QSA on real-time conditions, the 
FIREBIRD v®  mobile robot research platform is utilised. The 
specifications of this robot are given in Table 1. 

Step 13: The smoothed shortest path P with 
coordinates in  P

xS  is sent to the robot for 
navigation. 

Step 14: End

Figure 3. (a) Representation of the set of the feasible path, (b) optimum path selected from the collection of feasible paths by 
proposed QSA (c) Smoothed optimal path

Table 1. Specifications of the FIREBIRD Robot with Technical 
details

Specification technical detail
Microcontroller Atmel ATmEGA2560 microcontroller
I/O Communication 2.4GHZ - Wireless Communication (ZigBee)
Power 9.6v DC Supply
Dimension Dia: 16cm; height: 10cm
Weight 1.3Kgs
Motion Two DC motors.
Speed 0.24 m/s
Load capacity ~ 2 kg on a flat surface
Control Autonomous control / wired or wireless mode
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The proposed QSA is programmed and executed in the 
MATLAB R2018a environment installed in an X64-based 
PC with AmD Ryzen 3 2200U built-in 256SSD/4GBRAm.  
The sequence of operations is represented as a flow diagram in 
Fig. 4. The environment is supplied to the base station in the 
form of a topographical map. The topographical map changed 
to a grid map with virtually inflating the obstacles to guarantee 
the robot’s safety. The user specifies the grid coordinates of 
the robot and target. The proposed QSA is executed and 
provides a path in the form of an ordered set of coordinates. 
These path coordinates are converted into motion commands 
by ARDUINO 1.8.12 software and sent to the robot through 
the Xbee transceiver. The robot receives the coordinates and 
starts navigating towards the target. 

A floor constructed with obstacles in 1.0m x 1.2m space 
of the size. Occupancy and distribution of obstacles determine 
the complexity of the generated path. hence, low and high 
levels of obstacle occupancy environments were created to test 
the proposed QSA.

3.1 Real-world Scenario with the low and high 
level of obstacles occupancy
A real-world experiment was conducted using the FIREBIRD 

V robot constructed with a low level of obstacle occupancy. 
(i.e., a minimum number of obstacles) for experimentation, as 
shown in Fig. 8 (l-I -Starting position; l-II - the initial level 
of obstacle avoidance; l-III -Smooth travelling of a robot by 
avoiding the obstacles and l-Iv - Successful reach of the target 
position. Similarly, the experiments were conducted for high-level 
Occupancy (Fig. 5). During the experimentation, the FIREBIRD 
V robot’s path was almost the same as the path obtained by the 
QSA. It shows that there was a slight time difference when 
comparing the experimental output with the calculated time. This 
brings factors like the robot’s wheel slips and error in positional 
sensing into consideration. However, the results obtained were 
encouraging, and ease of implementation was witnessed.

4.  ReSultS ANd dIScuSSIoN
Every proposed graph-based PP algorithm has its method 

of addressing the PP problem. As these methods vary, the 
computational effort also varies. The extent of variation 
depends on the factors such as the number of cells examined 
to identify the target and the evaluation requirements for 
selecting the same cell as the proposed algorithm incorporates 
a novel change in the primary search methodology to reduce 
the computational effort and compared with the traditional 
algorithms and as well as the improved algorithms. Almost 
all the enhanced algorithms are modified versions of any 
conventional algorithms to meet the specific application needs. 
However, the necessary search procedure remains the same, 
and hence their computational efforts also stay the same. 
Moreover, the research work that addresses the reduction in 
computation effort does not clearly state that the decrease is 
due to high-end computing facilities or improved techniques. 
Hence to make a fair comparison between the proposed QSA 
and recent PP algorithms, a novel scheme was developed to 
evaluate the computational effort.

Figure 5. Navigation of FIRebIRd V Robot in the real-time environment. 

Figure 4. Flow of sequence of operation during experimentation.

Low-level of obstacle occupancy High-level of obstacle occupancy
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4.1 comparison with traditional PP Algorithm
The widely used traditional PP algorithm like A*(1968), 

Dijkstra (1977), Breadth-First Search (1984), Best First search 
(1984), Jump point Search (2012), and Orthogonal JPS (2015) 
considered verifying best the competence of the proposed 
algorithm in simulated environments. 

The operating procedure of traditional algorithms was 
found to induce Nce while finding the optimal path. however, the 
Nce also varied with the type of distribution of obstacles in the 
environment. In general, specific algorithms that perform well in 
one kind of environment may not be helpful in the other types.  
Hence, to test the performance of proposed QSA and compare it 
with other algorithms, six different grid environments have been 
taken into consideration. Specifically, (1) Spiral grid, (2) Caved 
obstacle occupancy grid, (3) Warehouse alike grid, (4) Zigzag 

obstacles occupancy grid, (5) Random obstacle occupancy 
grid, and (6) Narrow way grid of size 10 × 10 square units.

The performance measures such as Nce (includes revisiting 
the same cells multiple times in search of the optimal path), 
Pl, and the percentage of additional cells examined (PACE) 
concerning the proposed QSA considered for the comparison. 
The Nce is needed for the optimal path in the environment 
with Narrow way-obstacle occupancy by the six different 
algorithms obtained from40 and shown in Fig. 6(a). The Nce 
by the proposed QSA is graphically presented in Fig. 6(b) 
for the same environment. The proposed QSA was tested in 
the specified six different environments, and the obtained 
smoothed path is shown in Fig. 7. The performance measures 
of the proposed QSA were compared with the other algorithms, 
as shown in Table 2.

Figure 6. (a) Nce for obtaining an optimal path by different algorithms in narrow way - obstacle occupancy environment and 
(b) Nce for obtaining an optimal path by the proposed QSA in narrow way - obstacle occupancy environment.

Figure 7. Smoothened optimal path obtained by the QSA for different environments.

(a)
(b)

mATlAB output with number of examined cells
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From Table 2, the path lengths for environments I and 
III are almost the same compared with the other algorithms. 
The above similarity is because there is no possibility of 
path smoothing due to the nature of obstacle occupancy in 
the environments. The PL obtained by the proposed QSA  
provides better results for the types II, Iv, v, and vI 
environments where smoothing is possible. The proposed QSA 
uses minimum numbers of cells for examination (shown in 
Fig. 8) to obtain the optimal path except for the BFS algorithm 
in type v and vI environments. In this case, though the BFS 
algorithm examines the minimum number of cells, it does not 
provide an optimal path. The percentage of additional cells 
examined between the proposed QSA method and traditional 
algorithms is shown in Fig. 9.

4.2 Scalability test 
For measure the scale-up capability, various grid 

resolution has experimented in proposed QSA. Table 3 shows 
the operating time for the completion of path planning in 
different grid sized environments. The proportional increase in 
the computational time is less for a commensurate increase in 
the grid size, which shows that the algorithm is competent in 
scalable environments. The set of benchmark grid maps with 
different resolutions is listed in Figs. 10 (a-l).

4.3 comparison with Recent MoPP Algorithms
The computational effort of solving path planning 

problems depends on sequential steps involved in searching 
the path and grid size. most modified algorithms use the 

table 2. Performance comparison of the QSA with some popular existing algorithms

environment Performance 
measure

A*
(AS)

dijkstra
(dA)

breadth-
first search 
(bh-FS)

Best first 
search 
(bFS)

Jump point 
search
(JPS)

orthogonal 
JPS
(oJPS)

Proposed quadrant 
selection algorithm 
(QSA)

Type I Nce 68 92 92 66 92 70 49
PL 27.9 27.9 27.9 27.9 27.9 32 27.9
PACE 27.94 46.73 46.73 25.75 46.73 30 -

Type II Nce 109 164 164 77 118 156 68
PL 17.07 17.07 17.07 17.07 17.07 20 16.72
PACE 37.61 58.53 58.53 11.68 42.37 56.41 -

Type III Nce 43 150 145 43 67 174 21
PL 12.31 12.31 12.31 12.31 12.31 17 12.313
PACE 56.41 86 85.51 51.16 68.65 87.93 -

Type Iv Nce 92 112 112 71 75 120 60
PL 17.31 17.31 17.31 17.31 17.31 22 16.731
PACE 34.78 46.42  46.42 15.49 20 50 -

Type V Nce 68 186 186 52 110 313 62
PL 13.31 13.31 13.1 13.9 13.31 18 12.95
PACE 8.82 66.66 66.66 - 43.63 80.19 -

Type vI Nce 76 152 152 53 94 117 60
PL 14.31 14.31 14.31 15.49 14.31 19 13.82
PACE 21.05 60.52 60.52 - 36.17 48.71 -

Figure 8. evaluation of the proposed QSA with traditional algorithms concerning the Nce.
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traditional algorithm as a base method of investigation, and 
novelty is meant for specific objectives in multi-objective 
problems. The modified algorithms were developed using the 
latest computing technology at that time. Also, researchers find 
it difficult to compare the computational time of algorithms as 
it is necessary to create the program for available algorithms 
in common platforms. Hence, it is proposed to evaluate the 
computational effort based on the sequence of the operations 
involved in searching the path.

Standards for evaluation of algorithms (Table 5) based on 
the percentage of cells examined. The assessment is classified as 
high - more than 80% or medium -50% to 80% and low - less 
than 50%. Also, each cell’s examination requires operational 
requirements such as investigation (i.e., check for presence 
or absence of obstacles) and mathematical computations 
(i.e., distance calculation). Based on each cell’s operational 
requirements, the levels are classified as high, medium, 
and low (high: Operational investigation + mathematical 
computation; medium: Only mathematical computation; low: 
Only operational investigation). The computational effort 
is represented in Table. 5, based on the percentage of cells 
examined, operational requirements, and the same evaluation 
as per the details given in Table 4.

Based on the comparison, we found that the algorithms41-44 

are simple modifications made in the A* algorithm, and it has 
a separate function(s) to solve additional objective(s). In41, the 
authors proposed Waypoint Refining Path Smoother (WRPS) 
for smoothing the path obtained. In42, the authors modified the 
A* algorithm to get the smoothed path. In43, Adaptive Window 
Approach function for path smoothness and safety navigation, 

table 4. Scheme developed for the evaluation of computational 
effort

% of examined cells
h M l

Operational 
requirement

H VH H M
M H M L
L M L VL

   H- High; M-Medium; L-Low; VH– Very High; Very Low-VL

table 3. operating time for proposed QSA

Grid 
size

Percentage of increase in 
the number of the grid cell

Average operating 
time (sec)

10X10 - 0.0325
20X20 300 0.0336
30X30 800 0.0351
40X40 1500 0.0367
60X60 3500 0.0368

Figure 10. Set of benchmark grid maps with various resolutions 
(a-l) used for performance evaluation.

Figure 9. evaluation of the proposed QSA with traditional algorithms concerning the percentage of additional cells examined.
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and in44, fuzzy support vector machine (FSM) and general 
regression neural network (GRNN) functions incorporated with 
A* algorithm. Still, the heuristic function in the A* algorithm 
itself has high computation time and integrating additional 
functions leads to an increase in run time and more memory 
requirements. In45-47 a well-recognised Dijkstra algorithm was 
used. In which the fundamental operation is searching for 
an entire area for finding adjacent nodes. Though45 stated an 
improved Dijkstra’s algorithm, the computational effort and 
operational requirements were found to be very high. There is 
no evidence in the methodology that claims to reduce the high 
computational effort of basic Dijkstra’s algorithm.

moreover, achieving the multi-objective goal requires 
dedicated colossal memory space and increased run time to 
the most famous traditional approaches like A* and Dijkstra’s 
algorithm. It is also challenging to implement such memory 
hungry algorithms in small mobile robots with less processing 
capability. The proposed QSA MOPP algorithm be the best 
alternative for currently available traditional approaches with 
less computational effort. The additional main advantage is to 
provide alternative paths apart from the optimal path for better 
navigational purposes during execution. 

Later, a well-known time-optimal JPS algorithm48-49 which 
possesses fundamentals A* algorithm’s heuristic function, is 
compared with the proposed algorithm. In improved/modified 

JPS as a Safe Distance (SD) JPS50 algorithm, the searching 
ability is superior to other traditional algorithms with fewer 
cells examined. however, there are no instances reported 
with the application of JPS to a multi-objective scenario. 
The operational requirements are very high if objectives like 
smoothing, alternative paths, or safety are incorporated further. 
Finally, some recent soft computing approaches to solve MOPP 
problems51-56 were compared. These soft computing approaches 
are more suitable for complex/uncertain environments and 
target tracking purposes, where time is not a significant 
constraint. For an austere environment, several alternative 
paths are generated. It is a time-consuming process to identify 
the optimal path among the available paths. Suppose the 
environment becomes a little complex or broader in size. In 
that case, the computational time for finding the optimal is very 
high. An enhanced genetic algorithm56 has shown some multi-
objective capacity. however, the number of cells examined, 
computational efforts, and operational efforts are very high 
compared to the proposed QSA.

The design of this study is to confirm whether the 
proposed MOPP algorithm shows an improved performance 
in minimising cell examined, computational and operational 
efforts. For this purpose, two different experimental grids 
(i.e., low level and high-level obstacle occupancy) were  
constructed. Followed by the proposed MOPP algorithm tested 

Table 5. Comprehensive comparison of recent improved/modified algorithms with proposed QSA algorithm

Methods and algorithm Year No. of cells 
examined (Nce)

operational 
requirements

computational 
effort

Smoothing Alternative 
paths

Safety

Smoothed A* algorithm with and 
without WRPS41

2019 M H H YES NA NA

Smoothed A* algorithm42 2019 M M M YES NA NA

Safe A* algorithm and adaptive 
window approach43

2020 M M M YES NA YES

 A* with FSVM and GRNN44 2017 M H H YES NA NA

Improved Dijkstra’s algorithm (IDA)45 2019 H H VH NA NA NA

Multi-objective hybrid PP algorithm 
GRTOP using Dijkstra’s algorithm46

2019 H H VH NA YES NA

Multi-objective Dijkstra’s algorithm47 2019 H H VH NA YES NA

Multi-objective route optimisation by 
using Dijkstra’s algorithm48

2020 H H VH NA NA NA

Adopted JPS for local PP49 2017 M H H NA NA NA

SD-JPS PP algorithm50 2019 L L VL NA NA NA

Combination of neural network and 
fuzzy techniques51

2020 H H VH NA NA NA

Improved ant colony algorithm52 2017 M H H NA NA NA

Improved ant colony algorithm53 2019 M H H NA NA NA

Artificial bee colony algorithm54 2020 H H VH NA NA NA

Hybrid PSO-MFB optimisation 
algorithm55

2020 H H VH YES NA NA

MOPP using enhanced genetic 
algorithm56

2019 H H VH YES NA YES

Proposed QSA - L L VL YES YES YES
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in six different environments and the performance compared 
with traditional algorithms. During the evaluations, we found 
that every PP algorithm has successfully achieved the optimal 
PP. however, most of the algorithms repeatedly examine 
adjacent grid cells to find their sub-target(s). This recurrent 
operational activity impacts the higher computational effort 
and more operational requirements for solving any simple or 
moderated PP problems.

As the proposed QSA needs less operational requirement 
and uses a minimum number of cells for examination to 
find the optimal path, it is found to be competitive in terms 
of computational effort compared with the other algorithms 
(shown in Fig. 10). The proposed QSA offers several alternate 
feasible paths with a minimum number of examined cells that 
are predominantly useful in multi-robot situations where the 
robots can use different paths to avoid congestion and traffic 
delays. The alternative paths are very useful in emergency 
handling situations where the optimal path is not operable due 
to real-time constraints.

5. lIMItAtIoNS
The proposed path planning approach is evidenced to 

be more effective and capable of solving the path planning 
problem with a minimised examination of neighbour cells. 
However, this research does not provide a complete picture 
of the assessment in different standards or specifications. 
here some examples are, (1) When the number of turns 
in an obtained optimal path is higher in number may lead 
to unattainable/failure in the smoothening procedure. (2) 
Similarly, in some instances, there are identical optimal paths 
obtained with the clockwise and counter-clockwise direction 
of movement to the obstacle(s) position. In such examples, 
human intervention is required to resolve the ambiguity. (3) 
Furthermore, there was a limitation on having less significant 
prior research on minimising neighbouring cells’ examination. 
Among various available methods, SD-JPS50 is the only method 
that significantly reduced the number of neighbouring cells’ 
examinations to the A* algorithm. In contrast, other examined 
cells [arbitrarily selected cells] were considered. (4) With 
various cross-platforms and ambiguous data and information, 
the preparation of comparative study becomes tedious.  

6.  coNcluSIoN
This research develops a new effortless multi-objective 

path planning algorithm to achieve the smoothed optimal path 
by examining the minimum number of cells. The performance 
of the proposed QSA in different environments was compared 
with six popular all-time algorithms and validated through 
real-time experimentations. It is found that the proposed QSA 
outperformed all the other algorithms in various environments 
for providing the optimal path with a reduced number of 
cells examination. This algorithm also offered some feasible 
alternate paths that are useful in multi-robot situations to avoid 
traffic congestions. The developed algorithm is valuable for 
time-critical emergency handling situations where the optimal 
path is not an operational constraint. In the future, this approach 
can continue solving multi-objective optimal PP problems in 
complex and dynamic 3D environments.  

ReFeReNceS
1. Han, J. A surrounding point set approach for path planning 

in unknown environments. Comput. Indust. Eng., 2019, 
133, 121-130. 

 doi: 10.1016/j.cie.2019.05.013
2. Latombe, J.C. Robot motion planning. Springer Science 

& Business Media, 2012, (124).
3. Bugmann, G.; lu, S. & Chung, J.h. Weighted path 

planning is based on collision detection. Industrial Robot: 
An International Journal, 2005. 

 doi: 10.1108/01439910510629208
4. Thrun, S. Learning metric-topological maps for indoor 

mobile robot navigation. Artificial Intelligence, 1998, 
99(1), 21-71. 

 doi: 10.1016/S0004-3702(97)00078-7
5. Seda, m. & Pich v. Robot motion planning using 

generalized voronoi diagrams., 2008. Target, 1, p.q2.
6. mittal, S. & Deb. Three-dimensional offline path planning 

for UAvs using multi-objective evolutionary algorithms. 
IEEE, 2007, pp. 3195-3202. 

 doi: 10.1109/CEC.2007.4424880
7. Horowitz, S.L. & Pavlidis T. Picture segmentation by a 

tree traversal algorithm. Journal of the ACM (JACM), 
1976, 23(2), 368-388. 

 doi: 10.1145/321941.321956
8. Daniel, K.; Nash, A.; Koenig, S. & Felner, A. Theta*: 

Any-angle path planning on grids. Journal of Artificial 
Intelligence Research, 2010, 39, 533-579. 

 doi: 10.1613/jair.2994
9. Schouwenaars, T.; De moor, B.; Feron, E. & how, J. 

mixed-integer programming for multi-vehicle path 
planning. In European Control Conference (ECC), 2001, 
pp. 2603-2608. IEEE. 

 doi: 10.23919/ECC.2001.7076321
10. Zhang, H.M. Path planning methods of mobile robots 

based on soft computing techniques, 2011. Advanced 
Materials Research, 216, 677-680. 

 doi: 10.4028/www.scientific.net/AmR.216.677
11. Drugan, M.M. & Thierens, D. Stochastic Pareto local 

search: Pareto neighborhood exploration and perturbation 
strategies. Journal of Heuristics, 2012, 18(5), 727-766. 

 doi: 10.1007/s10732-012-9205-7
12. Bundy, A. & Wallen, l. Breadth-first search. In Catalogue 

of artificial intelligence tools 1984, pp. 13-13. Springer, 
Berlin, Heidelberg. 

 doi: 10.1007/978-3-642-96964-5_1
13. Tarjan, R. Depth-first search and linear graph algorithms. 

SIAM Journal on Computing, 1972, 1(2), 146-160. 
 doi: 10.1137/0201010
14. Bellman, R. On a routing problem. Quarterly of applied 

Mathematics, 1958, 16(1), 87-90. 
 doi: 10.1090/qam/102435
15. Knuth, D.E. A generalization of Dijkstra’s algorithm. 

Information Processing Letters, 1977, 6(1), 1-5. 
 doi:10.1016/0020-0190(77)90002-3
16. Hart, P.E.; Nilsson, N.J. & Raphael, B. A formal basis for 

the heuristic determination of minimum cost paths. IEEE 
Transactions on Systems Science and Cybernetics, 1968, 



RAJCHANDAR, et al.: AN APPROACh TO ImPROvE mUlTI-OBJECTIvE PATh PlANNING FOR mOBIlE ROBOT NAvIGATION USING

759

4(2), 100-107. 
 doi: 10.1109/TSSC.1968.300136
17. DuchoĖ, F.; Babineca, A.; Kajana, m.; BeĖoa, P.; Floreka, 

m.; Ficoa, T. & Jurišicaa, l. Path planning with modified 
a star algorithm for a mobile robot. Procedia Engineering, 
2014, 96, 59-69. 

 doi: 10.1016/j.proeng.2014.12.098
18. Witmer, N. Jump point search explained. 2013-09-22 J. 

http://zeruwidth.com/2013/05/05/jump-point-search-
explained, hTml.

19. harabor, D. & Grastien, A. Improving jump point search. 
In Proceedings of the International Conference on 
Automated Planning and Scheduling, 2014, 24(1). 

20. Wang, Z.; li, Y. & Yao, Y.-A.motion and path planning 
of a novel multi-mode mobile parallel robot based on 
chessboard-shaped grid division. Industrial Robot, 2018, 
45(3), 390-400. 

 doi: 10.1108/IR-01-2018-0001
21. Zadeh, l.A. Soft Computing and fuzzy logic. In Fuzzy 

Sets, Fuzzy logic, and Fuzzy Systems: Selected Papers 
by lotfi a Zadeh, 1996. pp. 796-804 

 doi: 10.1142/9789814261302_0042
22. Mandava R.K.; Bondada S. & Vundavilli P.R. An 

Optimized Path Planning for the mobile Robot Using 
Potential Field method and PSO Algorithm. In: Bansal J., 
Das K., Nagar A., Deep K., Ojha A. (eds) Soft Computing 
for Problem Solving. Advances in Intelligent Systems and 
Computing, 2019, 817. Springer, Singapore. 

 doi: 10.1109/ICUAS.2019.8798031
23. Tavoosi, v; marzbanrad, J. & Golnavaz, m. Optimized 

path planning of an unmanned vehicle in an unknown 
environment using the PSO algorithm. In IOP Conference 
Series: Mater. Sci. Eng., 2020, 671(1), 012009. IOP 
Publishing. 

 doi: 10.1088/1757-899X/671/1/012009
24. Masehian E. & Sedighizadeh, D. A multi-objective 

PSO-based algorithm for robot path planning. In IEEE 
International Conference on Industrial Technology, 2010, 
pp. 465-470. 

 doi: 10.1109/ICIT.2010.5472755.
25. Châari, I.; Koubâa, A.; Bennaceur, h.; Trigui, S. & Al-

Shalfan, K. smartPATh: A hybrid ACO-GA algorithm 
for robot path planning. In 2012 IEEE Congress on 
Evolutionary Computation, Brisbane, QLD, 2012, pp. 1-8. 

 doi: 10.1109/CEC.2012.6256142.
26. Valéria de C. Santos, Fernando E. B. Otero, Colin Johnson, 

Fernando S. Osório, & Cláudio F. m. Toledo. Exploratory 
path planning for mobile robots in dynamic environments 
with ant colony optimization. In Proceedings of the 2020 
Genetic and Evolutionary Computation Conference 
(GECCO ‘20). Association for Computing Machinery, 
New York, NY, USA, 2020, 40–48. 

 doi:10.1145/3377930.3390219
27. Ajeil, F.h.; Ibraheem, I.K.; Sahib, m.A. & humaidi, A.J. 

Multi-objective path planning of an autonomous mobile 
robot using a hybrid PSO-MFB optimization algorithm. 
Applied Soft Computing, 2020, 89, 106076. 

 doi: 10.1016/j.asoc.2020.106076

28. Goel, P. & Singh, D. Efficient ABC algorithm for dynamic 
path planning. Int. J. Comput. Appl., 2014, 88(2).

29. Faridi, AQ.; Sharma, S.; Shukla, A.; Tiwari, R. & Dhar, 
J. Multi-robot multi-target dynamic path planning using 
artificial bee colony and evolutionary programming in 
unknown environment. Intelligent Service Robotics. 
2018, 11(2), 171-86. 

 doi: 10.1007/s11370-017-0244-7
30. Xu, F.; li, h.; Pun, C.m.; hu, h.; li, Y.; Song, Y. & 

Gao, h. A new global best guided artificial bee colony 
algorithm with application in robot path planning. Applied 
Soft Computing, 2020, 88, p.106037. 

 doi: 10.1016/j.asoc.2019.106037
31. Dunbabin, m. & marques, l. Robots for environmental 

monitoring: Significant advancements and applications. 
IEEE Robotics Automation Mag., 2012, 19(1), 24-39. 

 doi: 10.1109/mRA.2011.2181683
32. Noborio, h.; Naniwa, T. & Arimoto, S. A quadtree‐based 

path‐planning algorithm for a mobile robot. Journal of 
Robotic Systems, 1990, 7(4), 555-574. 

 doi: 10.1002/rob.4620070404
33. Rodrigues, A.; Costa, P. & lima, J. The K-Framed 

Quadtrees Approach for Path Planning Through a Known 
Environment. In: Ollero A., Sanfeliu A., montano l., 
lau N., Cardeira C. (eds) ROBOT 2017: Third Iberian 
Robotics Conference. ROBOT 2017. Advances in 
Intelligent Systems and Computing, 1990, 693, Springer, 
Cham. 

 doi: 10.1007/978-3-319-70833-1_5
34. ma, Y.; Sun, h.; Ye, P. & li, C. mobile robot multi-

resolution full coverage path planning algorithm. In 5th 
International Conference on Systems and Informatics 
(ICSAI), Nanjing, 2018, pp. 120-125. 

 doi: 10.1109/ICSAI.2018.8599478.
35. Shah B. C. & Gupta, S. K. long-distance path planning 

for unmanned surface vehicles in complex marine 
environment. IEEE J. Oceanic Eng., 2020, 45(3), 813-
830. 

 doi: 10.1109/JOE.2019.2909508.
36. mäenpää, P.; Aref, m.m. & mattila, J. FORmI: A Fast 

Holonomic Path Planning and Obstacle Representation 
method Based on Interval Analysis. In IEEE International 
Conference on Cybernetics and Intelligent Systems (CIS) 
and IEEE Conference on Robotics, Automation and 
mechatronics (RAm), Bangkok, Thailand, 2019, pp. 398-
403. 

 doi:10.1109/CIS-RAm47153.2019.9095822.
37. mora, E. G.; Cagnazzo, m. & Dufaux, F. AvC to hEvC 

transcoder based on quadtree limitation. Multimedia Tools 
and Applications, 2017, 76(6), 8991-9015.

38. Petres, C.; Pailhas, Y.; Patron, P.; Petillot, Y.; Evans J. 
& Lane, D. Path planning for autonomous underwater 
vehicles. IEEE Trans. Robotics, 2007, 23(2), 331-341. 

 doi: 10.1109/TRO.2007.895057.
39. hwang, Joo Young; Kim, Jun Song; lim, Sang Seok 

& Park, Kyu Ho. A fast path planning by path graph 
optimization. In IEEE Transactions on Systems, man, and 
Cybernetics - Part A: Systems and humans, 2003, 33(1), 



DEF. SCI. J., vOl. 71, NO. 6, NOvEmBER 2021

760

121-129. 
 doi: 10.1109/TSmCA.2003.812599.
40. Xueqiao (joe) xu, Q.I.A.O. 2014. PathFindingjs. [Online]. 

[15 may 2020]. Available from: https://qiao.github.io/
PathFinding.js/visual/

41. Song, R.; liu, Y. & Bucknall, R. Smoothed a* algorithm 
for practical unmanned surface vehicle path planning. 
Applied Ocean Research, 2019, 83, 9-20. 

 doi: 10.1016/j.apor.2018.12.001
42. Gunawan, S.A.; Pratama, G.N.P.; Cahyadi, A.I.; 

Winduratna, B.; Yuwono, Y.C.h. & Wahyunggoro, O. 
Smoothed A-star algorithm for nonholonomic mobile 
robot path planning. In International Conference 
on Information and Communications Technology 
(ICOIACT), Yogyakarta, Indonesia, 2019, pp. 654-658. 

 doi: 10.1109/ICOIACT46704.2019.8938467.
43. Zhong, X.; Tian, J.; hu, h. & Peng, X. hybrid path 

planning based on safe A* Algorithm and adaptive 
window approach for mobile robot in large-scale dynamic 
environment. Journal of Intelligent & Robotic Systems, 
2020, pp.1-13. 

 doi: 10.1007/s10846-019-01112-z
44. Chen, J.; Jiang, W.; Zhao, P. & Hu, J. A path planning 

method of anti-jamming ability improvement for 
autonomous vehicles navigating in off-road environments. 
Industrial Robot: An International Journal, 2017. 

 doi: 10.1108/IR-11-2016-0301
45. Wenzheng, l.; Junjun, l. & Shunli, Y. An Improved 

Dijkstra’s Algorithm for Shortest Path Planning on 2D 
Grid Maps. In IEEE 9th International Conference on 
Electronics Information and Emergency Communication 
(ICEIEC), 2019, pp. 438-441. 

 doi: 10.1109/ICEIEC.2019.8784487
46. Fink, W.; Baker, V.R.; Brooks, A.J.W.; Flammia, M.; 

Dohm, J.M. & Tarbell, M.A. Globally optimal rover 
traverse planning in 3D using Dijkstra’s algorithm for 
multi-objective deployment scenarios. Planetary and 
Space Science, 2019, 179, p.104707. 

 doi: 10.1016/j.pss.2019.104707
47. Schäfer, l.E. & Ruzika, S. On variants of the 

Single-criterion and Multiobjective Near-Shortest 
Paths Problem. In Multikriterielle Optimierung und 
Entscheidungsunterstützung, 2019, pp. 17-30, 

 doi: 10.1007/978-3-658-27041-4_2
48. hossain, m.A.; Ahmedy, I.; harith, m.Z.m.; Idris, m.Y.I.; 

Soon, T.K.; Noor, R.m. & Yusoff, S.B. Route Optimization 
by using Dijkstra’s Algorithm for the Waste Management 
System. In Proceedings of 2020 The 3rd International 
Conference on Information Science and System, 2020, 
pp. 110-114. 

 doi: 10.1145/3388176.3388186
49. Zhou, K.; Yu, l.; long, Z. & mo, S. local path planning 

of driverless car navigation based on the jump point search 
method under the urban environment. Future Internet, 
2017, 9(3), p.51.          

 doi:10.3390/fi9030051
50. Zheng, X.; Tu, X. & Yang, Q. Improved JPS algorithm 

using new jump point for path planning of mobile robot. 

In IEEE International Conference on mechatronics and 
Automation (ICmA) 2019, pp. 2463-2468. 

 doi:10.1109/ICmA.2019.8816410
51. martínez, F.; Penagos, C. & Pacheco, l. Scheme for 

motion estimation based on an adaptive fuzzy neural 
network. Telkomnika, 2020, 18(2), 1030-1037.  

 doi: 10.12928/TElKOmNIKA.v18i2.14752
52. liu, J.; Yang, J.; liu, h.; Tian, X. & Gao, m. An improved 

ant colony algorithm for robot path planning. Soft 
Computing, 2017, 21(19), 5829-5839. 

 doi: 10.1007/s00500-016-2161-7
53. luo, Q.; Wang, h.; Zheng, Y. & he, J. Research on path 

planning of mobile robots based on an improved ant 
colony algorithm. Neural Computing and Applications, 
2020, 32(6), 1555-1566. 

 doi: 10.1007/978-3-030-37436-5_11
54. Xu, F.; li, h.; Pun, C.m.; hu, h.; li, Y.; Song, Y. & 

Gao, h. A new global best guided artificial bee colony 
algorithm with application in robot path planning. Applied 
Soft Computing, 2020, 88, 106037. 

 doi: 10.1016/j.asoc.2019.106037
55. Ajeil, F.h.; Ibraheem, I.K.; Sahib, m.A. & humaidi, A.J. 

Multi-objective path planning of an autonomous mobile 
robot using a hybrid PSO-MFB optimization algorithm. 
Applied Soft Computing, 2020, 89, 106076. 

 doi: 10.1016/j.asoc.2020.106076 
56. Nazarahari, m.; Khanmirza, E. & Doostie, S. multi-

objective multi-robot path planning in a continuous 
environment using an enhanced genetic algorithm. Expert 
Systems with Applications, 2019, 115, 106-120. 

 doi: 10.1016/j.eswa.2018.08.008

coNtRIbutoRS

Mr K. Rajchandar received a Master of Engineering in 
Industrial Engineering from Sudharsan Engineering College 
(Affiliated to Anna University, Tiruchirappalli, T.N., India), in 
2011. He also finished a Master of Business Administration in 
Production and Operation management from Alagappa University, 
Tamil Nadu, in 2017. He is an active Research Scholar towards 
receiving a PhD in the Department of Industrial Engineering, 
Anna University, Chennai, India. his common research interests 
include Robot path/motion planning, multi-robot collaboration, 
and autonomous mobile robot navigation optimisation.
His contribution towards this research is the design of the 
algorithm, preparation of experimental setup and data collection, 
primary manuscript preparation.

Prof. R. baskaran currently working as Professor in the 
Department of Industrial Engineering, College of Engineering 
Guindy, Anna University, Chennai. he did his Bachelors in 
mechanical Engineering from madras University (1991), masters 
in Industrial Engineering (1994) from College of Engineering 
Guindy, Anna University, Chennai. he also did his doctoral 
thesis in the performance evaluation of bus depots and bus 
routes for metro cities (2011). His research interests include 
Route optimisation, vehicle scheduling, and sustainability in 
higher education.
He contribute in this study is the identification of multiple objectives 
related to path planning and evaluation of the objectives.



RAJCHANDAR, et al.: AN APPROACh TO ImPROvE mUlTI-OBJECTIvE PATh PlANNING FOR mOBIlE ROBOT NAvIGATION USING

761

Prof. K. Padmanabhan Panchu currently working as Assistant 
Professor in the Department of Industrial Engineering, College 
of Engineering Guindy, Anna University, Chennai. he did 
his Bachelors in Production Engineering from Government 
College of Technology, Coimbatore (2004), masters in Industrial 
Engineering (2008) from College of Engineering Guindy, Anna 
University, Chennai. he did his doctoral thesis in multi-objective 
optimisation of multi-robot task allocation. His research interests 
include Multi-robot systems, path planning and scheduling, and 
operations management.
He has contributed to this article in identifying the problem, 
experimental design and algorithm design.

Prof. M. Rajmohan currently working as Professor in the 
Department of Industrial Engineering, College of Engineering 
Guindy, Anna University, Chennai. he did his Bachelors 
in Agricultural Engineering from College of Agricultural 
Engineering, Tamilnadu Agricultural University (1993 - 1998), 
masters in Industrial Engineering (1999 - 2001) from College 
of Engineering Guindy, Anna University, Chennai. he did his 
doctoral work in vehicle route optimisation with time windows. 
His research interests include Vehicle routing optimisation, 
logistic and supply chain management, meta-heuristics and 
design of experiments.
He has contributed to this article in identifying the comparison 
metrics for evaluation and analysis of results.


