1,584 research outputs found

    High-level Architecture and Compelling Technologies for an Advanced Web-based Vehicle Routing and Scheduling System for Urban Freight Transportation

    Get PDF
    The search for a more efficient routing and scheduling, the improvement of service’s level and the increasing complexity of real-world distributive contexts are contingent variables that generate the need for a system’s architecture that may be holistic, innovative, scalable and reliable. Hence, new technologies and a lucid awareness of involved actors and infrastructures, provide the basis to create a more efficient routing and scheduling architecture for enterprises

    Analysis of Heterogeneous Data Sources for Veterinary Syndromic Surveillance to Improve Public Health Response and Aid Decision Making

    Get PDF
    The standard technique of implementing veterinary syndromic surveillance (VSyS) is the detection of temporal or spatial anomalies in the occurrence of health incidents above a set threshold in an observed population using the Frequentist modelling approach. Most implementation of this technique also requires the removal of historical outbreaks from the datasets to construct baselines. Unfortunately, some challenges exist, such as data scarcity, delayed reporting of health incidents, and variable data availability from sources, which make the VSyS implementation and alarm interpretation difficult, particularly when quantifying surveillance risk with associated uncertainties. This problem indicates that alternate or improved techniques are required to interpret alarms when incorporating uncertainties and previous knowledge of health incidents into the model to inform decision-making. Such methods must be capable of retaining historical outbreaks to assess surveillance risk. In this research work, the Stochastic Quantitative Risk Assessment (SQRA) model was proposed and developed for detecting and quantifying the risk of disease outbreaks with associated uncertainties using the Bayesian probabilistic approach in PyMC3. A systematic and comparative evaluation of the available techniques was used to select the most appropriate method and software packages based on flexibility, efficiency, usability, ability to retain historical outbreaks, and the ease of developing a model in Python. The social media datasets (Twitter) were first applied to infer a possible disease outbreak incident with associated uncertainties. Then, the inferences were subsequently updated using datasets from the clinical and other healthcare sources to reduce uncertainties in the model and validate the outbreak. Therefore, the proposed SQRA model demonstrates an approach that uses the successive refinement of analysis of different data streams to define a changepoint signalling a disease outbreak. The SQRA model was tested and validated to show the method's effectiveness and reliability for differentiating and identifying risk regions with corresponding changepoints to interpret an ongoing disease outbreak incident. This demonstrates that a technique such as the SQRA method obtained through this research may aid in overcoming some of the difficulties identified in VSyS, such as data scarcity, delayed reporting, and variable availability of data from sources, ultimately contributing to science and practice

    Appraisal of Cashless Policy on the Nigerian Financial System

    Get PDF
    The Central Bank of Nigeria (CBN) has been active in the inauguration of policies and schemes to foster the implementation of the cashless policy in Nigeria. However the current transition to cashless economy raises a lot of concerns with no substantial evidence yet to justify its implementation. This study was carried out in order to appraise the implementation of the cashless policy since its introduction into the Nigerian financial system in 2012 and also to examine the persistent challenges facing its implementation. In view of the above stated objective, primary data were collected with the aid of the questionnaire, which was randomly administered to 120 respondents ranging from First Bank, Zenith Bank and United Bank for Africa. The banks were selected based on their total assets and the information collected covered the activities of the CBN and that of these banks towards implementation of the cashless policy from 2012 till date.The data collected were presented and analyzed with the aid of the Statistical Package for Social Sciences (SPSS) using descriptive statistics and one-sample t-test. The results led to the conclusion that despite the need to operate cashless transactions dominating the modern Nigerian economy, the cashless policy will have the desired impact only if a lot is done to ensure the implementation of an effective cashless system

    IMMACCS: A Multi-Agent Decision-Support System

    Get PDF
    This report describes work performed by the Collaborative Agent Design Research Center for the US Marine Corps Warfighting Laboratory (MCWL), on the IMMACCS experimental decision-support system. IMMACCS (Integrated Marine Multi-Agent Command and Control System) incorporates three fundamental concepts that distinguish it from existing (i.e., legacy) command and control applications. First, it is a collaborative system in which computer-based agents assist human operators by monitoring, analyzing, and reasoning about events in near real-time. Second, IMMACCS includes an ontological model of the battlespace that represents the behavioral characteristics and relationships among real world entities such as friendly and enemy assets, infrastructure objects (e.g., buildings, roads, and rivers), and abstract notions. This object model provides the essential common language that binds all IMMACCS components into an integrated and adaptive decision-support system. Third, IMMACCS provides no ready made solutions that may not be applicable to the problems that will occur in the real world. Instead, the agents represent a powerful set of tools that together with the human operators can adjust themselves to the problem situations that cannot be predicted in advance. In this respect, IMMACCS is an adaptive command and control system that supports planning, execution and training functions concurrently. The report describes the nature and functional requirements of military command and control, the architectural features of IMMACCS that are designed to support these operational requirements, the capabilities of the tools (i.e., agents) that IMMACCS offers its users, and the manner in which these tools can be applied. Finally, the performance of IMMACCS during the Urban Warrior Advanced Warfighting Experiment held in California in March, 1999, is discussed from an operational viewpoint

    Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges

    Get PDF
    The increasing population across the globe makes it essential to link smart and sustainable city planning with the logistics of transporting people and goods, which will significantly contribute to how societies will face mobility in the coming years. The concept of smart mobility emerged with the popularity of smart cities and is aligned with the sustainable development goals defined by the United Nations. A reduction in traffic congestion and new route optimizations with reduced ecological footprint are some of the essential factors of smart mobility; however, other aspects must also be taken into account, such as the promotion of active mobility and inclusive mobility, encour-aging the use of other types of environmentally friendly fuels and engagement with citizens. The Internet of Things (IoT), Artificial Intelligence (AI), Blockchain and Big Data technology will serve as the main entry points and fundamental pillars to promote the rise of new innovative solutions that will change the current paradigm for cities and their citizens. Mobility‐as‐a‐service, traffic flow optimization, the optimization of logistics and autonomous vehicles are some of the services and applications that will encompass several changes in the coming years with the transition of existing cities into smart cities. This paper provides an extensive review of the current trends and solutions presented in the scope of smart mobility and enabling technologies that support it. An overview of how smart mobility fits into smart cities is provided by characterizing its main attributes and the key benefits of using smart mobility in a smart city ecosystem. Further, this paper highlights other various opportunities and challenges related to smart mobility. Lastly, the major services and applications that are expected to arise in the coming years within smart mobility are explored with the prospective future trends and scope

    User profiling and classification for fraud detection in mobile communications networks

    Get PDF
    The topic of this thesis is fraud detection in mobile communications networks by means of user profiling and classification techniques. The goal is to first identify relevant user groups based on call data and then to assign a user to a relevant group. Fraud may be defined as a dishonest or illegal use of services, with the intention to avoid service charges. Fraud detection is an important application, since network operators lose a relevant portion of their revenue to fraud. Whereas the intentions of the mobile phone users cannot be observed, it is assumed that the intentions are reflected in the call data. The call data is subsequently used in describing behavioral patterns of users. Neural networks and probabilistic models are employed in learning these usage patterns from call data. These models are used either to detect abrupt changes in established usage patterns or to recognize typical usage patterns of fraud. The methods are shown to be effective in detecting fraudulent behavior by empirically testing the methods with data from real mobile communications networks.reviewe
    corecore