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ABSTRACT

The topic of this thesis is fraud detection in mobile communications net-
works by means of user profiling and classification techniques. The goal is
to first identify relevant user groups based on call data and then to assign
a user to a relevant group. Fraud may be defined as a dishonest or illegal
use of services, with the intention to avoid service charges. Fraud detection
is an important application, since network operators lose a relevant portion
of their revenue to fraud. Whereas the intentions of the mobile phone users
cannot be observed, it is assumed that the intentions are reflected in the call
data. The call data is subsequently used in describing behavioral patterns
of users. Neural networks and probabilistic models are employed in learn-
ing these usage patterns from call data. These models are used either to
detect abrupt changes in established usage patterns or to recognize typical
usage patterns of fraud. The methods are shown to be effective in detecting
fraudulent behavior by empirically testing the methods with data from real
mobile communications networks.

© All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the
prior permission of the author.
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Chapter 1

Introduction

The topic of this thesis is fraud detection in mobile communications networks
by means of user profiling and classification techniques. User profiling is
the process of modeling characteristic aspects of user behavior. In user
classification, users are assigned to distinctive groups.

Fraud may be defined as a dishonest or illegal use of services, with the in-
tention to avoid service charges. With the aid of the fraud detection models,
fraudulent activity in a mobile communications network may be revealed.
This is beneficial to the network operator, who may lose several percent
of revenue to fraud, since the service charges from the fraudulent activity
remain uncollected. Apart from fraud detection, user profiling efforts in
telecommunications may be further motivated by the need to understand
the behavior of customers to enable provision of matching services and to
improve operations.

Fraud is defined through the unobserved intentions of the mobile phone
users. However, the intentions are reflected in the observed call data, which
is subsequently used in describing behavioral patterns of users. The task is
to use the call data to learn models of calling behavior so that these models
make inferences about users’ intentions. Neural networks and probabilistic
models are employed in learning these usage patterns from call data. Learn-
ing in this context means adaptation of the parameterized models so that
the inherent problem structure is coded in the model. Obviously, there is no
specific sequence of calls that would be fraudulent with absolute certainty.
In fact, the same sequence of calls could as well be fraudulent or normal.
Therefore, uncertainty in modeling the problem is needed. This is naturally
embodied in the framework of probabilistic models.

Two complementary approaches to fraud detection are used in this thesis.
In the differential approach, a model of recent behavior is used in quanti-
fying novelty found in the future call data so as to detect abrupt changes
in the calling behavior, which may be a consequence of fraud. In the abso-
lute approach, models typifying fraudulent and normal behavior are used to
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CHAPTER 1. INTRODUCTION 2

determine the most likely mode.
Chapter 2 introduces the problem of fraud detection and presents a re-

view of the published works in telecommunications fraud detection. Related
fields such as intrusion detection in computer systems and credit card fraud
detection are also briefly reviewed. In Chapter 3, the call data used in
this thesis is described. Chapter 4 forms the core of this thesis, where the
novel developments are put in a broader framework. The chapter starts
by introducing probabilistic networks, a framework under which mixture
models (Publication 2), regime-switching models (Publication 3), and
extensions of hidden Markov models (Publication 6) are described. The
chapter continues with the presentation of Self-Organizing Maps, which are
applied in a related application in process monitoring (Publication 1) and
in clustering probabilistic models (Publication 4). Since detection is in-
herently a discrimination problem, discriminative learning on top of the
Self-Organizing Map is presented in the context of Learning Vector Quanti-
zation (Publication 7). The chapter proceeds by introducing cost models
that can be used in expressing user-specific costs (Publication 5). Chap-
ter 4 ends with a description of measuring the quality of the models and
related discussion. The work is summarized in Chapter 5. Chapter 6 lists
the contents of the publications and contributions of the author.



Chapter 2

Fraud detection

This chapter introduces the problem of fraud detection, starting from defi-
nitions and proceeding to a review of previous work. The end of the chapter
discusses the related work in this area.

2.1 Introduction

In this section, fraud is defined and the development of fraud detection
systems is motivated. Some historical background is used to motivate the
user profiling approaches in fraud detection.

2.1.1 Definition of fraud

Many definitions in the literature exist, where the intention of the subscriber
plays a central role. Johnson (1996) defines fraud as any transmission of
voice or data across a telecommunications network where the intent of the
sender is to avoid or reduce legitimate call charges. In similar vein, Davis
and Goyal (1993) define fraud as obtaining unbillable services and unde-
served fees. According to Johnson (1996), the serious fraudster sees himself
as an entrepreneur, admittedly utilizing illegal methods, but motivated and
directed by essentially the same issues of cost, marketing, pricing, network
design and operations as any legitimate network operator. Hoath (1998) con-
siders fraud as attractive from the fraudsters’ point of view, since detection
risk is low, no special equipment is needed, and the product in question is
easily converted to cash. Although the term fraud has a particular meaning
in legislation, this established term is used broadly to mean misuse, dishon-
est intention or improper conduct without implying any legal consequences.

2.1.2 Motivation for fraud detection

Following the definition of fraud, it is easy to state the losses caused by fraud
as primary motivation for fraud detection. In fact, the telecommunications
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industry suffers losses in the order of billions of US dollars annually due to
fraud in its networks (Davis and Goyal 1993; Johnson 1996; Parker 1996;
O’Shea 1997; Pequeno 1997; Hoath 1998). In addition to financial losses,
fraud may cause distress, loss of service, and loss of customer confidence
(Hoath 1998). The financial losses account for about 2 percent to 6 percent
of the total revenue of network operators, thus playing a significant role in
total earnings. However, as noted by Barson et al. (1996), it is difficult to
provide precise estimates, since some fraud may be never detected, and the
operators are reluctant to reveal figures on fraud losses. Since the operators
are facing increasing competition and losses have been on the rise (Parker
1996), fraud has gone from being a problem carriers were willing to tolerate
to being one that dominates the front pages of both trade and general press
(O’Shea 1997). Johnson (1996) also affirms that network operators see call
selling as a growing concern.

2.1.3 Development of fraud

Historically, earlier types of fraud used technological means to acquire free
access. Cloning of mobile phones by creating copies of mobile terminals with
identification numbers from legitimate subscribers was used as a means of
gaining free access (Davis and Goyal 1993). In the era of analog mobile
terminals, identification numbers could be easily captured by eavesdropping
with suitable receiver equipment in public places, where mobile phones were
evidently used. One specific type of fraud, tumbling, was quite prevalent
in the United States (Davis and Goyal 1993). It exploited deficiencies in
the validation of subscriber identity when a mobile phone subscription was
used outside of the subscriber’s home area. The fraudster kept tumbling
(switching between) captured identification numbers to gain access. Davis
and Goyal (1993) state that the tumbling and cloning fraud have been seri-
ous threats to operators’ revenues. First fraud detection systems examined
whether two instances of one subscription were used at the same time (over-
lapping calls detection mechanism) or at locations far apart in temporal
proximity (velocity trap). Both the overlapping calls and the velocity trap
try to detect the existence of two mobile phones with identical identification
codes, clearly evidencing cloning. As a countermeasure to these fraud types,
technological improvements were introduced.

However, new forms of fraud came into existence. A few years later,
O’Shea (1997) reports the so-called subscription fraud to be the trendi-
est and the fastest-growing type of fraud. In similar spirit, Hoath (1998)
characterizes subscription fraud as being probably the most significant and
prevalent worldwide telecommunications fraud type. In subscription fraud,
a fraudster obtains a subscription (possibly with false identification) and
starts a fraudulent activity with no intention to pay the bill. It is indeed
non-technical in nature and by call selling, the entrepreneur-minded fraud-
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ster can generate significant revenues for a minimal investment in a very
short period of time (Johnson 1996). From the above explanation it is ev-
ident that the detection mechanisms of the first generation soon became
inadequate. The more advanced detection mechanisms must be based on
the behavioral modeling of calling activity, which is also the subject of this
thesis.

2.2 Previous work

In this section, published work with relevance to fraud detection in telecom-
munications networks is reviewed. Section 2.3 presents fraud detection meth-
ods in related fields, such as intrusion detection in computer systems, credit
card fraud detection, and applications in other fields, such as health care
fraud detection.

Fraud in telecommunications networks can be characterized by fraud sce-
narios, which essentially describe how the fraudster gained the illegitimate
access to the network. Detection methodologies designed for one specific
scenario are likely to miss plenty of the others. For example, velocity trap
and overlapping calls detection methodologies are solely aimed at detecting
cloned instances of mobile phones and do not catch any of the subscription
fraud cases. As stated in Section 2.1.3, the nature of fraud has changed
from cloning fraud to subscription fraud, which makes specialized detection
methodologies inadequate. Instead, the focus is on the detection methodolo-
gies based on the calling activity (a stream of transactions), which in turn
can be roughly divided into two categories. In absolute analysis, detection
is based on the calling activity models of fraudulent behavior and normal
behavior. Differential analysis approaches the problem of fraud detection by
detecting sudden changes in behavior. Using differential analysis, methods
typically alarm deviations from the established patterns of usage. When
current behavior differs from the established model of behavior, alarm is
raised. In both cases, the analysis methods are usually implemented by us-
ing probabilistic models, neural networks or rule-based systems. The two
approaches are illustrated in Figure 2.1. In the following, some prominent
work with relevance to the work presented in this thesis will be reviewed.

Davis and Goyal (1993) report on the use of a knowledge-based approach
to analyze call records delivered from cellular switches in real time. They
state that the application of uniform thresholds to all of a carrier’s sub-
scribers essentially forces comparison against a mythical average subscriber.
Instead, they choose to model each subscriber individually and allow the
subscribers’ profile to be adaptive in time. In addition, they use knowledge
about the general fraudulent behavior, for example, suspicious destination
numbers. The analysis component in their system determines if the alarms,
taken together, give enough evidence for the case to be reviewed by a hu-
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P (y|C0) P (y|C1) P (y|C0)

Figure 2.1: Absolute analysis and differential analysis, the two main ap-
proaches to fraud detection, are illustrated using a probabilistic view. In
absolute analysis, illustrated left, models of both normal (C0) and fraudu-
lent behavior (C1) must be formulated. In differential analysis, one model
is built assuming normal behavior (C0) and any deviations from the estab-
lished behavior are classified as fraudulent. The dashed lines indicate some
arbitrary decision borders and the shaded area denotes the regions to be
classified as fraudulent.

man analyst. In their conclusion, the system is credited with the ability to
detect fraud quickly allowing the analysts to focus on the most likely and
dangerous fraud cases.

In (Barson et al. 1996), the authors report their first experiments de-
tecting fraud in a database of simulated calls. They use a supervised feed-
forward neural network to detect anomalous use. Six different user types are
simulated stochastically according to the users’ calling patterns. Two types
of features are derived from this data, one set describing the recent use and
the other set describing the longer-term behavior. Both are accumulated
statistics of call data over time windows of different lengths. This data is
used as input to the neural network. The performance of their classifier is
estimated to be 92.5 % on the test data, which has limited value in the light
of simulated data and the need to give class-specific estimates on accuracy.
This work has also been reported in (Field and Hobson 1997).

Burge and Shawe-Taylor (1996, 1997) focus on unsupervised learning
techniques in computing user profiles over sequences of call records. They
apply their adaptive prototyping methods in creating models of recent and
long-term behavior and calculate a distance measure between the two pro-
files. They discuss on-line estimation techniques as a solution to avoid stor-
ing call detail records for calculating statistics over a time period. Their user
profiles are based on the user-specific prototypes, which model the probabil-
ity distribution of the call starting times and call durations. A large change
in user behavior profiles expressed by the Hellinger distance between profiles
is reported as an alarm. In (Moreau and Vandewalle 1997; Moreau, Verrelst,
and Vandewalle 1997), work on fraud detection based on supervised feed-
forward neural network techniques is reported. The authors criticize thresh-
olding techniques by detecting excessive usage, since these might be the
very best customers if these are legitimate users. In order to use supervised
learning techniques, they manually label the estimated user profiles of longer
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term and recent use, similar to those in (Burge and Shawe-Taylor 1997), into
fraudulent and non-fraudulent and train their neural network on these user
profiles. In (Moreau and Vandewalle 1997), they report having classified
test data with detection probabilities in the range of 80 - 90 % and false
alarm probabilities in the range of 2 - 5 %. Collaborative efforts of the two
previous groups to develop a fraud detection system have been reported in
(Moreau, Preenel, Burge, Shawe-Taylor, Störmann, and Cooke 1996; Burge,
Shawe-Taylor, Moreau, Verrelst, Störmann, and Gosset 1997). Interesting
in this context is the performance of the combination of the methods. In
(Howard and Gosset 1998), performance of the combination of the tools is
considered. They form an aggregated decision based on individual decisions
of the rule-based tool, unsupervised and supervised user profiling tools with
the help of logistic regression. They report improved results, particularly in
the region of low false positives. In all, their combined tool detects 60 % of
the fraudsters with a false alarm rate of 0.5 %.

Fawcett and Provost (1996, 1997) present rule-based methods for fraud
detection. The authors use adaptive rule sets to uncover indicators of fraud-
ulent behavior from a database of cellular calls. These indicators are used
to create profiles, which then serve as features to a system that combines
evidence from multiple profilers to generate alarms. They use rule selection
to select a set of rules that span larger sets of fraudulent cases. Furthermore,
these rules are used to formulate monitors, which are in turn pruned by a
feature selection methodology. The output of these monitors is weighted
together by a learning, linear threshold unit. They assess the results with a
cost model in which misclassification cost is proportional to time.

Some work in fraud detection is based on detecting changes in geograph-
ical spread of call destinations under fraudulent activity. This view is pro-
moted in (Yuhas 1993; Shortland and Scarfe 1994; Connor et al. 1995;
Cox et al. 1997). Yuhas (1993) clusters call data for further visualization.
Connor et al. (1995) in turn use neural networks in classification and some
authors use human pattern recognition capabilities in recognizing fraud (Cox
et al. 1997; Shortland and Scarfe 1994).

Fraud and uncollectible debt detection with Bayesian networks has been
presented in (Ezawa 1995; Ezawa, Singh, and Norton 1996; Ezawa and Nor-
ton 1996). They perform variable and dependency selection on a Bayesian
network. They also state that a Bayesian network that fits the database most
accurately may be poor for a specific task such as classification. However,
their problem formulation is to predict uncollectible debt, which includes
cases where the intention was not fraudulent and which does not call for
user profiles.
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2.2.1 Comparisons of the published work

Comparisons between the approaches are difficult to make, since the per-
formance assessment may differ, the difficulty of the problem varies and the
problem is set up in different ways. Also, the available data from the domain
may differ considerably. Fawcett and Provost (1999) state that because of
the problem representations, it is difficult to compare different solutions.
Collaborative work reported in (Moreau et al. 1996; Burge et al. 1997)
is unique in the sense that they can combine results from several research
groups based on the same framework for evaluation and the same data.

2.3 Related areas

Fawcett and Provost (1999) attempt to cast different fields, such as intrusion
detection, fraud detection, network performance monitoring and news story
monitoring into a common framework highlighting the similarities and dif-
ferences. They introduce a problem class called activity monitoring, where
the task is to detect the occurrence of interesting activity in a timely fash-
ion based on the observations of entities in the population. On system level,
monitoring of industrial processes has been earlier coined process monitor-
ing and pursued by (Tryba and Goser 1991; Kasslin, Kangas, and Simula
1992; Simula, Alhoniemi, Hollmén, and Vesanto 1997; Alhoniemi, Hollmén,
Simula, and Vesanto 1999; Simula, Ahola, Alhoniemi, Himberg, and Vesanto
1999). Process monitoring will be considered in more detail in Section 4.2.2.
In the following, the focus is on the work done in intrusion detection in com-
puter systems (Section 2.3.1), credit card fraud detection (Section 2.3.2), and
fraud detection in other fields such as medical care and insurance (Section
2.3.3).

2.3.1 Intrusion detection on computer systems

The goal of intrusion detection is to discover unauthorized use of computer
systems. Approaches to intrusion detection can be divided into two classes:
anomaly detection and misuse detection. Anomaly detection, similarly to
differential analysis, approaches the problem by attempting to find devia-
tions from the established patterns of usage. Misuse detection, which in turn
is similar to absolute analysis, compares the usage patterns to known tech-
niques of compromising computer security (Kumar 1995). Architecturally,
an intrusion detection may be based on audit data of a single host, or mul-
tiple hosts, or additionally on network traffic data. The earliest work on
the subject is a study by Anderson (1980). An intrusion detection model
by Denning (1987) is based on the hypothesis that security violations can
be detected by monitoring a system’s audit records for abnormal patterns
of system usage. These early studies set the path for other work to follow.
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Lunt (1990) considers combinations of anomaly detection and misuse de-
tection to compensate for the shortcomings of each method. Overviews of
intrusion detection methodologies can be found in (Lunt 1988; Lunt 1993;
Frank 1994; Mukherjee, Heberlein, and Levitt 1994; Kumar 1995). A hand-
book on technical aspects of intrusion detection is found in (Northcutt 1999).

Neural networks have been used in intrusion detection. Fox, Henning,
Reed, and Simonian (1990) use Self-Organizing Maps to identify anomalous
system states to be post-processed by an expert system. Feed-forward neural
networks have been used in (Tan 1995) to classify user behavior as normal or
intrusive, and in (Ryan, Ling, and Miikkulainen 1997) to learn user profiles
(prints) to recognize the legitimacy of the user.

Modeling the dynamic behavior of users is reported in (DuMouchel and
Schonlau 1998). They model the user behavior with a transition matrix that
models transition probabilities between subsequent commands of the user.
Lane and Brodley (1997) present matching functions to compare current
behavioral sequence to a historical profile to be used in intrusion detection.
Other recent work addresses the problem of concept drift, changing tasks of
legitimate computer users in intrusion detection (Lane and Brodley 1998).

Fawcett and Provost (1999) report work on transferring their fraud detec-
tion system to the intrusion detection domain. They report disappointing
results, which means that, despite some similarities, transferability of the
systems should not be taken for granted.

2.3.2 Credit card fraud detection

Credit card fraud detection aims at timely detection of credit card abuse.
Dorronsoro et al. (1997) describe this domain as having two particular
characteristics: a very limited time span for decisions and huge amount of
credit card operations to be processed. Leonard (1993) sets forth an expert
system model for detecting fraudulent usage of credit cards. Radial basis
function neural networks have been used in the credit card fraud detection
by Ghosh and Reilly (1994) and Hanagandi, Dhar, and Buescher (1996). In
(Dorronsoro et al. 1997), an operational system for fraud detection of credit
card operations based on a neural classifier is presented. Aleskerov et al.
(1997) present a neural network based database mining system for credit
card detection and test it on synthetically generated data. Stolfo et al.
(1997) present a meta-learning approach in credit card fraud detection in
order to combine results from multiple classifiers. Chan and Stolfo (1998)
address the question of non-uniform class distributions in credit card fraud
detection.

The problem of credit scoring does not share the same characteristics
as the fraud detection in telecommunications and is not reviewed here. A
survey of quantitative methods in credit management in a broader sense can
be found in (Rosenberg and Gleit 1994).
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2.3.3 Other work on fraud detection

There are numerous fields where one is interested in finding anomalous or
illegitimate behavior based on the observed transactions. Similar work may
be found in diverse fields, such as in insurance industry, health care, finance,
and management.

Glasgow (1997) discusses risk in the insurance industry and divides it
to two parts: risk as an essential element of the related underwriting task
and the fraud risk. In health care fraud detection, knowledge-based systems
have been applied in (Sokol 1998; Major and Riedinger 1992). He, Wang,
Graco, and Hawkins (1997) present medical fraud detection by grouping
practice profiles of medical doctors to normal and abnormal profiles with
the aid of neural networks. An assessment of artificial intelligence tech-
nologies for detection of money laundering is presented in (Jensen 1997).
Schuerman (1997) discusses risk management in the financial industry, and
Barney (1995) deals with closely related trading fraud. Allen et al. (1996)
transform financial transaction data to be visualized for further inspection
by a domain expert. Management directed fraud has been examined by
Menkus (1998) and by Curet, Jackson, and Tarar (1996). Fanning, Cogger,
and Srivastava (1995) use neural networks in detecting management fraud.

2.4 Discussion

Fraud detection is usually approached by absolute or by differential analysis.
Variations on the theme are due to the representation of the problem, the
choice of model classes, the degree of available knowledge about known fraud
scenarios, and the kind of available data exemplifying fraudulent and normal
behavior.

Surprisingly, very little work exists on dynamic modeling of behavior,
although many authors state fraud to be a dynamic phenomenon. Fawcett
and Provost (1997), for example, doubt the usefulness of hidden Markov
models in fraud detection as, in this domain, one is concerned with two
states of nature and one single transition between them. In this thesis,
these models are used extensively in temporal modeling of behavior. The
dynamical modeling of behavioral patterns for fraud detection is one of the
main contributions of the thesis.

The concept of learning has a central part in the thesis, and the mod-
els are implemented using neural networks and probabilistic models. The
methods presented in this thesis solve the learning problem with a mixture
setting of data. In this setting, one has access to data from normal accounts
and accounts that contain fraudulent data. Learning from partially labeled
data (as will be explained in Chapter 3) is a major advantage that saves the
human labor needed in an extensive labeling effort.

Whereas the main topic of this thesis is fraud detection, the presented
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methods in user profiling and classification have wider applicability. Inter-
esting applications may be found in identifying user profiles in hypertext
document navigation patterns or buying habits, for example.



Chapter 3

Call data

In this thesis, fraud detection is based on the calling activity of mobile
phone subscribers. As mentioned earlier, the problem of fraud detection is
to discover dishonest intention of the subscriber, which clearly can not be
directly observed. Acknowledging that the intentions of the mobile phone
subscribers are reflected in the calling behavior and thus in the observed
calling data, the use of call data as a basis for modeling is well justified.

Conventionally, the calling activity is recorded for the purpose of billing
in call records, which store attributes of calls, like the identity of the sub-
scriber (IMSI, International Mobile Subscriber Identity), time of the call,
duration of the call to mention a few. In all, dozens of attributes are stored
for each call. In the context of GSM networks, the standard about ad-
ministration of subscriber related events and call data in a digital cellular
telecommunications system can be found in (European Telecommunications
Standards Institute 1998).

3.1 Data Collection

In order to develop models of normal and fraudulent behavior and to be able
to assess the diagnostic accuracy of the models, call data exhibiting both
kinds of behavior is needed. Gathering normal call data is relatively easy
as this mode dominates the population, but collecting fraudulent call data
is more problematic. Fraudulent call data is relatively rare and the data
collection involving human labor is expensive. In addition, the processing
and storing of data is subject to restrictions due to legislation on privacy of
data.

Procedures in data collecting differ both in the way they are conducted
and in the way the data is grouped in the normal and fraudulent modes. In
Sections 3.1.1 and 3.1.2 two ways of collecting fraud data for development
of a fraud detection system are described.

12
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3.1.1 Block crediting

After each billing period, telephone bills are calculated from the subscriber
specific call data using appropriate tariffs (pricing) for each service. A bill is
sent to the customer, who either approves or disapproves the billed amount.
If a fraudster has exploited an account during the billing period, the cus-
tomer is likely to disapprove the high cost of calling.

Fawcett and Provost (1997) describe the process of block crediting, where
a representative of the operator and the defrauded customer together estab-
lish the range of dates during which the fraud occurred, and the calls within
the range are credited to the customer. This effort involves a lot of human
labor and is naturally expensive, and admittedly such a process is likely to
contain errors. As a result, however, each call is labeled to legitimate or
fraudulent class, which can be considered a relatively accurate labeling of
data.

3.1.2 Velocity trap

It would be beneficial if a fraud detection system could be designed using
data from normal and fraudulent accounts without extensive labeling involv-
ing human labor. One approach is to filter fraudulent call data from a large
database by formulating an elementary fraud model and testing whether call
data is fraudulent. This works under the assumption of cloning fraud and
using a velocity trap as an elementary fraud model. Velocity trap alarms if
calls are made from locations geographically far apart in temporal proxim-
ity. In essence, this sets a limit on the velocity a mobile phone subscriber
may travel, hence the name.

Fraud data used in this thesis is filtered from a database of call data using
a velocity trap detection mechanism. An important consequence of this is
that the data does not contain information on which calls were fraudulent or
which periods contained fraudulent activity. Data labeled as fraudulent is a
sample from a mixture of normal and fraudulent data, the mixing coefficients
being unknown and changing in time. The setting of data is illustrated in
Figure 3.1. Therefore, call data is labeled to classes fraud and normal on a
subscriber basis. No geographical information about the calls was available
in the call data nor when the velocity trap gave an alarm. The database of
fraudulent behavior contained call data of 304 subscribers during a period
of 92 days. The normal call data spanned a period of 49 days and was
assumed to contain no fraudulent activity. The number of users used in the
publications was limited by the available resources. The use of the data may
vary in the publications. Consult individual publications for details.
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Figure 3.1: Examples of mixture data. In the left panel, the data belongs
to class C0, which has a Gaussian distribution µ1 = 2, σ2

1 = 1. In the right
panel, the data is labeled to belong to the class C1, since it contains data
with a Gaussian distribution µ2 = 5, σ2

2 = 1, representative of class C1.
The data from this density is located at t = 40, . . . , 50 and t = 60, . . . , 80.
However, these regions are not known in the data. This generated data
illustrates the partially labeled call data used in this thesis: normal users
are always normal, but fraudulent users behave sometimes normally and
sometimes in a fraudulent fashion.

3.2 Representation of call data

Call records constituting the call data are transactions (or events) ordered
in time. Each of the call records has a set of call attributes as described
earlier. These attributes need to be converted to a form that is compatible
with the model used. This conversion can take many forms. Three different
data representations are used in this thesis.

3.2.1 Features through aggregation in time

In pattern recognition applications, the usual way to create input data for
the model is through feature extraction. In feature extraction, descriptors or
statistics of the domain are calculated from raw data. Usually, this process
involves some form of aggregation.

In Publication 2 (Taniguchi, Haft, Hollmén, and Tresp 1998), the de-
tection is based on feature variables derived from call data. The unit of
aggregation in time is one day. The feature mapping transforms the trans-
action data ordered in time to static variables residing in feature space. The
features used reflect the daily usage of an account. Number of calls and
summed length of calls to describe the daily usage of a mobile phone were
used. National and international calls were regarded as different categories.
Calls made during business hours, evening hours and night hours were also
separated to sub-categories.
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3.2.2 Dynamic description of call data

There is a connection between the length of the aggregation period used
in feature extraction and the richness of description. It is interesting to
consider representations that describe the instantaneous behavior of mobile
phone subscribers by pushing the length of the aggregation period to the
minimum at the price of a representational richness. In Publication 3
(Hollmén and Tresp 1999), this kind of representation is used. The call data
is sampled for one minute intervals, and the data indicates whether a mobile
phone is used during a particular minute. The data for the minute t is then
represented with yt ∈ {0, 1}.

This representation describes the instantaneous calling behavior of mo-
bile phone subscribers and permits the dynamic modeling of the calling
behavior expressed with transitions from one time step to another. This
representation is also the basis of modeling in Publication 4 (Hollmén,
Tresp, and Simula 1999) and Publication 7 (Hollmén, Tresp, and Simula
2000).

3.2.3 Switching representation

In essence, the feature variables mediate information from the domain to the
model used. Sometimes, the model class is limited to certain representations,
like categorical data or metric data. In order to avoid compromising how the
domain is described, models may be extended to handle data with a more
unconventional representation.

The issue of changing representations between metric data and event-
based data is reported in Publication 6 (Hollmén and Tresp 2000). The
fact that the data is switching between the continuous and the categorical
representations is an artifact of a feature extraction process. When a faithful
mapping of the domain is sought for, like in the user profiling problem,
extending the model class becomes necessary. The extension is presented in
the case of a hidden Markov model (Baum 1972; Juang and Rabiner 1991;
Bengio 1999).



Chapter 4

User profiling and
classification

This chapter introduces the user profiling and classification methods used
for fraud detection. The purpose is to place the novelties found in the publi-
cations in a broader framework. The work on finite mixture models, hidden
Markov models and hierarchical regime-switching models can be nicely de-
scribed in the framework of probabilistic networks and therefore the concepts
are presented on a general level. Learning in the maximum likelihood frame-
work with the EM algorithm is also presented. In the sequel, Self-Organizing
Maps and Learning Vector Quantization are presented with the appropriate
extensions. The chapter proceeds with cost-sensitive classification meth-
ods and technical assessment methods for the fraud detection domain. The
chapter ends with a discussion on the presented methods for fraud detection
articulating their advantages and disadvantages.

4.1 Probabilistic networks

Probabilistic networks allow an efficient description of multivariate proba-
bility densities (Cowell, Dawid, Lauritzen, and Spiegelhalter 1999). Proba-
bilistic formulations allow quantifying uncertainty in the conclusions made
about the problem, which makes the framework of probabilistic networks ap-
pealing for real-world problems. Of particular interest here are the Bayesian
networks (Cowell et al. 1999; Jensen 1996), which can be represented as
directed acyclic graphs (DAG). A Bayesian network may be represented as
a graph G = (V,E), where V is the set of vertices or nodes and E is the
set of arcs, which is defined as an ordered set of vertices E ⊂ V × V . The
nodes of the graph correspond to the domain variables and an arc to the
qualitative dependency between two variables (see Figure 4.1).

Graphical representation makes it easy to understand and manipulate
networks. The term graphical model refers to this dual representation of

16
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x1 x2

x3 x4 x5

Figure 4.1: A simple Bayesian network is shown. Variables are
marked with graph nodes, the dependency relationships as arcs. The
joint probability density can be factorized as P (x1, x2, x3, x4, x5) =
P (x1)P (x2)P (x3|x1)P (x4|x2, x1)P (x5|x2).

probabilistic models as graphs. In the following sections, the concept of
conditional independence is briefly described. It is used in defining qualita-
tive relationships between the variables, whereas the distributional assump-
tions define the quantitative aspect of the probabilistic networks. Learning
from data is then briefly described within the framework of maximum likeli-
hood using the EM algorithm (Dempster, Laird, and Rubin 1977; McLahlan
1996).

4.1.1 Conditional independence

A problem domain consists of a set of random variables. A random variable
is an unknown quantity that can take on one of a set of mutually exclusive
and exhaustive outcomes (Cowell et al. 1999). The joint probability den-
sity P (x1, . . . , xn) of the random variables x1, . . . , xn can be decomposed
according to the chain rule of probability (Equation 4.1) as

P (x1, . . . , xn) =
n∏

i=1

P (xi|xi−1, . . . , x1). (4.1)

Each term in this factorization is a probability of a variable given all lower
numbered variables. In real life, however, not all factors influence the others
in a given domain, thus this kind of qualitative knowledge can be formu-
lated by assuming conditional independence relations between the domain
variables. The use of conditional independence assumptions allows one to
construct global joint distribution from a set of local conditional probability
distributions. Defining πi ⊆ {x1, . . . , xi−1} as the parent set of xi or the set
of variables that renders xi and {x1, . . . , xi−1} conditionally independent,
the joint probability density can be written as

P (x1, . . . , xn) =
n∏

i=1

P (xi|πi). (4.2)

A Bayesian network defines this joint probability density as the product
of local, conditional densities. The main contribution of the conditional
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independence assumptions is that the expression for the joint probability
density in Equation 4.2 is simpler than the trivial decomposition achieved
by the application of chain rule of probability in Equation 4.1.

4.1.2 Distributional assumptions

Conditional independence assertions provide qualitative assumptions be-
tween variables in the probabilistic network. To further quantify these es-
tablished relationships, one needs to define for every variable in the network
the conditional probability distribution of the variable given its parents. Us-
ing classic estimation theory (Cherkassky and Mulier 1998), the probability
distributions are specified to come from a parameterized family of distribu-
tions. In estimation, the parameters are determined so that the distribution
approximates the distribution of the data.

If the observations in each component of a finite mixture model are
distributed according to a Gaussian (normal) distribution, it is called the
Gaussian mixture model (Redner and Walker 1984; Bishop 1996). In this
thesis, this kind of model was used in Publication 2 (Taniguchi, Haft,
Hollmén, and Tresp 1998) to model the probability density of recent calling
behavior to be used in novelty detection to detect changes in behavioral pat-
terns. Discrete states in the models are best modeled with the assumption
of multinomial distributions, in which the variable can be in one of many
states of the variable. Exponential distribution was used for modeling call
lengths in Publication 6 (Hollmén and Tresp 2000).

Sometimes, the distribution of data may be thought to change from one
representation to another. This situation was examined in Publication 6
(Hollmén and Tresp 2000), where the representation of the data switched
from a continuous to a discrete case due to an artifact in the pre-processing
of data. The data is augmented with its semantics and a solution to de-
couple the data and its semantics is presented. The semantics of the data,
which is known, enables choosing the right model for the present data. The
method incorporates deterministic switching between data distributions and
essentially decouples the different semantics and data from each other. The
temporal process of generating different data semantics becomes an integral
part of the user profiles.

4.1.3 Learning by EM algorithm

Learning is the process of estimating the parameters of a model from the
available set of data. In the context of probabilistic models, it is natural
to consider the principle of maximum likelihood. The maximum likelihood
estimate for the parameters maximizes the probability of the data for a given
model. This is relatively straightforward if the variables in the model are
observed, but becomes somewhat complicated, since the models of interest
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here include hidden variables. This problem may be overcome by application
of the EM algorithm. The EM algorithm (Dempster, Laird, and Rubin
1977; McLahlan 1996) is an iterative algorithm for estimating maximum
likelihood parameters in incomplete data problems. Incomplete data means
that there is a many-to-one mapping between the hidden state space and
the observed measurements. Since it is impossible to recover the hidden
variable, EM algorithm works with its expectation instead by making use of
the measurements and the implied form of the mapping in the model. The
EM algorithm is guaranteed to converge monotonically to a local maximum
of the likelihood function (Dempster, Laird, and Rubin 1977; Wu 1983; Xu
and Jordan 1996).

For the purpose of the EM algorithm, the expected log likelihood of the
complete data (Dempster, Laird, and Rubin 1977) is introduced as

Q(φ|φ(old)) = E(logP (Y, S|φ)|Y, φ(old))

=
∫

S
logP (Y, S|φ)P (S|Y, φ(old))dS,

(4.3)

where the log-likelihood of the complete data is parameterized by the free
parameter value φ and the expectation is taken with respect to the second
distribution parameterized by the current parameters φ(old). In the E-step,
the Q function in Equation 4.3 is computed. In Bayesian networks, this is
achieved through inserting observed evidence in the network and applying
propagation rules (Jensen 1996) to form the joint probability distribution
of all variables or any marginalization of it. The first account that used
inference techniques in the E-step appeared in (Lauritzen 1995). In the
M-step, the parameter values are updated to be

φ(new) = argmax
φ
Q(φ|φ(old)). (4.4)

A solution to this maximization problem is usually found by setting the
derivatives of the maximized function to zero and solving for φ. The appli-
cation of the EM algorithm in the case of mixture models can be found in the
literature (Redner and Walker 1984; Bishop 1996). Interestingly, the learn-
ing technique used in HMM (Baum 1972) turns out to be an instance of the
EM algorithm. Learning in regime-switching models within the framework
of maximum likelihood was formulated by Hamilton (1990, 1994). He used
a regime-switching model to identify recession periods in the US economy.
In Publication 3 (Hollmén and Tresp 1999), exact inference rules for the
hierarchical regime-switching model are derived from the junction tree algo-
rithm of the Bayesian networks (Jensen 1996). A recent account on learning
from data with graphical models can be found in (Heckerman 1999).
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4.1.4 Finite mixture models

In finite mixture models (Everitt and Hand 1981; Redner and Walker 1984;
Titterington et al. 1985), one assumes an observed variable Y that is condi-
tioned on a discrete hidden variable S. The observed variable may be either
discrete or continuous. The joint probability density is then

P (S, Y ) = P (S)P (Y |S). (4.5)

Integration (summation) over the hidden variable S gives an equation for
calculating the likelihood of observed data in a more recognizable form as
P (Y ) =

∑k
j=1 P (S = j)

∏n
i=1 p(yi|S = j). Graphical illustration is shown

in Figure 4.2.

. . .

S

y1 y2 yn

Figure 4.2: A mixture model is shown. The observed variable Y =
(y1, . . . , yn)T is conditioned on a discrete hidden variable S. Observed sam-
ples are assumed to be independent.

A Gaussian mixture model was used in Publication 2 in modeling of
users’ recent behavior using feature data describing daily usage. After esti-
mating a general model from a database of user data, the model is allowed to
specialize to individual user profiles by estimating the mixing proportions of
the component densities P (S = j) on-line as more call data becomes avail-
able. Other parameters are considered to be fixed. The on-line estimation
is due to Nowlan (1991). The main result of the Publication 2 is that with
this approach one is able to detect fraud accurately based on daily usage
data.

4.1.5 Hidden Markov models (HMM)

A more complicated model that takes time dependencies into account is the
hidden Markov model (HMM), which is widely used in sequence processing
and speech recognition (Baum 1972; Juang and Rabiner 1991; Bengio 1999).
Smyth et al. (1997) consider HMMs in a general framework of probabilistic
independence networks and show that algorithms for inference and learning
are special cases of more general class of algorithms. For a review on HMM,
see (Levinson et al. 1983; Poritz 1988). These models assume a discrete,
hidden state st, observations yt that are conditioned on the hidden state
as P (yt|st) and the state transitions as P (st|st−1). The joint probability
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density is then

P (Y, S) = P (y0, s0)
T∏

t=1

P (st|st−1; θ1)
T∏

t=1

P (yt|st; θ2), (4.6)

where the current state is conditionally independent of the whole history
given the previous state P (st|st−1, st−2, . . . , s1) = P (st|st−1). This is called
the Markov property, which is prevalent in many kinds of time-series models.
Moreover, the current observation is conditionally independent of the whole
history given the current hidden state. In essence, the state information
summarizes the whole history. The graphical presentation of the HMM is
shown in Figure 4.3.

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

Figure 4.3: In a hidden Markov model, one assumes a hidden variable st
that obeys transitions in time defined by P (st|st−1). The observations are
conditioned on the hidden variable as P (yt|st).

In Publication 6 (Hollmén and Tresp 2000), an HMM was extended
to handle a switching representation between metric and event-based data.
The model introduces a variable, which determines the correct interpretation
of data (see Figure 4.4). The idea is to decouple the occurrence of different

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

y∗1 y∗2 y∗3 y∗4 y∗5

Figure 4.4: Extended version of the HMM that enables modeling of data
streams switching between metric and event-based data. The introduced
variable y∗t determines the correct density to be used in interpreting the
likelihood of observed data.

data semantics and the data itself. The observed data semantics expresses
whether the data is to be interpreted as metric or event-based. The data
semantics forms a dimension of its own in the user profile. The ideas are
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illustrated in the case of hidden Markov model, for which inference and
learning rules are developed.

4.1.6 Hierarchical regime-switching model

In Publication 3 (Hollmén and Tresp 1999), a more complicated structure
is used, which differs from HMM in two aspects. First, the hidden variable
that develops in time has a hierarchical structure and second, the proba-
bility density for the observations is dependent on past observations. The
hierarchical organization involves two layers of states, each of which develops
in time according to a Markov chain and the middle layer is conditioned on
the layer above. In all, the joint probability for observations and the hidden
states (V in the top layer and S in the middle layer, see Figure 4.5) is

P (Y, S, V ) = P (y0, s0, v0)
T∏

t=1

P (vt|vt−1; θ1)

×
T∏

t=1

P (st|vt, st−1; θ2)
T∏

t=1

P (yt|st, yt−1; θ3). (4.7)

The idea in regime-switching models is to model a problem domain with
multiple models allowing the generating mechanism to switch from one mode
of operation to another in an indeterministic fashion (Quandt 1958; Quandt
and Ramsey 1972; Shumway and Stoffer 1991; Hamilton 1990; Hamilton
1994).

v1 v2 v3 v4 v5

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

Figure 4.5: Hierarchical regime-switching model is shown. Hidden variables
v and s have a hierarchical structure and middle layer is conditioned on
the top layer. Furthermore, observations yt are conditioned on a previous
observation yt−1 and the current fraud state st.

In Publication 3, the motivation for introducing hierarchy in the model
is to model fraud at different time scales. The middle layer would model
fraud as expressed in the call data and the top layer would model whether the
account is victimized, that is, whether the fraudster could call if he chose to.
The maximum likelihood framework is used in training; additionally gradient
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based training is used to enhance the discriminative nature of the model.
The results demonstrate the feasibility of the methods in fraud detection.
Despite the difficult set up of the problem, the model is able to detect over
90 % of the fraudsters with a false alarm probability of 2 %.

4.2 Self-Organizing Map (SOM)

4.2.1 SOM algorithm

The Self-Organizing Map (SOM) is a neural network model for the analysis
and visualization of high-dimensional data. It was invented by Academician
Teuvo Kohonen (1981, 1990, 1995) and is the most popular network model
based on unsupervised, competitive learning. Self-Organizing Map has been
used in a wide range of applications (Kaski et al. 1998). It has also been
applied for the analysis of industrial processes (Kohonen, Oja, Simula, Visa,
and Kangas 1996; Alhoniemi, Hollmén, Simula, and Vesanto 1999; Simula,
Vesanto, Alhoniemi, and Hollmén 1999). Earlier work on process monitoring
can be seen as the groundwork leading to the problem of fraud detection,
which may be seen as a user monitoring problem. In Publication 1, work
on the process modeling and monitoring problem is reported.

The Self-Organizing Map is a collection of prototype vectors, between
which a neighborhood relation is defined. This neighborhood relation defines
a structured lattice, usually a two-dimensional, rectangular or hexagonal lat-
tice of map units. After initializing the prototype vectors with, for example,
random values, training takes place. Training a Self-Organizing Map from
data is divided into two steps, which are applied alternately. First, a best-
matching unit (BMU) or a winner unit mc is searched, which minimizes the
Euclidean distance between a data sample x and the map units mk

c = argmin
k

‖x−mk‖. (4.8)

Then, the map units are updated in the topological neighborhood of the
winner unit. The topological neighborhood is defined in terms of the lattice
structure, not according to the distances between data samples and map
units. The update step can be performed by applying

mk(t+ 1) := mk(t) + α(t)hc(t, k)[x(t) −mk(t)], (4.9)

where the last term in the square brackets is proportional to the gradient
of the squared Euclidean distance d(x,mk) = ‖x−mk‖2. The learning rate
α(t) ∈ [0, 1] must be a decreasing function of time and the neighborhood
function hc(t, k) is non-increasing function around the winner unit defined
in the topological lattice of map units. A good candidate is a Gaussian
around the winner unit defined in terms of the coordinates r in the lattice
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of neurons

hc(t, k) = exp
(
−‖rk − rc‖2

2σ(t)2

)
. (4.10)

During learning, the learning rate and the width of the neighborhood func-
tion are decreased, typically in a linear fashion. In practice, the map then
tends to converge to a stationary distribution, which reflects the properties
of the probability density of data.

The Self-Organizing Map may be visualized by using a unified distance
matrix representation (Ultsch and Siemon 1990), where the clustering of the
SOM is visualized by calculating distances between the map units locally and
representing these visually with gray levels. Another choice for visualization
is the nonlinear Sammon’s mapping (Sammon Jr. 1969), which projects the
high-dimensional map units on a plane by minimizing the global distortion
of inter point distances.

4.2.2 SOM in process monitoring

Self-Organizing Map has found many applications in industrial environments
(Kohonen, Oja, Simula, Visa, and Kangas 1996). Early work on monitor-
ing the state of an industrial process is reported in (Tryba and Goser 1991;
Kasslin, Kangas, and Simula 1992). The goal in process monitoring is to
develop a representation of the state of an industrial process from process
data and to use this representation in monitoring the current state of the
process. Although conceptually operating on a different level, the problem
of process monitoring is similar to the problem of monitoring users. In pro-
cess monitoring, the focus is on the system level, whereas in user monitoring
problems, the users are thought to form individual processes to be moni-
tored. The problem of activity monitoring focusing on the level of users is
also articulated by Fawcett and Provost (1999). The work in the area of pro-
cess monitoring is reported in Publication 1 (Alhoniemi, Hollmén, Simula,
and Vesanto 1999) and also in (Simula, Alhoniemi, Hollmén, and Vesanto
1997; Simula, Vesanto, Alhoniemi, and Hollmén 1999; Simula, Ahola, Al-
honiemi, Himberg, and Vesanto 1999). This work lays the groundwork for
the later work in user profiling and classification problems.

In the simple example presented in Publication 1 (Alhoniemi, Hollmén,
Simula, and Vesanto 1999), a computer system is monitored in terms of its
internal state measured by its central processor unit (CPU) activity as well
as its network connections. The analysis begins by collecting the time-
dependent measurements in a measurement vector and by pre-processing
them appropriately. By training a Self-Organizing Map from the measure-
ments, different states of the system may be visualized and the current state
may be mapped to the characterized states for understanding the behavior
of the process. Although the authors were ignorant of the work in intrusion
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detection at the time the work was done, the work bears some analogs, at
least conceptually.

4.2.3 SOM for clustering probabilistic models

Publication 4 presents a Self-Organizing Map algorithm, which enables us-
ing probabilistic models as the cluster models. In this approach the map unit
indexed by k stores the empirically estimated parameter vector θk with an
associated probabilistic model q(x ; θk). For implementing a Self-Organizing
Map algorithm, one needs to define a distance between the map units (i.e.
the θk) and data. The distance between θ and a data point itself can not
be defined in Euclidean space since they may have different dimensional-
ity. The most common distance measure between probability distributions
is the Kullback-Leibler distance (Bishop 1996; Ripley 1996), which relates
two probability distributions. If one considers the data sample xi to be dis-
tributed according to an unknown probability distribution xi ∼ p(x) then
one may approximate p(x) ≈ δ(x − xi) by placing a unit impulse δ(x) at
the data point. If this expression is substituted into the Kullback-Leibler
distance, one gets

KL(p ‖ q) = −
∫
p(x) log

q(x ; θk)
p(x)

dx⇒ − log q(xi ; θk), (4.11)

which is the negative log probability of data for the empirical model. Thus,
minimizing the Kullback-Leibler distance between the unknown true distri-
bution that generated the data point at hand and the empirical model leads
to minimizing the negative logarithm of the probability of the data with
the empirical model. This justifies the use of this probability measure as
a distance measure between models and data. In light of this derivation,
one can derive a Self-Organizing Map algorithm for parametric probabilistic
models. A winner unit indexed by c is defined by minimizing the negative
log-likelihood of the empirical models for a given data point or equivalently,
by searching for the maximum likelihood unit as in

c = argmin
k
[− log q(xi ; θk)] = argmax

k
q(xi ; θk). (4.12)

The update rules are based on the gradients of this likelihood in the topo-
logical neighborhood of the winner unit c as

θk(t+ 1) := θk(t) + α(t)hc(t, k)
∂ log q(x(t); θk)

∂θk
. (4.13)

To illustrate the idea, an algorithm for a specific case of user profiling in
mobile phone networks is derived in Publication 4.
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4.3 Learning Vector Quantization (LVQ)

4.3.1 LVQ algorithm

The Learning Vector Quantization algorithm (Kohonen 1990; Kohonen 1995;
Kohonen, Hynninen, Kangas, Laaksonen, and Torkkola 1996) estimates a
classifier from labeled data samples. The classifier consists of a labeled set
of codebook vectors, and the classification is based on the nearest-neighbor
rule. Thus, the method does not, in contrast to traditional vector quantiza-
tion or SOM, approximate the class densities, but defines the class borders
by the placement of class-specific codebook vectors (Kohonen 1995). This
approach is also motivated by the observation that in a discrimination task
a good estimate for the class density is only needed near the class border.
In the training phase, for a random sample x, there is a winner unit among
the codebook vectors mk defined by

c = argmin
k

‖x−mk‖. (4.14)

This winner unit mc is adapted in order to decrease the expected misclassi-
fication probability for the training set according to

mc(t+ 1) := mc(t)± α(t)[x(t) −mc(t)]. (4.15)

The sign is chosen according to the correctness of the classification. If the
label of the training sample matches that of the nearest codebook vector,
the sign + is chosen, otherwise − is chosen. In LVQ, only the winner unit is
updated, in contrast to the SOM algorithm, where a neighborhood function
around the winner determines the map units to be updated. The class border
defined by the codebook vectors and the nearest-neighbor classification rule
approximates the Bayes’ decision surface (Kohonen 1995).

4.3.2 LVQ for probabilistic models

In LVQ, the class border is defined by codebook vectors, which are proto-
types in the input space. If representing data by prototypes is infeasible, one
may replace the concept of a prototype by data generating models. This has
been considered inPublication 7 (Hollmén, Tresp, and Simula 2000), which
extends the ideas in Publication 4 (Hollmén, Tresp, and Simula 1999) to
the classification domain. As far as the distance measures are concerned, the
same reasoning applies to the LVQ algorithm as does for the SOM algorithm
(Equation 4.11). Relating empirical models and the unknown densities be-
hind the data samples with the Kullback-Leibler distance measure leads to
the negative logarithm of the probability of data samples with the empir-
ical models. Therefore, as in the case of the SOM algorithm, the winner
search looks for a maximum likelihood unit indexed by c as in the Equation
4.12. The update is based on the gradient update of the winner unit. The
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direction of the gradient update is dependent on the correctness of the clas-
sification of the sample point. If the data sample is classified correctly, the
winner unit is adapted towards the sample, if incorrectly classified, the data
repulses the winner unit away from the data sample:

θc(t+ 1) := θc(t)± α(t)∂ log q(x(t); θ
c)

∂θc
. (4.16)

Using this approach, one may train classifiers that take advantage of the
probabilistic model formulated for a user profiling problem, but which are
specifically tuned for the problem of discrimination. Moreover, the proba-
bilistic models in the codebook could be used as component densities in a
mixture model, the mixing coefficients set to equal values. Such a model
would produce continuous outputs on the class membership. This enables
using different thresholds in tuning the classifier to best performance.

4.4 Cost-sensitive classification

In Bayes decision theory, the decision problem is posed in probabilistic terms,
and it is assumed that all of the relevant probability values are known (Duda
and Hart 1973). The decision goal of the application determines the decision
function. For instance, minimization of the probability of misclassification
as the decision goal leads to choosing the class with maximum posterior
probability (Duda and Hart 1973; Schalkoff 1992). This decision function
optimizes under the assumption of equal costs associated with errors, which
is equivalent to optimizing the number of correct decisions. In many ap-
plications, such as in fraud detection, costs are important and should be
considered. The decision goal is to minimize the costs of misclassification,
which in turn leads to choosing the class with minimum conditional risk.
Conditional risk for making a decision αi may now be defined as

R(αi|x) =
n∑

j=1

λijP (ωj |x). (4.17)

which is a weighted sum of misclassification costs. This is the average cost
under the uncertainty of the correct class. The misclassification costs λij

are estimates of the costs of choosing class i when class j is the true class
and usually estimated as averages for an application. Pazzani et al. (1994)
consider cost-sensitive classification in this framework by modifying different
learning algorithms.

4.4.1 Input-dependent misclassification cost

In areas like fraud, the cost of misclassifications can not reasonably be ap-
proximated by a constant λij , but varies from case to case. The losses are
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certainly affected by service charges and the labor costs due to human pro-
cessing of alarms. Furthermore, the satisfaction of a legitimate subscriber
may be decreased due to the fraud accusations in the case of a false alarm.
These are the motivations for a cost model, in which the misclassification
costs are dependent on the input data. This has been considered in Pub-
lication 5 (Hollmén, Skubacz, and Taniguchi 2000). The conditional risk
may be formulated now as

R(αi|x) =
n∑

j=1

λij(x)P (ωj |x) (4.18)

where the λij(x) is the misclassification cost function taking into account the
properties of the data point x (call data). The cost model may have factors
such as service charges for calls or transaction costs. The corresponding
decision functions may be written as a function of the posterior probability
of the interesting class P (ω2|x), for example fraud. This is shown in equation
4.19.

[λ12(x) + λ21(x)]P (ω2|x)− λ21(x)
α2

>
<
α1

0 (4.19)

The main result of the paper is that the method performs favorably
when applied to the practical problems, despite a simplified model and inac-
curate class priors, making it an appealing choice for practical data mining
problems.

4.5 Assessment of models

Before the developed methods are put into practice, it is important to mea-
sure their performance. In the next sections, the Receiver Operating Charac-
teristics (ROC) curves for assessing diagnostic accuracy and cost assessment
are presented.

4.5.1 Assessment of diagnostic accuracy

In the fundamental detection problem (Green and Swets 1966; Egan 1975),
the task of the observer is to decide on the basis of uncertain evidence
whether the stimulus consisted of a signal embedded in noise or noise alone.
Observations are either accepted as signals in noise or rejected as noise alone
according to a decision rule. Rephrasing this terminology from the field of
psychophysics, one has a detection system (or a classifier) that on the basis
of measurements, in this case call data, decides whether the calling behavior
is normal or fraudulent. In the fraud detection domain, one is interested in
how accurately these statements can be made.
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r

Figure 4.6: The class densities for the decision variable are shown. The
dashed vertical line at r is the cut-off point for a decision. Probability of
detection is marked with light gray and the probability of false alarm with
dark gray. ROC curve visualizes the effect of r on these probabilities.

The evaluation must be made for each class separately, since by classi-
fying all the cases trivially as normal a small (misleading) error rate would
be achieved. This is based on the observation that fraud is indeed rare
and normal behavior is dominating. Also, incorrect classifications may have
different consequences. In such domains, it is natural to consider class spe-
cific assessment of the detection capability, which leads to ROC analysis
(Green and Swets 1966; Egan 1975; Metz 1978; Swets 1988). ROC curve is
a function that summarizes the possible performances of a detector

ROC =
{
(u, v)

∣∣∣∣u =
∫ ∞

r
p(x|ω1)dx ; v =

∫ ∞

r
p(x|ω2)dx

}
. (4.20)

It does so by varying the cut-off point of decision (threshold) along the
chosen decision variable. It can be presented as a graphical plot, where the
probability of detection is plotted as a function of the probability of false
alarm. Formally, a ROC curve is a curve of points (u, v), where p(x|ω1)
and p(x|ω2) are the probability densities for the decision variable. This is
shown in the Equation 4.20. In this thesis, the decision variable is based on
the likelihood ratio or the posterior class probabilities. ROC visualizes the
trade-off between false alarms and detection, thus facilitating the choice of a
decision function. Illustration of a ROC curve corresponding to the Figure
4.6 is found in Figure 4.7.

Hanley and McNeil (1982) show that the area under the ROC curve cor-
responds to the probability that a randomly chosen pair (x1 ∈ ω1, x2 ∈ ω2)
is correctly ordered (ranked). Hilgers (1991) presents a method to estimate
the distribution-free confidence bounds of ROC curves for finite samples.

Due to the requirements on a fraud detection system, it should be as-
sessed in terms of ROC curves. This has also been motivated by (Provost,
Fawcett, and Kohavi 1998; Stolfo, Fan, Lee, and Prodromidis 1997). In
practice, a fraud detection system should not produce too many alarms, be-
cause their processing is expensive. In addition, the ratio between correct
alarms and all alarms should be relatively high in order to avoid inflation of
alarm values.
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Figure 4.7: In the left panel, ROC curve for the distributions in Figure 4.6
is shown. The cut-off point r is marked in the figure, corresponding to a
false alarm probability of 0.16 and a detection probability of 0.69. In the
right panel, empirically estimated ROC curve for the same distributions is
shown. Samples from each class (n = 250) were generated from the Gaussian
distributions (µ1 = 0, µ2 = 1.5, σ1 = σ2 = 1).

4.5.2 Cost assessment

In the previous section, the accuracy of a detection system was assessed with
ROC curves. Cost issues are not considered in the presentation of a ROC
curve, but presenting the curve recognizes the importance of class-specific
evaluation. The final goal in fraud detection is to minimize costs incurred
through fraud.

Ezawa and Norton (1996) state that the cost issues are handled surpris-
ingly little in the literature. Fawcett and Provost (1997) present cost mod-
els in fraud domain against which they assess their fraud detection system.
Based on their fraud estimate, they state a fixed cost for every minute of
fraudulent activity. They give cost estimates with different decision schemes
with their rule-based system and compare them with trivial decision schemes
such as ”classify all as fraudulent” and ”classify all as normal”. In (Provost
and Fawcett 1997), the authors present a ROC analysis in the case of non-
uniform class and cost distributions.

4.5.3 Relationship between ROC analysis and cost

It is interesting to relate the cost-sensitive methods described above with
ROC analysis (Green and Swets 1966; Egan 1975). The following assumes no
cost for a correct classification. Whereas the ROC curve has the information
about the false negatives and false positives for a given population and for
varying decision functions, the standard cost-sensitive classification based
on fixed misclassification costs maps these two quantities for individual data
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samples to the cost space by a linear mapping. The extended method is
presented in Publication 5 (Hollmén, Skubacz, and Taniguchi 2000). It
incorporates the input data in formulation of the cost model, has the same
kind of mapping. This mapping is additionally parameterized by the data,
enabling the costs to vary from one case to another.

4.6 Discussion

This chapter introduced background to put the methods of the thesis in the
right context and to appreciate the novelties in them.

The first developed methods based on adaptive Gaussian mixture mod-
els presented in Publication 2 (Taniguchi, Haft, Hollmén, and Tresp 1998)
approached the problem with an adaptive, user-specific modeling. This may
be prohibitive in the presence of many users. Whereas the decision-making
should be retained at the user level, modeling effort may be done either at
the user level, user profile level or class level. The methods at the user level
could be made computationally lighter by applying the methods in Publi-
cation 4 (Hollmén, Tresp, and Simula 1999) in defining a small number of
Gaussian mixture models, which in turn would model prototypical user pro-
files. These models could be further enhanced for discrimination by applying
discriminative learning of Publication 7. The discriminative training pro-
cedure in Publication 7 could also stand as a method of its own, provided
there are enough labeled training samples. In retrospect, modeling based on
several prototypes should be preferred to fully adaptive modeling approach
in the problem of fraud detection.

The applicability of the methods presented in Publication 3 (Hollmén
and Tresp 1999) are limited by the computational resources, but the work
demonstrates that the dynamic modeling of fraud is a successful approach,
despite the demanding problem formulation and the sceptical view of some
authors. Since the problem representation is rather extreme as the resolution
used in describing the time-series of calling data is one minute, the method
is computationally quite demanding.

The ideas concerning the issue of switching representations of observed
data considered in Publication 6 (Hollmén and Tresp 2000) could be in-
troduced in any generative model, in finite mixture models, for example.

The methods in the Publication 5 (Hollmén and Tresp 2000) formu-
lated a cost model that was particularly suitable for the problem of fraud
detection. This approach is compatible with all methods producing proba-
bilistic outputs that fit the framework of Bayes detection theory.
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Conclusions

5.1 Summary

User profiling and classification are important tasks in data intensive envi-
ronments where the behavior of a heterogeneous mass of users is to be un-
derstood or where computer assisted decision making is sought for. Fraud
detection is a prime example of this kind of problem.

A fraud detection system attempts to discover illegitimate behavior.
The system cannot directly observe the intentions of the mobile phone sub-
scribers, but works rather on their actions, that is, their calling behavior.
The calling behavior is collectively described by the subscriber’s call data
and is used in this thesis as a basis for modeling. The use of contextual
behavior is further motivated by Davis and Goyal (1993), who state that
there is nothing about any one call itself that proves incontrovertibly that
it is fraudulent. The goal for the learning methods in this thesis is to learn
user profiles from the call data in order to make plausible decisions about
fraud occurring.

The methods presented in this thesis learn to detect fraud from partially
labeled data, that is, it is known that an account is defrauded but not ex-
actly when. The data is thus a mixture of normal and fraudulent data with
an unknown mixing mechanism. No other work known to the author solves
the problem of learning fraud models from data that is partially labeled in
the mixture setting. This approach provides an economic aspect to learning
to detect fraud. Representation of the data is also an important issue. In
any data representation, however, there is a compromise between the aver-
age latency time for detection and richness of description. This thesis has
used representations ranging from instantaneous calling behavior to features
calculated over one day as representations of data. Also, modeling changing
data semantics was presented.

The models used in fraud detection were probabilistic models and neural
networks. The ability to learn from data was considered an important asset
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of these models, as was the capability to process uncertainty, which is present
in the fraud domain. Some variations concerning how many models per class
should be allocated were considered. Modeling was performed on user level,
user profile level and class level, of which the user profile level was seen to
be the most appropriate. Discriminative training was also considered for
tuning the models for best diagnostic accuracy.

A cost model for making cost-sensitive decisions was also discussed. As
are the decisions made, so should also the cost considerations be made on an
individual basis. Minimizing conditional risk of decisions under uncertainty
of the correct class was taken as the criterion for the classification. Asserting
fixed misclassification costs between classes only takes into account the aver-
age risk for the given domain, which was the main motivation for extending
the cost model to include the effect of input data in the misclassification
costs. It was shown that these cost models may naturally be defined in the
domain of fraud detection.

The results in this thesis in terms of detection performance are compara-
ble to or better than other works published in the field. As a rough measure
of state-of-the-art performance, the detection system should detect most of
the fraudsters, but more importantly, false alarm probabilities should be be-
low 2 or 3 percent. Otherwise, as the population of mobile phone users may
be large, the absolute number of alarms is beyond control. Ultimately, the
requirements are set by the size of the subscriber population, prevalence of
fraud, and the upper limit on alarms determined by organizational resources
for processing them. As noted in the review part, comprehensive compar-
isons are difficult to make since there is no common basis for evaluation and
the environment for which they were developed may differ substantially.

The methods are shown to be effective in detecting fraudulent behav-
ior by empirically testing the methods with data from real mobile com-
munications networks. The presented solutions to fraud detection lay the
groundwork for detection methodologies to be used in an operational fraud
detection system.

5.2 Further work

Further research within fraud domain concentrates on combining outputs
of different expert models as presented in (Jacobs, Jordan, Nowlan, and
Hinton 1991; Jacobs 1995). Also, kernel-based approaches, such as those
presented by Jaakkola and Haussler (1999) could be interesting. While they
are using a non-parametric base for defining the kernels, the methods in
Publication 7 could be used to learn a fixed kernel base with only a few
kernels. Further work should also examine the transferability of the models
to different networks. Also, inclusion of data (observed) describing the social
status of the mobile phone subscriber should be considered.
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The presented methods for fraud detection can be seen as solutions to a
specific user profiling problem in fraud detection. Several similar problems
exist, for instance in identification of customer groups in marketing, model-
ing dynamic navigation patterns in hypertext documents, product design for
a heterogeneous mass of customers. All of these problems call for modeling
user profiles from an available set of data for a specific purpose. In the age of
computerization, collection and storage of data have become commonplace.
Large databases contain billions of records of data that are not informative
as such, but are useful after considerable data analysis process. In manage-
ment science, total quality management and associated methodologies have
stressed the importance of fact based decision making, and orderly collection
and analysis of data. Ability to learn representations from large databases
has profound consequences and will have an impact on how decisions are
made.



Chapter 6

Publications

6.1 Contents of the publications

Publication 1 (Alhoniemi, Hollmén, Simula, and Vesanto 1999) presents
work in the area of process monitoring and modeling with the Self-Organi-
zing Map. Training techniques of the Self-Organizing Map are reviewed and
industrial applications in monitoring of a pulp process, modeling of steel
production, and in analysis of paper industry are reported. The application
used as an example involves monitoring a computer system in terms of its
internal state and its network connections.

Publication 2 (Taniguchi, Haft, Hollmén, and Tresp 1998) presents
three methods for fraud detection. Firstly, a feed-forward neural network is
used in classification of users to normal and fraudulent classes based on sum-
mary statistics over a time period. Secondly, user behavior is modeled with
an adaptive Gaussian mixture model, which is used in a novelty detection
fashion to detect sudden changes from the past behavior. This constitutes
the contribution of the present author. Thirdly, two Bayesian networks are
formulated by an expert to reflect domain knowledge about fraudulent and
normal behavior. The outputs from these networks are combined with the
Bayes’s rule. The two latter methods are based on features calculated over
a period of one day. For the methods presented in this paper, a patent
(Taniguchi, Haft, Hollmén, and Tresp 1997) has been granted.

Publication 3 (Hollmén and Tresp 1999) uses a hierarchical regime-
switching model in detection of fraud. Learning is based on the EM algo-
rithm; inference rules are derived from the junction tree algorithm (Jensen
1996). In addition to unsupervised learning, the models are fine-tuned us-
ing supervised learning to improve the discriminative performance of the
model. The calling data is represented as a binary time-series, which has a
high sampling rate. This work is a step towards real-time detection of fraud.
The learning procedure does not require fully labeled accounts, but works
with partially labeled data as described in Chapter 3.
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Publication 4 (Hollmén, Tresp, and Simula 1999) develops methods to
cluster probabilistic models with the Self-Organizing Map algorithm. The
standard Self-Organizing Map algorithm is not suitable for the task, since it
uses Euclidean distance as an error measure, which can not sensibly be de-
fined between time-series and probabilistic models. On the contrary, param-
eters of probabilistic models are stored in map units and a likelihood based
distance measure is defined between data and map units. Update equations
are derived from the gradients of likelihood; additional parameterization is
introduced to handle the constraints on the parameters. A softmax layer
is used to map the unconstrained parameters to the constrained parameter
space. In experiments, the approach is used to model calling behavior in
mobile communications networks with dynamic models.

Publication 5 (Hollmén, Skubacz, and Taniguchi 2000) presents cost
models for fraud detection. It extends the standard case of considering the
types of misclassification to have impact on the costs to include the data
itself to have influence on the costs. This is important in fraud detection,
where the call data directly influences the losses, and where the type of
misclassification only expresses the average costs involved. The cost model
has components for the connection-based tariffs and a transaction cost for
examining accounts further. Experiments compare the performance of the
new approach with standard approaches under varying assumptions.

Publication 6 (Hollmén and Tresp 2000) presents an extension of a
hidden Markov model to incorporate changing data representations, where
data switches between event-based and continuous representations in time.
Data and its representation are decoupled from each other by introducing
an additional variable for the semantics of the data that determines the
appropriate type of model to be used in interpreting the data. Furthermore,
the occurrence of different semantics is dependent on the hidden variable.
Inference and learning rules are developed for this extension and experiments
in a user profiling problem are reported.

Publication 7 (Hollmén, Tresp, and Simula 2000) derives the Learning
Vector Quantization (LVQ) algorithm for probabilistic models. In the stan-
dard LVQ algorithm, the class specific codebook vectors are expressed as
prototypes in the input space and in the lookup phase, a nearest neighbor
rule is used in classification. In the presence of complex data, such as time
series, this may be not be feasible. The use of probabilistic models together
with LVQ enables learning generative models for discrimination. These data
generating models define a class border together with a maximum likelihood
classification rule. The implementation of the algorithm when the models
involve hidden variables is further discussed. The experiments illustrate the
classifier in a user classification problem in fraud detection.
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6.2 Contributions of the author

In Publication 1, the author was responsible for the work reported in
the section on process modeling using the Self-Organizing Map and the
case study on steel production. The example on monitoring a computer
in terms of its internal state and its network connection was conceptualized
by the author and the data for the example was acquired by the author.
In Publication 2, the author was responsible for the section on novelty
detection with Gaussian mixtures. The ideas were invented by the author
and experiments were made by the author. Also, writing the paper was
coordinated by the author. In Publication 3, the author was responsible
for the representation of the problem and the experiments. The inference and
learning rules were developed jointly with the second author, with whom the
paper was also jointly written. InPublication 4, the author was responsible
for the ideas and the experiments. The paper was written by the author
and edited by the co-authors. In Publication 5, the ideas, experiments
and writing the paper were a joint effort of the first and the second author.
In Publication 6 and Publication 7, the author was responsible for the
ideas and performed the experiments. The author was responsible for writing
the papers, the co-authors of the papers were responsible for editing. The
invention in Publication 5 has been filed as a patent (Taniguchi, Haft,
Hollmén, and Tresp 1998), others have been filed as inventions and are
considered for filing as a patent application.

6.3 Errata

Equation (3) in the Publication 2 (Taniguchi, Haft, Hollmén, and Tresp
1998) does not imply standardized values of P (j) so that

∑
j P (j) = 1. The

equation should read P (j)new = αP (j)old + (1− α)P (j|x).
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