

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

DESIGN INSTITUTE REPORT: CADRU-14-01

I M M A C C S

A Multi-Agent Decision-Support System

 Jens Pohl

Mark Porczak

Kym Jason Pohl

Russell Leighton

Hisham Assal

 Alan Davis

Lakshmi Vempati

Anthony Wood

Collaborative Agent Design (CAD) Research Center
California Polytechnic State University, San Luis Obispo, California

and

Thomas McVittie, Jet Propulsion Laboratory
California Institute of Technology, Pasadena, California

Kathy Houshmand, SPAWAR Systems Center
San Diego, California

Abstract

This report describes work performed by the Collaborative Agent Design Research
Center for the US Marine Corps Warfighting Laboratory (MCWL), on the IMMACCS
experimental decision-support system. IMMACCS (Integrated Marine Multi-Agent
Command and Control System) incorporates three fundamental concepts that distinguish
it from existing (i.e., legacy) command and control applications. First, it is a
collaborative system in which computer-based agents assist human operators by
monitoring, analyzing, and reasoning about events in near real-time. Second, IMMACCS
includes an ontological model of the battlespace that represents the behavioral
characteristics and relationships among real world entities such as friendly and enemy
assets, infrastructure objects (e.g., buildings, roads, and rivers), and abstract notions. This
object model provides the essential common language that binds all IMMACCS
components into an integrated and adaptive decision-support system. Third, IMMACCS
provides no ready made solutions that may not be applicable to the problems that will
occur in the real world. Instead, the agents represent a powerful set of tools that together
with the human operators can adjust themselves to the problem situations that cannot be

1

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

predicted in advance. In this respect, IMMACCS is an adaptive command and control
system that supports planning, execution and training functions concurrently.

The report describes the nature and functional requirements of military command and
control, the architectural features of IMMACCS that are designed to support these
operational requirements, the capabilities of the tools (i.e., agents) that IMMACCS offers
its users, and the manner in which these tools can be applied. Finally, the performance of
IMMACCS during the Urban Warrior Advanced Warfighting Experiment held in
California in March, 1999, is discussed from an operational viewpoint.

Acknowledgements

The work on the IMMACCS project described in this report was sponsored by the US
Marine Corps Warfighting Laboratory (MCWL), Quantico (VA) with design and
development responsibilities assigned as follows: overall design concept, Agent Engine,
Object Model, and Object Browser (CAD Research Center, Cal Poly, San Luis Obispo,
CA); Shared Net and Object Instance Store (Jet Propulsion Laboratory, Pasadena, CA);
objectified infrastructure (Navy Research Laboratory, Stennis Space Center, MS); 2-D
Viewer and Backup System (SRI International, Menlo Park, CA); Translator(s) for
external (i.e., legacy) applications and System Engineering Integration (SPAWAR
Systems Center, San Diego, CA).

IMMACCS within a distributed C4I environment.

2

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

I M M A C C S

A Multi-Agent Decision-Support System

Table of Contents

1. Executive Summary and Introduction ………………………………………… 7

1.1 Military Command and Control ……………………………………… 7

1.2 The Road to the Urban Warrior AWE ………………………………… 10

1.3 IMMACCS Military Capabilities and Characteristics ……………… 10

2. The Integrated Collaborative Decision Model (ICDM) Framework …………. 15

2.1 Object-Based Representation …………………………………………. 15

2.2 A Three-Tier Architecture ……………………………………………. 15

2.2.1 The Information Server ……………………………………. 16

2.2.2 The Agent Engine …………………………………………. 18

2.2.2.1 Agent Session Configuration ……………………….. 18

2.2.2.2 Agent Session Architecture ………………………… 20

2.3 Future Directions ……………………………………………………… 23

3. The IMMACCS System Components………………………………………… 25

3.1 Overall Configuration and Architecture ……………………………… 25

3.1.1 The SharedNet Information Server ………………………… 25

3.1.2 The Representation of Information ………………………… 26

3.1.3 The Agent Engine …………………………………………. 26

3.1.4 The Presentation Facility …………………………………… 27

3.2 The IMMACCS Object Model (IOM)………………………………… 28

3.2.1 Object Model Development ……………………………….. 28

3.2.2 Implementation Process Development …………………….. 29

3.2.3 Planned Enhancements and Extensions …………………… 31

3.3 The IMMACCS Agent Engine (IAE)…………………………………. 32

3.3.1 Object Representation for the Agents ……………………… 33

3.3.2 Opportunistic Agent Execution ……………………………. 34

3.3.3 Functional Specifications ………………………………….. 34

3.3.4 Agent Engine Architecture ………………………………… 35

3.3.5 The Dynamic Agents ………………………………………. 37

3

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.3.6 Agent Design and Implementation Guidelines …………….. 38

3.3.7 Implemented Agent Capabilities …………………………... 40

3.4 The SharedNet Facility ……………………………………………….. 42

3.4.1 Models of Sharing Information …………………………… 42

3.4.2 Overview of the SharedNet ………………………………… 48

3.4.3 The SharedNet Architecture ………………………………. 50

3.4.4 A Subscription Example …………………………………… 52

3.4.5 Continuing Work ………………………………………….. 55

3.5 The IMMACCS Object Browser (IOB) ………………………………. 56

3.5.1 The Object Management Layer ……………………………. 58

3.5.2 The Graphical User-Interface Layer (GUIL) ………………… 62

3.6 The IMMACCS Scenario Driver …………………………………….. 67

3.6.1 Implementation Design ……………………………………. 67

3.7 The MCSIT Translator ………………………………………………. 69

4. Operating IMMACCS through the IOB User-Interface ……………………… 73

4.1 IMMACCS as a Set of Tools ………………………………………… 73

4.2 A Simulated Demonstration Scenario ………………………………… 74

4.3 Typical Examples of Real World Sequences …………………………. 80

4.4 Exercising Individual Agent Capabilities …………………………….. 93

4.4.1 The Logistics Agent ……………………………………….. 93

4.4.2 The Fires Agent ……………………………………………. 95

4.4.3 The Engagement Agent ……………………………………. 101

4.4.4 The Blue-On-Blue Agent …………………………………... 102

4.4.5 The Intel Agent ……………………………………………. 103

4.4.6 The Hazard (NBC) Agent …………………………………. 103

4.4.7 The ROE Agent ……………………………………………. 104

4.4.8 The General Sentinel Agent ……………………………….. 105

4.4.9 The EUT Sentinel Agent …………………………………… 106

4.5 The Logistics Assistance Capabilities………………………………… 108

4.6 Utilizing the IMMACCS Scenario Driver ……………………………. 112

4.6.1 The Script Preparation Process ……………………………. 112

4.7 Using IMMACCS as a Training Tool ………………………………… 114

5. The Urban Warrior AWE Field Test …………………………………………. 117

5.1 Exercise Objectives and Commander’s Intent ……………………….. 120

5.2 The Final Operational Plan …………………………………………… 121

4

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

5.2.1 Overall Urban Warrior AWE Context …………………….. 121

5.2.2 The Monterey Experiment ………………………………… 122

5.2.3 The Concord Experiment ………………………………….. 124

5.2.4 The Oak Knoll Experiment ……………………………….. 126

5.2.5 The Embarcadero Experiment …………………………….. 128

5.3 Performance of IMMACCS During the AWE ……………………….. 130

6. References and Bibliography ………………………………………………… 133

7. Appendices ……………………………………………………………………. 137

7.1 Appendix A: IMMACCS Object Model Sample ……………………. 139

7.2 Appendix B: Glossary of Terms …………………………………….. 187

8. Keyword Index ……………………………………………………………….. 191

5

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

6

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

1. Executive Summary and Introduction

IMMACCS is a near real-time decision-support application that utilizes the Integrated
Collaborative Decision Model (ICDM) architecture, developed by the Collaborative
Agent Design (CAD) Research Center, as an underlying framework for coordinating the
activities of multiple computer-based agents and human operators. With an emphasis on
application, IMMACCS was designed and implemented in concert with its military
users. It is therefore not a proof-of-concept system designed to demonstrate advanced
theoretical concepts in a laboratory research environment. Instead, IMMACCS was
designed as an integral component of experiments conceived by the US Marine Corps to
tests emerging concepts in military command and control. In this respect, the
experimental objectives of the military users cannot be separated from the advanced
technological concepts and principles embodied in the IMMACCS application.

For this reason the emerging principles of distributed command and control that have
been the focus of many of the experimental exercises performed by the Marine Corps
Warfighting Laboratory since its establishment in 1995, are given some prominence in
this technical report. The military concepts that shaped the implementation design of
IMMACCS are explained in this Executive Summary (i.e., Sections 1.1, 1.2 and 1.3), and
the objectives and operational plans of the Urban Warrior Advanced Warfighting
Experiment which served as a field test for IMMACCS are described in Section 5. This
leaves Sections 2, 3 and 4, which are dedicated to the technical aspects of the ICDM
architecture and the individual IMMACCS system components.

1.1 Military Command and Control

In July 1995, General Charles Krulak, newly appointed Commandant of the Marine
Corps, directed formation of the Marine Corps Warfighting Laboratory (MCWL). His
action was based on a deep conviction that it was no longer sufficient to modify cold war
practices and procedures, but that the era ahead demanded a new approach. It was his
desire that the Sea Dragon program, a series of concept-based experiments, would
provide the basis for examining new capabilities.

The Sea Dragon program was designed to be executed in phases. Hunter Warrior, the first
phase, was planned to focus on the capabilities required for small units employing
enhanced tactics and equipment to shape the battlefield through information and fires.
Urban Warrior would follow Hunter Warrior as the second phase, and would focus on
combat in cities. Capable Warrior, the third phase, drawing on the preceding four years of
experimentation and integrating new concepts and technologies, would identify selected
concepts and capabilities for introduction into the Marine Corps operating forces.

Almost immediately MCWL began formulating a set of command and control
capabilities appropriate for a post Cold War Marine Corps. Four sets of issues
prominently defined the initial formulation:

• an assessment of the nature of future military conflicts;

• the tenets of Marine Corps maneuver warfare theory;

7

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

•	 notions on the meaning of command versus control, and decision making
versus decision-support, and;

•	 the impacts that the digital revolution is exerting on both of these.

From the beginning of these early internal debates the small MCWL staff postulated that
while various forms of cyber-warfare and even more ambiguous types of conflict were
probable, armed conflict requiring commitment of trained military forces on the ground
would remain decisive in forcing national will on potential enemies. Furthermore, it was
argued that future warfare would have several other characteristics that collectively point
to the need for a fresh approach to command and control. For example, warfare would be
increasingly public, implying the need for quick and decisive results in complex
conflicts. The outcomes of these conflicts would depend largely on the judgements of
subordinate leaders, particularly the small unit leaders struggling simultaneously with
the enemy, non-combatants, and rules of engagement. Additionally, potential foes eyeing
the results of Desert Storm would employ asymmetric approaches to minimize the
growing technology advantages in traditional conflicts.

While Marines would have to remain prepared for conflict in any environment, the
MCWL staff and its civilian advisors felt that cities are especially probable battle grounds
from both military and demographic standpoints. Complicating this developing
"…public, asymmetric, urban, small unit leader…" command and control framework,
was MCWL's conviction that Marine Corps forces would have to remain prepared for
very short warning commitment to these complex conflicts. This consideration contained
significant implications not only for the preparation of commanders and battle leaders at
all levels but also for the capabilities required in the new command and control system
design that would support them.

Clearly future conflicts could involve widely divergent political objectives and scope.
Furthermore, the location and nature of the conflicts could vary just as greatly, while the
attitudes on all sides of multi-sided conflicts would likely differ and alter as the conflict
progressed. What was needed was a command and control framework that could adapt to
these wide variances and seamlessly integrate the air, ground, and logistic capabilities
needed to support emerging concepts such as Operational Maneuver From The Sea
(OMFTS). This developing framework of adaptive and integrated command and control
capabilities became the major influence in determining the shape of the Integrated Marine
Multi-Agent Command and Control System (IMMACCS).

While MCWL planners struggled to extrapolate trends and identify the likely
characteristics of future battle grounds, they had far less difficulty in perceiving the
enormous potential as well as serious threats inherent in the on-going information
processing advances of the digital revolution. Nowhere was the promise and the threat
posed by these technical advances in information gathering more hotly argued than in the
discussions focused on centralized versus decentralized control.

In visualizing the new approach MCWL planners postulated the need for the subordinate
leaders who actually did the fighting to exercise maximum initiative supported by greatly
expanded access to information. However, they saw the potential for the significant
advances in information gathering to create just the opposite situation; namely, to
reinforce centralized control. The reasons for this concern were related to the role

8

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

played by uncertainty. I was argued that centralized control would reduce uncertainty at
the top, but the price to be paid was to constrain initiative and flexibility among the
subordinates facing the enemy. Decentralized control and enhanced access to
information would encourage initiative and flexibility among these subordinates, but at
the price of increased uncertainty at the top. In the end MCWL opted for decentralized
control coupled with the long-standing Marine notion that commanders must accustom
themselves to a high degree of uncertainty as the norm.

While debate continued on how to deal with control, a parallel and equally passionate
discussion simmered on the proper approach to command. This discussion focused on the
commanders and the future decision environment in which they would operate. Here,
MCWL planners felt that the art of command had been far less affected by changes in
warfare or technological advances, than was the case with control. Instead there was a
developing consensus among MCWL staff that the ‘tempo’ of a commander’s (or any
leader’s) decision making capabilities could be significantly accelerated if:

1.	 A means could be found to improve and maintain individual decision
skills.

2.	 The decision environment around the commander could be disciplined.

3.	 Useful decision-support were to be provided in the form of enhanced
situation awareness at every level.

Fundamental to the discussion of command was the belief that while uncertainty would
remain a permanent condition, the decision pace of skilled commanders would accelerate
as they gained confidence in the currency and accuracy of the information available. To
achieve that enhanced currency and accuracy, a way would have to be found for the new
command and control system to filter and convert data into useful information and
inference on entry into the system.

Another key system characteristic that emerged from this discussion on future command
was the need for man-machine collaboration. It was generally agreed that while
simulation and prediction can be useful in certain situations, these are necessarily linear
capabilities. War is not linear, but presents a series of complex problems that defy
simplistic approaches. Accepting this notion, MCWL planners felt that the chaos and
chance that pervade conflict demand a command and control system that is collaborative,
while maximizing human intuition, creativity and conceptualization. Thus, to the
adaptive set of characteristics already mentioned was added a requirement that the
emerging system concept provide tailored decision-support rather than reshaping combat
problems to fit the mould of pre-determined solutions.

Finally, the nature of the Marine Corps as the principal expeditionary force in readiness
within the US, demanded that the design of the new command and control system be
focused on execution and be near real-time. Further, because no one could predict just
what doctrine would be employed in future conflicts, the new command and control
system would have to be capable of accommodating any doctrine. The framework of
required capabilities was now complete. Building and testing IMMACCS, a proof-of
concept system embodying these capabilities was the next step.

9

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

1.2 The Road to the Urban Warrior AWE

In March, 1999, in the San Francisco Bay area and offshore aboard the USS Coronado,
Brigadier General Tim Donovan, MCWL's commander, and his staff mounted a series of
experiments designed to identify capabilities and test operational concepts appropriate to
future urban operations. This Advanced Warfighting Experiment (AWE) would
culminate Urban Warrior, the second phase of the Sea Dragon program. It would also
premiere a new proof-of-concept command and control system, IMMACCS.

This initial field trial of IMMACCS was the culmination of a whole series of carefully
planned experiments stretching over the previous 18 months. Like the rungs in a ladder,
MCWL had mounted a succession of Limited Objective Experiments (LOE) which
combined evaluation of new tactics and procedures with the postulated new command
and control requirements. The Marines sought first hand to test their findings and wring
out the results on simulated urban battlefields of the future. Urban centers such as New
York City, Charleston (South Carolina), and Chicago (Illinois) as well as the Marine
Bases at Camp Lejeune (North Carolina) and Camp Pendleton (California) all hosted
relatively small scale experiments as Urban Warrior progressed. The challenge was to
successfully identify the capabilities needed on a complex battlefield in which the
Marines would face not only the enemy, but non-combatants, delicate political issues,
and the daunting urban infrastructure itself.

Eventually this LOE process culminated in a Concluding Phase Experiment (CPE) in
which the Command Element of MCWL's experimental Special Purpose Marine Air
Ground Task Force (SPMAGTF(X)) integrated a revised decision process, enhanced
decision skills, new tactics and procedures, and an experimental decision-support
process. Using the results of the CPE MCWL set the stage for the Urban Warrior AWE
and the first field test for IMMACCS. For the first time, Marines and Sailors would
exercise the new system's combination of maneuver-oriented military capabilities and
advanced technical characteristics; - a set of military capabilities and technical
characteristics which set it apart from any existing command and control package.

1.3 IMMACCS: Military Capabilities and Characteristics

Responding to the set of command and control capabilities which MCWL postulated for
the future, IMMACCS was conceived and designed by the CAD Research Center of Cal
Poly State University (San Luis Obispo, California), in conjunction with the Jet
Propulsion Laboratory of the California Institute of Technology (Pasadena, California),
the SPAWAR Systems Center of the Space and Warfare Systems Command (San Diego,
California), the Navy Research Laboratory at the Stennis Space Center (Mississippi), and
the Stanford Research Institute International (Menlo Park, California).

From the military perspective, as a collaborative and adaptive decision-support system,
IMMACCS consists of:

10

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

•	 an internal Object Model, an Agent Engine (incorporating several types

of agents), and an Object Browser user-interface, developed by the CAD

Research Center (Cal Poly);

•	 an object-serving and subscription-based communication facility,

referred to in this report as the SharedNet, developed by the Jet

Propulsion Laboratory (JPL);

•	 a translation facility capable of mapping external applications (i.e.,

legacy systems) to the IMMACCS Object Model, referred to in this

report as the MCSIT Translator, developed by the SPAWAR Systems

Center (SPAWAR);

•	 an infrastructure objectification facility developed by NRL (Stennis);

•	 and, a battlefield user-interface facilities (incorporating an integrated

differential GPS positioning device) developed by SRI International and

FGM Inc., respectively.

Based on the needs of military missions, and similar crisis coordination and management
environments, IMMACCS was designed to provide a common tactical picture with
integrated and meaningful decision-support facilities to authorized operators at any
access node.

As a command and control system designed explicitly to aid in execution, IMMACCS
incorporates a number of unique characteristics. First, while its design inherently permits
both training and planning, the system functions as a collaborative assistant to trained
commanders and their staff executing in the field. This ability to integrate planning,
execution and training functions within a single system environment is a unique
characteristic against a backdrop of existing simulation, visualization and planning tools.

Second, IMMACCS is a first generation example of adaptive command and control. By
allowing the user to control the manner in which information is to be displayed and to
modify the resulting view 'on-the-fly', the system attempts to adapt to the changing and
unpredictable nature of the battlefield as well as the needs of various users.

Third, IMMAACCS explicitly recognizes the impossibility of eliminating uncertainty on
the battlefield. Instead, it seeks to eliminate some of the principal causes of that
uncertainty through the use of agents to filter and tag information according to its
currency and reliability. In performing this function, the goal is to discipline and enhance
the decision making environment of the commander by capturing data streams as
information, as the information enters the command post.

Fourth, IMMACCS offers the commander the capability to specify a set of agent-assisted
custom views that correspond to elements of the commander's intent for that period of
time. The system will then track and integrate information which is automatically
updated and available to the commander for evaluation until a change is made in the
commander's intent. At that point, the commander can specify a new set of custom views
of the battlefield. Thus, in a first generation sense, IMMACCS assists the commander in
monitoring execution vis-à-vis intent.

11

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Fifth, IMMACCS is explicitly designed to assist in accelerating the 'tempo' of the
execution environment. The system's agents can cooperate with the staff and with other
agents to very rapidly alert to Rules of Engagement (ROE) problems, penetrations, new
hostile activities, or potential fratricide situations. This capability of instantaneously
alerting commanders at all levels complements the filtering and refining of information
entering the decision loop. The result can be an upsurge in confidence that the
information being received is reliable and timely, a potentially significant decrease in
decision time, and a resulting acceleration of 'tempo'.

From the technical perspective IMMACCS is a distributed, open architecture system that
applies object-oriented principles within a collaborative, multi-agent, decision-support
environment. It incorporates three notions that are fundamental to its decision-assistance
capabilities.

Notion (1): IMMACCS processes information, not data, in the form of real

world objects and their relationships. In other words, the key to the

assistance capabilities of IMMACCS is that the system has some

understanding of the information that it is processing. In IMMACCS

every entity in the screen display of the battlefield (e.g., road, building,

truck, tank, enemy unit, civilian group, etc.) as well as intangible entities

such as weather, attack, defense, and so on, are represented as individual

objects with behavioral characteristics and relationships to each other.

Therefore, the user interacts with a computer display that consists of

hundreds of real world entities (i.e., objects) that all have some

understanding of each other’s nature, interests and objectives, and a great

deal of understanding of their own behavior and capabilities. Similarly, the

computer-based agents in IMMACCS are able to reason about current

events in terms of the same objects and their dynamically changeable

associations.

Notion (2): IMMACCS is a collection of powerful collaborative tools, and not
a library of predefined solutions. This approach is intended to overcome the
deficiencies of legacy systems in which built-in solutions to predetermined
problems often differ significantly from the complex operational situations
encountered in the real world. IMMACCS is a collaborative decision-
support system in which users interact with computer-based agents (i.e.,
decision making tools) to solve problems that cannot be precisely nor easily
predetermined, even though the boundaries of the knowledge domain in
which they operate is at least broadly defined in advance. In other words,
IMMACCS is a knowledge-based system of problem solving tools. By far
the most powerful of these tools are computer-based agents that incorporate
communication and reasoning capabilities.

Notion (3): IMMACCS is a decision-support system in which computer-based
agents and human users, with very different but complimentary capabilities,
interact to solve problems collaboratively. Subject to the object-based
internal representation of information, the parallel and much faster

12

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

computational capabilities of the machine directly support the intuitive
conceptualization capabilities of the human users. IMMACCS includes
service agents that: apply their domain specific knowledge to weapon
selection and deconfliction; monitor nuclear, chemical and biological
hazards; filter and report intelligence; monitor enemy engagements and, for
example, warn friendly units of current and recent engagements in any
region of the battlefield; advise on ROE violations; and, anticipate
logistical re-supply requirements. IMMACCS also utilizes mentor agents
that may be dynamically created to represent the interests of warfighters and
warfighting machines. Mentor agents extend the capabilities of the human
user by warning friendly units of enemy intrusions into their territory, and
by looking out for the occurrence of events specified by the operator, such
as satisfaction of critical information requirements.

IMMACCS is an integrated system and not a confederation of loosely linked sub
systems. It consists of the following principal components:

•	 An Object Model (see Section 3.2) that facilitates the internal representation
of information (rather than data). In particular, IMMACCS supports the
dynamic formation of associations among objects at both the user and agent
levels.

•	 An Agent Engine (see Section 3.3) that automatically initiates an agent
session in support of any desired view of the battlespace. Apart from the
current ‘common tactical picture’ of the battlespace operators may create
any number of projected views in support of planning and training activities
(see Section 4.7).

•	 A SharedNet communication facility (see Section 3.4), designed and
developed by the Jet Propulsion Laboratory (JPL) that manages the object-
based interactions among the various components on a subscription basis.
All IMMACCS components are clients of the SharedNet and indicate their
information interests by registering a subscription profile.

•	 A hardware independent Object Browser (see Section 3.5) that facilitates
user interaction within the object-based information context and the
collaborative agent assistance capabilities of IMMACCS.

•	 A set of Translators (see Section 3.7), designed and developed by the
SPAWAR Systems Center, that are capable of mapping data received from
external applications, such as the Joint Maritime Command Information
System (JMCIS), to the object-based representation held within the
IMMACCS Object Model.

13

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

•	 A hardware independent, lightweight 2-D Viewer (not described in this
report), designed and developed by SRI International, that served during the
Urban Warrior AWE as a user-interface for the Marine in the battlespace.

•	 A hardware independent user-interface, referred to as the Battlefield
Visualization Tool (BVT) (not described in this report), designed and
developed by FGM, Inc. that has replaced the 2-D Viewer as the principal
IMMACCS user-interface following the Urban Warrior AWE.

The Urban Warrior AWE represented the first use and evaluation of IMMACCS as the
command and control system of record. Its design is still unfolding, building on the
experiences of Hunter Warrior and Urban Warrior as well as its predecessor, FEAT
(Force Employment and Analysis Tool), a system designed and developed jointly by the
Collaborative Agent Design (CAD) Research Center and CDM Technologies, Inc. In
both military and technical senses IMMACCS represents a significant departure from
previous approaches to collaborative decision-support systems.

The remaining sections of this report detail the nature of that departure, through a
technical description of its underlying ICDM architecture and the interaction of its
various components, an explanation of its functional capabilities, and a review of the
objectives and operational plans of the Urban Warrior experiment that served as a field
test.

14

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

2. The Integrated Collaborative Decision Model (ICDM)
Framework

Agent-based, decision-support systems provide human decision-makers with a means of
solving complex problems through the collaboration of both human and computer-based
expert agents in a distributed environment. Over the past decade the CAD Research
Center has progressively developed the Integrated Cooperative Decision Model (ICDM)
framework as an underlying architecture in support of such multi-agent systems (Myers
and Pohl 1994; Pohl 1995, 1997, 1998). The revised three-tier version of the ICDM
framework that was utilized in the IMMACCS architecture is described in this Section.

The employment of a three-tier model as the underlying framework of IMMACCS
offered several benefits, including location transparency and automatic client notification.
ICDM Version 2 incorporates forefront technologies such as distributed-object servers,
inference engines, and web-based presentation facilities.

2.1 Object-Based Representation
For more than a decade the CAD Research Center has been engaged in the design and
development of agent-based decision-support systems, with a decided focus on real world
applications (Pohl et al. 1997). As a result of these efforts, the CAD Research Center has
developed a manifesto of sorts describing a collection of criteria that we consider to be
fundamental to the development and practical application of such systems (Pohl 1997).

First and foremost among these criteria is the need for an object-based representation of
information. Information processed within the system must be described as objects
having attributes, behavior, and relationships to other objects. Collectively, these
descriptions form the information object model of the application (Fowler and Scott
1997). This requirement not only applies to the modeling of information but is also at
times portrayed in the manner in which the agents themselves are represented. Without
such an objectified representation that allows critical information relationships to be
captured, determination of the meaning and implication of information becomes
extremely difficult if not impossible. It became clear that a framework that is object-
centric in nature was needed to support such a representation requirement.

2.2 A Three-Tier Architecture
Renewed emphasis on the representation of information within the application itself,
provided the impetus for a significant restructuring and enhancement of the original
ICDM framework. While supporting a similar agent-based, decision-support
environment, ICDM Version 2 is based on a considerably different model than that
employed by ICDM Version 1 (Pohl 1998 and 1997, Myers and Pohl 1994).

ICDM Version 2 (ICDM-V2) is based on a three-tier architecture that clearly
distinguishes among information, logic, and presentation (Gray et al. 1997). These tiers
are shown in Figure 2.1 as representing the three major components comprising the

15

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

ICDM-V2: the Information Server (i.e., information tier); the Agent Engine (i.e., logic
tier); and, the Client User Interface (i.e., presentation tier) (Figure 2.1). Each of these
components functions in an integrated fashion to form a comprehensive agent-based
decision-support execution framework. From the viewpoint of the application
environment, this framework allows multiple human decision-makers to solve complex
problems in a collaborative fashion while obtaining decision-support assistance from a
collection of heterogeneous on-line agents.

Information Tier

Information Server

Presentation Tier

Client User
Interface

Client User
Interface

Client User
Interface

Logic Tier

Agent
ServerAgent

Session
Agent

Session Agent
Session

Agent
Session

Agent Engine

OODBMS

Figure 2.1: Basic Three-Tier Architecture

2.2.1 Information Server

The core of the ICDM-V2 model is the Information Server. Conceptually, the
Information Server represents a library of objectified information that clients utilize to
both obtain and contribute knowledge. The only difference is that clients can obtain this
information not only in a pull fashion, but can also have the Information Server push

16

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

them information on a subscription basis. Physically, the Information Server exists as a
distributed object server based on the Common Object Request Broker Architecture
(CORBA) (Mowbray and Zahavi 1995).

Distributed object servers are designed to service client requests for information. The
knowledge of exactly where the information resides and how it can be retrieved is
completely encapsulated inside the object server. This means that clients need not be
concerned with who has what information and in what form that information exists. This
feature becomes instrumental in providing an environment where collaborative
application components operate in an essentially de-coupled manner.

Regardless of the native representation of the information, distributed object servers can
be used to present information to clients in the form of objects. However, this does not
discount the need for information to be modeled as high-level objects in its native form
portraying behavior and conveying relationships. While at face value this representational
morphing capability of object servers seems promising, it is nevertheless misleading in
practice. If the information is not represented at a high level upon its inception, such
objectification amounts to little more than wrapping data in communicable object shells.
These shells fail to convey any additional insight into the meaning or implication of the
information than was present to begin with in its original form. Although in the future
there may be potential for successful research efforts in this area, at present, unless
information is originally modeled as objects, knowledge-oriented applications prove to
gain little from this distributed object server feature.

However, applications that do model information as high-level objects stand to gain
considerably from employing distributed object servers. Distributed object servers
preserve an objectified representation of information as it moves throughout the system.
This is due to the fact that the internal mechanisms of distributed object servers process
information as components of an application object model. The ICDM-V2 model takes
full advantage of these object-oriented facilities by integrating an Object-Oriented
Database Management System (OODBMS) into its information environment (Bancilhon
et al. 1992). The advantages that accrue through the strategy of having the Information
Server store the objects of the application in the OODBMS, are twofold.

First, an OODBMS preserves the object-oriented representational nature of the
information as it transitions into its persistent form. Whenever there is representational
degradation there is potential for loss of information content and meaning. By utilizing
both transport and storage facilities that are capable of processing and manipulating
information as native objects, degradation of representation is held to an absolute
minimum while the information flows throughout the application environment.

The second advantage relates to the manner in which the clients of the Information Server
request information. Whether mining for information or posting a standing subscription,
clients formulate their information requests in terms of objects. More specifically, clients
describe their queries and interests in terms of object attributes and inter-object
relationships. These queries can range from simple existence criteria to more complex
relationships incorporating both logical and relational operators. For example, such a
query may request all ‘InfoTech’ employees with a salary of more then $40,000. In this
example, the client is essentially pulling information out of the Information Server. The
operands of the query are each specified in terms of the application’s object model.

17

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Another method that may be employed to obtain information from the Information Server
depends on the notion of subscription. Clients are able to dynamically register standing
subscriptions, or interests with the Information Server, which are again described in terms
of the application’s object model. For example, a client may request to be notified
whenever ‘InfoTech’ hires a new employee. Once registered, this condition is continually
monitored by the Information Server. When satisfied, the Information Server pushes the
relevant information to whatever client has indicated an interest in this kind of
information (i.e., registered an appropriate subscription).

The most obvious alternative to this subscription mechanism would be to have interested
clients perform the same query on an iterative basis until such a condition occurs. Each
unsatisfied query would potentially decrease resources (i.e., computing cycles) available
to other application components and would therefore be wasteful of computing resources.
With a more conservative approach, in which the repeated query is made on a less
frequent basis, the client risks being out of date with the current state of the system until
the next iteration is performed. Accordingly, the ability to push information to interested
clients on a subscription basis is considered to be an important feature for providing
decision-support applications with an efficient and responsive operational environment.

2.2.2 The Agent Engine

The Agent Engine represents the logic-tier of the underlying three-tier architecture of
ICDM-V2. Existing as a client to the Information Server the Agent Engine is capable of
both obtaining and injecting information. Architecturally, the Agent Engine consists of an
agent server capable of serving collections of agents (Figure 2.1). These collections, or
Agent Sessions, exist as self-contained, self-managing agent communities capable of
interacting with the Information Server to both acquire and inject information. For the
most part, the exact nature of the agents and the particular collaborative model employed
is left to the application specification.

However, regardless of the types of agents contained in an Agent Session, agent activity
is triggered by changes in the objectified application information. These objects may take
the form of global objects managed by the Information Server or local objects utilized in
agent collaborations that are managed by the Agent Session itself. Regardless of whether
agents are interacting with the Information Server or each other, interaction takes place in
terms of objects and object attributes. This again illustrates the degree to which an object
representation is preserved as information, and knowledge is processed throughout the
application environment.

2.2.2.1 Agent Session Configuration

Decomposing agent analysis into heterogeneous collections of agents (i.e., Agent
Sessions) allows for a number of interesting configurations. These configurations
determine the size, number, and individual scope of the Agent Sessions. While a wide
variety of Agent Session configurations exist, the CAD Research Center has found
considerable success in formulating this configuration based on two primary criteria.

18

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

The first criterion introduces the notion of a view. A view can be thought of as a single
investigation into solving a problem whether it be based on fact or speculation. In some
cases, a view may be a conceptual perspective of reality. For example, a view may
describe events and information relating to what is actually occurring in reality. Yet,
another view may describe an alternative or desired reality.

View
Information

Tier

Agent
Session

Logic
Tier

Client User
Interface

Client User
Interface

Client User
Interface

Presentation
Tier

“Current set of
view users…”

Figure 2.2 - Multiple users can interact with a view
which in turn is analyzed by a single Agent Session

An illustration of this approach is found in the IMMACCS application, which uses a
single view to represent the information and events occurring in the battlespace. In a
similar manner, IMMACCS employs any number of additional views to represent
hypothetical investigations to determine suitable strategies for dealing with potential
events or circumstances. Regardless of use, however, ICDM-V2 maintains a one-to-one
correspondence between a conceptual view and an Agent Session (Figure 2.2). This
means that independent of exactly which version of reality a view represents, there exists
a dedicated Agent Session providing users of that view with agent-based analysis and
decision-support. Each agent of a particular Agent Session deals only with the view
associated with its Agent Session. Organizing information analysis in this manner allows
for an efficient and effective means of distinguishing activities relating to one view from
activities pertaining to another view. Unless prompted by user intervention, each set of
information is completely separate from the other.

The second configuration criterion determines the number and nature of agents contained
in an Agent Session at any point in time. As mentioned earlier, the decision-support
applications developed by the CAD Research Center utilize a variety of agent types.

19

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Three of these agent types include Domain Agents, Object Agents, and Mediator Agents
(Pohl 1995). Service-oriented Domain Agents embody expertise in various application-
relevant domains (e.g., structural systems and thermal dynamics for building design, tidal
dynamics and trim and stability for ship load planning, and so on). The collection of
Domain Agents populating an Agent Session at any point in time determines the variety
of domain specific perspectives and the analytical depth available during analysis of the
associated view. Under the configuration scheme commonly utilized by the CAD
Research Center, users can add or remove these domain perspectives in a dynamic
fashion as analytical needs change over time.

Object Agents, on-the-other-hand extend the notion of high-level information
representation by essentially agentifying information through empowering information
objects with the ability to act on their own behalf. Both human users and even other
agents can initiate agentification of information into Object Agents on an as needed basis.
In an attempt to resolve conflicts arising between collaborating agents, Mediator Agents
may be employed as third party conflict identifiers and resolvers. It is the goal of these
mediators to bring about consensus among agents that have reached an impasse.

Under the ICDM-V2 model each of these agent contingents is dynamically configurable
by both the user(s) in addition to the system itself. This approach to Agent Session
configuration promotes the notion of offering assistance in the form of dynamically
configurable tools rather than predefined solutions (Pohl 1997).

2.2.2.2 Agent Session Architecture

Architecturally, an Agent Session consists of several components including the Semantic
Network and Semantic Network Manager, Session Manager, Inference Engine,
and Agent Manager (Figure 2.3). These components operate in an integrated fashion to
maintain a current information connection between the agents residing in the Agent
Session and the associated view described in the Information Server.

Semantic Network: The Semantic Network consists of a collection of two sets of
application specific information objects. The first set is used for local collaboration
among agents. Depending on the specific collaborative model employed, agents may use
this local Semantic Network to propose recommendations to each other or request various
services. This information is produced and modified by the agents and remains local to
the Agent Session.

The second set of information is a duplicate or mirror image of the view information
stored in the Information Server. In actuality, this information exists as a collection of
object-based interfaces allowing access to the view information stored in the Information
Server. The interfaces are directly related to the information object model of the
application. In other words, these interfaces or proxies (Mowbray and Zahavi 1995), are
represented in terms of the objects described in the information object model. Through
these interfaces, the clients of the Information Server have the ability to access and
modify objects contained in the Information Server as though they are local to the client’s
own environment. All communication between the object interfaces and their remote
object counterparts is encapsulated and managed by the Information Server and

20

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

completely transparent to the clients. This is a fundamental feature of the concept of
distributed object servers on which the Information Server is based (Orfali et al. 1996).

Information Connection

Session Manager

Object
Manager

Semantic
Network Manager

Proxy
Semantic Network

Alert
Manager

Agent
Manager

Mirror
Semantic Network

Agent Semantic Network

Agent
Community

Inference Engine

Agent Analysis

Figure 2.3: Agent Session Architecture

Semantic Network Manager: As the primary manager of the two sets of information
described above, the Semantic Network (SN) Manager focuses the majority of its efforts
on the management of the bi-directional propagation of information between Information
Server proxies and an equivalent representation understandable by the Inference Engine.
Such propagation is accomplished through employing an Object Manager. The purpose
of this manager is to essentially maintain mappings between the Information Server
proxies and their corresponding Inference Engine counterparts. The necessity of this
mapping reveals a limitation inherent in most distributed object server and inference
engine facilities. Most facilities supporting one of these two services require control over
either the way client information is represented or the manner in which it is generated.
This is due to the fact that both facilities require specific behavior to be present in each
object they process. Nonetheless, this dilemma can be solved through the use of an
intermediate object manager which maintains mappings between the two sets of objects.

An additional responsibility of the SN Manager is related to the subscriptions or interests
held on behalf of the agent community. In this respect, the SN Manager is responsible for
maintaining the registration of a dynamically changing set of information interests held
on behalf of the Agent Session agents. As part of this responsibility the SN Manager is
also required to process the notifications that indicate when these interests have been
satisfied. Such processing includes the propagation of information changes to the agent
community that may in turn trigger agent activity. To perform these two interest-related
tasks the SN Manager employs the services of the Alert Manager.

21

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

The Alert Manager exists as an interface to the subscription facility of the Information
Server and is available to any Information Server client wishing to maintain a set of
information interests. Employment of the Alert Manager by subscribers has two distinct
advantages. First, Information Server clients are effectively de-coupled from the specifics
of the Information Server subscription interface. This allows the same application client
to be compatible with a variety of object server implementations.

Second, the Alert Manager interface allows subscribers to effectively decompose
themselves into a dynamic collection of thread-based interest clients (Lewis and Berg
1996). In other words, the Alert Manager extends the monolithic one-to-one relationship
between the Information Server and its client into one which supports a one-to-many
relationship. This strategy of decomposing functionally related behavior into lightweight
processes promotes the concepts of multi-processing in conjunction with resource
conservation.

Inference Engine: The Inference Engine provides the link between changes occurring in
the Semantic Network and agent activation. As discussed earlier, agent activation can
occur when a change in the Semantic Network is of interest to a particular agent. In such
a case, the Inference Engine, having knowledge of specific agent interests in addition to
changes occurring in the Semantic Network, is responsible for activating or scheduling
any actions that the agent wishes to execute. This activation list forms the basis for the
Agent Manager to determine which agent actions to execute on behalf of the currently
executing agent.

Agent Manager: The Agent Manager is responsible for the management of the agent
community housed in an Agent Session. Such management includes the instantiation and
destruction of agents as they are dynamically allocated and de-allocated to and from the
agent community. In addition, the Agent Manager is responsible for managing the
distribution of execution cycles that allow each agent to perform actions. Disbursement
of execution cycles occurs in a round-robin fashion allowing agent analysis to be evenly
distributed among relevant agents. Whether or not an agent utilizes its allotted cycles
depends on whether it has any tasks or actions to perform.

Session Manager: As the overall manager of the Agent Session environment the Session
Manager has two main responsibilities. The first responsibility focuses on the
initialization of each of the other Agent Session components upon creation. When an
Agent Session is created in response to the creation of a view, the Session Manager is the
first component to be activated. Once initialized, the Session Manager first activates the
SN Manager and the Inference Engine, and then the Agent Manager. Upon startup, the
Agent Manager initializes itself by allocating an appropriate initial set of agents.
Depending on the specific requirements of the application, these agents may in turn
perform a series of initial queries and subscriptions which will eventually propagate to
the Information Server via the SN Manager.

The Client User Interface: Representing the third and final tier of the three-tier
architecture employed by ICDM-V2 the Client User Interface exists as a web-based
application that can operate in a lightweight computing environment. The Client User

22

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Interface essentially provides human users with a means of viewing and manipulating the
information and analysis provided by the other two tiers. Recognizing the importance of
data presentation, the Client User Interface presents the user with this information in a
graphical manner whenever possible.

As clients of the Information Server, users have the ability to interact with each other. By
either injecting or obtaining information from the Information Server, users working on
the same view are able to exchange design information in a collaborative manner. This
type of information exchange occurs regardless of whether the relevant view represents
the main effort or exists as a localized solution attempt explored by a subset of users. All
information and analysis remains localized within its particular view unless explicitly
copied into another view as a user-initiated action. In this manner, no informational or
analytical collisions occur between conceptual views without user-based supervision and
subsequent reconciliation.

2.3 Future Directions

As a further formalization of the ICDM-V2 approach to the design and implementation of
agent-based, decision-support applications, the creation of a robust collection of design
and development tools is planned within the near future. It is proposed that these tools
combine the roles of application designer and application developer into a single effort.

Decision-support applications can be designed and developed through a series of high
level models describing information structure and analytical logic. Within this context
high-level object classes can be identified through a series of Unified Modeling Language
(UML) class diagrams forming a comprehensive information object model (Fowler and
Scott 1997). Such an object model essentially describes the application-specific problem
space as a collection of high-level objects complete with attributes and inter-object
relationships. This is the same high-level description of application information that was
identified earlier as being crucial to agent-based, decision-support applications.

By the same token, much of the analytical reasoning applied to this information can be
described in terms of a methodology suitable for representing logic. The methodology
intended to be employed by this set of design and development tools attempts to represent
logic as a series of conceptual rules (Hayes-Roth et al. 1983). Each of these rules
identifies both a condition and a corresponding action to take upon the satisfaction of that
condition. This is where the advantages of using a high-level, object-based representation
again become apparent. Both the condition and action components of such rules can be
described in terms of the information object model of the application. The conditions can
be represented as a series of references to object attributes strung together with logical
and relational operators, and the corresponding action is itself described in terms of the
object model. When the information state described in the condition section of the rule
occurs, then the corresponding action component will modify or produce information
thus creating an entirely new information state. This new state may in turn trigger other
rules to execute in a similar fashion. Although not all logic can be represented in this
manner, it is our expectation that this approach can be applied to a significant portion of
analytical reasoning found in decision-support applications.

23

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Once both the information and portions of the logic have been described as high-level
design models, much of the decision-support application can be automatically generated.
The object model can be used as a basis for automatically generating any object-specific
behavior required by the various ICDM-V2 components outlined in this report including
the Information Server, the Agent Engine, and the Client User Interface. In a similar
manner, the logic model can be used to automatically generate the condition and action
components of rules that typically form a significant portion of the agent communities.
This automatic generation is possible because the information required to implement the
application-specific portions of the components is present in a concise and unambiguous
form within these two design perspectives.

By elevating much of the application development to the level of conceptual design, such
applications can be developed, maintained, and modified in a considerably more efficient
manner than is currently possible with more traditionally based multi-agent, decision-
support applications. Furthermore, this approach essentially eliminates the loss of intent
that often occurs as application development moves from the design phase to the
implementation phase. Utilizing the ICDM-V2 model together with its design and
development tools, it is now possible for these roles to become synonymous.

24

��

���������������������������������������
��

��������

������������

���������� ���������� ���������

���������� ���������� �����������
����������

����������

���������

�����������

���������

�����������

���������
���������

�����������
�����������������������

���������
�����������

���������� �����������

����������

���������

����������

�����������

�����������

���������� ����������� ����������� �����������

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3. The IMMACCS System Components

3.1 Overall Configuration and Architecture

Based on the ICDM framework described in Section 2, the IMMACCS software system
is designed as a three-tier architecture that makes clear distinctions between information,
logic, and presentation. These tiers are represented schematically in Figure 3.1 by the
three major IMMACCS system components; namely: the SharedNet object-serving
communication facility and the IMMACCS Object Model (i.e., the information tier); the
Agent Engine (i.e., the logic tier); and, the IMMACCS Object Browser (i.e., the
presentation tier).

OBJECT
BROWSER

(IOB) ��
���������������������������������������
���������������������������������������
���������������������������������������
��

��������
������������ ���������� ����������

���������� ���������
����������
���������� ���������� ����������� ����������

����������
���������
��������� ���������

�����������
���������
��������� ���������

�����������������������
���������

�����������
���������� �����������

����������
����������

��������� ����������
�����������
�����������

�����������
LINKAGE TO NON-IOM CLIENTS VIA TRANSLATOR

SHARED NET OBJECT-SERVING COMMUNICATION

IMMACCS OBJECT
MODEL (IOM)

OBJECT
INSTANCE

STORE

AGENT
SESSION

AGENT
SESSION

AGENT
SESSION

OBJECT
BROWSER

(IOB)

OBJECT
BROWSER

(IOB)

Figure 3.1: Schematic representation of the IMMACCS components

3.1.1 The SharedNet Information Server

The SharedNet, developed by the Jet Propulsion Laboratory (JPL), represents the core of
the IMMACCS model (see Section 3.4). It functions as an object-serving communication
facility. Clients subscribe to information and this information is automatically pushed to
the subscribers as soon as it is instantiated and posted in the Object Instance Store (Figure
3.1). Additionally, clients may send queries to the SharedNet and pull information out of
the Object Instance Store. In this respect the SharedNet operates very much in the
fashion of a distributed object server based on the Common Object Request Broker
Architecture (CORBA) specification (Mowbray and Zahavi 1995).

The information service capabilities of a distributed object broker, obviate the need for
clients to be knowledgeable of either the source or the form of the information. In other

25

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

words, clients (including agents) communicate with the SharedNet and not directly with
each other.

3.1.2 The Representation of Information

Fundamental to the decision-support capabilities of IMMACCS is the representation of
information within the system as objects with behavioral characteristics and relationships
with other objects (Myers et al. 1993). It is important to note that the relationships among
these objects are often far more important than the characteristics that describe the
individual behavior of each object. For example, the word house holds little meaning if
we strip away the many associations that this word represents in our mind. However,
such associations to our knowledge of construction materials, our experiences in having
lived in houses, and our understanding of how our own home is impacted by external
factors (such as rain, sunshine, neighbors, mortgage interest rates, and so on) constitute
the rich meaning of the object house (Minsky 1982). Accordingly, any useful
representation of information in the computer must be capable of capturing the
relationships among the entities (i.e., objects) in the problem system.

While some of these associations are fairly static (e.g., a weapon is a kind of asset and a
lethal weapon is a kind of weapon) many of the associations are governed by current
conditions and are therefore highly dynamic. For example, as a platoon of soldiers moves
through the battlefield it continuously establishes new associations (e.g., to windows in
buildings from which snipers could fire on individual members of the platoon), changes
existing associations (e.g., higher levels of risk as the platoon nears an active combat
zone), and severs previous associations (e.g., as the platoon is forced to abandon its
compromised command post).

Although distributed object servers by virtue of their name deal with objects, this in itself
does not guarantee the kind of object-based representation described above. If the
information is not represented at a high level upon its entry into the system, then the
objects serve simply as shells (i.e., wrappers) for data. In IMMACCS, the Object Model
serves as the information framework that preserves the objectified representation of
information as it moves throughout the system, and the SharedNet incorporates an object-
oriented database management system (OODBMS) for maintaining persistence.

3.1.3 The Agent Engine

The Agent Engine (see Section 3.3) represents the logic-tier of the underlying three-tier
architecture of IMMACCS. Existing as a client of the SharedNet the Agent Engine is
capable of both obtaining and injecting information into the SharedNet. Architecturally,
the Agent Engine consists of an agent server capable of supporting collections of agents.
These collections, or agent sessions, exist as self-contained, self-managing, agent
communities capable of interacting with the SharedNet to both acquire and contribute
information. As a SharedNet client with interests in events and information, agent activity
is triggered by changes in the environment represented by the IMMACCS Object Model
(i.e., the battlespace). Regardless of whether agents are interacting with the SharedNet or
each other, interaction takes place in terms of objects. This again illustrates the degree to

26

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

which an object representation is preserved as information as it is processed throughout
IMMACCS.

In IMMACCS heterogeneous collections of agents are attached to the notion of a view. A
view may describe events and information relating to what is actually occurring in reality,
or it may be the result of a planning process. In either case, a one-to-one correspondence
exists between a view and the corresponding agent session that is dedicated to that view.

The IMMACCS Agent Engine currently supports two kinds of agents: service agents;
and, mentor agents. Service agents embody expertise in narrow knowledge domains.
Therefore, the collection of service agents combined within an agent session at any
particular time, determines the number of points of view that are under consideration in
that session at that time. Mentor Agents, represent the interests of specific objects within
the object model. In other words, they constitute an agentification of information and
essentially empower information objects to act on their own behalf. Mentor agents may
be instantiated by human users or other agents on an as-needed basis.

3.1.4 The Presentation Facility

Representing the third tier of the three-tier architecture employed by IMMACCS the
client user-interface exists as a culmination of instances of the IMMACCS Object
Browser (see Section 3.5). The object browser provides users with a means of viewing
and manipulating the information currently stored in the SharedNet. In addition, users
have the ability to interact with each other in a collaborative fashion. By sending and
receiving information from the SharedNet, the actions of any particular user (i.e., client)
are transparently reflected to all other clients (i.e., including users) that are sharing the
same view and have subscribed to the same kind of information.

As a direct client to the SharedNet the object browser serves as a window to all object
instances, which includes all characteristics and relationships that define them. Thus,
conceptually, the browser serves to visually represent objects by imparting specific visual
behavior to certain classes of objects (e.g., ‘Track’ objects which can be geo-spatially
placed and moved).

27

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.2 The IMMACCS Object Model (IOM)

The object model that was developed to represent the characteristics and relationships of
the information expected in the urban battlespace environment is significant, even beyond
the scope of IMMACCS. A major achievement of this project has been to take an object
model through a complete development cycle, creating the necessary tools along the way
to highly automate the process. This capability allows for development of an object
model using a standard graphical methodology, the Unified Modeling Language (UML),
and directly produce final application code. (See Section 7.1, Appendix A, for a
diagrammatic overview and a detailed sample of the IMMACCS Object Model.)

3.2.1 Object Model Development

A primary goal of the IMMACCS project, from the very beginning, was to develop a
model describing the urban battlespace environment in terms that reflect not just
characteristics, but relationships and behavior as well. An object-oriented approach was
the obvious choice for defining this representation. Additionally, a significant amount of
work had been done by others to describe real world environments for the battlespace as
classes of objects. The information used in the IMMACCS project borrowed heavily
from these past efforts (Conwell 1995, DARPA 1996, GRC 1996).

While the models described in these references define hierarchy in great detail,
characteristics and more specifically relationships between classes of objects are typically
lacking. Therefore, a great deal of the effort was focused on defining the relationships.
Also, a good deal of information was obtained from standards defined to describe textual
as well as visual information used in the battlespace arena (DoD 1996, NCTSI 1995). In
addition to these published documents, much information used to complete the object
model was obtained directly from subject matter experts, typically members of the
Marine Corps Warfighting Laboratory (MCWL) and the Special Purpose Marine Air
Ground Task Force Experimental (SPMAGTF(X))
.

In the case of IMMACCS, the primary reason for developing a rich object-oriented
description of the battlespace was the requirement for decision-support. An information
representation that can accurately reflect status conditions and interactions, is a
prerequisite for providing realistic decision-support. In other words, the data themselves
had to impart a certain level of intelligence in organization otherwise the task of
providing even near real-time decision-support would have been intractable.

Figure 3.2 shows a representative sample of the IOM illustrating several key features of
the UML methodology (see also Appendix 7.1). The root class for the IOM is ‘SNBase’
which defines attributes (i.e., characteristics) that all objects will inherit. The
‘IMMACCSObject’ class is a direct descendant of ‘SNBase’ and, therefore, any objects
created based on this class will be characterized by the attributes defined in ‘SNBase’ and
‘IMMACCSObject’. In UML, inheritance is shown using the generalization link (i.e., a
line with a single open arrow) with the arrow end connected to the general class.

A particular feature of the IOM is the notion of a view which is characterized in the
model with the ‘View’ class. Views can be thought of as managers of collections of
objects that represent a particular operational picture of the battlespace. The collection of

28

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

managed objects of a view is represented in the ‘View’ class through the aggregate
relationship ‘managedObjects’. The implication of an aggregate relationship (as opposed
to a simple relationship) is to infer ownership. That is, in this case, a view object owns its
managed objects. An additional implication is that if any view object is destroyed then all
its managed objects will also be destroyed. In addition to its managed objects a view may
also have one or more defined areas of interest. The aggregate relationship to the
‘AreaOfInterest’ class gives view objects control over the definition of specific physical
areas in the battlespace. How these physical areas are presented and managed is subject
to interpretation and under the current architecture is entirely up to the client application.

Specializing from the ‘IMMACCSObject’ class the fundamental classes ‘Physical’,
‘Event’, and ‘Information’ are defined. These classes represent the top level classes used
to define distinctly separate groups of conceptual objects, namely physical objects (i.e.,
objects that have geometry and location), information (i.e., pure data objects), and events
(i.e., temporal objects).

From the ‘Physical’ class the ‘Track’, ‘Environment’, and ‘Supply’ classes are defined.
The ‘Track’ class defines a composite relationship with the complex data type
‘TrackPosition’. The implication of a composite relationship is that the attributes defined
in the associated data structure are considered to be a physical part of the owning class
(i.e., a complex data definition comprising a set of simple data types). In this case, any
track objects created from the ‘Track’ class are given a collection of data defining the
track position. Additionally, track objects may also be associated with environment
objects that represent place(s) where the track objects reside. For example, a truck may be
located on a road. This simple association provides a much richer description of where a
track is located in contrast to providing only a location and attempting to infer a
relationship through a geo-spatial search (which may be computationally expensive). The
implication of a simple association is that no ownership is implied, but just the
relationship. An additional implication is that if either object is destroyed then only the
relationship is removed not the associated object.

3.2.2 Implementation Process Development

The selection of the modeling tool used to develop the object model was dictated to a
large degree by the requirement for extensibility. In particular, this object modeling
application needed to be able to generate both code and various kinds of reports. The
code and report generation could not be predetermined but instead was required to be
customizable. At the time of the selection, GDPro (Advanced Software Technologies,
Inc.) satisfied these requirements as well as providing a complete implementation of the
UML methodology. The macro language utilized by GDPro is Perl, therefore,
development of the specialized scripts was straightforward. Specifically, scripts were
developed to generate CORBA IDL1, a parseable text report, an HTML report, and a
LaTeX (Lamport 1998) report for the IOM data dictionary. The generated CORBA IDL
was then submitted to another team member (i.e., Jet Propulsion Laboratory, Pasedena,
CA) who in turn generated both the server side and client side libraries. These libraries

1 Common Object Request Broker Architecture (CORBA) Interface Definition Language (IDL)

29

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

were then distributed to the various developer teams for use in their client applications.
The client side libraries were provided as compiled ‘Java’ language class archives.

Figure 3.2: Representative sample of the IMMACCS Object Model

30

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.2.3 Planned Enhancements and Extensions

The class diagram for the IOM is complex. This complexity is a direct result of trying to
incorporate a number of knowledge domains all under the same model. Both to reduce
this complexity as well as to logically define knowledge domains the IOM could be
divided into several sub-models that focus on specific areas of knowledge. As an
additional benefit this would allow distribution of object services across a network with
each server providing a specialized knowledge domain. The servers would be
interconnected serving specialized classes defined with associations to classes serviced
by other servers, thereby retaining the relationships provided by the monolithic model.
This distribution of services would result in increased computational efficiency as well as
provide client application flexibility (i.e., dynamic selection of knowledge domains).

The IOM currently defines classes of objects essentially as simple data objects. As
alluded to previously object definitions can include behavior as well as characteristics.
Currently, because of the lack of defined behavior, it is strictly up to the client
applications to interpret and implement behavior for classes of objects. For example,
track objects have a location attribute to indicate physical position, altitude (i.e.,
elevation), bearing, course, and speed. If a track object moves these attribute values must
be changed to reflect this movement.

Additionally, client applications must interpret the meaning of these values to accurately
reflect the movement in the application interface. Much of this interpretation could (and
should) be handled by the ‘Track’ class itself thereby providing logical constraints on the
attribute values (which could otherwise be violated because of faulty interpretation by the
client application). This, in turn, off-loads the client application from having to deal with
properly constraining related attribute values. Potentially, very complex behavior could
be implemented, leading to the possible elimination of at least some client applications.

31

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.3 The IMMACCS Agent Engine (IAE)

An appropriate definition of agents is given by Wooldridge and Jennings (1995), as
follows “… Agents are computer systems, situated in some environment, that are capable
of flexible autonomous actions …”. In this definition the three critical words situated,
flexible, and autonomous, require further explanation.

•	 Situated means that the system receives sensory information from its

environment and is capable of performing acts that change this

environment.

•	 Autonomous means that the system is able to act without the direct

intervention of human users (or other agents) and that the system has

control over its own actions and internal state.

•	 Flexible means that the system is: responsive - by perceiving its
environment and being able to respond in a timely fashion to changes that
occur in it; proactive - by exhibiting opportunistic, goal-directed
behavior and exercising initiative where appropriate; and, social - by
interacting, when appropriate, with other agents and human users in order
to complete its own problem solving tasks and help others with their
activities.

Agents in IMMACCS follow the same definition. They are situated since they receive
sensory information from the battlefield in addition to the information coming through
other components of the system, and perform acts that may change that environment
(e.g., creating alerts, making suggestions, and formulating recommendations).
IMMACCS agents are autonomous because they act without the direct intervention of
human users, although they allow the latter to interact with them at any time. They also
have control over their own actions and internal state.

In respect to flexibility, IMMACCS agents possess the three qualities that define
flexibility within the context of the above definition. They are responsive, since they
perceive their environment through an object model that describes all of the relationships
and associations that exist in the warfighting environment. They are proactive because
they can take the initiative in making suggestions or recommendations (e.g., weapon
selection for a call-for-fire, or route selection for moving troops or equipment) and they
do that in an opportunistic fashion. For example, when a Call-For-Fire is initiated, the
Fire agent immediately, without the explicit request of the user, determines the feasible
weapons that can fullfil that task.

The third quality is the ability of agents to communicate (i.e., socialize) with each other
and with human users to work on their own problems or assisst others with their
problems. Conceptually, IMMACCS provides a framework for this to be managed by a
coordination agent that looks at suggestions made by different agents and determines if
conflicts exist. If there is a conflict, negotiation could be initiated among the conflicting
agents in an attempt to reach a consensus solution (Jennings et al. 1998).

An agent is a collection of rules that monitors specific conditions and generates alerts
when these conditions are statisfied. An alert is one mechanism through which agents
communicate information to others. The information that agents operate on comes into

32

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

the Agent Engine through the SharedNet, an object-serving communication facility. The
general design of an agent consists of the following components:

1.	 The conditions that trigger the agent. This is the functional specification of
the agent.

2.	 The objects and their attributes that are involved in these conditions. This

is the part of the representation that is used by the agent.

3.	 The logic that defines the relationships among these objects and attributes.

3.3.1 Object Representation for the Agents

The SharedNet provides the main repository of information in the system, whether it
comes directly from sensors, through other systems, or is entered manually by the user.
The representation in the SharedNet is object-oriented and it provides a subscription
mechanism to notify other components in the system when objects change.

Agent

Condition

Alert

SharedNet Semantic
Network
Manager Pattern

Pattern

Pattern

Figure 3.3: The agent alert mechanism

The Agent Engine acts on a subset of the SharedNet objects, subscribing to the subset of
objects and attributes that it needs1. The Agent Session Manager receives the event
notifications from the SharedNet and processes the information in them. The Semantic
Network Manager then reflects the changes into the agent environment, while the agent
manager controls the execution of the agents (Figure 3.3).

Since the agents are programmed in the CLIPS (Version 6.05) expert system shell
(NASA 1992, Giarratano and Riley 1994) that utilizes the RETE algorithm, they do not
perform any search or checking for the required information. The RETE algorithm takes
the incoming information and automatically allocates it to the rule patterns that provide a
match (Forgy 1982). When all of the information for one rule is available (i.e., when all
of the predicate patterns in the rule are matched with new information received from the
SharedNet) the rule is placed on the agenda to execute (i.e., fire) at the earliest
opportunity. In this regard, the agents simply wait for all of the information slots to be
filled, rather than having to check for new information.

1 A small utility generates the subscription list based on what the agents actually use in their reasoning.

33

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.3.2 Opportunistic Agent Execution

One element of autonomy in agent applications is the ability of agents to perform tasks
whenever these may be appropriate. This requires agents to be continuously looking for
an opportunity to execute. In this context opportunity is typically defined by the
existence of sufficient information. For example, to identify a shortage of supplies (e.g.,
munitions or fuel) in a military operation, some agent has to monitor the consumption of
the particular supply item until there is a shortage and then issue a warning.

The implementation of agents in CLIPS provides a natural way for opportunistic
execution to occur. The RETE algorithm matches objects with rules and keeps track of
the partial matches of each rule. When there is a full match (i.e., all of the predicate
patterns of the rule have objects to match) the rule is activated and placed on the agenda
for execution. If any of the objects that are involved in the match of an activated rule are
deleted, this match becomes partial again and the rule is de-activated (i.e., removed from
the agenda). This mechanism provides an environment in which rules fire whenever they
have an opportunity, rather than in a sequential fashion.

3.3.3 Functional Specifications

The requirements for agents are defined in terms of two elements: conditions; and,
actions. The conditions are the specifications of the situation that the agent monitors,
while the actions are the alerts that should be generated when these conditions are true.

•	 Conditions: The conditions are specified in terms of objects, attributes
and the relationships among them. Each condition is formed by a pattern
of object, attributes, values, and Boolean tests. Patterns are grouped by
logical connectors, such as AND, OR, and NOT. The more patterns and
relationships are specified, the more specific these conditions become.

•	 Actions: The right hand side (RHS) of a rule represents the action to be

taken when the conditions are satisfied. The most general type of action is

to generate an alert. There are a number of alerts in the object model that

deal with different types of information. Alerts include warnings,

violations, and recommendations.

A formal description of the functional specification of agents may take several forms. A
graphical representation of agents is proposed in Figure 3.4 and utilized in Figure 3.5, to
describe the design of agents and the communication of agent requirements with the
object model. An agent is described in terms of rules. Each rule consists of two parts: a
pattern group; and, an action group. The pattern group contains a number of patterns
(i.e., at least one) that are connected by a logical operator. The default operator is AND.
Each pattern represents an object that is of interest to this rule.

The object pattern is identified by a class name and possibly an instance name. Any
number of attributes of this object may be part of the pattern as long as they have logical

34

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

implications for the rule. Constraints can be defined to limit the values of attributes or to
define a relationship among a group of attributes. They can be defined for single patterns
or across patterns. A special type of constraint is implicitly defined by using the same slot
variable in two different slots. This type of constraint is referred to as a ‘binding’
constraint and can be replaced by an ‘equality’ constraint in the regular form.

The action group contains a number of actions. An action is typically a change to the
object repository (create, update, or delete an object.) Some computation may be needed
to determine the values of the change. Computations include math functions, object-
access functions, and any user-defined functions.

Constraint

Computation
(User-defined

function)

Pattern

Class Instance

Slot Value

Slot Value

Binding

Constraint Parameter

Logical Operator

 Figure 3.4: Graphical representation of agents

3.3.4 Agent Engine Architecture

The creation and operation of IMMACCS agents are managed by an agent engine that
has a number of components. The responsibilities of the agent engine include the creation
of agent sessions, managing the update changes in the object repository, and managing
agent communications. The principal components of the agent engine include:

•	 Agent Session Server: Every view in IMMACCS is associated with an
agent session. The agent session server is the component that creates new
sessions whenever new views are created, and associates these views with
their sessions.

•	 Agent Session Manager: The session manager is responsible for all agent

session operations, and the management of their relationships to views. An

agent session is created as a result of the creation of a view and is attached

to that view in a one-to-one relationship. If the view is deleted the session

manger is responsible for deleting the agent session.

35

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

•	 SharedNet Manager: The difference in internal representation of objects,
in both the user-interface and the agent engine, requires a module that is
dedicated to the management of change on both sides. The SharedNet
manager is a module that handles the alert notifications coming from the
SharedNet to update the agent engine objects. It also manages the changes
in the object repository that come as a direct result of the work of the
agent engine. There are three basic operations that are performed on
objects: create; update; and, delete. Each object is identified in the
SharedNet by a unique object name, and the SharedNet manager uses this
name to identify objects in the agent engine.

 Action Group
 Pattern Group

Pattern
Class Instance

Slot Value

Slot Value

Slot Value

Constraint

Pattern
Class Instance

Slot Value

Slot Value

Constraint

Constraint

Logical Operator

Action
Class Instance

Slot Value

Slot Value

Slot Value

Computation

Action
Class Instance

Slot Value

Slot Value

Slot Value

Computation

 Figure 3.5: Agent engine architecture (utilizing the graphical symbols of Figure 3.4)

•	 Agent Manager: The agent manager is a CLIPS module that handles the

scheduling of agents for execution. It has knowledge about each agent

such as its name, type and the alerts that it is capable of generating. Every

agent is identified by an agent identity object, and the agent manager relies

on this object to cycle through all of the agents. Several aspects of this

component require further explanation, as follows:

1.	 Scheduling Strategies – The agent manager can be configured to
apply a selected strategy for executing agents, based on: the length
of time of execution; the number of rules on the agent’s agenda;
the order of agents in the list; or, at random. Various user-
selectable strategies can alter the order in which the agent manager
focuses agents. Whichever strategy is in use selects the next agent
for execution. No matter what order the agents are selected in, all

36

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

agents are guaranteed one execution opportunity every cycle.
Users can easily extend the agent manager to include additional
strategies by copying an appropriate existing strategy and
modifying it.

2.	 Iteration Limits of the Execution Cycle – For various reasons, users
may wish to limit the number of control cycle iterations during
execution. The agent manager currently supports cycle limits
ranging from one to infinity (i.e., no limit). If users set a fixed
cycle limit, then the agent manager will stop execution following
the specified cycle number.

Users may also limit the number of rules each agent may execute
when focused. The agent manager currently supports rule limits
ranging from one to infinity (i.e., no limit). If users set a fixed rule
limit, then the agent manager will allow a module to run no more
than the specified number of rules. If an agent agenda runs dry
before firing the specified number of rules, then that agent
terminates execution and returns to the agent manager. If a fixed
rule limit is not specified, then the agent manager will use the
current number of activations for a particular agent as the rule limit
for that agent during the current control cycle.

3.	 Debugging Reports – The agent manager offers a reporting capability
for debugging purposes that may be activated by the user. These
reports provide the following information:

•	 Initial option values and data file used, if any.
•	 Agent status (e.g., executing or idle) as a text phrase.
•	 Cycle (i.e., iteration) count.
•	 Termination notice when the agent manager shuts down.

4.	 Agent Status Indication – The agent manager has the ability to
indicate when each agent starts executing and when it becomes
idle, by setting a status flag in the agent identity object. It can also
report the number of rules currently on the agenda for each agent.
This information is used by the user-interface to visually display
agent activity.

3.3.5 The Dynamic Agents

At any time during the operation of IMMACCS the user may create new agents. Mentor
agents are created by selecting an object in the field and attaching an agent object to it.
The conditions that trigger this agent are defined by the user through a user-interface that
provides a set of tools for creating complex conditions.

When a new agent is created one or more conditions can be associated with it. Each
condition contributes one rule to that agent. The new agent is then added to the list of
active agents in the agent manager module. This is accomplished by creating agent

37

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

control objects with the user-specified settings and adding the new agent name to the
current list of agents. The next execution cycle will automatically include the new agent.

If the agent object is deleted, the agent itself will be removed from the system. All the
rules of that agent will be deleted and the agent name will be removed from the current
list of active agents. There is one restriction imposed by the way CLIPS handles module
names. A module definition statement cannot be deleted at runtime. Since agents are
implemented as CLIPS modules, an agent name cannot be deleted from the system.
However, the same name may be re-used for a new agent, which may have completely
different functionality.

3.3.6 Agent Design and Implementation Guidelines

The design and coding of agents proceeds in several steps, as summarized below together
with some of the conventions and practices adhered to in the development of IMMACCS.

•	 Identifying the Logical Rules of the Agent: The agent functionality must

be translated into rules. Even functionality that is a response to a user

request can be described as rules. For example, a decision point or a

trigger object may be used to indicate a request by the user for certain

information, or for monitoring user-defined conditions.

•	 Identifying the Objects and their Attributes: Within the set of objects and

attributes that are used in these rules it is necessary to identify those that

logically describe the conditions and those that provide necessary

information. The first set should be used on the left hand side (LHS) of the

rule to determine when a rule should fire. The second set should be used

on the right hand side (RHS) to extract the information using the COOL

(NASA 1992) object manipulation functions.

•	 Identifying the Logic that Relates the Objects: Next the logical

relationships that exist among this specific set of objects and attributes are

arranged on the LHS of each rule. Where possible variable binding and

test conditional elements are used to relate objects and attribute values

across objects. In the rules that create or modify objects on the RHS, it is

necessary to identify the objects (and their attributes) that are a factor in

creating or modifying the RHS object and enclose same in ‘logical

<patterns>’ operators. This provides for truth maintenance throughout the

system.

•	 Adding Agents to the Agent Engine: The addition of an agent proceeds in

three steps:

1.	 Agent Identity - The first step is to create an agent object that
identifies the agent name, type and a few other attributes. This
allows the agent engine to deal with this agent by name in terms of
scheduling, execution, alert management, and so on.

38

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

2.	 Agent Module – The second step is to create a ‘(defmodule <agent-
name>)’ statement and determine its import and export objects. As
a general practice, the main module exports all objects and all
other modules import all objects from the main module.

3.	 Agent List – The third step is to add this agent name to the list of
agents in the configuration file. If the chosen strategy for
scheduling the agents is random, the place of the new agent in the
list is irrelevant. If all agents are written in a logically independent
way, the order is also irrelevant. Otherwise, the new agent should
be added in the appropriate place in the list.

•	 Rule Structure: Complex rules require many objects and relationships to
exist in order for the rule to fire. When a rule is not activated, it is difficult
to determine which objects, or more importantly, which relationships do
not exist. A better approach is to design the agent so that it has a variety of
rules that range from simple (i.e., a few patterns) to more complex.
Actions should be simple, as well. If the RHS of a rule has many actions,
it is better subdivided into a number of rules, with each one rule
representing a subset of these actions.

In general, rules should be as specific as possible since that ensures that
the actions are also specific and simple. If all the conditions that describe
what a particular rule deals with are defined on the LHS of the rule, then
no more checking is required on the RHS, and actions can be performed
directly.

The structure of rules should rely on the logic that relates the rule objects
on the LHS. All tests should be performed on the LHS. There should be no
tests to determine actions on the RHS of any rule. Branching should be
handled by multiple rules. An ‘if … then … else…’ statement on the RHS
implies that this rule could be subdivided into two or more rules with
conditions being checked by ‘test’ conditional elements on the LHS.

1.	 Patterns - The relationships of objects that are involved in a rule
should be described fully in patterns on the LHS of the rule.

2.	 Actions - The action on the RHS should be simple computations,
and the main activity should be changes to the objects (e.g., create,
update, or delete) in the working memory.

3.	 Alerts – In IMMACCS the creation of alerts is the main result of the
firing of a rule. The alert object has reference to the cause objects
and the effect object. The cause objects are the objects on the LHS
of the rule that triggered the rule. More than one object can
contribute to this slot. The effect object is the object that is being
monitored by the given rule.

39

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

4.	 Truth Maintenance – Alert objects are created when certain
conditions are satisfied (e.g., an enemy unit comes within a
specified distance from a friendly unit). When these conditions are
no longer valid (e.g., the enemy unit moves out of the specified
range of the friendly unit) the alert object is no longer valid. The
management of the validity of such objects is called ‘truth
maintenance’.

The use of the ‘logical’ conditional element provides a truth
maintenance capability for the agents. A group of patterns on the
LHS that are contained within a ‘logical’ conditional element
makes the objects that are created on the RHS, namely alerts,
dependent on them. If any of these objects are changed, or if an
attribute of one of these objects that is used in the pattern group is
changed, the dependent object is automatically deleted.

3.3.7 Implemented Agent Capabilities

The relatively limited set of agents available during the Urban Warrior AWE has since
been supplemented with the addition of CASEVAC, decision point, area of interest, and
battlespace management, agents. The full set of agents available in IMMACCS at the
time of this report (June, 2001) is described below.

Sentinel Agents: These mentor agents are dynamic and are automatically created by the agent
session and tasked to monitor and alert on simple conditions. A sentinel agent is created for
every friendly EUT-based ground unit. For example, Sentinel Agents can be used to generate
alerts if an enemy unit or a hostile civilian group enters within the area of a given radius around a
unit's location in the battlefield.

Fires Agent: The Fires agent is a static service agent that responds to a Call for Fire (CFF)
message by selecting the best available weapon for the target. The selection parameters include:
appropriateness for engaging the target; distance from weapon to target; effective casualty radius
(ECR) of the weapon; circular error of probability (CEP); and, the existence of objects in the
gun target line from the weapon to the target.

Logistics Agent: The Logistics agent is a static service agent. It is not currently active due to the
unavailability of logistics data in IMMACCS. The Logistics agent’s general capabilities are to
monitor selected supplies and alert when quantities drop below a predefined threshold.

Hazard Agent: The Hazard agent is a static service agent, with general capabilities to monitor
the battlespace and alert on nuclear, biological, and chemical events.

Intel Agent: The Intel agent is a static service agent that monitors the battle space for hostile
RADAR or missile launcher tracks. If either of these types of tracks exists in the battle space, the
Intel agent will generate an alert calling attention to their existence and suggesting that a Call For
Fire (CFF) be submitted, since they are considered high value targets. If either of these types of
tracks exist in the battlespace and are also noted to be active the Intel agent will not only generate
an alert calling attention to their existence, it will also simultaneously submit a CFF on the track.

40

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Blue on Blue Agent: The Blue-on-Blue agent is a static service agent that monitors for threats
posed by the proposed action of one friendly unit on another friendly unit. For example, the
Blue-on-Blue agent will generate an alert if the location of friendly unit is within 500 meters of a
Call For Fire target location.

ROE Agent Capabilities: The ROE agent is a static service agent that monitors the battle space
for violation of a simplified set of Rules of Engagement. This version of the ROE agent will
generate an alert if buildings that are subject to Rules of Engagement restrictions are targeted by a
Call For Fire (CFF) or if a CFF target location is within 300 meters of neutral civilian tracks.

Sentinel Agent Capabilities: The Sentinel agents are dynamic mentor agents that are
automatically created when a friendly unit in the battlespace accesses IMMACCS. The Sentinel
agent’s interests are solely focused on the unit it is mentoring. It monitors the vicinity of its
mentored unit and generates an alert when a hostile unit comes within 4000 meters of its location.

Engagement Agent: The Engagement agent is a static service agent that monitors the proximity
of friendly units to hostile units in the battlespace. The Engagement agent will generate an alert
when a friendly unit comes within range of a hostile unit’s typical organic fires assets.

CASEVAC Agent: The CASEVAC agent is a static service agent that responds to CASEVAC
requests by identifying the nearest track that may be of assistance. The CASEVAC agent limits
its search to friendly MEDEVAC or Search and Rescue rotary wings tracks, medical support unit
tracks, or ground vehicles.

Decision Point Agent: The Decision Point agent is a static service agent that monitors the battle
space for the creation of decision points. Upon creation of a decision point the Decision Point
agent monitors the decision point’s tolerance (or radius) and generates an alert when a friendly
unit encroaches within the tolerance of the decision point. Tasks may be added (or associated) to
a decision point and will be included and displayed with the Decision Point agent alerts.

NAI Agent: The NAI agent is a static service agent that monitors the battlespace for the creation
of Named Areas of Interest (NAI). NAIs are represented by enclosed polygons of at least three
sides. Upon creation of a NAI the NAI agent monitors the NAI generating an alert when an
enemy unit encroaches within the boundaries of the NAI. Tasks may be added (or associated) to
a NAI and will be included and displayed with the NAI agent alerts.

TAI Agent: The TAI agent is a static service agent that monitors the battlespace for the creation
of Targeted Areas of Interest (TAI). TAIs are represented by enclosed polygons of at least three
sides. Upon creation of a TAI the TAI agent monitors the TAI generating an alert when an
enemy unit encroaches within the boundaries of the TAI. Tasks may be added (or associated) to a
TAI and will be included and displayed with the TAI agent alerts.

DBMA Agent: The DBMA (Dynamic Battlespace Management Area) agent is a static service
agent that monitors the battlespace for the existence of friendly ground units that have an
association to weapon assets. The DBMA agent also takes into consideration any associated
platforms that have an associated weapons system. The longest effective range of all the
associated weapon assets is used to establish the unit’s radius of influence. The DBMA agent
will generate an alert upon initial calculation of the DBMA. A graphic can be displayed on the
BVT user-interface depicting the DBMA, if the appropriate options are set.

41

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.4 The SharedNet Facility1

The decision-maker of today whether a corporate executive, military commander, or
spacecraft mission planner, is faced by almost insurmountable challenges. Increasing
amounts of data are available from a bewildering number of sources such as: overhead
imagery; sensor nets; telemetry systems; intelligence assets; and, in-situ personnel. The
pace at which a decision-maker must make critical choices has decreased from days to
minutes. The decision-maker is expected to manage multiple simultaneous (and often
conflicting) dynamic missions rather than a single monolithic and statically planned
mission. Additionally, the classical hierarchical decision making approach where
decision-makers make all the decisions based on input from a few individuals is rapidly
giving way to a distributed decision making process where decisions are made
simultaneously at all levels within an organization.

Decision-makers are increasingly being overwhelmed by data, but remain starved for
information. They are surrounded by mountains of data, but do not have the resources to
turn the data into insightful information that is a prerequisite for making decisions. Also,
once information is discovered, we have only primitive tools to share that information
among a heterogeneous collection of systems and humans that may themselves be widely
distributed.

3.4.1 Models of Sharing Information

It is well understood that organizations need to share information in order to make
effective decisions. However, the specific mechanisms that are used to share information
between users and systems vary greatly. For example, information may be exchanged
between people using free text e-mail messages, or between applications using a
rigorously defined language and protocol.

Two methods for sharing and representing information are discussed below, from the
point of view of how they support the decision-making process. The first approach is
based on a commonly used message passing approach. This approach is widely used in
both industry and government organizations. The second approach is based on an object
sharing system that can greatly enhance our ability to represent and share information.

In order to contrast these two approaches we will use the situation depicted in Figure 3.6
below. Let us assume that we have a number of intelligence assets (e.g., spotters)
monitoring an evolving situation involving the ABC insurgents. At some time ‘n’, one of
the spotters reports that a woman, matching the description of the leader of the ABC
insurgents and wearing a pink dress, was seen in a taxi heading eastbound on Main
Street. At a later time, another spotter, located at the other end of town, reports that a
woman wearing a pink dress was seen exiting a taxi and entering a building located at
123 Maple Street.

1 This entire section has been contributed by Dr.Thomas McVittie of the Jet Propulsion Laboratory (California Institute
of Technology) and is based on: ‘Toward an Effective Information Sharing System: SharedNet’, presented at the
Office of Naval Research Workshop on Collaborative Decision-Support Systems hosted by the CAD Research
Center, Cal Poly State University, San Luis Obispo, California, on April 20-22, 1999.

42

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Woman wearing pink dress
may be leader of the ABC
insurgents. Last seen in a
taxi heading east on Main

Woman wearing pink
dress seen leaving taxi
and entering building
at 123 Maple street.

Figure 3.6: Data from the field

Based on this information we need to determine whether both reports reference the same
woman. The information must be effectively communicated to others who will use this
information to make decisions (e.g., to investigate the building further, etc.).

The Message Passing Approach: Today (1999), throughout the US Department of
Defense (DoD) and industry, message passing is the primary mechanism used to
exchange information among users and systems. For example, e-mail is often used to
convey complex concepts between users. Likewise, most software systems use internal
data structures to represent some facet of the real world, and use structured messages to
communicate some of that data to other systems. In most message-based environments,
information is fragmented across multiple systems and users (e.g., e-mail boxes,
databases, file formats, etc.) with each user and/or system maintaining only a slice of the
corporate knowledge.

The format and content of the message may be rigidly defined (as in a military position
report (i.e., POSREP) message), or may be ad hoc as in a typical e-mail message. Where
automatic processing support is desired, the messages tend to be rigidly formatted with
well defined terms and values. However, where humans are the intended audience,
messages tend to be free form.

Figure 3.7 depicts how the two messages might be processed in a typical command
center. First, the messages are received by an automated processing center. Once
received, the processing center may:

1.	 Parse the incoming message for key words and route the message in its
entirety to one or more individuals or desks. For example, the Automated
Message Handling System (AMHS), which is utilized in most major DoD
command centers, could be used to route messages containing the key word
“insurgents” to the intelligence watch officer.

43

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

2.	 Extract data from the message (e.g., the location where the report was
made) and display the message as an icon on a map. This is traditionally
how messages such as SALUTE and SPOTREP reports appear. In some
instances, such as a POSREP message, the content of the message is
extracted and used to update the position of the reporting unit on the display
map.

3.	 Simply store the incoming message and present it to a human for routing
and disposition. This is typical of some command centers where all
AUTODIN traffic is routed to a desk that reads the message and based on
the reader's previous experience, routes it to the appropriate users.

Woman wearing pink
dress may be leader of
the ABC insurgents.
Last seen in a taxi
heading east on Main.

Woman wearing pink
dress seen leaving taxi
and entering building at
123 Maple street.

Agents

Figure 3.7: A message passing environment

The ability of the automated system to perform each of these activities is based on the
format of the message. Automated systems are best able to handle messages that have a
rigid and well-defined format. For example, in order to display the message on a map,
the automated system must be able to locate the part of the message that contains
coordinate information. Further, the coordinate information must be in a well
understood format (e.g., latitude-longitude, or MGRS). However, humans are much
better equipped for processing natural language messages and for inferring structure and
format.

Returning to Figure 3.6, we see that both messages have been routed to the in-box of an
user and have also been displayed as icons on the common map. At some point we trust
that some combination of users and computer system will examine the two messages and
determine whether or not the “lady in pink” in both messages is indeed the same lady.
For example, a correlater might be used to determine whether a taxi could move from the
first reported position to the second reported position within the time observed. Similarly,
a human could ask the spotters for more information about the reported lady, such as her
hair color and height, that could be used to aid in determining whether the reports relate
to the same person.

44

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Once the relationship has been identified or disproved, it must be shared with other
interested users. Receiving this new piece of information may also impact the processes
and decisions of other users. For example, the fact that the leader of the ABC insurgents
is located at 123 Maple Street may prompt the intelligence officer to investigate the
building to determine whether it is an insurgent safe house or whether there is only a
casual relationship between the building and the lady. If the new information is not
shared, then each user receiving the messages must make the inference independently,
and it is likely that some set of users will recognize the relationship while others will not.

Unfortunately, most message formats provide only limited tools for representing and
sharing complex relationships with other users. For example, the current form of the
SALUTE report does not contain the ability to relate one message to another message,
nor does it have the capability to specify a complex relationship in anything other than
free text. Therefore, it is likely that the new information and relationship would be
transmitted in the form of yet another message which would go through the same routing
system as the original messages. Users receiving the message must recognize that this
new message is related to the first set of messages. Only by reading all three messages
are users able to construct a mental model of the situation that they can use to make
decisions. This process is repeated for each individual receiving the messages. If the
volume of messages is large, or if messages arrive frequently, users may have difficulty
in maintaining a correct model of the situation.

Likewise, agent-based decision-support systems must rely on complex natural language
processing to extract information and relationships from free text messages.
Additionally, they must possess a detailed understanding of the format and meaning (i.e.,
ontology) of the messages produced by each system. For example, they must understand
that the messages produced by system A express coordinates in latitude-longitude format,
but that system B uses MGRS format. Thus in order to reason about the data contained in
the message, the agent must develop a translator for each message type it must handle.
Further, the agent is responsible for knowing how to compare and convert the similar
(but not identical) data provided in different messages (e.g., how to convert the latitude-
longitude and MGRS formats). Thus, an agent needing to extract data from a large
number of different message types must be very sophisticated. Unfortunately, these
approaches often yield poor results and agents are rarely productive in this type of
environment. Clearly, we require a better approach if we wish to move from data
sharing to information sharing.

The Object Sharing Approach: Object sharing systems assume that all users and
systems utilize a common object model to represent and exchange information about the
real world. Objects are modeled after their real world counterparts and contain a rich set
of attributes. More importantly, the object model allows us to create relationships
between objects which are immediately available to all other users and the system.

To better understand this concept we will examine how the same two messages would be
processed in an Object Sharing System (OSS). First we will assume that the object
model has been defined, and populated with a variety of different objects such as:

Infrastructure Objects (e.g., buildings, roads, rivers, etc.)

Organization Objects (e.g., ABC insurgents, peace keeping forces, etc.)

45

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Transportation Objects (e.g., taxis, trains, planes, etc.)

To a reasonable extent the attributes for these objects have been likewise populated. For
example, in creating the building infrastructure objects, we may utilize data from publicly
available maps (or GIS systems), but may not have the information necessary to populate
attributes detailing the type of construction. In our simple example, we will assume that
the OSS contains objects for:

ABC Insurgents (an organization)

123 Maple Street (a building)

Main Street (a street)

and also object definitions (i.e., templates) for defining a Person, and a Vehicle (in this
case a taxi).

Woman wearing pink
dress may be leader of
ABC insurgents.
Last seen in a taxi
heading east on Main.

Woman wearing pink
dress seen leaving taxi
and entering building at
123 Maple street.

Is in

Person: lady in pink

Was in

?
Person: lady in pink

Organization:
ABC Insurgents

Building: 123 Maple

Vehicle: taxi
Vehicle: taxi

Figure 3.8: Objects and relationships

The first report causes an object (of type Person) to be instantiated (i.e., created) and
populated with any available attributes about “the lady in pink” (e.g., her sex, color of her
clothing, etc.) The report also causes an object (of type Vehicle) to be instantiated to
represent the reported taxi. Again, the taxi object is populated with any available
attribute information (such as the color, current location, direction, and speed of the taxi).
More importantly, the report causes relationships to be established between the various
objects. For example, the statement in the report that the “Woman wearing pink dress
may be leader of the ABC insurgents” causes a “leader of” relationship to be constructed
between the “lady in pink” object and the “ABC insurgents” object. Similarly, the fact
that the taxi is reported to be driving on Main Street would be represented as an “is on”
relationship between the taxi and the “Main Street” object. Finally, the fact that the
woman is in the taxi is likewise represented by an “is in” relationship between the “lady
in pink” and the “taxi”.

The ability to connect objects using relationships is very powerful. It represents
information in a manner that is very close to the way in which humans model

46

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

information. For example, the taxi is associated with Main Street, and the “lady in pink”
is associated with the ABC insurgents. However, the model tells us that there is only an
indirect relationship between the ABC insurgents and Main Street. This approach also
allows us to easily express changing information while preserving other information. For
example, if we later determine that the lady is not the leader of the ABC insurgents, we
can easily break the relationship or replace it with a more appropriate one (e.g.,
“sympathizes with”). The lady's association with the taxi is still valid. This type of
flexibility is very difficult to achieve using message passing.

Continuing with our example, we receive the second report that indicates that a lady
wearing a pink dress exited a cab and entered the building at 123 Maple Street. This
report likewise creates objects for a “lady in pink” and a “taxi”. Additionally, it indicates
that the “lady in pink” is “in” the building at 123 Maple, and that she “was in” the taxi.

Figure 3.6 correctly depicts our understanding of the situation at the moment; namely, we
have reports on two women. We still need to apply resources for determining whether or
not the ladies reported in the first and second report are the same lady. However, unlike
the message-based system, automated decision-support systems can reason about the
object model, and therefore can aid in determining whether the two ladies are indeed the
same person.

Organization:
ABC Insurgents

Person: lady in pink

Building: 123 Maple

Vehicle: taxi Infrastructure:street:main

Leader of

Is in

Was in

Figure 3.9: The merged object model

47

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Let us assume that an automated system notices similarities between the two objects and
their associated relationships and suggests to a human decision-maker that they may
indeed be the same person. If the human agrees, he or she merges the object models. As
shown in Figure 3.9, the object model now correctly depicts our model of the real world.
Any other users of the system (i.e., humans, agents, or software systems) are
automatically aware of the new relationships (Figure 3.8).

For example, a user may wish to be informed of any buildings that are either directly or
indirectly associated with the ABC insurgents. Likewise, we may wish to display each of
the objects on a map (i.e., instead of the map displaying the location of the reports, the
map may now display an icon representing the “lady in pink”, the building, and possibly
also the association between the “lady in pink” and the ABC insurgents). More
importantly, since all of the systems share the same object model, a user seeing the icon
representing the “lady in pink” could choose to explore the relationships stored in the
OSS. For example, a user recognizing that the suspected leader of the ABC insurgents is
in the building may choose to examine the other objects (e.g., persons) that are also
associated with the building. The required information (i.e., the objects and their
relationships) is already available in the shared object model (Figure 3.10).

Data + relationships = information

Figure 3.10: Information sharing in an object system

3.4.2 Overview of the SharedNet

As discussed previously in Section 3.1, the SharedNet is the primary information storage,
management and distribution system within IMMACCS. It is intended to provide the

48

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

tools necessary to transmit the correct information to the appropriate decision-maker (i.e.,
from General to the soldier in the battlefield). Clients may update information stored in
the SharedNet, or they can issue on-time requests for information (i.e., queries), or they
can set up standing requests for information (i.e., subscriptions). Subscriptions are
acceptable at the class, object, or attribute levels (e.g., a user could subscribe to: the
creation of a friendly aircraft; the movement of any hostile unit within a particular area;
or, any change in life-status of a specific member of his squad). Whenever a change in
the SharedNet satisfies a subscription request, the requesting client is notified.

In addition, the design of the SharedNet was heavily influenced by the following
operational considerations:

1.	 The SharedNet must support the information needs of several hundred
simultaneous clients.

2.	 The SharedNet must be able to support a sustained rate of 100 to 200
object updates per second from its aggregate clients.

3.	 SharedNet users (i.e., subscribers) will likely have widely varying
information interests. For example, data concerning the fuel level in a
supply truck is of primary interest to the logistics officer, and generally
of little interest to the intelligence officer.

4.	 In general, users will require only a small fraction of the information
available in the SharedNet to support their information needs.

5.	 Similar kinds of users will likely have common subscriptions. For
example, most members of a squad would likely subscribe to changes
in the reported positions of all other squad members, as well as any
nearby hostile forces.

6.	 Even if users subscribe to the same data, they will assign a different
level of importance (i.e., priority) to a change in that data.

7.	 Users must be able to handle higher priority changes before lower
priority changes.

8.	 Users will view the battlespace at various levels of detail. For
example, a commander in a command center may wish to maintain an
overview of the battlespace, while the squad leaders may be interested
only in information concerning their local areas.

9.	 The subscriptions of an individual user may change dynamically. Such
change may be caused by the situation or by geography. For example,
in an urban canyon, “… tell me if enemy aircraft are within 10 miles”
and in an open field on the outskirts of the city, “… notify me if enemy
aircraft are within 50 miles.

49

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

10. The communication channels used by the SharedNet may be relatively
small and unreliable, particularly tactical communications to soldiers
in the battlespace (e.g., radio frequency communications in urban
canyons, jamming, equipment failure, and so on).

11. Some, but not all, of the information handled by the SharedNet is
likely to be deemed ‘mission critical’.

12. The SharedNet must not be a single point of failure.

13. Commercial off-the-shelf (COTS) products should be used where
feasible.

These considerations have driven an architecture that uses a hybrid of various distributed
computing techniques. A traditional client-server architecture, built on CORBA, is used
when clients need to reliably update the contents of the SharedNet. A distributed cache
model has been used to guarantee that individual clients can continue to function (i.e., at
least to a limited extent) even if the SharedNet should become unavailable. Finally, a
modified ‘publish and subscribe’ approach (Gamma et al. 1995) has been used to
efficiently distribute changes in the SharedNet to subscribing clients. By transmitting
only the changes to the object model, many of the problems associated with distributing a
large object infrastructure across a narrow communication link are essentially overcome.

While many of these objectives were completely met in the initial system, others are
being addressed as part of the on-going research and development work (see Section
3.4.5).

3.4.3 The SharedNet Architecture

The SharedNet is comprised of five major components, as shown in Figure 3.11. These
components are connected via common internet protocols such as CORBA/IIOP or IP.
Servers are hosted on a Solaris Ultra-2 processor and written in the ‘C++’ language.
Client applications are hosted on Windows NT, Solaris, and HP-UX operating system
platforms and written in Java for portability.

The major SharedNet components include:

The Object Instance Store (OIS) is the primary object factory and repository for
the SharedNet. It is responsible for managing object creation, deletion, and
modification of object attributes. The OIS provides a CORBA interface that is
invoked by the clients via the SharedNet application programming interface
(SNAPI), through a direct CORBA/IIOP interface, or through a local management
interface. The OIS provides object persistence by periodically saving object
changes to an object-oriented database. The OIS notifies the OIS Subscription
Server whenever a change is made to the OIS (e.g., an object is created/destroyed,
or the value of one of its attributes has changed).

50

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

The SharedNet Application Programmer Interface (SNAPI) provides an
abstract set of client-side APIs that are used by all clients to access SharedNet
services. SNAPI isolates the client from the particular distributed computing
model (CORBA, TCP, etc.). SNAPI allows the SharedNet to define and manage
network diagnosis and recovery policies (e.g., when to retry a failed connection).
It also distributes the processing load associated with first order business rules
(e.g., data integrity checks) to the clients rather than the OIS. Finally, SNAPI
maintains an up-to-date local cache of subscribed objects on each client. Changes
made to the OIS, by the client, are automatically written to the local cache.
Likewise, the cache is automatically updated (i.e., via the alert and subscription
system) if another client changes the object. The cache also allows the client to
read from the local store (i.e., rather than retrieving the value via a CORBA
connection to the OIS) which reduces the load on the OIS for non-time-critical
retrievals. More importantly, the cache provides the ability for a SharedNet client
to continue to work (albeit on potentially old data) even if the network connection
to the OIS is severed. For example, a fielded Marine or soldier who has lost
communications would have, at least, the latest position of friendly and hostile
forces. SNAPI uses the services of both the OIS and the Alert Daemon.

Object
Instance

Store
(OIS)

OIS
Subscription

Server

Alert
Server (MC)

SN APIs
Alert

Daemon

Client Application

cache

SN APIs Alert
Daemon

Client Application

cache

SN APIs
Alert

Daemon

Client Application

cache

Alert
Server (TCP)

Figure 3.11: The major SharedNet components

The OIS Subscription Server (SS) is responsible for maintaining the list of
current client subscriptions and ensuring that clients are notified when a change in
the OIS satisfies one or more of their subscription requests. Clients communicate
with the SS via SNAPI, and indicate the combination of objects, classes or
attributes that make up their subscription (e.g., hostile tank movement within one
mile of the client’s current position). The subscription request also indicates how
the client needs to be notified (e.g., reliable TCP or broadcast), and the priority at

51

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

which the client wants to be notified when a subscription is met. Note that several
different subscribers may assign different priorities to the same subscription. The
SS stores the subscription information locally, and passes information concerning
who is to be notified when the subscription is satisfied to the appropriate Alert
Server. When a change is made to the OIS, the OIS sends a summary of the
change to the SS. The summary includes sufficient information to update the
distributed cache maintained by SNAPI on each client. At a minimum, it includes
the object reference, its class, and the name and value of any attributes that have
changed. The SS server compares this information with its list of subscriptions. If
a subscription is met, the SS passes the summary information to the appropriate
Alert Server and requests that it raise the appropriate alert to any subscribed
clients.

The Alert Server (AS) is responsible for notifying subscribing clients when their
subscriptions have been met. Currently there are two forms of the AS, one for
reliable TCP notification, and one for broadcast. The AS receives a summary
message from the SS and forwards the message to the appropriate subscribers
using the appropriate model (e.g., via a TCP connection to each subscriber, or a
message sent to a multicast group, etc.) The AS is also responsible for
maintaining a reasonable cache of previous alerts and ensuring that they are
delivered to the subscriber upon request. For example, the TCP implementation
must be able to maintain a finite ordered set of alerts that meet the subscription
request of a client that may be currently out of range. Likewise, the UDP
implementation supports a request to rebroadcast a subset of recent alerts. The
alerts generated by the AS are received and processed by the client's Alert
Daemon (AD).

The Alert Daemon (AD) is responsible for receiving alerts from various Alert
Servers. Once it validates the alert as being of interest to the local client it uses
the client's original subscription request to place the alert in the appropriate
priority queue. It then notifies the client that an alert is waiting to be processed.

3.4.4 A Subscription Example

The heart of the SharedNet's ability to efficiently distribute information to a large number
of clients across possibly unreliable networks is largely provided by the Subscription and
Alert system. As an example of how these systems functions, we will assume that there
are three clients. The first is a Medevac Agent that is responsible for monitoring life
status readings and proposing medical evacuations if the life signs of an individual reach
a critical threshold. The second client is a Squad Leader who is naturally concerned
about the health of the other squad members. The third client is an Operations Agent
responsible for monitoring the assets (i.e., human and machinery) assigned to a particular
operation to ensure that the operation can be completed according to plan.

In order to complete their missions, each of these clients subscribes to information within
the SharedNet.

52

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

•	 The Medevac Agent subscribes to “life status of any blue force personnel that fall
outside a specified norm”, indicating that this information should be processed at the
priority level. The subscription system determines that this is a new (unique)
subscription and returns a unique alert identification (ID) to the Medevac Agent. In
addition, the Medevac Agent subscribes to all changes in blue force positions at the
priority level. The subscription system again determines that this is a new (unique)
subscription and returns a new unique alert ID.

•	 The Squad Leader needs the most up-to-date information concerning his team, and so
subscribes to all changes in the life status of all members of his squad. He indicates
that this information should be processed at the critical level. The subscription
system determines that this is a new (unique) subscription and returns a unique alert
ID. To keep his map current, the Squad Leader also subscribes to all friendly force
position changes, but at the normal priority. The subscription system determines that
an identical subscription has already been entered, and returns the original alert ID to
the client. (Note that the priority assigned to the subscription is ignored by the
subscription system.) Finally, the Squad Leader indicates that at the moment, he does
not want to handle anything below a priority alert.

•	 The Operations Agent subscribes to the life status of the personnel assigned to a
particular mission. The agent assigns a flash priority to this information. The
subscription system determines that this is a new (unique) subscription and returns a
unique alert ID. Like the other client, the Operations Agent subscribes to all friendly
position changes, again at the normal priority. The subscription system recognizes
that an existing subscription meets this request and returns the original alert ID.

!Life Status Change on
Corporal Adams priority

critic

Operations
Agent

flash

priority

Squad
Leader

Medevac
Agent

Figure 3.12: Priority-based alerts

The subscription system has now been configured to watch for the following
subscriptions:

53

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

1. Changes in friendly forces life status that falls outside the norm.
2. Changes in the position of any friendly force.
3. Changes to the life status of any member of the squad.
4. Changes to the life status of any member of a mission.

Again, the priorities assigned by the client to the subscription impact only the Alert
Daemon, not the Subscription or Alert Servers.

We will assume that one of the members of the mission and the squad is Corporal
Adams. As part of its normal operation, Corporal Adams’ palm-top computer terminal
periodically reports on his position and any significant changes in life status. Two
different reports are issued by Adams’ system.

In the first report, Corporal Adams’ system updates the SharedNet (via SNAPI) and
indicates that only his position has changed. The OIS updates the appropriate object’s
attribute and notifies the Subscription Server that a change has been made. The
Subscription Server examines its subscription list, and determines that subscription # 2
has been met. It sends a message (including the summary data it received from the OIS)
to the Alert Server and indicates that it should notify subscription #2 clients that their
subscription has been met. The Alert Server, in this case we will assume a broadcast
server, broadcasts an alert message to the appropriate group. The message contains the
subscription #, and the original summary received from the OIS. Each client’s Alert
Daemon (AD) is responsible for receiving alert messages transmitted by the Alert
Server(s), and determining whether the alert is relevant to the particular machine. In this
case, all three ADs recognize that it is an alert of interest. However, here the processing
for each AD differs.

The squad leader has assigned a priority of normal to alerts associated with subscription
#2, and has also instructed his system to ignore alerts with a priority of less than priority.
In this case, the AD appends the alert to the normal queue but does not notify the client
that an alert is waiting to be processed. The Operations Agent’s AD receives the alert,
adds it to the normal priority queue, and notifies the client that an alert is waiting to be
processed. When the client chooses to process the alert, it uses the summary information
to automatically update the client’s cached copy of the object to reflect the new
coordinates. The Medevac Agent’s AD performs similarly, but adds the alert to the
priority rather than normal queue.

In the second report, Corporal Adams’ systemt updates the SharedNet (via SNAPI) and
indicates that only his life status has changed and that it is outside normal parameters.
The OIS updates the appropriate object’s attribute and notifies the Subscription Server
that a change has been made. The Subscription Server examines its subscription list, and
determines that subscriptions #s 1, 3 and 4 have all been met. It is important to note that a
single object update can satisfy multiple subscription requests. The Subscription Server
sends three independent messages to the Alert Server each of which contains a unique
alert ID, but the same summary information. As before, the Alert Server generates the
appropriate alert messages that are received by the subscribing ADs. The latter again
determine whether the alert is of interest, append it to the appropriate queue, and notify
the client that a subscription has been met.

54

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

While perhaps confusing at first, the priority based ‘publish and subscribe’ system allows
a great deal of flexibility in dealing with a large number of clients, and subscriptions that
are common to a large number of clients as well as those associated with only a single
client.

3.4.5 Continuing Work

The first version of the SharedNet was fielded with IMMACCS as part of the Urban
Warrior AWE in March, 1999. This version of the SharedNet was able to handle a small
number of clients (i.e., 10 to 20) and support a sustained transaction rate of 60 to 70
object updates per second. While it performed well during the AWE, a number of
potential improvements were noted as follows:

•	 The SharedNet must provide and enforce strong authorization and
authentication. The initial version system allowed any client to modify objects.
The next version system should recognize that only certain users are authorized
to modify certain objects or attributes.

•	 The SharedNet must be distributed across multiple servers in a variety of
configurations. At a minimum it should support both fully and partially
replicated, and cooperating autonomous servers. In the former case, some or all
of the data on one SharedNet server would be replicated on another SharedNet
server. In the case of a primary failure, or for purposes of load balancing, the
replicate server can serve the information. The existing subscription
mechanisms can easily support these requirements. In the latter case, various
parts of the object model are maintained on independent SharedNet nodes.

•	 The SharedNet must be scalable to support a much larger number of clients (i.e.,
100 to 200) and a larger transaction rate (i.e., hundreds of updates per second).
Currently CORBA and the object-oriented database that provides persistence to
the OIS, are significant processing bottlenecks. While replicated SharedNet
nodes can be used to distribute some of the processing load across multiple
systems, it is likely that the use of Real Time CORBA, as well as more efficient
methods of providing persistence to the OIS, will need to be investigated.

55

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.5 The IMMACCS Object Browser (IOB)

The IMMACCS Object Browser (IOB) is very much an evolutionary application. The
original intent was to produce a user-interface tool suitable for in-house use by the
IMMACCS development team, that could directly manipulate object data but not
necessarily visualize same. This intent later changed as it became necessary for the IOB
to serve a broader constituency extending to particular military personnel in the Extended
Combat Operations Centers (ECOC) during the Urban Warrior exercise. In fact, the Tool-
Box application built during the first part of the IMMACCS project was strictly a text
based user interface implemented using a Design Meta-Language (DML) to define the
object model. The DML file was auto-generated from the object model using a
proprietary scripting language utilized by the GDPro (Advanced Software Technologies,
Inc., Highland Ranch, Colorado) modeling application. A later version was developed
using HTML (Darnell et al. 1997) forms which were auto-generated directly from the
object model and tied together using the JavaScript language.

When the decision was made to extend the functionality of the IOB into a more general
user-interface facility, it became apparent that with an existing design and the supporting
general object management in place the primary missing component was an intuitive
graphical map-oriented interface. The final selection for this component was the SpatialX
geo-spatial tool set (ObjectFX Corporation, St. Paul, Minnesota). The primary deciding
factors in choosing this product were its Java compliance, object-oriented feature
representation, cost, and support. The choice of the Java language (Coad and Mayfield
1999), as the primary development language, had been made previously but was given
more weight because of the selection of SpatialX.

The decision to use the Java language was motivated by the promise of platform
independence and by its distinctively object-oriented nature. Additionally, the Java-
CORBA (Common Object Request Broker, Object Management Group (OMG))
connection is well established and supported (Siegel 1996). The development of the IOB
was greatly simplified by the selection of the CORBA architecture and the Java
programming language. In particular, the Java reflection facility was instrumental in the
development of a highly de-coupled application making the object model class
definitions essentially ‘plug-ins’.

The basic IMMACCS architecture is illustrated in Figure 3.13. The SharedNet represents
the middle tier of the architecture, providing several services including: the naming
service (i.e., object binding); the factory service (i.e., domain specific object
maintenance); the query service (i.e., complex constrained queries); and, the
subscription/alert services (i.e., interest management). Aside from the SharedNet
application programming interface (SNAPI) functions that provide access to specialized
services, interaction with object instances occurs transparently through access with the
local proxy object. In other words, to the client application object manipulation appears
to be performed directly with the object instances, through class constructors and
accessor methods.

A typical scenario, illustrating object interaction could be outlined as follows:

1.	 Find object names for objects of a particular class and satisfying some
attribute value constraints, through a call to the SNAPI query.

56

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

2. Obtain an existing object through a call to the SNAPI resolve, by passing in
an object name.

Client Application

SNAPI Subscribe to
creation/deletion/changeProxy

Object

Resolve to object Query for objects

Factory Service Naming Service Subscription Service

Alert Service Query Service

Shared Net

Object Instance Store

Object
Instance

Object-Oriented Database

Notification of
creation/deletion changeBind to object

Create/modify object

Query for instancesCreate/modify instance

Figure 3.13: The IMMACCS three-tier architecture

57

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.	 If the naming service successfully resolves the object then a proxy object is
returned.

4.	 Obtain the object attribute values through calls to the object instance ‘get’
methods.

5.	 Modify the object attributes through calls to the object instance ‘set’
methods.

6.	 Create a new object instance using a class constructor (i.e., new class name).

7.	 If the factory service successfully creates an object in the instance store then
a proxy object is returned.

If any attribute values are changed in the Object Instance Store (OIS) of the SharedNet,
then any subsequent accesses to those values will reflect the modifications. However, if
modification of any values should result in an immediate feedback (e.g., for display
purposes) then the subscription service may be used to register an interest in these
attributes. In this case, if any of these attribute values are changed the alert service will
notify the client application. The latter can then retrieve the value and take action.

The following sections describe the specific design implemented in the IOB which
encapsulates the general behavior of the SharedNet as outlined above with additional
functionality to support a complete graphical interface.

3.5.1 The Object Management Layer

The fundamental theme in the design of the IOB focuses on an object-oriented
representation of the data managed and displayed by the application. Every interacting
element of the IOB is represented as an object. Some additional behavior and
characteristics are imparted, by the IOB, through a collection of ‘wrapper’ classes. These
‘wrapper’ classes and their associated utility classes make up the Object Management
Layer (OML).

Basic Object Management: The design of the OML centers on the Proxy Object
Wrapper (POW) class. The POW class and its associated object management classes (i.e.,
Template, Attribute, Association, etc) adds generic functionality to the object model
classes to aid in object manipulation and, in particular, association management. As
implemented, the object model class associations are stored as object names (strings) in
the SharedNet. As such, it is entirely up to the client application to insure that valid object
reference names are used. Furthermore, client applications must manage associations by
appropriately adding or removing references when objects are created (and associated) or
destroyed.

The POW class implements association management thereby relieving the using classes
and hopefully eliminating invalid associations (i.e., at least in applications that use the
POW). Association management is encapsulated in the add, remove and destroy methods
of the POW. For example, when a call is made to add an object reference to an
association the POW adds the appropriate object reference to the other end of the
association. In the process, the POW class verifies the existence (and therefore validity)

58

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

of the associated object. Additionally, if a call is made to remove an association, and if
the associated object is an aggregate part of the object, then the associated object is also
destroyed. To illustrate this sequence let us consider the following code statements:

• POW myTank = POW.create(“myTank”, “sharednet.immaccs. Tank”);
• POW myFuel = POW.create(“myFuel”, “sharednet.immaccs. POL”);

• myTank.add(“platformFuel”, “myFuel”);
• myTank.remove(“platformFuel”, “myFuel”);

In the first two statements, which create objects: the first argument to the create method
is the object name; the second argument is the fully qualified class name; and, the third
statement adds a string (‘myFuel’) to the string array named ‘platformFuel’. In this case,
the object model defines this attribute as an aggregation and, therefore, the POW looks
for an object referred to as ‘myFuel’. If found then the role of that object for this
association (in this case ‘Platform_role’) is updated to now include a string with a value
that is the object name of the platform (in this case ‘myTank’). If the object name had
referred to a non-existent object then an exception would have been thrown at this point.
Finally, the last statement removes this newly added association. However, since the
object model defines this relationship as an aggregation the associated object (‘myFuel’)
is also destroyed. If instead, the following call were to be made:

• myFuel.destroy();

then the POW would also remove the object reference from the ‘platformFuel’ role of
‘myTank’. It should be noted that object creation, deletion and attribute modification
transactions are queued locally and will not be reflected in the SharedNet instance store
until a call is made to the POW update method. For example, the following call:

• myTank.update();

results in the creation of the ‘myTank’ object with the corresponding set of attributes
passed in as arguments to the Tank object constructor. Likewise, since the related POL
(‘myFuel’) object is an aggregate part of ‘myTank’ it is also created by this single call.
Any subsequent calls to the POW instance accessor methods will result in calls to the
proxy object accessor methods (with the next call to the update method). The using class
does not need to be concerned about these details since this object management behavior
is taken care of by the POW classes.

Figure 3.14 shows the class diagram for the POW class, its associated utility classes, and
its subclasses. The subclasses add additional functionality that is specific to the kinds of
objects they are designed to ‘wrap’. For example: the SNPOW class adds specialized
functionality to deal with the SharedNet API; the GUIPOW class adds functionality to
support the user-interface; and, the PhysicalPOW class adds functionality to support the
visualization of geospatially representable objects. Of particular note, the TrackPOW
class adds support for objects that move and are displayed using specialized symbology.
Whenever the location of a track object is changed, by setting its location attribute value,
the symbol representing the track on the map display is moved to that position. This is
accomplished by overriding the POW set method (i.e., by adding in the specific calls to
move the symbol on the display).

59

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

POW

SNPOW COOLPOW

GUIPOW StructTemplate

PhysicalPOW AgentPOW AlertPOW

TrackPOW EnvPOW Attribute

Association EnumAttr NumAttr StructAttr

Aggregation BoolAttr

Template

Figure 3.14: POW class diagram

The EnvPOW class adds support for environment objects by mapping object instances to
map features. Map features contain the geometric data necessary to accurately represent
objects like roads and buildings. These geometric data are contained in a local map
database, separate from the data contained in the instance store. Additionally, map feature
data can be created dynamically through the use of the GraphicPOW class (not shown in
Figure 3.14). In this case the coordinates describing the geometry, are stored in a graphic
object in the instance store. The association is defined in the object model, between the
Environment and Graphic classes, with the role ‘graphicData’.

60

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

The Template class implements functionality to support attribute constraints and
validation. Additionally, it contains support for the determination of class constructor and
access methods, through runtime class reflection and properties. A Template instance is
created for each class, as required, with each class represented through the defined
hierarchy. The class hierarchy is represented through a recursive association. For
example, if a template for the Track class is required then Template instances are created
for the following classes, with the hierarchy indicated by arrows;

• SNBase->IMMACCSObject->Physical->Track

Subsequent template instances for classes that lie in any branch defined in this path will
not require new template instances for those super classes previously defined. The
Template class determines attribute accessor methods through Java reflection. It is
assumed that class attributes are at least readable and that the ‘get‘ accessor method name
is equivalent to the attribute name. Subject to this assumption the determination of the
attributes is simply a matter of looking up all methods with a null signature. Then the
data-type class for the returned value is found and a corresponding set method is searched
for (i.e., assuming a single parameter signature with the data-type of the ‘get’ method
return value). If one is found then the attribute is assumed to be writable. Once all
attributes are determined, a constructor is found by assuming that the signature consists
of all attributes in the order found previously.

Additional information to further describe the attributes is found from properties. These
properties are generated directly from the object model and describe, for example, the
attribute type (i.e., simple attribute, association, aggregation, enumeration, etc), visibility,
units of measure (for numerical attributes), and default values. The associated Attribute
class and its subclasses make use of this information to provide constraints on attribute
values. One of the benefits incurred through the use of the POW is the fact that all
attribute values are entered and obtained as strings. The constraint on attribute values is
handled internal to the Attribute classes. The benefit, from a user-interface point of view,
is that specialized attribute value management becomes unnecessary or is at least greatly
simplified since only strings need be dealt with. As an example consider the following
code statements:

• myTank.set(“fuelType”, “DIESEL”);
• myTank.set(“maxSpeed”, “40 mi/hr”);

• myTank.set(“fuelType”, “WATER”);
• myTank.set(“maxSpeed”, “incredibly slow”);

The first two statements result in the successful setting of the indicated attribute values,
as follows: the first sets the enumeration attribute ‘fuelType’ to ‘DIESEL’, which is a
valid value contained in the enumerated value set defined in the object model; and, the
second sets the numerical attribute ‘maxSpeed’ to 40 miles per hour and is internally
converted to the store unit of measure (i.e., kilometers per hour) by the Attribute subclass,
‘NumAttr’. The third and fourth statements result in exceptions, since neither are valid
values for those particular attributes.

Query Functionality: The SNPOW class provides additional functionality to access the
SharedNet query service. The query method is an instance method that makes use of any

61

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

attributes set in the update cache of the SNPOW instance. However, the update cache
contains attribute values that have been set in the local POW object but have not yet been
updated in the SharedNet instance store (i.e., the update method has not been called).
These values are used to set constraints for the query request. The returned object names
(i.e., array of strings) is constrained only to those objects of the class (or subclasses)
represented by the the SNPOW instance and by the attribute constraints (defined
previously). As an example, let us consider the following code statements:

• SNPOW trackPOW = SNPOW.create(null, “sharednet.immaccs. Track”);
• trackPOW.set(“forceCode”, “LNDFRD”);
• String[] trackObjects = trackPOW.query();

The first statement creates a temporary SNPOW (i.e., the object is not cached locally) for
a Track. The second statement sets its ‘forceCode’ attribute to the value ‘LNDFRD’ (i.e.,
land friendly). The last statement invokes the query method on the SNPOW instance
returning any ‘land friendly’ Track objects found in the SharedNet instance store.

Subscription/Interest Management: The functionality of the SharedNet subscription
service is encapsulated in the SNPOW class through its ‘setSubscription’ method. This
static (i.e., class scoped) method is used to register an interest in object creation and
deletion, as well as individual attribute modifications on classes of objects or object
instances. Interests, created through subscription, are managed by a
‘SubscriptionInterestClient’ which is a thread process that waits for notification of any
satisfactions of its interest condition. Upon receipt of a notification the
‘SubscriptionInterestClient’ calls the appropriate method on its related POW (i.e., create,
delete for object creation/deletion, or set for an attribute modification).

Depending on the specific POW class the behavior implied by certain events is
automatically reflected in the user-interface. For example, if an interest is registered for
Track location changes and notification is received then the set method on the affected
TrackPOW is called, with the new location value, and the symbol representing the track
is moved on the map display. This behavior is implemented in the TrackPOW class
relieving the need for the ‘SubscriptionInterestClient’ from having to know how to
specifically deal with track location changes. Subscribing and unsubscribing to interests
can occur dynamically as requirements change. The IOB supports dynamic subscriptions
through its Template interface.

3.5.2 The Graphical User-Interface Layer (GUIL)

The original design of the object interface did not include a graphical front-end to enable
geo-spatial visualization. It was initially felt that this functionality would not be
necessary for the restricted in-house use of the IOB as an user-interface for the
development team. However, as the contemplated use of the IOB broadened to include
end-users the need for a graphical user-interface became apparent.

Map Display: Several commercially available off-the-shelf components that could be
incorporated in the IOB were investigated. The final choice was the SpatialX Geospatial

62

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

tool-set (ObjectFX Corporation, St.Paul, Minnesota), due to its decidedly object-oriented
approach and complete Java compliance.

Figure 3.15: IMMACCS Object Browser (IOB) map display

Figure 3.15 shows a typical IOB display illustrating several features specifically enabled
by the SpatialX map component. The map display itself is managed by the SpatialX suite
of tools with specialized rendering functionality handled by the Java AWT graphics
primitives. The map display is comprised of layers, with each layer handling specialized
display requirements. The map feature layer is managed and rendered by the SpatialX
MapViewer class. The GUIL ‘AOIMap’ class is an extension of the ‘MapViewer’ class
which adds in the additional specialized layers and the methods to access the
functionality of these layers.

One of the layers is the object layer which handles the display of track and graphic
symbols. In particular, track symbology is defined by the military standard MIL-STD
2525A (DoD 1996). In fact, the symbols themselves were downloaded from the DISA
web-site1 and utilized directly (i.e., the final version of the IOB accesses these symbols
from their original archives). The code that ultimately enabled the direct use of these
symbols (in CGM form) was provided by the ObjectFX Corporation. Another advantage
of using these symbols is the fact that the storage format is in vector form which allows
essentially infinite scalability.

1 The Warrior Symbology Standardization Program, http://www-symbology.itsi.disa.mil/symbol/

63

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

An additional function of this layer is to provide the link between ‘Environment’ objects
and map features. This link is established through the ‘identification’ attribute of the
‘Environment’ class. When an Environment object is created the ‘identification’ attribute
value is set to the map feature class and identification (i.e., ‘class:id’). Objects created
from the ‘Graphic’ class are displayed by plotting lines connected at coordinates defined
in the ‘coordinate’ attribute of the ‘Graphic’ class. This attribute is defined as a string in
the object model and is interpreted to be a set of coordinates paired in parentheses (i.e.,
(lat1, lon1) (lat2, lon2) ... (lat#, lon#)). Objects created from other classes (e.g.,
‘Boundary’, ‘Environment’, ‘AOI’) can be visually represented through an association to
‘Graphic’ objects.

Agent Status Bar: Referring to Figure 3.15, the icons shown along the left side of the
IOB, provide a visual display of agent status and agent alerts. These agent icons are
managed by the ‘AgentPOW’ class. By default, when the IOB is connected to the
SharedNet, subscriptions are set for interests in ‘Agent’ and ‘Alert’ object creations and
deletions. When an agent is loaded in the Agent Engine an ‘Agent’ object, representing
this agent, is created in the SharedNet instance store. The notification of these Agent
object creations are received by the IOB and result in the creation (locally) of an
‘AgentPOW’ object. The latter, in turn, creates an agent icon for display in the agent
status bar. This mechanism provides the capability to dynamically add and remove agent
representation from all connected IOBs and effectively de-couples agent functionality
from the user-interface. Ultimately this allows for the development and management of
agents independently of the IOB.

Agent alerts are created by agents and represented in the SharedNet instance store as
‘Alert’ objects (i.e., associated with the ‘Agent’ object representing the agent that
produced the alert). When an ‘Alert’ object is created the IOB receives a notification and
an ‘AlertPOW’ is created. The creation of the ‘AlertPOW’ results in an update of the
associated ‘AgentPOW’ icon by changing the border color to reflect the alert status of the
agent. If the user then clicks on the agent icon an alert dialog is displayed showing a list
of posted alerts. If a specific alert is selected from the list then the alert message is
displayed along with the associated objects (i.e., the causing and affected objects).

Template Interface: The template interface provides a direct interface to the object
model and specifically allows manipulation of object instance attributes, aggregations,
and associations. The template interface is, in essence, a link to the ‘Template’ class
providing attribute constraints and utilizing standard graphical user-interface components
(i.e., Java AWT). The interface presented is dynamically assembled during execution
utilizing the facilities of the ‘Template’ class and its associated utility classes.

Figure 3.16 shows a typical template interface illustrating its features: the top section
contains the field for entering an object instance reference name; the specialize button;
the help/reach-back button (i.e., represented by the “?”); the creation and deletion
checkboxes; and, the panel selection choice box. The specialize button displays a tree list
showing the current template class, its parent class, and all its subclasses arranged by
hierarchy. A class may be selected from this list thereby narrowing (or specializing) the
current class. The parent class may also be selected thereby widening (or generalizing)

64

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

the class. The check-boxes allow the setting of interests in the creation and/or deletion of
objects in this class (or subclasses).

Figure 3.16: The Template interface of the IOB

In the middle section (Figure 3.16), the choice-box cycles through panels displaying
attributes, aggregations, and associations. This section also contains various input
elements that are dependent on the data-type of the attribute they represent. For example,
string attributes are given a text-box for input, enumeration attributes are given a choice-
box, and Boolean attributes are given a check-box. The check-boxes to the left of the
attribute names are used to set an interest in attribute modifications of objects in this class
(or subclasses).

The bottom section provides buttons for loading and saving instances to local disk files,
querying for instances, resetting the template to its default state, and canceling the
operation. If an object instance is displayed then the buttons in the bottom section provide
for submitting and updating changes to the SharedNet, saving instance data to a disk file,
destroying an instance, clearing instance data from the template, resetting instance data to
previous values, and finally canceling the operation.

The ‘IMMACCSObject’ class defines an ‘objectResources’ attribute which is an array of
‘Resource’ data. As implemented in the IOB, if any ‘Resource’ data are defined for an
object instance then the ‘Resource’ address is interpreted as an Universal Resource
Locator (URL) referencing additional information (assumed to be in HTML format)
pertaining to the object instance. This URL can point to local or remote information that
may contain a variety of information formats including text (i.e., with, possibly, links to

65

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

other information), images, video, and audio. This information will be displayed if the
“Help/Reach-Back” button is selected.

As implemented the IOB is a fairly generic tool for managing object instances, displaying
and manipulating geo-spatially represented objects, and displaying agent status. To some
extent the IOB does depend on the object model representation, but, only at a fairly high
level. Therefore, even in its current implementation the IOB can be easily tailored to
apply to other knowledge domains.

However, the possible extension of this flexibility by further decoupling the domain
specific functionality, is under consideration. Additionally, much of the object
management functionality, currently handled by the Object Management Layer, should
be moved to the SharedNet thereby simplifying the IOB client (and for that matter all
clients) as well as reducing its resource requirements. The following paragraphs discuss
some additional specific enhancements that could be implemented to improve and add to
the capabilities of the IOB.

•	 The Agent Engine is currently implemented as a client to the SharedNet.

This is a very flexible mechanism for providing a common decision-

support capability that is seen by all visual clients to the SharedNet.

However, there are scenarios under which one could envision a need to

provide decision-support specific to individuals. It may be possible, and

highly desirable’ to implement a local agent engine that would provide

localized decision-support in addition to centralized domain decision-

support.

•	 The map component of the IOB is organized into several layers that

handle the display of specific geo-spatial information (e.g., track symbols,

environment features, and raster backdrops). An additional layer could be

added to support the display of generated information such as interpolated

digital terrain elevation data (i.e., elevation contours).

•	 The IOB, as currently implemented, was specifically designed to support

visualization of geo-spatial information. The component supporting this

information display should be further decoupled from the overall IOB to

enable substitution with components that offer alternative visual

representations. Also, the template interface used to display object

information should be decoupled with additional components developed to

support alternative textual (or graphical) displays.

•	 The client-side methods used to interact with the SharedNet should be

encapsulated in a generic object server API to facilitate changes in object

server implementations.

66

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.6 The IMMACCS Scenario Driver

The Scenario Driver was designed to provide the IMMACCS user with the ability to record and
playback event sequences in either real-time or simulated time (i.e., faster or slower than real-
time). It incorporates a simple user-interface (Figure 3.17) to facilitate the rapid recording of
object-based events occurring within a view in the IMMACCS Object Browser (IOB). Such
events may include: the creation and deletion of objects (e.g., tracks, infrastructure objects, fire
events, etc.); the changing of values of object attributes (e.g., fuel level of a vehicle); and, the
movement of a track from one location to another.

Once a sequence of events has been recorded it can be played back at varying speeds, up to 50
times the recorded speed. Events may also be entered into the Scenario Driver through a manual
process (i.e., off-line) and later played back on-line.

Figure 3.17: The Scenario Driver control panel

3.6.1 Implementation Design

The functional objectives of the Scenario Driver were based on the desire to provide a means of
injecting events and activities into IMMACCS from a source that could be conveniently
controlled by users. This desire arose for several reasons. First, IMMACCS recognizes that in
the dynamically changing environment of a military mission planning and execution functions
must be supported in an integrated fashion. Not only does this require the ability to simulate
events during planning activities, but it also implies the need for playback of simulated plans
during execution activities. Second, early during the design of IMMACCS it was postulated that
the resulting system would be very useful for training purposes. In particular, it was agreed that
IMMACCS should be able to support gaming sessions in which several users assume different
roles (e.g., friendly units, enemy units, neutral civilians, and hostile civilians) under a
combination of interactive and simulated scenarios. Third, during the earliest design stages the
IMMACCS development team considered the possibility of utilizing a facility such as the
Scenario Driver for regression testing purposes during the later stages of software development.

The following functional objectives were established to guide the design of the Scenario Driver:

•	 Ability to record and playback scenarios in simulated or real-time.

•	 Ability to step through simulated scenarios under user control, with pause or
continue and stop or restart capabilities.

•	 Ability to control the playback speed of a simulated scenario.

•	 Ability to take a snap-shot of a current view so as to be able to restore that view at a
later time.

•	 Ability to playback multiple scenarios that are synchronized in time.

67

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

The Scenario Driver is implemented as a multi-threaded application that can be used in stand-
alone mode connected to the SharedNet, or embedded within the IOB. The class diagram shown
in Figure 3.18, reflects the relationships among the various driver components. The user-
interface consists of a driver control panel (Figure 3.17) that provides a toolbar, a slider, and a
choice-box. The toolbar provides the interface to control the scenario (i.e., start, stop, pause,
continue, step, record, etc.). The slider allows the playback speed of scenario to be controlled,
and the choice-box displays a list of the currently open scenarios. The ‘DriverControlPanel’
class serves as the controller (i.e., it takes all requests entered through the user-interface and
causes the current driver thread(s) to perform the necessary tasks.

Figure 3.18: Scenario Driver class diagram

Each Scenario Driver is a single thread that reads from an input scenario file. The thread parses
and arranges this file in chronological order, then executes the content of the file, and finally
releases control once the scenario has been completely executed or if the driver is interrupted.

Although the Scenario Driver is a potentially powerful tool, in its current implementation it
suffers from the following shortcomings.

•	 It experiences occasional, but largely unpredictable, synchronization problems
when multiple scenarios are executed concurrently.

•	 It lacks flexibility when recording scenarios. Since each event is associated with a
time stamp, it is not a trivial task to record realistic scenarios.

•	 It does not support a ‘rewind’ capability that would allow the user to return to
previous events in a stepped fashion. Currently, to replay events the scenario has to
be replayed from the beginning.

68

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

3.7 The MCSIT Translator

The Multi-Command, Control, Communication, Computers, and Intelligence (C4I)
System/IMMACCS Translator (MCSIT) is designed to provide an interface between the C4I
systems being fielded by the various military services, and the Integrated Marine Multi Agents
Command and Control System (IMMACCS). MCSIT translators provide a mechanism
supporting bi-directional communication and data translation between existing external systems
and IMMACCS. The translators use a variety of tools to interface with these systems including:
intercepting standardized messages normally used by the external systems; accessing the
underlying data store; interacting with underlying databases (including SQL queries and
triggers); and, accessing public APIs provided by the external systems.

The translators can also subscribe to changes in the SharedNet that represent information of
interest to their external systems. When a subscription is met, the translators use the same
techniques to ensure that the external system is updated. Translators have been implemented for
the IMMACCS Object Model, OTH-GOLD, USMTF, ASCII files, and TACFIRE message
protocols for use in MCWL Urban Warrior, Capable Warrior experiments, and Extending the
Littoral Battlespace (ELB) Demonstration II.

Design App
use various
translator en
tool kits. Th
the target ap

Figure 3.19: Control screen of the MCSIT Translator

roach: The MSCIT Translator must handle a variety of different C4I systems that
message formats and databases. The design approach is based on the use of a robust
gine, plug-ins for specific applications, and an existing mediation architecture and
e translation approach involves creating a software component that both understands
plication’s externally available information, as well as the pertinent section of the

69

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

IMMACCS object model. The translator is responsible for providing a bi-directional connection
between the two systems. For example, changes to the information maintained in the
IMMACCS object model will be used to update the corresponding information in one or more of
the existing C4I systems. The translator engine is responsible for correctly mapping the
information between the systems, and guaranteeing the ordering and referential integrity of the

data. The translator may interact
with the application’s externally
available information via a number
of different mechanisms that
include directly accessing the
application’s underlying data store
(e.g., a relational database), or
mimicking the behavior of an
application’s client or peer server.
The latter method may include
subscribing to messages sent
between systems, or tapping into
the client-server data stream. In
either case, the translator must
ensure that its activities do not
hinder the operation of the existing
system or corrupt the underlying
data stores.

 Figure 3.20: The MCSIT Interface

Implementation: A separate ‘TranslatorEngine’ instance is instantiated for each protocol, with
protocol-specific support classes instantiated in the ‘ObjectToMessage’ and ‘MessageToObject’
components.

The right diagram depicts the general
structure and dependencies for a
MCSIT ‘TranslatorEngine’. The
‘ObjectToMessage’ component
receives notifications on IMMACCS
objects via the ‘AlertAPI’ interface,
retrieving the actual IMMACCS object
on the SNAPI interface. The protocol-
specific representation of the
IMMACCS object(s) is then forwarded
to the external system. On the inbound
side, a protocol-specific representation
is received by ‘MessageToObject’,
translated into an IMMACCS object(s),
and persisted into SharedNet on the
SharedNet API interface. Figure 3.21: MCSIT dependencies

70

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

History: The initial MCSIT implementation was successfully used during a Limited Objective
Exercise (LOE) at Camp Lejeune (North Carolina), during September 1998, and the Urban
Warrior Advanced Warfighting Experiment in Oakland and Monterey (California), in March
1999. It was also successfully used in the Capable Warrior Millennium Dragon at Gulfport,
Mississippi, during September 2000.

Development continues with expanding on message protocols and implementing the Variable
Message Format (VMF), and interface to other external systems such as the Army Battle
Command System (ABCS). MCSIT will support the ELB Major Demonstration II, at USS
Coronado, and CW AWE at Camp Pendleton, during June 2001.

To date, the MCSIT has had experience with several major C4I Systems including:

•	 Joint Maritime Command Information System (JMCIS).

•	 Army Battle Command System (ABCS).

•	 Joint Warning and Reporting Network (JWARN).

•	 Reconnaissance, Surveillance, Targeting Vehicle (RST-V).

•	 Land Attack Warfare System (LAWS).

•	 Tactical Strike Coordination Module (TSCM).

•	 Joint Conflict and Tactical Simulation (JCATS).

•	 Instrumentation System.

•	 IMMACCS Interface: (1) The Object Oriented Database (OODB)

interface through the Shared Net APIs, or (2) Direct 2-D Viewer system

interface through Java objects.

71

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

72

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

4. Operating IMMACCS through the IOB User-Interface

The purpose of this section is to provide some examples of the functional capabilities of
IMMACCS during typical military mission situations. It should be noted that IMMACCS
does not incorporate any solutions to predefined problems. Rather, IMMACCS should be
viewed as a set of tools that interact with each other and the users to collaboratively solve
problems as they occur in the real world.

4.1 IMMACCS as a Set of Tools

The agents are the most powerful members of this tool set, for several reasons. First, they
are able to communicate with each other and the users. This allows one agent to
spontaneously enlist the services of one or more other agents in its inferencing tasks.
Therefore, by virtue of their communication capabilities, agents are able to collaborate
among themselves in an opportunistic manner. Also, through the alert mechanism agents
are able to involve the human user in their collaborations. This provides an avenue for an
agent to enlist the assistance of a human in matters that are either not discernable through
logical reasoning alone or require deeper domain knowledge than is available to the
agent. In the current version of IMMACCS this potentially powerful agent capability is
only marginally present.

Second, those agents that have deep knowledge in a particular domain (i.e., service
agents such as the Fires agent and the Hazard agent (see Section 3.3.7)) are able to
represent the views of that domain and unemotional argue those views as they participate
in the analysis and evaluation of the current state of the situation. In other words, the
service agents ensure that all available viewpoints are represented throughout all
collaborations. The use of the word “available” is intended to stress that these viewpoints
are limited to the existence of an agent to represent a particular viewpoint.

Third, the agents work in parallel and undertake their tasks opportunistically. Both of
these characteristics are essential qualities of a truly collaborative environment. As
opposed to the rationalistic approach to problem solving (Pohl et al. 1997) which
proceeds in an essentially sequential manner and may be undertaken by a single problem
solver, collaboration requires the participation of multiple parties whether human or
computer-based or both. These parties should, and will, exercise their autonomy and
initiative to contribute when they are able and willing to do so, in a largely unpredictable
fashion.

In this respect even the current, initial version of IMMACCS incorporates the beginnings
of what might be termed an adaptive quality. While the knowledge domains of individual
service agents are clearly defined and their deep knowledge capabilities therefore entirely
predetermined, the interactions of the agents are not at all predefined. In addition, the
behavior of all agents is of course to a large extent governed by the events that occur in
the real world problem environment, and that are at any particular point in time reflected
in the Object Instance Store (OIS) of the SharedNet. It can be argued that while the
knowledge and reasoning capabilities of the agents are predictable, the interaction of
these limited individual capabilities within an unconstrained event-driven environment

73

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

are to some extent unpredictable. Therefore, IMMACCS incorporates at least the
foundations of adaptive behavior.

Finally, it is worthy of note that despite their communication capabilities and
opportunistic behavior the agents contain relatively simple inferencing mechanisms that
operate on the complexities of the current state of the problem situation. This current
state is represented by the OIS in the SharedNet within the contextual framework of the
IMMACCS Object Model (see Section 3.2). The relationships, and in particular the
dynamic associations, among the object instances are mostly responsible for the level of
complexity inherent in IMMACCS. The agents gain their more sophisticated capabilities
and potentially adaptive qualities as they navigate through the complexities represented
by the object model. In other words, the complexity of IMMACCS rests in the internal
representation of the current state of the problem situation and not in the predetermined
inferencing mechanisms (e.g., rules) that are embedded in each agent.

4.2 A Simulated Demonstration Scenario

The following simulated IMMACCS demonstration scenario utilizes both predefined
sequences of events injected by the Scenario Driver (see Section 3.6) and user input
through the Object Browser (see Section 3.5). These information feeds replace the
battlespace information that would normally be received during a real world deployment
of IMMACCS as the command and control system.

Demonstration Scenario Context: The situational context is an urban environment in
which a Marine Air Ground Task Force (MAGTF) of battalion size is required to protect
the local civilian population from military and semi-military hostile elements.

Summary of Scenario Events and Activities: Friendly forces sight two enemy units
moving toward a warehouse building which is suspected to be an enemy armory. On
friendly Call-for-Fire (CFF) agents identify several possible weapons: USS Russell (NSF
- M41 VLS guided missile and SWG 1A Harpoon); Fixed Wing Aircraft (ACE - F/A 18
with missiles and rockets); and, Crew Served Howitzers (155 mm Towed Howitzer and
other Howitzer). Agents select the aircraft and the howitzers as the best choice weapons.
However, after further analysis of the ECR (Effective Casualty Radius) of each of these
recommended weapons the Commander rejects one of the howitzers for political reasons,
because its ECR extends over the residence of the local Mayor. The Commander finally
selects the Aircraft (F/A 18) as the weapon of choice and gives the ‘fire’ order.

In the meantime several groups of civilians have been sighted in different parts of the
battlespace, apparently moving toward an open area (i.e., a local soccer field) which is
located near the ‘warehouse’ target. The BDA (Battle Damage Assessment) report
received after the target has been hit indicates an unexpected ‘chemical fire’. Apparently
the warehouse was also used for the storage of chemical weapons. The agents generate a
first warning of the danger of the ‘chemical fire’ to the nearby assembly of civilians. This
is followed by a second agent alert indicating the immediate need for civilian evacuation.

The Commander, with the assistance of IMMACCS: determines the location of key
civilian support agencies; activates three friendly units to move into the target area;

74

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

arranges for local police and fire service support; and, identifies surrounding hospitals
and medical offices, in readiness for the mass evacuation of civilians out of the ‘chemical
fire’ area.

Demonstration Sequence: The following step-by-step sequence of user actions and
Scenario Driver input, provides a detailed description of the operation of the IMMACCS
Object Browser (IOB) and the controlling role played by the IMMACCS Object Model.

Zoom in on urban area of the battlefield map displayed by the IOB.
Click on: Zoom In (+) button

Click and click pan hand to move map somewhat to the right side of the screen.

Define an AOI and set ‘trigger’ to be alerted if any red (enemy) unit moves into AOI.
Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: Agent
Type name in box: position (as name) ®

Click in: AgentID entry box and type: da1
Select: Associations
Select: Triggers

Click on: Query button
Select: RedDP1

Click on: Submit
Click on: Submit

AOI has been created but is not highlighted on map.

Set another ‘trigger’ to be alerted if any gray (civilian) groups move into AOI.
Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: Agent
Type name in box: position (as name) ®

Click in: AgentID entry box and type: da2
Select: Associations
Select: Triggers

Click on: Query button
Select: GrayDP1

Click on: Submit
Click on: Submit

AOI has been created but is not highlighted on map.

Request to see all potential helicopter ‘landing zones’.
Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: Environment
Select: forceCode
Select: All Friend force code

Click on: Query button
Displays list of possible ‘landing zones’ and highlights those shown on map as objects.

Click on: right top corner of Window close (x) button
Click on: Cancel button

75

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Request to see all potential ‘fuel sources’.
 Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: Building
Select: function
Select: Service/Refueling Station function

Click on: Query button
Displays list of possible ‘fuel sources’ and highlights those shown on map as objects.

Click on: right top corner of Window close (x) button
Click on: Cancel button

Request to see all civilian ‘residential’ areas.
 Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: Building
Select: Associations
Select: builtupAreaRole

Click on: Query button
Displays list of ‘residential areas’ (none are highlighted on map).

Select: Residential Area #1
Click on: Submit button
Click on: Query button

Buildings in ‘residential area #1’ are highlighted on map.

Click on: right top corner of Window close (x) button
Click on: Cancel button

Start Scenario Driver to move two red units toward suspected enemy armory.
 Click on: Driver button

Select: Scenario Driver
Click on: Open button

Double click on: scenarios (i.e., select ‘scenarios’ folder)
Double click on: RedMove.txt

Click on: Start button

Click on: Exit button (after script has stopped)

Agent ALERT to indicate movement of red unit(s) into AOI.
Click on: Agent icon

Window displays current agent ALERTs.
Click on: appropriate Alert button

Selected ALERT explanation is displayed in Window.

Click on: OK button

Request CFF template and enter CFF information.
Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: CallForFire
Type: CFF1 (as Name) ®

Select: targetType
Select: Building target type

76

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Type Narrative: Suspected Enemy Armory
Select Month: SEP
Type source: CP

Select: Associations
Select: Target

Click on: Specialize button
Select: Building

Select forceCode: All Hostile
Click on: Query button

Window displays list of hostile buildings.

Select: Landrone/Redesian Armory
Click on: Submit button
Click on: Submit button

Target is highlighted on map as agent analysis proceeds.

Agents analyze available weapons to destroy this target.

Request to see all feasible weapons based on agent ALERT.
Click on: Agent button

Window displays current agent ALERTs.

Click on: appropriate Alert button
Selected ALERT explanation is displayed in Window with Effective Casualty Radius.

Click on: OK button

User rejects crew-served weapon with largest Effective Casualty Radius (ECR) due to
overlap into residential area where Mayor resides.

Start Driver to move all civilian groups toward Soccer Field near target.
Click on: Driver button

Select: Scenario Driver
Click on: Open button

Double click on: scenarios (i.e., select ‘scenarios’ folder)
Double click on: GrayMove.txt

Click on: Start button
Three civilian groups move toward Soccer Field and merge into a Crowd.

Click on: Exit button (after script has stopped)

Start Driver to move Aircraft to target and FIRE on target.
Click on: Driver button

Select: Scenario Driver
Click on: Open button

Double click on: scenarios (i.e., select ‘scenarios’ folder)
Double click on: FWMove2.txt

Click on: Start button
F/A-18 aircraft moves over target, fires missile, and then returns to airfield.

Click on: Exit button (after script has stopped)

Start Driver to receive BDA information and change infrastructure objects.
Click on: Driver button

Select: Scenario Driver
Click on: Open button

77

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Double click on: scenarios (i.e., select ‘scenarios’ folder)

Double click on: TargetExist.txt

Click on: Start button

Nothing is shown on map, but agent ALERT comes next.

Click on: Exit button (after script has stopped)

Create ‘Atmospheric Event’ object instance.
Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: AtmosphericEvent
Type name in box: Chemical Fire Plume ®

Click in: atmosEventType

Select: BIOCHEMICAL

Select: Associations

Double Click on: naturalRegion

Click on: Query button

Select: CI’ELNCI Soccer Field
Click on: Submit button
Click on: Submit button

Agent ALERT to warn of Chemical Fire danger to civilians.
Click on: Agent button

Window displays current agent ALERTs.

Click on: appropriate Alert button

Selected ALERT explanation is displayed in Window.

Click on: OK button

Request to see locations of key civilian support offices (i.e., police, fire, etc.).
 Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: Building

Select: usage

Select: Civilian/Public usage

Click on: Query button

Displays list of civilian support office buildings.

Select: Ci’Elnci Government Center
Select: Associations

Displays list of key civilian occupants of these offices (i.e., buildings).

Click on: right top corner of Window close (x) button
Click on: Cancel button

Start Driver to move three blue units toward Soccer Field demonstration area.
Click on: Driver button

Select: Scenario Driver
Click on: Open button

Double click on: scenarios (i.e., select ‘scenarios’ folder)
Double click on: BlueMove1.txt

Click on: Start button
Blue units move on map toward Soccer Field demonstration area.

78

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Click on: Exit button (after script has stopped)

Start Driver to move civilian emergency support groups toward Soccer Field.

Click on: Driver button

Select: Scenario Driver
Click on: Open button

Double click on: scenarios (i.e., select ‘scenarios’ folder)
Double click on: FireMove1.txt

Click on: Open button
Double click on: scenarios (i.e., select ‘scenarios’ folder)
Double click on: PoliceMove.txt

Click on: Start All button
Fire crews and Police units move toward Soccer Field and target area.

Click on: Exit button (after script has stopped)

Request to see locations of all Hospitals.
 Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: Building
Select: function
Select: Hospital function

Click on: Query button
Displays list of Hospitals and highlights Hospital buildings on map.

Click on: right top corner of Window close (x) button
Click on: Cancel button

Request to see locations of all Physician Offices.
 Click on: Edit button

Select: Edit Object
Click on: Specialize button

Select: Building
Select: function
Select: Medical Center function

Displays list of Physician Offices and highlights corresponding buildings on map.

Click on: right top corner of Window close (x) button
Click on: Cancel button

79

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

4.3 Typical Examples of Real World Sequences

The following scenario sequences are based on the use of IMMACCS during the Urban Warrior
Advanced Warfighting Experiment conducted by the Marine Corps Warfighting Laboratory in
conjunction with the US Navy and military contingents from several foreign countries over a seven-
day period in March, 1999. The setting for these sequences is the Oak Knoll Naval Base located in
Oakland, California. Friendly units in the battlespace utilized laptop computers with integrated
differential GPS devices to feed data via wireless line-of-sight communication facilities to the
Experimental Combat Operations Center (ECOC) on the USS Coronado (at anchor in the San
Francisco harbor).

Depicted on each IOB screen are the various track and infrastructure objects that are participants in
the view of the particular sequence described in the caption. These objects are overlaid on a
background map showing additional terrain features (e.g., colored vegetation areas) and contours.
Friendly and enemy forces are shown in standard US military symbology.

Figure 4.1:	 IOB representation of the Oak Knoll battlespace showing friendly, enemy, and
civilian units as blue rectangles, red diamonds, and green squares, respectively
(see inside cover for colored version of Figure 4.1). Roads, buildings, rivers and
contour lines are represented in the battlespace, as well as the alert-area
boundaries of EUT Sentinel agents.

80

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.2:	 An enemy Infantry Unit from the lower portion of the screen has moved and
triggered a decision point established at a fork in the road. The agent responsible for
monitoring that decision point, the Intel Agent, turns its surround red to notify the
operators of a new alert.

81

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.3:	 The operator clicks on the Intel Agent icon to determine which decision point has
been triggered and why. After reading the agent alert the operator acknowledges the
alert, turning the surround blue, and then closes the alert dialogue box.

82

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.4:	 The operator has acknowledged the Intel Agent alert and has proceeded to target the
enemy Infantry Unit by creating a ‘Call For Fire’ (CFF). Note, that the CFF is
associated with the enemy Infantry Unit (i.e., a particular target) not just a point on
the ground in close proximity of the target. Therefore, as the target moves the CFF
location will move with it until the fire mission has been executed or denied.

83

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.5:	 Indicates the results of the agent activity after the CFF has been submitted. The
Fires Agent analyzed the CFF request in order to determine possible weapons and
ultimately select the best weapon, as well as performing any calculations necessary
to determine if the path of the weapon would encounter any obstructions during its
flight to the target.

84

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.6:	 The enemy Infantry Unit has moved into close proximity of Alpha Company. The
Sentinel Agent responsible for monitoring enemy unit locations around Alpha
Company alerts the operator of this intrusion. The operator clicks on the Sentinel
Agent icon and views the alert.

85

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.7:	 The enemy Infantry Unit is now in such close proximity to Alpha Company that the
Blue-On-Blue Agent alerts of a possible fratricide situation resulting from the CFF
placed on the enemy Infantry Unit. The agent has analyzed the proximity of these
two units and determined that based on the characteristics of the selected munitions
Alpha Company is in danger.

86

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.8:	 The enemy Infantry Unit has come close enough to Alpha Company to establish
contact and has been recognized as a friendly unit. The force code is changed to
reflect its friendly status causing the Blue-On-Blue Agent to create another friendly
fire violation alert. The resulting fratricide alert causes the Fires Mission to be
cancelled.

87

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.9:	 A friendly Reconnaissance Unit has moved from the top of the screen to take up a
position at the hospital building. This close proximity to the enemy’s Crotale Air
Defense System causes the Reconnaissance Unit’s Sentinel Agent to register an
alert.

88

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.10: The enemy’s Crotale Air Defense System is now actively using its radar to find
friendly air assets. The Intel Agent registers an alert on this electronic intelligence,
notifying the operator that procedures call for submitting a CFF on this high value
target.

89

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.11: The enemy Crotale Air Defense System’s radar has acquired a target. Since a CFF
has not yet been submitted from the previous alert, the Intel Agent, according to
procedure, immediately submits a CFF.

90

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.12: Since the enemy’s Crotale Air Defense System is located in very close proximity to
a local hospital, and the ROE specifically forbid firing upon hospitals, the ROE
Agent registers an alert notifying the operator that the selected munitions could
cause damage to the hospital. Additionally, the Blue-On-Blue Agent as well as the
Sentinel Agent for the Reconnaissance Unit register alerts because the CFF
submitted on the Crotale could endanger the Reconnaissance Unit.

91

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Figure 4.13: The state of the agents after all the alerts have been acknowledged.

92

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

4.4 Exercising Individual Agent Capabilities

This section describes selected individual IMMACCS agent capabilities that were available and
successfully tested during the Urban Warrior AWE field test conducted in March’99.

4.4.1 The Logistics Agent

Capabilities:	 The following Logistics agent capabilities apply to the ‘Entity’ class of
objects only: Entity, Organization, Civilian Organization, Military
Organization, Ground Unit, Special Ops, CSS Unit (Admin Support Unit,
Maint Support Unit, Med Support Unit, Supply Support Unit, Transportation
Support Unit), CS Unit (Intel Support Unit, Law Enforcement Unit, NBC
Support Unit, Signal Support Unit), Combat Unit (Air Defense Unit, Anti
Armor Unit, Armor Unit, Aviation Unit, Engineer Unit, Field Artillery Unit,
Infantry Unit, Internal Security Force, Reconnaissance Unit), Person
(Military Person, Public Servant).

1. Generates a ‘yellow alert’ if supply level falls below ‘green’ level.

Object	 Attribute Required Value

Entity	 forceCode <friendly or neutral>

SupplyInformation quantityOnHand <less than quantityGreen and
 greater than quantityYellow>

Supply supplyInfo name (SupplyInformation)
Supply ownerConsumer name (Entity)

Alert alertMessage “Yellow Alert! The (name of
 supply class) supplies level
 for (name of Entity) located
 at (lat/long position) has fallen
 below (quantityGreen).”

2. Generates a ‘red alert’ if supply level falls below ‘yellow’ level.

Object	 Attribute Required Value

Entity forceCode <friendly or neutral>
SupplyInformation quantityOnHand <less than quantityYellow>
Supply supplyInfo name (SupplyInformation)
Supply ownerConsumer name (Entity)

Alert alertMessage “Red Alert! The (name of
 supply class) supplies level
 for (name of Entity) located
 at (lat/long position) has fallen
 below (quantityYellow).”

3. Automatically determines possible supply sources on ‘yellow alert’.

93

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Object	 Attribute Required Value

Entity forceCode <friendly or neutral>
SupplyInformation quantityOnHand <less than quantityGreen>
Supply supplyInfo name (SupplyInformation)
Supply ownerConsumer name (Entity)

SupplySupportUnit forceCode <friendly or neutral>
(or SupplyPoint)

4. Automatically determines best supply source based on nearest friendly or
neutral supply support unit.

Object	 Attribute Required Value

Entity forceCode <friendly or neutral>
SupplyInformation quantityOnHand <less than quantityGreen>
Supply supplyInfo name (SupplyInformation)
Supply ownerConsumer name (Entity)

SupplySupportUnit forceCode <friendly or neutral>
(or SupplyPoint)

The following Logistics agent capabilities apply to the ‘Platform’ class of
objects only: Platform, Aircraft, Ground Vehicle (Armored Vehicle
(Tank)), Sea Surface Vessel (Combat Vessel (Amphibious), Non Combat
Vessel, Non Military Vessel), Air Weapon (Missile in Flight), Civil Aircraft,
Military Aircraft (Fixed Wing, Rotary Wing).

5.	 Generates an alert if the fuel level of a platform object falls below 50%
(the 50% threshold value cannot be set by the user).

Object	 Attribute Required Value

Platform forceCode <friendly or neutral>
Platform fuelLevel <less than 50%>

Alert alertMessage “The estimated fuel level for
 (name of platform) located at
 (lat/long position) has fallen
 to (value%).”

6.	 Automatically determines possible fuel sources for ground vehicles
based on the function code of structures that are in friendly or neutral
hands.

Object	 Attribute Required Value

Structure forceCode <friendly or neutral>
Structure functionCode BFC54 (Serv/Refuel Station)

(BFC120 – Automobile Plant)

94

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

(BFC83 – Power Generation)
(BFC102 – Oil/Gas Fac Bdg)
(BFC124 – Repair Fac)
(BFC29 – Aircraft Maint Shop)
(BFC26 – Railroad Storage)
(BFC37 – Fire Station)
(BFC110 – Factory)

7.	 Automatically determines possible fuel sources for trains based on the
existence of railway stations.

8.	 Automatically determines possible fuel sources for aircraft based on the
existence of air transportation nodes; including airfields, airports and
heliports.

9.	 Automatically determines possible fuel sources for ships based on the
existence of water transportation nodes; including harbors and ports.

10. Automatically determines the best fuel source for ground vehicles based
on distance from ground vehicle that requires fuel.

Object	 Attribute Required Value

GroundVehicle forceCode <friendly or neutral>
GroundVehicle fuelLevel <less than 50%>
Structure functionCode BFC54 (Serv/Refuel Station)

(BFC120 – Automobile Plant)
(BFC83 – Power Generation)
(BFC102 – Oil/Gas Fac Bdg)
(BFC124 – Repair Fac)
(BFC29 – Aircraft Maint Shop)
(BFC26 – Railroad Storage)
(BFC37 – Fire Station)
(BFC110 – Factory)
(BFC124 – Repair Fac)

4.4.2 The Fires Agent

Capabilities:	 The following Fires agent capabilities are currently available in IMMACCS
in support of Call For Fire (CFF) requests, for lethal weapons only.

1. 	Generates a ‘Fire agent alert’ if it finds a lethal weapon with no
associated munitions.

Object Attribute Required Value

LethalWeapon
LethalWeapon

Alert

forceCode
weaponAmmo

alertMessage

<friendly>
(empty list)

“Weapon (name of weapon),
 will not be considered for
 weaponeering. There are no

95

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

 munitions associated with
 this weapon.”

2. Generates a ‘Fire agent alert’ if it finds a lethal weapon with associated
ammunition, but no associated platform or entity.

Object Attribute Required Value

LethalWeapon forceCode <friendly>

Alert alertMessage “Weapon (name of weapon),
 has no platform or entity
 associated with it. Weapon
 will be considered for weapon-
 eering, but location of weapon
 will be unknown.”

3. Generates a ‘Fire agent alert’ if it finds munitions with no associated
weapon, platform or entity (one of these will suffice).

Object Attribute Required Value

Munitions forceCode <friendly>

Alert alertMessage “Munitions (munitions name),
 has no weapon associated
 with it to fire. Munitions will
 still be considered for weapon-
 eering, but location of
 munitions will be unknown.”

4. Automatically determines all available munitions.

Object	 Attribute Required Value

Munitions forceCode <friendly>

5. Automatically determines all available lethal weapons associated with the
available munitions.

Object Attribute Required Value

Munitions forceCode <friendly>
LethalWeapon forceCode <friendly (Munitions)>

6.	 Automatically finds all platforms with some associated lethal weapons
that have not been previously identified, and adds these to the available
lethal weapons pool.

96

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Object	 Attribute Required Value

Platform	 forceCode <friendly>

7. 	Automatically associates all available lethal weapons (i.e., the current
lethal weapons pool) with the friendly entity (e.g., unit) that has this
weapon in its arsenal (i.e., assets).

Object	 Attribute Required Value

Entity forceCode <friendly>

Entity assets weapon name (LethalWeapon)

LethalWeapon forceCode <friendly>

8. 	Automatically associates those available lethal weapons (i.e., in the lethal
weapons pool) that are associated with platforms, with the appropriate
friendly entity (e.g., unit).

Object Attribute Required Value

Entity forceCode <friendly>

Entity
 (or)

assets
embarkedOn

name (Platform)
name (Platform)

Platform
Platform

forceCode
passengersCrew

<friendly>
name (Entity)

9.	 Automatically rates all available lethal weapons (i.e., the current lethal
weapons pool), starting with a value of 100 and increasing or decreasing
this base rating according to the following rules. However, a rating of
zero (i.e., “rating = 0” below) indicates that the weapon is not available
for selection.

if munitions caliber < 60mm rating = 0

Object Attribute Required Value

Munitions caliber < 60

if effective range of weapon is out of range rating = 0

Object Attribute Required Value

Munitions effectiveRange (out of range of target)
LethalWeapon weaponAmmo name (Munitions)
Entity assets name (LethalWeapon)

97

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

if effective range of platform is out of range rating = 0

Object Attribute Required Value

Munitions effectiveRange (out of range of target)
LethalWeapon weaponAmmo name (Munitions)
Platform weaponSystems name (LethalWeapon)

if ECR is smaller than target size rating = - 10(weapon count)

Object Attribute Required Value

Munitions ECR (less than target size)

(‘Weapon count’ is the number of rounds that have to fired to saturate the
target. Calculated by dividing the ECR of the munitions into the target size.)

if CEP is smaller than ECR rating = - 5(CEP/ECR)

Object Attribute Required Value

Munitions ECR (equal or greater than CEP)
Munitions CEP (less than ECR)

if CEP is larger than ECR rating = - 10(CEP/ECR)

Object Attribute Required Value

Munitions ECR (equal or less than CEP)
Munitions CEP (greater than ECR)

if guided munitions are required by CFF rating = + 20

Object Attribute Required Value

CallForFire specialEffects GUIDED MUNITIONS

if more than one CFF with EMERGENCY rating = - 20
priority have interest in the same
lethal weapon

Object Attribute Required Value

CallForFire targetPriority EMERGENCY

98

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

if more than one CFF with IMMEDIATE rating = - 20

priority have interest in the same

lethal weapon

Object Attribute Required Value

CallForFire targetPriority IMMEDIATE

if a structure would block the trajectory rating = no change in rating
of an available lethal weapon or value (but note added)
platform

Object Attribute Required Value

Entity location (influences trajectory)
Platform location (influences trajectory)
Structure location (compared with trajectory)
Structure structureDimensions (height considered)

if a rotary wing aircraft is likely to block rating = no change in rating
the trajectory of an available lethal value (but note added)
weapon or platform

Object Attribute Required Value

Munitions maxSpeed (determines collision point)
Entity location (influences trajectory)
Platform location (influences trajectory)
RotaryWing location (compared with trajectory)

10. Automatically identifies all lethal weapons (i.e., in the current lethal
weapons pool) that can arrive on target within 5 min., if CFF has priority
of EMERGENCY.

Object Attribute Required Value

CallForFire
Munitions
LethalWeapon
Entity

targetPriority
maxSpeed
weaponAmmo
assets

EMERGENCY
> 0
name (Munitions)
name (LethalWeapon)

Object Attribute Required Value

CallForFire
Munitions
LethalWeapon
Platform

targetPriority
maxSpeed
weaponAmmo
weaponSystems

EMERGENCY
> 0
name (Munitions)
name (LethalWeapon)

99

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

11. Automatically identifies all lethal weapons (i.e., in the current lethal
weapons pool) that can arrive on target within 10 min., if CFF has
priority of IMMEDIATE.

Object Attribute Required Value

CallForFire
Munitions
LethalWeapon
Entity

targetPriority
maxSpeed
weaponAmmo
assets

IMMEDIATE
> 0
name (Munitions)
name (LethalWeapon)

Object Attribute Required Value

CallForFire
Munitions
LethalWeapon
Platform

targetPriority
maxSpeed
weaponAmmo
weaponSystems

EMERGENCY
> 0
name (Munitions)
name (LethalWeapon)

12. Automatically checks if there is a friendly unit or civilian entity near the
target (i.e., within the CEP of an available weapon). (Fires agent simply
notes “…friendly unit(s) near target” or “…civilian entity near target”,
but takes no other action. However, this notation becomes available to
the Blue-On-Blue agent and it generates an alert.)

Object Attribute Required Value

Munitions CEP (compared with location of
 any friendly Entity)

Entity forceCode <friendly>
CivilianOrganization location (compared with munitions CEP)

13. Automatically rejects any lethal weapons or platforms (remaining in the
weapons pool) that have received a final rating of less than 69.

14. Automatically considers all lethal weapons or platforms (remaining in
the weapons pool) that have received a final rating of greater than or
equal to 70 as a feasible weapon for the particular CFF.

15. Automatically selects the weapon (of the weapons remaining in the
weapons pool) with the highest rating as the best choice weapon for the
particular CFF.

16. Generates a ‘Fire agent alert’ to report all FEASIBLE weapons for the
particular CFF.

Object Attribute Required Value

Alert alertMessage “Recommended Feasible
 Weapons: (list) “

100

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

17. Generates a ‘Fire agent alert’ to report the BEST weapon for the
particular CFF.

Object Attribute Required Value

Alert alertMessage “Recommended Best Weapon:
 (best weapon) “

18. Generates a ‘Fire agent alert’ to report that no BEST weapon for the
particular CFF has been found.

Object Attribute Required Value

Alert alertMessage “No Best Weapon Recom-
 mendation: “

4.4.3 The Engagement Agent

Capabilities:	 The Engagement agent capabilities currently relate to Fire Events and Calls
for Fire (CFFs) only.

1.	 Generates an ‘Engagement agent alert’ on the occurrence of a Fire Event
directly targeting, or indirectly targeting the environment of, a non-
friendly entity (i.e., track). Non-friendly includes hostile, neutral and
unknown.

Object	 Attribute Required Value

Alert alertMessage “ENGAGEMENT: (forceCode)
 track (name of track) located
 at (lat/long position or name of
 environment) is currently
 being engaged as a result of
 the (Fire Event name) fire
 event.”

2.	 Generates an ‘Engagement agent alert’ on the occurrence of a CFF
directly targeting, or indirectly targeting the environment of, a non-
friendly entity (i.e., track). Non-friendly includes hostile, neutral and
unknown.

Object	 Attribute Required Value

Alert alertMessage “ENGAGEMENT: (forceCode)
 track (name of track) located
 at (lat/long position or name of

101

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

 environment) is currently
 targeted as a result of the (CFF
 name) CFF.”

4.4.4 The Blue-On-Blue Agent

Capabilities:	 The Blue-On-Blue agent capabilities currently relate to the presence of

friendly forces on or near a Fire Event or CFF target.

1.	 Generates a ‘Blue-On-Blue agent alert’ on the occurrence of a Fire Event
that directly or indirectly threatens a friendly unit. A friendly unit is
considered to be threatened if it is located within 100m of the track
location of the target.

Object	 Attribute Required Value

Alert alertMessage “BLUE ON BLUE: (forceCode)
 track (name of track) located
 at (lat/long position or name of
 environment) is currently
 under attack by another
 friendly unit resulting from the
 (CFF name) Call For Fire.”

2.	 Generates a ‘Blue-On-Blue agent alert’ on the occurrence of a CFF that
directly or indirectly threatens a friendly unit. A friendly unit is
considered to be threatened if it is located within 100m of the track
location of the target.

Object	 Attribute Required Value

Alert alertMessage “BLUE ON BLUE: (forceCode)
 track (name of track) located
 at (lat/long position or name of
 environment) is currently
 targeted in the (CFF name)
 Call For Fire.”

3. Generates a ‘Blue-On-Blue agent alert’ if a non-friendly entity (i.e.,
track) is endangered due to proximity to a CFF target.

Object	 Attribute Required Value

Alert alertMessage “Friendly (object type and
 Reference name) located at
 (lat/long position)could be
 affected by indirect fire from
 Call For Fire (CFF name)
 with target location (distance)
 meters away.”

102

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

4.4.5 The Intel Agent

Capabilities:	 The Intel agent capabilities currently relate to the detection of hostile radar
installations and the automatic generation of a CFF on this potential target.

1.	 Monitors the creation of all new tracks.

2.	 Generates an ‘Intel agent alert’ on the detection of a radar installation
(i.e., tracks) with a hostile force code, and automatically creates a CFF if
the status of the radar installation is ACTIVE.

Object	 Attribute Required Value

Radar forceCode <not friendly>
Radar status ACTIVE (or PASSIVE)

Alert alertMessage “Non friendly radar alert:
 (name of radar track)”

CallForFire controlMethod WHEN READY
 (created) targetArea POINT TARGET

targetActivity STATIONARY
targetPriority HPT
targetDescription ADA AAA TARGET
target name (Radar)

4.4.6 The Hazard (NBC) Agent

Capabilities:	 The Hazard agent capabilities are currently related to the detection of
atmospheric and climatic events that are considered to be hazardous. The
circular boundary for ‘Hazard agent alerts’ can be set by the operator.

1.	 Generates a ‘Hazard agent alert’ if a NBC atmospheric event is detected.

Object	 Attribute Required Value

AtmosphericEvent atmosEventType	 BIOCHEMICAL
NUCLEAR FALLOUT

AtmosphericEvent area	 <affected area in km>

Alert alertMessage “(Entity name) is endangered
 by (atmospheric event type).”

2.	 Generates a ‘Hazard agent alert’ if a climatic event (e.g., flood, fire,
earthquake, tornado, hurricane, cyclone, or volcanic eruption) is detected,
and any entity (i.e., track) is currently located within its effective bounds.

103

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Object Attribute Required Value

ClimaticEvent climaticEventType FLOOD
EARTHQUAKE
FIRE
FORREST FIRE
TORNADO
HURRICANE
TROPICAL CYCLONE
VOLCANIC EXPLOSION

ClimaticEvent area <affected area in km>

Alert alertMessage “(Entity name) is endangered
 by (climatic event type).”

4.4.7 The ROE Agent

Capabilities: The ROE (Rules of Engagement) agent capabilities currently relate to the
detection of targets that are subject to rules of engagement restrictions,
including the following building types:

BFC6 Hospital
BFC7 House of Worship
BFC9 Museum
BFC15 School
BFC50 Church
BFC60 University/College
BFC83 Power Generation
BFC63 Mission
BFC84 Filtration Plant
BFC100 Medical Center
BFC108 Seminary
BFC114 Non-Christian Place of Worship

1.	 Generates a ‘ROE agent alert’ if a CFF directly targets a building that is
under ROE restrictions.

Object Attribute Required Value

CallForFire
Building

target
name

<target list>
target name (CallForFire)

Building functionCode BFC6 (Hospital)
BFC7 (House of Worship)
BFC15 (School)
BFC33 (Health Office)
BFC50 (Church)
BFC100 (Medical Center)

Alert alertMessage “Building (building name)
 is a restricted target, but is
 targeted by CFF (CFF name).”

104

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

2.	 Generates a ‘ROE agent alert’ if CFF directly targets a target class that is
under ROE restrictions.

Object	 Attribute Required Value

CallForFire target	 <target list>

<target class> name 	 target name (CallForFire)

Alert alertMessage “(target class name) is a
 a restricted target, but is
 targeted by CFF (CFF name).”

3. Generates a ‘ROE agent alert’ if CFF indirectly threatens a target class
that is under ROE restrictions.

Object	 Attribute Required Value

CallForFire target	 <target list>

<target class> name 	 target name

Munitions ECR
Munitions CEP
Alert alertMessage “(target class name) is a

 a restricted target and could
 be affected by indirect fire
 from (name of munitions).”

4.4.8 The General Sentinel Agent

Capabilities:	 The General Sentinel agent capabilities are currently related to the detection
of enemy units and hostile civilian entities within a radius of any operator
specified position in the battlefield.

1.	 Generates a ‘Sentinel agent alert’ if any red unit moves into the circle of
detection specified by the operator.

Object	 Attribute Required Value

DecisionPoint decisionPointLocation (click on battlefield display)
DecisionPoint triggerAgent name (Mentor Agent)
Track forceCode <hostile>

TriggerAlert alertMessage “Red Unit Alert: (name of
 red unit). “

2. Generates a ‘Sentinel agent alert’ if any hostile civilian entity moves into
the circle of detection specified by the operator.

Object	 Attribute Required Value

105

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

DecisionPoint decisionPointLocation (click on battlefield display)
DecisionPoint triggerAgent name (Mentor Agent)
Track forceCode <hostile>

TriggerAlert alertMessage “Grey Unit Alert: (name of
 grey unit). “

4.4.9 The EUT Sentinel Agent

Capabilities:	 The EUT Sentinel agent is automatically created for each EUT (End-User
Terminal) and alerts the EUT operator if either an enemy unit moves to
within 300m of the current position of the EUT operator, or if a CFF
includes a target that is within 300m of the current position of the EUT
operator.

1.	 Automatically creates an EUT Sentinel agent whenever an EUT comes
on-line.

Object Attribute Required Value

MentorAgent
MentorAgent
DecisionPoint
DecisionPoint
DecisionPoint
DecisionPoint

agentId
 agentType

source
range
decisionPointLocation
triggerAgent

(source of Mentor Agent)
MENTOR AGENT
source (Mentor Agent)
0.3 (km)
(current EUT location)
name (Mentor Agent)

2.	 Automatically updates position of EUT through differential GPS beacon.

3.	 Generates an ‘EUT Sentinel agent alert’ if any red unit moves into the
300m circle of detection around the current position of the EUT.

Object	 Attribute Required Value

Track forceCode <hostile>

Track location (within 300m of EUT)

TriggerAlert alertMessage “Sentinel Alert: (name of
 red unit). “

4.	 Generates an ‘EUT Sentinel agent alert’ if it detects a CFF to a target that
is located within 300m of the current position of the EUT.

Object	 Attribute Required Value

CallForFire targetLocation (within 300m of EUT)

TriggerAlert alertMessage “Sentinel CFF Alert: (name of

106

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

 CFF). “

107

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

4.5 The Logistics Assistance Capabilities

The Logistics Planning user-interface enables estimation of logistics requirements using
simple rules of thumb. The interface supports the projection of supplies for the supply
classes listed in Table 4.1. Currently the interface supports the following functionality:

•	 Subject to user input such as number of days, number of persons (or

units), and usage rate, the supply requirements are computed based on

default consumption rates as defined in the Staff Officers' Field Manual:

Organizational, Technical and Logistical Data Planning Factors (Vol.2)

•	 For ground vehicles, tracks in the IMMACCS Object Browser (IOB) can
be selected, and if consumption rate information is available for those
vehicles, then that value is used in the estimation of POL requirements
(i.e., Class III).

Figure 4.14: The Logistics Planning user-interface

Figure 4.14 displays a view of the Logistics Planning user-interface. The user may select
a supply class from the first column by clicking on the corresponding toggle button. This
results in the display of the appropriate categories and sub-categories, and the choices
available in that category for the selected supply class. Fields indicating the “Number of

108

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

People” and the ‘”Number of Days” can be modified at any time for an automatic
recalculation of the estimated supply requirements.

SupplyClass Description Sub Category Sub Sub Category Consumption Rate (CR)

CLASS I Subsistence
a) Food
b) Water

See Table 3 & 4.
4.03lbs. /person/pkg.

CLASS II
Secondary Items
(consumables,
expendables)

a) Clothing
b) Tenting

See Table 5. 3.67 lbs./person/day

CLASS III
Fuel & Petroleum
Products

a) Air
b) Ground

None 53.7 lbs./person/day

CLASS IV Construction
Construction
Materials

None 8.5 lbs./person/day

CLASS V Ammunition Ammunition None 31.29 lbs./person/day

CLASS VI
Person Demand
Items

Army & Air Force
Exchange Service

None 3.2 lbs./person/day

CLASS VII Major End Items Major End Items
1) Tanks
2) Vehicles
3) Aircraft

15 lbs./person/day

CLASS VIII Medical Medical
1) Medical
2) Dental
3) Veterinary

1.22 lbs./person/day

CLASS IX
Repair parts &
Components

RP&C None 2.5

Table 4.1: Summary of supply classes with corresponding consumption rates

The estimated supply requirements are calculated using the following expression:

Supplies = (number of days) x (number of people) x (consumption rate)

Food supplies are normally available in packages. Therefore, food supply requirements
are displayed in terms of the number of packages required for the parameters specified by
the user. Table 4.2 shows the various types of food packages available along with their
weight and content. The first two types are designed as individual meal packets. The third
type is for combat situations and is used where re-supply may be uncertain for as long as
10 days. In the case of the fourth package type a 1/2 packet (Summer) or 1 packet
(Winter) are normally issued per person per day. Ration Supplement ‘sundries pack’
contains items for the health and comfort of troops, and normally 1 packet per 100

109

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

persons per day is issued. The Ration Supplement ‘aid station’ makes approximately 100
8-oz drinks and is used at forward medical aid stations. The quantity of food supplies
required in terms of packages is calculated as follows:

Number of packages = supplies (lb) /type of packing (lb/pkg)

Type of Package Weight per Package (lb) Content of Package
Meal, ready to eat, individual 17.6 12 meals
Meal, ready to eat, combat
individual

 26 12 meals

Food packet, long range patrol 36 40 packets
Food packet, survival, general 20 24
Ration supplement, sundries pack 41 1
Ration supplement, aid station 16 1

Table 4.2: Summary of package types and weight for food packages.

Water supply requirements can be estimated individually for each sub-category or
cumulatively for all of the sub-categories. Table 4.3 provides the consumption rate
information for each water supply requirement sub-category.

Type of water requirement Consumption rate (gal/person/day)
 Drinking 1.5
 Hygiene 1.0
 Medical treatment 0.4

Table 4.3: Summary of water requirement categories with consumption rates

Table 4.4 displays the types of tents available along with their packed weight. The tenting
supplies are estimated in terms of the number of tents required. For all other supply
classes the default consumption rates specified in Table 4.1 are used as the basis of
calculations..

Type of tent Weight packed (lb)
Tent, vehicle maintenance 209
Tent, GP Large 820
Tent, GP medium 634

Table 4.4: Summary of tent supply types with corresponding weight

The Logistics Time Update Module: The Logistics Assistance capability includes a
Logistics Time Update module that periodically activates (i.e., fires) the Logistics agent.
This is necessary since the estimation of supply levels is time dependent and there are
currently no information updates in IMMACCS that would automatically activate the
Logistics agent to determine current supply levels. The Logistics Time Update module is

110

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

implemented as a single thread that periodically queries for the existence of supply
objects in the SharedNet and updates their “modified”' attribute, which in turn triggers
the Logistics agent to recalculate the current supply levels. The time interval between
these Logistics agent activations may be set by the user.

User Instructions: To utilize the Logistics Assistance capabilities the user clicks on the
“Tools” button in the IOB and selects the “Logistics Planning” option, and then proceeds
as follows:

To estimate supply requirements using default consumption rates:

1.	 Select a supply class

2.	 Select a sub-category if available.

3.	 Select a sub-sub-category if available.

4.	 Specify the number of days, number of persons (or units).

5.	 The required supplies are estimated using the information as
specified and the default consumption rates defined in Table 4.1.

To estimate POL requirements for tracks selected in the IOB view:

1.	 Select supply class CLASS III, sub-category Ground.

2.	 With the cursor positioned on the IOB map, press the ‘s’ key. This
initializes the ability to select tracks in the current view.

3.	 Select one or more tracks.

4.	 Press the ‘d’ key. This signals the end of the selection process.

5.	 Notice that the Logistics Planning Window reflects the consumption
rate information extracted from the selected track.

6.	 Enter the value for the number of units.

7.	 Enter the value for the daily usage rate.

8.	 Enter the value for the number of days.

9.	 The supplies required for the selected track(s) is estimated for the
number of days and the number of units with the specified daily
usage rate.

111

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

4.6 Utilizing the IMMACCS Scenario Driver

As discussed previously in Section 3.6, the ability of the Scenario Driver to record and
playback events in the IMMACCS Object Browser (IOB) is useful for testing, training,
and planning purposes. While the types of events generated by the Scenario Driver in
these simulations usually involve the movement of tracks, the Driver is equally capable
for injecting any kind of objects and object attribute changes into battlespace views.

From the user’s perspective the Scenario Driver is made up of several components.

•	 The playback control panel which features the following options:

1.	 The “Open” button for opening saved scenario files.
2.	 The “Record” button to begin recording a scenario file.
3.	 The “Save” button to terminate recording/saving a scenario file.
4.	 The “Play” button to start the playback of an open scenario file.
5.	 The “Step” button to playback an open scenario file incrementally.
6.	 The “Pause” button to pause a playing scenario file.
7.	 The “Stop” button to stop a playing scenario file.
8.	 The “?” or Help button to invoke the on-line Help system.

•	 The “Date” and “Time” group which displays the current date and time.

•	 The auto/manual toggle switch (i.e., “Auto” button) which allows the user to
select manual or automatic mode for the time and date information of events
while recording a scenario. The “Auto” setting records the events in real-
time, while the “Manual” setting allows the time and date to be specified as
the event is being recorded. This is useful if an event is scheduled or
expected to occur at a specific time.

•	 The “Delete All” button which deletes all the objects in the view. This is a

useful, but dangerous capability. If not used carefully, all objects in a view

could be inadvertently deleted.

•	 The “Reset” button which resets the view to the state of the snapshot file.

•	 The “Snapshot” button which records the current state of a view and assists
in returning a view to an initial state.

•	 The scenario playback speed control which allows the playback speed to be
increased up to 50 times the normal speed.

4.6.1 The Script Preparation Process

The creation of a scenario can be accomplished by either recording events as they
actually occur during the operation of the IMMACCS system or by scripting and
recording events off-line (e.g., for demonstration purposes). Scenarios may be
recorded at any time during the operation of IMMACCS. Once the IOB is running
and logged into a view, access to the Scenario Driver is gained by clicking on the
“Tools” button in the Menu Bar and selecting the “Open Scenario Driver” option.
The IOB will ask if a snapshot of the current view is required. An affirmative

112

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

answer creates a snapshot file that saves the current state of all the objects in the
displayed view. Following this sequence the Scenario Driver Control Panel is
displayed along the bottom of the IOB window, allowing the user to click on the
“Record” button to commence recording the activities as they occur in the view.

Preparing the Script: The recording of a specific scenario for demonstration purposes
requires some planning prior to the execution and recording of activities for subsequent
playback. The following step-by-step process is highly recommended:

Step 1:	 Determine the purpose of the demonstration.

Step 2: Prepare written scripts that fully develop the objects and relationships

that will be required in support of the demonstration.

Step 3:	 Start the IOB and subscribe to a view. If there are any objects that

need to be created in overall support of the scenario script they should

be created using the IOB template forms, prior to the next step.

Step 4:	 Access the Scenario Driver by clicking on the “Tools” button in the

Menu Bar and select the “Open Scenario Driver” option.

Step 5:	 Create a snapshot file of the current view to save the current state of

all objects in the view.

Step 6:	 Click on the “Record” button in the Scenario Driver Control Panel

which is displayed at the bottom of the IOB window.

Everything is now ready for the creation, deletion, movement, and modification of
attribute values, of objects through their templates in accordance with the scenario
scripts.

Saving the Completed Script: After all of the object manipulations have been completed,
the user must click on the “Save” button and enter a filename when prompted to save the
scenario script.

Testing the Scenario Script: To test the scenario it is necessary for the user to first click
on the “Reset” button and answer in the affirmative when asked if the view should be
reset. The user then clicks on the “Open” button, navigates to and selects the saved
scenario file, and clicks on “Open”. Finally, the user clicks on the “Play” button, and the
Scenario Driver will start to inject the pre-recorded scenario script into IMMACCS.

Exiting the Scenario Driver: To exit the Scenario Driver the user clicks on the “Tools”
button in the Menu Bar and selects the “Close Scenario Driver” option.

Exiting the IOB: To exit the IOB the user clicks on the “File” button in the Menu Bar,
selects the “Exit” option, and answers affirmatively in the confirmation dialogue box.

113

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

4.7 Using IMMACCS as a Training Tool

As discussed earlier in Section 4.1, IMMACCS represents a set of tools that collaborate
with each other and human users to solve problems. Among these the agents are the most
sophisticated and useful tools, principally due to their ability to spontaneously and
opportunistically communicate with the world that is external but nevertheless related to
their immediate knowledge domains. However, the communication from agent to agent
is not direct. In several respects this must be viewed as one of the most powerful features
of the IMMACCS architecture. First, this obviates the need for one agent to anticipate
what another agent might contribute to the problem solving process. In other words, each
agent operates independently within the community of agents. Similar to our human
world in which each person operates with a high degree of freedom, in IMMACCS the
agents are driven by the information that they receive and send to the SharedNet. This
creates an opportunistic and potentially adaptive environment, because the impact on the
agent community of the information that passes through the SharedNet is only partially
predictive.

Second, the absence of any direct linkages between agents greatly simplifies the design of
each agent, by essentially eliminating the need to consider interdependencies among
agents. Each agent constitutes a clearly defined set of capabilities that the agent can and
will exercise whenever the appropriate information becomes available. It is obviously
much easier to design these capabilities in isolation, without having to consider their
potential influence and impact on other parts of the system. In IMMACCS each agent is
an observer that watches the world represented in the Object Instance Store (OIS) of the
SharedNet, and contributes to this world subject to its interests and capabilities.

Third, the IMMACCS architecture considers every component, whether agent or user-
interface, to be a client to the SharedNet. This important concept leads to an entirely open
architecture that allows components to be readily added or deleted. Therefore,
IMMACCS can be viewed as an extensible environment in which no component (i.e.,
with the exception of the SharedNet) is indispensable, nor is any potential new
component unacceptable. There is, however, a need for a common language, in the same
way as that need exists in our human world. In IMMACCS this need is satisfied by the
Object Model.

These fundamental characteristics allow IMMACCS to function equally well as a
planning, execution and training environment, and support these functions concurrently.
The same functionality that is available during execution operations is available during
training. In other words, the map interface, the template interface, agent analysis, and
domain databases all function in the same manner, with the same capabilities, during a
training session as they will during actual operations. However, unlike execution mode in
which IMMACCS is mostly stimulated by external data feeds from the battlespace, a
training session may be driven by: the Scenario Driver; trainee users; trainer users; or,
any combination of all of these data feeds.

Script Driven: Whether for demonstration or training purposes a scenario file or multiple
scenario files may be created to depict actual battlespace situations. The creation,
destruction, modification, or movement of battlespace entities are scripted, recorded, and
then used to stimulate the system. Operators, acting as a single or multiple IMMACCS

114

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

clients then react and contribute to the situation. Driving IMMACCS in this manner,
with live operators interacting with the system, allows tactics, techniques, and procedures
to be tested, as well as providing the operators valuable opportunities for refining their
decision-making skills. Another positive aspect of using IMMACCS for training is that
the operators are honing their skills on the same system that they are using for planning
and execution.

Gaming Mode: IMMACCS may also be used in a highly dynamic mode allowing
multiple operators to engage each other in a gaming session. This mode of operation can
also be augmented with Scenario Driver scripts inserted by an independent party to add
uncertainty of operations (e.g., weather effects or civilian movements). One very specific
application of this mode of use is ‘Red Teaming’, where one group of operators is formed
for the specific purpose of testing tactics, techniques, and procedures in a simulated but
unscripted, live, real-time decision making environment.

115

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

116

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

5. The Urban Warrior AWE Field Test

Quoted from the Urban Warrior (UW) Advanced Warfighting Experiment (AWE) Plan
(MCWL 1999) prepared by the Marine Corps Warfighting Laboratory, the historical
roots of the fictitious context of the experiment dated back to the late 1940s.

“… prior to World War II, the territories of ORANGE and GREEN were
unified under a former colonial power. Today, the population in GREEN is
predominantly ethnic Boolean whose religion is Hagi. The population of
ORANGE is predominantly ethnic Furze whose religion is Monad. During the
colonial period a large number of Furze emigrated into GREEN where they
now make up a significant minority. The country of ORANGE became
independent in 1948 but turmoil and violence marked the years after
independence as the Booleans agitated for an independent state. In 1958 a
United Nations mandate created the independent country of GREEN from
territory formerly controlled by ORANGE. The creation of the independent
country of GREEN has created ongoing instability in Southwest CONUS
(SWC) as ORANGE has never accepted the loss of territory. Within GREEN,
the Furze minority have formed a political party, the Furze Democratic Union
Party (FDUP) whose goal is the reunification of GREEN with ORANGE. An
insurgent movement called the Furze Liberation Army (FLA) uses violence
and terrorism in pursuit of the same goal. ORANGE provides overt aid to the
FDUP and covert aid to the FLA. The government of ORANGE is based on
Monadian Law and is a religious oligarchy whose president is also the head of
the Monad Church. ORANGE has been antagonistic toward the United States
and the other Western powers, seeing US operations in the region as intrusive
and a challenge to its own desires to establish itself as the regional hegemonic
power. Western values and culture are viewed by Monads as decadent and
corrupt. GREEN was established as a democracy at its inception. It has
maintained good relations with the US and the other Western countries. It has
been a strong supporter of US operations in the region, seeing them as a
counterbalance to ORANGE aggression.”

The Urban Warrior (UW) Advanced Warfighting Experiment (AWE) Plan further
outlines the Road to Conflict that has progressively led to the current situation.

1990: The country of ORANGE initiates a long-term strategy to establish
regional hegemony among neighboring Third World nations in southwestern
CONUS (SWC), with which it has close cultural and religious ties. The
strategy is aimed at eliminating all foreign military presence from the region.

1991-1994: ORANGE fomented unrest in the region is exacerbated by a
growing inability of many countries in the region to satisfy the demands for
social services and jobs.

117

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

1994-1996: ORANGE provides overt and covert aid to anti-Western religious
groups and selected terrorist organizations in GREEN. Terrorist and militia
training camps in ORANGE support the Furze Liberation Army (FLA). The
Furze Democratic Union Party (FDUP) campaigns on a platform opposed to
the increasing penetration of Western culture in GREEN. They demand a
return to a society controlled by conservative Monad values. The FDUP gains
seats in Parliament. ORANGE begins a series of exercises designed to
demonstrate its ability to control the Strait of Barbara.

Dec.1996: Regional tensions increase. The forward deployed ARG/MEU and
CVBG are ordered to the SWC region. ORANGE begins moving forces into
its littoral areas bordering the Gulf of Catalina, particularly those areas
adjoining the Strait of Barbara.

Jan.1999: ARG/MEU and the CVBG arrive in theater. TF 31 is formed.

9 Jan.1999: FLA insurgents begin a stepped-up campaign of violence
intended to overthrow the government of GREEN and to reunify GREEN with
ORANGE.

Jan. to Feb.1999: Insurgent activities in the Francisco Bay Area result in a
degradation of living conditions as hostile elements attack infrastructure and
communications facilities. GREEN military operations against the insurgency
are hampered by the uncertain loyalty of certain GREEN Army units that are
led by Furzean officers and NCOs. The US State Department orders all
American citizens in GREEN to depart the country and issues a travelers
advisory for the region. While many Americans heed this warning a number
remain in country.

26 Feb.1999: GREEN capital of Francisco City suffers a 5.5 magnitude
earthquake. Significant damage to infrastructure, communications systems
and port facilities results. FLA insurgents seize the opportunity to increase the
tempo of their activities including harassment of commercial shipping
entering Francisco Bay.

1 Mar.1999: GREEN government requests the assistance of the US in
disaster relief and suppression of insurgents. Alert Order issued by
USCINCPAC.

3 Mar.1999: Evidence gathered of covert ORANGE logistic support to the
FLA and infiltration into GREEN of FLA insurgents from terrorist training
camps in ORANGE.

4 Mar.1999: NCA orders deployment of military forces from CONUS and
from other CINCs to the SWC region.

118

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

5 Mar.1999: NCA authorizes the employment of USCINCPAC forward
deployed forces, specifically an ARC with a MEU embarked and a CVBG.
Warning Order issued by USCINCPAC for operations in support of GREEN
in the Francisco Bay Area.

10 Mar.1999: Execution Order issued by USCINCPAC. TF 3l is directed to
commence humanitarian and peace operations in the Francisco Bay Area of
GREEN.

12 Mar.1999: TF 3l commences operations in the Area of Operation (AO).
Special Operations Force (SOF) teams are covertly deployed into ORANGE
territory for collection of intelligence and targeting on terrorist training camps,
SCUD launch sites, and routes of logistic support to FLA insurgents.

Summary descriptions of the demography and physical theater conditions of the AO are
provided in the Urban Warrior (UW) Advanced Warfighting Experiment (AWE) Plan, as
quoted below.

“… (a) Area of Operation (AO) has numerous mountain ridges and valleys
running parallel along a northwest axis, with numerous valleys used for
farming and cattle grazing. Majority of main supply routes traverse the valley
floors and along the coast. The San Andreas Rift zone is located on the
Francisco Peninsula. A major topographic land feature is the Santa Cruz
mountain range.”

“… (b) Francisco city (1990 pop. 723,959; metropolitan area 1,603,678), W
GREEN, on a peninsula between the Pacific and FRANCISCO Bay, which
are connected by the strait called the Golden Gate; inc. 1850. It is an industrial
nucleus, a market for mine and farm products, a transportation hub, and a
financial and insurance center. The bay area is GREEN's largest port and a
major center of trade. Its industries are increasingly white-collar but processed
food and clothing are produced; tourism is an economic mainstay. The city is
also the nation's cultural center. Founded by the Boolean traders in the early
17th Century, the city experienced rapid growth after the discovery of
precious metal deposits in the nearby mountains which caused the
colonization of the region by European powers. During this period of rapid
growth, ethnic Furzeans, attracted by jobs in the mining industry and trade
related businesses, began arriving from the east in large numbers. Initially, the
tension between the two groups remained under control mainly due to the
common antipathy toward the European colonists. The earthquake and fire of
April 18-20, 1906, devastated the city, but it was quickly rebuilt. On Oct. 17,
1989, another earthquake damaged the city, especially its Marina district. A
gracious, picturesque city with a mild climate, it is famous for its
individuality. Points of interest include its cable cars, which carry passengers
on its steep hills; the Francisco-Oakland Bay Bridge (opened 1936) and the
Golden Gate Bridge (opened 1937); Chinatown; Fisherman’s Wharf; and
numerous institutions of learning.”

119

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

5.1 Exercise Objectives and Commander’s Intent

The Commander’s Intent for the exercise, as quoted below from the Urban Warrior (UW)
Advanced Warfighting Experiment (AWE) Plan (MCWL 1999), placed particular
emphasis on the decision-support capabilities expected from IMMACCS.

“… I see our center of gravity as the Special Purpose MAGTF(X) and its
execution of the prescribed experiments. Our critical vulnerability is the
projection of the Common Tactical Picture (CTP) with integrated and
meaningful decision-support facilities, throughout the command and control
architecture of each experiment. As such, I view the successful integration of
the Integrated Marine Multi-Agent Command and Control System
(IMMACCS), within the overall experiment, as essential. I want to ensure that
the UW AWE features “concept based experimentation.” Per my previous
guidance, we will start with the USMC concept papers approved by CG
MCCDC, with a primary focus on “Future MOUT”. This concept paper
identifies seven capability areas that we will examine:

• Command and Control;
• Mobility / Countermobility;
• Measured Firepower;
• Survivability;
• Adaptability;
• Sustainability;
• Awareness.

… The UW AWE involves substantial experimental technologies but the
focus of effort remains on experimental Tactics, Techniques and Procedures.
In order to make our experiments relevant, we will create realistic crisis
response scenarios involving Humanitarian Assistance (HA) and related
events.”

Specific experimental objectives cited in the Urban Warrior (UW) Advanced Warfighting
Experiment (AWE) Plan include the following:

Capability to generate a Common Tactical Picture (CTP), including near
real-time injection of data into the Command and Control system.

Capability to automatically analyze information utilizing IMMACCS.

Capability to convert imagery (data) into IMMACCS objects.

Utilization of IMMACCS for decision-support.

Utilization of IMMACCS as the primary Command and Control system and
interface standard for other C4I systems.

120

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

5.2 The Final Operational Plan

The Urban Warrior Advanced Warfighting Experiment (AWE) was held on March 12 to
18, 1999, in the Monterey, San Francisco and Oakland region of the California Central
Coast. During this time IMMACCS was field tested as the Command and Control system
of record, with the main Experimental Combat Operations Center (ECOC) located on the
USS Coronado, an ECOC-Forward positioned on the Oak Knoll Naval Base in Oakland,
and over 100 laptop computers deployed among friendly units throughout the battlespace.
Each laptop computer included an integrated differential GPS device which automatically
sent periodic position reports to IMMACCS.

The operational plan of the AWE is best described as a series of warfighting and
humanitarian assistance experiments, characterized by: venue within the AWE theater;
principal participants and role players; operational timetable; objectives; and, actual
operations.

5.2.1 Overall Urban Warrior AWE Context

The overall operational context of the AWE is summarized below in terms of: hostile
forces; situation; description; and, garrison locations.

Hostile Forces:	 There were three potentially hostile forces involved in the
AWE, but of these the ORANGE armed forces played only
an indirect role.

•	 Hostile elements of the armed Forces of
GREEN (played by the 23rd Marines).

•	 Furze Liberation Army (FLA) (played by the
23rd Marines).

•	 Armed forces of ORANGE; - SCUD attacks
only.

Situation:	 Armed forces of GREEN are organized by regiment along
lines of religious affiliation, and mostly deployed along
border defending against ORANGE insurgence threat.
Regular GREEN units in San Francisco (Bay Area) are
neutral. Majority (90%) of GREEN armed forces and
citizens are NOT anti-USA.

The 23rd Marines (23rd MRR), composed mostly of Monad
followers (Furze supporters), is considered unreliable and
therefore has been kept in garrison.

SPMAGTF(X) has a potential problem distinguishing
friendly/neutral GREEN armed forces from hostile
GREEN armed forces.

121

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Description:	 The 23rd MRR (Motorized Rifle Regiment) is a full-
strength truck-mounted infantry unit with average
proficiency. The 23rd MRR is based on a standard BTR
equipped MRR with trucks and some LAVs substituted for
BTRs. Members of the 23rd MRR are strongly anti-USA
and support the Furze Democratic Union Party (FDUP).

Garrison Locations:	 Garrison locations of the 23rd MRR fall into three
categories: notional (assumed); simulated (JCATS); and,
real players.

23rd MRR HQ ………… Stockton (real players)
1st MRB ……………….
2nd MRB ………………
3rd MRB ………………
23rd TK Bn ……………
23rd Arty Bn …………..

Livermore
San Jose
Merced
Stockton
Stockton

(real players)
(notional)
(notional)
(simulated)
(simulated)

other MRR elements …. Stockton (various)

5.2.2 The Monterey Experiment

Furze Liberation Army (FLA) forces have occupied the city of Monterey, effectively
controlling the city. FLA forces are reported to be constructing biological weapons in the
vicinity of the Defense Language Institute (DLI). Local police are ineffective in
countering the threat and GREEN military forces are unavailable. GREEN requests
assistance from the US. JECG issues FRAGO requiring the SPMAGTF(X) to conduct
operations in relief of terrorist activity in the vicinity of Monterey, including a
Weapons of Mass Destruction (WMD) threat.

EAO (site) Limits: Naval Postgraduate School (NPS) and Defense Language Institute
(DLI), Monterey.

SPMAGTF(X): Tasked to retake vital sites, prevent further bloodshed between rival
groups, and neutralize WMD threat. In addition, SPMAGTF(X) tasked to insert
Operational Maneuver Element (OME) for operation during and beyond Monterey
Experiment.

OPFOR: Militia forces occupy both sites (i.e., DLI and NPS).

Civilians: 200 role-players from 23rd Marines act as civilians, divided into 100 ethnic
Booleans and 100 ethnic Furze. In addition, 25 foreign language speakers are attached to
each of the two civilian groups.

122

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

(Thu.) Mar.11:	 MCWL establishes Experiment Operations Division at Monterey sites.

Mar.12 (12:00):	 MCWL establishes the Monterey Experiment Area of Operation (EAO), the
EXCON Operations Center and the Lab Experiment Control Center (LECC).

 (12:00):	 SPMAGTF(X) inserts reconnaissance forces into Monterey EAO.

 (16:30):	 EXCON terminates experimental operations.

Mar.13 (07:30):	 MCWL re-establishes the Monterey EAO.

 (08:00):	 SPMAGTF(X) lands first unit (adaptability option 1) across the beach at NPS
and seizes terrorist held positions.

 (13:00):	 SPMAGTF(X) lands second unit (adaptability option 2) across the beach at
NPS and repeats attack.

SPMAGTF(X) uses its third company and other forces as required to conduct
operations at DLI in one iteration. These operations include landing of forces
in support of a mass casualty drill conducted by the City of Monterey (incl.
deployment of ASSTC, security forces to augment local police, and other
support).

SPMAGTF(X) lands the OME forces.

(16:30):	 EXCON terminates experiment operations. All friendly forces, except the OME
force, re-embark on amphibious shipping.

Mar.14 (06:00):	 MCWL establishes EXCON (mobile) for control of the OME experiment.

 (08:00):	 OME executes maneuver along assigned route and occupies assigned
blocking positions at Fort Baker and Moffet Airfield. OME updates the
Common Tactical Picture (CTP) at assigned intervals and resupplies itself at
the pre-staged cache.

(16:00):	 After both sites are secured by OME, EXCON makes the PAUSEX signal to
pause the experiment. After debriefing and analysis, OME units remain in
position until ordered by the SPMAGTF(X) to link up with SPMAGTF(X)
forces in the Presidio (San Francisco).

Objectives:	 SPMAGTF(X) to conduct operations in relief of terrorist activity
in vicinity of Monterey, including a WMD threat, and conduct
OME operations. Specific objectives include:

� Sniper acquisition and suppression.
� Urban navigation
� Integration of Monterey Police and Fire Department.
� OME secures Moffet Airfield
� OME isolates landing area on north side of Golden

Gate Bridge

Operations:	 SPMAGTF(X) [CE] commands and controls tactical operations
from the sea, and generate and maintain CTP while at sea.

123

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

SPMAGTF(X) [CE] uses reach-back communications to request
and receive additional intelligence products.

SPMAGTF(X) [CE] employs CBIRF elements ashore to neutralize
WMD threat.

SPMAGTF(X) [CE] employs reconnaissance forces and
establishes Civil Military Operations Center (CMOC) in
cooperation with local authorities.

SPMAGTF(X) [ACE] Provides assault support and offensive air
support sorties as required by tactical operations.

SPMAGTF(X) [CSSE] Demonstrates capability to provide
sustainment for forces ashore from the sea-base.

SPMAGTF(X) [CSSE] Demonstrates capability to provide
humanitarian assistance in the form of surgical care in coordination
with local health authorities.

SPMAGTF(X) [CSSE] Demonstrates capability to operate COTS
tactical communications equipment.

SPMAGTF(X) [CSSE] Demonstrates capability to operate EUTs
to exploit the CTP for tactical decision making down to the squad
leader level.

SPMAGTF(X) [GCE] Utilizes reconnaissance elements as
required, plus three Reinforced Rifle Companies.

SPMAGTF(X) [GCE] Demonstrates capability to operate COTS
tactical communications equipment.

SPMAGTF(X) [GCE] Demonstrates capability to operate EUTs to
exploit the CTP for tactical decision making down to the squad-
level leader.

SPMAGTF(X) [GCE] Demonstrates capability to utilize the
MCFS to locate, suppress and neutralize snipers in an urban
environment.

SPMAGTF(X) [GCE] Demonstrates capability to employ unique
task organized maneuver units tailored to the requirements of
urban combat.

5.2.3 The Concord Experiment

A large conventional force threat develops outside of San Francisco triggering the
requirement to establish a reconnaissance screen along the major avenues of approach.
Per the developing scenario SPMAGTF(X) establishes Reconnaissance, Surveillance
and Target Acquisition (RSTA) in the EAO (i.e., Concord Naval Weapon Station).
Reconnaissance forces provide CTP (friendly and OPFOR) via EUTs. During the
mission SPMAGTF(X) uses experimental Tactics, Techniques and Procedures (TTPs)
to resupply reconnaissance units ashore from the sea base.

124

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

EAO (site) Limits: Concord Naval Weapons Station, Concord, and Moffet Airfield.

SPMAGTF(X): Tasked to establish a reconnaissance screen along the major avenues of
approach into the city of San Francisco. After completion of operations in the vicinity of
Monterey, the SPMAGTF(X) proceeds north. The OME will land with other forces
during the Monterey Experiment phase on March13 and occupy a simulated blocking
position as part of the Monterey Experiment. When EXCON ends the Monterey
Experiment, the OME will occupy a staging area until the EAO for the OME is activated
by EXCON. The OME will then travel along the assigned route toward San Francisco,
stopping at predefined intervals to update the CTP through digital communication and to
resupply at the pre-staged cache. On reaching assigned blocking positions at Moffet
Airfield, the OME occupies the site until ordered to link up with other SPMAGTF(X)
forces.

OPFOR: Uses military motor transport assets to move a large conventional force into
the city of Oakland. OPFOR occupies sites between Monterey and the blocking positions
to be established by the SPMAGTF(X). Commercial shipping on the Sacramento River
will simulate simultaneous OPFOR movement along that waterway.

Civilians: None involved in this exercise.

(Mon.) Mar.15: MCWL coordinates with local officials at Concord NWS for the establishment
of Concord Experiment Area of Operation (EAO).

Mar.17 (08:00): SPMAGTF(X) inserts dismounted reconnaissance teams into Concord and
Moffet Airfield, using helicopters. These teams establish Observation Posts
(OPs) overlooking avenues of approach into San Francisco. Reconnaissance
teams request support, and call in supporting fires to engage targets.

 (12:00): EXCON sounds PAUSEX to signal reconnaissance teams to move from OPs to
checkpoints Quebec and November.

Mar.18 (08:00): SPMAGTF(X) dismounted reconnaissance teams reoccupy OPs to accomplish
experimental objectives.

(16:00):	 EXCON terminates experiment operations. SPMAGTF(X) transports
dismounted reconnaissance teams from checkpoints Quebec and November to
Pier 35 for analysis and debriefing.

Objectives:	 SPMAGTF(X) to provide inputs for the command and control
experiment, generate and maintain a Common Tactical Picture
(CTP), plan and execute measured firepower, and deliver
sustainment to requesting units ashore. Specific objectives include:

�	 Extension of CTP eastward using sensors.
�	 RSTA (Reconnaissance, Surveillance and Target

Acquisition) including robotics.
�	 CSS (Combat Support Services) from sea base.

125

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Operations:	 SPMAGTF(X) [CE] Generates and maintains CTP (Common
Tactical Picture).

SPMAGTF(X) [ACE] Provides assault support to resupply forces
from sea base.

SPMAGTF(X) [CSSE] Demonstrates capability to provide
sustainment for forces ashore from the sea-base (specifically to use
cache TTPs (Tactics, Techniques and Procedures) to resupply the
OME.

SPMAGTF(X) [GCE] Demonstrates capability to generate a CTP.

SPMAGTF(X) [GCE] Demonstrates capability to execute TTPs
(Tactics, Techniques and Procedures) associated with measured
firepower.

SPMAGTF(X) [GCE] Demonstrates capability to resupply from a
pre-staged cache.

Background: Urban Warrior AWE Operational Maneuver Element (OME) operations
will attempt to exploit emerging technologies to demonstrate the potential for expanding
the role of OME for future Marine Corps forces.

OME represents a concept for employing MAGTFs or elements of MAGTFs to attack
vulnerable enemy positions with the objective of reducing the center of gravity of the
enemy, all as part of the joint campaign of a JTF (Joint Task Force).

A sea-based MAGTF (with integrated C2, air, ground and logistics elements) is ideally
suited for providing this capability; - a capability that can be used as: an enabling force;
a decisive force; or, an exploitation force.

5.2.4 The Oak Knoll Experiment

GREEN nation requests Humanitarian Assistance (HA). Over time, the situation
deteriorates from permissive HA, to some opposed patrolling, and finally to combat with
militia and conventional forces. The last two days of the experiment require the
SPMAGTF(X) to deal with ‘3-block war’ situations.

EAO (site) Limits: Oak Knoll base.

SPMAGTF(X): Tasked to provide HA in an increasingly hostile environment, ending
with ‘3-block war’ situations.

OPFOR: Reinforced Platoon of Urban Militia, and a Reinforced Company of
conventional aggressor forces.

Civilians: 200 personnel representing local government and local population.

126

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

(Sun.) Mar.14: MCWL establishes the Oak Knoll EAO.

Mar.15 (08:00): SPMAGTF(X) uses aviation mobility to secure a HA site at Fort Winfield
Scott. In addition, SPMAGTF(X) establishes other security forces ashore.

After the landing the Coronado moves to Pier 35.

 (16:30): EXCON pauses (PAUSEX) experimental operations for this day.

Mar.16 (08:00): SPMAGTF(X) uses experimental means to provide HA at Fort Winfield Scott
and employs advanced force protection means in this operation.

(16:30): EXCON pauses (PAUSEX) experimental operations for this day.

Mar.17 (08:00): SPMAGTF(X) continues HA operations at Fort Winfield Scott.

SPMAGTF(X) conducts combined arms assault against OPFOR forces
located at the Oak Knoll Public Health Hospital.

(16:30): EXCON pauses (PAUSEX) experimental operations for this day.

Mar.18 (08:00): SPMAGTF(X) continues HA operations at Fort Winfield Scott.

SPMAGTF(X) conducts combined arms assault against OPFOR forces
located at the Oak Knoll Public Health Complex (PHC).

(16:30): EXCON ends (ENDEX) experimental operations.

Objectives:	 SPMAGTF(X) to conduct humanitarian assistance in an
increasingly hostile environment, ending with ‘3-block war’
situations. Specific objectives include:

� Adaptability of Maneuver Elements.

� Urban casualties (CAS).

� TRAP (Tactical Recovery of Aircraft Personnel) and

SERE.
� CSS (Combat Support Services) support.
� Target detection/location for Combined Arms Attacks.
� Measured fire power for Combined Arms Attacks.
� Red Cell C4I system capabilities.

Operations:	 SPMAGTF(X) [CE] Demonstrates command and control
capabilities related to experimental objectives.

SPMAGTF(X) [ACE] Plans and executes offensive air support
missions using measured firepower weapon sets.

SPMAGTF(X) [ACE] Plans and executes sustainment missions
using assault support aircraft, to resupply forces from the sea-base.

SPMAGTF(X) [CSSE] Demonstrates capability to operate COTS
tactical communications equipment.

127

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

SPMAGTF(X) [CSSE] Demonstrates capability to execute precise
navigation in dense urban areas.

SPMAGTF(X) [CSSE] Demonstrates capability to operate EUTs
to exploit the CTP for tactical decision making down to the squad-
level leader.

SPMAGTF(X) [GCE] Demonstrates capability to operate COTS
tactical communications equipment.

SPMAGTF(X) [GCE] Demonstrates capability to execute precise
navigation in dense urban areas.

SPMAGTF(X) [GCE] Demonstrates capability to operate EUTs to
exploit the CTP for tactical decision making down to the squad-
level leader.

SPMAGTF(X) [GCE] Demonstrates capability to utilize the
MCFS to locate, suppress and neutralize snipers in an urban
environment.

SPMAGTF(X) [GCE] Demonstrates capability to organize combat
and combat support units to meet the requirements of urban
combat.

SPMAGTF(X) [GCE] Demonstrates capability for squad leaders
to make enhanced combat decisions.

5.2.5 The Embarcadero Experiment

Threat forces occupy key positions in the Embarcadero Experiment Area of Operation
(EAO). These key positions are required to be retaken and the security of the area
restored.

EAO (site) Limits: Embarcadero area (dense urban terrain) between Market Street,
Beach Street, Gough Street, Turk Street, and the Bay of San Francisco.

SPMAGTF(X): Tasked to retake key positions and conduct security operations in the
area, in the manner of a Technical Exercise Without Troops (TEWT).

OPFOR: Selected major elements of the OPFOR will be placed into the EAO. Most of
these forces will be simulated, but specifically one Platoon and one 5-person team of
Militia will play a live role in the Embarcadero EAO.

Civilians: Non-participating civilians in the area will provide a passive context for the
experiment.

(Mon.) Mar.15: MCWL establishes the Embarcadero EAO, San Francisco.

 (19:30): SPMAGTF(X) forces maneuver in the EAO to complete experiments

128

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

 (23:00): EXCON pauses (PAUSEX) experimental operations for this day.

Mar.16 (10:00): MCWL re-establishes the Embarcadero EAO, San Francisco.

 (11:30): SPMAGTF(X) forces maneuver in the EAO to complete experiments.

 (16:00): EXCON pauses (PAUSEX) experimental operations for this day.

Objectives:	 SPMAGTF(X) to use conventional and experimental urban
navigation Tactics, Techniques and Procedures (TTPs) to establish
and locate caches, acquire and identify potential threat targets, and
use experimental COTS communications. Specific objectives
include:

� Navigation in urban canyons.
� Tactical communication.
� Target acquisition and detection.

Operations:	 This experiment will be conducted in two iterations with identical
resources: one during the day; and, one at night.

SPMAGTF(X) [CE] Demonstrates capability to generate and
maintain the Common Tactical Picture (CTP).

SPMAGTF(X) [CSSE] Demonstrates capability to establish and
mark urban caches.

SPMAGTF(X) [GCE] Demonstrates capability to operate COTS
tactical communications equipment.

SPMAGTF(X) [GCE] Demonstrates capability to execute precise
navigation in dense urban areas.

SPMAGTF(X) [GCE] Demonstrates capability to operate EUTs to
exploit the CTP for tactical decision making down to the squad-
level leader.

SPMAGTF(X) [GCE] Demonstrates capability to operate and
employ thermal sights and AN/PVS-14s for target acquisition and
identification.

129

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

5.3 Performance of IMMACCS During the AWE

During this extensive field test IMMACCS proved to be a functional success, and the
concept of providing effective and adaptive decision-support through the use of
collaborative expert agents was essentially validated. The following specific observations
relating to the various functional and operational components of IMMACCS were
recorded during and after the AWE.

The SharedNet: The SharedNet performed generally very well during the AWE, both in
terms of reliability and transaction speed. There were some minor problems when the
IMMACCS system needed to be restarted and the Object Instance Store (OIS) had to be
reloaded. This was later diagnosed as being apparently due to sequencing problems in
the distributed deletion capability of object instances. The ability to repopulate the OIS
from any past point in time, as required, was noted as a desirable future enhancement.

It was further indicated that it would be preferable for the SharedNet rather than the
clients to take responsibility for cleaning up object associations after the deletion of
object instances. Also, an increase in the granularity and complexity of query and
subscription capabilities, as well as support for spatial queries, were both identified as
being a requirement for additional agent-support decision assistance capabilities.

The Agent Engine: The Agent Engine performed satisfactorily during the AWE. When
started and allowed to grow with the day’s events the Agent Engine performed very well.
If the Agent Engine needed to be restarted after a very large number of events had been
processed it labored to catch up. The Agent Engine suffered most from a lack of
information to reason on, and from time to time the objectified information in the system
was inadvertently deleted by other components and/or operators.

As the principal data feed from the battlespace, the laptop computers operated by the
Marines proved to be awkward and inadequate under combat conditions. Poor wireless
data transmission conditions in urban canyons and inside buildings, as well as battery
failures and inadequate training of operators, were identified as significant obstacles. In
addition, the Marines showed a distinct preference for entering free text rather than
defining their messages within the framework of the Object Model. As a result the
development of a key word recognition capability has been identified as a necessary
enhancement. It is proposed to combine this new capability with a voice recognition
facility for the next major IMMACCS field test scheduled for Spring 2001.

The IMMACCS Object Browser (IOB): The utilization of the IOB was limited to the
ECOC and the ECOC-Forward during the AWE field test. While it was recognized that
the IOB provides a powerful IMMACCS user-interface, it was found to be somewhat
overwhelming to the military operator in its current state. Further development work is
indicated to allow the IOB to be customized based upon its operational level.

However, immediately prior to the AWE the IOB demonstrated its ability to create
infrastructure objects on-the-fly, when the principal experimental site of the AWE was
required to be relocated from the Presidio in San Francisco to the Oak Knoll Naval Base
in Oakland. Over a 48-hour period the greater part of the Oak Knoll site (i.e., comprising

130

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

more than 60 buildings) was objectified on-the-fly utilizing an available map, a GPS
device and the IOB.

The Legacy System Translator(s): These translators, which were required to map data
received from external systems to the IMMACCS Object Model and vice versa,
performed quite well during the AWE. The data translation rate for external systems was
satisfactory at most times throughout the AWE. Although the data transfer rates from the
Experiment Control (EXCON) and simulation systems were initially insufficient and
problematic, this situation was satisfactorily resolved through fine-tuning of the translator
engine before the end of the AWE.

It is indicated that the translator engine should be given additional functionality prior to
the next major field test (i.e., in Spring 2001). For example, the translators could
subscribe to signals (i.e., information) from agents providing advice on what kind of
information is required more urgently (at this point in time) and what kind of information
could be temporarily stored externally to the SharedNet for possible later push to the OIS.
Also, it has been suggested that the translators should be able to send information to the
SharedNet that deals with the information management function in addition to the
information content.

Geographic Infrastructure Database (GIDB): The performance of the GIDB was
adequate though it was felt that the full richness of the data available from NIMA (and
objectified by the GIDB) was not used effectively because of operational and user
interface limitations that existed in the battlespace.

It was noted that there is a need to build a closer working relationship with NIMA and at
the same time be able to independently create infrastructure objects on-the-fly for
relatively small areas. Additionally, there is a need for a geo-spatial search capability
within the IMMACCS system environment. Such a facility is an essential requirement
for more sophisticated agent activity that would take advantage of the richer level of
NIMA data that was mostly not used during the AWE. Further exploration is necessary
to determine how such a spatial search facility should be incorporated in IMMACCS.

131

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

132

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

6. References and Bibliography

Bancilhon F., C. Delobel and P. Kanellakis (eds.) (1992); ‘Building an Object-Oriented
Database Systems’; Morgan Kaufman, San Mateo, CA.

Coad P. and M. Mayfield (1999); ‘Java Design: Building Better Apps & Applets’;
Yourdon Press, Upper Saddle River, New Jersey.

Conwell C. (1995); ‘Joint Warfare Simulation Object Library’; Naval Command, Control
and Ocean Surveillance Center, RDT&E Division, June.

Darnell R. (ed.) (1997); ‘HTML’; Sams.net Publishing, Indianapolis, Indiana.

DARPA (1996); ‘Object Model Working Group Command and Control Schema’;
Washington (DC), October.

DoD (1996); ‘Department of Defense Interface Standard, Common Warfighting
Symbology’; MIL-STD-2525A, Washington (DC), December.

Forgy C. (1982); ‘Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem’; Artificial Intelligence, Vol.19 (pp.17-37).

Fowler M. and K. Scott (1997); ‘UML Distilled: Applying the Standard Object Modeling
Language’; Addison-Wesley, Reading, Massachusetts.

Gamma, Helm, Johnson and Vlissides (1995); ‘Design Patterns: Elements of Reusable
Object-Oriented Software’; Addison-Wesley, Reading, Massachusetts.

Giarratano J. and G. Riley (1994); ‘Expert Systems: Principles and Programming’; 2nd

edition, PWS Publishing Company, Boston, Massachusetts.

Gray S. and R. Lievano (1997); ‘Microsoft Transaction Server 2.0’; SAMS Publishing,
Indianapolis, Indiana.

GRC (1996); ‘The Joint Warfare System Object Model’; Office of the Secretary of
Defense, Director for Program Analysis and Evaluation, The Joint Warfare System
Office, September.

Hayes-Roth F., D. Waterman and D. Lenat (eds.) (1983); ‘Building Expert Systems’;
Addison-Wesley, Reading, Massachusetts.

IONA (1996); ‘Orbix Web: Programming Guide’; IONA Technologies Ltd., Dublin,
Ireland.

133

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Jennings N., K. Sycara and M. Wooldridge (1998); ‘A Roadmap of Agent Research and
Development’; Autonomous Agents and Multi-Agent Systems, Vol.1 (pp.7-38).

Lamport L. (1998); ‘LaTeX: A Document Preparation System’; Addison-Wesley,
Reading, Massachusetts.

Lewis B. and D. J. Berg (1996); ‘Threads Primer: A Guide to Multithreaded
Programming’; SunSoft Press; Mountain View, California.

MCWL (1999); ‘Urban Warrior Advanced Warfighting Experiment Plan’; Marine Corps
Warfighting Laboratory, Quantico, Virginia.

Minsky M. (1982); “Why People Think Computers Can’t”; AI Magazine, 3(4), Fall.

Mowbray T. and R. Zahavi (1995); ‘The Essential CORBA: Systems Integration Using
Distributed Objects’; Wiley, New York, New York.

Myers L. and J. Pohl (1994); 'ICDM: Integrated Cooperative Decision Making - in
Practice'; 6th IEEE International Conference on Tools with Artificial Intelligence, New
Orleans, Nov. 6-9.

Myers L., J. Pohl, J. Cotton, J. Snyder, K. Pohl, S. Chien, S. Aly and T. Rodriguez
(1993); 'Object Representation and the ICADS-Kernel Design'; Technical Report,
CADRU-08-93, CAD Research Center, Design and Construction Institute, College of
Architecture and Environmental Design, Cal Poly, San Luis Obispo, CA, January.

NASA (1992); ‘CLIPS 6.0 Reference Manual’; Software Technologies Branch, Lyndon
B. Johnson Space Center, Houston, Texas.

NCTSI (1995); ‘Operational Specification for Over-the-Horizon Targeting Gold’; OS-
OTG (Rev. B) (Ch. 1), Navy Center for Tactical Systems Interoperability, August.

Orfali R., D. Harkey and J. Edwards.(1996); ‘The Essential Distributed Objects Survival
Guide’; Wiley, New York, New York.

Penmetcha K., A. Chapman and A. Antelman (1997); ‘CIAT: Collaborative
Infrastructure Assessment Tool’; in Pohl J. (ed.) Advances in Collaborative Design and
Decision-Support Systems, Focus Symposium: International Conference on Systems
Research, Informatics and Cybernetics, Baden-Baden, Germany, Aug.18-22 (pp.83-90).

Pohl J. (1998); ‘The Future of Computing: Cyberspace’; in Pohl J. (ed.) Advances in
Collaborative Decision-Support Systems for Design, Planning, and Execution, focus
symposium: International Conference on Systems Research, Informatics and Cybernetics,
Baden-Baden, Germany, August 17-21 (pp.9-28).

134

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Pohl J., A. Chapman, K. Pohl, J. Primrose and A. Wozniak (1997); ‘Decision-Support
Systems: Notions, Prototypes, and In-Use Applications’; Technical Report, CADRU-11-
97, CAD Research Center, Design Institute, College of Architecture and Environmental
Design, Cal Poly, San Luis Obispo, California, Jan.

Pohl J. (1997); ‘Human-Computer Partnership in Decision-Support Systems: Some
Design Guidelines’; in Pohl J. (ed.) Advances in Collaborative Design and Decision-
Support Systems, Focus Symposium: International Conference on Systems Research,
Informatics and Cybernetics, Baden-Baden, Germany, Aug.18-22 (pp.71-82).

Pohl K. (1998); ‘The Round-Table Model: A Web-Oriented Agent-Based Framework for
decision-Support Applications’; in Pohl J. (ed.) Advances in Collaborative Decision-
Support Systems for Design, Planning, and Execution, focus symposium: International
Conference on Systems Research, Informatics and Cybernetics, Baden-Baden, Germany,
August 17-21 (pp.47-59).

Pohl K. (1997); 'ICDM: A Design and Execution Toolkit for Agent-Based, Decision-
Support Applications'; in Pohl J. (ed.) Advances in Collaborative Design and Decision-
Support Systems, focus symposium: International Conference on Systems Research,
Informatics and Cybernetics, Baden-Baden, Germany, August 18-22 (pp.101-110).

Pohl K. (1995); ‘KOALA: An Object-Agent Design System’; in Pohl J. (ed.) Advances in
Cooperative Environmental Decision Systems, Focus Symposium: International
Conference on Systems Research, Informatics and Cybernetics, Baden-Baden, Germany,
Aug.14-18 (pp.81-92).

Pohl K. (1995); 'CMS: A PVM-Based Communication Facility for Cooperative Systems';
in Pohl J.(ed.) Advances in Cooperative Computer-Assisted Environmental Design
Systems, focus symposium: 8th International Conference on Systems Research,
Informatics and Cybernetics, Baden-Baden, Germany, August 16-20.

Siegel J. (ed.) (1996); ‘CORBA: Fundamentals and Programming’; Wiley, New York,
New York.

Wooldridge M. and N. Jennings (1995); ‘Intelligent Agents: Theory and Practice’; The
Knowledge Engineering Review, 10(2) (pp.115-152).

135

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

136

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

7. Appendices

7.1 APPENDIX A: IMMACCS Object Model Sample

7.2 APPENDIX B: Glossary of Terms

137

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

138

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

7.2 Appendix B: Glossary of Terms

AAV: Amphibious Assault Vehicle
ACTD: Advanced Concept Technology Demonstration

AD: Alert Daemon
AFATDS: Advanced Field Artillery Tactical Data System

AFFOR: Air Force Forces
AMHS: Automated Message Handling System

AO: Area of Operation
AOI: Area Of Interest
API: Application Programming Interface

ARFOR: Army Forces
ARG: Amphibious Ready Group

AS: Alert Server
ASAS: All Source Analysis System

ASSTC: Advanced Surgical Suite Trauma Center
AUTODIN: Automatic Digital Network

AWE: Advanced Warfighting Experiment

BDA: Battle Damage Assessment
Boolean: ethnicity of GREEN nation (also: Boolean algebra – a system of symbolic logic)

C3CM: Command, Control, and Communications Countermeasures
C4I: Command, Control, Communications, Computers, and Intelligence

CAD: Computer-Assisted Design
CADRC: CAD Research Center, Cal Poly, San Luis Obispo

CAG: Civil Affairs Group
CBIRF: Chemical-Biological Incident Response Force

CCIR: Commander’s Critical Information Requirements
CDS: Combat Development System

CE: Command Element
CEB: Combat Engineer Battalion
CEP: Circular Error of Probability
CFF: Call For Fire
CG: Commanding General

CGM: Computer Graphics Metafile
CI: Counter Intelligence

CLIPS: C Language Integrated Production System
CMOC: Civil Military Operations Center

COMSEC: Communications Security
CONPLAN: Contingency Plan

CONUS: Continental United States
COOL: CLIPS Object-Oriented Language

CORBA: Common Object Request Broker Architecture
COTS: Commercial off The Shelf software

CP: Command Post
CQB: Close Quarter Battle

CS: Combat Support
CSS: Combat Service Support

CSSOC: Combat Service Support Operations Center
CTP: Common Tactical Picture

CVBG: Aircraft Carrier Battle Group

DAMS: Dynamic Air Management System
DISA: Defense Information Systems Agency

187

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

DLI: Defense Language Institute
DML: Design Meta-Language
DoD: US Department of Defense

DOTES: Doctrine, Organization, Tactics, Equipment, and Support

EAO: Experiment Area of Operations
ECOC: Experimental Combat Operations Center

ECR: Effective Casualty Radius
ECS: Enhanced CSSOC System
ELB: Extended Littoral Battlefield

ELMO: Experiment Land Management Officer
ENDEX: End Experiment

ES: Electronic Surveillance
EUT: End-User Terminal

EXCON: Experiment Control

Furze: ethnicity of ORANGE nation (changed from Fanta)
FBE E: Fleet Battle Experiment Echo
FDUP: Furze Democratic Union Party
FEAT: Force Employment Analysis Tool

FIIU: Force Imagery Interpretation Unit
FIWC: Fleet Information Warfare Center

FLA: Furze Liberation Army
FOUO: For Official Use Only

FRAGO: Fragmentary Order

GAF: GREEN Air Force
GIS: Geographic Information System

GNDP: GREEN National Democratic Party
GPS: Global Positioning System

GREEN: AWE friendly (host) nation

H&S: Headquarters and Service
HA: Humanitarian Assistance

Hagi: religion of Booleans
HTML: Hypertext Markup Language

HUMINT: Human Intelligence

IAE: IMMACCS Agent Engine
ICDM: Integrated Collaborative Decision Model

ICDM-V2: Integrated Collaborative Decision Model – Version 2
ID: Identification

IDL: Interface Definition Language (CORBA-based)
IGRS: Integrated GPS Radio Station
IIOP: Internet Inter-ORB Protocol

IMMACCS: Integrated Marine Multi-Agent Command and Control System
IP: Internet Protocol

IOB: IMMACCS Object Browser
IOM: IMMACCS Object Model
ITT: Interrogator-Translator team

JCATS: Joint Combat And Tactical Simulation (software system)
JECG: Joint Exercise Control Group

JFLCC: Joint Force Land Component Commander
JFMCC: Joint Force Maritime Component Commander

JIB: Joint Information Bureau

188

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

JMCIS: Joint Maritime Command Information System
JPL: Jet Propulsion Laboratory, California Institute of Technology

JTW: Joint Targeting Workstation

LAR: Light Armored Reconnaissance (vehicle)
LAWS: Land Attack Warfare System
LECC: Lab Experiment Coordination Center

LHS: Left Hand Side
LLTV: Low Light TV
LOAC: Law Of Armed Conflict
LOW: Law Of War

MACG: Marine Air Control Group
MAGTF: Marine Air Ground Task Force

MALS: Marine Aviation Logistics Squadron
MARFOR: Marine Forces

MBC: Maritime Battle Center
MCSIT: Multi C4I Systems IMMACCS Translator
MCWL: Marine Corps Warfighting Laboratory
MGRS: Military Grid Reference System
Monad: religion of Furze
MCFS: Mobile Counter-Fire System (or Marine Counter-Fire System

MCWL: Marine Corps Warfighting Laboratory
MEDEVAC: Medical Evacuation

MEF: Marine Expeditionary Force
MEU: Marine Expeditionary Unit

MIL-STD: Military Standard
MOUT: Military Operations in Urban Terrain

MRR: Motorized Rifle Regiment
MSE: Major Subordinate Element

MSEL: Master Scenario Events List
MSPF: Maritime Special Purpose Force

MSWG: Marine Support Wing Group

NAG: National Assessment Group
NAI: Named Area of Interest

NASA: National Aeronautics and Space Administration (US)
NBC: Nuclear, Biological, and Chemical
NCA: National Command Authority
NCIS: Naval Criminal Investigative Service
NCO: Non-Commissioned Officer
NGO: Non-Government Organizations
NPS: Naval Postgraduate School
NRL: Navy Research Laboratory
NSA: National Security Agency

NWS: Naval Weapon Station

OAS: Offensive Air Support
ODE: Officer Directing the Experiment
OIR: Other Intelligence Requirements
OIS: Object Instance Store

OME: Operational Maneuver Element
OML: Object Management Layer

OODBMS: Object-Oriented Database Management System
OP: Observation Post

OPCON: Operational Control

189

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

OPFOR: Opposing Forces
OPSEC: Operational Security

ORANGE: AWE enemy nation
ORB: Object Request Broker
OSS: Object Sharing System

PAUSEX: Pause Experiment
PHC: Public Health Complex (Presidio)
PIR: Priority Intelligence Requirements

POSREP: Position Report
POL: Petroleum, Oil, and Lubricants

POW: Proxy Object Wrapper

R&S: Reconnaissance and Surveillance
RADBN: Radio Battalion

RCA: Riot Control Agents
RECON: Reconnaissance

RHS: Right Hand Side
ROE: Rules Of Engagement

RSTA: Reconnaissance, Surveillance, and Target Acquisition

SA: Situational Awareness
SALUTE: Size, Activity, Location, Unit, Time, and Equipment report

SCUD: (a type of missile)
SN: Semantic Network

SNAPI: SharedNet Application Programming Interface
SOC: Sector of Control (also: Special Operations Capability)
SOF: Special Operations Force

SPAWAR: Space and Warfare Command Systems Center
SPMAGTF(X): Special Purpose Marine Air Ground Task Force (Experimental)

SPOTREP concise report of essential information
SRI: Stanford Research Institute

SS: Subscription Server
STOM: Ship To Objective Maneuver

SWC: Southwestern CONUS

TCP: Transport Control Protocol
TEWT: Tactical Exercise Without Troops

TF: Task Force
Topo: Topographic

TOWS: Tracked Optical Guided Weapon System (anti-tank)
TSCM: Tactical Strike Coordination Manager

TTPs: Tactics, Techniques and Procedures

UAV: Unmanned Aerial Vehicle
UAVS: Unmanned Aerial Vehicle-Strike

UCT: Urban Combat Team
UML: Unified Modeling Language
URL: Universal Resource Locator

USPF: Urban Special Purpose Force
UW: Unconventional Warfare (also: Urban Warrior)

UWT: Urban Warfare Technologies

VMA: Marine Attack Squadron (fixed-wing)
WMD: Weapons of Mass Destruction

190

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

8. Keyword Index

2-D Viewer 2, 14

A
Acknowledgements 2
Advanced Warfighting Experiment (AWE) 2, 7, 10, 13, 80-92, 117-129
Agent Engine 18-23
Agent Engine 2, 11, 13, 18-23, 24, 25, 26-27, 32-41, 66, 130
Agent Manager 20, 22, 33, 36-37
Agent Session 18-23, 26
Agent Session Architecture 20-23
Agent Session Configuration 18-20
Agent Session Manager 20, 22, 33, 35
Agent Session Server 35
Alert Daemon 51
Alert Manager 21-22
Alert Server 52
Appendices 137-190
Assal 1
Automated Message Handling System (AMHS) 43
Automatic Digital Network (AUTODIN) 44
actions 34, 35, 39
adaptive 2, 8, 11, 12, 73, 114
addition of agents 38-39

agent 1, 2, 11, 13, 18-23, 26-27, 32-41, 64, 66, 73-74, 93-107, 114, 130
Agent Engine 18-23
Agent Session Architecture 20-23
Agent Session Configuration 18-20
addition 38-39

autonomy 114

Blue-On-Blue Agent 41, 86-87, 91, 102-103

capabilities 40-41, 93-107

CASEVAC Agent 41

DBMA Agent 41

Decision Point Agent 41, 105-106

definition 32

domain agents (see service agent)

dynamic agents (see mentor agents)

Engagements Agent 41, 101-102

engine 2, 11, 13, 18-23, 24, 25, 26-27, 32-41, 66, 130

execution cycle 37

Fires Agent 40, 73, 95-101

191

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Intelligence Agent 41, 81-82, 91, 103

Logistics Agent 41, 93-95

manager 20, 22, 33, 36-37

mentor agents 13, 20, 27, 37-38, 40, 41

NAI Agent 41

ROE Agent 40-41, 91, 104-105

scheduling strategies 36-37

Sentinel Agent 40, 80-92, 105-107

service agents 13, 20, 27, 40-41, 73, 80-92

session 18-23, 26

session manager 20, 22, 23, 35

session server 35

status 37, 64

TAI Agent 41

agent autonomy 114
agent capabilities 40-41, 93-107
agent definition 32
agent execution cycle 37
agent scheduling strategies 36-37
agent status 37, 64
aggregate relationship 29
alert 32-33, 34, 39, 40, 41, 64, 73, 80-92
area of interest (AOI) 29, 64
associations (see relationships)
asymmetric warfare 8
attribute 15, 17, 23, 26, 28, 29, 34, 35, 38, 45, 49, 62, 139-186

B
Bancelhon 17
Berg 22
Bibliography 133-136
Blue-On-Blue Agent 41, 86-87, 91, 102-103
Boolean 34
backup system 2
battle damage assessment (BDA) 74
behavior (see attribute)
BVT 14

C
C++ 50
C4I 2
CAD Research Center (CADRC) 1, 2, 7, 10, 11, 14, 15, 18, 19, 20, 42

192

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Call-For-Fire (CFF) 40, 41, 74, 83-84, 89-91
Camp Pendleton 10
Camp Lejeune 10
Capable Warrior 7
CASEVAC Agent 41
CDM Technologies, Inc. 14
Chicago 10
Circular Error of Probability (CEP) 40, 98
CLIPS 33, 34, 36, 38
Coad 56
Computer Graphics Metafile (CGM) 63
Concluding Phase Experiment (CPE) 10
Concord 124-126
Concord Experiment 124-126
Conwell 28
COOL 38
CORBA 17, 25, 29, 50, 56
Commercial Off-The-Shelf Software (COTS) 50
complexity (in IMMACCS) 74
centralized 8
characteristics (see attribute)
cities 7, 8, 10
collaboration 9, 11, 12, 27, 73
command and control 7, 9, 14
command center 43, 49
commander’s intent 11, 120
common tactical picture (CTP) 11
composite relationship 29
computing cycles 18
conceptualization 12
conditions 34
constraints 35
cyber-warfare 8

D
Darnell 56
DARPA 28
Davis 1
DBMA Agent 41
Decision Point Agent 41
Desert Storm 8
Design Meta-Language (DML) 56
DISA 63
DoD 28, 43, 63
Donovan 10

193

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

data vs. information 9, 11, 12, 42-48
decentralized 8
Decision Point Agent 41, 105-106
deconfliction 13, 40, 41, 84, 99-100
demonstrations 74-79
development tools 23, 29
digital revolution 8
distributed object server 15, 17, 21, 25, 26
domain agents (see service agent)
dynamic agents (see mentor agents)

E
ECOC 56, 80
Effective Casualty Radius (ECR) 40, 74, 98
Embarcadero 128-129
Embarcadero Experiment 128-129
Engagements Agent 41, 101-102
Executive Summary 7-14
Exercising Individual Agent Capabilities 93-107
Exercise Objectives and Commander’s Intent 120
e-mail 42, 43
engagements 13, 41
execution 9, 11, 67, 114

experiment 117-129
Concord 124-126

Embarcadero 128-129

Monterey 122-124

Oak Knoll 126-128

context 121-122

objectives 120

operational plan 121-129

scenario 117-119

experiment context 121-122
experimental objectives 120
experiment operational plan 121-129
experiment scenario 117-119

F
FEAT 14
FGM Inc. 11, 14
Final Operational Plan 121-129
field test 14, 40, 117-131

194

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

fires 40, 41
Fires Agent 40, 73, 95-101
Forgy 33
Fowler 15, 23
free text 42
fuel 41, 108

G
Gamma 50
GDPro 29, 56
Giarratano 33
GIDB 131
GIS 46
Glossary of Terms (Appendix B) 187-190
Gray 15
GRC 28
GUIL 62-65
gaming 67, 115
geo-spatial 29, 56, 66
global objects 18

H
Hayes-Roth 23
Hazard Agent 41, 73, 103-104
HP-UX 50
HTML 29, 56, 65
Hunter Warrior 7, 14

I
ICDM 7, 14, 15-24
ICDM-V2 (see ICDM)
IDL 29
IIDP 50
IMMACCS Agent Engine 32-41
IMMACCS Object Browser 56-66
IMMACCS Object Model 28-31
IMMACCS Object Model Sample (Appendix A) 139-186
IMMACCS Scenario Driver 67-68

195

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

IMMACCS System Components 25-68
Integrated Collaborative Decision Model (ICDM) Framework 15-24
Introduction 7-14

IMMACCS 1, 7, 8, 9, 13, 25-68, 74-92, 112-115, 130-131, 139-186
Agent Engine 18-23
IMMACCS Agent Engine 32-41
IMMACCS Agent Engine (IAE) 25, 26-27, 32-40, 130
IMMACCS as a Set of Tools 73-74

IMMACCS Object Browser 56-66

IMMACCS Object Browser (IOB) 25, 27, 56-66, 67, 130
IMMACCS Object Model 28-31
IMMACCS Object Model (IOM) 25, 28-31, 130, 139-186
IMMACCS Scenario Driver 67-68
IMMACCS System Components 25-68
Operating IMMACCS through the IOB User-Interface 73-116
Overall Configuration and Architecture 25-27
Scenario Driver 67-68, 112-115

SharedNet 25-26, 27, 48-55, 130

SharedNet Facility 42-55

Simulated Demonstration Scenario 74-79

agent capabilities 40-41

architecture 25-27

complexity 74

demonstration 74-79

performance 130-131

usage 80-92

IMMACCS Military Capabilities 10-12
IMMACCS Characteristics 12-14
Information Server 16-18
Information Server 16-18, 20, 24, 25-26
Intelligence Agent 41, 81-82, 91, 103
inference engine 15, 20, 21, 22
information 12, 15, 20, 21, 23, 25, 26, 42-48
information tier 16-18, 25
infrastructure 2, 10, 11, 40, 46, 131
intelligence 13

J

Java 30, 56, 63, 64
Java Script 56
Jennings 32
Jet Propulsion Laboratory (JPL) 2, 10, 11, 13, 25, 29
JMCIS 13

196

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

K

Keyword Index 191-201
Krulak 7
knowledge 31, 73
knowledge-based 12, 18

L
LaTex 29
Leighton 1
Lewis 22
LOE 10
Logistics Agent 41, 93-95
Logistics Assistance Capabilities 108-111
legacy system 2, 12
location 31, 60
local object 18
logical tier 18, 25
logistics 13, 29, 34, 41, 107-111

M
Marine Corps 9
Mayfield 56
MCSIT Translator 11, 69-72
McVittie 1, 42
MCWL 1, 2, 7, 8, 28, 40, 80, 117-129
Medevac Agent 52-55
MGRS 44, 45
Military Command and Control 7-10
MIL-STD 63
Minsky 26
Monterey 122-124
Monterey Experiment 122-124
Mowbray 17, 20, 25
Myers 15, 16
maneuver warfare 7, 10
map display 62-64,
mediator agent 20
mentor agents 13, 20, 27, 37-38, 40, 41
message passing 42-45

197

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

message template 64-65

N
NAI Agent 41
Named Area of Interest (NAI) 41
NASA 41
Navy 80
NCTSI 28
New York City 10
NRL (Stennis) 2, 10, 11
noncombatants 10

O
Oak Knoll 80-92, 126-127
Oak Knoll Experiment 126-127
Object-Based Representation 15
Object Browser 2, 10, 13, 27, 56-66, 67, 130
Object Instance Store (OIS) 2, 25, 50-51, 56, 73, 114
Object Manager 21
Object Management Layer (OML) 58-62
Object Model 1, 2, 10, 13, 15, 20, 23, 25, 26, 28-31, 32, 45, 58-62, 114, 139-186
Object Sharing System (OSS) 45-49
OMFTS 8
ONR 42
OODBMS 17, 26
Orfali 21
object agent (see mentor agent)
object classes 180-186
object-oriented 12, 15, 17, 28, 33, 56, 63
objects 12, 17, 20, 26, 34, 35, 36, 38, 39, 45, 49, 58-62, 140-186
object server 15
object sharing 45-48
ontological model 1, 45
open architecture 12, 114
opportunistic 34, 73, 114

P

Performance of IMMACCS During the AWE 130-132
Perl 29
Pohl J 1, 15, 20, 73

198

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Pohl K 1, 15, 20
Porczak 1
POSREP 43, 44
Proxy Object Wrapper (POW) 58-62
patterns 39
planning 11, 67, 114
playback 67, 112
political issues 10
position (see location)
predefined solutions 9, 12, 73
presentation tier 22-23, 25, 27
proxy 20, 21, 56-58
pull-push information 16-18, 25

Q
queries 61-62

R
RECON 41
References 133-136
RETE 33, 34
Riley 33
Road to the Urban Warrior AWE 10
ROE Agent 40-41, 91, 104-105
Rules Of Engagement (ROE) 12, 13, 40-41
reach-back 65-66
real-time 9
recording 67, 112-113
red teaming 115
regression testing 67
relationships 12, 15, 17, 23, 26, 28-31, 32, 34, 45
representation 15, 26, 28-31, 33-34
re-supply points 41
rules 23-24, 33, 34, 37, 38, 39-40

S
SALUTE 44, 45
San Francisco Bay 10, 80
Scenario Driver 67-68, 112-115
Scott 15, 23

199

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Script Preparation Process 112-113
Sea Dragon 7, 10
Semantic Network (SN) 20, 22
Sentinel Agent 40, 80-92, 105-107
SharedNet Application Programming Interface (SNAPI) 50-52, 56
SharedNet 2, 11, 13, 25-26, 27, 33, 48-45, 130
SharedNet Manager 36
SharedNet requirements 49-50
Siegel 56
Solaris 50
Spatial X 56, 62
SPAWAR 2, 10, 11, 13
SPMAGTF(X) 10, 28, 117-129
SPOTREP 44
SRI International 2, 10, 11, 14
Struct 139
Subscription Server 51-52
sensors 41, 42
service agents 13, 20, 27, 40-41, 73, 80-92
simulated events 67, 114-115
small unit operations 7, 8
subscription 17, 18, 21, 25, 33, 49, 52-55, 62
supplies (see logistics)
system integration 2

T
TAI Agent 41
Three-Tier Architecture 15-23
Track object 27, 29, 31, 41, 62, 67, 80-92, 108, 112
Translator 11, 69-72
Transport Control Protocol (TCP) 51, 52
Typical Examples of Real World Sequences 80-92
tempo 9, 11, 12
threads 22, 68
three-tier architecture 15-24, 25
tools 12, 20, 73-74, 112, 114-115
training 11, 67, 114-115
translators 2, 11, 13, 45, 131
truth maintenance 38, 40

U
UDP 52
Unified Modeling Language (UML) 23, 28, 29

200

CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

Universal Resource Locator (URL) 65
Urban Warrior 2, 7, 10, 13, 14, 40, 55, 56, 80-92, 117-129
Urban Warrior AWE Field Test 117-132
Using IMMACCS as a Training Tool 114-116
USS Coronado 10, 80
Utilizing the IMMACCS Scenario Driver 112-116
uncertainty 9, 11
understanding 12
user-interface 11, 22-23, 24, 27, 80-92, 110-111, 112-115

V
Vempati 1
view 11, 13, 19-20, 23, 26, 27, 28-29, 35, 67, 80-92, 112-113
violations 13, 34, 40, 41

W
Windows NT 50
Wood 1
Wooldridge 32
water 41
weapons 74, 95-101
weapon selection 13, 40, 41, 84, 95-101
web-based 15, 22
wrapper 26, 58

X

Y

Z
Zachari 17, 20, 25

Keyword entries in bold type face refer to report Sections.

201

 CAD Research Center, Cal Poly, San Luis Obispo, CA 93407: Techn. Report CADRU-14-01 (Jun.’01)

202

	I M M A C C S
	A Multi-Agent Decision-Support System
	
	Thomas McVittie, Jet Propulsion Laboratory
	San Diego, California

	I M M A C C S
	A Multi-Agent Decision-Support System

	e.pdf
	Figure 2.1: Basic Three-Tier Architecture
	2.2.2.1 Agent Session Configuration
	2.2.2.2 Agent Session Architecture
	Semantic Network: The Semantic Network consists of a collection of two sets of application specific information objects. The first set is used for local collaboration among agents. Depending on the specific collaborative model employed, agents may use t
	Semantic Network Manager: As the primary manager of the two sets of information described above, the Semantic Network (SN) Manager focuses the majority of its efforts on the management of the bi-directional propagation of information between Information
	Inference Engine: The Inference Engine provides the link between changes occurring in the Semantic Network and agent activation. As discussed earlier, agent activation can occur when a change in the Semantic Network is of interest to a particular agent.
	Session Manager: As the overall manager of the Agent Session environment the Session Manager has two main responsibilities. The first responsibility focuses on the initialization of each of the other Agent Session components upon creation. When an Agent

	f.pdf
	Implementation Process Development

	g.pdf
	3.3.4 Agent Engine Architecture

	h.pdf
	Figure 3.9: The merged object model
	Figure 3.11: The major SharedNet components

	i.pdf
	The decision to use the Java language was motivated by the promise of platform independence and by its distinctively object-oriented nature. Additionally, the Java-CORBA (Common Object Request Broker, Object Management Group (OMG)) connection is well es
	
	
	
	Figure 3.13: The IMMACCS three-tier architecture

	Basic Object Management: The design of the OML centers on the Proxy Object Wrapper (POW) class. The POW class and its associated object management classes (i.e., Template, Attribute, Association, etc) adds generic functionality to the object model clas
	The POW class implements association management thereby relieving the using classes and hopefully eliminating invalid associations (i.e., at least in applications that use the POW). Association management is encapsulated in the add, remove and destroy me
	
	
	Figure 3.14: POW class diagram

	Query Functionality: The SNPOW class provides additional functionality to access the SharedNet query service. The query method is an instance method that makes use of any attributes set in the update cache of the SNPOW instance. However, the update cach
	Subscription/Interest Management: The functionality of the SharedNet subscription service is encapsulated in the SNPOW class through its ‘setSubscription’ method. This static (i.e., class scoped) method is used to register an interest in object creation
	Depending on the specific POW class the behavior implied by certain events is automatically reflected in the user-interface. For example, if an interest is registered for Track location changes and notification is received then the set method on the affe
	3.5.2 The Graphical User-Interface Layer (GUIL)
	
	
	Figure 3.15: IMMACCS Object Browser (IOB) map display

	Agent Status Bar: Referring to Figure 3.15, the icons shown along the left side of the IOB, provide a visual display of agent status and agent alerts. These agent icons are managed by the ‘AgentPOW’ class. By default, when the IOB is connected to the Sh
	Agent alerts are created by agents and represented in the SharedNet instance store as ‘Alert’ objects (i.e., associated with the ‘Agent’ object representing the agent that produced the alert). When an ‘Alert’ object is created the IOB receives a notifica
	Template Interface: The template interface provides a direct interface to the object model and specifically allows manipulation of object instance attributes, aggregations, and associations. The template interface is, in essence, a link to the ‘Template
	
	
	Figure 3.16: The Template interface of the IOB

	j.pdf
	Figure 3.17: The Scenario Driver control panel
	Figure 3.18: Scenario Driver class diagram

	l.pdf
	Entity	forceCode	<friendly or neutral>
	Entity	forceCode	<friendly or neutral>
	Entity	forceCode	<friendly or neutral>
	Entity	forceCode	<friendly or neutral>
	Platform	forceCode	<friendly or neutral>
	Structure	forceCode	<friendly or neutral>
	Structure	functionCode	BFC54 (Serv/Refuel Station)
	GroundVehicle	forceCode	<friendly or neutral>
	Structure	functionCode	BFC54 (Serv/Refuel Station)
	LethalWeapon 	forceCode	<friendly>
	LethalWeapon 	forceCode	<friendly>
	4.4.5 The Intel Agent
	
	FIRE

	n.pdf
	The Urban Warrior Advanced Warfighting Experiment (AWE) was held on March 12 to 18, 1999, in the Monterey, San Francisco and Oakland region of the California Central Coast. During this time IMMACCS was field tested as the Command and Control system of re
	During this extensive field test IMMACCS proved to be a functional success, and the concept of providing effective and adaptive decision-support through the use of collaborative expert agents was essentially validated. The following specific observations
	
	
	
	
	The SharedNet: The SharedNet performed generally very well during the AWE, both in terms of reliability and transaction speed. There were some minor problems when the IMMACCS system needed to be restarted and the Object Instance Store (OIS) had to be re

	e.pdf
	Figure 2.1: Basic Three-Tier Architecture
	2.2.2.1 Agent Session Configuration
	2.2.2.2 Agent Session Architecture
	Semantic Network: The Semantic Network consists of a collection of two sets of application specific information objects. The first set is used for local collaboration among agents. Depending on the specific collaborative model employed, agents may use t
	Semantic Network Manager: As the primary manager of the two sets of information described above, the Semantic Network (SN) Manager focuses the majority of its efforts on the management of the bi-directional propagation of information between Information
	Inference Engine: The Inference Engine provides the link between changes occurring in the Semantic Network and agent activation. As discussed earlier, agent activation can occur when a change in the Semantic Network is of interest to a particular agent.
	Session Manager: As the overall manager of the Agent Session environment the Session Manager has two main responsibilities. The first responsibility focuses on the initialization of each of the other Agent Session components upon creation. When an Agent

	PART_2.PDF
	r.pdf
	A
	
	Agent Session Configuration 18-20
	Appendices 137-190
	Agent Session Configuration 18-20
	Blue-On-Blue Agent 41, 86-87, 91, 102-103

	Bibliography 133-136
	Concord Experiment 124-126

	E
	Embarcadero Experiment 128-129
	Executive Summary 7-14
	Final Operational Plan 121-129
	Glossary of Terms (Appendix B) 187-190
	IMMACCS System Components 25-68
	Integrated Collaborative Decision Model (ICDM) Framework 15-24
	Introduction 7-14
	IMMACCS 1, 7, 8, 9, 13, 25-68, 74-92, 112-115, 130-131, 139-186
	IMMACCS System Components 25-68
	IMMACCS Military Capabilities 10-12
	Keyword Index 191-201
	Logistics Assistance Capabilities 108-111
	MCSIT Translator 11, 69-72
	Medevac Agent 52-55

	Military Command and Control 7-10
	Monterey Experiment 122-124
	Oak Knoll Experiment 126-127
	Object-Based Representation 15
	Performance of IMMACCS During the AWE 130-132
	References 133-136
	Road to the Urban Warrior AWE 10
	Script Preparation Process 112-113
	TAI Agent 41
	Three-Tier Architecture 15-23
	Translator 11, 69-72
	Typical Examples of Real World Sequences 80-92
	Urban Warrior AWE Field Test 117-132
	Using IMMACCS as a Training Tool 114-116
	Utilizing the IMMACCS Scenario Driver 112-116

