22 research outputs found

    2018 SDSU Data Science Symposium Program

    Get PDF
    Table of Contents: Letter from SDSU PresidentLetter from SDSU Department of Mathematics and Statistics Dept. HeadSponsorsGeneral InformationKeynote SpeakersInvited SpeakersSunday ScheduleWorkshop InformationMonday ScheduleAbstracts| Invited SpeakersAbstracts | Oral PresentationsPoster PresentationCommittee and Volunteer

    Modeling Faceted Browsing with Category Theory for Reuse and Interoperability

    Get PDF
    Faceted browsing (also called faceted search or faceted navigation) is an exploratory search model where facets assist in the interactive navigation of search results. Facets are attributes that have been assigned to describe resources being explored; a faceted taxonomy is a collection of facets provided by the interface and is often organized as sets, hierarchies, or graphs. Faceted browsing has become ubiquitous with modern digital libraries and online search engines, yet the process is still difficult to abstractly model in a manner that supports the development of interoperable and reusable interfaces. We propose category theory as a theoretical foundation for faceted browsing and demonstrate how the interactive process can be mathematically abstracted in order to support the development of reusable and interoperable faceted systems. Existing efforts in facet modeling are based upon set theory, formal concept analysis, and light-weight ontologies, but in many regards they are implementations of faceted browsing rather than a specification of the basic, underlying structures and interactions. We will demonstrate that category theory allows us to specify faceted objects and study the relationships and interactions within a faceted browsing system. Resulting implementations can then be constructed through a category-theoretic lens using these models, allowing abstract comparison and communication that naturally support interoperability and reuse. In this context, reuse and interoperability are at two levels: between discrete systems and within a single system. Our model works at both levels by leveraging category theory as a common language for representation and computation. We will establish facets and faceted taxonomies as categories and will demonstrate how the computational elements of category theory, including products, merges, pushouts, and pullbacks, extend the usefulness of our model. More specifically, we demonstrate that categorical constructions such as the pullback and pushout operations can help organize and reorganize facets; these operations in particular can produce faceted views containing relationships not found in the original source taxonomy. We show how our category-theoretic model of facets relates to database schemas and discuss how this relationship assists in implementing the abstractions presented. We give examples of interactive interfaces from the biomedical domain to help illustrate how our abstractions relate to real-world requirements while enabling systematic reuse and interoperability. We introduce DELVE (Document ExpLoration and Visualization Engine), our framework for developing interactive visualizations as modular Web-applications in order to assist researchers with exploratory literature search. We show how facets relate to and control visualizations; we give three examples of text visualizations that either contain or interact with facets. We show how each of these visualizations can be represented with our model and demonstrate how our model directly informs implementation. With our general framework for communicating consistently about facets at a high level of abstraction, we enable the construction of interoperable interfaces and enable the intelligent reuse of both existing and future efforts

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Informatics for Health 2017 : advancing both science and practice

    Get PDF
    Conference report, The Informatics for Health congress, 24-26 April 2017, in Manchester, UK.Introduction : The Informatics for Health congress, 24-26 April 2017, in Manchester, UK, brought together the Medical Informatics Europe (MIE) conference and the Farr Institute International Conference. This special issue of the Journal of Innovation in Health Informatics contains 113 presentation abstracts and 149 poster abstracts from the congress. Discussion : The twin programmes of “Big Data” and “Digital Health” are not always joined up by coherent policy and investment priorities. Substantial global investment in health IT and data science has led to sound progress but highly variable outcomes. Society needs an approach that brings together the science and the practice of health informatics. The goal is multi-level Learning Health Systems that consume and intelligently act upon both patient data and organizational intervention outcomes. Conclusions : Informatics for Health demonstrated the art of the possible, seen in the breadth and depth of our contributions. We call upon policy makers, research funders and programme leaders to learn from this joined-up approach.Publisher PDFPeer reviewe

    Informatics for Health 2017: Advancing both science and practice

    Full text link
    corecore