197 research outputs found

    Visualisation of Long in Time Dynamic Networks on Large Touch Displays

    Get PDF
    Any dataset containing information about relationships between entities can be modelled as a network. This network can be static, where the entities/relationships do not change over time, or dynamic, where the entities/relationships change over time. Network data that changes over time, dynamic network data, is a powerful resource when studying many important phenomena, across wide-ranging fields from travel networks to epidemiology.However, it is very difficult to analyse this data, especially if it covers a long period of time (e.g, one month) with respect to its temporal resolution (e.g. seconds). In this thesis, we address the problem of visualising long in time dynamic networks: networks that may not be particularly large in terms of the number of entities or relationships, but are long in terms of the length of time they cover when compared to their temporal resolution.We first introduce Dynamic Network Plaid, a system for the visualisation and analysis of long in time dynamic networks. We design and build for an 84" touch-screen vertically-mounted display as existing work reports positive results for the use of these in a visualisation context, and that they are useful for collaboration. The Plaid integrates multiple views and we prioritise the visualisation of interaction provenance. In this system we also introduce a novel method of time exploration called ‘interactive timeslicing’. This allows the selection and comparison of points that are far apart in time, a feature not offered by existing visualisation systems. The Plaid is validated through an expert user evaluation with three public health researchers.To confirm observations of the expert user evaluation, we then carry out a formal laboratory study with a large touch-screen display to verify our novel method of time navigation against existing animation and small multiples approaches. From this study, we find that interactive timeslicing outperforms animation and small multiples for complex tasks requiring a compari-son between multiple points that are far apart in time. We also find that small multiples is best suited to comparisons of multiple sequential points in time across a time interval.To generalise the results of this experiment, we later run a second formal laboratory study in the same format as the first, but this time using standard-sized displays with indirect mouse input. The second study reaffirms the results of the first, showing that our novel method of time navigation can facilitate the visual comparison of points that are distant in time in a way that existing approaches, small multiples and animation, cannot. The study demonstrates that our previous results generalise across display size and interaction type (touch vs mouse).In this thesis we introduce novel representations and time interaction techniques to improve the visualisation of long in time dynamic networks, and experimentally show that our novel method of time interaction outperforms other popular methods for some task types

    Visual Attention in Virtual Reality:(Alternative Format Thesis)

    Get PDF

    Visual Analysis of Large, Time-Dependent, Multi-Dimensional Smart Sensor Tracking Data

    Get PDF
    Technological advancements over the past decade have increased our ability to collect data to previously unimaginable volumes [Kei02]. Understanding temporal patterns is key to gaining knowledge and insight. However, our capacity to store data now far exceeds the rate at which we are able to understand it [KKEM10]. This phenomenon has led to a growing need for advanced solutions to make sense and use of an ever-increasing data space. Abstract temporal data provides additional challenges in its, representation, size, and scalability, high dimensionality, and unique structure.One instance of such temporal data is acquired from smart sensor tags attached to freely roaming animals recording multiple parameters at infra-second rates which are becoming commonplace, and are transforming biologists understanding of the way wild animals behave.The excitement at the potential inherent in sophisticated tracking devices has, however, been limited by a lack of available software to advance research in the field. This thesis introduces methodologies to deal with the problem of the analysis of the large, multi-dimensional, time-dependent data acquired. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.We present several contributions to the field of time-series visualisation, that is, the visualisation of ordered collections of real value data attributes at successive points in time sampled at uniform time intervals. Traditionally, time-series graphs have been used for temporal data. However, screen resolution is small in comparison to the large information space commonplace today. In such cases, we can only render a proportion of the data.It is widely accepted that the effective interpretation of large temporal data sets requires advanced methods and interaction techniques. In this thesis, we address these issues to enhance the exploration, analysis, and presentation of time-series data for movement ecologists in their smart sensor data analysis

    Chromatic dependence of first-order optical properties of the eye

    Get PDF
    Abstract: Many first-order optical properties depend on chromatic dispersion and, hence, on frequency of light. The purpose of this theoretical study is to investigate the dependence of first-order optical properties of model eyes on frequency. In this study we are purposefully not concerned with subjective measurements. Instead, definitions are obtained that are general for optical systems that have astigmatic and decentred elements, and then simplified for Gaussian systems. In linear optics the transference is a matrix that is a complete representation of the effects of the system on a ray traversing it. Almost all of the familiar optical properties of the system can be obtained from the transference. From the transference S we obtain the four fundamental properties namely dilation A, disjugacy B, divergence C and divarication D, submatrices of S. Transferences are symplectic and do not define a linear space. Linear spaces are amenable to statistical analyses and therefore a number of mappings to linear spaces are investigated, including the Cayley and logarithmic mappings to Hamiltonian space and the four characteristic matrices. In each case, the individual entries of the transform are studied for their dependence on frequency and then the chromatic dependence relationship between the entries is compared graphically.M.Phil. (Optometry

    Depth Acquisition from Digital Images

    Get PDF
    Introduction: Depth acquisition from digital images captured with a conventional camera, by analysing focus/defocus cues which are related to depth via an optical model of the camera, is a popular approach to depth-mapping a 3D scene. The majority of methods analyse the neighbourhood of a point in an image to infer its depth, which has disadvantages. A more elegant, but more difficult, solution is to evaluate only the single pixel displaying a point in order to infer its depth. This thesis investigates if a per-pixel method can be implemented without compromising accuracy and generality compared to window-based methods, whilst minimising the number of input images. Method: A geometric optical model of the camera was used to predict the relationship between focus/defocus and intensity at a pixel. Using input images with different focus settings, the relationship was used to identify the focal plane depth (i.e. focus setting) where a point is in best focus, from which the depth of the point can be resolved if camera parameters are known. Two metrics were implemented, one to identify the best focus setting for a point from the discrete input set, and one to fit a model to the input data to estimate the depth of perfect focus of the point on a continuous scale. Results: The method gave generally accurate results for a simple synthetic test scene, with a relatively low number of input images compared to similar methods. When tested on a more complex scene, the method achieved its objectives of separating complex objects from the background by depth, and produced a similar resolution of a complex 3D surface as a similar method which used significantly more input data. Conclusions: The method demonstrates that it is possible to resolve depth on a per-pixel basis without compromising accuracy and generality, and using a similar amount of input data, compared to more traditional window-based methods. In practice, the presented method offers a convenient new option for depth-based image processing applications, as the depth-map is per-pixel, but the process of capturing and preparing images for the method is not too practically cumbersome and could be easily automated unlike other per-pixel methods reviewed. However, the method still suffers from the general limitations of the depth acquisition approach using images from a conventional camera, which limits its use as a general depth acquisition solution beyond specifically depth-based image processing applications

    Visualising multiple overlapping classification hierarchies.

    Get PDF
    The revision or reorganisation of hierarchical data sets can result in many possible hierarchical classifications composed of the same or overlapping data sets existing in parallel with each other. These data sets are difficult for people to handle and conceptualise, as they tryto reconcile the different perspectives and structures that such data represents. One area where this situation occurs is the study of botanical taxonomy, essentially the classification and naming of plants. Revisions, new discoveries and new dimensions for classifying plants lead to a proliferation of classifications over the same set of plant data. Taxonomists would like a method of exploring these multiple overlapping hierarchies for interesting information, correlations, or anomalies. The application and extension of Information Visualisation (IV) techniques, the graphical display of abstract information, is put forward as a solution to this problem. Displaying the multiple classification hierarchies in a visually appealing manner along with powerful interaction mechanisms for examination and exploration of the data allows taxonomists to unearth previously hidden information. This visualisation gives detail that previous visualisations and statistical overviews cannot offer. This thesis work has extended previous IV work in several respects to achieve this goal. Compact, yet full and unambiguous, hierarchy visualisations have been developed. Linking and brushing techniques have been extended to work on a higher class of structure, namely overlapping trees and hierarchies. Focus and context techniques have been pushed to achieve new effects across the visually distinct representations of these multiple hierarchies. Other data types, such as multidimensional data and large cluster hierarchies have also been displayed using the final version of the visualisation
    corecore