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ABSTRACT 

Many first-order optical properties depend on chromatic dispersion and, 

hence, on frequency of light. The purpose of this theoretical study is to investigate 

the dependence of first-order optical properties of model eyes on frequency. In 

this study we are purposefully not concerned with subjective measurements. 

Instead, definitions are obtained that are general for optical systems that have 

astigmatic and decentred elements, and then simplified for Gaussian systems. 

In linear optics the transference is a matrix that is a complete representation 

of the effects of the system on a ray traversing it. Almost all of the familiar optical 

properties of the system can be obtained from the transference. From the 

transference S we obtain the four fundamental properties namely dilation A, 

disjugacy B, divergence C and divarication D, submatrices of S. Transferences are 

symplectic and do not define a linear space.  Linear spaces are amenable to 

statistical analyses and therefore a number of mappings to linear spaces are 

investigated, including the Cayley and logarithmic mappings to Hamiltonian 

space and the four characteristic matrices. In each case, the individual entries of 

the transform are studied for their dependence on frequency and then the 

chromatic dependence relationship between the entries is compared graphically. 

Four aspects of chromatic dependence of Gaussian systems are explored, 

namely the fundamental properties, derived properties, transverse and longitudinal 

chromatic aberration, and independent and dependent chromatic properties. 

Formulae are derived that apply to first-order optical systems in order to illustrate 

the chromatic dependence, chromatic difference or the chromatic magnification of 

each property. Numerical examples are given for the reduced eye and Le Grand’s 

eye across the spectrum 430 to 750 THz. 

 

Fundamental properties 

The fundamental properties of the reduced and Le Grand’s four surface eyes 

have a nearly perfectly straight-line dependence on frequency.  

 Straight-line fits are obtained for the dependence of the fundamental 

properties on frequency. The resulting transference has a determinant of 

approximately 1 for every frequency.  
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 Straight-line fits in Hamiltonian space give a frequency-dependent 

transference with a determinant of exactly 1 for every frequency. 

 Of the fundamental properties, only dilation A and divergence C are 

dependent on the refractive index upstream of the system. Disjugacy B and 

divarication D are independent of the medium upstream of the system. 

 

Derived properties 

Derived properties that are dependent on frequency are: 

 Power, corneal-plane refractive compensation, exit-plane refractive 

compensation and front-vertex power have a straight-line dependence. 

 Back-vertex power has a hyperbolic dependence. 

 The cardinal and anti-cardinal points for Le Grand’s eye, the anti-cardinal 

and focal points for the reduced eye and all the chromatic properties are 

dependent on frequency. 

The incident and emergent principal and nodal points for the reduced eye are 

independent of frequency. 

 

Chromatic aberration 

Chromatic aberration is defined for linear systems, that is, for systems 

possibly with astigmatic and heterocentric elements such as the eye, using the 

classical optics definition as a departure point. The definition is then specialised 

for a Gaussian eye. 

 Longitudinal chromatic aberration is defined as a 22  symmetric matrix 

for systems that have astigmatic elements. It depends on the longitudinal 

position of the object and simplifies to a scalar for Gaussian systems.  

 Transverse chromatic aberration is defined as a 12  transverse vector for 

systems that have astigmatic or decentred elements. It depends on both the 

longitudinal and transverse position of the object point and simplifies to a 

scalar for Gaussian systems. 
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Independent and dependent chromatic properties 

Chromatic properties of the system both independent of and dependent on 

the object or image and aperture positions are derived from the transference based 

on the definitions in the physiological optics literature. 

Independent chromatic properties of the eye include chromatic difference in 

power, Fδ , chromatic difference in refractive compensation, 0δF  and chromatic 

difference in ametropia, Aδ . 

Formulae are derived for the chromatic properties of the Gaussian eye for (i) 

distant objects and objects at a finite distance, (ii) image and object dependent 

properties and (iii) the special case of a pinhole held in front of the eye.  

 Chromatic properties of the eye dependent on object and aperture position 

include chromatic difference in retinal position Rδy , retinal inclination 

Rδa , image size  RΔδ y , image angular spread  RΔδ a , retinal chromatic 

image size magnification  yRM  and angular spread magnification aRM . 

Chromatic properties of the eye dependent on image and aperture position 

include: chromatic difference in object position Oδy , inclination in object 

space Oδa , object size  Oδ y , object angular spread  Oδ a , chromatic 

object size magnification yOM  and object angular spread magnification 

aOM . When the distance of the object from the eye is constant the 

dependence of the chromatic differences present as straight lines.  

 The red and blue chief rays chosen to study the chromatic properties in 

image space are incident on the cornea a distance of some 5000 times the 

wavelength of the blue light apart. 

 When the red and blue chief rays from two separated object points 

coincide at a point on the exit-plane, their emergent inclination is the same 

for the reduced eye but different for Le Grand’s eye. 

 Though applied to model eyes one expects the results, particularly for Le Grand’s 

eye, to give an idea of what happens in the case of real eyes, at least those close to 

emmetropia. 



vi 

 

ACKNOWLEDGEMENT 

 

To my husband and daughters, Gerard, Sarah and Megan who have 

supported me and put up with the long hours of absence and episodes of stress. 

Thank you! 

 

To my parents who encouraged and supported me to study Optometry in 

the first place. 

 

 To my advisor, Professor WF Harris, who has encouraged me every step 

of the way. This study has been about the journey and not just the destination. 

Bill, thank you for allowing me to take the road less travelled, to explore anything 

and everything that interested us along the way. Thank you for your endless 

patience, reading, rereading and correcting each draft. And thank you for opening 

the door to the academic world and giving me the opportunities to attend and 

present my work at conferences. 

 

 

 

 

The first year of this research was supported by a scholarship granted by 

the Medical Research Council of South Africa. 

 

  



vii 

 

TABLE OF CONTENTS 

 

DECLARATION            ii 

ABSTRACT            iii 

ACKNOWLEDGEMENT          vi 

 

PART I – INTRODUCTION          1 

1 Introduction              1 

1.1 Purpose             4 

1.2 Outline             5 

1.2.1  Part II – Literature review          5 

1.2.2 Part III – Definitions and derivations         6 

1.2.3 Part IV – Findings and discussions         8 

1.2.4 Part V – Conclusion           9 

 

PART II - LITERATURE REVIEW       10 

2 Definitions and measurements of Chromatic aberration      11 

Introduction, historical perspective          11 

2.1 Chromatic dispersion           11 

2.2 Chromatic aberration           14 

 2.2.1 Definition of chromatic aberration        15 

2.3 Measurements of chromatic effects in the eye        17 

 2.3.1 Longitudinal chromatic properties        17 

 2.3.2 Transverse chromatic properties        22 

2.4 Summary            31 

 

3 Background theory: Optics          33 

3.1 Gaussian and linear optics          34 

3.1.1 Theories of light          34 

3.2 First-order optics           36 

3.2.1  Definition of an optical system         36 

3.2.2  The State of the ray          36 



viii 

 

3.2.3  The transference and fundamental properties       37 

3.2.4  The basic equation of a ray traversing a system       38 

3.2.5  Symplecticity           39 

3.2.6  Augmented transferences and heterocentric systems       41 

3.2.7  Gaussian systems           43 

3.3 Fundamental properties            44 

 3.3.1 Ametropia           44 

3.3.2 Four special systems           45 

3.4 Derived properties           48 

 3.4.1 Power            49 

3.4.2 Entrance-plane refractive compensation       50 

 3.4.3  Front- and back-vertex power         51 

3.5 Magnification            54 

 3.5.1 Magnification of Gaussian systems         54 

 3.5.2 Limitations of defining magnification in this manner     57 

 3.5.3 Magnification, blur and the ray state at the retina      57 

3.6 Cardinal points            60 

 3.6.1 Ray tracing and cardinal points          61 

 3.6.2 Locations of cardinal points obtained from the transference     64 

 3.6.3 Relationships among the points        65 

 3.6.4 Graphical construction and locator lines       68 

 3.6.5 Pascal’s ring           70 

3.7 The  transformed transference          72 

 3.7.1 The logarithmic transform         72 

 3.7.2 The Cayley transform          75 

 3.7.3 The characteristic matrices         77 

3.8 Vergence and wavefronts          81 

3.8.1 Stigmatic vergence and wavefronts        81 

3.8.2 Astigmatic vergence and wavefronts        81 

3.8.3 The wavefront, its curvature and direction: distance object     82 

3.8.4 Vergence emergent from a system: object at a finite distance   82 

3.8.5 Vergence across elementary systems        83 



ix 

 

3.8.6 Position of focus point or line foci        83 

3.9 Summary            84 

   

4 Background theory – considerations        85 

4.1 Schematic eyes           85 

4.1.1 A short history of schematic eyes        85 

4.1.2 Classification of schematic eyes        87 

4.1.3 Emsley’s reduced eye          88 

4.1.4 Le Grand’s full theoretical eye        90 

4.2 Visible light spectrum           91 

4.3 Frequency versus wavelength          92 

 4.3.1 Frequency, wavelength and refractive index relationships     92 

 4.3.2 Frequency scale and linearity         93 

4.4 Refractive index as a function of frequency for optical media and air  93 

4.4.1 The refractive index of water          95 

4.4.2 The refractive index of the reduced eye        95 

4.4.3 The refractive indices of Le Grand’s full theoretical eye      96 

4.4.4 The refractive index of air        97 

4.5 Discussion           97 

 

PART III - DEFINITIONS AND DERIVATIONS      99 

5 Derivations needed for background theory      100 

5.1 Exit-plane refractive compensation       100 

5.2 Magnification          101 

5.2.1 Relationships between the types of magnification    101 

5.2.2 Summary of magnification, blur and ray state at the retina   102 

5.2.3 Magnification, blur and ray state at the retina for object  

points at finite distances       103 

5.2.4 Eye with pinhole        109 

5.2.5 Generalising to linear optics       110 

5.3 Measurements in object space       110 

 5.3.1 Transverse position of an object point at finite distance   111 



x 

 

 5.3.2 Incident inclination measured in object space    112 

 5.3.3 Summary of object space matrix equations with respect 

to position on the retina       113 

 5.3.4 Summary of object space matrix equations with 

respect to inclination at the retina      115 

 5.3.5 Generalising to linear optics       116 

5.4 Cardinal points         117 

 5.4.1 Additional relationships among the  points     117 

 5.4.2 Graphical construction, locator lines and anti-cardinal  

  points          121 

 5.4.3 Pascal’s ring and anti-cardinal points      122 

5.5 Transferences of the two model eyes       124 

5.5.1 The transference of the reduced eye      124 

5.5.2 The transference of the reduced eye as a function  

of refractive index        125 

5.5.3 The transference of Le Grand’s eye      125 

5.5.4 The transference of Le Grand’s eye as a function of  

refractive index        126 

5.5.5 The refractive indices of the reduced eye and Le Grand’s  

eye for the six reference frequencies      126 

5.6 Simplification of Cayley’s transform for Gaussian systems    127 

5.6.1 The Cayley transformed transference for the reduced eye   133 

5.6.2 The Cayley transformed transference for Le Grand’s eye   133 

5.7 Summary          134 

 

6 Definitions of longitudinal and transverse chromatic aberration  135 

6.1 Defining chromatic aberration       135 

 6.1.1 Homocentric systems with stigmatic elements    135 

 6.1.2 Heterocentric systems with stigmatic elements    138 

 6.1.3 Heterocentric astigmatic systems      140 

 6.1.4 Chromatic aberration in general      143 

6.2 Quantifying chromatic aberration in Gaussian systems    143 



xi 

 

 6.2.1 Vergence through a Gaussian system derived from the  

transference         144 

 6.2.2 Transference of a compound system: object at a finite 

Distance         144 

 6.2.3 Transference of a compound system: distant object    146 

 6.2.4 Transverse chromatic aberration in a Gaussian system   147 

6.3 Calculation routines for longitudinal and transverse chromatic  

aberration          147 

 6.3.1 Calculation routines for longitudinal chromatic aberration   147 

6.3.2 Steps for calculating transverse chromatic aberration   148 

6.4 Comments on chromatic aberration       148 

 

7 Quantifying chromatic properties       150 

7.1 Independent chromatic properties of the eye      150 

 7.1.1 Chromatic difference in power      151  

7.1.2 Chromatic difference in refractive compensation    151 

7.1.3 Chromatic difference in ametropia      151 

7.1.4 Chromatic properties for Emsley’s reduced eye    152 

7.2 Chromatic properties of the eye dependent on object and aperture  

positions           153 

7.2.1 Chromatic difference in coefficient matrices     154 

7.2.2 Chromatic difference in image positions at the retina   155 

7.2.3 Chromatic difference in inclination at the retina    159 

7.3 Chromatic properties of the eye dependent on object size or  

angular spread          163 

 7.3.1 Chromatic difference in image size      164 

 7.3.2 Chromatic difference in angular spread at the retina    166 

 7.3.3 Retinal chromatic image size magnification     168 

 7.3.4 Retinal chromatic angular spread magnification    169 

7.4 Chromatic properties of the eye dependent on image and aperture  

positions          171 

7.4.1 Chromatic difference in object position     171 



xii 

 

7.4.2 Chromatic difference in inclination in object space    174 

7.5 Chromatic properties of the eye dependent on object size or angular  

Spread           177 

7.5.1 Chromatic difference in object size      177 

7.5.2 Chromatic difference in object angular spread    178 

7.5.3 Chromatic object size magnification      178 

7.5.4 Chromatic object angular spread magnification    179 

7.6 Comment on the use of the corneal pinhole inlay     180 

7.7 Summary of equations for chromatic properties     180 

7.8 Discussion          183 

 

PART IV - FINDINGS AND DISCUSSIONS     186 

8 Chromatic dependence of the transference and transformed 

transferences on the frequency       188 

8.1 The transference as a function of frequency      188 

 8.1.1 The transference as a function of frequency with 10 n    189 

 8.1.2 The transference as a function of frequency using  

Cauchy’s formula for the refractive index of air    195 

 8.1.3 Dependence of the fundamental properties on vacuum  

wavelength         200 

8.1.4 The transference of the eye submerged in water as a  

function of frequency with Cornu’s formula used for the  

refractive index of water       202 

8.1.5 Discussion         205 

8.2 The transformed transferences       206 

 8.2.1 The Cayley transformed transference      207 

 8.2.2 The logarithmic transformed transference     217 

8.3 Discussion          224 

   

9 Chromatic dependence of derived properties     226 

9.1 Cardinal and anti-cardinal points       226 

 9.1.1 Graphical construction       230 



xiii 

 

 9.1.2 Pascal’s ring         237 

9.2 Derived properties as a function of frequency     241 

 9.2.1 Power          241 

 9.2.2 Corneal-plane and exit-plane refractive compensation   243 

 9.2.3 Front- and back-vertex power       246 

9.3 Characteristic matrices        249 

 9.3.1 P - The point characteristic matrix      249 

 9.3.2 Q - The angle characteristic matrix      252 

9.3.3 M - First mixed characteristic matrix      255 

9.3.4 N - Second mixed characteristic matrix     257 

9.4 Discussion          259 

 

10 Numerical calculations of chromatic aberration and chromatic  

effects           261 

10.1 Chromatic aberration         262 

 10.1.1 Longitudinal chromatic aberration      262 

 10.1.2 Transverse chromatic aberration      265 

10.2 Independent chromatic properties of the eye      268 

10.3 Chromatic properties of the eye dependent on object and aperture  

positions          269 

 10.3.1 Chromatic difference in transverse image positions at the  

Retina          272 

 10.3.2 Chromatic difference in inclination at the retina     275 

 10.3.3 Chromatic difference in image size      278 

 10.3.4 Chromatic difference in angular spread at the retina    279 

 10.3.5 Retinal chromatic magnification      279 

10.4 Chromatic properties dependent on object and aperture positions  

in an eye – with a pinhole        281 

 10.4.1 Chromatic difference in transverse image positions and  

inclinations at the retina with a pinhole in front of the eye    283 

 10.4.2 Chromatic difference in image size, angular spread  

and chromatic magnifications: with a pinhole     286 



xiv 

 

10.4.3 AcuFocus Kamra corneal pinhole inlay     288 

10.5 Chromatic properties of the eye dependent on image and aperture  

positions in object space        289 

 10.5.1 Chromatic difference in object position     291 

 10.5.2 Chromatic difference in object inclination     293 

 10.5.3  Chromatic difference in object size      294 

 10.5.4 Chromatic difference in object angular spread    295 

 10.5.5 Chromatic magnification in object space     295 

10.6 Chromatic properties of the eye dependent on image and aperture  

positions in object space:  with a pinhole      296 

10.6.1 Chromatic difference in object positions: with a pinhole   296 

10.6.2 Chromatic difference in object inclination: with a pinhole   299 

10.6.3 Chromatic difference in object size: with a pinhole    300 

10.6.4 Chromatic difference in object angular spread: with a 

 Pinhole         301 

10.6.5 Chromatic object magnification:  with a pinhole    302 

10.7 Underlying implications        302 

 10.7.1 Chromatic difference in incident position     303 

 10.7.2 Chromatic difference in emergent inclination from object  

space           305 

10.8 Summary of dependent chromatic properties      306 

 10.8.1 Chromatic differences in image space     307 

 10.8.2 Chromatic difference in object space      308 

 10.8.3 Chromatic magnifications       310 

10.9 Summary of dependencies        310 

10.10 Discussion          312 

 

PART V – CONCLUSION       314 

11 Concluding discussion        314 

11.1 Introduction          314 

11.2 Findings and conclusions        314 

11.3 Limitations in the scope of this dissertation      321 



xv 

 

11.4 Summary of findings         323 

11.5 Concluding summary         326 

 

REFERENCES         328 

 

APPENDIX 

A LIST OF SYMBOLS        344 

B LIST OF FIGURES         348 

C LIST OF TABLES         354 

D PUBLICATIONS         359 

1. EVANS T, Harris WF. Dependence of the transference of a reduced eye 

on frequency of light. South African Optometrist 2011 70 149-155. 

2. Harris WF, EVANS T. Chromatic aberration in heterocentric astigmatic 

systems including the eye. Optometry and Vision Science 2012 89 e37-

e43. 

3. Harris WF, van Gool RDHM, EVANS T. Line of sight of a heterocentric 

astigmatic eye. Ophthalmic and Physiological Optics 2013 33 57-66. 

4. EVANS, T and Harris, WF. (2014) Dependence of the ray transference of 

model eyes on the frequency of light. Proceedings: VII European / I 

World Meeting in Visual and Physiological Optics VPOptics 2014. 

Wrocław University of Technology, Wrocław, 25-27 Aug 2014, ed by DR 

Iskander and HT Kasprzak. 74-77. 

5. Harris WF, EVANS T and van Gool RDHM. (2014) Inner-product spaces 

for quantitative analysis of eyes and other optical systems. Proceedings: 

VII European / I World Meeting in Visual and Physiological Optics. 

Wrocław University of Technology, Wrocław, 25-27 Aug 2014, ed by DR 

Iskander and HT Kasprzak. 116-119. 



1 

 

PART I – INTRODUCTION  

The objective of this study is to explore chromatic properties and other 

chromatic effects of the eye, particularly in the context of Gaussian optics. 

Numerous optical properties are investigated for their dependence on the 

frequency of light, specifically those optical properties that are relevant to 

Gaussian systems, that is, systems that are rotationally symmetric about a 

common optical axis (Guillemin and Sternberg, 1984:7).  

 

1 INTRODUCTION 

From Babylonia to Egypt and Nigeria and from Papua New Guinea to 

Mexico and Peru, human beings have been fascinated by the rainbow since the 

beginning of time (Lee and Fraser, 2001: 2-33). The phenomenon that creates the 

rainbow is chromatic dispersion, that is, the separation of white light into its 

spectral components or the variation of the refractive index with wavelength 

(Sharma, 2006: 45, 50; Le Grand, 1956: 9). Chromatic aberration, in turn, is 

defined by El Hage and Le Grand (1980:4) as “the influence of chromatic 

dispersion in the eye”. That is to say, the white light entering the system is 

dispersed across the visible light spectrum and creates a rainbow effect as it exits 

the system or reaches an imaging surface such as the retina.  

Chromatic aberration is quantified according to the classical (or physical) 

optics definition as the distance measured between the projections of the two focal 

points when light of two frequencies representing the two ends of the visible light 

spectrum are traced through the system. Measurements parallel to the longitudinal 

axis are defined as longitudinal chromatic aberration and measurements 

perpendicular to the longitudinal axis are defined as transverse chromatic 

aberration (Born and Wolf, 2002: 186-187). The definition is limited to systems 

that are Gaussian and distances that are unsigned. 

In the literature of physiological optics many definitions exist. 

Longitudinal (or axial) chromatic aberration is defined in physiological optics as 

chromatic difference in power, refractive error, focus or ametropia (Atchison, 

Smith and Waterworth, 1993; Cooper and Pease, 1988; Rabbetts, 2007: 289-293; 

Thibos, Bradley, Still, Zhang and Howarth, 1990; Thibos, Bradley and, Zhang, 
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1991; Thibos, Ye, Zhang and Bradley, 1992; Wald and Griffin, 1947; Zhang, 

Thibos and Bradley, 1991). Transverse (or lateral) chromatic aberration is defined 

in physiological optics as chromatic difference in position or magnification 

(Rabbetts, 2007:289-293; Simonet and Campbell, 1990; Thibos et al, 1990, 1991, 

1992; Zhang et al, 1991). Researchers have sought to define a relationship 

between longitudinal and transverse chromatic aberration and have succeeded for 

the reduced eye (Zhang et al, 1991) and for schematic eyes (Katz, 2002:261). The 

limitations of these definitions is that they are based on Gaussian schematic eyes, 

usually the reduced eye, and do not generalise to eyes with astigmatic or 

decentred elements. There is a risk of making assumptions or conclusions that 

pertain only to the reduced eye. We shall explore two such underlying 

implications in Chapter 7. 

Gaussian optics has served as the foundation of optometry and the basis of 

visual optics and is a powerful tool (MacKenzie, 2004: 153-154). It is limited, 

however, in that it firstly assumes that all surfaces in the system are rotationally 

symmetric about an optical axis. Secondly, Gaussian optics relies on concepts 

such as principal points, nodal points, entrance- and exit-pupils which work well 

for Gaussian systems, but do not generalize well to astigmatic or heterocentric 

systems. However, the success of Gaussian optics in optometry and visual optics 

is evidence that the human eye is largely a first-order optical instrument (Le 

Grand, 1956:9; MacKenzie, 2004:3).  

Linear optics is a method that fully accounts for all the aspects of first-

order paraxial optics. The three-dimensional linear optics approach can account 

for elements that are astigmatic and decentred which traditional two-dimensional 

Gaussian techniques fall short of. Linear optics makes use of linear algebra and 

specifically a matrix, called here the ray transference S, that is, a complete 

representation of the effects of the system on a ray traversing it. Almost all of the 

familiar optical properties of the system can be calculated from the transference 

(Torre, 2005: 60). Linear optics can therefore describe the first-order behaviour of 

the eye as an optical instrument. 

From the transference we obtain the four fundamental properties namely A 

dilation, B disjugacy, C divergence and D divarication. From these four 
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fundamental properties we can obtain a variety of seemingly unrelated derived 

properties such as power (Harris, 1997), refractive compensation (Harris, 1999a; 

Keating, 1988: 236), front- and back-vertex power (Keating, 1988: 236; Harris, 

2010a), magnification, blur, image size and image position, (Harris, 2001a,b), 

cardinal points (Harris, 2010b, 2011a, b), Pascal’s ring (Harris, 2011a) and locator 

lines (Harris, 2011b). This is by no means a comprehensive list of derived 

properties. By and large these properties have been studied under the assumption 

of a single reference wavelength. Of special interest is that the cardinal points, 

which form the basis of Gaussian ray-tracing optics, are derived properties. 

Similarly, power and refractive compensation are derived properties.  

The transference that accounts for astigmatism is a 44  matrix with each 

of the four fundamental properties a 22  submatrix (Guillemin and Sternberg, 

1984:26; Harris, 2010d). When elements that may be decentred or tilted are 

accounted for in the transference, we obtain an augmented transference that is of 

order 55  (Harris,  2004a, 2010d, 2012c). In contrast, when all the elements are 

stigmatic and rotationally symmetric about an optical axis, each of the four 

fundamental submatrices simplifies to a scalar matrix and we can reduce the 

transference to a 22  matrix. This can be thought of as representing the Gaussian 

subset of  44  and 55  transferences (Guillemin & Sternberg, 1984: 7-11, 

Harris, 2010d). Because the topic of chromatic dependence of the eye is broad it is 

necessary to limit the scope of the study. Except where it is necessary to use a 

44  transference S or an augmented 55  transference T in order to gain insight 

into the nature and character of chromatic dependence of the eye, this study shall 

be limited to the Gaussian subset. However, most of the formulae obtained readily 

generalise to linear systems. Transferences are dealt with in more detail in Section 

3.2. 

Advantages are gained by limiting the scope of the study to the Gaussian 

subset. In particular, it becomes possible to display many of the dependencies on 

frequency in two- and three-dimensional space. However, the transference does 

not conform to the definition of a vector space (Anton and Rorres, 2005: 222; 

Harris, 2010d; 2007a,  van Gool and Harris, 2005) although it is possible to map 

the symplectic transference to a Hamiltonian space in a number of ways. 
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Transformed transferences are Hamiltonian and therefore fulfil the definition of a 

vector space, allowing us to graphically map the dependency in a three-

dimensional space. A 22  transformed transference has three independent entries  

which can be represented graphically (Harris, 2010d). On the other hand a 44  

transformed transference has 10 and a 55  transformed transference has 14 

independent entries requiring representation in 10- or 14-dimensional space 

(Harris, 2007a), a graphical impossibility. Insight is gained because many of the 

Gaussian derivations are simplified and can be represented graphically. 

We have seen that there are many properties that can be derived from the 

transference. An objective of this dissertation is to study the dependence of the 

transference on frequency. The reasons why frequency is preferable to vacuum 

wavelength will be explored in Chapter 4. To understand the dependency of the 

optical system of the eye on frequency we explore a number of transformed 

transferences and characteristic matrices. The characteristic matrices are 

symmetric and therefore are amenable to mapping the relationships between the 

entries also in three-dimensional space. Because each of the entries of the 

characteristic matrices is a derived property, each of these derived properties will 

be explored independently and then in relationship to other entries of the four 

characteristic matrices. We therefore restrict the derived properties studied to 

power, corneal-plane refractive compensation, exit-plane compensation and front- 

and back-vertex power. These derived properties will be explored for both their 

dependence on frequency across the visible light spectrum and the chromatic 

difference between the values at the spectral end-points.  

 

1.1 Purpose 

The purpose of this dissertation is to study the chromatic dependence of 

the first-order optical properties of the eye. Specifically, we wish to explore the 

chromatic dependence of optical properties and other effects of the eye 

particularly in the context of Gaussian optics.  

Many first-order optical properties are dependent on the effects of 

chromatic dispersion and hence on frequency of light. This study explores the 

effects of chromatic dispersion on a number of fundamental and derived 
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properties. The dependence of the transference, the transformed transferences, 

characteristic matrices and derived properties on the frequency of light are 

explored, including graphical representation. A formula is obtained for the linear 

dependence of the transference on the frequency of light.  

A study of chromatic effects of the eye would be incomplete without 

including chromatic aberration. Chromatic aberration, based on the classical 

optics definition, is defined for systems in general, including systems with 

astigmatic and heterocentric elements. Chromatic properties, as defined in the 

physiological optics literature, are obtained from the transference. Numerical 

examples of chromatic aberration and all the chromatic properties are given.  

 

1.2 Outline 

 

1.2.1 Part II - Literature review 

The literature review is divided into three chapters. In Chapter 2 the 

current definitions of chromatic aberration in both the classical and physiological 

optics literature are reviewed.  

Chapter 3 outlines linear optics. While much of this chapter may be 

familiar to the reader, it is included in part for completeness but predominantly to 

form a basis for derivations in Part III. After placing linear optics within the much 

larger field of optics, a summary of linear optics of first-order systems is given. 

The four fundamental properties are defined and briefly explored. Only a small 

selection of derived properties can be accommodated in this study and the 

derivations of power, corneal-plane refractive compensation and front- and back-

vertex power are given. Both the classical and physiological optics approaches to 

defining magnification are explored. 

Cardinal points form the basis of Gaussian optics and can be derived from 

the transference (Harris, 2010b, f). We are interested in the dependence of the 

cardinal points on the frequency of light and therefore the derivations for cardinal 

points from the transference are given. Two novel methods to display 

relationships among the cardinal points of a system and changes or differences 

between the cardinal points of two systems will be given. 
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The transference is symplectic and does not define a vector space and, 

hence, does not allow conventional statistical analyses (Harris, 2010d). We 

therefore investigate a number of transforms, including the Cayley (Cardoso and 

Harris, 2007) and logarithmic transforms (Harris and Cardoso, 2006; Harris, 

2004b, 2005, 2007a) and the four characteristic matrices (van Gool and Harris, 

2005; Harris and van Gool, 2004), to seek a suitable vector space. The 

characteristic matrices form combinations of derived properties and are also 

symmetric. As a result, each characteristic matrix has three independent entries 

and can be represented graphically in three-dimensional space. 

Chromatic aberration depends on the longitudinal and transverse position 

of the object. Because we wish to know where the conjugate image point is we 

turn our attention to vergence as an alternative to tracing a pencil of rays through 

the system. In the literature review, we define vergence and wavefronts relating to 

the system, from the transference, and the position of the image relative to the exit 

plane of the system. 

Chapter 4 deals with a number of considerations that need to be taken into 

account for this study of chromatic dependence. Schematic eyes are by definition 

Gaussian eyes and two schematic eyes are singled out for inclusion in the study.  

The limits of the visible light spectrum that will be included in the study are 

defined. The advantages and disadvantages of studying the dependence of 

chromatic properties as a function of frequency or vacuum wavelength are 

discussed. 

It is the refractive index of the medium that is dependent on frequency. 

There are a limited number of formulae available that define refractive index of 

the media of the eye as a function of wavelength or frequency. The refractive 

indices as a function of vacuum wavelength are given for the reduced eye, the four 

media of Le Grand’s four-surface eye, air and water. 

 

1.2.2 Part III– Definitions and derivations 

The objective in Part III is, firstly, to define chromatic aberration for 

systems in general, including systems with astigmatic and heterocentric elements 

and secondly to derive equations from the transference for chromatic properties of 
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the system both independent of and dependent on the positions of the object and 

limiting aperture. The starting point for these derivations is the derived properties 

presented in Chapter 3. However, not all the necessary derived properties and 

definitions are available in the current literature and so in Chapter 5 we define 

those formulae that are needed to define chromatic properties. Chapter 5 therefore 

is a collection of seemingly unrelated derivations. 

 We start Chapter 5 by defining exit-plane compensation and revisiting 

magnification. The magnification, blur and ray state at the retina is defined for 

object points at a finite distance. Anti-cardinal points are added to the study of the 

cardinal points and these are extended beyond the formulae and relationships 

available in the current literature. 

The transferences are calculated for the reduced eye and for Le Grand’s 

eye for their intended reference frequency. Formulae for the transference as a 

function of refractive index are derived and given for both schematic eyes.  

There are a number of formulae available that define Cayley’s transform. 

In this section each of these transforms are dissected for their usefulness for our 

purposes and for the method and way that it maps to Hamiltonian space and back 

into the set of symplectic matrices. Only one Cayley transform fulfils the 

requirements and is chosen with reasons given. The Cayley transform simplifies 

for the reduced eye and the formula for the transformed transference of the 

reduced eye is given. 

In Chapter 6 chromatic aberration is defined for systems in general and 

then specialised for the Gaussian subset. The point of departure is the classical 

optics definition. By first defining chromatic aberration using linear optics we 

gain insight into the nature of the longitudinal and transverse chromatic 

aberrations. 

Chapter 7 defines the chromatic properties of the eye and of the eye 

dependent on the positions of the object or image and aperture. These chromatic 

properties are derived from the transference based on the definitions for chromatic 

aberration in physiological optics. Included are chromatic properties of the eye 

independent of object or image and aperture positions which include chromatic 

differences in power, refractive compensation and ametropia. The chromatic 
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properties of the system dependent on object and aperture positions include the 

chromatic difference in position, inclination, image size and angular spread and 

chromatic image size and angular spread magnifications. The formulae derived 

are specialised for Gaussian schematic eyes but apply to both the pupil and the 

pinhole. 

 

1.2.3 Part IV – Findings and discussions 

The three chapters in Part IV together comprise the results of this 

dissertation and in each case both the reduced eye and Le Grand’s eye are studied.  

In Chapter 8 the dependence of the fundamental properties on frequency is 

displayed graphically and discussed. Four scenarios are considered, namely with 

the refractive index of air equated to 1, with the refractive index of air as a 

function of frequency using Cauchy’s formula and with the eye submerged in 

water. Cornu’s formula for the refractive index of water as a function of frequency 

is used. Finally the dependence of the fundamental properties as functions of 

vacuum wavelength are given, with the refractive index of air equated to 1. 

The dependence of the transformed transferences is studied for both the 

logarithmic and Cayley transforms. This includes the dependence on the 

individual entries as well as the three-dimensional graph of the three independent 

entries. A formula for the linear dependence of the fundamental properties on the 

frequency of light is derived. This forms an important finding in this dissertation. 

Chapter 9 looks at the dependence of derived properties on the frequency 

of light. First, the dependence of the cardinal and anti-cardinal points are studied 

and displayed using the locator line diagram and Pascal’s ring. Each of the 

derived properties is studied separately for its dependence on frequency and 

finally the dependence of the characteristic matrices on the frequency of light are 

displayed using three-dimensional graphs. Each entry is a derived property and 

the relationship between certain derived properties can be seen. 

Chapter 10 gives details of the numerical and graphical results for both 

schematic eyes for all the derivations of chromatic aberration and chromatic 

properties of the eye both independent of and dependent on the object or image 

and aperture positions. Object points at distance and three near working distances 
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are illustrated. Both the naked eye with centred pupil and the eye with a decentred 

pinhole immediately in front of the eye are illustrated. 

 

1.2.4 Part V - Conclusion 

Chapter 11 concludes that the transference, the fundamental properties and 

almost all the derived properties included in the study are dependent on the 

frequency of light. Certain derived properties are observed to be independent of 

frequency when the reduced eye model is used, but are dependent when Le 

Grand’s eye is used. Formulae for the longitudinal and transverse chromatic 

aberration of systems in general are derived. Formulae for the chromatic 

properties of the eye, according to the definitions in the physiological optics 

literature, are derived from the transference. An important formula for deriving 

the linear relationship of each of the fundamental properties in the transference is 

obtained. 
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2 Definitions and measurements of chromatic aberration 

 

Introduction, historical perspective 

Humans have been admiring the rainbow since the beginning of time and 

different cultures have ascribed to the rainbow much religious and mystical 

significance (Lee and Fraser, 2001: 2-33). Whether or not the Irish leprechaun 

really has hidden a pot of gold at the end of a rainbow remains to be discovered. 

However, chromatic dispersion and its effects have enchanted men and women for 

millennia and people still spend fortunes purchasing diamonds for their sparkly 

effects caused by chromatic dispersion. The earliest documented academic studies 

of colour vision and the rainbow date back to Aristotle, around 384-322 BCE 

(Aristotle, 1906: 55-63 ; 1928; Lee and Fraser, 2001: 102-114). 

We now know that the rainbow represents a continuum of colours but it is 

Newton who receives the most credit for his study of “Opticks”. He was by no 

means the first to study colour, nor to discover a technique to create chromatic 

dispersion, however he is credited with naming the colours in the visible light 

spectrum. He originally chose five colours and later changed this to seven because 

he felt that the central colours were “crowded” and he wished to “divide the image 

into parts more elegantly proportioned to one another”. He then observed that “the 

parts of the image occupied by the colors were proportioned to a string divided so 

it would cause the individual degrees of the octave to sound”. He appears to have 

been particularly pleased and encouraged by this connection between colour and 

music (Newton, c1670).  

 

2.1 Chromatic dispersion 

It is Newton (c1670) who is credited with the scientific proof of chromatic 

dispersion. During the period 1670 to 1672 he conducted a series of experiments 

in which he successfully split white light up into a continuum of colours through a 

prism. He defined seven colours and named them according to the familiar 

colours of the rainbow: red, orange, yellow, green, blue, indigo and violet. The 

colour Newton called blue, is more of a sea-green that we now refer to as cyan. 

The colour Newton referred to as indigo is today’s perception of blue, and green 
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he compared to leek green (Newton, c1670; Hastings, 1901:42; Waldman, 2002: 

193).  

Chromatic dispersion is defined as the separation of white light into its 

spectral components or the variation of the refractive index with wavelength 

(Sharma, 2006: 45, 50; Le Grand, 1956: 9). Dispersion is quantified 

mathematically by various dispersion formulae for the refractive index of the 

medium as a function of wavelength or by the Abbe number, also known as the 

constringency or refractive efficiency (Keating, 2002: 443–445). The latter allows 

us to quantify and compare by means of a single number the dispersive property 

of one material with another material and is more commonly used for laboratory-

type media, including spectacle lenses. On the other hand, the formulae for the 

refractive index of a medium as a function of wavelength allows us to calculate 

the refractive index of a medium for any chosen wavelength or frequency; this is 

the quantitative method that we will use in this dissertation. There are a number of 

such formulae available for many materials, such as spectacle lens materials, 

glass, water, air, etc. (Walther, 1995:115–117; Herzberger, 1959) but there are 

limited formulae available for the media of the eye (Rabbetts, 2007: 287-288; 

Sivak and Mandelman, 1982). 

There are two methods of determining the formulae for the refractive 

index of the media of the eye as a function of wavelength. One is to measure the 

medium of an enucleated eye with a refractometer, which poses some problems, 

and the other is to measure experimentally the chromatic aberration present in a 

sample of (living) eyes and interpolate the formulae according to the results. Wald 

and Griffin (1947) made some measurements with a refractometer of the aqueous 

and vitreous humours of cattle. They could not obtain measurements of the cornea 

because it was too thin and made only a crude measurement of the lens, however 

the measurement was not reliable because the lens needed to be compressed and 

distorted in order to take the measurement. This was further compounded by the 

lens’s gradient index (Emsley, 1950: 518-519). They concluded that the humours 

have refractive indices similar to distilled water and that the lens material has 

considerably higher dispersion than water. More recently, Sivak and Mandelman 

(1982) took measurements for the refractive index at four wavelengths using a 
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refractometer on a variety of vertebrates, including cow, pig, frog, chicken, rock 

bass, rat and cat, for the aqueous and vitreous humours, the cornea and the inner 

and outer periphery and inner and outer core of the lens. They also measured the 

refractive indices for the peripheral and core of the lens for the human eye. The 

data was fitted to a polynomial. 

There are a number of dispersion formulae available for expressing the 

refractive index as a function of wavelength (or wavenumber or frequency) for a 

variety of media. Examples include the dispersion formulae of Schmidt, Cauchy, 

Sellmeier, Cornu, Hartmann, Ciddor and Herzberger (Koczorowski, 1990; Ciddor, 

1996; Herzberger, 1959). The expressions usually take the form of a polynomial 

with the variable being wavelength and constants for various materials given in 

tables. Depending on the medium, factors that influence the refractive index 

include, where relevant, temperature, humidity, carbon-dioxide content, pressure 

and even contaminants such as air pollution, and are defined as constants (Le 

Grand, 1956: 12-13; Hodgman, 1959, Ciddor, 1996) or may be included as 

variables in the expression (Ciddor, 1996).  

Le Grand (1956: 12-13) studied refractometry measurements from Kunst, 

Polack and Tagawa (done in 1895, 1923 and 1928, respectively) which he claimed 

were all in close agreement for the two humours, the cornea and the periphery and 

core of the crystalline lens. He then compiled a table of refractive indices for the 

four media of the eye (aqueous and vitreous humours, cornea and lens) for the 

wavelengths of five Fraunhofer lines (A, C, D, F and G) as well as the constants 

needed for Cornu’s formula for these four media. Villegas, Carretero and Fimia 

(1996) presented formulae for the refractive index as a function of wavelength for 

these four media using Le Grand’s table of refractive indices which they obtained 

by a polynomial fit. The formula and constants are given in Section 4.4.3.  

Thibos, Ye, Zhang and Bradley (1992) took an alternative approach. Using 

least-squares and their own measurements they obtained constants for a better fit 

for Cornu’s hyperbolic dispersion formula to the reduced eye. This formula will 

form a basis for calculations in this dissertation and will be discussed in greater 

detail in Section 4.4.2. 
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2.2 Chromatic aberration 

As several authors have remarked (Thibos, Bradley, Still, Zhang and 

Howarth, 1990; Simonet and Campbell, 1990; Rabbetts, 2007:289) there is much 

confusion in the literature regarding the definition of longitudinal and transverse 

chromatic aberration. In part, this confusion arises because each of the classical 

and physiological optics approaches define chromatic aberration differently. For 

the purposes of clarity in this dissertation, the definition of chromatic aberration 

will be that based on the classical optics definition given in Section 2.2.1 below 

and generalized for all optical systems, including those with elements that may be 

astigmatic, tilted or decentred in Chapter 6. The definitions of chromatic 

aberration in the physiological optics literature, which are specialized for the eye, 

will be referred to as physiological chromatic properties or chromatic properties. 

These are defined in the literature in Section 2.3 below and defined from the 

transference for Gaussian eyes in Chapter 7. 

Until now, chromatic aberrations and chromatic properties have been 

studied using ray tracing and reverse ray tracing techniques which involve the 

extensive use of cardinal points, in particular the nodal point. There appears to be 

no reference in the literature to chromatic aberrations and properties in astigmatic 

systems. An exhaustive search of the literature, including personal 

correspondence (Thibos, 2011), confirms this.  

This literature review looks at how these concepts are defined and 

measured in the literature, and the limitations imposed by the definitions. The 

literature makes use of the terms object space and image space. By the classical 

definition adopted here, chromatic aberration is associated with image space. It is 

not (yet) possible to measure the chromatic aberration in an eye, so measurements 

are usually done in object space. Coincidence of the red and blue images is 

presumed on the retina and “dispersion” from separate red and blue objects is 

measured outside of the eye.  

It is important to separate the classical definition of chromatic aberration 

from the ophthalmic and physiological optics definitions that attempt to measure 

the various chromatic properties in the eye, both experimentally, in object space 

and calculation-based, in image space. The classical definition defines transverse 
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and longitudinal chromatic aberration for all Gaussian systems. Rabbetts (2007: 

289) differentiates between physiological and classical optics definitions, 

however, this distinction is not drawn in most of the literature referred to in this 

study. Furthermore, only the more recent literature draws a distinction between 

calculated and measured chromatic properties and distinguishes between object 

and image space in these definitions. The definitions in the ophthalmic and 

physiological optics literature define transverse chromatic properties in eyes 

which include chromatic difference in position and chromatic difference in 

magnification and longitudinal chromatic properties in eyes which include 

chromatic difference in power and chromatic difference in refractive 

compensation. It is the intention in this study to clearly define longitudinal and 

transverse chromatic aberration in general to include astigmatic, decentred and 

heterocentric optical systems. 

 

2.2.1 Definition of chromatic aberration 

Born and Wolf (2002:186-187) define the first-order chromatic aberrations 

for systems in general within the limits of Gaussian optics as the distances zδ  and 

yδ  between the projections of the two focus points for the two different 

wavelengths in the directions parallel and perpendicular to the optical axis as 

longitudinal and transverse chromatic aberration respectively. The distances are 

unsigned, as shown in Figure 2.2.1. One notes that the chromatic aberrations 

depend on the position of the object. The definition holds for optical systems with 

stigmatic elements. This definition is consistent with Keating (1988:429; 

2002:442-443), Katz (2002: 258-261) and Sharma (2006: 250) and is the 

definition that forms the starting point for the general definition that will be used 

in this study which holds for astigmatic, decentred and heterocentric optical 

systems. This definition will be discussed in Chapter 6.  

 Figure 2.2.1 defines the longitudinal zδ  and transverse yδ  chromatic 

aberration of an arbitrary homocentric system S with stigmatic elements. System 

S has an entrance plane 0T  and exit plane T. None of the refracting elements of S 

is shown. 0T  and T do not coincide with a refracting surface. Z is the optical axis. 
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rI  and 
bI  are the red and blue images of object O, respectively. We introduce the 

symbols δ  to denote a chromatic difference and Δ  to denote a physical difference 

between two dimensions. The above definition applies to Gaussian systems in 

general. It is what we refer to here as the classical definition of chromatic 

aberration.  

A number of longitudinal and transverse chromatic properties are defined 

that apply specifically to the eye or model eye. A review of the literature reveals 

that most approaches make use of stigmatic models and, in particular, the reduced 

eye (Simonet & Campbell, 1990; Thibos, 1987; Thibos, Bradley and Zhang, 1991, 

Thibos et al, 1992; Zhang, Thibos and Bradley, 1991). References to schematic 

eyes were found (Atchison, Smith and Waterworth 1993; Le Grand 1956: 13; 

Rabbetts, 2007: 291; Zhang, Thibos and Bradley, 1991) but are limited to systems 

with stigmatic elements. There appears to be no clear distinction between the 

definition of chromatic aberration and the measurement of the chromatic 

properties in the eye. Rabbetts (2007: 289-293) and Atchison and Smith (2000: 

180-186) both state that there are two primary chromatic aberrations, namely 

longitudinal and transverse. Thibos, Bradley and Zhang (1991) argue that there 

are three primary forms of chromatic aberration, namely chromatic difference of 

focus, chromatic difference of magnification and chromatic difference of position. 

 

 

Figure 2.2.1  Longitudinal zδ  and transverse yδ  chromatic aberration of an arbitrary 

homocentric system with stigmatic elements. The system is drawn in the usual sense of a 

system such as the eye where br zz  . 



II  LITERATURE REVIEW  2 Definitions and measurements 

of chromatic aberration 

17 

 

In Chapter 7 we will derive formulae for chromatic properties that are general for 

all Gaussian schematic eyes, regardless of the number of refracting surfaces. In 

Chapter 10 we will obtain numerical values for these derived formulae for 

chromatic aberration and chromatic properties for the reduced eye and Le Grand’s 

four-surface eye. 

 

2.3 Measurements of chromatic properties of the eye  

Thibos, Bradley and Zhang (1991) emphasize that “chromatic aberration is 

the most important optical imperfection of the well corrected eye”. The main 

differences in the definitions of longitudinal and transverse chromatic properties 

in the literature revolve around the use of reference points versus reference (or 

chief) rays and axes for the measurement and the units which are used. Some 

authors distinguish between image and object space, while others view them as 

the same thing (for example, Wald and Griffin, 1947).  

Much work has been done to define a relationship between longitudinal 

and transverse chromatic aberration in the eye. Some authors (Simonet & 

Campbell, 1990) say there is no relationship, while others (Thibos et al, 1990, 

1991; Zhang et al, 1991; Zhang, Bradley and Thibos, 1993) have derived 

formulae for a relationship. In Chapter 6, we show that longitudinal and transverse 

chromatic aberrations are fundamentally different (Harris and Evans, 2012). 

 

2.3.1 Longitudinal chromatic properties 

According to Rabbetts (2007: 289), longitudinal chromatic properties are 

defined in the physiological optics literature as the variation in focusing distance 

with wavelength. The literature defines two methods of measuring longitudinal 

chromatic properties of the eye, namely chromatic difference in refractive 

compensation and chromatic difference in power, each known by various names. 

Chromatic aberration is the distance measurement between the image points or 

object points created by two different wavelengths often measured as inverse units 

of distance (Wald and Griffin, 1947) and more commonly defined in object space 

as the difference in refractive compensation or object vergences required to 

provide clear imagery for two different wavelengths (Atchison, Smith and 
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Waterworth, 1993). Chromatic difference in power, or chromatic difference in 

focus (Wald & Griffin, 1947), is usually measured experimentally as chromatic 

difference in refractive error (Thibos et al, 1990, 1991; Wald & Griffin, 1947; 

Atchison, Smith and Waterworth 1993; Rabbetts, 2007).  

Chromatic difference in refractive compensation is known as the 

chromatic difference in focus (Thibos, Bradley and Zhang, 1991; Atchison, Smith 

and Waterworth (1993)), chromatic difference in equivalent power (Atchison, 

Smith and Waterworth, 1993; Rabbetts, 2007:287-293), chromatic difference in 

power (Wald & Griffin, 1947), chromatic difference in refractive error
  

(Thibos, 

Bradley and Zhang, 1991), chromatic difference in refraction (Rabbetts, 2007: 

287-293), chromatic difference in ametropia (Atchison, Smith and Waterworth, 

1993), axial chromatic aberration (Thibos, Bradley and Zhang, 1991; Wald & 

Griffin, 1947) or wavelength-dependent refractive error (Zhang, Thibos and 

Bradley, 1997). 

Chromatic difference in power and chromatic difference in refractive 

compensation are not the same. Some authors use them interchangeably (Wald & 

Griffin, 1947), while others derive a linear relationship between them (Le Grand, 

1956:14-16; Atchison, Smith and Waterworth, 1993; Thibos, Bradley and Zhang, 

1991).  

 

Chromatic difference in power 

Thibos et al (1990) define the ocular longitudinal chromatic aberration in 

image space as “the distance between the image planes for different wavelengths” 

or “the variation of the eye’s focusing power for different wavelengths”, which is 

essentially the chromatic difference in power. Zhang, Thibos and Bradley (1991) 

define the chromatic difference in power as 

r

n
FFF

δ
δ 21          (2.3.1) 

where nδ  is the difference between refractive indices of the medium for two 

wavelengths ( 1  and 2 ) and r is the radius of curvature of the single refracting 

surface of the reduced eye. 1F  and 2F  are the powers of the same reduced eye for 

the two different wavelengths. 
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 Chromatic difference in power is represented as longitudinal chromatic 

aberration (LCA) in Figure 2.3.1 for the reduced eye. The reduced eye has a single 

refracting surface, a longitudinal axis Z, which is also the achromatic axis and an 

optical axis, a nodal point N and a pupil or limiting aperture. The centre of 

curvature of the refracting surface coincides with the nodal point. The refractive 

index inside the reduced eye is n and before the reduced eye is 0n . Light from an 

object point O is refracted more for the short wavelength (shown in blue) than for 

the longer wavelength (shown in red). In Figure 2.3.1, the light with short 

wavelength creates a blue point focus bI  before the retinal plane and the light with 

the longer wavelength creates a red point focus rI  behind the retina. In Figure 

2.3.1, the chromatic difference in power is shown as the distance between the 

image planes for different wavelengths, measured in units of inverse lengths. 

Similarly, Rabbetts (2007: 290) defines chromatic difference in equivalent power 

 eδF  as 

oλeδ FFF      (2.3.2) 

where λF  is the equivalent power of the eye at a specified wavelength and oF  is 

the equivalent power of the eye at a reference wavelength.  

 

 

 

Figure 2.3.1 Chromatic difference in power shown as longitudinal chromatic 

aberration (LCA) for the reduced eye as the distance between the image planes for 

different wavelengths. (Figure adapted from Thibos et al, 1990.) 
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Chromatic difference in refractive compensation  

Thibos et al (1990) define ocular longitudinal chromatic aberration in 

object space for the purposes of experimental study as the distance or dioptric 

interval between multiple object points of differing wavelengths that are 

positioned such that they focus simultaneously on the retina, thereby forming a 

single polychromatic image I shown in Figure 2.3.2. The dioptric interval is the 

difference in inverse distances from the refracting surface given by (Thibos et al, 

1990) 

rb

0

11
δ

zz
F           (2.3.3) 

where 0δF  is the chromatic difference in refractive compensation, and rz  and bz  

are the distances from the eye to the conjugate object points rO  and bO  

respectively. The subscripts r and b represent red and blue, however, the exact 

wavelengths that they represent may differ from study to study. This effectively 

defines the chromatic difference in refractive compensation. Simply put, the 

chromatic difference in refractive compensation is the difference in power of the 

lens needed to compensate for the distance ametropia created by each wavelength 

(Thibos, Bradley and Zhang 1991). Rabbetts (2007: 290) defines chromatic 

difference in refraction as  

0o0λ0δ FFF   

 

 

Figure 2.3.2 Chromatic difference in refractive compensation shown as longitudinal 

chromatic aberration (LCA) in the reduced eye, as the distance between the object planes 

for different wavelengths. (Figure adapted from Thibos et al, 1990). 
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where 0λF  is the refraction of the eye at a specified wavelength and 0oF  is the 

refraction of the eye at a reference wavelength. Furthermore, Rabbetts gives a 

relationship between chromatic difference in power and chromatic difference in 

refractive compensation for Gaussian schematic eyes as 

0o0 δδ F
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where 
vn  is the refractive index of the vitreous at a specified wavelength and 

ovn  

is the refractive index of the vitreous at a reference wavelength.  

Zhang, Thibos and Bradley (1991) and Thibos, Bradley and Zhang (1991) 

give the relationship between chromatic difference in power and chromatic 

difference in refractive compensation as 
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where Dn  is the refractive index for the Fraunhofer line D ( nm3.589D ) at 

which the reduced eye is emmetropic. D  is the reference wavelength for the 

reduced eye. All other symbols remain the same as already defined. 

 

Experimental measurements 

Wald and Griffin (1947) conducted an experiment using a spectral 

stigmatoscope with which they measured the axial chromatic aberration in 

dioptres as the refractive compensation required at each wavelength to bring the 

eye to the same power it possesses at the reference wavelength 578 nm. 

Cooper and Pease (1988) conducted their experiment using a Badal 

optometer in order to measure wavelength in focus. Their aim was to establish 

which wavelength the eye preferred when accommodating on a near target. Their 

results are also expressed in dioptres for the refractive compensation required to 

focus light with a corresponding wavelength on the retina. They define this as 

longitudinal chromatic aberration.  

Similarly, Thibos et al (1990) conducted an experiment using the Badal 

optometer as part of a larger experiment to find a relationship between 

longitudinal chromatic aberration (chromatic difference in refractive 
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compensation) and transverse chromatic aberration (chromatic difference in 

position). 

Thibos et al (1992) conducted further experimental measurements using 

the two-colour Vernier method to measure the chromatic difference in refractive 

compensation. The aim of the set of experiments was to develop a reduced eye 

model that closely mimicked the real eye for chromatic aberration predictions. To 

this effect they developed the “chromatic eye” with three improvements over the 

reduced eye. Firstly, they refit Cornu’s dispersion formula for the refractive index 

of the medium as a function of wavelength for the reduced eye to closely follow 

the experimental results. This formula will be discussed in Section 4.4.2. 

Secondly, they made the refracting surface aspherical (a prolate spheroid) to 

improve transverse chromatic aberration predictions. Finally, they included the 

pupil that Thibos (1987) previously introduced allowing for a reference axis and 

pupil centre to be defined.  

Howarth and Bradley (1986) determined the chromatic difference in 

refractive compensation using a Badal optometer. The results showed that the 

Powell and Lewis achromatising lenses approximately corrected for the average 

longitudinal chromatic aberration. They also were able to conclude that individual 

differences in chromatic difference in refractive compensation are small, an 

important conclusion for this dissertation. 

 

2.3.2 Transverse chromatic properties 

 According to Rabbetts (2007:289) when an off-axis polychromatic object 

point “produces laterally separated images on the retina due to dispersion … this 

is defined in the physiological optics literature as transverse chromatic aberration” 

and can also exist for an axial object point with a displaced artificial pupil. 

However, he states “in classical optics literature this is known as the transverse 

component of longitudinal chromatic aberration”.  

A number of terms and approaches are used to quantify transverse 

chromatic properties which are also referred to as lateral chromatic aberration, 

chromatic difference of magnification and chromatic difference of position. 

Zhang, Thibos and Bradley (1997) refer to wavelength-dependent image 
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magnification and wavelength-dependent shifts in image position, respectively, 

which they describe as eccentricity-dependent transverse chromatic aberration. 

Transverse chromatic aberration is defined either in image or object space and 

measured in object space. Measurements for transverse chromatic aberration are 

calculated either for an off axis object or a decentred pinhole.  

Simonet and Campbell (1990) define transverse chromatic aberration as 

“the displacement of the image principal rays with wavelength”. Certain 

definitions require that the chief ray should continue being projected to the retina 

or reference plane and the measurement taken as being from the centre of the 

projected blur patch to the centre of the second projected blur patch (e.g. Simonet 

& Campbell, 1990; Thibos, 1987;  Thibos et al, 1990).  

Thibos et al (1990) describe transverse chromatic aberration as the 

“variation in image position with wavelength”. This creates a chromatic difference 

in position. The same mechanism will create a difference in image size called the 

chromatic difference in magnification. The chief ray from an object point is 

defined as the ray that traverses the centre of the pupil and therefore identifies the 

centre of the corresponding blur circle on the retina. The red and blue chief rays 

strike the retina at different positions, thereby defining the chromatic difference in 

position as the angle between the chief rays for different wavelengths, which 

Thibos et al (1990) define as transverse chromatic aberration. The chromatic 

difference in position depends on the pupil or pinhole position and the object 

location, which determines the incident inclination. The experimental variation of 

the position of the pinhole to control the position of the achromatic axis is referred 

to by Thibos et al (1990) as induced transverse chromatic aberration. 

Thibos et al (1990) define the achromatic axis as the chief nodal ray; that 

is the ray that connects the centre of the pupil and the nodal point and which 

displays no transverse chromatic aberration. Typically, this would not intersect the 

fovea, however, when a pinhole is placed in front of the cornea, the achromatic 

axis can be manipulated to intersect the fovea. The nodal point is independent of 

wavelength (Thibos et al, 1990) for the reduced eye, however we will show in 

Section 9.1 that this is not strictly true of other schematic eyes or for eyes in 

general. According to Thibos et al (1990), the achromatic axis is important in 
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experimental situations because it represents the position where transverse 

chromatic aberration is null and thereby creates a link between theoretical and real 

eyes. They add that the achromatic axis can be manipulated experimentally, for 

example redirected to the fovea or other peripheral position, and therefore 

establishes a link between the optical theory and real eyes. 

 

Chromatic difference in position 

The chromatic difference in position is defined as the angular separation 

between the red and blue chief rays from a single object point in radians or 

minutes (Thibos et al, 1990, 1991). The chromatic difference in position is shown 

by angle t in Figure 2.3.3 (a), (b) and (c) (Thibos, 1987; Thibos et al, 1990). 

Thibos et al (1990) describe three approaches to defining and measuring 

chromatic difference in position: firstly in image space for a single object point, 

secondly in object space for the naked eye and finally also in object space, but 

manipulating the transverse position of the incident rays with a pinhole. These 

three approaches are shown in Figure 2.3.3 (a), (b) and (c).  

According to Thibos (1987), Thibos et al (1990, 1991), the chromatic 

difference in position t will vary linearly with the angle of incidence of the chief 

rays, the angle of stimulus eccentricity, and the distance between the pupil centre 

and nodal point. t is also linearly related to the chromatic difference in refractive 

compensation (Thibos, Bradley and Zhang 1991). The transverse chromatic 

aberration depends on both the object location and the pupil location within the 

eye. The former will determine the angle of incidence of the selected rays while 

the latter will influence the position of the chief ray which is used in the 

calculations for transverse chromatic aberration. 

For induced chromatic difference in position, Thibos et al (1990) conclude 

that each millimetre of displacement of the centre of the pinhole from the visual 

axis is approximately the same as 15 degrees of stimulus eccentricity.  This means 

that, to first approximation, the two approaches to measuring chromatic difference 

in position in object space are directly proportional, with the constant of 

proportion being the displacement of the pinhole centre from the visual axis. 
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Thibos et al (1990) give the transverse chromatic aberration, shown in 

Figure 2.3.3(c), as 

0

rb

δFh
z

h

z

h
abt         (2.3.5) 

where the equation utilises the approximation of small angles. rz  and 
bz  are the 

distances from the red and blue object points respectively to the eye and h is the 

transverse displacement of the pinhole from the visual axis (in a reduced eye with 

a defined pupil and fovea). 

Simonet and Campbell (1990) define optical transverse chromatic 

aberration  “at the fovea as the difference for distinct wavelengths in the position 

of the centres of the images projected onto the retina”. More specifically, the red 

chief ray is directed at the fovea and chromatic difference in position is measured 

as the angular difference in position of the blue chief ray relative to the fixed 

position of the red chief ray. The transverse chromatic aberration t is defined and 

measured experimentally in object space, consistent with t in Figure 2.3.3 (b), 

except that the red chief ray intercepts the fovea at the retina. They note that 

optical transverse chromatic aberration will have a vertical and horizontal 

component, but restrict their experimental measurements to only the horizontal 

component.  

Simonet and Campbell (1990) also describe the relationship given by 

Equation 2.3.5 where h is the displacement in the entrance pupil of the rays with 

respect to the achromatic axis. 0δF  describes the slope of the relationship between 

transverse chromatic aberration t and displacement h in the entrance pupil. 

Simonet and Campbell make use of a Maxwellian view to direct the red and blue 

rays through the desired position in the pupil plane in contrast with Thibos et al 

(1990) who use a pinhole at the corneal plane. 

Figure 2.3.3 illustrates the chromatic difference in position t for the 

reduced eye. Figure 2.3.3 (a) represents the chromatic difference in position in 

image space for the naked eye. Light from object point O is refracted at the single 

refracting surface. Light with a shorter wavelength (indicated in blue) is refracted 

more than light of a longer wavelength (indicated in red). t is measured as the 

angle between the blue and red light rays and represents the chromatic difference 
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in position. We can see that the red and blue rays each strike the retina at a 

different position, and that both images rI  and bI  are out of focus at the retina.  

Figure 2.3.3 (b) represents the chromatic difference in position in object 

space for the naked eye. Light with a longer wavelength and originating from a 

red object point rO  along with light with a short wavelength originating from a 

blue object point bO  are refracted at the refracting surface and create a single, 

simultaneous image point I at the retina. In Figure 2.3.3 (b), the chromatic 

difference in position t is the angle between the red and blue rays in object space.  

Figure 2.3.3 (c) represents the chromatic difference in position in object space for 

the eye with artificial limiting aperture immediately in front of the refracting 

surface. The pinhole aperture allows us to choose the image point to arrive at the 

fovea F, making the line joining the object points rO  and bO , the nodal point N 

and the fovea to be the visual axis. a is the angle between the red ray and the 

visual axis, b is the angle between the blue ray and the visual axis and h is the 

displacement of the pinhole from the visual axis. Similar to (b), the chromatic 

difference in position is the angle t between the red and blue rays in object space.  

Thibos, Bradley and Zhang (1991) derived a relationship between 

chromatic difference in refractive compensation 0δF  and chromatic difference in 

position t. For chromatic difference in position for an off-axial object point the 

approximate equation is given as 

sinδ 0Fzt            (2.3.6) 

where z is the distance between the iris and the nodal point and   is the 

eccentricity as shown in Figure 2.3.4 (a).  For a displaced pinhole, Thibos, 

Bradley and Zhang (1991) define the approximate relationship as 0δFht  . 

However the definition is subtly different from that as given in the Equation 2.3.5 

by Thibos et al (1990). The definition in Equation 2.3.6 and its approximation are 

given as approximations and the angle t is subtended at the nodal point and shown 

in Figure 2.3.4 (a) and (b), whereas in Figure 2.3.3 (a), (b) and (c) the angle is 

subtended at the refracting surface. Comparing these two equations, Thibos, 

Bradley and Zhang (1991) also conclude that each millimetre of displacement of 
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an external pinhole or limiting aperture results in 15  of eccentricity for the naked 

eye.  

Zhang, Thibos and Bradley (1997) schematically define transverse chromatic 

aberration as the angle subtended at the refracting surface, according to 

 

 

Figure 2.3.3  The chromatic difference in position t for the reduced eye. (a) The 

chromatic difference in position in image space for the naked eye. (b) The chromatic 

difference in position in object space for the naked eye. (c) The chromatic difference in 

position in object space for the eye with artificial limiting aperture immediately in front 

of the refracting surface. Figure not drawn to scale and adapted from Thibos et al (1990). 
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Figure 2.3.3 (a), however, they define transverse chromatic aberration 

algebraically as the angle subtended at the nodal point and shown in Figure 2.3.4. 

Zhang, Thibos and Bradley (1997) estimate that the angle subtended at the nodal 

point of the eye to be approximately 1.333 times larger than the angle subtended 

at the refracting surface.   

 

Chromatic difference in magnification 

The chromatic difference in magnification is defined as the magnification of the 

angle between the red and blue chief rays or difference in size between the centres 

of the red and blue retinal images as a percentage (Thibos, Bradley and Zhang, 

1991; Zhang, Thibos and Bradley, 1991) or as a ratio (Rabbetts, 2007; Thibos, 

Bradley and Zhang, 1991) or seconds of arc (Simonet & Campbell, 1990), 

 

Figure 2.3.4 Chromatic difference in position t for the reduced eye in image space. (a) 

The ray arrives at the naked eye at eccentricity  . t is the angle subtended at N by the 

intersections of the two rays with the retina. (b) A decentred pinhole aperture ensures that 

the ray arrives at the eye at some distance h from the achromatic axis. t is the angle 

subtended at N by the retinal intersections of the two rays. (Figure adapted from Thibos et 

al, 1991)   
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regardless of defocus. The chromatic difference in magnification is the variation 

in retinal image size with variation in wavelength (Thibos et al, 1990). One or 

both of the images for the two wavelengths used in the calculation will be out of 

focus (Thibos et al, 1990). Theoretically, chromatic difference in magnification 

can be calculated in both image and object space, however, because most of the 

experimental magnitudes measured are for chromatic difference in position, 

chromatic difference in magnification is usually calculated in image space.  

Simonet and Campbell (1990) give the chromatic difference in 

magnification as 

brδ yyM           (2.3.7) 

where ry and by  are the red and blue image sizes at the retina, with the red image 

on the centre of the fovea F, regardless of defocus, and corresponding to object 

size Oy  in seconds of arc. This is shown in Figure 2.3.5. 

Chromatic difference in magnification is defined as an angular 

magnification given as 



t
M δ          (2.3.8) 

where t is the angle between the red and blue chief rays as given in Figure 2.3.3 

(a) and   is the eccentricity shown in Figure 2.3.4 (a) (Thibos, Bradley and 

Zhang, 1991; Zhang, Thibos and Bradley, 1991). Equation 2.3.8 gives the 

relationship between chromatic difference in position t and chromatic difference 

in magnification. 

 

Figure 2.3.5 Chromatic difference in magnification is the difference between the 

image size for the two images created at the retina for two different chosen wavelengths, 

by  and ry , corresponding to object size Oy . ry  corresponds to F, the centre of the 

fovea.  
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Thibos, Bradley and Zhang (1991) and Zhang, Thibos and Bradley (1991) 

give the chromatic difference in magnification Mδ  as 

0δδ FzM           (2.3.9) 

where z is the distance between the pupil and the nodal point, shown in Figure 

2.3.5. According to Thibos, Bradley and Zhang (1991), z is typically estimated at 

0.4 cm, 
0δF  is approximately 2 D and the chromatic difference in magnification is 

0.8% across the visible light spectrum. Thibos, Bradley and Zhang (1991) 

conclude that chromatic difference in magnification is directly proportional to 

chromatic difference in refractive compensation and to the axial location of the 

entrance pupil relative to the nodal point. In the naked eye they find that this 

amounts to 0.8%, but by implication, the chromatic difference in magnification 

will increase when the limiting aperture is outside the eye, for example with a 

pinhole or optical instrument in front of the eye. 

Of interest is the similarity between Equations 2.3.6 and 9. The chromatic 

difference in position is proportional to the sine of the eccentricity while the 

chromatic difference in magnification is independent of the eccentricity.  

 

Experimental measurements 

We recall that Thibos et al (1990) conducted an experiment as part of a 

larger experiment to find a relationship between longitudinal chromatic 

aberration (chromatic difference in refractive compensation) and transverse 

chromatic aberration (chromatic difference in position). They used a pinhole 

aperture to manipulate the angle of incidence of the foveal chief ray and measured 

the magnitude of the aberration as a function of pinhole displacement using a two-

colour Vernier-alignment task.  

Simonet and Campbell (1990) conducted experiments to measure 

longitudinal chromatic aberration (chromatic difference in refractive 

compensation) and optical transverse chromatic aberration (chromatic difference 

in position at the fovea). They made use of firstly, a dual Maxwellian view and 

vertical Vernier targets with the red target being the fixed target and the blue 

target being manipulated. This enabled them to take experimental measurements 
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of both longitudinal chromatic aberration and transverse chromatic aberration. 

They noted that the factors affecting the average and variability of transverse 

chromatic aberration include the value of angle   and any displacement of the 

pupil.  

The experimental measurements of Thibos et al (1992) using the two-

colour Vernier method also measured the induced chromatic difference in position 

in object space for pinhole positions. We recall that the aim of the set of 

experiments was to develop a reduced eye model that closely mimicked the real 

eye for chromatic aberration predictions. They developed the “chromatic eye” 

with three improvements over the reduced eye. The adaption that was most 

essential to measuring chromatic difference in position was the inclusion of a 

pupil that Thibos (1987) originally introduced allowing for a reference axis and 

pupil centre to be defined. Thibos et al (1992) show that the chromatic eye, by 

design, matches the experimental data almost exactly, enabling accurate 

prediction of chromatic difference in refractive compensation and position. 

Zhang, Thibos and Bradley (1997) did a further experiment to compare the 

image sizes between the two eyes produced by an eccentric object point. The 

procedure measured interocular differences in image size produced 

stereoscopically and measured the amount of image magnification difference 

which are introduced by interocular differences in wavelength. They used the 

same procedure to compare firstly the naked eye and natural pupils, secondly, the 

naked eye with pinhole apertures in front of both eyes and measurements taken at 

three different vertex distances and finally while the subjects wore an 

achromatizing lens in front of the right eye. The achromatizing lenses compensate 

for wavelength-dependent refractive error, however, they exaggerate wavelength-

dependent magnification by a factor of up to 7. In comparison, the artificial pupil 

at 20 mm vertex distance, showed the greatest increase in transverse chromatic 

aberration. 

 

2.4 Summary 

 The assortment of terms and definitions is a source of confusion in the 

literature of chromatic aberration. For the purposes of this dissertation, we shall 
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differentiate between the classical optics definition of chromatic aberration and 

the ophthalmic and physiological optics definitions. We shall define first-order 

chromatic aberration according to the classical optics definition given by Born 

and Wolf (2002) and given in Section 2.2.1. This definition for longitudinal and 

transverse chromatic aberration is limited to Gaussian optics and in Chapter 6 we 

generalise this definition to include systems with astigmatic and heterocentric 

elements. 

We shall distinguish between the definitions of ocular chromatic 

aberration found in the ophthalmic and physiological optics literature from the 

classical definition by referring to the former as ocular chromatic properties and to 

the latter as chromatic aberration. We shall distinguish between chromatic 

properties that are independent or dependent on object or image and aperture 

position. Independent chromatic properties include chromatic difference in power 

and chromatic difference in refractive compensation. Chromatic properties 

dependent on object or image and aperture positions include chromatic difference 

in position and chromatic difference in magnification. Chromatic properties in 

both image and object space will be examined.  

In Chapter 7 we obtain formulae for calculating the chromatic properties 

in image and object space from the transference. The transference will enable us 

to calculate all of the chromatic properties of a compound Gaussian eye quickly 

and easily, and we will not have to restrict ourselves to the reduced eye.  

The definitions in the literature consider the difference between 

wavelengths at two end-points of the visible light spectrum. While this is 

important, we shall, in Chapters 8 and 9, take a look at the dependence of the 

fundamental and derived properties of the transference on the frequency of light 

across the entire visible light spectrum. 
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3 BACKGROUND THEORY: OPTICS  

 

First-order optics and the approximation of small angles are used 

throughout this study.  Historically, the physiological optics approach to 

chromatic aberration has used ray tracing and cardinal points and for this reason, 

hence we take a brief look at this approach. However, the model of choice in this 

dissertation is linear optics; often simplified for Gaussian systems. Linear optics is 

a powerful tool in that it allows for surfaces that are astigmatic and tilted or 

decentred. The optical character of compound systems comprising multiple 

elements is represented by a single matrix, the transference. In linear and 

Gaussian optics, the transference is a complete representation of the first-order 

effects of an optical system on the ray traversing it (Torre, 2005: 60). 

We start this chapter with a brief overview of the theories of light to 

ascertain where both linear and Gaussian optics are positioned in the field of 

optics. We then take a detailed look at linear optics, define the optical system, 

derive the transference of elementary and compound systems and show how it 

changes the state of the ray traversing the system. The fundamental properties of a 

system are defined. We see how the transference can be augmented to allow for 

tilt and decentration or simplified for a Gaussian system with only centred 

stigmatic elements.  

In order to gain some insight into the fundamental properties, we take a 

look at four special systems. There are a number of familiar properties of optical 

systems that can be derived from the transference. We take a look at those that 

have implications for the study of chromatic properties of the eye. The derived 

properties that we will consider include power, compensating lenses, front- and 

back vertex power, magnification and cardinal points. There are many other 

properties that can be derived from the transference, however, we will limit this 

study to those just mentioned. 

Because the transference is symplectic, there are a number of implications, 

for its mathematical manipulation. In particular there are limitations on the 

statistical analysis of the transference. To overcome this we turn to the literature 

to establish how to get around these limitations.  It turns out that we can transform 
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the transference into an element of linear space which then allows quantitative 

analysis. Each of these transformed transferences will be studied in turn, and one 

in particular will be pivotal to the development, in Chapter 8, of a formula for the 

dependence of the transference on the frequency of light. 

Finally, we look at how vergence and wavefronts are represented in linear 

and Gaussian optics. Of course, light is not a property of the system, but we are 

interested in the effect of the system on light. Because vergence is the basis for 

how we will be defining chromatic aberration in Chapter 6, we take a look at how 

vergence and wavefronts are defined in the linear optics literature. 

 

3.1 Gaussian and Linear Optics 

Gaussian and linear optics assume that rays are paraxial and therefore 

make use of the assumption of small angles and that the rays are close to the 

longitudinal axis. In the optics literature this is commonly referred to as either the 

Gaussian approximation or paraxial approximation. In the mathematics literature 

it is referred to as the first-order approximation; all quadratic (or higher-order) 

expressions in angles are ignored (Guillemin & Sternberg, 1984:5,23). The 

approximations  sin ,  tan  and 1cos   are used and Snell’s law 

simplifies to 2211 inin   or 21    where ni .  Both the ray tracing and matrix 

approaches in Gaussian optics make use of this assumption. In addition both 

Gaussian and linear optics assume that all media are homogenous and isotropic 

between refracting surfaces. This implies that rays are straight lines between 

refracting surfaces and geometrical aberrations are ignored (Guillemin & 

Sternberg, 1984:7). 

 

3.1.1 Theories of light 

In physics, as new theories supersede old ones, the older theory may still 

hold some relevance. It may be an approximation of the new theory or it may be 

valid in certain circumstances or a special case of the new theory (Guillemin & 

Sternberg, 1984:3). This is certainly true in optics in particular. Guillemin and 

Sternberg (1984:3-17, 37) describe the theories of light, a summary of which is 

presented below. 
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Quantum electrodynamics is the current theory of light and describes the 

interaction between light and charged particles, including its photo-electric effect 

and wavelike character of electro-magnetic radiation. Maxwellian 

electrodynamics is an approximation of quantum electrodynamics and ignores the 

quantum effects. It explains electricity, magnetism and electromagnetic radiation, 

including its source and propagation, but fails at the atomic or subatomic level. 

Wave theory is mostly ascribed to Fresnel and is concerned with the 

propagation of light through various media. It includes diffraction, interference 

and polarization. It deals with certain wavelengths of light and ignores the 

emission of radiation. 

Geometrical optics is an approximation of wave theory which ignores the 

wave character of light, diffraction, interference and polarization. Geometrical 

optics is valid for apertures of large dimension (when compared with the 

wavelength of light), provided one ignores what is happening in the vicinity of 

shadows and foci. Geometrical optics uses Snell’s law ( 2211 sinsin inin  ) without 

the approximation of small angles and the refractive indices of heterogeneous 

media may vary smoothly and sometimes rapidly. The deviations between linear 

and geometrical optics are known as geometrical or Seidel’s (third-order) 

aberrations.  

Linear optics is an approximation of geometrical optics which ignores 

Seidel’s aberrations and uses the approximation of small angles. In linear optics a 

ray is defined in three-dimensional space at a fixed transverse plane for direction 

and position using four variables. A symplectic 44  matrix represents the system 

through which this ray will traverse. The trajectory of the light ray is traced as it 

passes through the various refracting and reflecting surfaces and homogenous 

gaps of the optical system. A coordinate system is introduced with a longitudinal 

axis Z and various transverse planes T, usually two. Because linear optics applies 

in three-dimensions, it accounts for all the effects of astigmatism. An augmented 

symplectic 55  matrix can account for the additional effects of tilted surfaces 

and decentred elements (Harris, 1994).  

Gaussian optics is a special case of linear optics where all surfaces are 

rotationally symmetric about a central axis, hence the longitudinal axis Z 



II  LITERATURE REVIEW  3 Background theory: Optics 

36 

 

coincides with the optical axis. The rays studied are all coplanar, that is, they all 

lie on one plane, the reference plane. The transference simplifies to a 22  matrix 

and the vector representing the ray at a transverse plane is 12 .  

 

3.2 First-order optics 

In this section we consider first-order optics, both Gaussian and linear, that 

will form the basis for the remaining chapters. It is not intended as a complete 

account of linear optics.  

 

3.2.1  Definition of an optical system 

An optical system is bound by two transverse planes, an entrance plane T0 

and an exit plane T, and has a longitudinal axis Z (see Figure 3.2.1). The entrance 

and exit planes can be chosen to be anywhere except at a refracting or reflecting 

surface. Usually the planes are taken to be immediately before or after a refracting 

or reflecting surface.  

 

3.2.2 The state of the ray 

The state of the ray at transverse plane T is defined as  











α

y
ρ          (3.2.1) 

where 

aα n           (3.2.2) 

is the reduced inclination. (‘Reduced’ has the same sense as in ‘reduced to a 

common denominator’; it does not mean ‘made less’.) ρ is a 14  matrix 

consisting of two submatrices, y and α . y is a 12  matrix which represents a 

position vector with Cartesian coordinates 1y  and 2y :  
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a is a 12  matrix that represents the inclination of the ray at T relative to Z. In 

terms of horizontal and vertical Cartesian coordinates  
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In Figure 3.2.1 we distinguish between the incident ray state 0ρ  at 

entrance plane 0T  and emergent ray state ρ at exit plane T. 

 

3.2.3 The transference and fundamental properties 

The transference S of an untilted, centred (homocentric) linear optical 

system is a 44  matrix often conveniently represented by (Guillemin and 

Sternberg, 1984: 26; Harris, 2010d)  











DC

BA
S          (3.2.5) 

where A the dilation, B the disjugacy, C the divergence and D the divarication 

are the fundamental first-order optical properties of the system (Harris,
 
1999a; 

2001c). Each of A, B, C and D is a 22  matrix.  

The fundamental properties are strictly properties of the system itself and 

do not represent properties of anything else including light, vergence, image foci 

or object points (Harris, 1999b). A system may comprise a series of elementary 

systems, namely refracting surfaces and homogenous gaps between the entrance 

and exit planes.  

 

 

Figure 3.2.1 An optical system S is bound by an entrance plane 0T  and an exit plane T 

and has a longitudinal axis Z. A ray enters system S at 0T  with incident ray segment 0R  

at transverse position 0y  and inclination 0a . The ray exits the system at T; the emergent 

ray segment R has position y and inclination a. The refractive index upstream of the 

system is 0n
 
and downstream it is n.  
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Let system 1S  have transference 1S  and similarly for systems 2S , 3S , etc. 

Then the transference of the compound system m...SSSS 321  
made up of m 

juxtaposed optical systems is (Keating, 2002:325-345, Harris, 1994) 

123... SSSSS m .        (3.2.6) 

Multiplication is in reverse order. 

The transference of a homogenous gap of width z and index n is 

(Guillemin and Sternberg, 1984: 9, 27) 











IO

II
S

ζ
         (3.2.7) 

where ζ is a scalar and is the reduced width defined by 

n

z
  .         (3.2.8) 

I and O are the 22  identity and null matrices, respectively. The transference of 

a refracting surface or thin lens of power F (a symmetric matrix) is (Guillemin 

and Sternberg, 1984: 10, 27; Harris, 2010d; Keating, 1982) 













IF
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S  .        (3.2.9) 

 

3.2.4 The basic equation of a ray traversing a system 

A ray traversing system S has its state at incidence 0ρ  and emergence ρ  related 

by 

ρSρ 0                    (3.2.10) 

an equation referred to as the basic equation of linear optics (Harris, 1999a,b).  

Substituting from Equations 3.2.5, 1 and 2 into Equation 3.2.10 and 

multiplying out, we obtain two matrix equations for a system centred about an 

optical axis: 

yBaAy  000 n                   (3.2.11) 

aDaCy nn  000 .                  (3.2.12) 
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3.2.5 Symplecticity 

 The general linear group over the real numbers is denoted GL(n;R) and is 

the group of all nn  invertible matrices with real entries. (We will restrict this 

dissertation to the set of real numbers). The general linear group is a matrix Lie 

group and is closed under matrix multiplication. The real symplectic group, 

denoted Sp(n;R), is a subgroup of GL(n;R) and is the set of all nn 22   matrices 

(Hall, 2004:3-8). 

By definition (Guillemin and Sternberg, 1984:26; Watkins, 2004; Hall, 

2004:8), a nn 22   matrix S is symplectic if it obeys the equation 

EESS T                    (3.2.13) 

where 













OI

IO
E                    (3.2.14) 

and I and O are nn  identity and null matrices respectively and E is a nn 22   

matrix, sometimes known as the symplectic unit matrix (Torre, 2005: 11; Harris, 

2010d). The superscript T represents the matrix transpose. In Gaussian optics 

1n  implying the simplest of optics, that on the reference plane, with the system 

being stigmatic, centred and 2-dimensional. In linear optics 2n , giving us the 

simplest optical theory, that in 3-dimensions (Harris, 2010d).  

Substituting from Equations 3.2.5 and 3.2.14 into Equation 3.2.13 and 

multiplying out we find 






































OI

IO

DC

BA

OI

IO

DC

BA
T

               (3.2.15) 






























OI

IO

BDDBADCB

BCDAACCA
TTTT

TTTT

               (3.2.16) 

which gives the three distinct symplectic equations (Guillemin and Sternberg, 

1984:26) 

OACCA  TT ,                  (3.2.17) 

IBCDA  TT                   (3.2.18) 

and 

OBDDB  TT .                  (3.2.19) 
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For any 22  or 44  symplectic matrix there exists an optical system with that 

transference and any matrix that is not symplectic does not represent the 

transference of an optical system (Guillemin and Sternberg, 1984:23-27; Harris, 

2004a, 2010d).  

Manipulating Equation 3.2.18 and substituting the equality from either 

Equation 3.2.17 or 19 and the rule   TTT
ABAB  , one obtains four expressions, 

namely 

T1   DCBDA ,                  (3.2.20) 

T1   CDACB ,                  (3.2.21) 

T1   BADBC ,                  (3.2.22) 

T1   ABCAD                   (3.2.23) 

(Harris and van Gool, 2004; Harris, 2010d). The expression CBDA
TT  is 

known as the Schur complement of A in S and similarly there are Schur 

complements of B, C and D. They have proven useful in visual optics and are 

particularly useful in simplifying complicated equations. 

In a Gaussian system the three symplectic equations effectively reduce to 

the single equation 

1CBAD                    (3.2.24) 

which is the equation for unit determinant. For a 22  matrix this is the only 

requirement for symplecticity (Guillemin & Sternberg, 1984:11, 15, 24) and any 

22 matrix with determinant 1 is the transference of some optical system.  

While the 44  transference of an optical system always has a unit 

determinant, the converse is not always true (Guillemin & Sternberg, 1984:23-24; 

Harris, 2010d). In order to test for symplecticity one needs to test whether the 

matrix obeys Equation 3.2.13, or, equivalently, whether it obeys all of Equations 

3.2.17 to 19 (Harris, 2004a, 2010d). 

All symplectic matrices have unit determinant (Bernstein, 2005:114; Hall, 

2004:8,40). The implication of this is that because  

BAAB detdet)det(                    (3.2.25) 

the product of all transferences will also have unit determinant (Bernstein, 

2005:40-41; Anton and Rorres, 2005:104-105; Keating, 2002:330; Harris, 2010d) 
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and therefore all transferences are invertible. We note that the matrix in Equation 

3.2.7 is symplectic and similarly the matrix in Equation 3.2.9 is symplectic 

provided F is symmetric (from Equation 3.2.17), which is true of refracting 

surfaces and thin lenses. While Harris and van Gool (2009) have considered the 

theoretical possibility of a thin lens of asymmetric power, it will not be considered 

here. 

 

3.2.6 Augmented transferences and heterocentric systems  

Up to this point, the optical systems described have been homocentric, that 

is all centred on a longitudinal axis Z, which is therefore an optical axis. Elements 

may have been stigmatic or astigmatic and represented by Gaussian 22  or linear 

44  transferences respectively. We now briefly consider the effects of including 

elements that are tilted or decentred (heterocentric).  

We define a 14  matrix (Harris, 1993) 











π

e
δ .                   (3.2.26) 

It accounts for all the effects of prism, tilt and decentration. The transverse 

translation e and deflectance π are each 12  submatrices of δ and along with A, 

B, C and D are also fundamental first-order optical properties of the system 

(Harris 2010e). e has units of length and  π  is dimensionless. It is often 

convenient to think of π  in radians.  

In order to account for these effects we generalise Equation 3.2.10 to 

ρδSρ 0 .                   (3.2.27) 

For a compound system consisting of n subsystems (Harris, 1993)  

    δδδδδSSS  nn ...... 32123 .               (3.2.28) 

Instead of Equation 3.2.28, Harris (1994) defines a 55  augmented transference 

T 











1T
o

δS
T                    (3.2.29) 

where o is a 14  null matrix, the fifth row being a trivial row, and a 15  

augmented ray state γ   
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1

ρ
γ .                   (3.2.30) 

The qualifier “augmented” will not be used repetitively and we will rely on the 

context to make clear whether the transference or ray state is augmented or not. 

Equation 3.2.27 now generalises to 

γTγ 0                    (3.2.31) 

which is simple and elegant like Equation 3.2.10 and encompasses all the detail of 

Equation 3.2.27. The proof is provided by Harris (1994). T is a matrix that 

represents all the first-order optical characteristics of the system, including 

homogenous spaces and astigmatic elements that may be tilted and decentred 

(heterocentric) or have prismatic effects (Harris, 2012c). Rewriting T with all six 

of its fundamental properties we have 



















1TT
oo

πDC

eBA

T .                  (3.2.32) 

Each of A, B, C and D are 22  submatrices, e, π  and o are 12  submatrices 

with o being a null vector. In particular, T represents the way the system will 

operate on the state of the ray traversing the system (Harris, 2001a). We note here 

that in order for a matrix to be symplectic it needs to be of the order nn 22  . T 

fails this requirement although it does have unit determinant. However, because 

submatrix S is symplectic one can call T an augmented symplectic matrix (Harris, 

2010d, 2004a). Like symplectic matrices, augmented symplectic matrices remain 

closed under multiplication and are not closed under addition nor multiplication 

by a scalar. 

Because of symplecticity and similarly to Equation 3.2.6 we can now 

obtain the transference for a compound heterocentric system (Harris, 1994): 

123... TTTTT m .                  (3.2.33) 

Substituting from Equations 3.2.32 and 30 into Equation 3.2.31 and 

multiplying out, we now obtain the two matrix equations 

yeBαAy  00   
                (3.2.34) 

απDαCy  00 .                  (3.2.35) 
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3.2.7 Gaussian systems 

We recall that a Gaussian system is defined where all surfaces are 

rotationally symmetric about a central axis. The longitudinal axis Z coincides with 

the optical axis creating an axis of symmetry. The implication is that all refracting 

surfaces are stigmatic and oδ  . Specifically, each of the fundamental properties 

simplifies to a scalar matrix so that IA A , IB B , IC C  and ID D . 

Therefore, in a Gaussian system each of the fundamental properties reduces to a 

scalar and S to a 22 matrix. This is the equivalent to the study of the group 

Sl(2;R); the group of 22  real matrices with determinant 1 (Guillemin and 

Sternberg, 1984:7-11).  

 

In particular Equations 3.2.7 and 9 simplify to 











10

1 
S                    (3.2.36) 

and  













1

01

F
S                    (3.2.37) 

respectively (Guillemin and Sternberg, 1984: 9-11). In general the transference 

simplifies to a 22  matrix represented by 











DC

BA
S                    (3.2.38) 

 and the 12  matrix representing the ray at a plane is  











na

y
ρ                     (3.2.39) 

(Guillemin and Sternberg, 1984: 7-11). All the entries of S and ρ  are scalars, as 

opposed to the non-scalar submatrices shown in Equations 3.2.5 and 1. Equations 

3.2.34 and 35 reduce to 

yBanAy  000                   (3.2.40) 

naDanCy  000 .                  (3.2.41) 
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3.3 Fundamental properties 

 The fundamental properties are not usually encountered as such in 

optometry. Most of the properties that are encountered in optometry are derived 

properties. Certain derived properties need some additional information, such as 

length of the system, or its context, that is, the refractive indices upstream and 

downstream of the system (Harris, 2012c). Equations 3.2.34 and 35 are useful for 

these derivations, and are discussed in detail below. 

In this section, an attempt is made to understand each of the fundamental 

properties of a Gaussian optical system. The fundamental properties are 

essentially mathematical and take on physical meanings only for particular 

situations. We use the transference for a Gaussian system defined in Equation 

3.2.38 starting with Harris’s (1999a) definition of ametropia. We then look at four 

special systems that result when each of the fundamental properties in turn is zero. 

Each of these situations results in interesting and familiar systems and 

relationships. Ultimately we can use this information to define systems that 

simplify the mathematics. 

 

3.3.1 Ametropia 

Harris (1999a) regards A in Equation 3.2.38 as representing ametropia. For 

a distant object all rays enter the eye parallel at some reduced inclination 0α .  For 

0A  the eye is emmetropic and from Equation 3.3.1 below we see that all rays 

from a distant object point map to the same position y on the retina, a point focus. 

When 0A   then the eye is ametropic, A represents a “squashing factor” where 

all rays entering the eye at different incident transverse positions map to 

respective positions on the retina. For an emmetropic eye, all rays with the same 

inclination will map to a single point on the retina. Positive values of A imply a 

hyperopic eye and negative values of A a myopic eye with the rays crossing over 

and inverting the direction of the position vector (Harris 1999b). There are 

exceptions to this rule (Harris, 1999b, 2007b).   
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3.3.2 Four special systems 

We follow Harris’ lead and start by looking at the four types of two-

dimensional vector fields as obtained from the mathematical structure of the 

transference of a Gaussian system (Harris, 1996a). These are exit-plane focal 

systems where 0A , conjugate systems where 0B , afocal or telescopic 

systems where 0C  and entrance-plane focal systems where 0D .  

 

Exit-plane focal systems ( 0A ) 

We start with the exit-plane focal system shown in Figure 3.3.1. Equation 

3.2.40 simplifies to 

yBα 0          (3.3.1) 

when 0A . From Equation 3.3.1 we see that if all incident rays have the same 

reduced inclination then the emergent transverse position is the same for all the 

rays. This is shown in Figure 3.3.1. One can think of B as a sort of optical 

thickness, although it is not usually simply related to the actual length of a system. 

B therefore relates the emergent position through the system to the incident 

reduced inclination. Examples of an exit-plane focal system are an emmetropic 

eye, most schematic eyes and the compound system of an eye and distance 

compensating spectacle or contact lens in front of it. 

 

 

 

Figure 3.3.1 A Gaussian exit-plane focal system ( 0A ). All incident rays enter at 

the entrance plane 0T  with the same reduced inclination 0α . All emergent rays exit at T 

at the same transverse position y.  
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Conjugate systems ( 0B ) 

Again, looking at Equation 3.2.40 we obtain 

yAy 0          (3.3.2) 

when 0B . This is shown in Figure 3.3.2. In a conjugate system the incident 

inclination plays no role and if all rays enter the system at point 0y
 
they will map 

to a conjugate point y on the exit plane. A is the transverse magnification. When 

we define a system to have the entrance plane at the object point and the exit 

plane at the image point, we have defined a conjugate system. This is an example 

of a system where, even though 0B , the system itself does not usually have 

zero length. Conjugate systems are only defined for finite systems. 

 

 

Figure 3.3.2 A conjugate system ( 0B ). When all incident rays enter the system at 

the same transverse position 0y , they will exit at y. Points at  0y  and y are conjugate with 

each other.  

 

Afocal systems ( 0C ) 

Substituting 0C  into Equation 3.2.41 we obtain 

αDα 0          (3.3.3) 

which is the formula for an afocal system such as a telescope used in low vision. 

It implies that for incident light, when all rays are parallel, the emerging light 

segments are also parallel to each other, but not necessarily parallel to the incident 

pencil, or to the longitudinal axis.  This will be discussed in greater detail in 

Section 3.5.1. An afocal system is shown in Figure 3.3.3.  
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Figure 3.3.3 An afocal system ( 0C ). If all incident rays are parallel to each other 

at reduced inclination 0α  then all emergent rays are parallel to each other at reduced 

inclination α .  

 

Entrance-plane focal systems ( 0D ) 

Finally, staying with Equation 3.2.41 but this time substituting 0D , we 

obtain 

αCy 0 .         (3.3.4) 

A point object at position 0y  on the entrance plane emits a pencil of light of zero 

vergence from the system at a reduced inclination ofα . An entrance- plane focal 

system is shown in Figure 3.3.4. Examples include reversed emmetropic eyes and 

reversed ametropic eyes combined with the direct ophthalmoscope lens in 

ophthalmoscopy (Harris and van Gool, 2004).  

 

Figure 3.3.4 An entrance-plane focal system ( 0D ). If all incident rays enter the 

system at the same position 0y  then they emerge parallel to each other with emergent 

reduced inclination α .   
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3.4 Derived properties 

The fundamental properties of a first-order optical system can be obtained 

directly from the transference. In addition there are a number of first-order optical 

properties that can be derived from the transference. Certain of these derived 

properties are obtained from the transference alone, while others need input about 

the actual length of the system (e.g. Harris, 2009). Until now these properties have 

been studied under the assumption of a single reference wavelength.  

The transference depends on its context, meaning the refractive indices 

upstream and downstream of the system. There are a number of derived properties 

that are of interest to this dissertation because they are dependent on frequency. 

These include the power of the system (Harris, 1997), magnification and blur 

(Harris, 2001a, b), compensatory systems such as entrance-plane refractive 

compensation (or neutralizing lens) (Harris, 1999a; Keating, 1988:236), front- and 

back-vertex power (Keating, 1988:236) and locations of the cardinal points 

(Harris, 2010d, 2011a,b). These derived properties are discussed in the rest of this 

chapter. 

Additionally, in Chapter 6 this study derives formulae for longitudinal and 

transverse chromatic aberration from the transference and its context (Harris & 

Evans, 2012). In line with previous calculations done on Gaussian systems to 

quantify chromatic properties in the eye, in Chapter 7 this dissertation will derive 

equations from the transference for Gaussian systems for chromatic difference in 

power, refractive compensation, magnification and position. Other derived 

properties that will not form part of this dissertation are converter systems 

(Keating, Harris and van Gool, 2002), corneal patches and referred apertures 

(Harris, 2011c, 2012d, and a number of axes such as optical (Harris, 2009) visual 

(Harris, 2010c) and pupillary (Harris, 2013) axes and line of sight (Harris, van 

Gool and Evans, 2013). Achromatic axes have recently been defined from the 

transference for dichromatic light (Harris, 2012a, b). 

Referred apertures, corneal patches and pinholes have significant 

relevance to current research being done on the intracorneal inlay, for example the 

AcuFocus Kamra corneal pinhole inlay. (Gatinel, 2010; Seyeddain, Riha, 

Hohensinn, Nix, Dexl and Grabner, 2010; Waring, 2010)). Two aspects are of 
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interest to this study. Firstly the chromatic properties resulting from positioning of 

the pinhole plane longitudinally within the cornea instead of the iridial plane and 

secondly, misplacement of the pinhole inlay during surgery in the transverse 

plane. The size of the pinhole and light entering the eye from around the inlay will 

also influence the chromatic properties in the eye. Thibos et al (1990) used a 

displaced pinhole to induce and measure transverse chromatic aberration 

experimentally.  A misplaced pinhole results in a number of visual complaints, 

among which sensitivity to chromatic properties will be of special interest to this 

study.  

 

3.4.1 Power 

Power is well defined for refracting surfaces and thin lenses both as a 

power matrix and clinically as sphere / cylinder × axis. The power matrix is 

symmetric and has been derived by Fick (1972; 1973a; Blendowske, 2003) and 

Long (1976), apparently independently. Recently, we noted that the power matrix 

was being hinted at by Le Grand (1945: 326-327) and possibly by others before 

him. The equivalent power of a two surface thick lens system was defined by 

Keating (1981a, 1982, 2002: 343) who showed that the power matrix for such a 

system could be asymmetric, in which case it cannot be equivalent to a thin lens. 

Harris (1996a) derives a formula for the (equivalent) power for a system 

comprising three thin astigmatic lenses each separated by a gap. 

Harris (1997) was the first to define power for optical systems in general. 

He defines power as 

CF  .         (3.4.1) 

Power is therefore a first-order optical property derived from the transference of a 

system. 

For Gaussian systems  

IC C          (3.4.2) 

where I is an identity matrix. Hence for a Gaussian system we can write the power 

as 

CF  .         (3.4.3) 
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The eigenvalues of F are the two principal powers of an astigmatic system 

and the corresponding eigenvectors represent the directions of the two principal 

meridians (Keating, 1981a, b; Long, 1976; Harris, 2001c). Together the principal 

powers and meridians can be represented either by a power cross, or in principal 

meridional representation of power (Harris, 2000, 2001c). It is possible for a thick 

system, such as the eye, to have an asymmetric power, with corresponding non-

orthogonal eigenvectors or meridians (Keating, 1981a, 1982). For any refracting 

surface or thin lens system, the power matrix is symmetric and the principal 

meridians therefore are orthogonal (Anton and Rorres, 2005: 381).  

For thin systems equations were derived to convert from the clinical 

representation of power to the power matrix by Long (1976) and Fick (1972; 

Blendowske, 2003) and to revert back from the power matrix to clinical 

representation by Keating (1980) and Fick (1973b; Blendowske, 2003). Keating 

(1981b, 1997b) showed that the power matrix for a thick system comprising two 

or more astigmatic powers with nonaligned principal meridians will result in an 

asymmetric power matrix which corresponds to a power which has non-

orthogonal meridians. Harris (2000, 2001c) developed conversion formulae to 

convert between principal meridional representation of power and matrices. This 

enables one to convert an asymmetric power matrix into power along two 

principal meridians which are not orthogonal. 

 

3.4.2 Entrance-plane refractive compensation 

We saw in Section 3.3.2 that an exit-plane focal system is defined by 

0A  (Harris, 1996a) which Harris (1999a) refers to as the “condition for 

emmetropia”. The power of a thin lens juxtaposed immediately upstream to the 

system can be calculated in order to create such a system. Harris (1999a) refers to 

this as the “condition for compensation”. 

An example of an entrance-plane system is an emmetropic eye, or an 

ametropic eye compensated for distant viewing. Because of this, Harris (1999a) 

derives a formula for the power of the corneal-plane refractive compensation 0F . 

Making use of Equations 3.2.6, 37 and 38, we write the transference of the 

compound system of eye and compensating lens 0F  as  
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     (3.4.4) 

where the dots represent values not needed here. Because this is an exit-plane 

focal system, we obtain 

00EE  FBA         (3.4.5) 

and solving we obtain the corneal-plane refractive compensation 

E

1

E0 ABF  .         (3.4.6) 

Equation 3.4.6 shows that the corneal-plane refractive compensation 

depends on the dilation A and the disjugacy B. The divergence C (or power F) of 

the eye does not play a direct role, but does have an indirect role through the 

symplectic relations. 

 

3.4.3 Front- and back-vertex power  

Back-vertex power bvF , shown in Figure 3.4.1(a), can be defined as either 

the vergence L leaving the system when incident rays are parallel or the reciprocal 

of the reduced emergent focal (or back-vertex) length (Keating, 2002:138-9, 145; 

Harris, 2010a). The definitions are equivalent. The front-vertex power fvF , which 

is also called front neutralizing power fnF  and is shown in Figure 3.4.1(b),  is 

defined as the negative of the incident vergence ( 0L ) (or power of the neutralizing 

effect of the system) in order for emerging rays to exit parallel (Keating, 2002: 

138-9; Harris, 2010a). This is equivalent to the negative reciprocal of the incident 

reduced focal length. 

The term power as it is used here is rather misleading. Vertex power is 

actually a measurement of vergence and as such the matrix is always symmetric 

(Keating, 1981a; Harris, 1996b). These vertex power formulae were originally 

derived by Keating (1981a, 1982) and the derivation was later simplified, using a 

different approach, by Harris (2010a). We take our lead from Harris (2010a), 

simplifying for Gaussian systems. 
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Derivation of back-vertex power  

Comparing Figure 3.4.1 (a) and (c) we see that the thin postjuxtaposed lens of 

power bnF  compensates for the emergent vergence, such that the rays leave the 

system parallel and therefore we start with 

bnbv FF  .         (3.4.7) 

We obtain bnF  from the transference of the compound system S  made up of the 

transference of the system ES  followed by the transference of the thin lens bS  

and then equating 0C  for an afocal system, such that 


































EEbnEE

EE

bn

Eb
1

01

CAFDC

BA

F
SSS .   (3.4.8) 

 

 

Figure 3.4.1 An optical system is shown as S. (a) Back-vertex power shown as 

emerging vergence L  exiting the system when incident rays are parallel. (b) Front- 

vertex power, the negative of incident vergence shown as  0L   when the emerging rays 

are parallel. (c) A postjuxtaposed thin lens bnF  in combination with the system S creates 

an afocal compound system. (d) A prejuxtaposed thins lens fnF  creates an afocal system 

in combination with the system S. 
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therefore 

0EEbn  CAF         (3.4.9) 

and  

1

EEbn

 ACF .                   (3.4.10) 

Substituting Equation 3.4.10 into 3.4.7 we define back-vertex power as 

1

EEbv

 ACF .                   (3.4.11) 

 

Derivation of front-vertex power  

Similarly to back-vertex power, Figures 3.4.1 (b) and (d) illustrate that the 

power of the thin neutralizing lens at the front-vertex of the system is the negative 

of the vergence at incidence onto the system 

fnfv FF                     (3.4.12) 

The transference of the compound system S  made up of the transferences of a 

thin lens fS  followed by the system ES  to create an afocal system is  

































fnEEfnEE

EE

fE
1

01

FDCFDC

BA
SSS .             (3.4.13) 

Equating 0C  for this afocal system 

0fnEE  FDC                   (3.4.14) 

we calculate the power of  fnF  as 

E

1

Efn CDF  .                   (3.4.15) 

Substituting from Equation 3.4.12 into 3.4.15 we obtain the definition for front-

vertex power 

E

1

Efv CDF  .                   (3.4.16) 

The derivations for front- and back-vertex power given above are from 

Harris (2010a). However, the typographical error in the original manuscript (a 

missing minus sign) for the equation for front-vertex power has been corrected 

here. 
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3.5 Magnification 

Because a large proportion of the research on chromatic properties has 

focussed on chromatic difference of magnification and position (Atchison and 

Smith, 2002: 181-182; Rabbetts, 2007: 289-293; Thibos Bradley and Zhang, 

1991), magnification and conjugation of points will be studied in more detail for 

its first-order effects. Three types of magnification are defined for conjugate 

Gaussian systems, namely transverse or lateral magnification, axial or 

longitudinal magnification and angular magnification (Meyer-Arendt, 1984:54; 

Keating, 2002: 56-62, 110, 154, 347-370; Smith and Atchison, 1997: 43-44, 71-

72). We shall take a closer look at all three types in Gaussian systems.  

 

3.5.1 Magnification of Gaussian systems 

Transverse magnification 

Transverse magnification is defined as  

0

t
y

y
M           (3.5.1) 

as shown in Figure 3.5.1 (Emsley, 1950:33; Meyer-Arendt, 1984:54; Smith and 

Atchison, 1997:43; Keating, 2002:56, 110).  

 

 

 

Figure 3.5.1 Transverse magnification of a thin system defined by Equation 3.5.1.  0y  

is the height of the object at distance 0z  from the lens and y is  the height of the image at 

a distance z from the lens. 
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Axial magnification 

Axial magnification is defined by (Meyer-Arendt, 1984:56; Keating, 

2002:154; Smith and Atchison, 1997:71-2) 

0

z
z

z
M




          (3.5.2) 

where 0z is the difference in axial length between the front and back of the 

object and z the corresponding axial length of the image. This is shown in Figure 

3.5.2.  

 

Figure 3.5.2 Axial magnification of a thin system. The two arrow bases (subscript 1) 

are conjugate and the two arrowhead apexes (2) of the object and image are conjugate. 

The axial magnification is the ratio of axial length of image to axial length of object.  

 

Angular magnification 

Angular magnification, commonly referred to as “magnifying power”, is 

the most important type of magnification according to Meyer-Arendt (1984:57). 

This is the magnification that is used to define the magnifying power of afocal 

telescopes and binoculars and is typically denoted by an “×”. It is defined as the 

ratio of the image’s reduced inclination to the object’s reduced inclination (Smith 

and Atchison, 1997:44, 69, 768). For axial objects this is defined as  

0


 M .         (3.5.3) 

where   is the reduced inclination as defined in Equation 3.2.2 and simplified for 

a Gaussian system. 

 In Figure 3.5.3 we see angular magnification created in two ways. In (a) 

the angular magnification is created by approach magnification. The system 

represents a reduced eye consisting of a refracting surface K and image surface R. 

An object of size 01y  is positioned at a distance 01z  from the reduced eye, creating 
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an image of size 1y  at R and an incident inclination of 01a . The object is now 

brought closer to the reduced eye by distance 
0z , to a position at a distance 02z . 

The size of the object has not changed  0201 yy  . However the size of the image 

has been magnified from 1y  to 2y  at R and the inclination has been magnified to

02a . Relative size magnification can be achieved by increasing the size of 01y  to 

magnify incident inclination from 01a  to 02a  with corresponding image size 

increase at the image plane.  In Figure 3.5.3(b) angular magnification is created by 

a thin lens. The system initially is the same as system 1 in (a) with incident 

inclination 01a  (not redrawn in (b)). A lens F is added at a vertex distance vz . We 

note that the object appears to be magnified to size iy  and the image at R has 

been magnified from 1y  to 3y  while the inclination has been magnified from 01a  

to 03a .  

Figure 3.5.3 (a) Angular magnification created by approach magnification. The 

system represents a reduced eye consisting of a refracting surface K and image surface R. 

System 1 consists of object  of size 0y  at position 01z  creating an image of size 1y  at the 

retina. In system 2 the object has moved closer to the eye to position 02z  to create a larger 

image of size 2y . (b) Angular magnification created by a thin lens. Diagrams are not to 

scale and angles have been exaggerated for clarity. All angles are within the paraxial 

limits. The diagrams are intended merely to demonstrate angular magnification and 

accommodation and ametropia have not been taken into account.  
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Relationships between the magnifications 

The relationship between transverse and angular magnification is (Meyer-

Arendt, 1984:60, Smith & Atchison, 1997:44, 382) 

tM
M

1
 .         (3.5.4) 

Keating (2002: 154) and Smith and Atchison (1997:383) derive the relationship 

2

tz MM  .         (3.5.5) 

between axial and transverse magnification. 

 

3.5.2 Limitations of defining magnification in terms of conjugate object and 

image points  

Defining magnification in terms of the longitudinal and transverse 

positions of the object and image points is simple and shows some very useful 

relationships between magnification as defined in Section 3.5.1 and the 

fundamental properties for conjugate and afocal systems as defined in Section 

3.3.2. However, in physiological optics interest lies in what is happening to the 

image at the retina. If the image is not in focus on the retina then the approach of 

defining the magnification in terms of the object and image points (a conjugate 

system) will have limitations. This is further exacerbated when a single object 

point produces more than one image, such as the two line foci produced by an 

astigmatic system, or an infinity of coloured images resulting from chromatic 

dispersion. 

If we bear in mind that in order to study the magnification of images on 

the retina, regardless of whether the images are in focus, or not, then we need to 

take a different tack on how we define magnification at the retina or exit plane. 

We now turn our attention to magnification of images at the retina. 

 

3.5.3 Magnification, blur and the ray state at the retina 

In physiological optics, magnification is calculated at the retina or image 

plane, regardless of the effects of blur. In order to do this we trace the chief ray 

from an object, through the centre of the pupil or a pinhole and do our calculations 

at the retina. In this section we wish to study and obtain the equations for 
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magnification at an image plane and will use this to derive formulae for the 

magnification of chromatic properties in Chapter 7. 

We will be concentrating on the naked eye, or more specifically, model 

eyes, without any refractive or other compensation. We start by taking a look at 

systems where the object point is distant and then derive the formulae for systems 

where there is an object point at a finite distance in Chapter 5. 

 

Systems with a distant object point  

The system of a compound model eye is shown in Figure 3.5.4. It comprises two 

subsystems, divided by the pupillary plane PT  into anterior A and posterior B. An 

arbitrary ray is incident onto the cornea with ray state Kρ , it traverses the centre 

of the pupil with ray state Pρ  and emerges from the system at the retinal plane 

with emergent ray state Rρ . We want to solve for Rρ . We need Kα , the reduced 

inclination at the cornea, which will be the same for all rays incident on the 

system from a distant object. However, because we wish to trace the chief ray 

through the system we are interested in Py , the centre of the pupil rather than Ky  

the transverse position of the ray at the cornea.  

For the system shown in Figure 3.5.4, a transference is calculated for each 

of the sub-systems and for the eye itself. To differentiate the three transferences, 

 

Figure 3.5.4  An exploded diagram of a compound model eye. The eye is defined by 

the entrance plane KT  immediately in front of the cornea, an exit plane  RT  immediately 

in front of the retina and a longitudinal axis Z.   
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each of the fundamental properties is subscripted with either an A, B or E for 

anterior, posterior or eye, respectively. Similarly the state of the ray at the three 

positions is subscripted K, P or R for corneal plane, pupillary plane or retinal 

plane respectively. The corneal plane is immediately in front (upstream) of the 

tear layer, the pupillary plane immediately upstream of the crystalline lens, at the 

pupil and the retinal plane immediately in front (upstream) of the retina or image 

plane. The retina itself is not part of the optical system. 

We calculate the transference of the eye as follows: 
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   (3.5.6) 

Harris (2001a) derived the following equations for the magnification, blur 

and ray state at the retina for a general naked eye 

RK

1

ABP

1

AE yαAByAA          (3.5.7) 

and 

RK

1

ABP

1

AE ααADyAC   .       (3.5.8) 

Interestingly, Py  is also a property of the eye, but not a fundamental property. The 

pupil centre is not necessarily fixed, but may shift slightly with dilation and  

 

 

Figure 3.5.5 A simplified Gaussian model eye, divided by pupil P into anterior A and 

posterior B subsystems. Rays from infinity are incident onto the system initially parallel 

to the longitudinal axis, mapping the chief ray to a point on the retina on the longitudinal 

axis and then at an inclination that maps to a second point on the retina. 0

1

AB nAB 
 

magnifies the incident inclination Ka  to an image size as shown with the double-headed 

arrow.  
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constriction of the pupil (Wilson, Campbell and Simonet, 1992; Yang, Thompson 

and Burns, 2002).  

In Figure 3.5.5 we can see how the magnification for a distant object is 

projected onto the retina of a Gaussian eye. An axial object of size Ka  is 

magnified by 0

1

AB nAB   to obtain retinal image size Ry . Because we are working 

with the chief ray of a centred Gaussian system, 0P y  and 1

AE

AA  is negated. 

The pupil size is defined as 1P2P yyp  ,  where 1Py  and 2Py  are the 

margins of the pupil. For a pencil of rays from a distant axial object point  0K a  

the size of the corresponding blur patch on the retina will be R

1

AE ypAA  . Hence, 

the size of the blur patch, corresponding to a single object point, is dependent on 

pupil size. The blur is not shown in Figure 3.5.5 because the size of the blur patch 

is dependent on the pupil size, which is outside the scope of the topic of this 

study. 

Similarly, from Equation 3.5.9 we obtain the distant directional spread  

1

AE

AC  magnifying the pupil size and distant directional coefficient 1

AB

AD  

magnifying Ka  to obtain the inclination(s) at the retina. From Equations 3.5.7 and 

8, we have  TRR y , the ray state at the retina. This will be discussed in greater 

detail in Section 5.2. 

 

Systems with an object point at a finite distance 

To calculate the magnification and blur at the retinal plane for a near 

system we take a different approach to Harris (2001b). We derive formulae for the 

magnification, blur and ray state at the retina for systems where the object point is 

at a finite distance in Section 5.2.2. 

 

3.6 Cardinal points 

There are two methods to trace the path of a ray through a system, the 

graphical method and the numerical method (Meyer-Arendt, 1984:52). The 

numerical method uses transferences (Section 3.2) and traces a ray from incidence 

onto a system, defining a ray of light by its inclination and position at incidence 
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onto a system, through a system and giving us the inclination and position of the 

ray as it exits the system.  

The graphical method traces rays from an object point, through a system to 

a corresponding image point. Numerically one can apply Snell’s law at each 

refracting surface and simple geometry rules across each homogenous gap 

(Meyer-Arendt, 1984:52). Methods of simplifying systems have been sought 

using cardinal points. Graphical ray tracing (Meyer-Arendt, 1984: 52-77) makes 

use of cardinal points and the approximation of small angles. 

In Chapter 2 we saw how the definitions of chromatic aberration in the 

physiological optics literature make use of the cardinal points and paraxial ray 

tracing techniques. There are a number of interesting relationships between the 

cardinal points, all of which can be derived from the transference. Crucially, the 

positions of the cardinal points are dependent on the frequency of light. For this 

reason we wish to include cardinal points in this study. For completeness, we will 

start this section with a short overview of the use of cardinal points in ray tracing 

techniques followed by the derivation of the cardinal and anti-cardinal points from 

the transference. We will then take a look at two methods of visually displaying 

both the relationship of the points to each other in a system, but also changes to 

the points when that system undergoes a change, such as accommodation or the 

dependence on the frequency of light.  

 

3.6.1 Ray tracing and cardinal points   

We know that in order to simplify the graphical ray tracing through a system, the 

cardinal points are combined with three rays and a set of rules. We briefly revise 

the purpose of the cardinal points for completeness. Figure 3.6.1 shows a system 

with the incident and emergent principal planes in line with the incident and 

emergent principal points, 0P  and P respectively and likewise 0F  and F are the 

focal points. The system has the same refractive index upstream and downstream  

and  therefore  the  nodal  points  are  coincident  with  the  principal points. 

Figure 3.6.1 shows that from an object point O, the focal ray (3) goes through 0F , 

refracts at the incident principal plane 0P  and emerges parallel to the optical axis 

Z. The parallel ray (1) travels from the object point O parallel to the optical axis 
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Z, refracts at the emergent principal plane P and then passes through the emergent 

focal point F. Finally the third ray is the chief ray (2) which passes through the 

centre of the lens or system. It goes to 0P
 
at its intersection with the optical axis, 

is translated along the optical axis and exits at P parallel to its incident inclination. 

All three rays are parallel to the optical axis between the two principal planes 

(Meyer-Arendt, 1984:53). The three rays intersect at the image I indicating that 

the object and image are conjugate. The focal ray and the parallel ray are what 

Keating (2002:44-46) refers to as “predictable rays” and the chief ray is a nodal 

ray. These in turn undergo refraction at the principal plane(s) and map to a 

conjugate image point. The three rays used in the ray tracing diagrams map a 

point on the object to a point on the image and do not represent the actual path of 

any rays. 

For a thin system, all the refraction occurs at the plane of the refracting 

surface or lens, which is the single principal plane. In a compound system where 

the refractive indices upstream and downstream are the same, for example a thick 

lens in air, graphical ray-tracing uses the focal points, the principal planes and the 

chief ray, shown in Figure 3.6.1. The refraction appears to occur at the two 

principal planes. 

 

 

Figure 3.6.1  Diagram of a general Gaussian system with the same refractive index 

upstream and downstream of the system.  
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In a system where the refractive indices upstream and downstream of the 

system are the same the principal points and nodal points coincide. In systems 

where the indices of refraction are different upstream and downstream, such as the 

eye, then the principal and nodal points separate and all three pairs of cardinal 

points are needed for graphical ray-tracing (Figure 3.6.2). The focal and parallel 

rays are the same as in Figure 3.6.2. The chief ray can now clearly be seen as a 

nodal ray in Figure 3.6.2. Where the refractive indices are different upstream and 

downstream, the nodal points will move towards the side of the higher index. The 

nodal points are points where no refraction takes place (Meyer-Arendt, 1984:76). 

We differentiate incident focal length 
0f  as the distance from the entrance 

plane 
0T  to the incident focal point 

0F  from incident equivalent focal length 
eqf 0

 

which is the distance from the incident principal plane 
0P  to the incident focal 

point. In Figure 3.6.2 both 
0f  and 

eqf 0
 have negative direction. Similarly the 

emergent focal length f is the distance from the exit plane T to the emergent focal 

point F compared to the emergent equivalent focal length 
eqf  which is from the 

emergent principal plane to the emergent focal point. In Figure 3.6.2 we can see 

that the f has a negative direction in contrast with 
eqf   which is positive.

 

 

 

Figure 3.6.2  A diagram of a general Gaussian system with different refractive indices 

upstream 0n  and downstream n, resulting in the nodal points dissociating from the 

principal points.  
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3.6.2 Locations of the cardinal points obtained from the transference 

The locations of the cardinal points can be derived from the transference. 

The positions of the incident cardinal points are measured from the entrance plane 

and for emergent cardinal points the positions are measured from the exit plane. 

The incident and emergent focal, principal and nodal points make up the six 

cardinal points for any optical system that are traditionally defined (Pascal, 1939; 

Smith, 1993,1995; Atchison and Smith, 2000: 7; Sharma, 2006: 168-171). The 

principal planes are not only conjugate, but have positive unit magnification 

(Smith and Atchison, 1997:56) 

However there are other points, such as anti-nodal and anti-principal 

points (Katz, 2002: 143; Korsch, 1991: 48, 57;  Hastings, 1901: 202) which all 

belong to a much larger set of special points (Harris, 2010b, 2010f). We refer to 

the set of anti-nodal and anti-principal points as the anti-cardinal points. Keating 

(2002: 63-64, 114-115, 308) refers to symmetry points as twice the equivalent 

focal length (both incident and emergent). An object at the incident symmetry 

plane will map to an image at the emergent symmetry plane with negative unit 

magnification (Keating, 2002:63-64, 114-115). Katz (2002: 143) refers to these 

same points as anti-principal points, giving a transverse magnification of –1 and 

similarly, the anti-nodal points result in an angular magnification of –1. 

In order to show the relationships among cardinal points, Harris (2011b) 

developed a method of graphical construction of the locations of the cardinal 

points from the transference using locator lines. Pascal (1939, 1947, 1950a, b) 

developed a “Benzene ring” which Harris (2011a) elaborated on. Pascal’s ring 

allows one to see the change in position of the six cardinal points with respect to 

each other when an optical system undergoes a change, such as that brought about 

by accommodation. Cardinal and anti-cardinal points derived from the 

transference, graphical construction and Pascal’s ring will be explored in this 

section and Section 5.4. 

Harris (2010b, f, 2011a, b) gives two equations, derived from the 

transference, which give us the locations of the incident and emergent cardinal 

and anti-cardinal points respectively. The equation for the locations of the incident 

points is given as 
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Table 3.6.1 Characteristics of the cardinal points of a general optical system.  

         Incident Characteristic 

X 

Emergent 

Cardinal point Symbol Symbol Cardinal point 

Anti-nodal 
0N  0nn  N  Anti-nodal 

Anti-principal 
0P  1  P  Anti-principal 

Focal 
0F  0 ––– ––– 

Principal 
0P  1 P  Principal 

Nodal 
0N  0nn  N  Nodal 

––– –––   F  Focal 

 

C

XD
nz


 00Q         (3.6.1) 

where the subscript Q represents the respective point and the characteristic X is 

given in Table 3.6.1. The length 0Qz  is measured from the entrance plane 0T . D 

and C are entries of the transferences of the system (Equation 3.2.38).  Similarly, 

the locations of the emergent points are given by 

C

X
A

nz

1

Q



         (3.6.2) 

where the length Qz  is measured from the exit plane T. 0n  is the refractive index 

upstream of the system and n the refractive index downstream of the system. X is 

the characteristic of any particular pair of special points. A and C are entries of the 

transference of the system. With the exception of the focal points, each emergent 

point is in conjugation with the corresponding incident point and can be seen to 

share the same value for X (Harris, 2010b, 2011a). The incident and emergent 

focal points are conjugates of infinity (Smith and Atchison, 1997: 72). 

 

3.6.3 Relationships among the points 

It is well known that there are a number of relationships among the 

cardinal points (Pascal, 1939, 1947,1950a, b; Smith and Atchison, 1997: 74-75). 

These are illustrated in Figure 3.6.3. Using Equations 3.6.1 and 2 and substituting 

the values for the characteristic X from Table 3.6.1, we can calculate the distances 
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for the position of each of the cardinal points. From there we can calculate and 

simplify the equalities between the points in terms of the fundamental properties 

and the addition of the refractive indices up- and downstream of the system and 

the length of the system z. The distances and equalities are shown in Figure 3.6.3. 

Starting with the incident cardinal points and in the sequence given in 

Table 3.6.1 we find the distance from the entrance plane to the respective point is 

(Harris, 2010b) 

 nDnCz  

0

1

0N
,        (3.6.3)  

 11

00P
  DCnz ,        (3.6.4)  

 

 

Figure 3.6.3 Cardinal points and their relationships and equalities. Gaussian system S 

of length z has an entrance plane 0T ,  an exit plane T and a longitudinal axis Z. Refractive 

index upstream 0n  is different from n downstream. All points are defined as being on the 

optical axis for a Gaussian system. Above the longitudinal axis, the distances from 0T  to 

the incident cardinal point and from T to the emergent cardinal point are shown with the 

thin arrows. All the symbols and subscripts are given in Table 3.6.1. Below the 

longitudinal axis the equalities are shown as follows: the equivalent length or “thickness” 

eqz  (red), incident equivalent focal length eqf0  (blue), emergent equivalent length 
eqf  

(orange), and equivalent radius of curvature eqr  (green).  
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1

0

1

00F

  fvFnDCnz ,       (3.6.5)  

  1

00F

1

00P 1   CnzDCnz       (3.6.6)  

and 

  1

0F0

1

0N

  nCznDnCz .      (3.6.7) 

The distance of each emergent cardinal point, in the sequence given in the last two 

columns of Table 3.6.1, from the exit plane to the respective cardinal point is 

(Harris, 2010b) 

 0

1

N
nnACz   ,        (3.6.8)  

 11

P
  AnCz ,        (3.6.9)  

  1

F

1

P 1   nCzAnCz  ,                (3.6.10) 

  1

0F0

1   CnznnACzN                 (3.6.11)  

and 

11

F

  bvnFAnCz .                  (3.6.12)  

These distances are all shown in Figure 3.6.3 above the optical axis Z. Harris 

(2010b) gives all these distances for linear systems; here they are specialized for 

Gaussian systems. fvF  and bvF  are the front- and back-vertex powers (Section 

3.4.3). 

Smith (1993) also developed a set of equations for the cardinal points in 

terms of the entries of the Gaussian transference, however his methodology is 

based on ray tracing. His matrix symbolism and arrangement of entries differs 

from that used in this dissertation so they have been adjusted to retain consistency. 

His equations are equivalent to those given by Harris above for incident focal and 

nodal points and emergent focal and principal points. His incident principal and 

emergent nodal point equations (Equations 3.6.7 and 11) are more complicated, 

but reduce under symplecticity to be the equivalent to those given above.  

A summary of the equalities is given by Pascal (1939, 1947,1950a, b) for 

lengths only, without an indication of direction. The formulae are given by Harris 

(2011a) in terms of the entries of the Gaussian transference with the addition of 

direction. The incident equivalent focal length is the distance from 0P  to 0F   
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1

0000 FNFP  Cnf eq                  (3.6.13) 

and, similarly, the emergent equivalent focal length is 

1

00NFPF  nCfeq .                 (3.6.14) 

Additional equalities are 

  1

000 PNNP  Cnnreq ,                (3.6.15) 

which Pascal (1950a) refers to as the “equivalent” radius, and 

eqzNNPP 00  ,                  (3.6.16)  

which Pascal (1950a) refers to as the “thickness” (his quotation marks). Pascal 

(1950a) appears to have reservations about the terminology because he uses the 

terms “first” and “second” with quotation marks. He also refers to systems as 

being “thinner” or “thicker” (his quotation marks) according to variations in the 

equality given in Equation 3.6.16. 

The equivalent focal lengths are directed from the principal plane to the 

respective focal point. Smith (1993) also gives the equalities for incident and 

emergent focal length, however his incident focal length formula is more 

involved, but can be simplified to that of Harris, given in Equation 3.6.13 above.  

Harris (2010b) gives additional equalities which we specialize from linear 

optics: 

0PP0F00NN0 2 zzzzz  ,                 (3.6.17) 

PPFNN 2 zzzzz                   (3.6.18) 

and 

NP0FF0PN0 zzzzzz                   (3.6.19) 

which show that the cardinal and anti-cardinal points are not independent. 

The lengths and directions of each of the equalities between incident and 

emergent cardinal points are shown in Figure 3.6.3 above the optical axis (Z). 

Lengths are given as z with subscripts given in Table 3.6.1. Below the 

longitudinal axis, the thicker arrows denote the equalities. 

 

3.6.4 Graphical construction and locator lines 

Harris (2011b) developed a method to obtain the positions of the six 

cardinal points through graphical construction. Not only does this construction 
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make it easier to see the relationships among the points but also to observe the 

relationship as the points move when the system changes, for example due to 

accommodation or age.  

Harris (2011b) rewrites Equation 3.6.1 as 

D
n

Cz
X 




0

0Q
                  (3.6.20) 

and Equation 3.6.2 as  

A
n

Cz

X


Q1
.                   (3.6.21) 

and interprets them as straight lines. Harris (2011b) terms these two lines the 

locator lines because they can be used to find the locations of the cardinal points. 

With the additional knowledge of the refractive indices 0n  and n  they can be 

obtained directly from the transference. They exist uniquely for any system.  

The construction is superimposed over the system (Figure 3.6.4). The optical axis 

Z is horizontal. The X axis is superimposed over the entrance plane 0T  

 

Figure 3.6.4 Graphical representation of a general optical system showing the locator 

lines for system S (not to scale). Line 0L  represents Equation 3.6.20 and line L Equation 

3.6.21. Axis X  is superimposed on entrance plane 0T  and axis X1  on exit plane T. T is 

a  distance z downstream from 0T . The focal points lie on the optical axis at intersection 

with the corresponding locator line. The principal points are shown in red and the nodal 

points in green. All symbols are described in Table 3.6.1. All incident points show 

intersection with the incident locator line and have subscript 0, while the emergent points 

intersect the emergent locator line L with no subscript. 
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and the 
X

1
axis is superimposed over the exit plane T with the origin at Z. T is a 

distance z downstream from 0T . The incident locator line 0L  has intersection 

DX   in 0T  and slope 
0n

C
 while emergent locator line L has intersection 

A
X


1
 in T and slope 

n

C
. 

To find the location of the incident cardinal points along the optical axis, 

one draws a horizontal line at the value for the characteristic X in 0T  (Table 3.6.1) 

and where it intersects 0L  one constructs a vertical line. The intersection of the 

vertical line with Z locates the position of the corresponding incident cardinal 

point. Similarly, for the emergent cardinal points, one draws a horizontal line at 

the value of 
X

1
 in T and constructs a vertical line at the intersection of the 

horizontal line with L. The intersection of the vertical line with Z locates the 

position of the corresponding emergent cardinal point. 

 

3.6.5 Pascal’s ring  

Pascal (1939, 1947, 1950a, b) described a memory scheme in the shape of 

a benzene ring to remember the equalities between the six cardinal points, shown 

in Figure 3.6.5. He gives the equalities without any proof, his main purpose is to 

create a memory scheme to aid practitioners (Pascal, 1939). In successive articles  

 

Figure 3.6.5 Pascal’s ring, showing the equalities as distances among the cardinal 

points of a general system. From the diagram we can see that each of two sides that are 

parallel are equal in their distance apart in the system. Therefore we have four equalities 

N,NPP 00   NFPF 00  , PFNF 00   and PNNP 00  .  
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he then uses the “benzene ring” to show how the points shift when a 

compensatory system is placed with its emergent principal point at the incident 

focal point of the system or eye (Pascal, 1950a), or how aphakia affects the ring 

(Pascal, 1947). Pascal states that “distances represented by opposite parallel lines 

are equal”. He gives the four equalities NNPP 00  , NFPF 00  , PFNF 00   and 

PNNP 00  . In Pascal’s initial article (1939) he placed less emphasis on the fourth 

equality, but later included it and stated that the distance PNNP 00   represents 

the “equivalent radius of the system” eqr  (1950a) which is the radius of a single 

refracting surface that can replace the system. 

In an eye the principal and nodal points are located very close together and 

it is difficult to see, firstly, what the sequence of points is and, secondly, the shifts 

when the system undergoes some change such as refractive compensation or 

accommodation. In this way Pascal’s ring is particularly useful in that it 

“magnifies” the changes in the relationships between the cardinal points when 

comparing more than one system. It is important to note that Pascal’s ring is not 

drawn to scale but the sides represent a proportional change between two or more 

systems.  

Harris (2011a) proved Pascal’s equalities and further proposed that the 

equalities in the ring represent not just magnitude, but he gave the distances 

between the cardinal points direction as well. This ties up with the directions of 

the equalities given in Figure 3.6.3. In Figure 3.6.6, we see Pascal’s ring again, 

 

 

Figure 3.6.6 Pascal’s ring showing equalities and their distances and directions among 

the cardinal points of a general system. Arrows that are the same colour are equal in 

length follow the same direction, consistent with Equations 3.6.13 to 16. All the 

directions have the sense of travelling from left to right, the same as light. 
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but this time with the equalities represented by distance and direction and using 

the same colour-coding that was given in Figure 3.6.3. The blue line represents 

the negative incident equivalent focal length. 

 

3.7 The transformed transference  

In Section 3.2.5 we saw that symplectic matrices (Sp( nn 22  ;R)) are 

closed under multiplication, inversion and transposition but are not closed under 

addition nor multiplication by a scalar. This creates a problem when we wish to 

calculate, for example, an average of symplectic matrices, including transferences 

in particular. In an effort to find an average eye, researchers have investigated a 

number of transformed transferences and characteristic matrices. These include 

the exponential-mean-log transference (Harris and Cardoso, 2006; Harris, 2004b, 

2005, 2007, Mathebula, Rubin and Harris, 2007), metric geometric mean 

transference (Harris, 2008), Cayley transforms (Cardoso and Harris, 2007) and 

four characteristic matrices (van Gool and Harris, 2005; Harris and van Gool, 

2004).  

Our interest in these transformed transferences, for the purpose of this 

dissertation, lies not in calculating an average transference, but in the transformed 

matrix itself. Both the logarithm of a symplectic matrix and the Cayley transform 

are Hamiltonian and the characteristic matrices are symmetric. For 1n  this 

lends itself to being represented graphically in a three-dimensional space. The 

metric geometric mean has the limited scope of only calculating the mean of two 

transferences and therefore will not be explored further. We take a look at each of 

these transformations in the general sense. 

 

3.7.1 The logarithmic transform 

 The exponential-mean-log-transference has proven to be particularly 

useful in calculating a meaningful average of an optical system. Mathebula, Rubin 

and Harris (2007) and Mathebula and Rubin (2011) have successfully used this 

method to calculate the mean of a number of readings of the cornea with 

allowance for thickness using the Pentacam, in a group of subjects. Consequently, 

Mathebula, Rubin and Harris (2007) and Mathebula and Rubin (2011) were able 
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to calculate the variance-covariance matrix in Hamiltonian space of the linear 

optical character of the cornea and the spread of the power of the cornea.  

The Lie algebra is related to the matrix Lie group through the matrix 

exponential by passing information from the Lie algebra to the matrix Lie group. 

In particular, the Lie algebra defines a linear space, thereby making the Lie 

algebra not only simpler, but more understandable. To define the Lie algebra, let 

G be a matrix Lie group. The Lie algebra of G, denoted by g, is the set of all 

matrices X such that Xte  is in G for all real numbers t. If X is any nn  real 

matrix, then Xte  will be real and invertible. The Lie algebra of GL(n;R) 

represented by the set of matrices X is real and denoted gl(n;R) (Hall, 2004:27, 

38-39). 

 The Lie algebra of the real symplectic group is denoted sp(n;R) and is the 

space of nn 22   real matrices. If H is any nn 22   real matrix, then Hte  will be 

real and invertible. sp(n;R) is a subset of gl(n;R) and is therefore also a linear 

space, allowing one to do statistical analyses. We refer to the set of matrices h that 

define the symplectic algebra as Hamiltonian matrices (Hall, 2004: 41). 

In simpler terms, the principal matrix logarithm of a real symplectic matrix 

(belonging to Sp(n;R)) results in a Hamiltonian matrix (belonging to sp(n;R)) and 

the principal matrix exponential of a Hamiltonian matrix results in a symplectic 

matrix (Sanyal, 2001: 71; Bernstein, 2005: 88-89, 434; Dieci, 1996, 1998; Harris 

and Cardoso, 2006; Harris, 2005
; 

Hall, 2004: 41). This relationship between 

symplectic and Hamiltonian matrices is referred to as the exponential map and the 

matrix logarithmic map (Sanyal, 2001: 72-73). Because the set of Hamiltonian 

matrices defines a linear space it is closed under matrix addition, multiplication by 

a scalar, transposition and the commutator operator (Dieci, 1996, 1998), they are 

amenable to the calculation of an average of any number of Hamiltonian matrices. 

The exponential-mean-log-transference is defined as (Harris and Cardoso, 

2006; Harris, 2004b, 2005, 2007) 














 



N

j

j
N 1

Log
1

exp:
~

SS .       (3.7.1) 
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The principal matrix logarithm is calculated in Matlab
®
 by using the command 

logm and the matrix exponential by using expm. (This is not the same as the 

command log which takes the logarithm of each entry in the matrix separately.) 

In general 

GX Log          (3.7.2) 

where G
X e  and 

nnRG  provided G is invertible and has no negative real 

eigenvalues (Dieci, 1996, 1998). Any matrix that is invertible has at least one 

logarithm (Dieci, 1996), which for our purposes means that, because all 

transferences are invertible, they have at least one logarithm. Cardoso (2005) 

shows that the principal matrix logarithm of matrix G is an infinite series.  

We represent the transformed transference by Ŝ .  In terms of its entries we 

follow Harris’s (2005) lead and write the transformed transference as  
















DC

BA
S

ˆˆ

ˆˆ
ˆ           (3.7.3) 

where Ŝ  is Hamiltonian. However, our interest lies not in the average of 

transferences, but in the Hamiltonian space itself. A nn 22   matrix H is 

Hamiltonian if (Bernstein, 2005: 85; Dieci, 1996, 1998; Fiori, 2011; Watkins, 

2004; Hall, 2004:41)  

HEEH
TT           (3.7.4) 

where  













OI

IO
E .         (3.7.5) 

It follows from Equations 3.7.3 to 5 that 

Tˆˆ DA           (3.7.6) 

and the B̂ and Ĉ  are both symmetric (Sanyal, 2001: 69; Dieci, 1996; Harris, 

2007; Hall, 2004:41). Because D̂  is dependent on Â  there are four independent 

entries between them and because B̂  and Ĉ  are symmetric they each have three 

independent entries, therefore Ŝ  has only ten independent entries (Harris, 2007a). 

However, our reservation with this transformed matrix is that each of the entries 

has a different unit. Â  and T
D̂  are unitless, B̂  is in units of length and Ĉ  is in 
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units of inverse length. So while Ŝ  defines a linear space, it does not define an 

inner-product space. 

For a Gaussian system Equation 3.7.3 simplifies to  
















DC

BA

ˆˆ

ˆˆ
Ŝ             (3.7.7) 

where each of the entries is a scalar and  

DA ˆˆ  .         (3.7.8) 

The result is that for Gaussian systems Ŝ  has only three independent entries. This 

implies that we can create a three-dimensional graph of the relationship among the 

three entries. The chromatic properties on a Gaussian system will be shown in 

Chapter 8 and was shown as a nearly perfectly straight line for the reduced eye in 

an accompanying article (Evans and Harris, 2011). 

 

3.7.2 The Cayley transform 

Similar to the logarithmic transference, a Cayley transform maps a 

symplectic matrix (Sp(n;R)) into a Hamiltonian matrix (sp(n;R)). Cardoso and 

Harris (2007) introduced this and a few other transforms as alternative methods 

for mapping symplectic matrices into Hamiltonian matrices, and reversing the 

process in an effort to find other methods of calculating an average eye, or more 

generally, an average system. Cardoso and Harris (2007) note that one can 

construct an infinity of rational matrix functions that transform symplectic into 

Hamiltonian matrices. The one that plays an important role in several fields of 

mathematics and engineering (Cardoso and Harris, 2007; Fiori, 2011) and which 

we shall study is the Cayley transform. The Cayley mean is given by Cardoso and 

Harris (2007) as  

 













 




N

j

j
N 1

1

C

1~
SS CC        (3.7.9) 

where  SC  is the Cayley transform of S and 1C  represents the inverse Cayley 

transform. 

In general, the Cayley transform is defined as (Bernstein, 2009: 208, 239; 

Sanyal, 2001: 72; Cardoso and Harris, 2007; Puzio, 2013) 
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      IAIAIAIAB 
 11

               (3.7.10) 

and its inverse is defined as (Bernstein, 2009: 208; Sanyal, 2001: 72) 

      IBIBIBIBA 
 11

                (3.7.11) 

where A and B are nn  real matrices provided the respective inverses exist and I 

is the nn  identity matrix. From Equation 3.7.10 we can see that the factors of B 

are commutative. From Equations 3.7.10 and 11 we can see that the Cayley 

transform is its own functional inverse (Bernstein, 2009:208-209; Tsiotras, 

Junkins and Schaub, 1997; Sanyal, 2001: 72).  

  Others (Fiori, 2011; Golub and van Loan, 1996: 73; Puzio, 2013; 

Bernstein, 2009: 239) define the inverse as  

      BIBIBIBIA 
 11

               (3.7.12) 

where A and B are defined above, the factors of A are commutative and provided 

the respective inverses exist. This inverse is simple to derive from the Cayley 

transform given by Equation 3.7.10 and is given by Puzio (2013). 

The Cayley transform is defined slightly differently by Tsiotras, Junkins 

and Schaub (1997), and Courant and Hilbert (1953: 536-7). Tsiotras, Junkins and 

Schaub (1997), Fallat and Tsatsomeros (2002), Hadjidimos and Tzoumas (2008, 

2009) and Bernstein (2009: 208-209) define the Cayley transform as  

   1
 QIQIC                   (3.7.13) 

(or its commutative equivalent) where C and Q are nn  real matrices and exists 

provided  QI   is invertible. Fallat and Tsatsomeros (2002) and Hadjidimos and 

Tzoumas (2008, 2009) both define the Cayley transform for the set of nn  

complex matrices, however, we will restrict this study to real matrices. Tsiotras, 

Junkins and Schaub (1997) give the inverse transformation as identical to itself. 

Solving Equation 3.7.13 for Q we obtain the same result. Fallat and Tsatsomeros 

(2002) and Courant and Hilbert (1953: 536-7) state that the order of factors may 

be reversed and  QI   commutes with   1
QI . 

For the set of matrices of the order nn 22  , B is a symplectic matrix as 

defined in Equation 3.7.10  and A is a Hamiltonian matrix as defined in Equation 

3.7.11 by Bernstein, 2009: 208-209; Sanyal, 2001: 72 and in Equation 3.7.12 by 

Bernstein, 2009: 239 and Cardoso and Harris, 2007. Equation 3.7.13 is its own 
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functional inverse and so if C is symplectic, Q is the resultant Hamiltonian matrix 

and for the inverse, if C is Hamiltonian, Q is the resultant symplectic matrix.  

In linear optics, because the Cayley transform of a transference is 

Hamiltonian, the units of the entries are the same as for a transference, that is, 

mixed units (Cardoso and Harris, 2007). Because of Equation 3.7.8, the Gaussian 

transformed transference has three independent entries, enabling us to create a 

three-dimensional graph of the Hamiltonian space represented by the Cayley 

Transform (Evans and Harris, 2011).  

We mention in passing that Hamiltonian matrices fulfil the requirements 

for a vector space (Hall, 2004: 43; Anton and Rorres, 2005: 222) and therefore the 

mathematics of vector spaces can be applied to the three-dimensional (for 22S ) , 

ten-dimensional (for 44S ) and fourteen-dimensional (for 55T ) spaces. Symplectic 

matrices on the other hand disobey the requirements for vector spaces and the 

rules of vector spaces cannot be meaningfully applied to symplectic matrices. The 

one-to-one mapping between the symplectic matrices and Hamiltonian spaces 

allows us to not be confined by the restrictions placed on symplectic systems. This 

is important to this dissertation and will be used to this effect in Section 8.2 to 

derive a formula for the dependence of the transference on the frequency of light.  

 

3.7.3 The characteristic matrices  

In an effort to find a set of matrices, related to the transference, that would 

offer a solution to quantitative analyses of the optical character of optical systems, 

Harris and van Gool (2004) turned to the four characteristic matrices. These are 

the point characteristic matrix P, the angle characteristic matrix Q, and the first 

and second mixed characteristic matrices, M and N respectively. According to 

Guillemin and Sternberg (1984:17, 35-37) the terminology point, angle and mixed 

characteristic was introduced by Hamilton, however, modern physics literature 

refers to them as the point and angle eikonals. Walther (1995:22, 238-241) refers 

to P as Hamilton’s point characteristic and distinguishes between the point 

eikonal P and the angle eikonal Q. Arnaud (1970), discusses the point 

characteristic P and the ray matrix S . The characteristic matrices are, in each 

case, defined for linear systems, however, we will concentrate on the application 
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to Gaussian systems. Harris and van Gool (2004) and van Gool and Harris (2005) 

apply the characteristic matrices to the 55  transference of the astigmatic 

heterocentric system, whereas Guillemin and Sternberg (1984: 35-36), Walther 

(1995:22, 238-241) and Arnaud (1970) apply the characteristic matrices to the 

44  transference of the astigmatic homocentric system.   

For any given Gaussian system S, the incident position 0y  and reduced 

inclination 0  of the ray is mapped to the emergent position y and reduced 

inclination   by Equation 3.2.10. This equation pre-supposes that the incident 

state of the ray is known and that the emergent state of the ray is sought. Of 

course, if the opposite is true, that is if the emergent state of the ray is known, then 

it is a simple matter to calculate the incident state of the ray by 

ρSρ
1

0

                    (3.7.14) 

where 1
S  is the matrix inverse of the transference. In both these situations, with 

regards to the state of the ray, there are two dependent and two independent 

variables.  

However, Harris and van Gool (2004) point out that it is possible for other 

combinations of two dependent and two independent variables to exist. Each of 

the four characteristic matrices represents one of the four possible combinations 

of dependent and independent variables with respect to the incident and emergent 

positions and inclinations. In each case, the characteristic matrix functions as the 

operator on the chosen vector. The four operations are represented in Equations 

3.7.15, 16, 18 and 19, below, as given by Harris and van Gool, (2004).  

The point characteristic defines the incident and emergent inclinations 

when the positions are chosen:  





















00

y

y
P .                  (3.7.15) 

Similarly the angle characteristic defines the incident and emergent positions 

when the reduced inclinations are known: 



















y

y00




Q .                  (3.7.16) 
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As Harris and van Gool (2004) point out, from the above two equations it is 

obvious that 

1QP                    (3.7.17) 

provided Q is non-singular. The derivations for P and Q make use of the Schur 

complements (Equations 3.2.20 to 23) (Harris, 2010d).  

The first and second mixed characteristic matrices operate as follows: 



















y

y 00 


M                   (3.7.18) 

and  





















 00 y

y
N .                  (3.7.19) 

1NM                    (3.7.20) 

provided N is non-singular. 

 

Point characteristic 

The point characteristic is defined for a Gaussian optical system as  
























11

11

DBB

BAB
P                   (3.7.21) 

provided 0B . Difficulties can be anticipated as B approaches zero (van Gool 

and Harris, 2005), which should not pose a problem for any “reasonable” eye. 

This would be a problem for conjugate systems including thin systems, but for an 

eye or schematic eye 0B . The matrix is symmetric and Harris and van Gool 

(2004) note that the minus sign in front of 0  (Equation 3.7.15) is what creates 

the symmetry. Of particular interest is the first entry which is the refractive 

compensation (Equation 3.4.6) (Harris and van Gool, 2004; van Gool and Harris, 

2005).  

 

Angle characteristic  

The angle characteristic Q is the inverse of P. From Equations 3.7.15 and 

16 this appears obvious, however From Equations 3.7.21 and 22 this is not 
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immediately apparent, but is the result of symplecticity (Equation 3.2.24). Q is 

defined for a Gaussian optical system as 




















11

11

ACC

CDC
Q                   (3.7.22) 

provided 0C . 0C  defines an afocal system, which the eye is clearly not. The 

matrix is again symmetric, a consequence of the minus sign in front of the 0  in 

Equation 3.7.16 (Harris and van Gool, 2004). Walther (1995:242) explores the 

advantage that for the angle eikonal it is easy to shift the entrance and exit planes. 

We can see this is possible from Equation 3.7.16. 

 

First mixed characteristic  

The first mixed characteristic is defined for a Gaussian system as 




















11

11

BDD

DCD
M                  (3.7.23) 

provided 0D , that is, provided the system is not entrance-plane focal.  

 

Second mixed characteristic  

The second mixed characteristic N is the inverse of M (Equation 3.7.20) 

which is easy to prove and is a result of symplecticity. N is defined for a Gaussian 

system as  




















11

11

CAA

ABA
N                   (3.7.24) 

provided 0A . In Section 3.3.1 we saw that A defines the ametropia of the 

system (Harris, 1999a). This is potentially a problem for eyes because 0A  

defines an emmetropic eye. Problems can be anticipated in eyes where A 

approaches zero (van Gool and Harris, 2005), which includes emmetropic eyes, 

compensated eyes and most schematic eyes.  

It is the very issue of singularity of these characteristic matrices that 

implies that the choice of any two of 0y , y, 0  or   does not necessarily fix the 

other two (Harris and van Gool, 2004). Existence and uniqueness create potential 

problems in the use of these characteristic matrices. 
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3.8 Vergence and wavefronts  

Thus far in this chapter on linear optics and Gaussian systems, we have 

been studying the optics of systems with a strong emphasis on the transference 

and the properties of the system, both fundamental and derived. Vergence and 

wavefronts are not  properties of a system, but rather our handle on light. Thus far 

we have considered the effect of the system on a single ray, quantified as a vector 

ρ . We now turn our attention to the effect of the system on a pencil of light, 

quantified as a matrix L. 

Vergence is merely the local reduced curvature of the wavefront. The 

wavefront is denoted as positive (converging) or negative (diverging). It also has a 

local inclination (Harris, 1996b).  

 

3.8.1 Stigmatic vergence and wavefronts 

The reduced vergence at entrance plane 0T
 
of system S is 0L . For an 

object O at a longitudinal distance Oz  upstream of the entrance plane we have 

reduced vergence given as 

O

0
0

z

n
L  .         (3.8.1) 

There are two special cases, when the object point is distant, Oz , we have 

00 L D, and when the object point is at the entrance plane, 0O z m and 

0L . 

 

3.8.2 Astigmatic vergence and wavefronts 

In the presence of astigmatism the generalisation of the scalar reduced 

vergence L is the matrix reduced vergence L (Fick, 1973d; Keating, 1981a,b). L is 

a 22  symmetric matrix identical in mathematical character to the dioptric power 

matrix F of a thin system (Fick, 1972, 1973a, b ; Long, 1976). That is to say, for 

an astigmatic wavefront, the eigenvalues are the vergences (reduced principal 

curvatures) along the two principal meridians given by the eigenvectors (Keating, 

1981a, b; Harris, 1996b). The vergence matrix L is always symmetric, even when 

it emerges from a thick astigmatic system with an asymmetric power matrix 
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(Keating, 1981a, b) and for which Harris (1996b) gives a proof, based on the 

symplecticity of the transference. The implication of this is that the two principal 

meridians are always orthogonal. 

For a wavefront incident onto an astigmatic system from an object point O 

at longitudinal position Oz  relative to 0T , Equation 3.8.1 generalizes to 

IL
O

0
0

z

n
 .         (3.8.2) 

For a distant object point OL 0 D. 

 

3.8.3 The wavefront, its curvature and direction: distant object 

For a distant object point, Harris (1996b) derives the equation for a 

wavefront at the optical axis as 

nn
z 

αyLyy
TT

2
.        (3.8.3) 

This equation describes the geometry of the wavefront exiting the system and can 

be thought of as the sagitta at the optical axis of the wavefront as it exits the 

system. 

1 CAL          (3.8.4) 

is the reduced wavefront curvature and  

0

T
αAα



           (3.8.5) 

is the reduced direction of the emergent wavefront at the optical axis. y is the 

transverse position of the ray at the exit plane. When the eigenvalues of L are 

distinct, the wavefront is astigmatic and when the eigenvalues are not distinct, the 

wavefront is a paraboloid of revolution (stigmatic). When A is singular, Equations 

3.8.3 to 5 do not hold and the wavefront is not defined. The wavefront has 

reduced to a singularity and there is a focal point or line in the transverse plane. 

 

3.8.4 Vergence emergent from a system: object at a finite distance 

We now consider a system S with entrance plane 0T , exit plane T and 

longitudinal axis Z. The vergence incident onto the system at 0T  is 0L . Harris 

(1996b) gives the vergence emergent from the system at exit plane T as 
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   1

00


 BLACDLL        (3.8.6) 

and the emergent direction of the wavefront as 

  0

T

0 



  αBLAα .        (3.8.7) 

0α  and α are the reduced inclinations of the rays at the optical axis incident and 

emergent to the system at the entrance and exit planes respectively. 

 

3.8.5 Vergence across elementary systems 

Homogenous gap 

The transference of a homogenous gap of width z is given by Equation 

3.2.7. Substituting into Equation 3.8.6 we obtain (Harris, 1996b) 

  LIL 
 11

0  ,        (3.8.8) 

the generalization of the equation for vergence across a homogenous gap.  

 

Refracting surface 

The transference of a thin system is given by Equation 3.2.9 with F 

symmetric. Both the power of a refracting surface and the power of a thin lens F 

are symmetric matrices. Substituting from Equation 3.2.9 into Equation 3.8.6 we 

obtain 

LFL 0 ,         (3.8.9) 

the generalization of Gauss’ equation, first derived by Keating (1981a) and then 

by Harris (1996b). 

 

3.8.6 Position of point or line foci 

Calculations often require us to determine where focal points or lines are 

for a given object point. The calculation usually will give an answer as a distance, 

along the longitudinal axis, either upstream or downstream from the reference or 

image plane. For a stigmatic system this is simply obtained by solving 

L

n
z                      (3.8.10) 
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(from Equation 3.8.1). For an astigmatic wavefront one will obtain two orthogonal 

line foci (Keating, 1981b). The derivation for determining the longitudinal and 

transverse positions and orientations of the line foci will be given in Chapter 6. 

 

3.9 Summary 

This chapter has taken an in-depth look at linear and Gaussian optics and 

in particular the transference. We saw that we can calculate the effect that the 

system has on light by tracing either a single ray (Equation 3.2.31) or a pencil of 

light (Equation  3.8.6) through the optical system. Familiarly, these are the state of 

the ray vector or vergence, respectively. We took a look at the fundamental 

properties of an optical system as well as four special systems. We then spent 

some time studying a selection of derived properties of the optical system. 

The derived properties that form part of this study include power, 

refractive compensation, front- and back-vertex power, magnification and the 

locations of the cardinal points. In addition two transformed transferences and 

four characteristic matrices are included as options for studying the dependence of 

the transference on the frequency of light and as vector spaces that allow 

statistical analysis.  

This chapter is by no means a comprehensive account of Gaussian and 

linear optics and all derived properties. We have limited ourselves to a small 

selection of derived properties that are affected by the frequency of light in a 

Gaussian optical system. We also saw that not all the derived properties that we 

will need for our study of chromatic properties are available in the literature. 

Additional formulae will be derived in Chapter 5. 
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4 BACKGROUND THEORY: CONSIDERATIONS 

 

The previous two chapters took a detailed looked, firstly, at how chromatic 

aberrations have been defined in classical and physiological optics and, secondly, 

at Gaussian and linear optics of systems. Chapter 3 gave a broad overview of 

linear optics in general, the fundamental properties and a selection of derived 

properties from the transference. We saw how we can trace either a single ray 

through a system, or the effect of a system on a pencil of rays in the section on 

vergence and wavefronts.  However, there are a few additional considerations that 

need to be addressed.  

Firstly, we take a look at schematic eyes. After a brief overview of the 

history of schematic eyes, we look at the classification of schematic eyes, from 

the simplest single-surface reduced eye to multi-surface schematic eyes that 

closely mimic a real eye. We then narrow our choice of eyes for this dissertation 

to two, that of the reduced eye, often used in previous studies on chromatic 

properties and Le Grand’s four-surface schematic eye.  

Secondly we take a look at the visible spectrum across which we will base 

our analyses. We define the frequencies we will highlight in tables and graphs in 

Part IV of this dissertation. 

 Thirdly, we consider the arguments for and against using frequency or 

wavelength in our treatment. 

Finally, we take a look at the formulae available for the refractive index of 

a medium as a function of wavelength. We look at formulae for the refractive 

index of water, the medium of the reduced eye, the four media of Le Grand’s 

model eye and air. 

 

4.1 Schematic eyes 

 

4.1.1 A short history of schematic eyes 

Smith (1995) presents a comprehensive history of schematic eyes and this 

is discussed briefly, although we shall mention only the better known schematic 

eyes. For centuries the eye and the functions of the various structures within it 
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were misunderstood. The ancient Greeks and Arabs believed that light emanated 

from the lens inside the eye and caused a visual response when these light rays 

touched an object. This view prevailed till approximately 1000 AD when Ibn al-

Haitham proposed that the light rays travelled from an object into the eye. 

However, it was not until the early sixteenth century that Leonardo da Vinci (c. 

1500 AD) proposed that the lens was responsible for refracting the light.  

Snell discovered the exact law of refraction in 1621 and published by 

Descartes in 1637. Scheiner was the first to attempt to measure the radius of 

curvature of the anterior corneal surface by the rather rudimentary method of 

comparing the size of reflection off the cornea with reflections from various sized 

marbles. Once the correct anatomical structure was understood, Christian 

Huygens proposed the first schematic eye in the seventeenth century.  

Another two centuries went by before Young, in 1801, made more 

accurate measurements of the anterior refracting surface and anterior and posterior 

lenticular surfaces, the depth of the anterior chamber and the refractive indices of 

the humours and lens. As a result the first accurate schematic eye was attributed to 

Listing who described a three-surface schematic eye in 1851 (Emsley, 1950: 524). 

Emsley designed a reduced eye, based on certain parameters of the Gullstrand-

Emsley eye, which is widely accepted (Emsley, 1950: 543-544). 

According to Smith (1995) both the Gullstrand and the Le Grand 

schematic eyes enjoy reasonable popularity. In 1945, Le Grand (1945: 50-51) 

presented two schematic eyes, a full theoretical eye consisting of four surfaces and 

a simplified eye with a single cornea and a lens of zero thickness which too, was 

limited in its usefulness (Smith, 1995; Atchison and Smith, 2002: 45). Le Grand 

(1956: 9-27) did a number of calculations to determine the chromatic dispersion 

of each of the refractive indices. Because of the availability of refractive indices 

as a function of wavelength for all four media it is one of the theoretical model 

eyes to be used in this dissertation. This will be looked at in more detail in Section 

4.4.3. 
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4.1.2 Classification of schematic eyes 

According to Smith (1995) paraxial schematic eyes are classified into 

three classes, exact, simplified and reduced. Exact schematic eyes attempt to 

model a real eye as much as possible with a minimum of four spherical surfaces. 

Simplified schematic eyes reduce the number of surfaces to two or three. Reduced 

schematic eyes transfer all the refracting power to a single refracting surface or 

“cornea”, usually resulting in a smaller radius of curvature and shortening of the 

axial length. Apart from the refractive index of the internal medium, none of the 

dimensions represent those of a real eye.  

It is important to acknowledge the limitations of any model being studied. 

The limitations of paraxial schematic eyes are firstly that all surfaces are 

rotationally symmetrical, spherical and centred.  

Secondly, it is assumed that the medium is homogenous and isotropic 

within each element. In a real eye the lens, in particular, is a gradient index lens. 

For these two reasons, the schematic eyes are poor predictors of monochromatic 

aberrations.  

Thirdly, the eye is built from a combination of average parameters, each 

considered to be averages of many individual values. These average parameters 

are combined to represent an “average eye”. It is important to note that this 

average eye is not an average of many eyes, but an eye created by a combination 

of average parameters (Rabbetts, 2007: 221-241; van Gool and Harris, 2005). This 

average eye is completely different to the average eye mentioned in Section 3.7 

and sought by Harris, van Gool and Cardoso (Harris, 2004b, 2005, 2007; Harris 

and van Gool, 2004; van Gool and Harris, 2005; Harris and Cardoso, 2006; 

Cardoso and Harris, 2007; Harris, 2008).  Individuals may vary significantly from 

these values. With the exception of the variations on the Bennett-Rabbetts eye, the 

schematic eyes are usually attempts to represent an emmetropic eye, based on a 

monochromatic reference wavelength which is usually yellow light.  

Fourthly, the cornea is assumed to be spherical in shape, whereas a real 

cornea is aspherical (ellipsoid). Finally, the fovea is assumed to be on the optical 

axis and as a result the optical and visual axes coincide (Smith, 1995).  
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For completeness it is necessary to mention a newer class of schematic 

eyes, namely finite or wide angle schematic eyes. This class of model eyes 

attempts to overcome some of the limitations of the paraxial schematic eyes by 

including aspheric refracting surfaces, gradient index lenses, a curved retina and 

lack of surface alignment along a longitudinal axis (Smith, 1995; Atchison and 

Smith, 2002:39). A number of such eyes have been developed, mostly over the 

past forty years (Smith, 1995; Rabbetts, 2007:227-8). Of particular interest is the 

chromatic eye developed by Thibos et al (1992) with the express purpose of 

creating a reduced eye that mimics the effects of chromatic aberration found 

experimentally. 

Paraxial schematic eyes are well suited to study numerous properties of 

the eye within Gaussian optics, including power, positions of the six cardinal 

points, pupil positions and sizes, retinal image size of small objects, 

magnifications and to a limited extent, the causes and effects of refractive errors 

and accommodation. Because the paraxial schematic eyes are Gaussian models, 

calculations are restricted to small image sizes and small pupils. The choice of eye 

will depend on the complexity of the subject being studied and level of accuracy 

desired. These model eyes are excellent models for calculations of chromatic 

aberrations. This is because the eye’s media are composed mainly of water and 

the refractive indices vary little across eyes (Smith, 1995). 

 

4.1.3 Emsley’s reduced eye 

The concept of the reduced eye was first proposed by Listing (Emsley, 

1950: 543).  The advantage of the reduced eye (see Figure 4.1.1) is its simplicity. 

The reduced eye has a single stigmatic refracting surface of radius of curvature r 

and a homogenous gap of length z. It implies that any ray intersecting the 

refracting surface orthogonally is an optical axis and therefore there is an infinity 

of optical axes. We choose one such ray as our longitudinal ray.  

When designing the reduced eye, Emsley (1950: 523-544) based a number of 

parameters on the Gullstrand-Emsley schematic eye. He noted that the principal 

points of the schematic eye are very close together (0.3 mm apart) and he allowed 

these “to coalesce into a single intermediate point”. He then reduced the schematic 
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eye into a single spherical refracting surface. Emsley wanted the focal points to 

coincide with those of the schematic eye. According to him, this fixed the power, 

radius of curvature and position of the single refracting surface all at once. He 

placed the vertex of the refracting surface at the principal point of the reduced eye, 

5/3 mm behind that of the Gullstrand-Emsley schematic eye. The centre of the 

radius of curvature was placed at the single intermediate nodal point, giving a 

radius of curvature r of 50/9 mm (or 1/180 m).  Because the eye is emmetropic, 

the length z of the eye is now 200/9 mm (or 1/45 m) and is also the emergent focal 

length. The incident focal length increases to 50/3 mm upstream of the refracting 

surface. He placed specific emphasis on the power 60 D and chose the refractive  

index in the reduced eye to be the same as that of water which, according to 

Emsley, is 4/3. He took the index of air to be 1 (Emsley, 1950: 525-527, 543-544; 

Bennett & Rabbetts, 1984: 18). 

The reduced eye works well for calculating chromatic properties 

independent of object, image and aperture positions. In order to include chromatic 

properties dependent on object or image and aperture position, Thibos (1987) 

adapted the reduced eye by placing a pupil plane in line with that of the 

Gullstrand-Emsley schematic eye. This places the pupil 3.63 mm before the nodal 

point, or 1.926 mm behind the refracting surface. Thibos et al (1992) further 

adapted the reduced eye to enable calculations of chromatic properties to closely 

equate to those results found experimentally. They adapted the constants in 

Cornu’s formula to match their experimental values and modified the corneal  

 

 

Figure 4.1.1 The reduced eye as a defined optical system. The length is z, with optical 

axis Z, the radius of curvature of the refracting surface is r, the refractive index outside 

the system is 0n and inside the system is n.  
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profile to an ellipsoid. They refer to this reduced eye with three modifications as 

the “Chromatic eye”. In this dissertation we will make use of a reduced eye with 

the same r and z as Emsley’s eye and with an index n dependant on the frequency 

of light based on the modified formula proposed by Thibos et al (1992).  

 

4.1.4 Le Grand’s full theoretical eye 

Le Grand proposed his two schematic eyes in 1945. Each schematic eye 

had an unaccommodated and accommodated version (Le Grand, 1945: 50-51, 

1980: 65-67). This dissertation uses the unaccommodated full theoretical version 

which has four refracting surfaces. A schematic diagram of Le Grand’s eye is 

shown in Figure 4.1.2. The dimensions of Le Grand’s full theoretical 

unaccommodated eye are given in Table 4.1.1 (Le Grand, 1945:50). Subscripts 

used here are defined in Table 4.1.1 and Figure 4.1.2.  

The dimensions given in Table 4.1.1 are limited to the radii of curvature of 

the refracting surfaces and the width of the gaps between them. The refractive 

indices in Table 4.1.1 are for a reference refractive index of 589 nm (Fraunhofer 

line D). At this reference refractive index, Le grand’s schematic eye is 

emmetropic (Le Grand, 1956: 12-19).  

 

 

 

Figure 4.1.2 Le Grand’s Complete Theoretical Eye, comprising four refracting 

surfaces and four homogenous gaps. The refracting surfaces are the anterior and posterior 

corneal surfaces (K1 and K2) and anterior and posterior lens surfaces (L1 and L2). The 

gaps are the thickness of the cornea (K), the depth of the anterior chamber (Aq), the 

thickness of the crystalline lens (L) and the depth of the posterior chamber (V). The 

optical axis Z is chosen to be centred with each of the stigmatic refracting surfaces, 

implying no deflectance or tilt in either system. 
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Table 4.1.1 The dimensions of Le Grand’s full theoretical unaccommodated eye (Le 

Grand, 1945: 50). 

Refracting surface 

or medium 

Abbreviated 

subscript 

Radius of 

curvature 

(mm) 

Width  (mm) Refractive 

index 

Corneal anterior surface K1 7.8   

Cornea K  0.55 1.3771 

Corneal posterior surface K2 6.5   

Anterior chamber Aq  3.05 1.3374 

Lens anterior surface L1 10.2   

Lens L  4.0 1.42 

Lens posterior surface L2 –6   

Posterior chamber V  16.5965 1.336 

 

4.2 Visible spectrum 

The limits of the visible spectrum differ among studies and industries. The 

definition of the colour bands also differs (compare Sears, Zemansky and Young, 

1987:827 and Keating: 2002: 475). For the purposes of this dissertation, we adopt 

the spectrum with frequencies between 430 and 750 THz (Sears, Zemansky and 

Young, 1987: 827) which represents vacuum wavelengths between 399.7 and 

697.2 nm, approximately. This represents the range over which human spectral 

sensitivity ranges from 1 to 100% (Rabbetts, 2007: 287; Thibos et al, 1992; Le 

Grand, 1957: 7-8, 55-58, 71-73).
  

In Part IV wherever results are displayed graphically and where possible, six 

coloured reference points will be displayed. These six points represent an even 

spread across the chosen spectrum, with a gap of 64 THz between each reference 

point. The six colours are red, orange, yellow, green, blue and violet, and include 

the two spectral range end-points. The purpose is to create a consistent visual 

display that is comparable across all the results. The frequencies and 

corresponding calculated wavelengths of the six colours are detailed in Table 

4.2.1. Frequency is given in THz  112 s10   and wavelength in nm  m10 9 . 

The printed colours are not intended to be an exact replication of that particular 

frequency, but merely a key to the graph and the reference points. 
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Table 4.2.1 The frequencies and wavelengths of the six specified coloured reference 

points. 

Colour Frequency in THz  Vacuum wavelength in nm   

Red 430 697.2 

Orange 494 606.9 

Yellow 558 537.3 

Green 622 482.0 

Blue 686 437.0 

Violet 750 399.7 

 

4.3 Frequency versus wavelength  

Pease and Barbeito (1989) look at the relationship between frequency and 

wavelength for a number of studies involving chromatic aberration and conclude 

that results using frequency or wavenumber (the inverse of wavelength) are 

“nearly perfectly linear” in contrast to those using wavelength. They cite several 

reasons to support using frequency rather than wavelength, perhaps the most 

important being that frequency is independent of the medium whereas wavelength 

is not and that energy is directly proportional to frequency. Furthermore, we note 

from Cornu’s hyperbolic formula for chromatic dispersion, that refractive index 

varies inversely with wavelength. These reasons make a compelling argument to 

study the dependence of properties on the frequency of light rather than on 

wavelength. Koczorowski (1990) and Rabbetts (2007:290, 292) both show this 

linear relationship graphically. Confirmation will be obtained in Chapter 8.  

 

4.3.1 Frequency, wavelength and refractive index relationships 

The fundamental relationship between frequency   and vacuum 

wavelength 0λ  is given by 

00 c          (4.3.1) 

where light traveling in a vacuum has a speed 1

0 m.s458792299 c  as defined 

by the 17th General Conference on Weights and Measures in November 1983. As 

light travels from one medium to another, the frequency remains the same 

whereas the wavelength and speed change.  
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In a particular medium light travels at speed 0cc  . The index of 

refraction in the medium is defined by      

c

c
n 0 .         (4.3.2) 

Hence, 



0n          (4.3.3) 

where λ  is the wavelength in a medium. 

According to Sears, Zemansky and Young (1987: 843) indices of 

refraction (for white light) are typically quoted for yellow light from a sodium 

lamp and with a wavelength of nm589 , which is near the middle of the 

visible spectrum. The light emitted from this sodium lamp is inexpensive and 

nearly monochromatic. The refractive index of air for yellow light is 

approximately 1.0003 but is usually expressed as 1. 

 

4.3.2 Frequency scale and linearity 

Pease and Barbeito (1989) argue that the use of the frequency scale 

facilitates data analysis for the study of chromatic aberration. The linear nature of 

the frequency scale makes analysis simpler to compute and to understand.  

 

4.4 Refractive index as a function of frequency for optical media and air 

According to Rabbetts (2007: 287), “dispersion is the variation in 

refractive index of a medium with wavelength”. The constringence or Abbe 

number is the reciprocal of dispersion (Sivak and Mandelman, 1982).  

There are few formulae available that give the refractive index of a 

medium as a function of wavelength (Sivak and Mandelman, 1982; Rabbetts, 

2007: 287). Cornu’s formula gives the refractive index for water as a function of 

wavelength, includes three constants and has the form of Equation 4.4.1. This 

formula has formed the basis for a number of formulae used for the media of the 

four-surface eye and the reduced eye, with different values being given for the 

constants. Thibos et al (1992) based their formula on Cornu’s formula, the 

constants being calculated from experimental data.  
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According to Le Grand (1956: 12), early results of the dispersion of the 

cornea, aqueous, lens and vitreous were obtained by Kunst in 1923. In 1923 

Polack obtained Abbe numbers for the cornea, aqueous and lens, but had 

reservations about the value for the lens. These results were confirmed by Tagawa 

in 1928. Le Grand (1956: 11-13) considered Cornu’s formula to be an adequate 

approximation for the humours of the eye within the visible spectrum. He 

calculated the constants by averaging the refractive indices of water and saline for 

a number of wavelengths. Based on Cornu’s formula, and from Polack’s 

experimental data, he was able to tabulate the refractive indices for the four media 

of his schematic eye for each of the Fraunhofer lines (A, C, D, F and G). Villegas, 

Carretero and Fimia (1996) extended Le Grand’s tabulated results and obtained a 

polynomial fit of the refractive indices for the four media. 

According to Koczorowski (1990) other formulae are available for 

calculating the dispersion of media such as those of Schmidt, Sellmeier, Hartman 

and Herzberger. However the constants in these formulae have not specifically 

been calculated for the media of the eye. Conrady’s modification of Schmidt’s 

formula is applicable to optical materials and Cauchy’s formula is more suited to 

media with absorption in the shortwave part of the spectrum. Cauchy’s and 

Sellmeier’s formulae are rough approximations of each other while Cornu’s, 

Hartmann’s and Herzberg’s formulae appear to have a heuristic rather than 

theoretical basis (Koczorowski, 1990).  

More recently Sivak and Mandelman (1982) obtained mean refractive 

indices at four wavelengths of the ocular media of cow, pig, frog, chicken, rock 

bass, albino rat and cat using Abbe and Pulfrich refractometry. They also 

measured the human lens and obtained mean refractive indices and constringence 

values for the periphery and core for the four wavelengths. They concluded that 

the humours of the eyes are less dispersive than water, the cornea is more 

dispersive at short wavelengths and the lens is considerably more dispersive than 

water. According to Rabbetts (2007:288) Sivak and Mandelman’s study is the 

only significant experimental study on the dispersion of human ocular media since 

Kunst and Polack.  
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Formulae for the refractive index of air also exist. The refractive index 

varies with air temperature, humidity, air pressure, carbon dioxide level and 

pollution. Cauchy’s and Sellmeier’s formulae specify standard levels for each of 

these factors (Hodgman, 1959: 2943). Lorentz’s formula can accommodate 

humidity levels, however Ciddor’s formula can account for each of these factors 

and calculate the refractive index for that situation (Ciddor, 1996).  

 

4.4.1 Refractive index of water 

Le Grand (1956: 11) bases his calculations of the refractive index of the eye on 

Cornu’s formula, although it lacks a theoretical basis. He gives Cornu’s formula 

as 




 


nn         (4.4.1) 

where the three positive constants are given in Table 4.4.1. The three constants for 

pure water he based on Dorsey’s work of 1940 and the constants for sea water, 

with salinity 37.4 parts per thousand, he based on Bein from 1935. The 

measurements were all done at 20°C. In Le Grand’s table of measured versus 

calculated values, the refractive indices compare well across the visible spectrum 

for both pure water and saline water. 

 

Table 4.4.1 The constants given by Le Grand (1956: 11) for Cornu’s formula 

(Equation 4.4.1) for pure water and for sea water (salinity 37.4 parts per thousand) at 

temperature 20°C. 

 Pure water Sea water 

n  1.31848 1.32492 

  0.0066620 nm 0.0068153 nm 

   0.1292 nm 0.1333 nm 

 

 

4.4.2 Refractive index of the reduced eye  

Thibos et al (1992)
 
represent the refractive index of the reduced eye as a 

function of wavelength as follows 

c

b
an





         (4.4.2) 
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where 535320.1a , nm685.4b  and nm102.214c . The formula is based 

on Cornu’s formula for refractive index of water and constants were derived from 

clinical experimentation on real eyes. Using this formula Thibos et al (1992)
 

showed that the refractive index of the body of the reduced eye changes more 

rapidly with wavelength than a reduced eye filled with water. The predictions for 

longitudinal chromatic aberration using this formula more closely approximate 

experimental data than Emsley’s reduced eye filled with water.  

 

4.4.3  Refractive indices of Le Grand’s full theoretical eye 

Le Grand (1956: 9-27) studied chromatic dispersion and chromatic 

aberration in detail. He too based his calculations on Cornu’s formula. He 

published a table of refractive indices for the cornea, aqueous humour, lens and 

vitreous humour for five wavelengths represented by Fraunhofer lines A, C, D, F 

and G.  

Villegas, Carretero and Fimia (1996) took Le Grand’s table of refractive indices 

as a function of wavelength and, using a polynomial fit, expressed the data as 

formulae for refractive index as a function of wavelength. They then compared the 

results of their calculations from these formulae with those calculated using 

Emsley’s reduced eye filled with water and with Thibos et al’s (1992) chromatic 

eye for chromatic difference in refractive compensation and chromatic difference 

of position. Because the chromatic eye was designed for the purpose of 

calculating chromatic properties, it is the best fit to the experimental data for 

chromatic difference in refractive error and chromatic difference in position. They 

concluded that the Le Grand eye is slightly underestimated for chromatic 

difference of refractive compensation but is approximately equivalent for 

chromatic difference of position. Because of these results, the Villegas, Carretero 

and Fimia (1996) formulae for Le Grand’s eye is used in this study. The formula 

derived by Villegas, Carretero and Fimia (1996) are given as 

  432  edcban        (4.4.3) 

and the constants are given in Table 4.4.2. 
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Table 4.4.2 The constants for use in Equation 4.4.3 to calculate the refractive index 

for each of the four media in Le Grand’s eye from Villegas, Carretero and Fimia (1996). 

 Units Cornea Aqueous humour Lens Vitreous humour 

a — 1.511 67 1.490 72 1.538 08 1.456 34 

b 1m  0.000 636 054 0.000 805 138 0.000 448 268 0.000 561 861 

c 2m  61017.1   61068.1   71074.5   61002.1   

d 3m  91001.1   91066.1   101061.2   101070.8   

e 4m  131031.3   131031.6   0 131084.2   

 

4.4.4 Refractive index of air 

The refractive index of air differs only very slightly from that of vacuum 

and for most optometric purposes one can write 10 n . A number of equations, 

for example Cauchy’s dispersion formula (Hodgson, 1959) and Ciddor’s 

equations (Ciddor, 1996), are available for calculating the refractive index of air. 

Cauchy’s formula is expressed in terms of wavelength whereas Ciddor’s 

equations are expressed in terms of wavenumber. Cauchy’s dispersion formula is  

 
42

7

0 101


tq
pn         (4.4.4) 

where 43.7262p , 26 nm10228.12 q  and 49 nm105.355 t  for dry air at 

temperature 15°C, pressure 101 kPa and carbon dioxide content of 450 ppm. 

Ciddor’s equations calculate the refractive index of air for variations in any of 

these values as well as air pollution density. This, however, would typically be of 

interest to the field of precise interferometry or geodetic surveying which requires 

an accuracy to a few parts in 810 .  

In the majority of cases we will use 10 n  for the refractive index of air 

and for illustrative value one data set on the reduced and Le Grand’s eyes will be 

shown using Cauchy’s equation. A graph set will be shown comparing 

calculations using 10 n
 
 and Cauchy’s formula.  

 

4.5 Discussion 

There are a number of schematic eyes available to the ophthalmic optics 

researcher, differing in the number and shape of refracting surfaces. Some 
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schematic eyes are available with a pupil or even a gradient index lens. However, 

because this dissertation focuses on the dependence of the first-order optical 

properties of the eye on frequency, we need to select schematic eyes for which the 

refractive indices of all media as a function of frequency (or wavelength) are 

known. For this reason we have selected the reduced eye and Le Grand’s four-

surface eye. The reduced eye forms an ideal basis because it is an excellent 

predictor of chromatic properties. However, the reduced eye is a very simple 

model and so we include Le Grand’s four-surface eye which is somewhat more 

representative in structure. This point will become clearer later once we calculate 

the transferences of the two eyes. 

The visible spectrum selected in numerical calculations in this dissertation 

is the range of frequencies from 400 THz to 700 THz. Frequency, rather than 

wavelength, is used in all calculations and graphical representations. 
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5 DERIVATIONS FOR BACKGROUND THEORY  

 

In this chapter we derive formulae that will be needed for our study of 

chromatic dependence of first-order optical properties. As such Chapter 5 is made 

up of a random assortment of seemingly unrelated derivations. The equations that 

are presented in Chapter 3 and this chapter together will form the basis from 

which we will either study chromatic dependence directly or derive formulae for 

chromatic aberrations and quantifying of chromatic properties. While this chapter 

focusses on the eye as our system, we note that the formulae derived and figures 

presented are general for all Gaussian systems. 

 

5.1 Exit-plane refractive compensation 

As mentioned in Section 3.4.2 the derivation for exit-plane refractive 

compensation is not available in the literature. This is presumably because this 

derived property has no application to the eye. However it is defined here for 

systems in general. While this dissertation is primarily concentrating on the eye as 

a system, we include this derived property because it has a bearing on certain 

entries of the point characteristic P. 

The exit-plane refractive compensation is the power of a thin lens 

juxtaposed immediately downstream to a general system so that the combined 

system becomes an entrance-plane focal system. Writing the transference of the 

combined system 
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  (5.1.1) 

and setting 0D  for the exit-plane system 

0SSC  DBF         (5.1.2) 

we obtain the exit-plane refractive compensation for system SS  

1

SSC

 BDF .         (5.1.3) 

This equation generalizes readily to linear systems. 
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5.2 Magnification 

There is a relationship between the definition of magnification defined for 

a Gaussian system for conjugation of the object and image and the fundamental 

properties of the system’s transference. Indeed, the relationship between 

transverse and angular magnification is to be found in the symplectic equation 

(Equation 3.2.24). 

In Section 3.5.3 we saw how Harris (2001a) defined magnification, blur 

and the ray state at the retina for distant objects. We take a different approach to 

Harris (2001b) to define magnification, blur and the ray state at the retina for 

finite distances and these definitions are derived in Section 5.2.2. 

The use of a pinhole immediately in front of the eye forms a large role in 

the experiments for chromatic properties of eyes, particularly chromatic properties 

dependent on object or image and aperture positions. For this reason we simplify 

this special situation for magnification of an object at a finite distance in Section 

5.2.4. 

 

5.2.1 Relationships between the types of magnification 

In Section 3.3.2, we looked at the four special types of systems resulting 

from equating each of the fundamental properties in turn to zero.  Then, in Section 

3.5.1, we looked at the three types of magnification defined for Gaussian systems. 

We now observe that there are distinct similarities in the definitions between two 

of these systems. Transverse and angular magnification are related to the 

transference through their being defined in the same way as two of the special 

systems, that is the conjugate and afocal systems. Also, in a similar way to the 

relationship that we saw between these two magnifications in Section 3.5.1, the 

two types of magnification are inversely related to each other through the 

symplectic equation. 

 

Transverse magnification 

Where we have a conjugate system 0B  such that an object at the 

entrance plane is positioned as height from the optical axis 0y , the point image 



III  DEFINITIONS AND DERIVATIONS  5 Derivations for background theory 

102 

 

will form on the exit plane at position y. Equation 3.5.1 is the same as Equation 

3.3.2 and A represents transverse magnification in a conjugate system. Therefore 

tMA           (5.2.1) 

as long as 0B . This equation is true for all Gaussian systems, both thin and 

thick, provided the object is at the entrance plane. Should the object be elsewhere, 

then A magnifies the ray height and Equation 5.2.1 does not apply. 

 

Angular magnification 

The equation for angular magnification, Equation 3.5.3 is the same 

equation as Equation 3.3.3. We can therefore state that  

MD  .          (5.2.2) 

This is true of all afocal systems 0C  and provided the object point is distant. 

 

Relationships between the magnifications 

Equation 3.5.4 gave us the relationship between angular and transverse 

magnification as the one being the inverse of the other. To confirm this, from the 

symplectic Equation 3.2.24, and substituting 0B , we can see that  

1AD .         (5.2.3) 

The same is true if we substitute 0C  into the symplectic equation. Substituting 

Equations 5.2.1 and 2 into Equation 5.2.3, we obtain Equation 3.5.4.  

 

5.2.2 Summary of magnification, blur and ray state at the retina 

 Equations 3.5.7 and 8 define the magnification, blur and ray state 

at the retina. We recall that  TRRR yρ  defines the state of the ray at the 

retina. However, instead of  R  we are interested in the unreduced inclination at 

the retina Ra , and indeed elsewhere in the system. Therefore we define  











R

R

R
a

y
r           (5.2.4) 

for the purposes of defining chromatic properties dependent on object and 

aperture positions. Equations 3.5.7 and 8 become 
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and 

RK0

1
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1

P

1

AE

1 aanADnyACn         (5.2.6) 

where n is the refractive index of the vitreous humour. 

We write these two equations in the form  

REE rvV           (5.2.7) 

where  
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is the distance coefficient matrix and with subscript E for eye and 
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Harris (2001a) names each of the coefficients according to their characters 

and properties. EW  is the distance image blur coefficient, EX  is the distance 

image size coefficient, EY  is the distance directional spread coefficient, and EZ  is 

the distance directional coefficient. While we have defined the coefficients 

slightly differently with regard to the refractive indices, the meaning conveyed is 

the same. 

 

5.2.3 Magnification, blur and ray state at the retina for object points at 

finite distances 

To calculate the magnification and blur at the retinal plane for a system 

where the object point is at a finite distance we take a different approach to Harris 

(2001b). We define the system of the eye, as shown in Figure 5.2.1, as having the 

entrance plane KT  immediately upstream of the tear layer on the cornea and the 

exit plane RT  immediately in front of the retina. The eye naturally divides into 

two subsystems at the plane of the pupil PT  which also acts as a limiting aperture. 

We divide our system, which represents the eye, into two subsystems, anterior, 

with subscript A and posterior, with subscript B. Immediately upstream of the eye 

is the homogenous gap of width Oz  measured from the corneal plane KT  to the 

object plane OT , which represents the finite working distance. The object is 
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located at the entrance plane OT  and is positioned at a transverse distance of Oy  

with respect to the longitudinal axis Z.  

We are interested in solving for the state of the ray Rρ  at the retina in 

terms of its transverse position in the pupil Py  and the transverse position of the 

object Oy , instead of the incident inclination of the ray at the cornea Kα  which we 

used for the system with a distant object in Section 3.5.3. The advantage of 

defining the system this way is that we can either use the pupil as our partitioning 

plane or we can use any limiting aperture within an optical device through which 

the eye is looking, including a pinhole in front of the eye. The formulae we derive 

are general and we will show how they simplify further still when using a pinhole 

immediately in front of the eye. We noted earlier (Section 3.5.3) that the position 

of the centre of the pupil does vary slightly with changes in diameter, however, 

the use of a pinhole allows us to manipulate Py  to a much greater extent. In this 

case Py  is the distance from the longitudinal axis to the centre of the pinhole at 

the corneal-plane KT . The near system and symbolism is introduced in Figure 

5.2.1. 

 

 

 

Figure 5.2.1 The Gaussian system of the eye ES  is partitioned into two subsystems by 

a pupillary plane PT   and consists of an anterior subsystem AS  and posterior subsystem 

BS  which are juxtaposed. The object plane is located at position 0O z   measured from 

the cornea. The width of  OS  is Oz . 
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The system of the eye ES  is made up of the anterior AS  and posterior BS    

subsystems to obtain the transference: 
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                    (5.2.10) 

and for the compound systems of homogenous gap OS  upstream from the eye and 

either anterior subsystem AS  or eye ES  the transferences are: 
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and 
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                    (5.2.13) 

A ray is traced from the object across the homogenous gap and through the 

anterior system to its ray state at the pupil to obtain 

POOA ρρS                     (5.2.14) 

and 

POOAOOA yαByA                   (5.2.15) 

POOAOOA ααDyC  .                 (5.2.16) 

Similarly from the pupillary plane to the retinal plane 

RPB ρρS                     (5.2.17) 

and  

RPBPB yαByA                   (5.2.18) 

RPBPB ααDyC  .                  (5.2.19) 

Equation 5.2.15 is solved for Oα ,  
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OOA

-1

OAP

-1

OAO yAByBα                   (5.2.20) 

and substituted into Equation 5.2.16 to obtain 

OOA

-1

OAOAP

-1

OAOAOOAP yABDyBDyCα  .               (5.2.21) 

From Equations 5.2.21 and 5.2.18 we obtain 

    .OOA

-1

OAOABOABP

-1

OAOABBR yABDBCByBDBAy   

Manipulating, we obtain 

    OOA

1

OAOAOABP

1

OAOABOABR yABDCByBDBBAy   . 

From OEB , Equation 5.2.12 and the third Schur complement (Equation 3.2.22) we 

obtain  

O

1

OABP

1

OAOER yBByBBy   . 

We make use here of the Schur compliment instead of the simpler unit 

determinant because of the generalisation we undertake in Section 5.2.5. 

Substituting equalities from Equations 5.2.11 and 13 into our equation we obtain 

     O

1

AOABP

1

OAAOEER yBAByABABy


  ,             (5.2.22) 

the transverse position of the ray at the retina. 

Substituting from Equation 5.2.21 into Equation 5.2.19 to get rid of Pα , 

we obtain 

    OA

-1

OAOABOABP

-1

OAOABBR yABDDCDyBDDCα   

and manipulating,
 

    OOA

1

OAOAOABP

1

OAOABOABR yABDCDyBDDBCα   . 

From the equality for OED  in Equation 5.2.12 and the third Schur complement 

(Equation 3.2.22) we obtain 

O

1

OABP

1

OAOER yBDyBDα   . 

Substituting equalities from Equation 5.2.11 and 13 into our equation we obtain 

     O

1

AOABP

1

OAAOEER yBADyABCDα


  ,             (5.2.23) 

the reduced inclination at the retina of the ray from the object. However, the 

unreduced inclination at the retina is required and so Equation 5.2.23 is rewritten 

     O

1

AOABP

1

OAAOEER ynBnADynAnBCDa


  .            (5.2.24) 
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Equations 5.2.22 and 24 represent the physical (unreduced) state of the ray 

at the retinal plane for the ray from the object point at a finite working distance 

Oz . The equations are general and any ray could be chosen, including, for 

example, a chief ray or a marginal ray. This solution is summarized, in a similar 

layout to how we presented Harris’s formulae in Equations 5.2.7 to 9, in terms of 

the system OES  as defined in Equations 5.2.12 and 13 as 

ROEOE rvV                     (5.2.25) 

where 
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V  

                    (5.2.26) 

is the near coefficient matrix for system OES  where the object point is at a finite 

working distance Oz  from the eye, Rr  is defined by Equation 5.2.4 and 











O

P

OE
y

y
v                    (5.2.27) 

is an input vector for the system OES , from the object point at Oy , through the 

pupil at position Py , to the retina. The entries in the top row of the near 

coefficient matrix OEV  are unitless while the bottom row has units of inverse 

length. Multiplying Equation 5.2.25 out we obtain 

ROOEPOE yyXyW                    (5.2.28) 

and 

ROOEPOE ayZyY  .                  (5.2.29) 

  The near coefficient matrix exists provided   1

OAA


 AB  exists. The 

coefficient matrix does not exist when 0OAA  AB , which would imply that 

0OA B . In other words the coefficient matrix exists provided the object and 

iridial planes are not conjugate.  

We note that the disjugacy B and divarication D appear to play a 

significant role in the magnification and blur of the system. Together the 

coefficient matrix OEV  and input vector OEv  define the position and unreduced 
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inclination of the pencil of rays at the retina for the system from an object at a 

finite distance. OEW  is the near image blur coefficient, OEX  is the near image size 

coefficient, OEY  is the near directional spread coefficient, and OEZ  is the near 

directional coefficient.  

Similar to our interpretation for distant objects, we can interpret Equation 

5.2.28 for a system consisting of an eye and an object point at a finite distance 

upstream. If we wish to obtain the size Ry  of the image at the exit plane 

corresponding to an object of size Oy  for a Gaussian system, we follow the rays 

from the object through the same position through the pupil such that P2P1 yy   

we obtain 

   O1O2OEP1P2OER1R2 yyXyyWyy   

which simplifies to 

OOER yXy  .                  (5.2.30) 

Equation 5.2.30 is linear in Oy   and we consider the near image size coefficient, 

OEX  to be the transverse magnification of system OES . 

  For a single object point Oy , and a pupil of diameter Py  the size of the 

blur circle on the exit plane (from Equation 5.2.28) is 

POER yWy  .                  (5.2.31) 

The size of the blur circle is dependent on the size of the pupil and the near image 

blur coefficient OEW . We can think of OEW  as a sort of blur-magnification. 

One can interpret Equation 5.2.29 in a similar fashion for the angular 

spread of the rays at the retina Ra  from an object of size Oy . For a Gaussian 

system, we follow the rays from the object through the same position in the pupil 

such that P2P1 yy   we obtain 

 OOER yZa                    (5.2.32) 

where OEZ  is the near directional coefficient. To obtain the angular spread of the 

blur across the retina produced from a single object point, we see that 0O y  

and that the blur spread is a function of pupil size Py  

POER yYa                     (5.2.33) 
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where OEY  is the near directional spread coefficient 

The difference in inclinations of the rays reaching the retina has 

implications for the Stiles-Crawford effect (Smith and Atchison, 1997: 308; 

Atchison & Smith, 2000: 124-127; Stiles, 1939).  

 

5.2.4 Eye with pinhole  

Object at a finite distance 

When a pinhole is held immediately in front of the cornea, the system and 

subsystems simplify.  The plane of the pinhole is the partitioning plane, however, 

the system upstream of the pinhole is merely the homogenous gap of system OS  

and the posterior system is that of the eye, ES . The transference of the anterior 

subsystem AS  becomes the identity matrix and posterior subsystem BS  becomes 

ES , the eye. The transverse position of the pinhole is the distance Py  from the 

optical axis and we assume that the pupil is sufficiently dilated to accommodate 

the chief ray through the pinhole. The near coefficient matrix OEV  therefore 

simplifies to 
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OE

11

OEE
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1

OE

1

OEE

P

OE

P

OE

P

OE

P

OEP

OE




DnDCn

BBA

ZY

XW
V              (5.2.34) 

with the superscript P representing the specialisation for a pinhole in front of the 

eye. Equations 5.2.28 and 29 become 

O

P

OEP

P

OER yXyWy                       (5.2.35) 

and 

O

P

OEP

P

OER yZyYa  .                  (5.2.36) 

Equations 5.2.28 and 29 still hold and are general for an eye with an object 

point at a finite distance, both with and without a pinhole. Equations 5.2.35 and 36 

are the same as Equations 5.2.28 and 29 with the four coefficients merely 

simplifying, as shown in Equation 5.2.34, when a pinhole is placed in front of the 

eye. For this reason we shall refer to Equations 5.2.28 and 29 in all further 

discussions, and merely substitute from P

OEV  when appropriate. 
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Distant object 

Similarly, for a distant object the coefficient matrix in Equation 5.2.8 

simplifies to 
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V                 (5.2.37) 

while Equation 5.2.9 remains unchanged. Equation 5.2.7 holds for the pinhole and 

the coefficients from Equation 5.2.37 may be substituted, when appropriate. 

 

5.2.5 Generalizing to linear optics 

In this section we have retained the order of multiplication and avoided 

division in an effort to allow the equations to generalize to linear optics for 

systems that have astigmatic elements. In Section 5.2.1 we can indeed generalize 

transverse and angular magnification to astigmatic systems. The equations in 

Sections 5.2.2 and 3 generalize, however we need to include a transpose which 

comes about from the symplectic equations (Equations 3.2.17 to 19) and the Schur 

compliments (Equations 3.2.20 to 23). We provide the linear generalizations 

below, the proofs following the format given in Section 5.2.3. Equation 5.2.8 

becomes 
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and Equation 5.2.26 becomes 

    

     































T

AOAB

1

OAAOEE

T

AOAB

1

OAAOEE

OEOE

OEOE

OE
BADABCD

BABABAB
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XW
V

nnnn

ζζζ


. 

                    (5.2.39) 

The transposes in the right-hand column of these two matrices fall away when we 

simplify for the situation of a pinhole in front of the eye and so the equations in 

Section 5.2.4 readily generalize to linear optics to include eyes with astigmatic 

elements. 

 

5.3 Measurements in object space  

From the literature review in Chapter 2, we saw how chromatic difference 

in position and chromatic difference in magnification are defined in physiological 
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optics. More specifically, we saw that when these measurements are taken 

experimentally, that the chromatic difference in object position occurs in object 

space and alignment is assumed at a position on the retina. Because such 

measurements are made in the clinical environment, we shall consider the 

scenario for finite distances only. Pinholes also feature often in such experiments.  

The objective in this section is to derive formulae for the transverse 

position of an object point and the inclination of the ray incident onto the eye or 

pinhole when the position in the pupil or pinhole and the position at the retinal 

plane are known. Ultimately we keep the goal of deriving formulae for the 

chromatic difference in position or magnification in mind. These formulae will 

form the basis of the derivations for chromatic difference in position and 

magnification in Chapter 7. 

 

5.3.1 Transverse position of an object point at a finite distance 

We will start by deriving the formula for the transverse position of an 

object point at a finite distance upstream of the eye. We turn our attention to the 

system of the eye partitioned into anterior and posterior subsystems and object at 

finite distance upstream of the system illustrated in Figure 5.2.1 which we used in 

the previous section.  

Because the system OES  is the same as that described in Figure 5.2.1, with 

applicable subsystems OS , AS , BS  and combinations thereof, the equations that 

define OES  and its subsystems, given by Equations 5.2.10 to 19, apply. Solving 

Equation 5.2.18 for P  we obtain 

PB

1

BR

1

BP yAByB   .       (5.3.1) 

Substituting from Equation 5.2.21 into 5.3.1 and rearranging we obtain 

    R

1

BP

1

OAOAB

1

BOOA

1

OAOAOA yByBDAByABDC   .   (5.3.2) 

We make use of the third Schur compliment (Equation 3.2.22) and equalities in 

Equation 5.2.12 to simplify this equation to 

R

1

BP

1

OAOE

1

BO

1

OA yByBBByB   . 

Hence 

R

1

BOAPOE

1

BO yBByBBy   . 
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In terms of the distance of the object in front of the eye and the entries of the 

transferences of the eye, and anterior and posterior subsystems, this is 

    R

1

BAOAPOEE

1

BO yBBAyABBy    .     (5.3.3) 

Equation 5.3.3 gives us the transverse position of the object point Oy  at OT  of the 

ray through the pupil at transverse position Py  arriving at a position Ry  on the 

retina. 

 

Simplification when a pinhole is used 

Similar to the scenario in Section 5.2.3, the transverse position of an object 

point at a finite distance in front of the eye simplifies when a pinhole is positioned 

immediately upstream of the corneal tear film. Equation 5.3.3 becomes 

  R

1

EOPOE

1

EO 1 yByABy    .      (5.3.4) 

 

5.3.2 Incident inclination measured in object space 

We again turn our attention to Figure 5.2.1 and accompanying Equations 

5.2.10 to 19. We wish to calculate the inclination in object space, Oa  as a function 

of the ray, going through the pupil at Py  and reaching the retina at transverse 

position Ry . We solve Equation 5.2.15 for Oy  to obtain 

OOA

1

OAP

1

OAO BAyAy          (5.3.5) 

which we substitute into Equation 5.2.16: 

POOAOOA

1

OAOAP

1

OAOA ααDBACyAC    .     (5.3.6) 

We now substitute from Equation 5.3.1 into Equation 5.3.6, simplify for OAA  and 

OAC  from Equation 5.2.11 and rearrange to obtain 

    R

1

BP

1

AAB

1

BOOA

1

OAOAOA yByACABαBACD   .   (5.3.7) 

Substituting the fourth Schur compliment (Equation 3.2.23) and equalities from 

Equations 5.2.10 into Equation 5.3.7 we obtain 

R

1

BP

1

AE

1

BO

1

A yByAABαA    

and, hence, 

R

1

BAPE

1

BO yBAyABα   .       (5.3.8) 
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While there is an infinity of rays radiating from an object point, this equation 

singles out the reduced inclination of a single ray from an object point as a 

function of position in the pupil and at the retina. However, we need to calculate 

the equation for the unreduced inclination and so Equation 5.3.8 becomes 

    R

1

0BAPE

1

B0O ynBAyABna


 .     (5.3.9) 

Equation 5.3.9 gives the incident inclination of a ray, traversing a specific 

point in the pupil Py , that will reach the retina at a predetermined transverse 

position .Ry  The position through the pupil Py  may be chosen to be the chief ray 

where 0P y ; however the equation is general and any position can be chosen.  

For obvious reasons,  the reduced working distance O  and  the transverse 

position Oy  are both eliminated, implying that  Oa  is a more inclusive parameter 

to work with than the combination of Oy  and O . 

 

Simplification when a pinhole is used 

The incident inclination from a finite object point to a position at the retina 

when a pinhole is placed immediately in front of the eye enables us to simplify 

Equation 5.3.9 to 

    R

1

E0PE

1

E0O yBnyABna


 .                (5.3.10) 

Substituting from Equation 3.4.6 for the corneal-plane refractive compensation 

0F  we see that the relationship in Equation 5.3.10 represents 

  R

1

E0P0

1

0O yBnyFna
  .                (5.3.11) 

We mention in passing that for an emmetropic eye 

  R

1

E0O yBna


  

and the effect of the transverse position of the pinhole Py  in front of the 

emmetropic eye is nullified. 

   

5.3.3 Summary of object space matrix equations with respect to position on 

the retina 

Equations 5.3.3 and 9 are the two matrix equations that determine the 

incident transverse position and inclination that will result in the ray arriving at 
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the retina at a specific transverse position. Similarly to Section 3.5.3, we can 

summarise them as 
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O
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BBAABB 
              (5.3.12) 

which we shall abbreviate to 

OOyOy rvV                     (5.3.13) 

where the subscript Oy indicates measurements that are made at a finite distance 

in front of the eye. OyV  is the coefficient matrix defined as 
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V ,            (5.3.14) 











R

P

Oy
y

y
v                    (5.3.15) 

is the input vector and Or  is the physical (unreduced) ray state at the object 

transverse plane OT  defined as 











O

O

O
a

y
r .                   (5.3.16) 

From Equation 5.3.12 we summarise Equations 5.3.3 and 9 as 

ROyPOyO yXyWy                    (5.3.17) 

and 

ROyPOyO yZyYa  .                  (5.3.18) 

 

Simplification when pinhole is used 

Similar to Section 5.2.4, we can summarise Equations 5.3.4 and 10 in the 

form given in Equation 5.3.14 for a system comprising an eye, given a specific 

position or inclination of an object point a finite distance upstream of the eye, to 

obtain the transverse position at the retina when a pinhole is held immediately in 

front of the corneal tear film. Equation 5.3.12 simplifies to 
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a
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y

y

BnABn

BAB 
               (5.3.19) 

which we summarise as 
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OOy

P

Oy rvV                     (5.3.20) 

and similar to Equation 5.2.34 the coefficient matrix in Equation 5.3.20 is given a 

superscript P to indicate the use of a pinhole immediately in front of the corneal 

tear film. 

Comment on OyV  and P

OyV  

We need to consider for a moment the existence of OyV  and P

OyV . We can 

see from Equation 5.3.12 that they exist provided 0B B , or in the case of a 

pinhole in front of the eye (Equation 5.3.19), where 0E B . The equations hold 

except in the unlikely situation in which the aperture and the retina are conjugate. 

 

5.3.4 Summary of object space matrix equations with respect to inclination 

at the retina 

When measurements are taken in object space and the corresponding 

images are perceived to be in alignment by the subject’s eye, the physiological 

optics theory is that the two image points coincide on the retina. That is to say, the 

rays arrive at the retina at the same transverse position. In the literature review, 

there was no evidence of any theories that aligned the inclination at the retina 

from two object points, only the transverse position on the retina. Therefore we 

conclude that the derivations in object space with respect to transverse position at 

the retina are considered to be more important than those with respect to 

inclination at the retina. 

Similar to the matrix equations derived in Section 5.3.3 which were 

obtained with respect to a position at the retinal plane, we can derive equations 

with respect to the inclination of a ray arriving at the retina. This has implications 

for the Stiles-Crawford effect. For completeness the summary of these formulae 

are given in Equations 5.3.21 and 22 below. It is quite possible for two rays of 

different frequency to arrive at the retina with the same inclination, but may or 

may not arrive at the same position. The exact implications of this are outside the 

scope of this dissertation. 
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The equation for the physical state of a ray Or  at the object plane in order 

for that ray traversing the pupil at transverse position Py  to arrive at the retina 

with a certain emergent inclination Ra  is 
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DBAnDCD 
             (5.3.21) 

or 

OOaOa rvV  .                   (5.3.22) 

 

Simplification when pinhole is used 

Similar to Section 5.2.4 we can summarise for a system comprising an 

eye, given a specific position or inclination of an object point a finite distance 

upstream of the eye, to obtain the inclination at the retina when a pinhole is held 

immediately in front of the corneal tear film. Equation 5.3.21 simplifies to 
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nnDnDC

nDDCD 
              (5.3.23) 

or  

OOa

P

Oa rvV  .                   (5.3.24) 

 

Comment on OaV  and P

OaV  

The relationships derived in Equation 5.3.21 and 23 exist provided 0BD  

or 0ED  in the case of a pinhole in front of the system. This would require the 

system to be entrance-plane focal which seems unlikely in a system comprising an 

eye and in most eyes BD  and ED  are close to 1.  

 

5.3.5 Generalising to linear optics 

The proofs provided in Section 5.3 involve the use of division and Schur 

compliments whilst at the same time ignoring the order of multiplication and the 

transpose. Therefore the results cannot be readily generalized to linear optics. 

However, the resultant generalised coefficient matrices are provided below, 

without detailed proofs. Equation 5.3.14 becomes 
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Equations 5.3.13, 15, 19 and 20 readily generalise to linear optics. Specifically, 

Equation 5.3.19 becomes 
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y

y

y

BAB

BABI

nn


.               (5.3.26) 

 

5.4 Cardinal points 

The simplification made in ray tracing using the cardinal points relates the 

conjugal relationship between an object point and its image point but does not 

reveal what is actually happening inside the system. Linear optics makes no use of 

cardinal points for its calculations and is true paraxial ray tracing through the 

system.  

  

5.4.1 Additional relationships among the points 

In Section 3.6.3 we looked at the relationships among the cardinal points 

including the anti-cardinal points. We wish to extend these relationships and 

attempt to find simpler equations to represent the distances of the points from the 

entrance and exit plane and between the various points. The symbols used here are 

consistent with those introduced in Section 3.6.2 and Table 3.6.1. 

Starting with the incident anti-cardinal points we find the equation for the 

distance from the entrance plane to the respective point can simplify further from 

the equalities given in Equations 3.6.3 and 4 to 

,      (5.4.1) 

1

00F

1

0

1

00P

  CnzCnDCnz       (5.4.2) 

and similarly the equations for the distance of each emergent anti-cardinal point 

from the exit plane to the respective anti-cardinal point simplify from Equations 

3.6.8 and 9 to 

1

0F

1

0

1

N

  CnzCnAnCz       (5.4.3) 

1

0F

11

00N

  nCznCDCnz
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and 

1

F

11

P

  nCznCAnCz .      (5.4.4) 

There are a number of relationships among the various cardinal and anti-

cardinal points which are presented in summary in Equations 5.4.5 to 11 and 

corresponding to Figure 5.4.1. For completeness, we include the equalities given 

in Equations 3.6.13 to 16 and add additional equalities which include those that 

extend to the anti-cardinal points in Equations 5.4.5 to 8. We retain the symbolism 

introduced in Table 3.6.1. The equalities are illustrated in Figure 5.4.1 and the 

corresponding arrow colour is given in brackets for each. The incident equivalent 

focal length (blue) is therefore 

1

000000 FNPFFNFP  Cnf eq      (5.4.5) 

 and similarly, the emergent equivalent focal length (orange) is 

1

0000 PFFNNFPF  nCfeq .     (5.4.6) 

Pascal’s (1950a, b) equalities for “equivalent” radius (green) and “thickness” (red) 

can be extended to 

  eqeqeq ffCnnr  

0

1

00000 PNPNPNNP ,   (5.4.7) 

and  

  eqeqeq ffzzzCnnzzz  

00FF

1

00FF00 NNPPz  (5.4.8) 

respectively. We now derive some equalities involving the anti-cardinal points 

(violet) 

  eqeq ffzzzCnnzzz 00FF

1

00FF00 NNPP   .  (5.4.9) 

From the above equalities we can also see (−2*blue) 

eqf000 2NNPP                  (5.4.10) 

and (2*orange) 

eqf2PPNN 00  .                  (5.4.11) 

 For completeness and to compare to some of the above equalities we note that, 

while the incident to the emergent focal points (cyan) are not conjugate with each 

other, the distance from 0F  to F is 

0FF0FF zzz  .                  (5.4.12) 



III  DEFINITIONS AND DERIVATIONS  5 Derivations for background theory 

119 

 

 

Figure 5.4.1 Cardinal points and their relationships and equalities. General Gaussian 

system S of length z has an entrance plane 0T , an exit plane T and a longitudinal axis Z. 

Refractive index upstream 0n  is different from n downstream. Points are defined as being 

on the optical axis for a Gaussian system. The distances from the entrance plane to the 

incident cardinal point and from the exit plane to the emergent cardinal point are shown 

in the section above the longitudinal axis, with the thin arrows. All the symbols and 

subscripts are given in Table 3.6.1. The equalities are shown below the longitudinal axis 

as follows: the equivalent “thickness” eqz  (red), incident equivalent focal length eqf0  

(blue), emergent equivalent length eqf  (orange), equivalent radius of curvature eqr  

(green), Equation 5.4.9 (violet) and Equation 5.4.12 (cyan). Equation 5.4.10 (blue) and 11 

(orange) can also be seen from the diagram.  

 

Symmetry points 

In Section 3.6.2, we saw that Keating defines symmetry points as the case 

where lateral magnification is –1. This occurs when the object is at twice the 

incident equivalent focal length and the image is at twice the emergent equivalent 

focal length, which we can see from Equations 5.4.10 and 11, respectively. From 

Figure 5.4.1 this is quite clearly at the position of the incident and emergent anti-

principal points.  
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In order to prove this statement, we need to prove that, firstly, the incident 

and emergent anti-principal planes are conjugate and secondly, the magnification 

is –1. We start by obtaining the transference of the compound system from 0P  to 

P  as follows 
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SSS .   

Substituting from Equations 3.6.4 and 9 we obtain 
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DC
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SSS . 

Multiplying out and substituting from the symplectic equation (Equation 3.2.24) 

we obtain 















1

01

0PP
C

SSS . 

From the definition of a conjugate system (Section 3.3.2) we see that this 

compound system is conjugate and secondly from Equation 5.2.1 we can see that 

transverse magnification has negative unit magnification ( 1t  AM ). 

 

Conjugacy of the anti-nodal planes 

Similarly, we can show that the transference of the compound system from 

the incident to emergent anti-nodal planes is 

























0

0

NN

0

0

n

n
C

n

n

SSS , 

which confirms that the two planes are conjugate and the transverse magnification 

is 
n

n0 . 

The lengths and directions of each of the incident and emergent cardinal 

and anti-cardinal points are shown in Figure 5.4.1 in the section above the optical 

axis. Lengths are given as z with subscripts given in Table 3.6.1. Below the 
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longitudinal axis, the thicker arrows denote the equalities. From Figure 5.4.1, the 

equalities given in Equations 3.6.13 to 16 and 5.4.5 to 12 can be seen. 

 

5.4.2 Graphical construction, locator lines and anti-cardinal points 

In Section 3.6.4 we saw how to obtain the slope and position of the 

incident and emergent locator lines and to use these to obtain the six cardinal 

points. We now expand this method to obtain the positions of the four anti-

cardinal points.  To find the location of the incident anti-cardinal points along the 

optical axis, one draws a horizontal line at the value for the characteristic X in 0T  

(from Table 3.6.1) and where it intersects the incident locator line 0L  one 

constructs a vertical line to intersect with Z which is the position of the respective 

incident anti-cardinal point. Similarly, for the emergent anti-cardinal points, one  

 

Figure 5.4.2 Graphical representation of a Gaussian optical system showing the 

locator lines for system S (not to scale). Line 0L  represents Equation 3.6.20 and line L 

Equation 3.6.21. Axis X is superimposed on entrance plane 0T  and axis X1  on exit 

plane T, a distance z downstream from 0T . The focal points are on the optical axis Z at 

intersection with the corresponding locator line. The principal and anti-principal points 

are shown in red and the nodal and anti-nodal points in green. All symbols are described 

in Table 3.6.1. All incident points show intersection with the incident locator line and 

have subscript 0, while the emergent points intersect the emergent locator line L with no 

subscript. 
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draws a horizontal line for the value of X

1

 in T and constructs a vertical line from 

the intersection with the emergent locator line L to Z.  

From Figure 5.4.2 we note that the values of X and X1  are positive for 

the cardinal points and negative for the anti-cardinal points. The construction is 

simple enough to be drawn by hand, however the scales on the axes have to be 

drawn accurately and for a system that includes an eye the scale on the vertical 

axis needs to be exaggerated. Numerical examples are given in Appendix 1. 

 

5.4.3 Pascal’s ring and anti-cardinal points 

In Section 3.6.5 we saw how Pascal (1939, 1947, 1950a, b) described a 

memory scheme as an aid to memorizing the equalities between the six cardinal 

points. Harris (2011a) extended Pascal’s ring and gave the equalities direction and 

gave proofs for the equalities. Here we extend Pascal’s ring further to include the 

four anti-cardinal points. 

In Figure 5.4.1 we see the relationships among the six cardinal points as 

well as the four anti-cardinal points. In Figure 5.4.3 we see Pascal’s ring extended 

to include the equalities and relationships among the cardinal and anti-cardinal 

points. We retain Pascal’s guideline that distances represented by parallel lines are 

equal.  

The relationships among the cardinal and anti-cardinal points are 

illustrated in Figure 5.4.3. For example, the four blue arrows represent equal 

distances given by Equation 5.4.5 each representing eqf0 . Equation 5.4.10 

shows the equality eqf000 2NNPP   for two consecutive blue arrows. 

Similarly for the orange arrows and eqf . The other colours represent red eqz , 

green eqr  and violet the distance between incident and emergent anti-nodal or 

anti-principal points. This emphasises what can be seen in Figure 5.4.1. If we 

consider any one of the green arrows ( eqr ), we can see that this is equivalent to an 

orange arrow ( eqf )  minus a blue arrow ( eqf0  ), which is given in Equation 

5.4.7.  One final example is to follow the violet arrow from which we can see that 

this makes up a combination of two orange, one red and two blue arrows. Any 
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such combination of equalities can be traced by following the arrows in Pascal’s 

ring. 

However the power of Pascal’s ring lies not only in its use as a memory 

schema, but also in its ability to show changes in the positions of the points with 

respect to each other. Because Pascal’s ring is not drawn to scale, the movements 

of the positions of the points are “magnified” and one is able to see how the 

changes to the system affect the locations of the points.  

In order to gain a better understanding of the data, a number of familiar changes in 

the eye are demonstrated using the Bennett and Rabbetts schematic eye (Rabbetts, 

2007: 225). These four numerical examples are given in Appendix 1. The example 

compares an emmetropic (relaxed) eye with a myopic eye and a hyperopic eye for 

changes in, firstly, axial length and, secondly, corneal curvature. The third 

example compares the emmetropic eye to changes due to accommodation and 

finally a young emmetropic eye is compared to its elderly counterpart. The first 

two changes are simple changes while the second two are compound changes. 

Refractive compensation does not form part of this study. 

The purpose of the examples is to gain an understanding of the changes in 

the cardinal and anti-cardinal points arising because of various changes in a 

system, in particular, using the two models that we have just discussed, graphical 

construction and Pascal’s ring. The examples should facilitate insight into the  

 

 

Figure 5.4.3 Pascal’s ring showing the equalities and their directions and extended to 

include the anti-cardinal points. Arrows that are the same colour are equal in length and 

are either parallel or follow the same direction. The same colour-coding has been 

maintained as in Figure 5.4.1. Equations 5.4.5 to 12 give the equalities and formulae from 

the transference. The direction of the blue arrow has been reversed to represent eqf0 . 
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changes in the cardinal points that occur in the eye due to change in the frequency 

of light, which will be examined in Section 9.1, using the two models. 

 

5.5 Transferences of the two model eyes 

The reduced eye is a simple eye and to derive its transference is a simple 

task because it is the product of only two elementary transferences. The 

transference of the reduced eye is then obtained using the parameters originally 

given by Emsley (Section 4.1.3), showing it to be emmetropic. However, we are 

interested in the dependence of the properties of the two model eyes on the 

frequency of light and so the transference of the reduced eye is derived as a 

function of the refractive index of the medium. 

Le Grand’s eye, on the other hand, is a four-surface eye and its 

transference is the product of eight elementary transferences. We therefore 

separate the derivation into anterior and posterior sub-systems, but deriving a 

single expression for the transference is impractical because the product does not 

simplify. Similarly, deriving a single expression for the transference for Le 

Grand’s eye as a function of refractive index meets with the same difficulty; there 

are four media, each with a different refractive index. The transference is 

calculated for Le Grand’s eye using his original parameters and refractive indices 

and is shown to be emmetropic. 

 

5.5.1 The transference of the reduced eye  

To calculate the transference for Emsley’s reduced eye, one makes use of 

Equations 3.2.36 and 37 which we multiply in reverse to obtain the formula for 

the transference of the reduced eye 
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r

nn

n
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nn
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z

S .       (5.5.1) 

We substitute the values for Emsley’s reduced eye given in Section 4.1.3 to obtain 

the transference of the emmetropic reduced eye 
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S .       (5.5.2) 

It is apparent that because 0A  that this is an exit-plane focal system and that 

the eye is emmetropic with a power of 60 D. Furthermore it has a reduced length 

of 50/3 mm (or 1/60 m). Divarication D is 1 for a reduced eye. 

 

5.5.2 The transference of the reduced eye as a function of refractive index  

The variable affected by frequency of light is the refractive index n. We 

substitute the radius of curvature and length of Emsley’s reduced eye into 

Equation 5.5.1 and simplify to obtain the transference for the reduced eye (Evans 

and Harris, 2011)  
























1kD)(
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nn

nn

n

S       (5.5.3) 

where 0n  is the refractive index of air and n is the refractive index of the reduced 

eye. n is calculated using Equation 4.4.2. From Equation 5.5.3 we see that dilation 

A, disjugacy B and divergence C each depend on frequency. The refractive index 

of the surrounding medium 0n  has an effect only on A and C. The divarication D 

is constant and equals 1 for all reduced eyes. 

 

5.5.3 The transference of Le Grand’s eye 

To obtain the transference of Le Grand’s eye we substitute from Equations 

3.2.36 and 37 as is appropriate and then multiplying in reverse according to 

Equation 3.2.6. We determine the transference for the anterior and posterior sub-

systems and then the transference for the eye itself. The subscripts given 

correspond to those given in Figure 4.1.2 and Table 4.1.1. Starting with the 

anterior sub-system (A) we obtain 

K1KK2AqA SSSSS          (5.5.4) 

and hence 
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Similarly we derive the formula for the posterior sub-system (B) 

L1LL2VB SSSSS  ,        (5.5.6) 

and  
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We can now obtain the transference of Le Grand’s eye as 

ABSSS  .         (5.5.8) 

This can also be formulated in one step as 

K1KK2AqL1LL2V SSSSSSSSS  .      (5.5.9) 

This is the general transference of any four-surface schematic eye.  

To calculate the transference for Le Grand’s eye we substitute the values 

from Table 4.1.1 into Equation 5.5.9 and then multiplying out we obtain  













9044.0kD0599.0

mm6832.160
S .                (5.5.10) 

That 0A  implies an emmetropic eye. Its power is 59.9404D which is the same 

as given by Le Grand (1945: 48).  

 

5.5.4 The transference of Le Grand’s eye as a function of refractive index  

Calculating the transference of the Le Grand eye as a function of refractive 

index is somewhat more complicated and does not simplify like Equation 5.5.3 for 

the reduced eye. Therefore the transference for each frequency needs to be 

calculated using Equation 5.5.9 each time.  

 

5.5.5 The refractive indices of the reduced eye and Le Grand’s eye for the 

six reference frequencies 

The numerical values for the refractive indices of each of the media for the 

six reference points are given in tabular form for both the reduced and Le Grand’s  
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Table 5.5.1 Six reference colours, their frequencies  , vacuum wavelengths ,  

refractive indices for the reduced eye using Thibos et al’s equation (Equation 4.4.2) and 

refractive indices for the four media for the Le Grand eye using the Villegas et al 

equations (Equation 4.4.3).  

   Refractive Index  

Colour     Thibos Villegas et al equations 

 THz nm et al Cornea Aqueous Lens Vitreous 

Red 430 697.2 1.3302 1.3729 1.3325 1.4161 1.3327 

Orange 494 606.9 1.3325 1.3757 1.3354 1.4191 1.3351 

Yellow 558 537.3 1.3350 1.3786 1.3382 1.4225 1.3376 

Green 622 482.0 1.3380 1.3817 1.3411 1.4261 1.3404 

Blue 686 437.0 1.3416 1.3849 1.3442 1.4300 1.3433 

Violet 750 399.7 1.3458 1.3883 1.3474 1.4339 1.3464 

 

eyes in Table 5.5.1. The frequencies and corresponding wavelengths are given for 

each of the six reference points. 

 

5.6 The Cayley transformed transference for Gaussian systems 

In Section 3.7.2 we were introduced to a number of versions of the Cayley 

transform. In order to choose the right one (or more) for our purposes, we need to 

be clear about what those purposes and subsequent requirements are. The Cayley 

transform was introduced as a method to obtain the average of a number of optical 

systems. The primary interest in the ophthalmic optics literature is its statistical 

usefulness. Our interest in this study is different; we wish to obtain a vector space 

to illustrate the dependence of the Gaussian eye on the frequency of light. 

Hamiltonian matrices belong to the Lie algebra sp(n;R) which defines a linear 

space, while symplectic matrices of the Lie group Sp(n;R) do not. The Cayley 

transform will allow us to graphically represent the dependence of the eye on the 

frequency of light. 

Returning our attention to the different versions of the Cayley transform in 

the literature we need to narrow down our choice to the Cayley transform that 

applies to the symplectic Hamiltonian mapping. Sanyal (2001: 60, 70-71) states 

that the Cayley transform map relates to Hamiltonian and symplectic matrices the 
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same way that it relates skew-symmetric matrices to orthogonal matrices, with the 

exception that the Hamiltonian and symplectic matrices need to be of the order 

nn 22  . This implies that any of the Cayley transforms given in Equations 3.7.10 

to 13 can be used as a mapping between the Lie group Sp(n;R) and its Lie algebra 

sp(n;R). However, we need to ensure that if we start with a transference S and 

map it into Hamiltonian space ( Ŝ ) and then back again, the symplectic matrix 

returned needs to be the same matrix as S that we started out with. We also wish 

to consider more favourably the Cayley transform that is most likely to exist for 

transferences of the eye. Finally, it is convenient, as Bernstein (2009:208-209), 

Tsiotras, Junkins and Schaub (1997) and Sanyal (2001: 72) suggest, that the 

Cayley transform be its own functional inverse. 

Let us start with existence. For Equations 3.7.10, 11 and 13 the inverse 

exists where the inverse of SI   exists. For Equation 3.7.12 the requirement is 

that the inverse of SI   must exist, where S is the transference of a system. 

Because it is conceivable that a transference may be the identity matrix, or 

approach the identity matrix, we will exclude Equation 3.7.12 as potentially 

problematic. It is foreseeable that the inverse of  SI   should exist for 

transferences of eyes. The requirement for the Cayley transform of a Hamiltonian 

matrix to exist is similar and requires that the inverse of  SI ˆ  exists where Ŝ is a 

Hamiltonian matrix.  

For each version of the Cayley transform given in Equations 3.7.10 to 13 

there exists an inverse. In the case of Equations 3.7.10 and 11, we see that the 

Cayley transform is its own functional inverse. The same is claimed of Equation 

3.7.13. However, let us take a closer look at Equations 3.7.10 and 13 and derive 

inverses for both of them. 

From the definition of the Cayley transform, given in Equation 3.7.10, we 

derive the inverse transform. Starting with Equation 3.7.10 and changing the 

symbolism to that for the transference S and Hamiltonian transformed 

transference Ŝ we have  

   1ˆ 
 ISISS .        (5.6.1) 

Solving for S we obtain 
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   SISIS ˆˆ
1




        (5.6.2) 

which is the inverse given in Equation 3.7.12 and different from the one given in 

Equation 3.7.11. Similarly, the inverse of Equation 3.7.12 is 3.7.10. 

Repeating this procedure to obtain the inverse of the Cayley transform 

given in Equation 3.7.13, we obtain 

   1ˆ 
 SISIS .        (5.6.3) 

Solving for S we obtain 

   SISIS ˆˆ
1




 

and because of commutativity, 

   1
ˆˆ



 SISIS         (5.6.4) 

which is its own functional inverse.  

 Commutativity is simple to show. Multiplication shows the following to 

be true: 

     AIAIAIAI  . 

Hence 

       11 
 AIAIAIAI  

provided the inverse exists.  Hence   1
AI  and AI   commute. 

We return to the issue of which Cayley transform and inverse combination 

will return the original transference. All of the Cayley transforms given in 

Equations 3.7.10 to 13 can potentially be done by hand with just a handheld 

calculator for a Gaussian system. Retaining the symbolism above, we denote the 

22  (symplectic) transference as S and the 22  (Hamiltonian) Cayley 

transformed transference as Ŝ . Starting with Equation 3.7.10 and expanding we 

get  

1
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01

10

01ˆ
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simplifying and using the symplectic equation we obtain 

DAADC

BDA
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2
Ŝ       (5.6.5) 

or 
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S
S

tr2

1

2

2ˆ
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BDA
       (5.6.6) 

giving us the Cayley transformed transference of a Gaussian system in terms of 

the fundamental properties of the Gaussian transference. This transformed 

transference exists provided 2tr S , which is unlikely for a reasonable eye. It is, 

however, clearly a Hamiltonian matrix. 

Similarly, we can simplify Equation 3.7.13 to obtain 

  
S

S
tr2

1

2

2
ˆ


















ADC

BDA
,        (5.6.7) 

the negative equivalent of Equation 5.6.6 and clearly also Hamiltonian. 

Similarly, the Cayley transform given by Equation 3.7.12 simplifies for a 

Gaussian system to 

DAADC

BDA
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2
Ŝ       (5.6.8) 

or 

S
S

tr2

1

2

2ˆ















ADC

BDA
       (5.6.9) 

which is also Hamiltonian. This transformed transference exists provided 2tr S  

which is a possibility. The entries within the matrix are the same for Equations 

5.6.6, 7 and 9, but in each case they are multiplied by a different constant, giving 

different values for each of the three transformed transferences. 

From Equations 5.6.6, 7 and 9 we see that the units are the same as for a 

transference and that the entries along the diagonal are the negative equivalent of 

each other as shown in Equation 3.7.8. This gives us three independent entries and 

enables us to create a three-dimensional graph of the Hamiltonian space 

represented by the Cayley Transform.  

We derive an equation for the transference S as a function of the 

coefficients of the transformed transference Ŝ . We start with the definition of the 

inverse of the Cayley transform, given in Equation 3.7.12 and substitute the 

transformed coefficients into it from the Gaussian simplification of Equation 

3.7.7, 
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and substituting the Gaussian simplification of Equation 3.7.8, DA ˆˆ   into this 

equation we can simplify further to obtain 

BCDABCDADC

BCBDAA
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ˆdet1

ˆ2
                  (5.6.11) 

which is the equation for the transference in terms of the Cayley transformed 

transference.  

Using the same methodology of substituting the entries from Equation 

3.7.7 into the Cayley transform given by Equation 3.7.13, we obtain  

 
I

S

SI
S 






ˆdet1

ˆ2
                  (5.6.12) 

for the transference in terms of the transformed transference for Equation 3.7.13. 

Similarly Equations 3.7.10 and 11 simplify and we obtain 

 
I

S

IS
S 






ˆdet1

ˆ2
                  (5.6.13) 

Which is the same regardless of whether we use the first or second equality, due 

to the commutativity of the Cayley transform. 

We now have three formulae for the transformed transference in terms of 

the entries of the Gaussian transference and three formulae for the transference in 

terms of the entries of the transformed transference. We return to our initial 

requirement for the choice of Cayley transform and inverse Cayley transform; that 

is, that when a transference is transformed into Hamiltonian space and then the 

transformed transference is transformed back to a symplectic matrix, then the 
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same transference must be returned. To do this, we substitute Equation 5.6.7 into 

Equation 3.7.13 and obtain 











DC

BA
S , 

the transference in its original values and with the original order. Similarly if we 

substitute Equation 5.6.12 into Equation 3.7.13 we obtain the transformed 

transference Ŝ  in its original values and with original order. This indicates to us 

that the Cayley transform given in Equation 3.7.13 is its own functional inverse 

and is the most suitable transform to use, along with the simplifications for 

Gaussian systems. We will use Equation 5.6.7 for mapping from the symplectic 

transference to the Hamiltonian matrix and Equation 5.6.12 to map from a 

Hamiltonian matrix back to its symplectic transference.  

Let us consider, for completeness, other versions of the Cayley transform 

and respective functional inverses that meet our criteria for returning the 

transference in its original form when transformed into Hamiltonian space and 

then transformed back to a symplectic transference. If we consider the possibility 

of Equation 3.7.10 being its own functional inverse (given in Equation 3.7.11) 

then we should follow the same procedure we did above for Equation 3.7.13. 

However we find that the transformed transference maps back to  















AC

BD
S                   (5.6.14) 

which is a symplectic matrix, but not the original transference. It is the negative 

inverse of the transference. Similarly the transformed transference maps back to 

S
S

ˆdet

1

ˆˆ

ˆˆ
ˆ
















DC

BA
                  (5.6.15) 

which is a Hamiltonian matrix, but not the original Hamiltonian matrix that was 

started with. We therefore can conclude that, for the 22  symplectic – 

Hamiltonian mapping, Equation 3.7.10 (and 11) is not its own functional inverse. 

However, we note that applying Equation 3.7.12 as an inverse to Equation 3.7.10 

does return the original transference and will fulfil our requirements of returning a 

transference. However this option requires a different equation to map in each 

direction whereas Equation 3.7.13 is its own functional inverse and therefore only 
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one equation transforms a transference to a transformed transference and 

conversely the transformed transference maps to the original transference. It has 

the added requirement of having the inverse exist for the transferences of all 

reasonable eyes. Equation 3.7.13 can be considered more general and convenient 

and is therefore our Cayley transform of choice. Equation 3.7.13 is expressed in 

the notation used for transferences as 

   1ˆ 
 SISIS                   (5.6.16) 

and  

   1
ˆˆ



 SISIS .                  (5.6.17) 

 

5.6.1 The Cayley transformed transference for the reduced eye 

We are now in a position to obtain a formula for the transformed 

transference of the reduced eye as a function of frequency. In Section 5.5.2 we 

looked at the reduced eye as a function of the refractive index (n). Equation 5.5.3 

gives the transference of the reduced eye with the refractive indices as the only 

unknowns. Equating the refractive index of air to be 10 n , we substitute the 

values of A, B, C and D from Equation 5.5.3 into Equation 5.6.7 to obtain 
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S .                   (5.6.18) 

Equation 5.6.18 is the Cayley transformed transference for the reduced eye. The 

units are the same as for a transference. Of interest is that the refractive indices in 

B̂  cancel out and B̂  is a constant and coincidentally it is the negative inverse of 

the constant obtained in Ĉ . Â , Ĉ  and D̂  are all functions of n.  

 

5.6.2 The Cayley transformed transference for Le Grand’s eye 

Because of the problem we had in Section 5.5.4, that there are too many 

elementary transferences, we have the same restriction on deriving a transformed 

transference for Le Grand’s eye as a function of refractive index. 
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5.7 Summary 

This chapter provides us with a collection of derived properties of the 

Gaussian system from the transference, which along with the basis for linear 

optics and derivations in Chapter 3, brings to completeness the derivations we will 

need for this dissertation. We now have all the necessary formulae to define 

chromatic aberration in the eye using linear optics. We also are in a position to 

derive equations from the transference and the ray traversing the Gaussian system 

for the chromatic properties defined in the physiological optics literature as 

studied in Chapter 2. 

The equations obtained in Sections 5.1 and 5.2 generalise to linear optics. 

In Section 5.3 the coefficient matrix defining the ray state in object space that 

maps to an image point at a selected position on the retina was given for 

astigmatic systems, although it did not generalise readily from Gaussian optics. 

Whilst Harris (2010b, e) gives formulae to obtain the position of cardinal points 

and structures for linear systems in general it is not obvious how the locator lines 

(Harris, 2011b) and Pascal’s ring (Harris, 2011a) might generalize for linear 

systems. In Section 5.5, the transferences for the two model eyes belong clearly 

within the framework of Gaussian optics. So too, in Section 5.6, the derivations 

for the transformed Cayley transference in terms of the fundamental properties 

belong within the framework of Gaussian optics. 
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6 DEFINITIONS OF LONGITUDINAL AND 

TRANSVERSE CHROMATIC ABERRATION  

 

In Chapter 2 we saw that many authors refer to chromatic difference of 

power, magnification, position or refractive error as chromatic aberration. 

Formulae to derive these properties from the transference of a Gaussian system 

will be derived in Chapter 7 to allow these definitions to be applied to more 

complex model eyes. However, there is a clear need for a general definition of 

chromatic aberration that makes allowance for astigmatic elements that may be 

tilted or decentred. This chapter defines chromatic aberration for Gaussian optical 

systems. 

 

6.1 Defining chromatic aberration 

To define longitudinal and transverse chromatic aberration we start with 

the classical definition, which is restricted to homocentric systems with stigmatic 

elements. However, we do so by defining chromatic aberration in general for 

systems with astigmatic and heterocentric elements and then simplifying for 

Gaussian systems.  

 

6.1.1 Homocentric systems with stigmatic elements 

In Section 2.2.1 and Figure 2.2.1 we saw how the first-order chromatic 

aberrations are defined within the limits of Gaussian optics as the distance 

between the projections of two focus points for two different wavelengths in the 

directions parallel and perpendicular to the optical axis as longitudinal and 

transverse chromatic aberration respectively. In this definition the distances 

between points are unsigned. The definition holds for optical systems with 

stigmatic elements. This definition is the starting point for the definition that will 

be used in this study.  

In this study we use the definition by Harris and Evans (2012) and take the 

distances between image points to be signed. This is shown in Figure 6.1.1 where 

the longitudinal chromatic aberration zδ  and transverse chromatic aberration yδ  

are shown in the positive sense as having direction from the red to the blue image 
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points, in addition to magnitude. In Figure 6.1.1, the object O corresponds to red 

and blue images rI  and bI  respectively.  

Figure 6.1.1 shows the definitions of longitudinal and transverse chromatic 

aberration in Gaussian optics and represents the point of departure for the 

definition given by Harris and Evans (2012) for astigmatic heterocentric systems. 

It differs from Figure 2.2.1 in that it has signed distances. System S is Gaussian 

and consists of any number of centred refracting surfaces with stigmatic elements, 

but which are not shown. This implies that they are invariant under rotation about 

the common axis Z, which is therefore also the optical axis. S has entrance plane 

0T  and exit plane T and refractive indices 0n  upstream and n downstream of S.  

Object point O has longitudinal position Oz  and transverse position Oy . In Figure 

6.1.1 these positions are drawn such that 0O z  and 0O y .  

The position of image point I depends on the frequency   of light. For this 

purpose we look at two frequencies on opposite ends of the visible light spectrum, 

namely red r  and blue b . The corresponding images for these two frequencies 

are red image rI  and blue image bI . The corresponding longitudinal positions are 

 

 

Figure 6.1.1  Longitudinal zδ  and transverse yδ  chromatic aberration in a 

homocentric system with stigmatic elements.  
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rz  and bz  and transverse positions ry  and by . In Figure 6.1.1, all image positions 

and directions are drawn in the positive sense, however, in a usual system such as 

the eye br zz  . 

Subscripts r and b will be used throughout this chapter. They denote two 

frequencies usually near opposite ends of the visible light spectrum, however, any 

two frequencies could be chosen. We call them ‘red’ and ‘blue’ for convenience. 

On the visible light spectrum, the blue is the higher frequency and the red is the 

lower frequency. Therefore the blue photons have a higher energy than the red 

photons which seems to suggest that we should subtract a lower energy from the 

higher energy. For this reason we chose to subtract red from blue in all chromatic 

aberration formulae. However, the formulae derived are general for any chosen 

frequencies. In Chapters 9 and 10 two frequencies are chosen for illustrative 

purposes. 

We note that Figure 6.1.1 is a two-dimensional diagram and that the 

optical axis Z, object O and both the image points rI  and bI  lie in the same plane, 

that of the page. This is because system S is homocentric and has only stigmatic 

elements within it. Furthermore, a distinction is drawn between incident refractive 

indices r0n  and b0n  and emergent refractive indices rn  and bn .  

We define longitudinal (or axial) chromatic aberration as (Harris and 

Evans, 2012) 

rbδ zzz           (6.1.1) 

and transverse (or lateral) chromatic aberration as 

rbδ yyy  .         (6.1.2) 

For convenience, the context of the system is implied when referring to the 

properties of a system. The chromatic aberration will also depend on the position 

of a point in object space, O. In Figure 6.1.1 this position is denoted by 

longitudinal position Oz  and transverse position Oy .   

For any system S, the chromatic aberration is not unique and usually there 

will exist an infinity of longitudinal and transverse chromatic aberrations. The 

chromatic aberration of a system is unique only when the object position is 
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specified. In other words, chromatic aberration depends on Oz  and Oy . As will be 

shown, longitudinal chromatic aberration is dependent on Oz  and transverse 

chromatic aberration on Oy . Chromatic aberration does not exist for the system in 

isolation. It is a measurement of a phenomenon of the images formed and for this 

reason is a property of the object point and the system.  

From these definitions, longitudinal zδ  and transverse yδ  chromatic 

aberration are lengths measured orthogonally to each other and represented here 

by scalars. From Figure 6.1.1 one is tempted to draw an arrow from rI  to bI , to 

represent  chromatic aberration holistically as a vector with longitudinal and 

transverse chromatic aberration as components. However, when we make 

allowance for astigmatism one finds that the two aberrations are fundamentally 

different and cannot be combined into a single vector (Harris and Evans, 2012). 

We therefore refrain from representing chromatic aberration as a vector here as 

well.  

 

6.1.2 Heterocentric systems with stigmatic elements 

A heterocentric system is one in which the refracting elements are not all 

centred on a common optical axis. Elements may be decentred or tilted. We retain 

the stigmatic elements, however, the longitudinal axis is no longer an optical axis 

and we need to consider a three-dimensional representation as shown in Figure 

6.1.2. In Figure 6.1.2, system S contains refracting surfaces which may be 

decentred. It may also contain prisms and surfaces which are tilted. Also shown in 

Figure 6.1.2 are the transverse planes containing the object point O at OT , the red 

image rI  at rT  and the blue image bI  at bT . The object O corresponds to red and 

blue images rI  and bI  respectively.  

From Figure 6.1.2 it becomes clear that the definition of longitudinal 

chromatic aberration zδ  in the case of homocentric systems with stigmatic 

elements can be applied to heterocentric systems, Equation 6.1.1 remains 

unchanged and zδ  remains a scalar measurement of length between the red and 

blue transverse planes. Also from Figure 6.1.2, we can see that this is not the case 
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for transverse chromatic aberration yδ . Starting at the object plane OT  we see that 

the position of object point O is now defined as a vector 











2O

1O

O
y

y
y          (6.1.3) 

with horizontal and vertical components.  

Similarly we note that the transverse positions of the red rI  and blue bI  

image points are represented by ry  and by  each with horizontal and vertical 

components. In order to obtain the transverse chromatic aberration, we project the 

red image point rI  onto the blue transverse plane bT . The projection is along the 

longitudinal axis. y is represented as the vector from the red to the blue image 

points and defines transverse chromatic aberration as  

rbδ yyy  .         (6.1.4) 

At this point we have transverse chromatic aberration, a vector, and longitudinal 

chromatic aberration, a scalar. Although one is a scalar and the other a vector, one 

is still tempted to combine them as a holistic concept of three components.  

 

 

 

Figure 6.1.2  Longitudinal and transverse chromatic aberration in a heterocentric 

system with stigmatic elements.  
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6.1.3 Heterocentric astigmatic systems 

We turn now to the general system in which elements may be decentred 

and astigmatic (Harris and Evans, 2012). System S consists of any number of 

elements which may be astigmatic, decentred, tilted or prismatic. The longitudinal 

axis Z is usually not an optical axis. In an astigmatic system image points rI  and 

bI  become fuzzy as shown in Figure 6.1.3. Each image point dissociates 

longitudinally into two orthogonal image lines and each fuzzy image becomes that 

of the interval of Sturm, which will be referred to simply as the image structure. 

The red and blue transverse image planes are no longer planes, but a fuzzy zone 

the width of the interval of Sturm and denoted by dotted lines in Figure 6.1.3. The 

system is drawn with the red and blue image zones separate, however, these may 

overlap. An additional problem arises when defining longitudinal chromatic 

aberration in that the orientations of the two sets of image lines may not match. 

That is to say, the first red image line may not be parallel to the first blue image 

line. There is a relative rotation that occurs between the red and then the blue 

image structures that must be considered. Additionally, the width of the interval of 

Sturm is not necessarily the same for each colour.  

How now does one define longitudinal chromatic aberration? Intuitively 

one may wish to calculate a scalar distance between the two image structures by 

calculating the distance between the planes of the two circles of least confusion. 

However, the circle of least confusion is not an image point and this does not fully 

represent what is happening in the system. Each image structure is represented by 

a 22  symmetric vergence matrix and therefore a scalar distance does not make 

any sense. The definition needs to account for the fact that the two fuzzy image 

structures differ in position, orientation and degree of fuzziness. Therefore the 

definition needs to include at least three numbers to represent it completely.  

The fuzzy image structure is a representation of light, so we turn our 

attention to vergence. In the absence of astigmatism the red pencil of light would 

have reduced vergence 

r

r
r

z

n
L           (6.1.5) 
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at exit plane T, where rz  is the longitudinal distance from exit plane T to 

transverse red image plane rT , as shown in Figure 6.1.1. Hence 

r

r
r

L

n
z            (6.1.6) 

and similarly for the blue vergence and longitudinal distance. In the presence of 

astigmatism the generalisation of the scalar reduced vergence L is the reduced 

vergence L, a symmetric matrix as defined in Section 3.8.  The unit of vergence is 

reciprocal length. rL  is the reduced vergence at the exit plane T of system S of 

the red astigmatic pencil defined by object O and bL
 
is the same for the blue 

pencil. 

From Equation 6.1.6, Harris and Evans (2012) generalize and define 

n1 LZ .         (6.1.7) 

Z is symmetric and has the unit length. Because the right-hand side of the 

equation is multiplied by n, Z represents the actual distance rather than the 

reduced distance. It can be regarded as the generalized position of the fuzzy image 

structure relative to the exit plane T.  

Generalizing Equation 6.1.1, we see that  

rbδ ZZZ           (6.1.8) 

represents the longitudinal chromatic aberration of a heterocentric astigmatic 

system S for object point O on the longitudinal axis. Zδ  characterises the 

longitudinal difference of the two fuzzy image points completely (Harris and 

Evans, 2012). By this definition longitudinal chromatic aberration becomes the 

22 symmetric matrix Zδ  and can be characterised by three independent 

numbers. 

From Equation 6.1.5, we see that the reduced vergence (both scalar L and 

matrix L) is dependent on the longitudinal position Oz  of object point O and 

system S and is independent of the transverse position Oy  of O. Therefore, 

provided Oz  of the object O and system S remain unchanged, decentration of the 

object point and elements of the system have no effect on the longitudinal 

positions and nature of the fuzzy image structures and we can take Equation 6.1.8 

to be the definition of longitudinal chromatic aberration Zδ of a heterocentric 
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astigmatic system for an object point at any specified position. The longitudinal 

chromatic aberration is more difficult to represent pictorially. In Figure 6.1.3 rZ  

is shown as two red lines representing the two image line foci, orthogonal to each 

other. A line is drawn between them, parallel to the longitudinal axis. And 

similarly for the blue fuzzy image structure. The longitudinal chromatic aberration 

of system S for object O is Zδ . Zδ  is a 22  distance matrix and cannot be 

represented by a vector arrow on the diagram. 

In contrast, the transverse chromatic aberration is the vector yδ , shown in 

Figure 6.1.3, from ry to by . Vectors ry  and by  are drawn from the longitudinal 

axis Z to an axis, parallel to Z, between the two orthogonal image lines within the 

transverse plane for red and blue, respectively. It is not drawn to the circle of least 

confusion. The vector for ry  can be projected onto the blue image plane and the 

transverse chromatic aberration is vector yδ . The effect of decentring an object 

point and system elements is to cause transverse displacement of the fuzzy images 

rI and bI of object point O in the heterocentric astigmatic system S. Equation 6.1.4 

defines the transverse chromatic aberration yδ  of S for O.  

 

Figure 6.1.3  Longitudinal Zδ  and transverse yδ  chromatic aberration in a 

heterocentric system with astigmatic elements.   
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6.1.4 Chromatic aberration in general 

Equations 6.1.4 and 8 are generalisations from Equations 6.1.2 and 1 to 

optical systems in general of the definitions for systems whose elements are 

stigmatic and centred on an optical axis. Equation 6.1.4 defines transverse 

chromatic aberration yδ  and Equation 6.1.8 longitudinal chromatic aberration Zδ  

in general. yδ  is a two dimensional vector and Zδ  is a 22  symmetric matrix. 

The fact that transverse and longitudinal chromatic aberration are different in 

mathematical character shows that the two types of aberration are fundamentally 

different in nature and cannot be meaningfully combined into a single unified 

concept of chromatic aberration. 

These general equations hold and indeed simplify for homocentric systems 

with stigmatic elements in particular. In such systems the transverse chromatic 

aberration yδ becomes a scalar quantity yδ  and sketched in a single plane, that of 

the page. y  is one component of yδ  with the other component being zero and 

perpendicular to the page. The longitudinal chromatic aberration Zδ  also 

becomes a scalar quantity represented as a scalar multiple of the identity matrix 

such that zδδ IZ  , where I is the 22  identity matrix, and the image is a point. 

The image too is represented as simply in the plane of the page, as shown in 

Figure 6.1.1. 

Equations 6.1.1 and 8 define longitudinal chromatic aberration and 

Equations 6.1.2 and 4 define transverse chromatic aberration in Gaussian and 

linear systems respectively. We now turn our attention to quantifying longitudinal 

and transverse chromatic aberration in Gaussian systems.   

 

6.2 Quantifying chromatic aberration in Gaussian systems 

In order to calculate the longitudinal and transverse chromatic aberration 

we need to consider the optical system which is represented by the system’s ray 

transference, where the transference is a function of the frequency of light (Evans 

and Harris, 2011). This 22  transference was defined for a Gaussian system in 

Equation 3.2.38. 
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6.2.1 Vergence across a Gaussian system derived from the transference 

The reduced vergence at an entrance plane 0T
 
of system S is 0L , given by 

Equation 3.8.1, for an object O at a longitudinal distance Oz  from 0T . Following 

from this, the reduced vergence at the exit plane T of S for O is given by Equation 

3.8.6 for light emerging from a linear system and which reduces to 

   1

00


 BLACDLL         (6.2.1) 

through a Gaussian system. Substituting Equation 3.8.1 into Equation 6.2.1 we 

find 
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CDL .       (6.2.3) 

From Equations 6.2.2 and 3 we note that there are two special cases to consider. 

Firstly where Oz  Equation 6.2.2 simplifies to 

1 CAL          (6.2.4) 

and where 0O z  Equation 6.2.3 simplifies to 

1 DBL .         (6.2.5) 

Equation 6.2.4 is the same as Equation 3.4.11 and represents the back-vertex 

power of the system. In order to calculate the red and blue vergences rL  and bL  at 

T, one can simply add the appropriate subscript to all the parameters of any of 

Equations 6.2.1 to 5, with the exception of Oz . Because the transference is a 

function of the frequency of light, a transference will need to be calculated for 

each of red and blue, rS and bS , using the formulae discussed in Section 5.5.  

 

6.2.2 Transference of a compound system: object at finite distance 

We now look at the system more carefully to obtain the transference of not 

just system S, but of the compound system from the object plane to the image 

plane. From Figure 6.1.1 we see that the system upstream of system S is OS  and is 
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the homogenous gap of finite length Oz . The minus sign is needed because O is 

upstream of S. 

The transference of a homogenous gap is defined by Equation 3.2.36 

where   is the reduced distance defined in Equation 3.2.8. In the same way we 

consider the system IS , downstream of system S, of length z, from the exit plane 

T of system S, up to the plane of an image line IT , corresponding to object O, of 

an image point.  

To obtain the transference of the compound system CS  we start with 

OIC SSSS           (6.2.6) 

then substitute for the individual transferences, 
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Hence 
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From Equation 3.2.40 and the top row of Equation 6.2.8, we see that a ray from 

object O at transverse position Oy  on the entrance plane OT  arrives at the 

transverse image plane IT  with transverse position 
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n
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 .    (6.2.9) 

From Section 3.3.2, we recognise this as a conjugate system and therefore 

we set 0
0

O 









n

z

n

z
CA

n

z
DB , effectively nullifying any effect of Oa .  

Hence Equation 6.2.9 simplifies to 

Oy
n

z
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 .                  (6.2.10) 
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which gives us the transverse position of a point y at the image plane 
IT . Equation 

6.2.10 can be written for red and blue image points which would then give by  and 

ry  corresponding to an object point at a finite distance .  

 

6.2.3 Transference of a compound system: distant object 

We now define the transference of a compound system where the object 

point is at an infinite distance. Because Oz  we rather define our system as 

starting at 0T  and make use of the incident inclination 0a  of the rays at entrance 

plane 0T .  

We therefore define our system as the compound system from 0T  to IT , 

consisting of S and IS . The transference of CS  is  

SSS IC                     (6.2.11) 

and, hence, 
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Substituting from the top row of Equation 6.2.13 into Equation 3.2.40 we find that 

the ray will arrive in IT  at transverse position  

O0O an
n

z
DBy

n

z
CAy 

















                 (6.2.14) 

and because the system is exit-plane focal, we have 0
n

z
CA   which nullifies 

any effect of Oy  and therefore Equation 6.2.14 simplifies to 

O0an
n

z
DBy 








 .                  (6.2.15) 

y is the transverse position on the image plane IT  corresponding to a point image 

for a system with an object at an infinite distance. Equation 6.2.15 can be written 
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for red and blue image points which would then give by  and ry  for a distant 

object point. 

 

6.2.4 Transverse chromatic aberration in a Gaussian system 

The transverse chromatic aberration was defined in Equation 6.1.2 as 

rbδ yyy   for Gaussian systems. Substituting from Equation 6.2.10 we obtain 
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similarly, for an object point at a finite distance and substituting from Equation 

6.2.15 into Equation 6.1.2 we obtain 

















 0Oδδ n

n

z
DBay                  (6.2.17) 

for systems when the object point is distant ( Oz ). 

 

6.3 Calculation routines for longitudinal and transverse chromatic 

aberration 

1. Calculate rS  and bS  the transferences of system S for red and blue light. 

2. Calculate the reduced vergence L for each of red and blue light.  

i. For a finite object point O with longitudinal position Oz  use 

Equation 6.2.3.  

ii. For a distant object where Oz , use Equation 6.2.4. 

3. Calculate the longitudinal position z of the image point for each frequency 

using Equation 6.1.6. 

6.3.1 Calculation routine for longitudinal chromatic aberration 

4. Calculate the longitudinal chromatic aberration zδ  from Equation 6.1.1. 
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6.3.2 Steps for calculating transverse chromatic aberration 

 For an object point at a finite distance of longitudinal position Oz  

upstream of the system: 

Following from steps 1, 2.i and 3. 

4. For each of red and blue calculate 
n

z
CA . 

5. Calculate 









n

z
CAδ . 

6. Calculate the transverse chromatic aberration yδ  using Equation 6.2.16.  

 For an object point at a distance where Oz  upstream of the system: 

Following from steps 1, 2.ii and 3. 

4. For each of red and blue calculate 
0n

n

z
DB 








  . 

5. Calculate 















 0δ n

n

z
DB . 

6. Calculate the transverse chromatic aberration using Equation 6.2.17. 

Numerical examples of longitudinal and transverse chromatic aberration for the 

reduced eye and Le Grand’s eye are given in Section 10.1. 

 

6.4 Comments on chromatic aberration 

In this chapter we considered the definition for chromatic aberration. 

Firstly, we looked at the familiar definition given in the literature as the first order 

chromatic aberrations within the limits of Gaussian optics as the distance between 

the projections of two focus points for two different frequencies in the directions 

parallel and perpendicular to the optical axis as longitudinal and transverse 

chromatic aberration respectively and illustrated in Figure 6.1.1. From this figure 

it appears logical to draw an arrow between image points rI  and bI , thereby 

representing both longitudinal and transverse chromatic aberration holistically as 

one vectorial chromatic aberration. This, however, would be incorrect. In order to 

understand why that is so we looked at the generalisation of this definition in 

heterocentric astigmatic systems and saw that the two aberrations have 

fundamentally different mathematical characters: longitudinal chromatic 
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aberration is represented by a 22  symmetric matrix Zδ  whereas transverse 

chromatic aberration is represented by a vector .δy  The fact that transverse and 

longitudinal chromatic aberration have different mathematical character shows 

that the two types of aberration are fundamentally different in nature and cannot 

be meaningfully combined into a single unified concept of chromatic aberration. 

For any system S the chromatic aberrations are not unique and usually 

there will exist an infinity of longitudinal and transverse chromatic aberrations. 

The chromatic aberrations of a system are unique only when the object position is 

specified. In other words, chromatic aberration is dependent on Oz  and Oy .  

We noted that chromatic aberration does not exist for the system in 

isolation. It is a measurement of a phenomenon of the images formed and for this 

reason is a result of the system and the location of the object point. From 

Equations 6.1.1 and 6 and 6.2.2, 3 and 4, longitudinal chromatic aberration is 

dependent on longitudinal position Oz  of the object point O and is independent of 

transverse position Oy . Transverse chromatic aberration is defined in Equation 

6.1.2 and from Equations 6.2.16 and 17 we see that it is a linear function of the 

object’s transverse position Oy  in the case of the objects at finite distances and its 

direction Oa  in the case of a distant object.  

Chromatic aberrations are first-order phenomena and occur in the paraxial 

region. For this reason, Harris and Evans (2012) express reservations over the use 

of the word aberration in the context of chromatic aberrations. 

 The definitions and formulae given in this section are not specific to the 

eye, but are applicable to systems in general. When applying the definitions to the 

visual system one needs to be clear how the definitions are being used. Firstly, for 

an eye or a model eye the entrance plane would be immediately in front of the tear 

film and the exit plane immediately in front of the retina. Secondly, the position of 

the longitudinal axis needs to be specified. Thirdly, the location of the object point 

needs to be given. Finally, the two frequencies of light, r  and b , need to be 

specified. 
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7 Quantifying chromatic properties  

Longitudinal and transverse chromatic aberration was defined in general 

for Gaussian optical systems in Chapter 6. In Chapter 2 we reviewed the 

physiological optics definitions and experimental approaches to measure 

chromatic effects in the eye and calculate them in model eyes. Most of these 

approaches define chromatic differences in Gaussian model eyes, usually the 

reduced eye or modifications thereof. Measurements are done experimentally and 

calculated within the framework of Gaussian systems. In order to differentiate 

between the definitions defined in classical and physiological optics, the term 

“chromatic aberration” will be reserved for the definition given in Chapter 6 and 

the definitions given in the physiological optics, in this chapter, will be termed 

“chromatic properties of the eye”.   

In this section we consider chromatic properties of the eye in two 

categories: in Section 7.1 we define those that are properties of the eye alone, the 

independent chromatic properties of the eye, and in Section 7.2 we define the 

chromatic properties of the eye that are dependent on the object (or image) and 

aperture positions. Because these definitions are specific to eyes or model eyes, 

we deem the system of the eye to be from the entrance plane immediately in front 

of the cornea to the exit plane immediately in front of the retina.  

For all the derivations that follow one needs to obtain two transferences, 

rS , the transference for the red frequency and bS , the transference for the blue 

frequency. In all the formulae below, the fundamental properties are taken from 

the two transferences with subscripts (or superscripts) r and b corresponding to the 

respective transference.  

 

7.1 Independent chromatic properties of the eye  

In Section 2.3.1 we saw that chromatic difference in power and chromatic 

difference in refractive compensation are usually categorised as longitudinal 

chromatic aberration which is in conflict with the definition for longitudinal 

chromatic aberration given in Chapter 6. In this section we will obtain formulae 

for the chromatic difference of power, refractive compensation and ametropia. 
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These chromatic properties of the eye are independent of the aperture, object and 

image, but depend on the frequencies chosen for red and blue. 

 

7.1.1 Chromatic difference in power 

Using Equation 3.4.3 we obtain the power F of the eye from the 

transference for a particular frequency of light. The chromatic difference in power 

is defined as  

rbδ FFF 
       

  (7.1.1) 

and substituting from Equation 3.4.3 we obtain the chromatic difference in power 

from the transferences (Evans and Harris, 2011) 

)(δ rb CCF  .        (7.1.2) 

 

7.1.2 Chromatic difference in refractive compensation 

We use Equation 3.4.6 to obtain the corneal-plane refractive compensation 

0F  for an eye from the transference. The chromatic difference in refractive 

compensation is defined as  

0r0b0δ FFF  .        (7.1.3) 

Hence, from Equation 3.4.6 the chromatic difference in corneal-plane refractive 

compensation is (Evans & Harris, 2011) 

r

1

rb

1

b0δ ABABF   .        (7.1.4) 

 

7.1.3 Chromatic difference in ametropia 

The term ametropia is often used to refer to refractive compensation, 

however the term is used here as defined in Section 3.3.1.We read the ametropia A 

directly from the transference for each chosen frequency of light. The chromatic 

difference in ametropia across a specified spectrum of visible light is obtained 

directly from the transferences and therefore (Evans & Harris, 2011) 

rbδ AAA  .         (7.1.5) 
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7.1.4 Chromatic properties for Emsley’s reduced eye 

In Section 4.1.3 we saw that the advantage of the reduced eye is its 

simplicity. It is a Gaussian system, has one refracting surface and there are only 

two refractive indices. We assume that Emsley’s eye is in air and that 10 n . 

What this implies is that we can derive very simple formulae for the chromatic 

difference of power, refractive compensation, and ametropia for the reduced eye. 

(Evans and Harris, 2011) 

The parameter of the reduced eye that varies with frequency is the 

refractive index. We define the chromatic difference of refractive index for the 

reduced eye as 

rbδ nnn  .         (7.1.6) 

 The refractive index for the reduced eye as a function of wavelength was given in 

Equation 4.4.2, from which we obtain (Evans & Harris, 2011) 


















cc
bn

rb

11
δ


       (7.1.7) 

where b and c are the constants given immediately after Equation 4.4.2. For the 

frequencies 430 THz and 750 THz, 542015.0δ n  for Emsley’s reduced eye. 

 

Chromatic difference in power for Emsley’s reduced eye 

From Equations 5.5.1 and 7.1.2 and the parameters for Emsley’s reduced 

eye given in Section 4.1.3 for the radius of curvature r of the refracting surface 

and the length z of the reduced eye we obtain (Evans & Harris, 2011) 

nF δ(δ D)180 ,        (7.1.8) 

the chromatic difference in power of Emsley’s reduced eye, where nδ  is 

calculated according to Equation 7.1.7. 

 

Chromatic difference in corneal-plane refractive compensation for Emsley’s 

reduced eye 

From Equations 5.5.1 and 7.1.4 and the parameters for the reduced eye 

given in Section 4.1.3 we obtain the chromatic difference in corneal-plane 

refractive compensation (Evans & Harris, 2011) 
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nF D)δ135(δ 0  .        (7.1.9) 

 

Chromatic difference in ametropia for Emsley’s reduced eye 

From Equations 5.5.1 and Equation 7.1.5 and the parameters for the 

reduced eye we obtain the chromatic difference in ametropia (Evans & Harris, 

2011) 













rb

11
4δ

nn
A .                  (7.1.10) 

The formulae, given in Equations 7.1.7 to 10, are specific to the reduced 

eye and make use of the parameters of Emsley’s reduced eye in the form of 

rational numbers. They are not general, but emphasise the simplicity of the 

reduced eye. Equations 7.1.7 to 10 enable us to very quickly obtain the chromatic 

difference in refractive index, power, refractive compensation or ametropia for 

any two chosen frequencies.  

 

Generalizing to linear optics 

Equations 7.1.1 to 5 readily generalize to linear systems. Equations 7.1.8 

to 10 pertain to the reduced eye which is a Gaussian system. 

 

7.2 Chromatic properties of the eye dependent on object and aperture 

positions  

In Section 2.3.2 we saw that the two chromatic properties usually defined 

as transverse chromatic aberration are chromatic difference in position and 

chromatic difference in magnification. They are measured in object space and 

calculated in both image and object space for model eyes. Our purpose in this 

section is to derive formulae from the transference for the chromatic properties 

that are dependent on object and aperture positions for Gaussian eyes. 

When we derive formulae for chromatic properties dependent on object 

and aperture positions we are interested in what is happening at the retina, that is, 

in image space. If we take into account that the light rays of different frequencies 

focus at different longitudinal positions, systems where the object and image are 

in conjugation, such as those discussed in Sections 3.3.2 and 3.5.1, are seldom 
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useful. Instead, we trace the chief ray from an object point projected onto the 

retina to locate the image position and magnification at the retinal plane and 

ignore the amount of blur at the retina. Chromatic difference in position is a 

commonly used term in the literature and is defined, in Section 2.3.2, as the 

difference in angular spread or difference in inclination of the red and blue 

reference rays in either image or object space. We will look at the chromatic 

difference in transverse position in both image 
Rδy  and object space Oδy  and the 

chromatic difference in inclination, again in both image 
Rδa and object space .δ Oa  

Unlike the independent chromatic properties of the eye, the chromatic 

properties discussed in this section are functions of the state of the rays at the 

retina. Changes in the position of object point and changes to the position of the 

limiting aperture will influence the state of the rays at the retina.  

A ray incident onto the eye undergoes chromatic dispersion and reaches 

the retina resembling a little rainbow dispersed across the retina (Thibos et al, 

1991). We concentrate on the two frequencies chosen for the particular study, 

usually representing the end points of the visual spectrum (as chosen for any 

specific study) and calculate the difference in position between them. Figure 7.2.1 

shows the chromatic difference in position 
Rδy  of the blue and red rays at the 

retina.  

We retain the generality of the formulae by including the refractive index 

of the medium upstream of the eye as dependent on frequency. This is applicable, 

for example, for an eye submerged in water. Furthermore, equations are written 

such that they can, as far as possible, generalise to linear optics for centred 

systems with astigmatic elements. Where equations do not readily generalise, the 

general linear equation is provided. 

 

7.2.1 Chromatic difference in coefficient matrices 

In Section 5.2.2 we defined the distant coefficient matrix EV . The matrix 

coefficients EV  and OEV  for eyes and either a distant or finite distance object 

point respectively are dependent on frequency and therefore there will be a blue 
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and a red matrix coefficient for each object distance. We now define the 

chromatic difference in distance coefficient matrices 











EE

EEr

E

b

EE
δδ

δδ
δ

ZY

XW
VVV        (7.2.1) 

where 
EδW  is the chromatic difference in distance image blur coefficient, 

EδX  is 

the chromatic difference in distance image size coefficient, 
EδY  is the chromatic 

difference in distance directional spread coefficient and 
EδZ  is the chromatic 

difference in distance directional coefficient.  

 Similarly, we can define the chromatic difference in near coefficient 

matrices OEδV  and each of the respective simplifications for when a pinhole is in 

front of the eye, namely P

EδV  and 
P

OEδV . Also, we can define the chromatic 

difference in object space coefficient matrix with respect to position at the retina 

OyδV  and with respect to the inclination at the retina OaδV  and the simplifications 

when a pinhole is used, P

OyδV  and 
P

OaδV . 

 

7.2.2 Chromatic difference in image positions at the retina 

In Figure 7.2.1 we see a pencil of rays of inclination 
Ka  incident onto the eye at 

the entrance plane 
KT . We choose to follow only one ray from this pencil. For 

convenience, we choose the chief ray, however any ray could be chosen, for 

example a marginal ray. Because of dispersion we will have a chief ray for each 

frequency of which we choose to follow the red and blue chief rays. Because 

refraction and dispersion start at the entrance plane, but the limiting aperture PT  is 

downstream of the entrance plane, there will be a different incident ray for each 

frequency. In other words r

K

b

K yy  . Similarly, the inclination of the red and blue 

chief rays will be different through the centre of the pupil, that is, r

P

b

P aa  . The 

red and blue chief rays are shown in Figure 7.2.1 to illustrate this. 

We start with Equations 5.2.7 to 9 for an eye and distant object point and 

Equations 5.2.25 to 27 for an eye and an object point at a finite distance in order 

to obtain the position and inclination of the ray at the retina.  

We define the chromatic difference in position at the retina as 
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r

R

b

RRδ yyy  .        (7.2.2) 

Substituting from Equations 5.2.5 and 8 into this equation we obtain 

K

r

EK

b

EP

r

EP

b

ERδ aXaXyWyWy   

which we rewrite as 

    KEPER δδδ aXyWy         (7.2.3) 

where 
EδW  is the chromatic difference in the distance image blur coefficients and 

EδX  is the chromatic difference in the distance image size coefficients as defined 

in Equation 7.2.1. The incident pencil of rays has inclination 
Ka  and both the red 

and blue rays go through the same position in the pupil, that is b

P

r

P yy  . Similarly, 

from Equation 5.2.28, for eyes with an object point at a finite distance we obtain  

    OOEPOER δδδ yXyWy  .       (7.2.4) 

If the model eye has its pupil centred on the optical axis, then tracing the 

chief rays such that 0P y , Equations 7.2.3 and 4 simplify to  

  KER δδ aXy          (7.2.5) 

 

 

Figure 7.2.1 Chromatic difference in image position is shown as Rδy . Rays, all 

with the same incident inclination Ka , enter the eye and traverse a selected 

position through the pupil, Py  and are traced to the retina. The chief ray is 

illustrated and represents the centre of the blur circle at the retina. At the retina the 

two rays representing the blue and red light are shown. Chromatic difference in 

image position is the difference in position on the retina of these two rays, Rδy . 

The red and blue chief rays will follow different paths as illustrated. All 

measurements are taken at the respective transverse plane. Inclinations and 

positions are exaggerated for clarity.  

for a distant object point and  
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  OOER δδ yXy          (7.2.6) 

for an object point at a finite distance. Equations 7.2.5 and 6 are both linear 

equations. From this we can see that the chromatic difference in position for an 

eye has a linear dependence on incident inclination for distant objects and on 

object position for finite objects.  

We consider distant objects first. In Equation 7.2.5 
EδX  is a constant for 

that eye and represents a magnification by the eye. The chromatic difference in 

position is then linearly dependent on the inclination of the incident light. In 

Section 5.2.2 we defined the system (subscript E) for the distant object scenario as 

consisting of just the eye while in Section 5.2.3 we define the system for the near 

object scenario (subscript OE) to include the eye and working distance. Similarly, 

at near OEδX  represents a constant, provided Oz  remains unchanged. While the 

actual value of OEδX  will be different to 
EδX  this eye too shows us that chromatic 

difference in position is linearly dependent on the position of the object. Because 

Oz  is incorporated into the coefficient matrix OEδV , OEδX  will vary with any 

change in Oz . This will be shown for a selection of numerical examples in 

Chapter 10.  

Let us look at Equations 7.2.5 and 6 in terms of the entries of the 

transferences. Substituting from Equation 5.2.8 and 5.2.26 into Equations 7.2.5 

and 6 respectively, we obtain 

K

A

0B
R δδ a

A

nB
y 








         (7.2.7) 

for a distance object and  

O

AOA

B
R δδ y

BA

B
y 















       (7.2.8) 

for an object at a finite distance before ES . These give us the chromatic difference 

in transverse position at the retina Rδy , firstly with a distant object and secondly 

with an object at a finite distance, in terms of the fundamental properties of the 

Gaussian model eye. 
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An underlying implication 

Chromatic dispersion starts as the light enters the first refracting surface, 

that is, the cornea. However, we then follow only the chief ray, defined by 
Py . 

This implies that the blue and red rays that traverse the pupil centre are not 

originating from the same ray incident on the cornea, but rather two incident rays, 

both with the same inclination, incident at different positions onto the cornea, as 

illustrated in Figure 7.2.1. This difference in position is probably rather small, but 

nonetheless worth noting. Starting with Equations 3.2.40 and 3.5.7 we can derive 

the formulae for 
Kδy , the chromatic difference in position of the two chief rays at 

the entrance plane to be 

P

A

KE

A

B

E

0
K

1
δδδ y

A
aB

A

B

A

n
y 

























































       (7.2.9)  

for a distant object and 

P

OA

O

O

OA

A
K δδδ y

B
y

B

B
y 
























                (7.2.10) 

for an object point at a finite distance from the eye.  

 

Use of pinhole 

We return to Equations 7.2.3 and 4 and consider the clinical scenario 

where a pinhole is held immediately in front of the eye. The limiting aperture is 

no longer centred on the optical axis and the chromatic difference in position 

increases in magnitude with increasing decentration of the pinhole and the object. 

The entries of 
EV  and OEV , given by Equations 5.2.8 and 26, simplify for the 

pinhole in front of the eye and therefore Equations 7.2.3 and 4 become 

    K

P

EP

P

ER δδδ aXyWy                   (7.2.11) 

and 

    O

P

OEP

P

OER δδδ yXyWy                   (7.2.12) 

where the coefficients for P

EV  and 
P

OEV  are given in Equations 5.2.37 and 5.2.34 

respectively. In terms of the entries of the transferences Equations 7.2.11 and 12 

simplify to become  
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     K0EPER δδδ anByAy                   (7.2.13) 

and 

      O

1

OEP

1

OEER δδδ yByBAy    .               (7.2.14) 

Equations 7.2.11 and 12 are the specialised versions of Equations 7.2.3 

and 4 which indicate substitution of the coefficients from P

EV  and 
P

OEV  

respectively for the special situation of a pinhole placed in front of the eye. The 

conclusions that we can draw from the four equations are similar: the chromatic 

difference in position will increase in magnitude firstly for distant objects with the 

increase in incident inclination, secondly, for object points at a finite distance with 

increase in transverse displacement of the object point from the axis and finally 

with increased transverse displacement of the pinhole or position of the ray 

through the pupil from the optical axis. These conclusions are consistent with the 

findings in the literature, discussed in Chapter 2. 

 

7.2.3 Chromatic difference in inclination at the retina 

In Section 7.2.2 we defined, quite literally, the chromatic difference in 

image position at the retina. However, in Chapter 2 it was shown that a number of 

studies treat the chromatic difference in image position as the difference in 

inclination between the red and blue dispersed rays from a single object point. 

Here we define chromatic difference in inclination at the retina as the difference in 

emergent inclination of the two coloured reference rays, dispersed by the eye, 

from a particular object point, that is to say Rδa . This definition is general and 

defined with centred astigmatic eyes in mind. In an astigmatic eye the nodal 

structure is not a point and in a multi-surface eye the nodal structure differs in 

position with frequency and is unlikely to make a pivotal point. Similarly, the 

entrance pupil is merely an image of the pupil viewed through the cornea. The 

first refracting surface is a fixed physical structure (with an infinity of optical 

axes) but is not suitable because the rays do not necessarily coincide at this point. 

The definition, therefore, measures the difference in inclination of the emergent 

chromatic rays without concern for where or even if these two rays intersect.  

We define the chromatic difference of inclination at the retina as 
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r

R

b

RRδ aaa                    (7.2.15) 

where 
b

Ra  and r

Ra  are the (unreduced) inclinations of the blue and red chief rays at 

the retina. From Equations 5.2.7 and 29 we obtain the difference in emergent 

reduced inclination from an eye 

    KEPER δδδ aZyYa                    (7.2.16) 

for a distant object point and  

    OOEPOER δδδ yZyYa                   (7.2.17) 

for a finite-distance object point. For model eyes with a centred pupil this 

simplifies to 

  KER δδ aZa                    (7.2.18) 

and 

  OOER δδ yZa                    (7.2.19) 

for distant and finite object points respectively. Equation 7.2.18, solved for 
EδZ , 

resembles Equation 2.3.8 which Thibos, Bradley and Zhang (1991) and Zhang, 

Thibos and Bradley (1991) define as the chromatic difference in magnification. 

  The Gaussian eye and a distant object point are shown in Figure 7.2.2. 

This is an extension of Figure 7.2.1 and the paths of the rays at emergence at the 

retinal plane are shown. The point where they intersect is unimportant and may, 

for example, be upstream from the lens which implies that the diagram does not 

show the actual ray path but merely a projection of the rays inside the eye. In 

Gaussian eyes, we can envision an intersection, however this may not coincide 

with the optical axis and is also not necessarily going to intersect with the pupil 

centre, a refracting surface or any of the cardinal points. This is shown in Figure 

7.2.2. It will depend on the complexity of the schematic eye being modelled. 

For a Gaussian eye, the red and blue non-parallel rays intersect at some 

position in the plane of the eye to create a chromatic difference in inclination. 

However, it is foreseeable that in a three-dimensional linear system with 

heterocentric astigmatic elements that the red and blue rays are skew rays that 

may not intersect. It is possible that they may swirl past each other and never 

coincide. Investigating this is, however, outside the scope of this dissertation. 
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Use of a pinhole 

Let us consider the situation where there is a pinhole held immediately 

before the corneal plane. Equations 7.2.16 and 17 still hold, however we substitute 

the relevant coefficients from P

EδV  and 
P

OEδV  instead of 
EδV  and OEδV . Two 

simplifications we will consider are when the light originates firstly from a distant 

object point and parallel to the optical axis that is 0K a  and secondly from an 

axial object point, where 0O y . Equations 7.2.16 and 17 simplify to 

  P

P

ER δδ yYa                    (7.2.20) 

and  

  P

P

OER δδ yYa                    (7.2.21) 

respectively. P

EY  and 
P

OEY  are defined by Equations 5.2.37 and 34. In terms of the 

entries of the transference, Equations 7.2.20 and 21 simplify to 

   P

1

ER δδ ynCa   

and 

    P

1

OEE

1

R δδ yDCna    , 

 

Figure 7.2.2 A Gaussian eye and a pencil of rays from a distant object showing 

chromatic difference in inclination between the two dispersed rays. The pivotal 

point is the where the projection of the two rays intersect to create an angle. It 

may or may not coincide with any reference structure, including the longitudinal 

axis. Inclinations in the diagram are exaggerated for clarity. 

respectively. These are both linear equations showing that, when a pinhole is held 

immediately in front of the eye, the chromatic difference in inclination at the 

retina is dependent on the position of the pinhole from the optical axis. 
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Now from Equations 7.2.16 and 17 we can see that chromatic properties 

increase with increased transverse displacement of the object point from the 

optical axis and also with increased transverse displacement of the pinhole from 

the optical axis. This is consistent with conclusions discussed in Chapter 2. 

 

In summary 

Equations 7.2.3 and 16 can be summarised as 

REE δδ rvV                     (7.2.22) 

where 
EδV  is defined by Equation 7.2.1, 

Ev  by Equation 5.2.9 and 
Rδr  as 
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R

R
δ

δ
δ

a

y
r                    (7.2.23) 

giving us 
Rδy  the chromatic difference in transverse image position at the retina 

and 
Rδa  chromatic difference in inclination at the retina for a distant object. 

 Similarly, we can summarise Equations 7.2.4 and 17 as 

ROEOE δδ rvV                    (7.2.24) 

where OEδV  is defined in Section 7.2.1, OEv  by Equation 5.2.27 and 
Rδr  by 

Equation 7.2.23. 

 In the same way, we can summarise 
Rδy  and 

Rδa  using a pinhole in front 

of the eye as  

RE

P

E δδ rvV                     (7.2.25) 

for a distant object and for an object point at a finite distance from the eye as 

ROE

P

OE δδ rvV  .                  (7.2.26) 

 

Generalizing to linear optics 

 The chromatic difference in transverse image position at the retina 

(Equations 7.2.2 to 6), the chromatic difference in inclination at the retina 

(Equations 7.2.15 to 19) and their summary (Equations 7.2.22 to 24)  readily 

generalize to linear optics, provided one substitutes from Equations 5.2.38 and 39 

when obtaining the chromatic difference in coefficient matrices (Equation 7.2.1). 

The equations for the scenario when a pinhole is placed immediately in front of 

the eye for chromatic difference in transverse image position at the retina 
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(Equations 7.2.11 to 14), the chromatic difference in inclination at the retina 

(Equations 7.2.20 to 21) and the summary (Equations 7.2.25 and 26) also readily 

generalize to linear optics. The equations for the underlying implication of 

chromatic difference in corneal position when the rays originate from the same 

object point can be rewritten to be general as 

     PE

1

EKE0E

1

EK δδδ yWAaBXAy
  n  

for a distant object and 

          PEO

1

EE

1

OEOOEE

1

O

1

EE

1

OEOK δδδ yWBXAyBXBXAy 
  nnn

for an object at a finite distance where 
EX  and 

EW  are given in Equation 5.2.38. 

 

7.3 Chromatic properties of the eye dependent on object size or angular 

spread 

The terminology used in the literature is chromatic difference in 

magnification. Let us start by trying to understand what this term means. 

Magnification was defined in Section 3.5.1 as a ratio of either the image to object 

size or the ratio of image’s reduced inclination to the object’s reduced inclination. 

In Sections 3.5.3 and 5.2 the magnification is defined for specific circumstances 

in terms of coefficients, which are also ratios. What meaning, then, can we give to 

a difference between ratios? 

In Chapter 2 we saw that there are a number of different approaches to 

defining chromatic difference in magnification. Simonet and Campbell (1990) 

define chromatic difference in magnification as the difference in image sizes at 

the retina (Equation 2.3.7), but the measurement is given in seconds of arc. 

Similarly, we firstly define the chromatic difference in image size at the retina, 

and, secondly, we obtain the chromatic difference in angular spread across the 

retina.  

Thibos, Bradley and Zhang (1991) and Zhang, Thibos and Bradley (1991) 

define chromatic difference in magnification as the ratio of the difference in angle 

between the red and blue chief rays to the angle of eccentricity subtended by the 

object point (Equation 2.3.8). However, is this a difference in magnification or the 

magnification of differences? They give their resultant chromatic difference in 

magnification as a percentage. Similarly, we take this definition of magnification 
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and compare both the magnification of image sizes and the magnification of 

angular spread between the blue and red images. We will see that the issue of blur 

is not ignored, but rather is nullified by the definition. 

 

7.3.1 Chromatic difference in image size 

In order to obtain the chromatic difference in image size  Rδ y  we first 

need to calculate the size of each of the blue and red images from Equation 5.2.5 

and then calculate the difference in size between them. For a distant object, the 

size of the blue image will be 

K1

b

EK2

b

EP1

b

EP2

b

E

b

R aXaXyWyWy  .     (7.3.1) 

The position in the pupil or pinhole is the same for both rays, that is 
P2P1 yy    

and therefore this simplifies to 

K

b

E

b

R aXy           (7.3.2) 

and similarly for the red image. The angle subtended by the distant object is  

K1K2K aaa  .        (7.3.3) 

The chromatic difference in image size is 

    KEK

r

EK

b

E

r

R

b

RR ΔδΔδ aXaXaXyyy      (7.3.4) 

where b

Ry is the size of the blue image at the retina and likewise r

Ry  is the size 

of the red image at the retina, as indicated in Figure 7.3.1. We use the symbolisms 

  to represent a size (difference in position) or angle subtended (difference in 

inclination) and δ  to represent a chromatic difference in, for example, position, 

size, inclination or angular spread.    

The size of the blue image at the retina from an object at a finite distance 

is 

O1

b

OE2O

b

OEP1

b

OE2P

b

OE

b

R yXyXyWyWy      (7.3.5) 

but  

2P1P yy           (7.3.6) 

therefore 

O

b

OE

b

R yXy  .        (7.3.7) 
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and similarly for the size of the red image at the retina. 
b

OEX  is the near image size 

coefficient and represents a magnification of the object to the blue image. It is 

similar to Equation 3.5.1 which represents a transverse magnification. For near the 

chromatic difference in image size will be 

    OOEO

r

OEO

b

OE

r

R

b

RR δδ yXyXyXyyy      (7.3.8) 

where Oy  is the length of the object at the object plane OT .  

The result indicates that 
EδX , the chromatic difference in distance image 

size coefficients and OEδX , the chromatic difference in near image size 

coefficients, represent constants and therefore the actual size of the image will 

depend on the size of the object (for distant objects this is represented by the 

change in incident inclination of the rays) and not on any transverse displacement 

of the pupil (or pinhole). We can conclude that 
EδX  and OEδX  represent a 

chromatic difference in image size magnification by the system of either a distant 

 

 

Figure 7.3.1 Chromatic difference in image size  Rδ y  in a Gaussian system 

OES  with the object at a finite distance from the eye ES . The size of the object is 

shown at the entrance plane as Oy . Rays from the two endpoints of the object 

enter the eye and are illustrated traversing the pupil, but don’t necessarily have to 

traverse the pupil centre. The two rays are dispersed through the eye and result in 

a blue and a red image at the retina. One or both images may be blurred, however 

it is their size magnification that we are interested in. The chromatic difference in 

magnification is shown as the difference in size of the two coloured images. The 

figure is drawn for the simpler situation of an axial based object. All objects and 

images are measured at the respective transverse planes, and are drawn separately 

for clarity. 
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or near object. Figure 7.3.1 shows chromatic difference in image size for near for 

a Gaussian system and axial object, however, it is not necessary for an object to 

be axial, Equations 7.3.4 and 8 apply to non-axial objects of size Oy .    

 

7.3.2 Chromatic difference in angular spread at the retina 

The chromatic difference in angular spread at the retina  Rδ a  is 

obtained in a similar way to the chromatic difference in image size. From 

Equation 5.2.6 we can define the angular spread of the blue image on the retina as 

K1

b

EK2

b

EP1

b

EP2

b

E

b

R aZaZyYyYa  .     (7.3.9) 

Equation 7.3.6 applies and so Equation 7.3.9 simplifies to 

K

b

E

b

R aZa                     (7.3.10) 

and similarly for the angular spread of the red image across the retina. b

EZ  is the 

distance directional coefficient and represents a magnification of the angular 

spread of the incident rays to the blue emergent rays. For an axial object, Equation 

7.3.10 is similar to Equation 3.5.3, the angular magnification of image to object. 

To calculate the chromatic difference in angular spread between the red and blue 

images across the retina from an object with angular spread of 
KΔa ,  we obtain 

    KEK

r

EK

b

E

r

R

b

RR ΔδΔδ aZaZaZaaa  .             (7.3.11) 

 Similarly, the chromatic difference in angular spread for an object with 

size OΔy  at a finite distance is 

    OOER Δδδ yZa  .                 (7.3.12) 

EδZ  is the chromatic difference in distance directional coefficient and OEδZ  is the 

chromatic difference in near directional coefficient, both being constants for any 

particular chosen system. Equations 7.3.11 and 12 are linear equations with EδZ  

and OEδZ  representing the slope. EδZ  magnifies the incident angular spread from 

the object and, likewise, OEδZ  magnifies the object size to obtain the  Rδ a . 

 The angular spread Ra  is the difference in inclination of the two rays that 

subtend the end-points of an image on the retina, that is R1R2R aaa  . The 

pivotal point where these two rays ( R1a  and R2a ) meet is not necessarily 
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represented by a cardinal point, the longitudinal axis or a physical structure. The 

red and blue images have different sizes and will subtend different 
Ra . The 

pivotal points for the red and blue images will not necessarily coincide. This is a 

different definition to that defined in the literature by angle t in Figures 2.3.3 and 

4, however, it does represent the actual rays and as such has implications for the 

Stiles-Crawford effect. 

 

Chromatic difference in image size and angular spread with a pinhole 

We can obtain the chromatic difference in image size and angular spread at the 

retina when a pinhole is placed immediately in front of the eye using Equations 

7.3.4, 8, 11 and 12, and replacing the coefficients with the respective coefficients 

from P

EV  (Equation 5.2.37) and 
P

OEV  (Equation 5.2.34). The effect of placing a 

pinhole immediately in front of the eye has the effect of moving the limiting 

aperture longitudinally. However, the effect of any transverse displacement of the 

pinhole is nullified, as shown by Equation 7.3.6. 

 

In summary 

 Equations 7.3.4 and 11 can be summarized as  

REE δδ rvV                    (7.3.13) 

where EδV  is the chromatic difference in coefficient matrix given in Equation 

7.2.1,  











K

P

E
Δ

Δ

a

y
v                    (7.3.14) 

where 0Δ P y  and KΔa  is the angular spread indicating the distant object size, 

and 











R

R

R
Δ

Δ
δδ

a

y
r                   (7.3.15) 

is the chromatic difference in image sizes RδΔy  or chromatic difference in 

angular spread RδΔa  at the retina. 

 Similarly, we summarize Equations 7.3.8 and 12 as 

ROEOE δδ rvV                    (7.3.16) 
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where 











O

P

OE
Δ

Δ

y

y
v ,                  (7.3.17) 

0Δ P y  and OΔy  is the object size. When placing a pinhole immediately in front 

of the eye, we substitute P

EδV  for 
EδV  and 

P

OEδV  for OEδV  in Equations 7.3.13 

and 16 respectively.  

 

Generalizing to linear optics 

The chromatic difference in image size (Equations 7.3.1 to 8) and the 

chromatic difference in angular spread (Equations 7.3.9 to 12) as well as the 

respective summary (Equations 7.3.13 to 17) readily generalize to linear optics, 

provided one substitutes from Equations 5.2.38 and 39 when obtaining the 

chromatic difference in coefficient matrices (Equation 7.2.1).  

 

7.3.3 Retinal chromatic image size magnification 

In this section we adopt the method described by Thibos et al (1991) and 

Zhang et al (1991) of defining chromatic difference in magnification (Equation 

2.3.8) as a ratio. We first investigate the retinal chromatic image size 

magnification and then the retinal chromatic angular spread magnification. The 

retinal chromatic image size magnification is defined as the magnification of the 

size of the red image to obtain the size of the blue image at the retina as 

b

R

r

RyR yyM                    (7.3.18) 

where b

Ry  and r

Ry  are the blue and red retinal image sizes defined by Equation 

7.3.2. Substituting from Equation 7.3.2 into 7.3.18 we obtain 

K

b

EK

r

EyR aXaXM     

which simplifies to 

b

E

r

EyR XXM                     (7.3.19) 

for a distant object. Substituting from Equation 7.3.7 into 7.3.18 we obtain 

O

b

OEO

r

OEyR yXyXM    

which simplifies to 
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b

OE

r

OEyR XXM                    (7.3.20) 

for an object at a finite distance. Taking the magnification a step further, we can 

substitute the elements of the transferences, as defined in Equations 5.2.8 and 26 

into 7.3.19 and 20 to obtain 

b

0

r

A

b

B

r

0

b

A

r

ByR nABnABM                   (7.3.21) 

and 

   r

A

r

O

r

A

b

B

b

A

b

O

b

A

r

ByR BABBABM                  (7.3.22) 

respectively. From Equations 7.3.19 to 22 we can conclude that the retinal 

chromatic size magnification will be a fixed ratio for the system and does not 

depend on object size or transverse position. 

 

7.3.4 Retinal chromatic angular spread magnification 

The second approach to retinal chromatic magnifications makes use of the 

angular spread, obtaining the magnification of the red to blue angular spreads of 

the emergent chief rays reaching the retina from an object. We therefore define 

the retinal chromatic angular spread magnification as 

b

R

r

RR aaM a                    (7.3.23) 

where b

Ra  and r

Ra  are the angular spread across the retina for the blue and red 

images. We define the blue angular spread at the retina, b

Ra  as  

K1

b

EK2

b

EP1

b

EP2

b

E

b

R aZaZyYyYa                 (7.3.24) 

however, the two rays traverse the same position through the pupil and therefore 

K

b

E

b

R aZa                     (7.3.25) 

and similarly for the angular spread of the red image at the retina. The angular 

spread of a blue image at the retina from an object at a finite distance is 

O

b

OE

b

R yZa  .                  (7.3.26) 

Substituting from Equations 7.3.25 and 26 in turn into Equation 7.3.23 we obtain 

K

b

EK

r

ER aZaZM a     

which simplifies to 

b

E

r

ER ZZM a                     (7.3.27) 
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for a distant object and 

O

b

OEO

r

OER yZyZM a    

which in turn simplifies to 

b

OE

r

OER ZZM a                    (7.3.28) 

for an object at a finite distance, respectively. We now substitute from Equations 

5.2.8 and 26 into the above equations respectively to obtain 

rb

0

r

A

b

B

br

0

b

A

r

BR nnADnnADM a                   (7.3.29) 

for distance objects and 

    rr

A

r

O

r

A

b

B

bb

A

b

O

b

A

r

BR nBADnBADM a                  (7.3.30) 

for objects at a finite distance. Again we can conclude that the retinal chromatic 

angular spread magnification is not dependent on the object’s size or transverse 

position. 

Comparing Equation 7.3.21 to 7.3.29 and 7.3.22 to 7.3.30 we see that the 

only variable that is different in the two pairs of equations is the ratio 
r

B

b

B

B

B
 for 

retinal chromatic size magnification versus 
br

B

rb

B

nD

nD
 for the retinal chromatic 

angular spread magnification. We will do numerical examples in Chapter 10 to 

see how these ratios affect our ultimate result. 

 

Retinal chromatic magnifications with a pinhole 

We have seen that, when comparing image sizes of the red and blue 

images on the retina, the effect of transverse displacement of a pinhole 
Py  in front 

of the eye is nullified, however, the effect of displacing the longitudinal position 

of the limiting aperture will have an effect on the coefficients and hence on the 

magnifications. For each of Equations 7.3.19, 20, 27 and 28, we replace the 

respective coefficient with those from P

EV  (Equation 5.2.37) and 
P

OEV  (Equation 

5.2.34), the distance and near coefficient matrices for a Gaussian eye with a 

pinhole immediately in front of it. 
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Generalizing to linear optics 

 The Equations in Section 7.3 have been written and derived such that they 

readily generalize to linear optics. The proof is beyond the scope of this 

dissertation. 

  

7.4 Chromatic properties of the eye dependent on image and aperture 

positions  

The derivations in Sections 7.2 and 3 apply in image space. However, 

experimental measurements and analyses are done in object space. In Section 

2.3.2 we learnt that experiments make use of a target at a finite distance, a Vernier 

scale to measure the induced chromatic effect and a pinhole or Maxwellian view 

which controls and varies the position of the ray entering the eye (Thibos et al, 

1990, 1992; Simonet and Campbell, 1990). The pinhole has the added benefit of 

eliminating any refractive compensation needed without the use of spectacle 

lenses which could add chromatic properties to the experiment (Thibos et al, 

1990).  

 

7.4.1 Chromatic difference in object position 

Consider an eye and two coloured object points at different positions in 

object space. The two objects appear to be lined up on the retina as shown in 

Figure 7.4.1 where r

R

b

R yy  . The superimposed points may or may not be at the 

fovea, and the emergent inclination need not be the same for the red and blue rays. 

Because such experiments are conducted in the clinical environment, we shall 

derive formulae for the near scenario only.  

From Figure 7.4.1 we can see that while there are two object points of 

different frequencies at positions 
b

Oy
 
and 

r

Oy , we have a common transverse 

position through the pupil Py  for the chosen ray path for each frequency. The two 

rays arrive at a common point on the retina Ry  where it should appear to the eye 

as being one object point; that is the two image points of differing frequencies are 

superimposed.     
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We wish to obtain the chromatic distance between the two object points, 

Oδy . From Equation 5.3.17 we obtain  

   
ROyPOyO δδδ yXyWy         (7.4.1) 

where  

r

O

b

OOδ yyy          (7.4.2) 

is the distance between the red and blue object points at the object plane. OyδW  is 

the chromatic difference in near object blur coefficient and OyδX  is the chromatic 

difference in near object size coefficient, both with respect to the position of the 

image at the retina. Equation 7.4.1 gives us the chromatic difference in position 

for two object points of different frequencies in object space. This is comparable 

to the clinical or experimental scenario described in Section 2.3.2. It is a simple 

matter to choose the position of the fovea as 
Ry , where applicable. For the 

scenario where there is no pinhole and the pupil is centred on the optical axis such 

that 0P y , we obtain the linear relationship 

 
ROyO δδ yXy  .        (7.4.3) 

 

Figure 7.4.1 Chromatic difference in object position. A Gaussian system OES  at 

near. The object consists of two separated point targets of different frequencies 

and at different transverse positions. The emergent rays coincide positionally at 

the retinal plane. The figure is general and the dividing plane may represent either 

a pupil or a pinhole. All measurements are taken at the respective transverse 

planes, but these are separated in the diagram for clarity. 
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For two chosen frequencies and a set working distance, OyδX  will be a constant 

representing a magnification.  Any increase in the magnitude of 
Ry  will result in 

an increase in the separation of the red and blue object points Oδy . When fixation 

is set at the fovea it is possible to obtain the position of the fovea, 

 OyOR δ/δ Xyy   (from Equation 7.4.3), for a centred pupil. 

 

Including the use of a pinhole 

On the other hand, the preferred experimental procedure is to place a 

pinhole in front of the eye, immediately in front of the entrance plane or corneal 

plane and keep the position of the image on the retina constant. Equation 7.4.1 

still applies, except that we can substitute the coefficients from the simpler 
P

OyδV  

such that  

    R

P

OyP

P

OyO δδδ yXyWy  .       (7.4.4) 

Substituting from Equation 5.3.19 and then from Equation 3.4.6 we obtain 

            RO

1

EPO0RO

1

EPOE

1

EO δ1δδ1δδ yByFyByABy      

          (7.4.5) 

where 0F  is the refractive compensation for the eye at the specified frequency.  

For a model eye the fovea coincides with the optical axis at 0R y  

simplifying Equations 7.4.4 and 5 even further. However, the fovea is usually not 

on the optical axis, but does represent a constant for Ry . This means that Equation 

7.4.4 is the equation for a straight line with   R

P

Oyδ yX  being a constant and 

 P

OyδW  giving the slope of the straight line. From Equation 7.4.5 we can see that 

the separation of the two object points is directly proportional to the displacement 

of the pinhole from the optical axis and the constant of proportionality is related to 

the chromatic difference in refractive compensation and working distance. 

 

7.4.2 Chromatic difference in inclination in object space 

We again turn our attention to Figure 7.4.1, to obtain the chromatic 

difference in inclination in object space of each of the red and blue chief rays that 

will ultimately both reach the retina at the same point. When the aperture plane is 
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that of the pinhole, then these two rays will meet and create a point of intersection 

at the centre of the pinhole. However, when the aperture plane is the eye’s pupil, 

then the rays will undergo refraction before reaching the pupil and, in Gaussian 

optics, the straight line projections of the two rays will meet at some other point, 

which may or may not be on the optical axis.  

Figure 2.3.3(b) shows the definition of chromatic difference in position as 

the angle t between the incident chief rays for the blue and red targets. With this 

in mind we will derive equations to solve for Oδa .    

In order to obtain the angle between the red and blue chief rays from a red 

and a blue object point, respectively, on the object plane which coincide at a 

single point on the retina we can obtain, from Equation 5.3.18, an equation for 

chromatic difference in inclination in object space 

   
ROyPOyO δδδ yZyYa  .       (7.4.6) 

For a model eye with a centred pupil and no pinhole, we can equate 

0P y  and Equation 7.4.6 simplifies to 

 
ROyO δδ yZa          (7.4.7) 

from which we can see the linear relationship that the angle between the two rays 

of differing frequencies increases with increasing transverse position on the retinal 

plane from the optical axis. 

 

Including the use of a pinhole 

In Section 2.3.2 we saw that the angular difference between the two 

incident rays which vary with displacement of a pinhole from the optical axis and 

create a single image at the retina is referred to by Thibos et al (1990) as induced 

transverse chromatic aberration. This is specifically achieved by the use of a 

pinhole immediately in front of the eye and held at varying transverse distances 

from the model eye’s optical axis, that is, where Py  is not necessarily zero. 

Equation 7.4.6 is general and still applies, with substitution of the coefficients 

from 
P

OyδV  for the pinhole situation. For simplicity, we again allow the retinal 

image to coincide with the eye’s longitudinal axis, that is at 0R y . This is 
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consistent with the assumption that in model eyes the fovea coincides with the 

optical axis. Equation 7.4.6 therefore simplifies to 

  P

P

OyO δδ yYa  .        (7.4.8) 

Substituting from Equations 5.3.19 and 3.4.6 we obtain 

       P0

1

0PE

1

E0O δδδ yFnyABna 
 .     (7.4.9) 

Unsurprising, this equation, like Equation 7.4.7, gives us a linear relationship 

between the angular spread from the red to the blue object points at incidence onto 

the pinhole, the chromatic difference in refractive compensation and the 

displacement of the pinhole from the optical axis. It resembles Equation 2.3.5 

which Thibos et al (1990) define as induced transverse chromatic aberration.  

 Simonet and Campbell (1990) also describe a relationship resembling 

Equations 2.3.5 and 7.4.9 to measure the transverse chromatic aberration, 

however, in their equation h is defined at the pupillary plane whereas Thibos et al 

(1990) and Equation 7.4.9 are defined for a pinhole at the corneal plane. However, 

Oy

P

Oy δδ YY   which may explain the discrepancy in results described by Simonet 

and Campbell between their indirect derivation (using Equation 2.3.5) and direct 

measurements (obtained experimentally) and defined by Equation 7.4.6. 

Exploring this further is beyond the scope of this dissertation. 

 

In summary 

 Equations 7.4.1 and 6 can be summarized as 

OOyOy δδ rvV                    (7.4.10) 

where OyδV  is defined in Section 7.2.1, Oyv  is given by Equation 5.3.15 and  











O

O

O
δ

δ
δ

a

y
r .                   (7.4.11) 

Oδy  defines the chromatic difference in transverse object position and Oδa  is the 

chromatic difference in inclination in object space. 

 Similarly the scenario of placing a pinhole immediately in front of the eye 

can be summarized as  

OOy

P

Oy δδ rvV                    (7.4.12) 
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where 
P

OyδV  is defined by Equation 5.3.19. 

From Equations 7.4.10 and 12 we can see that chromatic difference in 

position and inclination in object space is a function of both transverse 

displacement of the retinal image from the optical axis and transverse 

displacement of the pinhole from the optical axis.  

 

An underlying implication 

We return to the experimental setup with the pinhole as the limiting 

aperture and underlying assumptions as shown in Figure 7.4.1. The experiments 

theorise that the two different chromatic images are superimposed at the retina 

and perceived as one. This implies r

R

b

R yy   . However, it is quite possible that the 

inclination at the retina of the two chromatic rays is not the same. This has 

implications for the Stiles-Crawford effect. We derive an equation to obtain the 

chromatic difference in inclination of these two rays at the retina, 
Rδa . The red 

and blue chief rays are traversing the pupil through the same position. We 

therefore start at the plane of the aperture. From Equation 5.2.18 and 19 and 

equating for 
P , simplifying, solving for 

Ra  and then taking the chromatic 

difference we obtain 

       R

1

BBP

1

BR δδδ ynBDynBa


                (7.4.13) 

which is the chromatic difference in inclination at the retina when two rays from 

separated objects of differing frequencies are superimposed at the retina.  

 

Generalizing to linear optics 

 Equations 7.4.1 to 12 readily generalize to linear optics provided we 

substitute from Equation 5.3.25 for OyV  and from Equation 5.3.26 for 
P

OyV . For 

Equation 7.4.13 we need to include a transpose to obtain 

       R

1

BBP

1T

BR δδδ yBDyBa


 nn .               (7.4.14) 
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7.5 Chromatic properties of the eye dependent on object size or angular 

spread 

 In Section 2.3.2 we saw that experiments are designed to measure 

chromatic difference in position of a red and a blue object point in object space. 

When working in object space experimentally, we are working with single red and 

blue object points rather than objects with size, according to the current literature. 

Chromatic difference in image size and angular spread are calculated in image 

space using ray tracing based on the experimental data for objects with size. It is 

conceivable that an experiment could be devised to compare the sizes of a red and 

a blue object to appear to be the same size in image space.  

 

7.5.1 Chromatic difference in object size 

The approach to obtaining the chromatic difference in object size is similar 

to that for the retinal chromatic difference in image size. Substituting from 

Equation 5.3.17, the size of the blue object is  

b

R1

b

Oy

b

R2

b

Oy

b

P1

b

Oy

b

P2

b

Oy

b

OΔ yXyXyWyWy       (7.5.1) 

where the blue rays all go through the same position in the pupil such that 

b

P1

b

P2 yy  .         (7.5.2) 

Equation 7.5.1 simplifies to obtain 

 b

R

b

Oy

b

OΔ yXy  ,        (7.5.3) 

the blue object size, where 

b

R1

b

R2

b

R yyy          (7.5.4) 

is the size of the blue image at the retina. The size of the red object is obtained in 

a similar fashion. The chromatic difference in object size is obtained when the red 

and blue images at the retina appear to have the same size, such that 

r

R

b

R yy  .         (7.5.5) 

The chromatic difference in object size is 

       ROy

r

R

r

Oy

b

R

b

Oy

r

O

b

OO δΔΔΔδ yXyXyXyyy     (7.5.6) 

where OyδX  is described in Section 7.2.1 
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7.5.2 Chromatic difference in object angular spread 

The angular spread of the blue object 
b

OΔa  is obtained from Equation 5.3.18 to be 

b

R1

b

Oy

b

R2

b

Oy

b

P1

b

Oy

b

P2

b

Oy

b

OΔ yZyZyYyYa  .     (7.5.7) 

Equation 7.5.2 applies and so Equation 7.5.7 simplifies to obtain the angular 

spread from the blue object, 

 b

R

b

Oy

b

OΔ yZa          (7.5.8) 

where the size of the blue retinal image b

Ry  is defined by Equation 7.5.4. 

Similarly, we obtain the red object angular spread. The chromatic difference in 

object angular spread is 

       ROy

r

R

r

Oy

b

R

b

Oy

r

O

b

OO δΔΔΔδ yZyZyZaaa      (7.5.9) 

where OyδX  is described in Section 7.2.1. 

 

Summary of chromatic differences in object space 

 Equations 7.5.6 and 9 can be summarized as 

 OOyOy ΔδΔδ rvV                    (7.5.10) 

where OyδV  is described in Section 7.2.1,  

  









O

O

O
Δ

Δ
δΔδ

a

y
r                   (7.5.11) 

is the chromatic difference in object size and angular spread vector and 











R

P

Oy
Δ

Δ
Δ

y

y
v                   (7.5.12) 

where 0Δ P y . 

 

7.5.3 Chromatic object size magnification 

 Similar to Section 7.3.3, we can obtain the magnification of the size of the 

red to blue objects when the red and blue images appear to have the same size to 

the subject. We define the chromatic object size magnification as 

b

O

r

OyO ΔΔ yyM  .                  (7.5.13) 

Substituting from Equation 7.5.3 for the blue and red object sizes we obtain 
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   b

R

b

Oy

r

R

r

OyyO yXyXM  .                 (7.5.14) 

The red and blue images at the retina are the same size and so Equation 7.5.5 

applies and Equation 7.5.14 simplifies to  

b

Oy

r

OyyO XXM  .                  (7.5.15) 

 

7.5.4 Chromatic object angular spread magnification 

The magnification of the angular spread of the red to blue incident rays, 

from the red and blue objects is defined as 

b

O

r

OaO ΔΔ aaM  .                  (7.5.16) 

Substituting from Equation 7.5.8 we obtain 

   b

R

b

Oy

r

R

r

OyaO yZyZM                   (7.5.17) 

and because of Equation 7.5.5 this simplifies to 

b

Oy

r

OyaO ZZM  .                  (7.5.18) 

 

Including the use of a pinhole 

We can see from Equations 7.5.6 and 9 that the transverse position of the 

rays through the pupil is nullified. When a pinhole is placed immediately in front 

of the eye its transverse displacement will have no effect on the chromatic 

difference in object size or angular spread or the chromatic object size or angular 

spread magnifications, however, the longitudinal displacement of bringing the 

limiting aperture forward will have an effect. The coefficients in Equations 7.5.6, 

9, 15 and 18  are replaced with those from 
P

OyV  (Equation 5.3.19). 

 

Generalizing to linear optics 

 The equations in Section 7.5 have all been written and derived such that 

they readily generalized to linear optics. The proofs are beyond the scope of this 

dissertation. 
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7.6 Comment on the use of the corneal pinhole inlay 

 In this section the use of the pinhole is implied in the experimental sense. 

However, the Acufocus Kamra corneal inlay is an intrastromal pinhole that is 

placed in the cornea at a depth of m170 μ  (Seyeddain, Riha, Hohensinn, Nix, 

Dexl and Grabner, 2010). The pinhole inlay is 3.8 mm in diameter and has a 

pinhole in its centre of 1.6 mm in diameter. Its effect is similar to that of moving 

the limiting aperture from the pupil to the corneal plane. Surgeons and researchers 

go to great lengths to ensure that the transverse placement of the pinhole inlay is 

correct, so as to avoid induced aberrations. Research is ongoing into establishing 

where the correct position is to place the inlay. According to Tabernero and Artal 

(2011), just a 0.5 mm transverse offset can significantly reduce the retinal image 

quality and overall vision. Numerical examples in Chapter 10 will illustrate the 

effect of a misplaced inlay is on the object and aperture-dependent chromatic 

properties at the retina. 

 

7.7 Summary of equations for chromatic properties 

 

Table 7.7.1 Summary of the independent chromatic properties of the eye. The 

equation is given as a definition and in terms of the entries of the transferences. 

Independent Chromatic Properties 

Chromatic property Equation Eq. no. 

Chromatic difference in power  rbrbδ CCFFF   7.1.1 & 2 

Chromatic difference in refractive 

compensation r

r

b

b
0r0b0δ

B

A

B

A
FFF   7.1.3 & 4 

Chromatic difference in ametropia 
rbδ AAA   7.1.5 
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Table 7.7.2 Summary of the chromatic properties of the eye dependent on 

object and aperture positions. The table is in a set of four sections each giving the 

equations for an object at distance and a finite distance. The final column gives 

the equation number for the respective equations. Only the general derivations are 

given.  

Dependent Chromatic Properties 

Chromatic 

property 
Equation at distance Equation for finite distance 

Eq. no. 

Coefficient 

matrix 





























0

1

AB

11

AE

1

0

1

AB

1

AE

EE

EE

E

nADnACn

nABAA

ZY

XW
V

 

    
     

































1

AOAB

1

OAAOEE

1

AOAB

1

OAAOEE

OEOE

OEOE

OE

nBADAnBCD

BABABAB

ZY

XW





V

 
5.2.8 

& 

5.2.26 

 

Chromatic difference in image position and inclination at the retina 

Chromatic 

difference in 

image position 

    KEPER δδδ aXyWy   
    OOEPOER δδδ yXyWy 

 
7.2.3 & 4 

Chromatic 

difference in 

inclination 

    KEPER δδδ aZyYa       OOEPOER δδδ yZyYa   
7.2.16 & 

17 

 

Chromatic difference in image size and angular spread at the retina 

Chromatic difference 

in image size 
    KER Δδδ aXy       OOER δδ yXy   7.3.4 & 8 

Chromatic difference 

in image angular 

spread 

    KER Δδδ aZa       OOER δδ yZa   
7.3.11 & 

12 

 

Chromatic magnification 

Retinal chromatic image size 

magnification 

b

E

r

EyR XXM   
b

OE

r

OEyR XXM   7.3.19 & 20 

Retinal chromatic angular spread 

magnification 

b

E

r

EaR ZZM   
b

OE

r

OEaR ZZM   7.3.27 & 28 
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Table 7.7.3 Summary of the chromatic properties of the eye dependent on 

image and aperture positions. The table gives the equations for an object at a finite 

distance. The final column gives the equation number for the respective equations. 

Only the general derivations are given. 

Chromatic Properties in Object Space                  -for finite distances- 

Coefficient matrix 
   

    





































1

0BAE

1

B0

1

BAOAOEE

1

B

OyOy

OyOy

Oy

nBAABn

BBAABB

ZY

XW



V

 5.3.14 

Chromatic difference in object 

position 
   

ROyPOyO δδδ yXyWy   7.4.1 

Chromatic difference in inclination in 

object space  
    ROyPOyO δδδ yZyYa   7.4.6 

Chromatic difference in object size    ROyO δΔδ yXy   7.5.6 

Chromatic difference in object 

angular spread 
   ROyO δΔδ yZa   7.5.9 

Chromatic object size magnification 
b

Oy

r

OyyO XXM   7.5.15 

Chromatic object angular spread 

magnification 

b

Oy

r

OyaO ZZM   7.5.18 

 

Table 7.7.4 Summary of the coefficient matrices for an eye with a pinhole 

immediately in front of the eye for either an object at distance or an object at a 

finite distance.  

Coefficient matrices for an eye with pinhole 

Equation at distance Equation for finite distance Eq. no. 




























0E

1

E

1

0EE

P

E

P

E

P

E

P

EP

E

nDnCn

nBA

ZY

XW
V

 

  





































1

OE

11

OEE

1

1

OE

1

OEE

P

OE

P

OE

P

OE

P

OEP

OE





DnDCn

BBA

ZY

XW
V

 5.2.37 & 34 

― 

    





































1

E0E

1

E0

O

1

EOE

1

E

P

Oy

P

Oy

P

Oy

P

OyP

Oy

1

BnABn

BAB

ZY

XW



V

 5.3.19 
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Table 7.7.5 Summary of the equations for the chromatic difference in corneal 

position of the two chief rays, for a single object point either at distance or at a 

finite distance and for the chromatic difference in inclination of two chief rays that 

emerge at the same position on the retina, from two separated object points at a 

finite distance. 

Underlying implications 

Chromatic 

difference in 

corneal 

position 

P

A

KE

A

B

E

0
K

1
δ

δδ

y
A

aB
A

B

A

n
y
























































 

P

OA

O

O

OA

A
K δδδ y

B
y

B

B
y 
























 

7.2.9 & 

10 

Chromatic 

difference in 

inclination 

at retina 

― 
  

    R

1

BB

P

1

BR

δ

δδ

ynBD

ynBa








 7.4.13 

 

7.8 Discussion 

In this section we unpacked and derived equations to enable us to calculate 

chromatic properties from the transferences. Contrary to the definition of 

chromatic aberration in Chapter 6 which distinguished between longitudinal and 

transverse chromatic aberration, chromatic properties are categorised as firstly 

those chromatic properties that are independent of object, image and aperture 

positions and secondly the chromatic properties of the eye that are dependent on 

the object (or image) and aperture positions. 

The derivations of the chromatic properties have in certain instances 

confirmed what we intuitively suspected and in other instances gave us new 

insight into the definitions. We saw that the independent chromatic properties of 

the eye are derived from the fundamental properties of the red and blue 

transferences alone and are not the direct property of light, nor object and image 

positions. The result is that one obtains, as a result, a single value for each of 

chromatic difference in power, refractive compensation and ametropia for the eye.  

In contrast, the derivations for chromatic properties of the eye and object 

and aperture positions are dependent on light, relying on ray tracing, and therefore 

vary with changes in both longitudinal and transverse object position and 

longitudinal and transverse aperture position. We derived formulae for chromatic 
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difference in position, firstly for chromatic difference in transverse image position 

and secondly for chromatic difference in inclination at the retina. 

An interesting underlying implication is that even when one chooses a 

pencil of rays, all having the same incident inclination, and then selects the chief 

ray through the centre of the pupil, that there is a red ray and blue ray at incidence, 

separated at the cornea by a distance 
Kδy . The two rays reaching the retina do not 

originate from the exact same multi-chromatic ray.  

After taking a close look at chromatic difference in magnification we 

determined that what is being measured in the literature is not a chromatic 

difference but rather a chromatic magnification. Nonetheless, we derived 

equations for chromatic difference in image size on the retina and chromatic 

difference in angular spread which turn out to be independent of transverse 

displacement of the pupil or pinhole. More appropriately, we derived formulae for 

the chromatic image size magnification and chromatic image angular spread 

magnification. 

Finally, we take a look at the experimental situation where two coloured 

object points are positioned a distance apart such that the two coloured images are 

superimposed at the same point on the retina. We were able to derive equations 

for the chromatic difference in object position and chromatic difference in object 

inclination of these two coloured object points. 

The underlying implication of the experimental situation is that while the 

red and blue rays reach the retina at the same position, there is a difference in 

inclination between these two rays upon reaching the retina. This has possible 

implications for the Stiles-Crawford effect, but further investigation is beyond the 

scope of this dissertation. 

It is conceivable that an experiment could be set up to compare the sizes of 

a red and a blue object to appear to be the same size to the subject. The chromatic 

difference in object size and object angular spread were defined in object space. 

The chromatic object size magnification and chromatic object angular spread 

magnification were defined in object space. 
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All the derivations for the dependent chromatic properties of the eye are 

amenable to placing a pinhole immediately in front of the eye. In each case the 

general equations still hold and the coefficients simplify.  
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8 Chromatic dependence of the transference and transformed 

transferences on frequency  

 

In this chapter the dependence of each of the four fundamental properties 

of two model eyes is calculated as a function of frequency with the refractive 

index of air assumed constant. We then compare the effect on the fundamental 

properties of the two model eyes when the refractive index of air is treated as a 

function of frequency. For comparison, the dependence of the fundamental 

properties on wavelength is displayed graphically. Finally, we consider the two 

model eyes submerged in water. 

The four fundamental properties, each dependent on the frequency of light, 

are displayed graphically and turn out to be very nearly linear. A linear equation 

for each fundamental property as a function of frequency is obtained. It turns out 

that one can utilise this equation to obtain the transference as an approximate 

function of frequency.  

We then turn our attention to the two transformed transferences that were 

introduced in Section 3.7.1 and 2. These are displayed graphically as a function of 

frequency using three-dimensional graphs. This enables us to study the 

fundamental and derived properties, their relationships to each other and their 

dependence on frequency. 

Each of the entries of the transformed transference also displays a nearly 

linear dependence on the frequency of light. These transformed spaces allow us to 

derive a formula for a transference, necessarily symplectic, as a function of 

frequency. 

 

8.1 Transference as a function of frequency 

The transference and its fundamental properties are dependent on the 

frequency of light. In order to study this we first equate the refractive index of air 

to 1, the usual assumption in optometry. For illustrative purposes, we then 

examine the effect on the fundamental properties of treating the refractive index 

of air as a function of frequency. We use Cauchy’s formula for that purpose. For 

comparison, we also consider the dependence of the transference on wavelength. 
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Finally, we take a look at the more unusual situation of the eye submerged in 

water. 

Each of the graphs in this section shows four sub-graphs, one for each of 

the fundamental properties as a function of frequency, across the spectrum from 

430 to 750 THz. Two graphs in Section 8.1.3 will be in terms of wavelength, but 

across the same spectrum and with the same six coloured reference points. For the 

graphs, values are calculated for every 1 THz, that is for 321 points across the 

spectrum. However, in the tables only the values for the six reference points are 

given.  

We make use of the SI units and prefixes for time, picosecond (ps) which 

is s10 12 , and its inverse, the derived unit for frequency, teraHertz (THz) which is 

-112 s10 .  

 

8.1.1 The transference as a function of frequency with 10 n  

The reduced eye 

The transferences of the reduced eye as a function of the frequency of light 

are given for the six reference frequencies in Table 8.1.1 with the refractive index 

of air  0n  equated to 1. The transferences for the reduced eye as a function of 

frequency are calculated according to Equation 5.5.1 with 10 n  and the 

refractive index n calculated according to Equation 4.4.2. The disjugacy B is 

given in millimetres (mm) and the divergence C in corresponding units, 

kilodioptres ( 1mmkD  ).  

Figure 8.1.1 represents each of the fundamental properties of the reduced 

eye as a function of frequency. The six coloured reference points described in 

Section 4.2 are shown by means of coloured diamonds. The coloured diamonds 

represent five equally spaced intervals (64 THz ) of frequency.  

In Figure 8.1.1, the axis scales have been chosen to exaggerate curvature. 

The range of the scale for each sub-graph indicates the chromatic difference in 

each fundamental property. The dilation  A ranges from 0.0070 to 0277.0  which 

represents a chromatic difference in ametropia of –0.0347. The chromatic  
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Table 8.1.1 Transferences of the reduced eye and Le Grand’s eye for six reference 

frequencies   (in THz), calculated with 10 n . 

Colour   Reduced eye Le Grand’s eye 

Red 430 








 1kD0594.0

mm7055.160070.0
 









 9044.0kD0594.0

mm7276.160078.0
 

Orange 494 








 1kD0598.0

mm6775.160020.0
 









 9041.0kD0598.0

mm6912.160024.0
 

Yellow 558 












1kD0603.0

mm6455.160038.0
 













9034.0kD0603.0

mm6494.160037.0
 

Green 622 












1kD0608.0

mm6082.160105.0
 













9026.0kD0608.0

mm6029.160102.0
 

Blue 686 












1kD0615.0

mm5646.160184.0
 













9018.0kD0613.0

mm5545.160170.0
 

Violet 750 












1kD0622.0

mm5126.160277.0
 













9011.0kD0619.0

mm5065.160237.0

 

 

difference for disjugacy B is –0.1929 mm and for divergence C it is kD0028.0 , 

or –2.7975 D. For divarication D the chromatic difference is zero.  

 In Figure 8.1.1, the dashed lines represent the least squares straight 

line fitted to the data for the reduced eye. Each of A, B and C present as curves in 

each sub-graph. D is a straight line at 1 as required by Equation 5.5.1. Because the 

curves in the sub-graphs of Figure 8.1.1 are nearly straight lines, Equations 8.1.1 

to 4 below can be thought of as approximations of the dependence of each 

fundamental property on frequency. The equations for the four dashed straight 

lines are 

  05494.0ps100691.1 4   A       (8.1.1) 

  mm9719.16psmm109394.5 4   B      (8.1.2) 

  kD05558.0pskD106047.8 6   C      (8.1.3) 

1D           (8.1.4) 

where   is measured in THz and the units of each  constant is given. The set of 

equations can be reconstituted into a transference such that 
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22

22

11

11

dc

ba

dc

ba
S        (8.1.5) 

where the constants for the reduced eye are given in Table 8.1.2. 

 The set of four equations given for the straight line of each fundamental 

property is an approximation of the value of each fundamental property for any 

particular frequency. Strictly speaking, because of symplecticity, it is not correct 

to determine S by obtaining expressions for the fundamental properties 

independently as done in Equation 8.1.5. However, detS has a mean of 024000.1  

and a standard deviation of 5100.4   across the spectrum which would seem to 

be sufficiently close to the required 1 for most purposes. We will explore this 

further in Section 8.2 when we look at mapping transformations into Hamiltonian 

space. 

 

 

Figure 8.1.1 Fundamental properties of the reduced eye as functions of frequency  . 

The refractive index of air is equated to 1. The four sub-graphs are for dilation A, 

disjugacy B, divergence C and divarication D. The six coloured diamonds represent the 

frequencies listed in Table 4.2.1, red, orange, yellow, green, blue and violet and are 
evenly spread at 64 THz apart. The dashed lines represent the least squares straight line. 

Each of A, B and C present as curves, while D is a horizontal straight line at 1.  

 



IV  FINDINGS AND DISCUSSIONS  8 Chromatic dependence of the transference 

and transformed transferences on frequency  

192 

 

Table 8.1.2 The constants for the reduced eye in air for Equation 8.1.5. The units are 

picoseconds (ps), millimetres (mm) and kilodioptres (kD). 

ps100691.1 4

1

a  05494.02 a  

psmm109394.5 4

1

b  mm9719.162 b  

pskD106047.8 6

1

c  kD05558.02 c  

ps01 d  12 d  

 

 

Le Grand’s eye 

Similarly we look at the fundamental optical properties for Le Grand’s 

four-surface eye. The transferences were calculated according to Equations 5.5.4 

to 8 and the refractive indices given by Equation 4.4.3 with constants listed in 

Table 4.4.2. The transferences for the six coloured reference frequencies are given 

in Table 8.1.1.  

The range along the vertical axis for each fundamental property shows the 

range along the spectrum, or chromatic difference. The chromatic difference of 

dilation  or  ametropia  is  –0.0315.  The chromatic  difference  of  disjugacy  is 

 

Figure 8.1.2 Fundamental properties of Le Grand’s eye as a function of frequency  . 

10 n .  
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Table 8.1.3 The constants for Le Grand’s eye in air for Equation 8.1.5.  

ps109973.0 4

1

a  05156.02 a  

psmm100345.7 4

1

b  mm0382.172 b  

pskD109756.7 6

1

c  kD05581.02 c  

ps101515.1 5

1

d  9095.02 d  

 

 

mm2211.0  and for divergence it is –0.0025 kD or –2.5158 D. The chromatic 

difference of divarication is –0.0033 which is a very small range from 0.9044 to 

0.9011.  

From Figure 8.1.2 we can see that the curve is nearly linear. Because of 

this linearity, the dependence of the four fundamental properties of Le Grand’s 

eye on the frequency of light can be approximated by Equation 8.1.5. The 

constants for Le Grand’s eye for Equation 8.1.5 are given in Table 8.1.3. In 

contrast to Figure 8.1.1 D is no longer a horizontal straight line at 1 but is close to 

a straight line at 9.0D , approximately. 

Table 8.1.4 gives examples of transferences calculated by means of 

Equation 8.1.5 and constants given in Tables 8.1.2 and 3. Obtaining the 

approximate transference S for each frequency in the spectrum for Le Grand’s eye 

from Equation 8.1.5, the average value for detS is 35999.0  and the standard 

deviation is 5105.3  . As for the reduced eye, this is probably sufficiently close 

to 1 for most purposes. 

 

Comparison of the two model eyes 

The graphs of the fundamental properties versus frequency for the reduced eye 

and Le Grand’s eye, are superimposed in Figure 8.1.3. By means of Figure 8.1.3 

we can compare the fundamental properties of the reduced eye (in blue) and Le 

Grand eye (in black). The six reference points are included and are circular for the 

reduced eye and diamond shaped for the Le Grand eye. For the dilation A, 

disjugacy B and divergence C we see that the dependence of each fundamental 

property on frequency is similar for the two model eyes. They are closest in the 

central part of the spectrum. The divarication D, constant at 1 for the reduced eye, 



IV  FINDINGS AND DISCUSSIONS  8 Chromatic dependence of the transference 

and transformed transferences on frequency  

194 

 

Table 8.1.4 Transferences of the reduced eye and Le Grand’s eye for the six 

reference frequencies (in THz), calculated by means of Equation 8.1.5 and the constants 

in Tables 8.1.2 and 3 with 10 n . 

Colour   Reduced eye Le Grand’s eye 

Red 430 








 1kD05930.0

mm7148.16008656.0
 









 9046.0kD05930.0

mm7336.16008457.0
 

Orange 494 








 1kD05986.0

mm6764.16001760.0
 









 9039.0kD05981.0

mm6890.16002117.0
 

Yellow 558 












1kD06042.0

mm6381.16005135.0
 













9032.0kD06031.0

mm6443.16004223.0
 

Green 622 












1kD06097.0

mm5998.1601203.0
 













9026.0kD06082.0

mm5997.1601056.0
 

Blue 686 












1kD06153.0

mm5615.1601893.0
 













9019.0kD06133.0

mm5551.1601690.0
 

Violet 750 












1kD06208.0

mm5232.1602582.0
 













9012.0kD06183.0

mm5104.1602324.0
 

 

 

Figure 8.1.3 Fundamental properties of the reduced eye (blue line and circles) 

and Le Grand’s eye (black line and diamonds) versus frequency   superimposed. 

The least squares straight lines are also shown. 
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 becomes weakly dependent on frequency at about 0.9 for Le Grand’s eye. It is 

also interesting to note that the curves for Le Grand’s eye more closely 

approximate straight lines than do the curves for the reduced eye. 

 

8.1.2 Transference as a function of frequency using Cauchy’s formula for 

the refractive index of air 

For most purposes the index of refraction of air 0n  is taken as 1. Here we 

examine the effects on the transferences of allowing 0n  to depend on frequency 

according to Cauchy’s dispersion formula (Equation 4.4.4). The effects are shown 

in Figures 8.1.4 and 5 for the reduced  and Le Grand’s eyes respectively. The blue 

line is for 0n  according to Cauchy’s formula and the black line is for 10 n . The 

transferences for the six reference frequencies, with 0n  calculated by means of 

Cauchy’s formula, are given in Table 8.1.6 for the reduced and Le Grand’s eyes.  

 

The reduced eye 

From Equation 5.5.1 for the reduced eye we see that  has no effect on 

the disjugacy B and the divarication D. The only fundamental properties that are 

affected are the dilation A and the divergence C. This can also be seen in Figure 

8.1.4. The effect of setting  equal to 1, and not allowing for dependence of  

on  , is to decrease A by about 83000.0  and C by about kD05000.0  across the 

spectrum. The effect, therefore, would appear to be negligible and the use of 

10 n  justifiable. 

Least-square straight lines fitted to the curves in Figure 8.1.4 lead to the 

approximate expression for transference S in terms of  given by Equation 8.1.5 

with constants given in Table 8.1.5.  

 

Table 8.1.5 Constants for the expressions in Equation 8.1.5 for dilation A and 

divergence C for the reduced eye where  is given by Cauchy’s formula. 

ps100688.1 4

1

a  05575.02 a  

pskD106012.8 6

1

c  kD05553.02 c  

  

0n

0n 0n



0n
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Table 8.1.6 Transferences for the reduced eye and Le Grand’s eye for the six 

reference frequencies in THz, calculated for 
0n given by Cauchy’s formula.  

Colour   Reduced eye Le Grand’s eye 

Red 430 








 1kD0594.0

mm7055.160078.0  









 9044.0kD0593.0

mm7276.160084.0
 

Orange 494 








 1kD0598.0

mm6775.160028.0  









 9041.0kD0598.0

mm6912.160029.0
 

Yellow 558 












1kD0603.0

mm6455.160030.0  













9034.0kD0602.0

mm6494.160031.0  

Green 622 












1kD0608.0

mm6082.160097.0  













9026.0kD0608.0

mm6029.160096.0
 

Blue 686 












1kD0615.0

mm5646.160175.0  













9018.0kD0613.0

mm5545.160164.0
 

Violet 750 












1kD0622.0

mm5126.160269.0  













9011.0kD0618.0

mm5065.160231.0
 

 

 

 

Figure 8.1.4 Fundamental properties of the reduced eye as functions of frequency. The 

black lines and diamond shaped reference points are for 10 n  and the blue lines and 

circular reference points for 0n  given by Cauchy’s formula. For B and D the curves 

coincide. 
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Le Grand’s eye 

Figure 8.1.5 shows the fundamental properties of Le Grand’s eye as 

functions of frequency. The black line is calculated with 10 n  and the blue line 

is calculated with 0n  as a function of frequency according to Cauchy’s dispersion 

formula given by Equation 4.4.4. The results are similar to those in Figure 8.1.4 

for the reduced eye in that only the dilation A and divergence C are affected.  

To see why only A and C are affected by using Cauchy’s formula for 0n , 

let us examine the effect of the refractive index of the surrounding medium on Le 

Grand’s eye. From Equations 5.5.5 and 7 we observe that the only elementary 

transference containing 0n  is K1S .  The meaning of the subscripts is given in 

Table 4.1.1. Let us write the transference of the eye as 

K1RSSS           (8.1.6) 

where  

KK2AqL1LL2VR SSSSSSSS  .       (8.1.7) 

We now substitute for K1S  from Equation 5.5.5 to obtain 
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which shows that, for Le Grand’s eye, the only fundamental properties affected by 

0n  are the dilation A and divergence C. 

In Figure 8.1.5 the lines for  and for 0n  calculated according to 

Cauchy’s formula, are very close together and appear to be approximately parallel 

in sub-graphs A and C. Sub-graphs B and D are indeed superimposed, as implied 

by Equation 8.1.8. The formulae for the least-squares straight lines for Le Grand’s 

eye shown in Figure 8.1.5 for A and C using Cauchy’s formula for 0n  as functions 

of frequency can be obtained from Equation 8.1.5 with the constants given in 

Table 8.1.7 and transferences given in Table 8.1.6. Comparing the straight lines 

for  with the straight lines using Cauchy’s dispersion formula we observe 

10 n

10 n
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Table 8.1.7 The constants for dilation A and divergence C for Le Grand’s eye for the 

straight line equations in Equation 8.1.5 where the refractive index is calculated 

according to Cauchy’s formula. 

ps109969.0 4

1

a  05214.02 a  

pskD109733.7 6

1

c  kD05582.02 c  

 

that the two straight lines ( 1a  and 1c ) are very nearly parallel and the in positions 

( 2a  and 2c ) change slightly.  

Table 8.1.8 shows the difference between the two lines for both model 

eyes for each of the six reference frequencies. The mean and standard deviation 

are calculated for every 1 THz across the spectrum. Visual inspection of both 

Table 8.1.8 and Figure 8.1.5 indicates that the two curves for A and C are very 

nearly parallel and are very close together. Because the lines are nearly parallel, 

any chromatic difference calculations will be negligibly influenced by the choice 

of refractive index for air. 

 

Figure 8.1.5 Fundamental properties of Le Grand’s eye as functions of frequency. The 

black line and diamond shaped reference points are for 10 n  and the blue line and 

circular reference points are for 0n  calculated by means of Cauchy’s formula. The two 

lines for B and D are superimposed. For A and C the blue line is displaced upwards.  
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Table 8.1.8 The differences in each of the fundamental properties between the 

transference calculated using 10 n  and using 
0n  according to Cauchy’s formula. The 

numbers indicate the difference (vertical distance) from the black to the blue line in the 
graphs in Figures 8.1.4 and 5. The mean and standard deviation are obtained for 321 

frequencies across the visible spectrum. 

  Reduced eye  Le Grand eye 

Colour   in 

THz 

A  B      

in mm 

C  

    in kD 

D   A  B      

in mm 

C  

    in kD 

D   

  310   310    310   310   

Red 430 0.8279 0 0.04956 0    0.5904 0 0.03192 0 

Orange 494 0.8293 0 0.04972 0  0.5911 0 0.03202 0 

Yellow 558 0.8309 0 0.04992 0  0.5920 0 0.03212 0 

Green 622 0.8328 0 0.05015 0  0.5930 0 0.03224 0 

Blue 686 0.8350 0 0.05041 0  0.5944 0 0.03238 0 

Violet 750 0.8374 0 0.05071 0  0.5962 0 0.03255 0 

Mean: 0.8321 0 0.05006 0  0.5927 0 0.03220 0 

Standard 

deviation: 
0.002775 0 0.000334 0  0.001629 0 0.01778 0 

 

Discussion 

Here we have examined whether the dispersive effect of air plays a 

significant role in the overall dispersion through the system ultimately reaching 

the exit plane, or retina. Figures 8.1.4 and 5 compare the eye in air, firstly, with 

10 n  and secondly, with the refractive index as a function of frequency 

calculated using Cauchy’s formula. The disjugacy B and divarication D are not 

affected. Only the dilation A and divergence C are affected. 

Table 8.1.8 shows the difference in each of the fundamental properties 

when the transference is calculated using 10 n  and when using Cauchy’s 

formula. The standard deviation shows how close to being parallel the two lines 

are and therefore gives an indication of the effect of dispersion, while the mean 

indicates how accurate the constant for 0n  is and the difference between the two 

lines. From the graphs and numerical values of the tables in this section, we 

conclude that because the two lines in each graph are very nearly parallel, the 
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amount of dispersion occurring in air is insignificant and the refractive index of 

air can be taken to be 1.  

 

8.1.3 Dependence of the fundamental properties on vacuum wavelength 

The fundamental properties of the reduced eye and Le Grand’s eye as 

functions of vacuum wavelength   are represented in Figures 8.1.6 and 7, 

respectively. In each graph the visible spectrum used is the same as used 

throughout this dissertation, that is, frequency from 430 to 750 THz, except that it 

is converted to vacuum wavelength using Equation 4.3.1 and given in Table 4.2.1. 

Figures 8.1.6 and 7 depart considerably more from straight lines than the 

corresponding figures (Figures 8.1.1 and 2) in terms of frequency  .  

 

The reduced eye 

When we compare to the fundamental properties of the reduced eye as a function 

of vacuum wavelength (Figure 8.1.6) to  frequency (Figure 8.1.1), we see that, as 

expected, the divarication D is a constant of 1, but that the other three properties 

are significantly more curved. 

 

Figure 8.1.6 Fundamental properties of the reduced eye as functions of vacuum 

wavelength   with 10 n .  
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Le Grand’s eye 

Figure 8.1.7, shows the fundamental properties of Le Grand’s eye as 

functions of vacuum wavelength  . Again the curves depart more from straight 

lines than for the fundamental properties as functions of frequency  . The four-

surface eye of Le Grand shows less curvature than the single-surface reduced eye, 

with the exception of the divarication D.  

 

Comparing the transferences of the reduced eye and Le Grand’s eye 

Figure 8.1.8 plots the results of Figures 8.1.6 and 7 together. The 

behaviour of the fundamental properties versus vacuum wavelength  is similar 

for the reduced and Le Grand’s eyes, especially in the central region of the 

spectrum. For both model eyes, the curves of the fundamental properties versus 

frequency  are closer to straight lines than the corresponding curves for vacuum 

wavelength. This provides additional justification for using frequency instead of 

the more commonly-used wavelength. 

 

Figure 8.1.7 Fundamental properties of Le Grand’s eye as a function of vacuum 

wavelength   with 10 n . The wavelengths of the six reference points are given in 

Table 4.2.1. Compared with the graphs for the fundamental properties as functions of 

frequency, these curves further depart from straight lines. 
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Figure 8.1.8 Dependence of the four fundamental properties of the reduced eye (blue 

line with circles) and Le Grand’s eye (black line with diamonds) on vacuum wavelength.  

 

8.1.4 Transference of the eye submerged in water as a function of frequency 

with Cornu’s formula used for the refractive index of water 

The formulae for the dependence of the transference of the reduced eye (Equation 

5.5.3) and Le Grand’s eye (Equations 5.5.5, 7 and 8) on the refractive indices and 

hence on the frequency of light include the possibility of 0n  also being dependent 

on frequency, including media other than air. In Section 8.1.1 we studied the two 

model eyes in air with the refractive index of air taken as 1. In Section 8.1.2 we 

compared the effect of the refractive index of air treated as a function of 

frequency. However, Equations 5.5.1 and 5.5.4 to 9 will hold for the eye in any 

medium. As an example of the model eye in a medium other than air, we calculate 

the effect on the fundamental properties of each model eye if the eye is submerged 

in water. Figure 8.1.9 allows comparison of the fundamental properties of the 

reduced eye (blue line and circles) and Le Grand’s eye (black line and diamonds) 

as functions of frequency  when the eye is submerged in water. 

In Figure 8.1.9, the refractive index of water is calculated according to 

Cornu’s formula, given as Equation 4.4.1. It is shown in Section 8.1.2 that the 
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refractive index of the medium upstream of any eye only affects the dilation A and 

divergence C. When the eyes are submerged in water the effect on A and C is still 

close to straight lines for each model eye; however there is a clear difference in 

position of the curves of the reduced and Le Grand’s eyes. We recall that in 

Figure 8.1.3 we compared the graphs for the reduced eye and Le Grand’s eye on 

the same set of sub-graphs and that the lines for the eyes were similar, often 

touching or running parallel. In Figure 8.1.9 we see that this is less so. The lines 

are similar in slope, but differ in position for A and C when the eyes are 

submerged in water.  

The constants for the least-squares straight lines for A and C (Equation 

8.1.5) for the reduced and Le Grand’s eyes are given in Table 8.1.9. The curves 

for disjugacy B and divarication C are the same as in Figures 8.1.1 and 2. We saw 

from Equations 5.5.1 and 8.1.8 that only A and C are affected by the change in 

refractive index upstream of the system.  

  

 

Figure 8.1.9 Dependence of the fundamental properties of the reduced eye (blue line 

and circles) and Le Grand’s eye (black line and diamonds) on frequency   when the eye 

is submerged in water. The disjugacy B and divarication D are, unsurprisingly, the same 

as for the eyes in air, or any other medium, however the dilation A and divergence C 
differ considerably, not only between the two eyes, but also from the eye in air. 
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Table 8.1.9 Constants for Equation 8.1.5 for A and C for the reduced and Le Grand’s 

eyes submerged in water. The refractive index of water is calculated using Cornu’s 

formula (Equation 4.4.1).  

The Reduced Eye 

ps104089.1 4

1

a  0279.12 a  

pskD106007.8 6

1

c  kD107475.1 3

2

c  

Le Grand’s Eye 

ps102838.1 4

1

a  7472.02 a  

pskD104280.8 6

1

c  kD01871.02 c  

 

Table 8.1.10 The transferences for the reduced eye and for Le Grand’s eye 

submerged in water for the six reference frequencies (in THz), calculated equating 

the refractive index of water according to Cornu’s formula (Equation 4.4.1). 

Colour   Reduced eye Le Grand’s eye 

Red 430 








 1kD002114.0

mm7055.169647.0
 










 9044.0kD02243.0

mm7276.166908.0
 

Orange 494 








 1kD002515.0

mm6775.169581.0
 










 9041.0kD02287.0

mm6912.166840.0
 

Yellow 558 








 1kD002977.0

mm6455.169504.0
 










 9034.0kD02337.0

mm6494.166761.0
 

Green 622 








 1kD003515.0

mm6082.169416.0
 










 9026.0kD02393.0

mm6029.166677.0
 

Blue 686 








 1kD004150.0

mm5646.169313.0
 










 9018.0kD02451.0

mm5545.166590.0
 

Violet 750 








 1kD004910.0

mm5126.169189.0
 










 9011.0kD02508.0

mm5065.166503.0
 

 

Constants 2a  and 2c  (Table 8.1.9) for A and C for the two model eyes are 

very different, confirming the difference in the vertical position shown in Figure 

8.1.9. The slopes ( 1a  and 1c ) are similar to those for the model eyes in air (Tables 

8.1.2 and 3). The transferences for the six reference frequencies for the two eyes 

submerged in water are given in Table 8.1.10.  
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Submerging the eye in water has the effect of increasing A and C. Because 

the power of the system is the negative of the divergence (Equation 3.4.3), 

submerging the eye in water has the well-known effect of decreasing and, hence, 

partly neutralising the power of the eye.  

 

8.1.5 Discussion 

In conclusion, we saw how the fundamental properties of the reduced and 

Le Grand model eyes depend on the frequency of light. We compared the two 

model eyes in air when the refractive index is equated to the constant of 1 and 

when it is given by Cauchy’s formula and saw firstly, that only the dilation A and 

divergence C are affected by the refractive index of the surrounding media, and 

secondly, that the effect is small and affects the vertical position of the graph. This 

provides justification for using 10 n , as is often done in practice. 

We then studied the fundamental properties as a function of vacuum 

wavelength. We observed that the curves depart further from straight lines than do 

those with frequency   as independent variable. We conclude, in addition to the 

reasons discussed in Section 4.3, that it is preferable to study chromatic properties 

as functions of   rather than  .  

Finally we considered the effect on the fundamental properties when the 

model eyes are submerged in water. Again, only the dilation A and divergence C 

are affected. There were two noticeable differences in the graphs. Firstly, in 

Figure 8.1.9, the curves for A and C differ in vertical position, but the slopes are 

similar. Secondly, when we compare the respective model eye (Figure 8.1.9) to 

the same eye in air (Figure 8.1.3) for A and C, we again see a significant change in 

position of the curve, but a similar slope. We know that the effect of submerging 

any eye in water is to tend to neutralise the refractive effect of the corneal surface. 

As a result the power F is decreased and, hence, the divergence C is increased. 

The ametropia A is increased and consequently, because of Equation 3.4.6, there 

is a need for an increased power of the refractive compensation 0F . 

In this section we have seen that the fundamental properties of the two 

model eyes are dependent on frequency. The dependence curves for the 

fundamental properties of the two model eyes were roughly similar but differed 
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due to the underlying differences in design of the two eyes. The dependence is 

very nearly linear and we obtained a linear expression for the dependence of each 

fundamental property on frequency. When these expressions are used, the 

estimated transference is approximately symplectic.  

 

8.2 The transformed transferences  

In Section 3.7, we introduced transformed transferences and characteristic 

matrices. Transformed transferences are members of Hamiltonian space whereas 

each characteristic matrix represents a combination of derived properties of the 

system. In this section we look at transformed transferences and then examine 

characteristic matrices in Chapter 9. 

 Here we consider the logarithmic and Cayley transforms introduced in 

Section 3.7, both of which are Hamiltonian. Our interest in these transformed 

transferences, for the purpose of this dissertation, lies not in calculating an 

average transference (as done elsewhere; Harris, 2004b; 2005; Harris and 

Cardoso, 2006) but rather is two-fold. Firstly we wish to study the nature of the 

transformed matrix itself and how it depends on the frequency of light. An 

advantage is that, for a Gaussian system, one can represent a transference in three-

dimensional linear space. Secondly, we utilise the mathematical properties of the 

Hamiltonian and symplectic matrices to obtain a formula for transferences as 

functions of frequency. The advantage is that the transferences one obtains are 

strictly symplectic which contrasts with the transferences obtained above 

(Equation 8.1.5) which are approximately symplectic. 

In Section 5.6 we saw that the Cayley transform can be represented as a 

simple equation (Equations 5.6.6, 7 and 9) as a function of the entries of the 

transference. In contrast, a logarithmic transform makes use of an infinite series 

(Cardoso, 2005) therefore, because of its simple form, the Cayley transform gives 

greater insight. For this reason we spend some time unpacking the Cayley 

transform in Section 8.2.1. We take a brief look at the logarithmic transform in 

Section 8.2.2 
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8.2.1 The Cayley transformed transference 

The Cayley transform is defined by Equation 3.7.13, and simplified for 

Gaussian systems to Equation 5.6.7. We use the caret (^) to denote transformed 

qualities. For example Ŝ  is the transformed S and Â  is the transformed A. 

Hamiltonian matrices are defined by Equation 3.7.4 and the resulting equality 

given by Equation 3.7.6. For a Gaussian system this simplifies to 

DA ˆˆ  .         (8.2.1) 

Hence there are only three independent variables, Â , (or D̂ ), B̂  and Ĉ , and 

therefore Ŝ  can be plotted on a three-dimensional graph. We recall that the 

Cayley transform of a symplectic matrix is Hamiltonian and, therefore, Equation 

8.2.1 applies to a Gaussian system. 

We now consider the dependence of the Cayley transformed transference 

Ŝ  on the frequency   of light. The dependence of the individual entries is shown 

in Figures 8.2.1 and 4 for the reduced eye and Le Grand’s eyes respectively. The 

relationship between the three independent entries of the transformed transference 

can be shown on a three-dimensional graph. This is shown in Figure 8.2.3 for the 

reduced eye and Figure 8.2.6 for Le Grand’s eye. The six reference frequencies, as 

defined in Table 4.2.1, are used to define the frequency at six points, evenly 

spaced at every 64 THz.   

Because Hamiltonian matrices define a vector space we are able to 

represent the transformed transference, dependent on  , in the space. The 

meaning of each axis in Hamiltonian space is outside the scope of this 

dissertation. The Hamiltonian spaces generated by the logarithmic and Cayley 

transforms differ. Equation 5.6.7 begins to give some interpretation of what 

Hamiltonian space represents. We recall that there is an infinity of transforms 

between symplectic and Hamiltonian matrices; in this study we consider just two, 

the logarithmic transform (Equation 3.7.2) and the Cayley transform defined by 

Equation 3.7.13. 

We now take a closer look at the formulae derived in Section 5.6. Firstly, 

Equation 5.6.7 is the formula for the transformed transference as a function of the 

fundamental properties of the system. This equation gives us some insight into the 
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meaning of the three independent entries of the Cayley transformed transference. 

We see that the transformed transference is multiplied by a constant that includes 

only the entries on the diagonal, that is, A and D. Within the matrix, the diagonal 

entries are the difference between the diagonal entries of the transference, while 

the two off-diagonal entries are the same as for the transference, each multiplied 

by 2. This gives us a transformed transference that is an interesting mix of the 

fundamental properties.  

 

The reduced eye  

Equation 5.6.18 gives the transformed transference for the reduced eye. 

Because we have worked with rational numbers all along, we find some 

interesting simplifications and the transformed transference for the reduced eye 

turns out to be a simple matrix dependent on the refractive index and therefore on 

the frequency of light. B̂  turns out to be a constant because the refractive indices 

cancel out. The result of this Cayley transformed transference for the reduced eye 

is shown graphically for each entry of the matrix in Figure 8.2.1 as functions of 

frequency. 

In Figure 8.2.1 the dashed red straight lines obtained using the least 

squares method represent the entries of the Cayley transformed transference as 

functions of frequency. These three straight line equations are represented as a 

matrix in Equation 8.2.3, with constants given in Table 8.2.1 for the reduced eye. 

Calculating a matrix from Equation 8.2.3 for any particular frequency results in a 

Hamiltonian matrix. This in turn, using the Cayley transform, Equation 8.2.2, 

maps to a transference. Equations 8.2.2 and 3 together give us the formula for the 

approximation of the transference for the reduced eye as a function of frequency. 

The equation to map the transference from the transformed transference 

(originally given in Equation 5.6.12) is  

 
I

S

SI
S 






ˆdet1

ˆ2
        (8.2.2) 

where 
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S .      (8.2.3) 
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Table 8.2.1 The constants for the reduced eye in air for Equation 8.2.3. The units are 

picoseconds (ps), millimetres (mm) and kilodioptres (kD). 

ps107804.4ˆ 5

1

a  3088.0ˆ
2 a  

psmm0ˆ
1 b  mm1111.11ˆ

2 b  

pskD102055.7ˆ 6

1

c  kD106298.3ˆ 2

2

c  

 

Frequency    is in teraHertz  112 s10   and the constants for Equation 8.2.3 are 

given in Table 8.2.1 for the reduced eye in air.  

Equations 8.2.3 and 2 hold for any Gaussian eye, however, because of the 

changes in structure, that is, the exact parameters of the refracting surfaces, 

number of refracting surfaces, width of homogenous gaps and formulae of the 

refractive indices of the media, we can expect different constants for each model 

eye. Using the methodology above, it is simple for MATLAB
®
 to generate the 

constants for any Gaussian eye coded into the Matfile.  

 

 

Figure 8.2.1 Entries of the Cayley transformed transference for the reduced eye as 

functions of frequency. The solid lines represent the entries as functions of frequency and 

the red dashed lines the fitted least squares straight lines. 
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The transferences of the reduced eye, obtained using Equations 8.2.2 and 3 

are all symplectic matrices to the level of  the accuracy of MATLAB
®
. The graphs 

for the fundamental properties of the reduced eye in air as a function of frequency 

are given in Figure 8.2.2. The solid black lines with coloured diamond shaped 

reference points represent the actual transference of the reduced eye dependent on 

frequency, and are the same curved lines we saw in Figure 8.1.1. The red lines 

represent the lines obtained using Equations 8.2.2 and 3 with constants given in 

Table 8.2.1. The dashed lines representing the least squares straight lines from  

Figure 8.1.1 are superimposed with the red lines for dilation A, disjugacy B and 

divergence C and with the black line for divarication D and are therefore 

suppressed to unclutter the figure. Where previously the dashed straight lines 

created from the least squares of the fundamental properties did not produce 

transferences that were exactly symplectic, we now have the red lines for each of 

the fundamental properties representing symplectic transferences. In Hamiltonian 

space, these red lines are the straight lines produced from the least squares 

formulation of the entries of the transformed transferences shown by the dashed 

red lines in Figure 8.2.1.  

The relationship between the three independent entries of the Cayley 

transformed transference for the reduced eye where 10 n  are plotted on a three-

dimensional graph showing how these properties change with frequency. In 

Figure 8.2.3, we see how the relationship is a straight line. From Equation 8.2.3 

and Table 8.2.1 we have 

21 ˆˆˆ aaA  , 

2
ˆˆ bB   

and 

21 ˆˆˆ ccC  . 

Manipulating, we obtain  

1

2121

1

1

ˆ

ˆˆˆˆˆ
ˆ

ˆˆ
a

acca
A

a

c
C


 , 

the equation of a straight line. 
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The derivation of Equation 8.2.2 and the graphs in this section give us some 

insight into the Hamiltonian space. We have utilised the properties of the 

Hamiltonian space to derive approximate equations for a transference of the 

reduced eye as a function of any chosen frequency of light, that is symplectic with 

determinant exactly 1. Furthermore, Equation 8.2.3 has the advantage of having 

less constants – six instead of the eight needed for Equation 8.1.5. 

 

 

Figure 8.2.2 Fundamental properties of the transference of the reduced eye as 

functions of frequency. The black lines and diamond reference points represent the 

dependence as shown in Figure 8.1.1 while the red lines represent the dependence of the 
reduced eye on frequency according to the formulae and constants given in Equations 

8.2.2 and 3 and Table 8.2.1. The least squares straight lines (shown with black dashed 

lines in Figure 8.1.1) appear superimposed with the red lines for dilation A, disjugacy B 

and divergence C and have been suppressed.  
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Figure 8.2.3 Three-dimensional graph of the Cayley transformed transference of the 

reduced eye with 10 n  showing change with frequency. The azimuth is 9  and 

elevation 23 .  

 

Le Grand’s eye 

In Figure 8.2.4 the individual entries of the Cayley transformed 

transference for the Le Grand eye are graphed as a function of frequency and in 

Figure 8.2.6 the three independent entries are graphed in three-dimensions.  

If we compare the graphs for the dependence of the transformed 

transference on the frequency of light for Le Grand’s eye (Figure 8.2.4) to that of 

the reduced eye (Figure 8.2.1) we see strong similarities for Â , Ĉ and D̂ , 

however Le Grand’s eye has a curve for B̂  whereas the reduced eye has a straight 

line. However, the scale along the vertical-axis for B̂  for Le Grand’s eye, 

indicates that the chromatic difference is small (0.01485 mm) and that the solid 

lines representing the transformed transference as a function of frequency are very 

near to linear for each entry. 

Similar to the reduced eye, the equations for the dashed red straight lines 

in Figure 8.2.4 are obtainable using MATLAB
®
, giving us the constants for Le 

Grand’s eye and given in Table 8.2.2. These constants are substituted into 
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Table 8.2.2 The constants for Equation 8.2.3 for Le Grand’s eye in air. 

ps102626.4ˆ 5

1

a  2892.0ˆ
2 a  

psmm106331.4ˆ 5

1

b  mm5087.11ˆ
2 b  

pskD101114.7ˆ 6

1

c  kD107630.3ˆ 2

2

c  

 

Equation 8.2.3 to obtain the Cayley transformed transference for each 

frequency and then into Equation 8.2.2 to obtain the transference for the 

frequency.  The matrix obtained from Equation 8.2.3, by definition, is 

Hamiltonian and in turn, when transformed using the Cayley transform (Equation 

8.2.2), maps to a symplectic matrix. Checking this for every frequency in the 

visible light spectrum we find that every transference obtained this way has unit 

determinant and is indeed symplectic.  

Equations 8.2.2 and 3 represent a linear approximation to obtain the 

transference as a function of the frequency of light for any chosen frequency in 

the visible spectrum. In addition, the calculation can be done with a handheld 

 

Figure 8.2.4 The entries of the Cayley transformed transference as a function of 
frequency for the Le Grand eye. The red dashed lines represent the least-squares straight 

lines for each entry in Hamiltonian space. 
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calculator in two steps, compared to the far lengthier process of obtaining 

a refractive index for each medium and then multiplying eight transferences to 

obtain a transference for the Le Grand eye for a chosen frequency, such as that 

used to produce the curves in Figure 8.1.2. Deriving the formulae for the 

transforms enables us to gain some insight into the transformed space and 

fundamental properties. 

The fundamental properties of the transferences for Le Grand’s eye 

obtained from Equations 8.2.3 and 2 are plotted in red in Figure 8.2.5 as functions 

of the frequency of light. For comparative purposes, we include the lines for the 

transferences obtained in Figure 8.1.2 in black.  

In order to gain some insight into the relationship between the entries of 

the transformed transference, we plot the Cayley transformed transference for 

each frequency on a three-dimensional graph in Hamiltonian space. This is shown 

in Figure 8.2.6, firstly with the azimuth and elevation oriented in order to 

maximise any curvature along the line plotted and secondly oriented so as to 

attempt to look along the blue line and superimpose the six coloured diamonds to 

establish if there is any curvature present on the line. The straight line produced 

by Equation 8.2.3 is given in red in Figure 8.2.6(a). For the reduced eye we 

deduced that the line was straight, however, for the Le Grand eye, we see in 

Figure 8.2.6(b) that there is a small amount of curvature present.  

The relationship between each of the fundamental properties and its 

dependence on frequency of light is nearly linear and similarly the relationship 

between the entries of the transformed transference and its dependence on the 

frequency of light are also nearly linear. This applies to both the reduced and Le 

Grand model eyes. This is in part due to the nature of the frequency of light and 

the eye being approximately a ball of water. We know from Section 4.3, that the 

refractive index of water, according to Cornu’s equation, is approximately 

proportional to frequency. The chromatic aberration of the eye is due to the 

chromatic dispersion of the ocular media, which are mostly water and does not 

differ much between individuals (Smith, 1995).  

Because of the linear relationships, the Cayley transform has enabled us to 

derive a set of linear equations for the dependence of each of the fundamental 
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properties on the frequency of light that gives a good approximation of the 

transference as a function of the frequency of light and given by Equations 8.2.2 

and 3. Because we have derived simple equations in terms of the fundamental 

properties or entries of the transformed transference we have been able to gain 

some insight into the relationship of the fundamental properties and Hamiltonian 

space. The numerical transformed transferences for the Cayley transforms of the 

reduced and Le Grand’s eyes, obtained using Equations 8.2.3 and 2, are given in 

Table 8.2.3.  

  

  

 

 

Figure 8.2.5 Fundamental properties of Le Grand’s eye as a function of frequency of 
light. The solid black lines and diamond reference points represent the dependence as 

shown in Figure 8.1.2 while the red lines represent the dependence of Le Grand’s eye on 

frequency according to the formula and constants given in Equation 8.2.2 and 3 and Table 
8.2.2. The least squares straight lines (shown with black dashed lines in Figure 8.1.2) 

appear superimposed with the red lines for dilation A, disjugacy B and divergence C and 

have been suppressed. The dashed black least squares line for divarication D is shown 

and can be seen to be very close to the red line.  
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Figure 8.2.6 Three-dimensional graph of the Hamiltonian space of the Cayley 

transformed transference of Le Grand’s eye showing change with frequency with 10 n . 

In (a) the azimuth (
60 ) and elevation (

35 ) show a gentle curve along the blue line 

with diamond markers, representing the transformed transference. The red straight line 

with circular markers represents the least squares straight line given by Equation 8.2.3. In 

(b) the azimuth (
5.46 ) and elevation (

36 ) are oriented so as to line up the red and 

blue diamonds. It is clear from the position of the remaining diamonds that the line is not 
completely straight, However, in this position the red line creates a single point, but has 

been suppressed to unclutter the figure. 



IV  FINDINGS AND DISCUSSIONS  8 Chromatic dependence of the transference 

and transformed transferences on frequency  

217 

 

Table 8.2.3 The numerical values for the Cayley transformed transferences for the six 

reference frequencies in THz for the reduced and Le Grand’s eyes obtained using 

Equations 8.2.3 and 2 and constants from Tables 8.2.1 and 2. 

  Colour Reduced eye Le Grand’s eye 

430 Red 












0.3302kD0395.0

mm1.111113302.0
 













0.3079kD0.0408

mm1.487813079.0
 

494 Orange 












0.3325kD0399.0

mm1.111113325.0
 













0.3102kD0.0411

mm1.485813102.0
 

558 Yellow 












0.3350kD0.0403

mm1.111113350.0
 













0.3128kD0.0416

mm1.483413128.0
 

622 Green 












0.3380kD0.0407

mm1.111113380.0
 













0.3156kD0.0420

mm1.480413156.0
 

686 Blue 












0.3416kD0.0412

mm1.111113416.0
 













0.3185kD0.0425

mm1.476913185.0
 

750 Violet 












0.3458kD0.0419

mm1.111113458.0
 













0.3214kD0.0430

mm1.473013214.0
 

 

8.2.2 The logarithmic-transformed transference 

The logarithm of the transference was introduced in Section 3.7.1 and 

defined by Equation 3.7.2. We denote the transforms, as for Cayley transforms, by 

means of a caret (^).  

The dependence of the logarithmic transformed transference on frequency 

of light is similar to the Cayley transformed transference in that the logarithmic 

transformed transference is Hamiltonian and there are three independent entries 

which show the dependence on frequency of light. The units are the same as the 

Cayley transformed transference. The dependence of the individual entries of the 

transformed transference as a function of frequency is given in Figures 8.2.7 and 9 

for the reduced and Le Grand’s eyes respectively. The relationship represented by 

Equation 8.2.1 is clear in the graph. The relationship between the dependencies of 

the three independent entries on the frequency of light on a three-dimensional 

graph is shown in Figure 8.2.8 for the reduced eye and Figure 8.2.10 for Le 

Grand’s eye.  
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Table 8.2.4 gives the numerical values of the transformed transferences for 

six reference frequencies for each of the reduced and Le Grand’s eyes with 10 n . 

From the numerical values in the table and the lines in each of the figures, we see 

that, while the Cayley transform and the logarithmic transform are both 

Hamiltonian, they each define very different regions within the three-dimensional 

spaces. 

The constants in Equation 8.2.3 for the least-squares straight lines in 

Figures 8.2.7 and 9 for the logarithmic transform of the reduced eye and Le 

Grand’s eye are given in Table 8.2.5. Using them we obtain a transference 

dependent on frequency. 

From Section 3.7.1 we define the transference S obtained from the 

logarithmic transform Ŝ  as 

SS ˆexp          (8.2.4) 

 

 

Figure 8.2.7 The entries of the logarithmic transformed transference of the reduced 

eye as a function of frequency. Â  and D̂  are unitless and DA ˆˆ  , while B̂  is in 

millimetres and Ĉ  is in units of kilodioptres. The red dashed lines represent the least-

squares straight line for each entry. 
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Figure 8.2.8 Three-dimensional graph of the logarithmic transformed transference of 
the reduced eye showing change with frequency. In (a) we see the graph with the azimuth 

225  and elevation 
2.35  oriented so as to exaggerate any possible curvature. In (b) the 

azimuth 
135 and elevation 

2.35  are oriented so that we are looking along the line and 

the coloured diamonds are superimposed on each other showing that the line is straight. 
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Table 8.2.4 Logarithmic transformed transferences Ŝ  for six reference frequencies 

(in THz) for the reduced and Le Grand’s eyes. 

  Colour Reduced eye Le Grand’s eye 

430 Red 












0.5995kD0.0718

mm1696.205995.0
 













0.5527kD0.0732

mm6232.205527.0
 

494 Orange 












0.6032kD0.0723

mm1579.206032.0
 













0.5566kD0.0738

mm6052.205566.0
 

558 Yellow 












0.6074kD0.0730

mm1444.206074.0
 













0.5608kD0.0745

mm5845.205608.0
 

622 Green 












0.6124kD0.0737

mm1288.206124.0
 













0.5652kD0.0753

mm5610.205652.0
 

686 Blue 












0.6182kD0.0746

mm1105.206182.0
 













0.5699kD0.0761

mm5360.205699.0
 

750 Violet 












0.6252kD0.0757

mm0886.206252.0
 













0.5746kD0.0769

mm5107.205746.0
 

 

 
Figure 8.2.9 Entries of the logarithmic transformed transference of Le Grand’s eye 

showing change with frequency. The curves for each entry of the transformed 

transference are almost linear. The red dashed lines represent the least-squares straight 

line.  
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Table 8.2.5 The constants for Equation 8.2.3 for the logarithmic transformed 

transference Ŝ  as a function of the frequency of light for the reduced eye and Le Grand’s 

eye. 

The Reduced Eye 

ps109053.7ˆ 5

1

a  5640.0ˆ
2 a  

psmm104909.2ˆ 4

1

b  mm2813.20ˆ
2 b  

pskD102145.1ˆ 5

1

c  kD106312.6ˆ 2

2

c  

Le Grand’s Eye 

ps108870.6ˆ 5

1

a  5226.0ˆ
2 a  

psmm105673.3ˆ 4

1

b  mm7813.20ˆ
2 b  

pskD101743.1ˆ 5

1

c  kD108009.6ˆ 2

2

c  

 

and substituting from Equation 8.2.3 into this equation we obtain 

















































22

22

11

11

ˆˆ

ˆˆ

ˆˆ

ˆˆ
exp

ac

ba
ν

ac

ba
S       (8.2.5) 

the equation for the transference as an approximate dependence on any chosen 

frequency of light, and which is symplectic. Equation 8.2.5 needs an appropriate 

software programme such as MATLAB
®
 to execute the principal matrix exponent 

(expm).  

 The relationship between the three independent entries of the logarithmic 

transformed transference for Le Grand’s eye as a function of frequency is shown 

by the blue line and diamond markers in Figure 8.2.10(a). By comparison, the red 

line and circular markers show the relationship obtained from Equation 8.2.5, also 

for Le Grand’s eye. When the blue line is oriented so as to look along the line in 

Figure 8.2.10 (b), we see that the line is very slightly curved. The red line is 

straight and is suppressed to unclutter the figure. 

In Figures 8.2.11 and 12 the black line with diamonds indicates the 

dependence of the fundamental properties as functions of frequency and matches 

the curves in Figures 8.1.1 and 2 for the two model eyes. The red line with circles 

shows the approximate dependence of the fundamental properties on frequency as 

calculated using Equation 8.2.5.  
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Figure 8.2.10 Three-dimensional graph of the Hamiltonian space of the logarithmic 
transformed transference of Le Grand’s eye showing change with frequency. In (a) the 

azimuth (
325 ) and elevation (

35 ) are oriented so as to exaggerate the very slight curve 

in the line. The blue line and diamond markers show the transformed transference and the 

red line and circular markers indicate the approximate transformed transference according 

to Equation 8.2.5. In (b) the azimuth (
5.134 ) and elevation (

5.35 ) are oriented so as to 

attempt to line up the coloured diamonds and look along the blue line. This is not 

completely possible and we note a very slight curvature to the line. 
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Figure 8.2.11 Fundamental properties of the reduced eye as functions of frequency. 

The black line and diamond reference points show the transference as an exact function 
of frequency and the red lines and circular reference points show the approximate 

transference calculated from the exponential of the linear dependence of the logarithmic 

transformed transference (Equation 8.2.5). The dashed straight lines seen in Figure 8.1.1 
are superimposed on the red lines for dilation A, disjugacy B and divergence C and have 

been supressed. For divarication D it is the straight line at 1. 

 

 
Figure 8.2.12 The fundamental properties of Le Grand’s eye as functions of frequency.  
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The transference for any chosen frequency of light, obtained using the 

linear approximation given in Equation 8.2.5 and constants in Table 8.2.5 has unit 

determinant and is symplectic 

 

8.3 Discussion 

This chapter has looked at the dependence of the transference on the 

frequency of light. In Section 8.1, we saw that this relationship for each of the 

fundamental properties is very close to linear. We obtained an equation for each 

fundamental property using the least squares method for the straight line, 

Equation 8.1.5 (shown by a black dashed straight line on each sub-graph). Once 

combined, the fundamental properties for any particular frequency create an 

estimated transference whose determinant is approximately 1. 

In Section 8.2, we looked at the transformed transference in Hamiltonian 

vector space. In particular we considered the Cayley and the logarithmic 

transforms. Because the 22  Hamiltonian matrix has three independent entries 

we were able to visualise the relationship between the entries in three-dimensional 

vector space. For the reduced eye the relationship is linear and for Le Grand’s eye 

it is nearly perfectly linear. However, when the entries of the transference or 

transformed transference are looked at independently, Le Grand’s eye appears to 

be closer to linear. 

We looked at the dependence of the individual entries of the transformed 

transference Ŝ  on the frequency of light and noted, similar to the fundamental 

properties of the transference S, that the entries of Ŝ  are nearly linear. We 

obtained equations for the least-squares straight line for each of the three 

independent entries of the Cayley transformed transference (Equation 8.2.3). 

When transformed back to a symplectic matrix using Equation 8.2.2, it turns out 

that we have a matrix for every frequency with a determinant of exactly 1. These 

two equations are significant because we now have a formula for the straight line 

approximation giving us the dependence of the fundamental properties and hence 

the Gaussian transference which is symplectic and therefore the transference of an 

optical system. The constants are given for Equation 8.2.3 for the reduced eye 

(Table 8.2.1) and Le Grand’s eye (Table 8.2.2). 
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The formula for the linear dependence of the transference on the frequency 

of light is based on the Cayley transform. This allows us to create simple 

equations that are possible to calculate using a handheld calculator. We also 

derived constants for Equation 8.2.3 for the straight lines of the logarithmic 

transformed transferences (Table 8.2.5), however Equation 8.2.4 shows that to 

transform this equation from Hamiltonian space to a symplectic matrix would 

require the principal matrix exponential which requires sophisticated software 

such as MATLAB
®

.  Because of this, the Cayley transform gives greater insight. 
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9 Chromatic dependence of derived properties 

 

Sections 3.4 and 5.1 looked at some familiar optical properties derived 

from the transference, including power, entrance- and exit-plane refractive 

compensation, and front- and back-vertex power. Then, Sections 3.6 and 5.4 

looked at the cardinal and anti-cardinal points and ways to represent the 

relationships among the points using graphical construction and Pascal’s ring. The 

distances from the system to the points are also properties of the system that can 

be derived from the transference. Here we study the dependence of these derived 

properties on frequency. 

Section 3.7.3 introduced the four characteristic matrices. These 

transformed transferences are not Hamiltonian matrices, but each in its own right 

creates a vector space enabling us to do certain calculations in these vector spaces. 

However, unlike the Cayley and Logarithmic transformed transferences, the point 

P and angle Q characteristics are dimensionally uniform.  Because each 

characteristic matrix is symmetric in Gaussian optics, it comprises three 

independent entries which can be graphed in three-dimensions. The dependence of 

the entries of each of the four characteristic matrices on the frequency of light will 

be graphed in Section 9.3 below. 

 

9.1 Cardinal and anti-cardinal points 

Sections 3.6 and 5.4 looked at the cardinal and anti-cardinal points of 

systems in general. We now look at how the frequency of light affects the 

positions and spread of the various points in the reduced and Le Grand’s eyes.  

We start by obtaining the incident and emergent cardinal and anti-cardinal points 

for the six reference frequencies for each eye. These are given in Tables 9.1.1 to 4. 

We include the chromatic difference in positions, mean and standard deviation for 

each cardinal and anti-cardinal point in the tables. The chromatic difference in 

positions is calculated as  

rbδ QQQ zzz           (9.1.1) 

where Q represents any of the cardinal or anti-cardinal points and b and r 

represent the blue and red frequencies respectively. Longitudinal positions, z, are  
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Table 9.1.1 The positions of the incident cardinal points of the reduced eye for the six 

reference points, the chromatic difference in positions, mean and standard deviation across 

the spectrum 430 to 750 THz. Longitudinal positions z are relative to entrance plane 0T  

and subscripts are defined in Table 3.6.1.  

Colour Freq 

THz 
0N

z  

mm 
0P

z  

mm 

0Fz  

mm 

0Pz  

mm 

0Nz  

mm 

Red 430 –39.2018 –33.6463 –16.8231 0 5.5556 

Orange 494 –38.9761 –33.4206 –16.7103 0 5.5556 

Yellow 558 –38.7198 –33.1643 –16.5821 0 5.5556 

Green 622 –38.4263 –32.8708 –16.4354 0 5.5556 

Blue 686 –38.0868 –32.5312 –16.2656 0 5.5556 

Violet 750 –37.6895 –32.1340 –16.0670 0 5.5556 

Chromatic difference 1.5123 1.5123 0.7562 0 0 

Mean –38.5343 –32.9788 –16.4894 0 5.5556 

Standard deviation 0.4343 0.4343 0.2172 0 0 

 

Table 9.1.2 Positions of the emergent cardinal and anti-cardinal points of the reduced 
eye as a function of frequency for the six reference points. The longitudinal positions z are 

given in millimetres from the exit plane T which is 22.2222 mm downstream of the 

entrance plane. The chromatic difference in position between the red and blue emergent 

points, the mean and standard deviation across the spectrum are given. Subscripts are 
defined in Table 3.6.1. 

Colour 
   
THz 

Pz  

mm 
Nz  

mm 

Fz  

mm 
N

z  

mm 
P

z  

mm 

Red 430 –22.2222 –16.6667 0.1565 16.9796 22.5352 

Orange 494 –22.2222 –16.6667 0.0436 16.7539 22.3095 

Yellow 558 –22.2222 –16.6667 –0.0845 16.4976 22.0532 

Green 622 –22.2222 –16.6667 –0.2313 16.2041 21.7596 

Blue 686 –22.2222 –16.6667 –0.4011 15.8646 21.4201 

Violet 750 –22.2222 –16.6667 –0.5997 15.4673 21.0229 

Chromatic difference 0 0 –0.7562 –1.5123 –1.5123 

Mean –22.2222 –16.6667 –0.1773 16.3121 21.8676 

Standard deviation 0 0 0.2172 0.4343 0.4343 

 

relative to the corresponding transverse plane. Consistent with Section 4.2 the 

frequency of red is taken to be 430 THz and blue to be   
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Table 9.1.3 The positions of the incident cardinal and anti-cardinal points of Le 

Grand’s eye as a function of frequency for six reference frequencies. Positions are relative 

to the entrance plane.   

Colour Freq 

THz 
0N

z  

mm 
0P

z  

mm 

0Fz  

mm 

0Pz  

mm 

0Nz  

mm 

Red 430 –37.6878 –32.0833 –15.2365 1.6103 7.2148 

Orange 494 –37.4540 –31.8489 –15.1221 1.6048 7.2098 

Yellow 558 –37.1882 –31.5854 –14.8489 1.6028 7.2056 

Green 622 –36.9000 –31.3001 –14.8489 1.6022 7.2022 

Blue 686 –36.6078 –31.0094 –14.7042 1.6010 7.1994 

Violet 750 –36.3241 –30.7255 –14.5637 1.5637 7.1967 

Chromatic 

difference 
1.3638 1.3578 0.6728 –0.0122 –0.0182 

Mean –37.0320 –31.4304 –14.9137 1.6029 7.2045 

Standard deviation 0.4032 0.4006 0.1990 0.0027 0.0052 

 

Table 9.1.4 Positions of the emergent cardinal and anti-cardinal points for Le Grand’s 
eye as a function of frequency for six reference frequencies. The distances are relative to 

the exit plane, which is 24.1965 mm downstream from the entrance plane.  

Colour 
Freq 

THz 
Pz  

mm 
Nz  

mm 

Fz  

mm 
N

z  

mm 
P

z  

mm 

Red 430 –22.2758 –16.6712 0.1756 17.0223 22.6269 

Orange 494 –22.2793 –16.6742 0.0526 16.7795 22.3845 

Yellow 558 –22.2788 –16.6760 –0.0819 16.5122 22.1150 

Green 622 –22.2765 –16.6765 –0.2254 16.2258 21.8258 

Blue 686 –22.2750 –16.6766 –0.3714 15.9338 21.5322 

Violet 750 –22.2754 –16.6766 –0.3714 15.9338 21.5322 

Chromatic difference 0.0004 –0.0056 –0.6906 –1.3756 –1.38105 

Mean –22.2771 –16.6755 –0.1588 16.3578 21.9594 

Standard deviation 0.0017 0.0015 0.2028 0.4044 0.4070 

 

750 THz, the end-points of the spectrum. The mean and standard deviation are 

calculated across the spectrum from 430 to 750 THz at every 1 THz. 
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The reduced eye 

Tables 9.1.1 and 2 show that the incident 0P  and emergent P principal points of 

the reduced eye both coincide with the entrance plane (or cornea) 0T  and the 

incident 0N  and emergent N nodal points both coincide with each other at the 

centre of curvature which is 5.5556 mm downstream of the entrance plane. This 

implies that 0P , P, 0N  and N are independent of frequency in the reduced eye and 

remain single point structures. On the other hand, the incident 0F  and emergent F 

and anti-cardinal points 0P , P , 0N  and N  depend on frequency and are therefore 

not point structures, but spread out like little rainbows into fuzzy zones rather than 

points. Furthermore, the magnitude of the chromatic difference in position of each 

of the anti-cardinal points is the same for the reduced eye, that is, 

mm5123.1δ 
Q

z .  

 

Le Grand’s eye 

Tables 9.1.3 and 4 show that all ten of the cardinal and anti-cardinal points for Le 

Grand’s eye depend on frequency and each is a fuzzy zone like a little rainbow. 

This is represented by both the chromatic difference and standard deviation. 

Because the points are mathematical concepts they will not actually be visible as a 

rainbow, with the exception of F. The statistical data at the bottom of each table 

shows that the fuzzy spread is greater for the anti-cardinal points than for the 

cardinal points. The 0P ’s and P’s demonstrate the least spread, with the fuzzy 

spread increasing with each point as it moves further away from the 0P ’s and P’s. 
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9.1.1 Graphical construction 

The data given in Tables 9.1.1 to 4 is displayed visually using graphical 

construction as introduced in Sections 3.6.4 and 5.4.2. For this we construct the 

locator lines and points for the red and blue transferences for each of the reduced 

and Le Grand’s eyes. In order to prevent the graph from being too cluttered, only 

the locator lines for the transferences representing the red (430 THz) and blue 

(750 THz) frequencies will be displayed. The positions of the ten cardinal and 

anti-cardinal points are shown. 

 

Graphical construction of the reduced eye 

Figure 9.1.1 shows the graphical construction for the reduced eye showing 

the locator lines for the red and blue transferences and the ten cardinal and anti-

cardinal points. In Figure 9.1.1 the black horizontal line represents the optical axis 

Z, positioned at 0X . The two vertical black lines represent the entrance plane 

0T  at 0z  and the exit plane T a distance z downstream from 0T  at mm
9

200
z , 

which is the length of the reduced eye. The locator lines 0L  and L for the reduced 

eye are drawn in red (430 THz) and blue (750 THz). From Section 3.6.4, the slope 

of the incident locator lines 0L   is given by 
0n

C
. For the reduced eye in air, the 

refractive index of air is constant, 1, however, we know that C depends on 

frequency, and therefore the slope of 0L  also varies with frequency. The slope of 

the emergent locator line L is given by 
n

C
. Both C and n depend on frequency and 

hence so does the slope of L. The slope of the blue locator line is steeper in 

magnitude than that of the red line for both 0L  and L.  

In Figure 9.1.1 0F  and F are positioned at the point of intersection between 

the respective locator line 0L  and L and the optical axis Z. The 0F ’s show that the 

blue 0F  is closer to the eye than the red 0F . More applicably, for F, the blue F is 

before the exit-plane T or retina and the red F is behind the retina. While the result 

is not surprising, the locator lines visibly illustrate this. 
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Locator line diagrams were described in Section 3.6.2. In Figure 9.1.1 

horizontal lines are drawn in green at 1X  and 1X  and vertical lines 

extended to the longitudinal axis for 0P  and P in green for the red points and cyan 

for the blue points. 0P  and P are coincident with 0T  for the reduced eye and only 

the cyan line is visible in the diagram. The red and blue anti-principal points 0P  

and P  are distinct. 0P  and P simplify as follows: for 0Pz  for the reduced eye 

1D  (from Equation 5.5.1), regardless of frequency. Substituting 1D  and 

1X  for 0P  from Table 3.6.1 into Equation 3.6.1, it simplifies to 0 making 0Pz  

coincident with the entrance plane for all frequencies. For 
Pz , by substituting 

1X  and A and C from Equation 5.5.1 into Equation 3.6.2, 
Pz  simplifies to z . 

Because z is the length of the reduced eye, P is also coincident with 0T  for all 

frequencies. This is illustrated in Figure 9.1.1 where all four locator lines cross at 

the entrance-plane at both 1X  and 1
1


X
, shown by the uppermost green 

horizontal line. 

 

 

Figure 9.1.1 The graphical construction for the reduced eye showing the locator lines 
for the red and blue transferences and the ten cardinal and anti-cardinal points. 
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The nodal and anti-nodal points are indicated in Figure 9.1.1 with 

horizontal lines at 
0n

n
 for 0N  and 0N  and 

n

n0  for N  and N  in red and blue 

respectively. Because the indices depend on frequency, we obtain different 

positions for the red and blue horizontal lines. In turn vertical lines are extended 

to indicate the position of the nodal points on the longitudinal axis. For the 

reduced eye 0N  and N coincide, however 0N  and N  are distinct. The coincidence 

of 0N  and N is found in Equation 5.5.1; substituting C, D and X into Equation 

3.6.1, N0z  simplifies to r, the radius of curvature of the corneal refracting surface. 

Therefore N0z  is independent of refractive indices, 0n  and n, and, hence, 

frequency  . This is seen in Figure 9.1.1 by the single blue line dropping to the 

position for 0N . Similarly, substituting for X, and A and C from Equation 5.5.1 

into Equation 3.6.2 and simplifying, we obtain the position for N as zrz N  

with respect to T. This places N at position r with respect to 0T  for all frequencies. 

N is therefore independent of frequency and coincident with 0N . 

 

Simplifications of anti-cardinal points for the reduced eye 

We now turn our attention to the anti-cardinal points of the reduced eye, 

starting with 0P  and P . We know that the horizontal line to find the position of 

the points on the locator lines needs to be drawn at 1X , shown by the lower 

green horizontal line in Figure 9.1.1. From the figure and from Equations 5.5.1 

and 3.6.1 and 2, we see that 0P  and P  depend on frequency. Similarly, 0N  and N

are also dependent on frequency. 0N  and N  for the reduced eye are equidistant 

from the entrance-plane, albeit in opposite directions. From Tables 9.1.1 and 2 we 

see that each of the anti-cardinal points is equidistant between the red and blue 

positions (chromatic difference); this is shown algebraically for 0P , P , 0N  and 

N  below.  

Most of the simplifications that occur for the reduced eye above and in 

Figure 9.1.1 stem from the transference and the fact that 1D  for all 
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transferences of the reduced eye, regardless of the frequency. Let us look at this in 

more detail. Firstly, 0N  and N  are equidistant from 0T , in opposite directions. 

Starting with Equation 3.6.3, we substitute the values for C and D from Equation 

5.5.1 and 10 n  to obtain 

r
n

n
z

1

1
0N 


         (9.1.2) 

for the position of 0N  of the reduced eye and 

zr
n

n
z 






1

1
N

        (9.1.3) 

for the position of N  of the reduced eye. Because the emergent points are defined 

as the distance from the exit-plane, we expect that the incident and emergent 

formulae will differ by the length of the reduced eye, z. From Equations 9.1.2 and 

3, we see that 0N  and N  are equidistant from 0T , 0N  being upstream and N   

downstream of 0T .  

Similar equations derived for 0P  and P , from 0T  and T respectively, turn 

out to be 

1

2
0P 




n

r
z          (9.1.4) 

for the distance of 0P   from 0T , and 

z
n

nr
z 




1

2
P

         (9.1.5) 

for the distance of P  from T. These are clearly not equidistant from 0T  and 

confirms what we deduce from Figure 9.1.1. 

Secondly, we examine the result in Tables 9.1.1 and 2 that the magnitude 

of the distance between the red and blue anti-cardinal points in the reduced eye is 

the same for all four anti-cardinal points. Starting with the chromatic difference 

between points defined in Equation 9.1.1 and substituting in turn the equations 

derived for each of the anti-cardinal points in Equations 9.1.2 to 5, we obtain the 

chromatic difference in position of 0P  

 
  11

2
δ

0P0P0P





rb

rbrb

nn

nnr
zzz .      (9.1.6) 
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The equation for 
0N

δz , the chromatic difference in distance between the red and 

blue 0N ’s is equal to Equation 9.1.6. The chromatic difference in position of P  

and N  are equal in magnitude, but the negative of the incident equation. That is to 

say  

PN0P0N
δδδδ zzzz  .       (9.1.7) 

The negative value found in the chromatic difference of the emergent anti-cardinal 

points indicates that the positions of the red and blue anti-cardinal points are 

switched compared to the incident points. The equalities derived in Equations 

9.1.2 to 7 only apply to the reduced eye and cannot be generalised to other eyes. 

We conclude that while the reduced eye is well suited to the study of most 

chromatic properties, it is not suitable for studying cardinal points and, in 

particular, not suitable for studying the dependence of the cardinal points on 

frequency. 

 

Graphical construction of Le Grand’s eye 

Let’s us, therefore, consider a more complex Gaussian eye, that of Le 

Grand’s four-surface eye. From Table 8.1.1 and Section 8.1.1 we already know 

that all four fundamental properties depend on the frequency of the light 

traversing the system. Figure 9.1.2 shows the graphical construction of the locator 

lines for Le grand’s eye for the red (430 THz) and blue (750 THz) frequencies. 

The optical axis Z, entrance-plane 0T  and exit-plane T are the same as in 

Figure 9.1.1. It is apparent that Le Grand’s eye does not simplify to the extent that 

the reduced eye does. We start with the incident locator lines 0L , the slope of 

which, from the equation for the slope given above and from Figure 9.1.2, depend 

on frequency. The slope of 0L  is 0.05936 kD for the red line and 0.06187 kD for 

the blue line. Unsurprisingly, the intersection of 0L   with Z shows that the blue 

0F  is in closer proximity to the eye than the red 0F . 0L  intersects the entrance-

plane at position D. From the transferences listed in Table 8.1.1 we know that the 

entries for D depend on frequency and therefore the two 0L s cross 0T  at different 
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positions. The values for D are, however, very close and it is difficult to see the 

separation on Figure 9.1.2. The red and blue 0L s cross at  

rb

rb
Q0

CC

DD
z




         (9.1.8) 

which is 1.32 mm downstream of 0T . 

The emergent locator lines L intersect T at A. From Section 3.3.1, we 

know that a positive value for A implies hyperopia and a negative value, myopia. 

This is visible in Figure 9.1.2, where the red L indicates a positive value for A and 

intersects Z behind T or the retina and the blue L shows a negative value for A and 

intersects Z with F before the retina. The red and blue L’s intersect at position 

b

b

r

r

rb
Q

n

C

n

C

AA
z




          (9.1.9) 

which is –22.4474 mm from T, or 1.7491 mm from 0T . The position of 

intersection of the incident red and blue 0L ’s does not coincide with the same for 

L’s, nor does either intersection coincide with the position of either 0P ’s or P’s. 

The slopes of the L’s are –0.04454 kD for the red line and –0.04596 kD for the 

Figure 9.1.2 The graphical construction for Le Grand’s eye showing the locator lines 

for the red and blue transferences and the ten cardinal and anti-cardinal points.  
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blue line. Because the difference in slope of the 0L ’s and L’s is so slight, it is 

difficult to distinguish the point of intersection of the red and blue lines in Figure 

9.1.2. 

In Figure 9.1.2 the principal and anti-principal horizontal lines are drawn 

in green at 1 or –1 respectively and vertical lines extended to Z in green for the 

red points and cyan for the blue points. The 0P ’s and P’s are separate, and do not 

coincide with 0T . The red and blue 0P ’s and P’s are also distinct, but too close to 

be discernible in the diagram. The cyan lines appear superimposed over the green 

lines and from the diagram it appears that each of 0P  and P is the same for the red 

and blue lines. However, if we look at the values given in Tables 9.1.3 and 4, we 

see that the red and blue transferences have different values for the 0P ’s and P’s 

and therefore the 0P ’s and P’s depend on frequency. The 0P ’s and P ’s are 

distinct. 

In Figure 9.1.2 the nodal and anti-nodal points are indicated with 

horizontal lines at 
0n

n
  at 0N  and 0N  and 

n

n0  for N  and N  in red and blue 

respectively. Because the indices depend on frequency, we obtain different 

positions for the horizontal lines. For Le Grand’s eye the 0N ’s and N’s are 

distinct and the red and blue points are also distinct, but too close to be 

distinguishable in the diagram. For clarity, we see from Tables 9.1.3 and 4 that the 

red and blue 0N ’s and N’s are distinct and therefore the 0N ’s and N’s depend on 

frequency, implying that the 0N ’s and N’s  are not points, but rather fuzzy nodal 

zones. The 0N ’s and N  ‘s  are distinct for red and blue.     

Unlike the reduced eye, the chromatic difference in position between each 

of the four anti-cardinal points for Le Grand’s eye is different for all four points.  

 

Summary 

We have illustrated how the principal and nodal points for the reduced eye 

are independent of frequency and that 0P  and P are positioned at the entrance 

plane while  0N  and N are positioned at the centre of curvature of the single 
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refracting surface. For the reduced eye, 0F , F and the anti-cardinal points depend 

on frequency and the chromatic difference in distance between the red and blue 

position of each of the anti-cardinal points is the same, but the sequence is 

different for incidence and emergence.  

On the other hand, for the four-surface Le Grand eye, all six cardinal and 

four anti-cardinal points depend on frequency and are distinct from each other, 

implying that these cardinal points are not points but fuzzy zones.  

 

9.1.2 Pascal’s ring 

In the previous section, we looked at the positions and changes among the 

various cardinal and anti-cardinal points. Tables 9.1.1 to 4 gave numerical values 

and we were able to see which points were dependent on frequency. The graphical 

constructions given in Figure 9.1.1 for the reduced eye and Figure 9.1.2 for Le 

Grand’s eye showed the relationships between the positions of the points, 

however, certain points are so close together as to be indiscernible in the figures. 

Pascal’s ring was introduced in Section 3.6.5 and expanded on in Section 5.4.3 

and while the ring is not drawn to scale, it does show the relationships among the 

points and the directions of the changes. Pascal’s ring emphasises which points 

are dependent, or, in the case of the reduced eye, independent, of frequency. 

 

Pascal’s ring for the reduced eye 

Pascal’s ring for the reduced eye as a function of frequency is shown in 

Figure 9.1.3. For clarity, we compare the rings for only the red and blue cardinal 

points. From the graphical construction of the reduced eye in Figure 9.1.1, there is 

no separation of principal planes nor nodal points and so for Pascal’s ring the 

central square fuses to become a single vertical line. As expected, the blue focal 

points are both closer to the eye than the red focal points and this is represented in 

Pascal’s ring. When we consider the Pascal’s ring in Figure 9.1.3 and the 

extended Pascal’s ring in Figure 9.1.4 we see that, for the reduced eye, the blue 

ring contracts towards the principal-nodal line. The width, between the focal 

points, is narrower for the blue than for the red ring structure. The vertical height 

of both red and blue structures is equal.  



IV  FINDINGS AND DISCUSSION  9 Chromatic dependence of derived properties 

238 

 

 

 

 

Figure 9.1.3 Pascal’s ring for the reduced eye for the red and blue cardinal points. The 
vertical black line is common to both frequencies.  

 

 

 
Figure 9.1.4 Extended Pascal’s ring for the reduced eye showing the addition of anti-

cardinal points and directions of all relationships.  
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Pascal’s ring for Le Grand’s eye 

The reduced eye has both advantages and disadvantages that come hand in 

hand with the simplest model eye available. In order to highlight some of the 

disadvantages of the simplification, let us take a look at Pascal’s ring for the four- 

surface Le Grand eye. Pascal’s ring is shown in Figure 9.1.5 and the extended 

Pascal’s ring in Figure 9.1.6. 

Pascal’s ring is shown in Figure 9.1.5 for Le Grand’s eye for the set of six 

cardinal points for the red and blue frequencies derived from the transferences. 

The blue ring is narrower than the red ring for the distance between 0F  and F, 

which matches what we found in the graphical construction in Figure 9.1.2. The 

blue inner square is wider and shorter than the red inner square. This width  

 

Figure 9.1.5 Pascal’s ring for Le Grand’s eye showing rings for the red and blue 
frequencies.  

 

 

 

Figure 9.1.6 Extended Pascal’s ring of Le Grand’s eye for red and blue frequencies, 
showing the cardinal and anti-cardinal points and the directions of the relationships. 
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represents the distance between 0P  and P, which Pascal called the “thickness” 

(Pascal, 1950a), and also between 0N  and N. While the difference is too small to 

be evident in the graphical construction, from Tables 9.1.3 and 4 we calculate the 

width of the square to be 0.3230 mm for the blue “thickness” and 0.3105 mm for 

the red. This represents a chromatic difference of 0.0126 mm between the red and 

blue “thicknesses”. The height of the square represents the distance between 0P  

and 0N  or between P and N. The blue P and N are positioned closer together than 

the red P and N. From Tables 9.1.3 and 4 we calculate the distance from P to N to 

be 5.5986 mm for blue and 5.6046 mm for red. This represents a chromatic 

difference of 0060.0  mm which is not discernible in Figure 9.1.2.  

The equivalent incident focal length eqf0  is represented by the distance 

from 0P  to 0F  and is equal to the distance from F to N. For the blue eqf0  this is a 

distance of mm1618.16  and for the red eqf0  this is mm8468.16 , giving us a 

chromatic difference of mm6850.0 . eqf  is the length from P to F and is equal to 

the length from 0F to 0N . This is a distance of 21.7604 mm for the blue eqf  and 

22.4513 mm for the red eqf , giving us a chromatic difference of –0.6910 mm. 

These are very small differences and not obvious from Figure 9.1.2, but do 

indicate that the positions of, and relationships among the cardinal points of Le 

Grand’s eye are all dependent on frequency. When we compare eqf0  and eqf  it 

becomes obvious why we cannot draw Pascal’s ring to scale. The distortion 

created by the unequal eqf0  and eqf  would create a shape that resembles a 

lightning bolt at best, or one that would not join up at all. 

In Figure 9.1.6 we observe that the blue extended Pascal’s ring appears to 

be contracted compared to the red ring. It becomes obvious that, despite the rings 

not being drawn to scale, the chromatic difference in position of the anti-cardinal 

points is greater than the same for the cardinal points. 
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Conclusion 

From Pascal’s ring we see which points depend on frequency and which 

are independent of frequency. The reduced eye clearly shows that the principal 

and nodal points are independent of frequency, but that the focal points and the 

anti-cardinal points do depend on frequency. Pascal’s ring for Le Grand’s eye 

shows clearly that all six cardinal and four anti-cardinal points do depend on 

frequency. In addition the ring shows the direction of chromatic differences of 

each point. 

 

9.2 Derived properties as a function of frequency 

In Sections 3.4 and 5.1 we looked at a selection of derived properties, 

including power, entrance- and exit-plane refractive compensation and front- and 

back-vertex power. For each of these derived properties, we graph its dependence 

on the frequency of light. Although certain derived properties, such as exit-plane 

refractive compensation, apply to systems in general and have little application to 

the eye, we will include them because they have application to the characteristic 

matrices that will be discussed in Section 9.3. 

 

9.2.1 Power 

Power of a system is the simplest derived property, given by Equation 

3.4.3. From the simplicity of the definition, we see that the dependence will be 

similar to that in Section 8.1.1 for each of the C sub-graphs. We therefore look at 

the dependence of power on the frequency of light only briefly. 

Figure 9.2.1 shows the dependence of power of the system on the 

frequency of light for the reduced eye (blue with circles) and Le Grand’s eye 

(black with diamonds). The curves represent the actual values calculated from the 

transference as a function of frequency and the dotted-dashed lines represent the 

power approximated from the linear dependence on the frequency of light 

(Equations 8.2.2 and 3).  

The numerical values for the powers at the six reference points are given 

in Table 9.2.1. In addition the chromatic difference in power is given for the 

actual and approximate power values, represented by the dashed lines in Figure  
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Table 9.2.1 The power of the reduced and Le Grand’s eyes at six reference 

frequencies, and their comparative values according to the formula for the symplectic 

straight line dependence on the frequency of light derived in the previous chapter 
(Equations 8.2.2 and 3).  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual  

D 

Approximate 

D 

Actual  

D 

Approximate 

D 

430 Red 59.4419 59.2756 59.3586 59.2736 

494 Orange 59.8434 59.8299 59.7841 59.7877 

558 Yellow 60.3058 60.6825 60.2625 60.2999 

622 Green 60.8444 60.9335 60.7860 60.8104 

686 Blue 61.4794 61.4828 61.3301 61.3192 

750 Violet 62.2394 62.0304 61.8744 61.8263 

Chromatic difference in 

power 
2.7975 2.7548 2.5158 2.5526 

 

9.2.1, for the reduced and Le Grand eyes. The values in the column labelled 

“approximate” have been obtained using Equations 8.2.2 and 3.  

 

 

Figure 9.2.1 The dependence of power of the model eyes on the frequency of light. The 

corresponding dot-dashed lines in blue and black respectively show the straight line 
relationship according to Equations 8.2.2 and 3. 
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The values for the actual and approximate powers given in Table 9.2.1 

compare well. Additionally, the values for chromatic difference in power compare 

favourably to published values (Section 2.3.1). These vary according to the 

frequencies chosen for red and blue ends of the spectrum.  

 

9.2.2 Corneal-plane and exit-plane refractive compensation 

The formulae for entrance-plane and exit-plane refractive compensation 

are given by Equations 3.4.6 and 5.1.3 respectively. While both of these formulae 

are general for all systems, entrance-plane refractive compensation for an eye is 

the equivalent of corneal-plane refractive compensation, however, exit-plane 

refractive compensation is not of conventional optometric interest. However, 

because the formula is related to the fourth entry for the point characteristic 

matrix, we will include exit-plane refractive compensation in our discussion. The 

dependence of the entrance- and exit-plane refractive compensations on frequency 

are shown in Figures 9.2.2 and 3, respectively.  

Figure 9.2.2 shows that the corneal-plane refractive compensation is 

similar for the reduced and Le Grand’s eyes. The reduced eye shows a more 

curved dependence than Le Grand’s eye, which reflects the underlying structure 

of the two model eyes and the formulae for the refractive indices of the media. 

The values obtained using the actual transferences dependent on frequency are 

very similar to the approximated values obtained using the linear symplectic 

calculated transferences. The values for six reference frequencies are given in 

Table 9.2.2 for the refractive compensation of the two eyes and compared with the 

values obtained using Equations 8.2.2 and 3. 

The exit-plane refractive compensation in Figure 9.2.3 shows almost six 

dioptres difference between the lines for the two eyes while the chromatic 

difference between the red and blue frequencies is far less for each eye compared 

with the corneal-plane refractive compensation. The dotted-dashed straight line is 

almost indistinguishable from the solid curved line for Le Grand’s eye. From 

Table 9.2.3 we see that the chromatic difference in exit-plane refractive 

compensation is 0.69 D for the reduced eye and 0.52 D for Le Grand’s eye. 
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Table 9.2.2 The entrance-plane refractive compensation of the reduced and Le Grand’s 

eyes at six reference frequencies, and their comparative values according to the formula for 

the symplectic straight line dependence on the frequency of light derived in the previous 
chapter (Equations 8.2.2 and 3).  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual 

D 

Approximate 

D 

Actual 

D 

Approximate 

D 

430 Red 0.4185 0.5412 0.4674 0.5250 

494 Orange 0.1175 0.1264 0.1412 0.1387 

558 Yellow –0.2294 –0.2876 –0.2216 –0.2470 

622 Green –0.6333 –0.7007 –1.6155 –0.6322 

686 Blue –1.1095 –1.1130 –1.0243 –1.0169 

750 Violet –1.6796 –1.5245 –1.4338 –1.4009 

Chromatic difference in 

entrance-plane refractive 

compensation 

–2.0981 –2.0657 –1.9013 –1.9260 

 

 

 

Figure 9.2.2 The dependence of the entrance-plane refractive compensation of the 
reduced and Le Grand’s eyes on the frequency of light. The entrance-plane refractive 

compensation approximated from Equations 8.2.2 and 3 for the linear symplectic 

dependence transference is indicated by the straight dotted-dashed lines in corresponding 
colours. 
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Table 9.2.3 The exit-plane refractive compensation of the reduced and Le Grand 

model eyes at the six reference frequencies, and their comparative values according to the 

formula for the symplectic straight line dependence on the frequency of light derived in the 
previous chapter (Equations 8.2.2 and 3).  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual 

D 

Approximate 

D 

Actual 

D 

Approximate 

D 

430 Red 59.8605 59.8253 54.0673 54.05699 

494 Orange 59.9608 59.9612 54.1638 54.1624 

558 Yellow 60.0765 60.0980 54.2611 54.2658 

622 Green 60.2111 60.2355 54.3644 54.3699 

686 Blue 60.3698 60.3739 54.4751 54.4749 

750 Violet 60.5599 60.5131 54.5920 54.5807 

Chromatic difference in 

exit-plane refractive 

compensation 

0.6994 0.6878 0.5247 0.5208 

 

 

 

Figure 9.2.3 The dependence of the exit-plane refractive compensation of the reduced 
eye and Le Grand’s eye on the frequency of light. The approximate exit-plane refractive 

compensation obtained from Equations 8.2.2 and 3 for the linear symplectic dependence 

transference is indicated by the straight dotted-dashed lines in corresponding colours.  
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9.2.3 Front- and back-vertex power 

The formulae for front- and back-vertex power of systems in general, 

derived from the transference, were given in Equations 3.4.16 and 11, 

respectively. From the definition, back-vertex power measures the vergence at 

emergence from the system when incident vergence is zero. For an eye, including 

a model eye, this measures the vergence at the retinal-plane. Because light focuses 

at or close to the retina, we expect the back-vertex power to approach infinity. 

This is seen in Figure 9.2.4. The formula for back-vertex power is found in the 

first entry of the first mixed characteristic matrix M (Equation 3.7.23). 

In Figure 9.2.4 we see the vergence initially increasing rapidly as we move 

from the red markers to the orange markers and asymptotes to infinity. The back-

vertex power between 430 and 517 THz is positive. The vertical lines indicate a 

jump from infinity to minus infinity and show the frequency at which each eye 

forms a focal point (image). This is 517 THz for the reduced eye and 520THz for 

Le Grand’s eye. The vergence then, again increasing as we move from yellow 

through green and blue to violet, asymptotes from minus infinity and eventually 

asymptotes to the zero dioptre vergence line in the ultra-violet range. The back-

vertex powers of six reference frequencies are given in Table 9.2.4 for the two 

model eyes, compared with the values obtained using Equations 8.2.2 and 3. 

Front-vertex-power defines the vergence at the entrance plane required for 

light to emerge with zero vergence. This is plausible for systems in general, but 

makes little sense for the eye. It may have an application for the reversed eye, 

however this is beyond the scope of this dissertation. Nonetheless, because the 

formula for front-vertex power is the negative of the fourth entry of the second 

mixed characteristic matrix N (Equation 3.7.24) we shall include it here. The 

dependence of the front-vertex power on frequency is shown in Figure 9.2.5. The 

dependence is very nearly linear for the two model eyes. 

From Table 9.2.5 and Figure 9.2.5 we see that there is approximately a 6 D 

difference between the two model eyes. The chromatic difference in front-vertex 

power is 2.80 D for the reduced eye and 3.09 D for Le Grand’s eye. 
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Table 9.2.4 Back-vertex power of the reduced and Le Grand’s model eyes for six 

coloured reference points. The columns are separated into actual values and those 

approximated using Equations 8.2.2 and 3.  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual 

D 

Approximate 

D 

Actual 

D 

Approximate 

D 

430 Red 8 501 6 551 7 591 6 745 

494 Orange 30 548 28 382 25 373 25 824 

558 Yellow –15 795 –12 618 –16 336 –14 664 

622 Green –5 786 –5 238 –5 948 –5 794 

686 Blue –3 345 –3 335 –3 617 –3 642 

750 Violet –2 244 –2 462 –2 614 –2 673 

 

 

 

Figure 9.2.4 Back-vertex power of the two model eyes as a function of frequency. The 
corresponding dashed lines are approximated according to Equations 8.2.2 and 3 for the 

linear relationship of the transference’s dependency on frequency. The vertical axis has 

been restricted to [–20 000 D  35 000 D] in order to include all six reference points and to 
discern the individual curves, which approach ± infinity dioptres. 
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Table 9.2.5 Front-vertex power of the reduced and Le Grand’s model eyes for the six 

coloured reference points. Chromatic difference of front-vertex power is given. The 

columns are separated into actual values and those approximated using Equations 8.2.2 and 
3.  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual 

D 

Approximate 

D 

Actual 

D 

Approximate 

D 

430 Red 59.4419 59.2671 65.6319 65.5111 

494 Orange 59.8434 59.8250 66.1284 66.1355 

558 Yellow 60.3058 60.0380 66.7053 66.7570 

622 Green 60.8444 60.9031 67.3450 67.3755 

686 Blue 61.4794 61.1478 68.0077 67.9910 

750 Violet 62.2394 62.2023 68.6638 68.6035 

Chromatic difference in 

front-vertex power 
2.7975 2.7556 3.0320 3.0924 

 

 

Figure 9.2.5 Front-vertex power of the two model eyes as a function of frequency. The 
solid lines represent the actual values from the transference while the dotted-dashed lines 

are approximated from the linearly transformed transferences according to Equation 8.2.2.  
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9.3 Characteristic matrices 

The four characteristic matrices were introduced in Section 3.7.3; they are 

symmetric and represent familiar derived properties in relationship to each other. 

Our interest lies in the fact that each of the characteristic matrices is symmetric 

and therefore can be represented in a three-dimensional vector space. Of these 

characteristic matrices, the point characteristic P and the angle characteristic Q 

appear to be the most promising for our objective because they each have the 

same units throughout. P has units of inverse length and Q units of length. It is the 

uniformity of units of the point- and angle-characteristics that holds appeal for our 

purposes. M and N each have mixed units, however there are some interesting 

relationships among the entries of each of the four characteristic matrices and 

many of the familiar properties of systems.  

Equations 3.7.15, 16, 18 and 19 give the four characteristic matrices in 

terms of varying combinations of incident or emergent transverse positions or 

reduced inclinations. In each case, two knowns map to two unknowns. Then the 

entries of the four characteristic matrices are defined in terms of the fundamental 

properties of the Gaussian transference in Equations 3.7.21, 22, 23 and 24. 

What becomes apparent in Section 3.7.3 is that for each characteristic 

matrix there are issues of singularity that limit the usefulness of each matrix for 

particular situations. It further implies that the choice of any two of 0y , y, 0  or 

  does not necessarily fix the other two (Harris and van Gool, 2004). 

 

9.3.1 Point characteristic  

As is apparent from Equation 3.7.21, the point characteristic exists 

provided the disjugacy is not zero, or does not approach zero. This would be 

problematic in a conjugate or thin system, however we foresee no problem in a 

model eye. As pointed out in Section 3.7.3, the first entry represents the corneal-

plane refractive compensation (
0F ) given by Equation 3.4.6 and the second and 

third entries are the negative inverse of disjugacy ( 1 B ). The fourth entry is the 

exit-plane refractive compensation (
CF ) of the system (Equation 5.1.3). This is of 

interest for systems in general, but apparently holds little practical meaning for the  
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Table 9.3.1 The point characteristic matrices P for the reduced and Le Grand’s eyes 

for six reference frequencies. 

Frequency  Point characteristic P in dioptres 

THz Colour Reduced eye Le Grand’s eye 

430 Red 












59.86058605.59

59.86054185.0
 













54.06737814.59

59.78144674.0
 

494 Orange 












59.96089608.59

9608.591175.0
 













54.16389117.59

9117.591412.0
 

558 Yellow 












60.07650765.60

0765.600.2294
 













54.26110623.60

0623.600.2216
 

622 Green 












60.21112111.60

2111.600.6333
 













54.36442304.60

2304.600.6155
 

686 Blue 












60.36983698.60

3698.601.1095
 













54.47514064.60

4064.601.0243
 

750 Violet 












60.55995599.60

5599.601.6796
 













54.59205824.60

5824.601.4338
 

 

eye. The divergence of the system does not play a role. We summarise the entries 

of the point characteristic matrix as 
























C

1

1

0

B

B

F

F
P . 

The entrance- and exit-plane refractive compensation, dependent on 

frequency, was shown for the two model eyes in Figures 9.2.2 and 3. The 

dependence of B on frequency is shown in Figure 8.1.3. The dependence of 1 B  

resembles a nearly straight line, similar to that shown in Figure 8.1.3. The 

chromatic difference in 1 B  is –0.6994 D and –0.8010 D for the reduced and Le 

Grand’s eyes, respectively. In Figure 9.3.1, we represent the point characteristic of 

the reduced eye in a three-dimensional vector space. The axes are labelled 

according to the derived property that each represents and the units are dioptres. 

Unsurprisingly the relationship is perfectly linear and is seen when the azimuth 

and elevation are oriented such that all the diamonds line up behind each other 

perfectly. We note that the coloured reference points, which are evenly spread at  
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Figure 9.3.1 The three independent entries of P the point characteristic for the 

reduced eye. Units are dioptres.  

 

 

Figure 9.3.2 The three independent entries of P the point characteristic as a function of 

frequency for the Le Grand eye. The line is slightly curved. Units are dioptres. 
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The three independent entries of P for Le Grand’s eye are illustrated in 

every 64 THz, appear to be closer together on the red end of the spectrum 

compared to the blue end of the spectrum. Figure 9.3.2 and show a slightly 

curved line. The point characteristic matrices of the two model eyes are given in 

Table 9.3.1 for six reference frequencies. 

 

9.3.2 Angle characteristic  

The angle characteristic Q (Equation 3.7.22) exists provided the 

divergence C is not zero. This would be a problem for an afocal system; however 

this poses no problem for an eye or model eye. Of interest is the relationship of 

the diagonal elements to the negative inverse of front- ( fvF ) and back-vertex 

power ( bvF ), as given in Equations 3.4.16 and 11. The dependencies of fvF  and 

bvF  on frequency are displayed graphically in Figures 9.2.4 and 5. Also related, 

are the incident ( 0Fz ) and emergent focal lengths (
Fz ) (Equations 3.6.5 and 12). 

The relationships of the focal lengths to the system were discussed in Sections 3.6 

and 5.4 and their dependence on frequency displayed graphically in Section 9.1. 

However all the entries are in units of length and, similar to P, make the axes 

comparable once graphed. 

Down the diagonal, the first entry is 1

fv

 F  and the last entry is 1

bv

 F . 

There is also a relationship between the first entry and incident focal length in that 

F0

0

1 1
z

n
DC           (9.3.1) 

and between the fourth entry and the emergent focal length as 

F

1 1
z

n
AC  .         (9.3.2) 

The off-diagonal entries represent the inverse of divergence and are related to the 

incident and emergent equivalent focal lengths as 

eqeq f
n

f
nC

111
0

0

 .        (9.3.3) 

These relationships can be summarised as 
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1

bveq

1-

eq0

1

0

1

fv

n Ff

fnF
Q  

or 






















F

1

eq

1

eq0

1

00F

1

0

n znf

fnzn
Q . 

We saw from Section 9.1 that all of these focal lengths depend on the frequency 

of light. These relationships are shown in Figure 9.3.3 for the reduced eye and 

Figure 9.3.4 for Le Grand’s eye as a function of frequency. Unsurprisingly, the 

relationships, as for P, form a straight line for the reduced eye and a nearly 

straight line for Le Grand’s eye. Q is given for six reference frequencies in Table 

9.3.2. 

As per the point characteristic, the relationships among the independent 

entries of Q is linear. Furthermore, the spacing between the six reference 

frequencies is more spread out at the blue end of the spectrum. While the 

differences between the red and blue angle characteristic matrices are similar for 

the two model eyes, the actual positions are slightly different. This can be seen by 

comparing the numerical values in the angle characteristic matrices given in Table 

9.3.2. 

 

Figure 9.3.3 The angle characteristic Q of the reduced eye. Units are millimetres.  
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Table 9.3.2 The angle characteristic matrices Q for the six reference frequencies for 

the reduced eye and Le Grand’s eye.  

Frequency  Angle characteristic Q in millimetres 

THz Colour Reduced eye Le Grand’s eye 

430 Red 












0.11768231.16

8231.168231.61
 













0.13178468.16

8468.162365.51
 

494 Orange 












0.03277103.16

7103.167103.61
 













0.039417269.16

7269.161221.51
 

558 Yellow 












0.06335821.16

5821.165821.61
 













0.06125941.16

5941.169913.41
 

622 Green 












0.17294354.16

4354.164354.61
 













0.16814511.16

4511.168489.41
 

686 Blue 












0.29892656.16

2656.162656.61
 













0.27653052.16

3052.167042.41
 

750 Violet 












0.44560670.16

0670.160670.61
 













0.38251618.16

1618.165637.41
 

 

 

Figure 9.3.4 Angle characteristic Q for Le Grand’s eye. The units are millimetres. 
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9.3.3 First mixed characteristic  

The first mixed characteristic M (Equation 3.7.23) exists provided 0D . 

The entries of M is summarised as  




















1

C

1

1

fv

FD

DF
M . 

The dependence of front-vertex power fvF  on the frequency of light was shown in 

Figure 9.2.5 and the same for exit-plane refractive compensation CF  in Figure 

9.2.3. From Equation 5.5.1 we see that for a reduced eye 1D , regardless of the 

frequency   and for multi-surface eyes D is usually close to 1, but does vary 

weakly with  . For systems in general, D will have different values. 

In Figures 9.3.5 and 6 we represent M on a three-dimensional graph for 

the reduced eye and Le Grand’s eye. For the reduced eye we see that the line is 

perfectly straight, however Le Grand’s eye produces a visible S-shaped curve. fvF  

has a chromatic difference of 2.7974 D for the reduced eye and 3.0320 D for Le 

Grand’s eye. 

 

Figure 9.3.5 The first mixed characteristic M of the reduced eye. The vertical axis 

represents 
1

C

F   in meters, the middle axis represents fvF , the front vertex power, in 

dioptres and the right-hand axis represents 
1D , which is 1 for all frequencies. 
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Table 9.3.3 The First mixed characteristic matrix M  for the six reference frequencies 

for the reduced eye and Le Grand’s eye.  

Frequency  First mixed characteristic M 

THz Colour Reduced eye Le Grand’s eye 

430 Red 








m01671.01

1D4419.59
 









m01850.01057.1

1057.1D6319.65
 

494 Orange 








m01668.01

1D8434.59
 









m01846.01061.1

1061.1D1284.66
 

558 Yellow 








m01665.01

1D3058.60
 









m016843.01069.1

1069.1D7053.66
 

622 Green 








m01661.01

1D8444.60
 









m01840.01079.1

1079.1D3450.67
 

686 Blue 








m01657.01

1D4794.61
 









m01836.01089.1

1089.1D0077.68
 

750 Violet 








m01651.01

1D2319.62
 









m01832.011097

1097.1D6638.68
 

 

Figure 9.3.6 The first mixed characteristic M of the Le Grand eye. The vertical axis 

represents 
1

C

F   in meters, the right-hand axis represents fvF  in dioptres and the middle 

axis represents 
1D . 
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9.3.4 Second mixed characteristic  

The second mixed characteristic N (Equation 3.7.24) exists provided the 

dilation A is not zero. For the model eye as a function of frequency, we see A 

approaching zero as we reach the reference frequency, usually in the yellow band, 

the exact frequency will differ for each model eye and is given in Section 9.2.3 for 

the reduced eye and Le Grand’s eye. It is also dependent on 0n . The problems 

arising when A approaches zero are seen in Figure 9.2.4 where the back-vertex 

power is graphed as a function of frequency. We see that where A approaches 

zero, back-vertex power approaches infinity, indicating a focal point (or image 

point) on the exit plane or retina and the curves of the graph extend off the scale. 

The entries of N are summarised as 
























bv

1

11

0

FA

AF
N .  

The dependence of entrance-plane refractive compensation 0F  (Equation 3.4.6) 

on frequency is shown in Figure 9.2.2 and similarly for back-vertex power bvF  

(Equation 3.4.11) in Figure 9.2.4. Figures 9.3.7 and 8 show N for the reduced eye 

and Le Grand’s eye are graphed, respectively.  

We anticipated a problem in calculating N for eyes where 0A  or where 

A approaches 0. The axes limits were adjusted to include the orange (494 THz) 

and yellow (558 THz) points and ignore the values at infinity. The result is that all 

six reference points are distinct, however, they are no longer sequenced according 

to their frequencies and instead the sequence is orange, red, then violet, blue, 

green and yellow. The line does not stop at orange or yellow, but continues to 

infinity or negative infinity. With infinity (or emmetropia) lying between 494 and 

558 THz we conclude that the model eyes’ reference frequencies for emmetropia 

lie between these two frequencies.  
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Table 9.3.4 The second mixed characteristic matrices N  for the six reference 

frequencies for the reduced eye and Le Grand’s eye.  

Frequency  Second mixed characteristic N 

THz Colour Reduced eye Le Grand’s eye 

430 Red 












D3857.85010200.431

0200.143m3892.2
 













D4352.75918910.127

8910.127m1393.2
 

494 Orange 












D1908.305484690.510

4690.510m5134.8
 













D4668.253734182.424

4182.424m0841.7
 

558 Yellow 












D6100.157949085.261

9085.261m3596.4
 













D78153.163350772.271

0772.271m5133.4
 

622 Green 












D0746.57850799.95

0799.95m5791.1
 













D9146.59478500.97

8500.97m6246.1
 

686 Blue 












D0822.33454098.54

4098.54m9013.0
 













D9941.36169759.58

9759.58m9763.0
 

750 Violet 












D1573.22440568.36

0568.36m5954.0
 













D3169.26142520.42

2520.42m6974.0
 

 

 

Figure 9.3.7 The second mixed characteristic N of the reduced eye. The sequence of the 
coloured reference points is not in order of frequency.  
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Figure 9.3.8 The second mixed characteristic N of Le Grand’s eye.  

 

 

9.4 Discussion 

In this chapter we looked at the cardinal and anti-cardinal points of the 

reduced and Le Grand’s eyes and used graphical construction and Pascal’s ring 

methods in an effort to better understand how the cardinal and anti-cardinal points 

are affected by the frequency of light. 

The reduced eye showed that the incident and emergent principal and 

nodal points are independent of the frequency of light and are not distinct for 

incidence and emergence. The locations of the focal points and four anti-cardinal 

points depend on frequency. Interesting relationships arose because of the 

simplicity of the reduced eye. Firstly, the incident and emergent anti-nodal point 

pairs are equidistant from the entrance-plane for each frequency, but in opposite 

directions. Secondly, each of the red and blue pairs of anti-cardinal points are 

equidistant between the red and blue positions, however the incident anti-cardinal 

points have the red upstream of the blue points and the emergent anti-cardinal 

points have the red points downstream of the blue points. 

From Le Grand’s eye we conclude that the locations of all ten cardinal and 

anti-cardinal points depend on the frequency of light and their positions are 
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distinct. In summary, the incident or emergent blue point is always positioned 

closer to its corresponding entrance- or exit-plane than its paired red point. The 

frequency-dependent cardinal and anti-cardinal points are more like fuzzy zones 

than actual points. 

We then looked at a selection of optical properties derived from the 

transference. In particular, we considered power of the system, entrance- and exit-

plane refractive compensation and front- and back-vertex power, all of which 

depend on the frequency of light. 

Finally, we explored the characteristic matrices using three-dimensional 

graphs. Each characteristic matrix has three independent entries which are related 

in some way to the derived properties and therefore allow us to see the 

relationships among these properties in three-dimensional space. For the reduced 

eye all the relationships are linear while for Le Grand’s eye the relationships 

appear nearly perfectly linear for P, Q and N, but has an S-shaped curve for M.  
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10 Numerical examples of chromatic aberration and chromatic 

properties 

 

The aim of this chapter is to examine the equations derived in Chapters 6 

and 7 numerically. The transferences of the reduced and Le Grand’s eyes for the 

red and blue frequencies were given in Table 8.1.1, with 10 n  for all 

frequencies. 

In Gaussian systems longitudinal and transverse chromatic aberration are 

defined by Equations 6.1.1 and 2. Chromatic aberration depends on the 

longitudinal and transverse position of the object ( Oz  and Oy ) corresponding to 

longitudinal and transverse image positions (z and y). For a distant object point, 

the position of the object is defined by its inclination Oa . 

In Chapter 7 two categories of chromatic properties of an eye were 

defined; those independent of and those dependent on the object or image and 

aperture positions. Three independent chromatic properties of an eye were 

defined, namely chromatic difference in power Fδ , refractive compensation      

0δF  and ametropia Aδ .  

The chromatic properties of the eye dependent on object and aperture 

positions depend on both the eye and the longitudinal and transverse object ( Ka  or 

Oz  and Oy ) and aperture ( Py ) positions. Chromatic difference in position is 

defined by chromatic difference in transverse image position at the retina, Rδy  

and chromatic difference in inclination at the retina, Rδa . Chromatic difference in 

magnification is defined by the chromatic difference in image size  RΔδ y  or 

chromatic difference in angular spread  .Δδ Ra  Retinal chromatic size 

magnification yRM  and retinal chromatic angular spread magnification aRM  are 

also defined.  

The chromatic properties of the system dependent on image ( Ry ) and 

aperture ( Py ) positions in object space mimic the experimental situation. The 

chromatic difference in transverse object position Oδy , chromatic difference in 
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inclination 
Oδa , chromatic difference in object size  OΔδ y , chromatic difference 

in angular spread  OΔδ a ,  chromatic  object  size  ratio  yOM   and  chromatic  

object  angular  spread  ratio aOM  are included. 

The chromatic aberration and object or image and aperture-dependent 

chromatic properties for the two model eyes are illustrated numerically by means 

of a selection of parameters. Specifically, the numerical examples include a 

distant object and an object at three illustrative finite distances measured from the 

entrance plane, namely 3O z  m, –2 m and –0.5 m. For distant objects, the 

inclination from an object will be illustrated for 1.0K a  (radian) and for objects 

at finite distances, an object of 200O y  mm in size will be used in the examples. 

According to the situation, the fovea may be assumed to be centred on the optical 

axis, or offset mm1.46R y  to approximate a visio-optical angle (angle alpha) of 

5 . 

 Finally, we look at the two underlying implications derived in Chapter 7 

and resulting from the simplifications that occur when basing chromatic studies 

on the reduced eye and the use of chief rays.  

 

10.1 Chromatic aberration 

In Chapter 6 chromatic aberration was defined for homocentric systems 

with stigmatic elements, that is, for Gaussian systems in general. It was shown 

that chromatic aberration is not a property of the system alone, but on the system 

and the location of the object point.  

 

10.1.1 Longitudinal chromatic aberration 

Le Grand’s eye 

The steps for calculating longitudinal chromatic aberration were given in 

Section 6.3.1. Equation 6.2.4 defines the vergence exiting the system when 

incident vergence is from a distant object. For Le Grand’s eye the red and blue 

emergent vergences are 

kD5914.7rL                   (10.1.1) 

and  
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kD6143.2bL                   (10.1.2) 

respectively. Hence from Equation 6.1.6 one obtains 

mm1756.0r z                   (10.1.3) 

and 

mm5150.0b z ,                  (10.1.4) 

the positions of red and blue image points from the exit plane. The longitudinal 

chromatic aberration is (Equation 6.1.1), 

mm0.6906δ z .                  (10.1.5) 

The signed distance of the longitudinal chromatic aberration is from red to blue, 

and therefore, the direction of zδ  is from behind the retina to in front of the retina. 

 

 
Figure 10.1.1 The longitudinal chromatic aberration zδ  as a function of object distance 

Oz  for Le Grand’s eye in black and the reduced eye in blue. Oz  is measured from the 

cornea to the object point. 
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Table 10.1.1 Summary, for Le Grand’s eye, of the red and blue wavefront vergences 

(L), image distances (z) from the retina and longitudinal chromatic aberration ( zδ ) at 

object distances (
Oz ) of –3, –2 and –0.5 m. 

Oz  –3 m –2 m –0.5 m 

rL  4.4089 kD 3.6400 kD 1.3943 kD 

bL  –3.3896  kD –3.9849 kD 6.4280 kD 

rz  0.3023 mm 0.3661 mm 0.9558 mm 

bz  –0.3972 mm –0.3379 mm 0.2095 mm 

zδ  –0.6995 mm –0.7040 mm –0.7463 mm 

 

Equation 6.2.3 defines the vergence emerging from a system when 

incident vergence originates from a finite object, as a function of the distance of 

the object in front of the system (in millimetres). For red vergence this becomes 

7276.16007819.0

05936.09044.0

O

O






z

z
Lr

                 (10.1.6) 

and for blue vergence it is 

5065.1602367.0

06187.09011.0

O

O






z

z
Lb

.                 (10.1.7) 

The red and blue emergent vergence L, image distances z and longitudinal 

chromatic aberration zδ  for the three illustrative object distances Oz  are 

summarized in Table 10.1.1. From Table 10.1.1 and Figure 10.1.1 we see that as 

an object approaches the eye, so the magnitude of the longitudinal chromatic 

aberration increases. 

 

The reduced eye 

For the reduced eye we summarize the results for zδ  in Table 10.1.2. We see from 

Table 10.1.2 and Figure 10.1.1 that the magnitude of zδ increases as the object 

approaches the eye. The summary in Table 10.1.2 and Figure 10.1.1 both 

emphasise that as the object point approaches the eye, so the magnitude of the zδ  

increases. From Figure 10.1.1 we see that the changes in zδ  are similar for the  
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Table 10.1.2 Summary, for the reduced eye, of the red and blue wavefront vergences 

(L), image distances from the retina (z) and longitudinal chromatic aberration  ( zδ ) at 

object distances (
Oz ) distant, –3, –2 and –0.5 m. 

Oz  Distant –3 m –2 m –0.5 m 

rL  8.5014 kD 4.7059 kD 3.8412 kD 1.4217 kD 

bL  –2.2442 kD –2.7848 kD –3.1698 kD 11.3848 kD 

rz  0.1565 mm 0.2827 mm 0.3463 mm 0.9356 mm 

bz  –0.5997 mm –0.4833 mm –0.4246 mm 0.1182 mm 

zδ  –0.7562 mm –0.7659 mm –0.7709 mm –0.8174 mm 

 

two model eyes, but the magnitude of zδ  is greater for the reduced eye (blue line) 

than for Le Grand’s eye (black line). 

 

10.1.2 Transverse chromatic aberration 

Le Grand’s eye 

The steps to calculate transverse chromatic aberration ( yδ ) are given in 

Section 6.3.2. The first three steps have already been calculated above for 

longitudinal chromatic aberration. yδ  is dependent on Oa  or a combination of Oz  

and Oy . Starting with a distant object, we continue with step 4 and Equation 

6.2.17. Substituting from the red and blue transferences rS  and bS  (Table 8.1.1) 

and from Section 10.1.1 for rz  and bz  (Equations 10.1.3 and 4) we obtain 

 mm6850.0δ O  ay                  (10.1.8) 

a linear relationship. For the purposes of illustrating yδ  of a distant object, we 

substitute 1.0O a  into Equation 10.1.8 to obtain mm06850.0δ y  and the red 

image point is located superior to the blue image point.  

For an object point at a finite distance the position of the object is determined by 

Oz  and Oy . For illustrative purposes, we use the three distances for Oz , and 

mm200O y as described above. Continuing with step 4 of Section 6.3.2 
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Table 10.1.3 Summary, for Le Grand’s eye, of the transverse chromatic aberration 

 yδ  at working distances of –3, –2 and –0.5 m for an object position  Oy  200 mm 

above the longitudinal axis. 

Oz  –3 m –2 m –0.5 m 

yδ  0.04614 mm 0.06958 mm 0.2918 mm 

 

to calculate yδ  for an object at a finite distance and substituting into Equation 

6.2.16 we obtain 

 rbO kD04454.0kD04595.003149.0δ zzyy               (10.1.9) 

as a function of Oy  and the respective red rz  and blue bz  image positions, which 

are, in turn, dependent on Oz  and given in Table 10.1.1. The numerical results for 

yδ  are given in Table 10.1.3. The dependence of yδ  on Oy  for any chosen Oz  

will be linear. 

 

 
Figure 10.1.2 The dependence of the transverse chromatic aberration yδ  on the 

incident inclination Oa  for a distant object for Le Grand’s eye in black and the reduced 

eye in blue.  
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Figure 10.1.3 The transverse chromatic aberration ( yδ ) of Le Grand’s eye (solid lines) 

and the reduced eye (dashed lines) for three longitudinal distances ( Oz ) as a function of 

transverse object position Oy . The coloured lines represent the distance of the object 

from the eye with black being at –3 m, blue at –2 m and cyan at –0.5 m. 

 
Figure 10.1.4 The transverse chromatic aberration ( yδ ) of Le Grand’s eye (black line) 

and the reduced eye (blue line) as a function of change in Oz  for an object at 

mm200O y .  
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Table 10.1.4 Summary, for the reduced eye, of the transverse chromatic aberration 

 yδ  for a distant object with incident inclination of 1.0O a  and for an object at finite 

object distances  Oz  of  –3, –2 and –0.5 m with the object at mm200O y  above the 

longitudinal axis. 

Oz  Distance –3 m –2 m –0.5 m 

yδ  –0.07562 mm 0.05097 mm 0.07687 mm 0.3234 mm 

 

 

The results are unsurprising, as the object approaches the eye, so the 

incident inclination increases in magnitude. To gain a better understanding, we 

show the effect of changes in Oy  at the three illustrative positions of Oz  in Figure 

10.1.3. Figure 10.1.4 shows yδ  as a function of Oz when the object remains at 

mm200O y  above the longitudinal axis. 

 

The reduced eye 

Similarly, we obtain the values for yδ  for the reduced eye for a distant 

object point and for an object at –3, –2 and –0.5 m from the eye at a distance of 

200 mm above the longitudinal axis. The results are summarized in Table 10.1.4. 

The conclusion of the effect of transverse chromatic aberration in the 

reduced eye is similar to that for Le Grand’s eye. The relationship between yδ  

and Oa  (distant objects) or Oy  (objects at a finite distance) at any particular 

working distance Oz  is linear, however yδ for the reduced eye is slightly greater 

than that for Le Grand’s eye.  

 

10.2 Independent chromatic properties of the eye 

The chromatic properties of the eye (alone) are defined as functions of the 

fundamental properties (or derivations thereof) of the red and blue transferences 

( rS  and bS ). They are not directly dependent on light and therefore also not on 

object and image points. The three independent chromatic properties of the eye 

were defined in Section 7.1 as the chromatic difference in power, Fδ  (Equation 

7.1.2), chromatic difference in refractive compensation, 0δF  (Equation 7.1.4) and 

chromatic difference in ametropia, Aδ  (Equation 7.1.5). The values for the  
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Table 10.2.1 Independent chromatic properties of Le Grand’s and the reduced eyes. 

Chromatic difference in: Le Grand’s eye Reduced eye 

Power ( Fδ ) 2.5158 D 2.7975 D 

Refractive compensation ( 0δF ) –1.9013 D –2.0981 D 

Ametropia ( Aδ ) –0.03149 –0.03473 

 

chromatic properties for Le Grand’s and the reduced eye are given in Table 

10.2.1. 

For both model eyes, Fδ is more than a half dioptre greater in magnitude 

than 0δF  and therefore the two definitions cannot be interchanged. Also apparent 

is that the magnitude of all three independent chromatic properties is greater for 

the reduced eye than for Le grand’s eye.  

The chromatic difference in refractive compensation has been the subject 

of numerous experimental measurements and the consensus is that there is very 

little variation between studies and between subjects (Howarth and Bradley, 1986; 

Cooper and Pease, 1988; Simonet and Campbell, 1990; Atchison, Smith and 

Waterworth, 1993; Wald and Griffin, 1947; Bennett and Rabbetts, 2007:292-3; 

Atchison and Smith, 2000: 184-5). Adjusting for the different wavelengths chosen 

for each study, the results in Table 10.2.1 compare well to experimental studies. 

 

10.3 Chromatic properties of the eye dependent on object and aperture 

positions 

The chromatic properties dependent on object and aperture positions were 

defined in Chapter 7. Sections 7.2 and 3 looked at the object and aperture-

dependent chromatic properties in image space and Sections 7.4 and 5 looked at 

the image and aperture-dependent chromatic properties in object space. 

Definitions for the chromatic properties in image space (subscript R) were derived 

for both distant objects and objects at finite distances. The definitions for 

chromatic properties in object space (subscript O) were limited to finite distances 

to mimic the experimental or clinical situation where these properties are present.  
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Table 10.3.1 The red and blue coefficient matrices for Le Grand’s eye for distant 

objects, EV  and objects at the finite distances of –3, –2 and –0.5 m from the eye, 
OEV . 

  Red Blue 

EV  Distant 








 0.8142kD0.05031

mm7038.16008832.0
 













0.8082kD0.05213

mm5780.1602685.0
 

OEV  –3 m 












kD0002711.0kD0.05000

005562.001511.0
 













kD0002691.0kD05182.0

005520.002059.0
 

OEV  –2 m 












kD0004065.0kD04984.0

008339.001825.0
 













kD0.0004035kD05167.0

008276.001746.0
 

OEV  –0.5 m 












kD001619.0kD04848.0

03321.004634.0
 













kD0.001607kD05031.0

03296.001054.0
 

 

Table 10.3.2 The red and blue coefficient matrices for the reduced eye for distant 

objects, EV  and objects at the finite distances of –3, –2 and –0.5 m from the eye, OEV . 

  Red Blue 

EV  Distant 








 0.8225kD0.04889

mm6944.16007650.0
 














0.8157kD0.05077

mm5562.1603045.0
 

OEV  –3 m 












kD0.0002740kD0.04859

005562.001374.0
 














kD0.0002718kD05047.0

005516.002439.0
 

OEV  –2 m 












kD0.0004109kD04844.0

008341.001678.0
 














kD0.0004075kD05032.0

008272.002137.0
 

OEV  –0.5 m 












kD0.001640kD04710.0

03328.004407.0
 













kD0.001626kD04898.0

03301.0005790.0
 

 

The derivations for chromatic properties dependent on object and aperture 

positions in image space are all based on the coefficient matrices for distant 

objects EV  (Equation 5.2.8) and for objects at a finite distance OEV  (Equation 

5.2.26), both given in the summary in Table 7.7.2. OEV  is a function of the 

distance of the object point in front of the eye, Oz . Consistent with the three 

illustrative distances used throughout this chapter, OEV  is calculated at each  
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Table 10.3.3 The chromatic difference in red and blue coefficient matrices for Le 

Grand’s and the reduced eye for distant objects, EδV  and objects at the finite distances of 

–3, –2 and –0.5 m from the eye, 
OEδV . 

  Le Grand’s eye Reduced eye 

EδV  Distant 












0.006011kD0.001822

mm1258.003568.0

 














0.006813kD0.001877

mm1383.003810.0

 

OEδV  –3 m 

















kD101.9998kD0.001823

101853.403570.0
6-

-5

 






















kD102.2687kD001878.0

106047.403813.0
6

5

 

OEδV  –2 m 




















kD102.9968kD001823.0

102720.603571.0
6

5

 






















kD103.4013kD001879.0

109034.603814.0
6

5

 

OEδV  –0.5 m 




















kD101.1883kD001828.0

104873.203580.0
5

4

 






















kD101.3541kD001886.0

107484.203828.0
5

4

 

 

distance for red and blue frequencies. These are summarized for Le Grand’s eye 

in Table 10.3.1 and for the reduced eye in Table 10.3.2. The chromatic difference 

in coefficient matrices for distant objects EδV  and objects at a finite distance 

OEδV  as defined by Equation 7.2.1 are given in Table 10.3.3 for both model eyes. 
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10.3.1 Chromatic difference in transverse image positions at the retina 

Le Grand’s eye 

The chromatic difference in transverse image positions at the retina, Rδy  is 

defined by Equation 7.2.3 for an object at distance. Substituting the values from 

the entries of EδV we obtain the relationship for Rδy  for a distant object, given in 

the first line of Table 10.3.4. From this relationship one can see that Rδy  is 

dependent on any decentration of the pupil Py  and the incident inclination of the 

pencil of rays from a distant object, Ka . For a centred Gaussian model eye 

( 0P y ) the relationship simplifies to   KR mm1258.0δ ay  . This is illustrated 

in Figure 7.2.1 and the results shown graphically in Figure 10.3.1. For the 

illustrative inclination of 1.0K a  radians we obtain mm01258.0δ R y . 

Similarly, we substitute the values from OEδV , given in Table 10.3.3, for 

the three illustrative object distances Oz  into Equation 7.2.4 to obtain 

relationships for the three illustrative finite working distances for Le Grand’s eye, 

summarised in Table 10.3.4. Unsurprisingly, the closer the object is to the eye, so 

Rδy  increases, which is seen in Figure 10.3.2  

We now substitute the illustrative value of mm200O y  for the 

displacement of the object point from the longitudinal axis at each Oz  and we 

obtain Rδy , in Table 10.3.4. As expected, from these numerical examples and 

Figure 10.3.2, we can see that the magnitude of Rδy  increases as the object 

approaches the eye for an off-axial object point. 

 

The reduced eye 

The results and conclusions for Rδy  for the reduced eye are similar to Le 

Grand’s eye. The constants for the reduced eye for Equations 7.2.3 and 4 are 

given in Table 10.3.5. 

From Figures 10.3.1 and 2, we see that Rδy  for the centred reduced eye is 

slightly greater in magnitude across object points at all distances than for Le  
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Table 10.3.4 The chromatic difference in image position at the retina, Rδy  for Le 

Grand’s eye. The illustrative example is for the centred reduced eye with 1.0K a  for 

the distant object point and mm200O y  for the three finite distance object points. 

Chromatic difference in image position Illustrative example 

Distant 

object 
    KPR mm1258.003568.0δ ayy   mm01258.0δ R y  

–3 m     O

5

PR 101853.403570.0δ yyy   mm008371.0δ R y  

–2 m     O

5

PR 102720.603571.0δ yyy   mm01254.0δ R y  

–0.5m     O

4

PR 104873.203580.0δ yyy   mm04975.0δ R y  

 

Grand’s eye. The reason for this is revealed in Table 10.3.3 where we see that 

EδX  and OEδX are greater in magnitude for the reduced eye than for Le Grand’s 

eye. Comparing Equations 5.2.8 and 26, we can determine that the discrepancies 

lie in the underlying structural differences in the two model eyes, that is, number 

of refracting surfaces and their positions relative to the pupil or limiting aperture. 

 

 
Figure 10.3.1 The chromatic difference in transverse image position at the retina Rδy  

as a function of incident inclination Ka  for Le Grand’s eye (solid black line) and reduced 

eye (dashed blue line) for a distant object point. 

 



IV  FINDINGS AND DISCUSSION   10 Numerical examples of chromatic 

aberration and chromatic properties 

274 

 

Table 10.3.5 The chromatic difference in image position at the retina, Rδy  for the 

reduced eye. The illustrative example is for the centred reduced eye with 1.0K a  for 

the distant object point and mm200O y  for the three finite distance object points. 

Chromatic difference in image position Illustrative example 

Distant 

object 
    KPR mm1383.003810.0δ ayy   mm01383.0δ R y  

–3 m     O

5

PR 106047.403813.0δ yyy   mm009209.0δ R y  

–2 m     O

5

PR 109034.603814.0δ yyy   mm01381.0δ R y  

–0.5m     O

4

PR 107484.203828.0δ yyy   mm05497.0δ R y  

 

 

 
Figure 10.3.2 The chromatic difference in image position at the retina, Rδy  as a 

function of transverse displacement of the object point from the longitudinal axis, Oy  at 

the three illustrative distances, –3, –2 and –0.5 m for Le Grand’s eye (solid lines) and the 

reduced eye (dashed line). 
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10.3.2 Chromatic difference in inclination at the retina 

Le Grand’s eye 

Perhaps more insight can be gained from the chromatic difference in 

inclination at the retina, Rδa . Starting with a distant object and substituting from 

EδV  for Le Grand’s eye in Table 10.3.3 into Equation 7.2.16 we obtain a 

relationship for Rδa  for a distant object point. This is summarised in Table 10.3.6 

and shown in Figure 10.3.3, with the magnitude of Ka  being magnified slightly 

more for the reduced eye than for Le Grand’s eye. 

Similarly, we substitute the respective entries of OEδV  in Table 10.3.3 for 

the three illustrative Oz s in front of the eye into Equation 7.2.17 to obtain 

relationships at three working distances and summarised in Table 10.3.6. The 

relationships between Rδa  and Oy  are illustrated graphically in Figure 10.3.4. 

The illustrative values obtained from Equations 7.2.16 and 17 are 

summarised in Table 10.3.6. As the object approaches the eye, so the magnitude 

of the emergent angular spread between the red and blue chief rays increases, as 

expected. Rδa  is measured as the emergent inclination from the red ray to the 

emergent blue ray at the retina. For illustrative purposes, the chief ray has been 

chosen as mm0P y . 

 

The reduced eye 

The results and conclusions for Rδa  for the reduced eye are similar to Le Grand’s 

eye, however the values vary slightly. From Figure 10.3.4, one can see that the 

magnitude of Rδa  is consistently slightly greater in magnitude for the reduced eye 

than for Le Grand’s eye. The illustrated values for Rδa  for the centred reduced 

eye for a distant object with 1.0K a  or for an object placed at mm200O y  are 

summarised in Table 10.3.7. 
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Table 10.3.6 The chromatic difference in inclination at the retina Rδa  for Le Grand’s 

eye. The illustrative example is for a centred reduced eye and 1.0K a  for a distant 

object point or mm200O y  for an object point at the three finite distances. Rδa  is 

given in radians. 

Chromatic difference in inclination at the retina 
Illustrative 

example 

Distant 

object 
    KPR 006011.0kD001822.0δ aya   4100110.6   

–3 m     O

6

PR kD109998.1kD001823.0δ yya   4109996.3   

–2 m     O

6

PR kD109968.2kD001823.0δ yya   4109936.5   

–0.5m     O

5

PR kD101883.1kD001828.0δ yya   3103767.2   

 

 

 
Figure 10.3.3 The chromatic difference in inclination at the retina Rδa  as a function of 

incident inclination Ka  for Le Grand’s eye (black line) and the reduced eye (blue line). 
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Table 10.3.7 The chromatic difference in inclination at the retina Rδa  for the reduced 

eye. The illustrative example is for a centred reduced eye and 1.0K a  for a distant 

object point or mm200O y  for an object point at the three finite distances.  

Chromatic difference in inclination at the retina 
Illustrative 

example 

Distant 

object 
    KPR 006813.0kD001877.0δ aya   4108133.6   

–3 m     O

6

PR kD102687.2kD001878.0δ yya   4105374.4   

–2 m     O

6

PR kD104013.3kD001879.0δ yya   4108025.6   

–0.5m     O

5

PR kD103541.1kD001886.0δ yya   002708.0  

 

 

 
Figure 10.3.4 The chromatic difference in inclination at the retina Rδa  as a function of 

transverse displacement of the object point from the longitudinal axis 
Oy  at the three 

illustrative distances  of –3, –2 and –0.5m from the eye for Le Grand’s eye (solid lines) 
and the reduced eye (dashed lines). 
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10.3.3 Chromatic difference in image size 

Le Grand’s eye 

Section 7.3.1 showed that the chromatic difference in image size,  Rδ y  

simplified to a linear relationship between the object and image sizes  Ry . The 

size of a distant object is defined by the difference in incident inclination  KΔa  

or angular spread and at a finite distance Oz , by the object size  Oy . 

Substituting the relevant entry from EδV  for Le Grand’s eye given in Table 10.3.3 

into Equation 7.3.4 for a distant object and from OEδV  in Table 10.3.3 into 

Equation 7.3.8 we obtain relationships for  Rδ y  for Le Grand’s eye.  

For  Rδ y , the pupil position is nullified (Section 7.3.1) and therefore we 

obtain the same values as for Rδy  when the system is assumed to be centred. 

Therefore the numerical examples for the two model eyes are not repeated. The 

graphical relationship for a distant object of size 1.0Δ K a  will be identical to 

that shown in Figure 10.3.1 and Figure 10.3.2 for the object of size 

mm200Δ O y  at finite distances.  

 

The reduced eye 

The linear relationships for  Rδ y  of the reduced eye are summarized in 

Table 10.3.8. The conclusions drawn are similar to those for Le Grand’s eye.  

 

Table 10.3.8 The Chromatic difference in image size at the retina  Rδ y  for Le 

Grand’s and the reduced eyes. 

 Le Grand’s eye Reduced eye 

Distant object     KR Δmm1258.0δ ay       KR Δmm1383.0δ ay   

–3 m     O

5

R 101853.4δ yy  
     O

5

R 106047.4δ yy  
 

–2 m     O

5

R 102720.6δ yy  
     O

5

R 109034.6δ yy  
 

–0.5m     O

4

R 104873.2δ yy  
     O

4

R 107484.2δ yy  
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10.3.4 Chromatic difference in angular spread at the retina 

Le Grand’s eye 

Equation 7.3.11 defines the chromatic difference in angular spread across 

the retina,  Rδ a , as a linear relationship with the angular spread of the incident 

rays directed from a distant object. For Le Grand’s eye this relationship is given in 

Table 10.3.9. Equation 7.3.12 defines  Rδ a  as a linear relationship with the 

object size OΔy  for an object at a finite distance. The values for the  Rδ a  at the 

three illustrative distances are given in Table 10.3.9.  

 

Table 10.3.9 The chromatic difference in angular spread across the retina  Rδ a  for 

Le Grand’s and the reduced eyes. 

 Le Grand’s eye Reduced eye 

Distant object   KR Δ006011.0δ aa     KR Δ006813.0δ aa   

–3 m     O

6

R 109998.1δ ya  
     O

6

R 102687.2δ ya  
 

–2 m     O

6

R 109968.2δ ya  
     O

6

R 104013.3δ ya  
 

–0.5m     O

5

R 101883.1δ ya  
     O

5

R 103541.1δ ya  
 

 

The Reduced eye 

The values for the chromatic difference in angular spread across the retina 

are given in Table 10.3.9 for the reduced eye. 

 

10.3.5 Retinal chromatic magnification 

Le Grand’s eye 

In Sections 7.3.3 and 4 formulae for the retinal chromatic image size 

magnification yRM  and retinal chromatic angular spread magnification RaM  were 

obtained. These are chromatic magnifications and not chromatic differences and 

give a magnification of the red compared to the blue image size or angular spread 

at the retina. The magnification is dependent on the longitudinal distance of the 

object in front of the eye Oz , however, we expect these magnifications to be 

similar in value. Substituting the relevant values from the red and blue coefficient 
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matrices EV  in Table 10.3.1 into Equation 7.3.19 we obtain yRM  for a distant 

object, where 10 n  for both the red and blue incident light in air, given in Table 

10.3.10. To obtain the retinal chromatic image size magnification for the three 

illustrative finite object distances in front of Le Grand’s eye, we substitute the 

entries of the red and blue near coefficient matrices OEV  from Table 10.3.1 into 

Equation 7.3.20 to obtain the yRM  for objects at the three illustrative distances in 

front of the eye, summarised in Table 10.3.10.  

Similarly the retinal chromatic angular spread ratios RaM  are obtained by 

substituting the relevant entries of EV  and OEV  into Equations 7.3.27 and 28. The 

values are also summarised in Table 10.3.10.  

The chromatic magnification of image sizes is 0.75% for distant objects 

and objects at a finite distance, with the red image being slightly larger than the 

blue image, which is very much in line with the calculated values in the literature 

(Thibos et al, 1991; Rabbetts, 2007: 291). Similarly, the retinal chromatic angular 

spread ratio is 0.74% for the objects at a finite distance in front of Le Grand’s eye, 

implying that the red near directional spread is greater than the blue near 

directional spread.  

 

The reduced eye 

The numerical results for the reduced eye are given in Table 10.3.11. 

Table 10.3.11 indicates that for the reduced eye the retinal chromatic image size 

magnification is 0.83% regardless of the distance that the object is in front of the 

reduced eye. The distance and near image size coefficients EX  and OEX  are 

greater for red than blue. The retinal chromatic angular spread ratio is 

also  %83.0  and the distance of the object in front of the reduced eye Oz  plays 

very little part. The distance and near directional coefficients EZ  and OEZ  are 

greater for red than for blue. The object distance plays a negligibly small role.  

These results are comparable to those in the literature. Zhang et al (1991) 

and Thibos et al (1991) give the magnification calculated using Equation 2.3.9. 
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Table 10.3.10 The retinal chromatic image size and angular spread magnifications for 

Le Grand’s eye. 

Retinal 

chromatic: 
image size ratio angular spread ratio 

Distant object 9925.0yRM  9926.0R aM  

–3 m 9925.0yRM  9926.0R aM  

–2 m 9925.0yRM  9926.0R aM  

–0.5m 9925.0yRM  9927.0R aM  

 

Table 10.3.11 The retinal chromatic image size and angular spread magnifications for 
the reduced eye. 

Retinal 

chromatic: 
image size ratio angular spread ratio 

Distant object 9917.0yRM  9917.0R aM  

–3 m 9917.0yRM  9917.0R aM  

–2 m 9917.0yRM  9917.0R aM  

–0.5m 9917.0yRM  9917.0R aM  

 

Adjusting for the differences in wavelengths, the results obtained using Equations 

7.3.19 and 27 compare well for all the examples given by Zhang et al. The same 

is true when a pinhole is held at a vertex distance of 15 mm and the retinal 

chromatic image size magnification increases to 4.3% for the reduced eye and 

4.1% for Le Grand’s eye. 

 

10.4 Chromatic properties dependent on object and aperture positions in 

an eye – with a pinhole 

In Section 5.2.4 we saw that when we introduce a pinhole immediately in 

front of the eye, Figures 3.5.4 and 5.1.1 simplify; the posterior system BS  is now 

the eye and the anterior system simplifies to the identity matrix. The coefficient 

matrix for an object at distance becomes simpler, given by P

EV  in Equation 5.2.37 

and for an object at a finite distance in front of the eye, P

OEV  is given by Equation 
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5.2.34. The coefficient matrices for Le Grand’s and the reduced eye with a 

pinhole immediately in front are given in Tables 10.4.1 and 2 and the chromatic 

difference in coefficient matrices with a pinhole in Table 10.4.3. 

The methodology for each of the transverse chromatic properties was 

worked through step by step in Section 10.3. Therefore, in this section, the results 

are simply given in tabular form and the results discussed, without repeating the 

methodology.  

 

Table 10.4.1 The red and blue coefficient matrices for Le Grand’s eye with a pinhole 

immediately in front (superscript P) for distant objects (subscript E) and objects at the 

finite distances of –3, –2 and –0.5 m from the eye (subscript OE). 

  Red Blue 

P

EV  Distant 










 0.6786kD0.04454

mm7276.16007819.0  













0.6693kD0.04596

mm5065.1602367.0  

P

OEV  –3 m 












 kD102622.2kD0.04431

005576.001340.0
4

 












 kD102309.2kD0.04573

005502.001817.0
4

 

P

OEV  –2 m 












 kD103932.3kD0.04420

008364.001618.0
4

 












 kD103464.3kD0.04562

008253.001541.0
4

 

P

OEV  –0.5 

m 












 kD103573.1kD0.04318

03346.004127.0
3

 












 kD103386.1kD0.04462

03301.0009345.0
3

 

 

Table 10.4.2 The red and blue coefficient matrices for the reduced eye with a pinhole 

immediately in front for distant objects and objects at the finite distances of –3, –2 and    

–0.5 m. 

  Red Blue 

P

EV  Distant 








 0.7517kD0.04469

mm7055.16006992.0
 













0.7431kD0.04625

mm5126.1602773.0
 

P

OEV  –3 m 











 kD105058.2kD0.04443

005569.001256.0
4

 












 kD104769.2kD0.04600

005514.002223.0
4

 

P

OEV  –2 m 











 kD107587.3kD0.04431

008353.001534.0
4

 












 kD107153.3kD0.04588

008256.001948.0
4

 

P

OEV  
–0.5 

m 












 kD105035.1kD0.04318

03341.004040.0
3

 












 kD104861.1kD0.04476

03303.0005291.0
3
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Table 10.4.3 The chromatic difference between red and blue coefficient matrices for 

Le Grand’s and the reduced eye with a pinhole immediately in front for distant objects 

and objects at the finite distances of –3, –2 and –0.5 m from the eye. 

  Le Grand’s eye Reduced eye 

P

EδV  Distant 











3-109.3691kD0.001414

mm2212.003149.0  













0.008682kD0.001563

mm1929.003473.0  

P

OEδV  –3 m 




















kD101230.3kD00417.0

103721.703156.0
6

5

 





















kD108938.2kD0.001566

104307.603479.0
6

5

 

P

OEδV  –2 m 




















kD106845.4kD0.001419

101058.103160.0
6

4

 





















kD103408.4kD0.001567

106461.903482.0
6

5

 

P

OEδV  
–0.5 

m 





















kD108738.1kD0.001433

104233.403193.0
5

4

 





















kD107363.1kD0.001580

108584.303511.0
5

4

 

 

 

10.4.1 Chromatic difference in transverse image positions and inclinations at 

the retina with pinhole in front of the eye 

The chromatic difference in transverse image positions Rδy  (Equations 

7.2.11 and 12) and inclinations Rδa  (Equations 7.2.20 and 21) at the retina when a 

pinhole is immediately in front of the eye is given in Table 10.4.4 for Le Grand’s 

eye and Table 10.4.5 for the reduced eye.  

To generate numerical examples for the chromatic difference in transverse 

image positions Rδy  and inclinations Rδa  at the retina, we assume that the object 

is on the longitudinal axis; that is to say 0K a  or 0O y . Furthermore, an eye 

that is cyclopleged will allow for 4 mm of pinhole decentration and we therefore 

equate mm4P y . The values are summarized in Table 10.4.6.  

Inspecting the results, in each case there is a very small difference 

resulting from the change in longitudinal position of the object point from the eye. 

Additionally, the results obtained for the two eyes are distinct for both Rδy  and 

Rδa .  This  is  emphasized  in  Figures 10.4.1  and 2 which give Rδy  and Rδa  as a 

function of transverse displacement of the pinhole Py  held immediately in front of 

the eye. 
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Table 10.4.4 The chromatic difference in transverse image positions Rδy  and 

inclinations Rδa  at the retina when a pinhole is immediately in front of Le Grand’s eye. 

 Chromatic difference in transverse 

image positions 

Chromatic difference in inclinations at the 

retina 

Distant     KPR mm2212.003149.0δ ayy       KPR 009369.0kD001413.0δ aya   

–3 m     O

5

PR 103721.703156.0δ yyy       O

6

PR kD101230.3kD001417.0δ yya   

–2 m     O

4

PR 101058.103160.0δ yyy       O

6

PR kD106845.4kD001419.0δ yya   

–0.5 m     O

4

PR 104233.403193.0δ yyy       O

5

PR kD108738.1kD001433.0δ yya   

 

Table 10.4.5 The chromatic difference in transverse image positions Rδy  and 

inclinations Rδa  at the retina when a pinhole is immediately in front of the reduced eye. 

 Chromatic difference in transverse 

image positions 

Chromatic difference in inclinations at 

the retina 
Distant     KPR mm1929.003473.0δ ayy       KPR 008682.0kD001563.0δ aya   

 –3 m     O

5

PR 104307.603479.0δ yyy       O

6

PR kD108938.2kD001566.0δ yya   

–2 m     O

5

PR 106461.903482.0δ yyy       O

6

PR kD103408.4kD001567.0δ yya   

–0.5 m     O

4

PR 108584.303511.0δ yyy       O

5

PR kD107363.1kD001580.0δ yya   

 

Table 10.4.6 The values for the chromatic difference in transverse image positions 

Rδy  and inclinations Rδa  at the retina for Le Grand’s eye and the reduced eye. The 

object is on the longitudinal axis and the pinhole in front of the cyclopleged eye is 

displaced 4 mm from the optical axis. 

 Chromatic difference in transverse 

image positions Rδy  

Chromatic difference in 

inclinations Rδa  

 Le Grand Reduced eye Le Grand Reduced eye 

Distant –0.1259 mm –0.1389 mm –0.005657 –0.006251 

–3 m –0.1262 mm –0.1392 mm –0.005670 –0.006262 

–2 m –0.1264 mm –0.1393 mm –0.005676 –0.006268 

–0.5 m –0.1277 mm –0.1404 mm –0.005732 –0.006320 

 

The relationship obtained for the chromatic difference in inclination at the 

retina using a pinhole compares well with the theoretically calculated values given 

by Thibos et al (1991). 
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Figure 10.4.1 Chromatic difference in transverse image positions Rδy  as a function of 

displacement of a pinhole Py  immediately in front of the eye. The red, black, blue and 

cyan lines appear to be superimposed for both the Le Grand and reduced eyes. 

 

 
Figure 10.4.2 Chromatic difference in retinal inclinations Rδa  as a function of pinhole 

displacement Py  in front of the eye. The red, black, blue and cyan solid lines 

representing Le Grand’s eye appear to be superimposed and similarly, the red, black, blue 

and cyan dashed lines representing the reduced eye also appear superimposed. 
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10.4.2 Chromatic difference in image size, angular spread and chromatic 

magnifications:  with a pinhole 

The equations that define the chromatic difference in image size 

(Equations 7.3.4 and 8), chromatic difference in angular spread (Equations 7.3.11 

and 12), retinal chromatic image size magnification (Equations 7.3.19 and 20) and 

retinal chromatic angular spread magnification (Equations 7.3.27 and 28) are each 

independent of transverse displacement in the pupil or pinhole planes. However, 

the longitudinal displacement of the aperture from the plane of the pupil to the 

plane of the pinhole immediately in front of the cornea will have an effect. 

 

Chromatic difference in image size and angular spread – with a pinhole 

The chromatic difference in image size  RΔδ y  when a pinhole is placed 

immediately in front of the eye is summarized in Tables 10.4.7 and 8 for the two 

model eyes. It is obvious from Tables 10.4.7 and 8 that the chromatic difference 

in image sizes and angular spread  RΔδ a  at the retina are all linear equations 

dependent on the object size. 

 RΔδ a  has been defined differently in this study to those definitions in 

the literature. We saw in Section 2.3.2 that the definitions in the literature differ 

by the position of the pivotal point used to measure the chromatic difference in 

angular spread at the retina (for example nodal point, entrance pupil, refracting 

surface or “cornea”), with adjustments included in the formulae for such 

differences in choice of pivotal point. In contrast, this study defines the actual 

difference in the ray inclinations at the retina. For Gaussian eyes these rays will 

intersect on the Gaussian plane but in astigmatic heterocentric eyes the two rays 

may not intersect. When comparing the results in this study for the two model 

eyes to the results in the literature, the results appear similar for the naked centred 

eye. However, it is when the pinhole is placed away from the eye that the 

difference in the definitions becomes apparent. This is because the actual point of 

intersection moves further upstream from those used in the literature. This is an 

important discrepancy to note. The equations for  RΔδ a  suggest that the 

chromatic difference in ray inclinations at the retina have implications for the 

Stiles-Crawford effects that previous definitions have not highlighted. 
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Table 10.4.7 The chromatic difference in image sizes  RΔδ y  and angular spread 

 RΔδ a  at the retina when a pinhole is immediately in front of Le Grand’s eye. 

 Chromatic difference in image sizes 

at the retina 

Chromatic difference in angular 

spread at the retina 

Distant     KR Δmm2212.0Δδ ay       KR Δ009369.0Δδ aa   

–3 m     O

5

R Δ103721.7Δδ yy       O

6

R ΔkD101230.3Δδ ya   

–2 m     O

4

R Δ101058.1Δδ yy       O

6

R ΔkD106845.4Δδ ya   

–0.5 m     O

4

R Δ104233.4Δδ yy       O

5

R ΔkD108738.1Δδ ya   

 

Table 10.4.8 The chromatic difference in image size  RΔδ y  and angular spread 

 RΔδ a  at the retina when a pinhole is immediately in front of the reduced eye. 

 Chromatic difference in image sizes 

at the retina 

Chromatic difference in angular 

spread at the retina 

Distant     KR Δmm1929.0Δδ ay       KR Δ008682.0Δδ aa   

 –3 m     O

5

R Δ104307.6Δδ yy       O

6

R ΔkD108938.2Δδ ya   

–2 m     O

5

R Δ106461.9Δδ yy       O

6

R ΔkD103408.4Δδ ya   

–0.5 m     O

4

R Δ108584.3Δδ yy       O

5

R ΔkD107363.1Δδ ya   

 

Chromatic image size and angular spread magnifications - with a pinhole  

The effect of replacing the pupil with a pinhole has a magnifying effect. 

We substitute from the respective red and blue coefficient matrices P

EV  and P

OEV  

in Tables 10.4.1 and 2 into Equations 7.3.19, 20, 27 and 28. For Le Grand’s eye 

with a pinhole the retinal chromatic image size magnification is 9868.0P

yR M  

and the retinal chromatic angular spread magnification is 9862.0P

aR M  for all 

four illustrative distances. For the reduced eye with a pinhole the retinal chromatic 

image size magnification, P

yRM  and the retinal chromatic angular spread 

magnification, P

aRM  are both 0.9885 for all four illustrative distances. This 

equates to magnifications ranging between 1.1 and 1.4%, and compares well to 

the values given by Zhang et al (1991). These values represent an increased 

magnification over the naked model eyes. 
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10.4.3 AcuFocus Kamra corneal pinhole inlay 

 The AcuFocus Kamra corneal inlay was discussed in Section 7.6 and 

consists of an intrastromal pinhole inlay. The examples in Section 10.4 have 

illustrated what the effect of the corneal pinhole inlay are on the visual system. 

Only the chromatic difference in image position and image inclination are directly 

dependent on the transverse displacement of the pinhole. A misplaced pinhole 

inlay of only 0.5 mm can have a significant detrimental effect on the vision of the 

eye (Tabernero and Artal, 2011). 

All the chromatic differences and chromatic magnifications in image space 

indirectly depend on the longitudinal shift in position of the limiting aperture from 

the pupillary plane to the corneal plane. Comparison of the equations in Table 

10.3.9 with those in Tables 10.4.7 and 8, shows that  RΔδ a  increases when a 

pinhole is placed at the corneal plane and that this effect is greater for Le Grand’s 

eye than for the reduced eye. When P

yRM  and P

aRM  are compared with yRM  and 

aRM  in Tables 10.3.10 and 11 we see that both P

yRM  and P

aRM  increase when a 

pinhole is placed at the corneal plane and that these chromatic magnification 

effects are greater in Le Grand’s eye than the reduced eye. Additionally, the 

results for P

yRM  and P

aRM  indicate that the chromatic magnification effects are 

greater for the retinal inclination than for retinal position. The increase in 

chromatic magnification will have implications for eyes that have an AcuFocus 

Kamra corneal pinhole inlay, something that is raised as a concern by Tabernero 

and Artal (2011).  

The corneal pinhole inlay has an outer diameter of 3.8 mm (Seyeddain et 

al, 2010; Tabernero and Artal, 2011). Even with the best centration, a normal 

pupil, without pharmacological intervention, can dilate wider than the inlay. If we 

imagine a pencil of rays from an object point, then the effect of rays entering the 

eye as a full ring around the outer diameter of the inlay will be to create a 

rainbow-type arc forming a full circle on the retina. For a distant axial object point 

this will create a chromatic difference in position Rδy  of mm1197.0  for Le 

Grand’s eye. The red ring will be positioned outer-most and the blue ring will be 
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the inner-ring. The rainbow-ring will not necessarily be in focus and will be 

positioned in the peripheral retina.  

The rainbow that we see in the sky is part of a full circular-arc, the lower 

part of which is hidden from view below the horizon. However, the shape of the 

rainbow is not a bow, but rather a cone shape, the apex of the cone being 

positioned at the viewer’s eye (Lee and Fraser, 2001: 112-113, 322). In effect, the 

rainbow-ring created in the eye by the outer edge of the pinhole inlay is an image 

at the retina of a cone of light, with each frequency creating its own cone. The 

apexes of the cones are unlikely to coincide and the angle between the red and the 

blue cones is represented by the chromatic difference in image inclination  Rδa  

and is 
3103694.5   (radians) for Le Grand’s eye. 

 

10.5 Chromatic properties of the eye dependent on image and aperture 

positions in object space 

Chromatic properties of the eye dependent on image and aperture positions 

in object space mimic the set-up created in the experimental environment. They 

differ from the object and aperture dependent chromatic properties of the eye in 

image space in that the red and blue image points are directed at the same point on 

the retina and the chromatic separation occurs in object space. The Vernier 

distance between the red and blue object points is measured when the two points 

appear to coincide to the subject. Because the use of a pinhole to manipulate and 

induce transverse chromatic effects features strongly experimentally, we shall 

include the pinhole alternative in this section. Additionally, because experimental 

set-ups are conducted at finite distances the study of image- and aperture-

dependent chromatic properties in object space shall be limited to finite distances. 

The coefficient matrix for the chromatic properties in object space for 

objects at finite distances ( OyV ) was defined for the eye by Equation 5.3.14 and 

with a pinhole in front of the eye (
P

OyV ) by Equation 5.3.19. Only the top row is 

dependent on the longitudinal distance of the object in front of the eye, Oz , while 

the bottom row is independent of object distance in front of the eye. This implies  
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Table 10.5.1 The red and blue coefficient matrices OyV  for image and aperture 

dependent chromatic properties in object space for Le Grand’s eye for objects at the finite 
distances of 3, 2 and 0.5 metres. 

  Red Blue 

OyV  –3 m 











 kD0.05987kD102871.5

7819.1797172.2
4

 











 kD0.06032kD106195.1

1450.1817289.3
3

 

OyV  –2 m 











 kD0.05987kD102871.5

9154.1191885.2
4

 












 kD0.06032kD106195.1

8241.1201095.2
3

 

OyV  
–0.5 

m 












 kD0.05987kD102871.5

1155.303954.1
4

 












 kD0.06032kD106195.1

3428.303197.0
3

 

 

Table 10.5.2 The red and blue coefficient matrices for image and aperture dependent 

chromatic properties in object space for the reduced eye for objects at the finite distances 
of 3, 2 and 0.5 metres. 

  Red Blue 

OyV

 
–3 m 












 kD0.05990kD105825.4

7954.1794696.2
4

 











 kD0.06040kD108389.1

2964.1814219.4
3

 

OyV

 
–2 m 












 kD0.05990kD105825.4

8953.1190114.2
4

 












 kD0.06040kD108389.1

8959.1205829.2
3

 

OyV

 

–0.5 

m 












 kD0.05990kD105825.4

0450.303240.1
4

 












 kD0.06040kD108389.1

2951.301754.0
3

 

 

Table 10.5.3 The chromatic difference in coefficient matrices for image and aperture 
dependent chromatic properties in object space for Le Grand’s and the reduced eye for 

objects at the finite distances of 3, 2 and 0.5 metres. 

  Le Grand’s eye Reduced eye 

OyδV  –3 m 











 kD105429.4kD101482.2

3630.14461.6
43

 












 kD100032.5kD102972.2

5010.18915.6
43

 

OyδV

 
–2 m 












 kD105429.4kD101482.2

9087.02980.4
43

 












 kD100032.5kD102972.2

0006.15943.4
43

 

OyδV

 

–0.5 

m 












 kD105429.4kD101482.2

2273.00757.1
43

 












 kD100032.5kD102972.2

2502.01486.1
43

 

 

that the chromatic difference in inclination, Oδa  (Equation 7.4.6) will be 

independent of Oz . 
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The red and blue coefficient matrices, OyV  for Le Grand’s eye are given in 

Table 10.5.1 and for the reduced eye in Table 10.5.2. The chromatic difference in 

coefficient matrices OyδV  is given in Table 10.5.3 for both eyes. 

 

10.5.1 Chromatic difference in object position 

The chromatic difference in object position Oδy  measures the difference in 

the transverse position from the red object point to the blue object point when the 

two coloured image points are superimposed on the retina and appear to the 

subject as a single dichromatic image. The position on the retina Ry  can be 

manipulated and may be on the fovea, or some chosen point in the peripheral 

retina. For model eyes, the fovea is often assumed to be coincidental with the 

optical axis, thus nullifying the visio-optical angle (angle alpha). 

We substitute the relevant entries from OyδV  in Table 10.5.3 into Equation 7.4.1 

to obtain Oδy  for three illustrative distances of the object from Le Grand’s eye. 

These are given in Table 10.5.4. If we assume that the pupil is centred on the 

longitudinal axis, then Oδy  is dependent on the position chosen for the image 

point to reach the retina, Ry . If this is the fovea, then Oδy  is dependent on the 

visio-optical angle, the angle between the visual and optical axes (Atchison and 

Smith, 2000: 30-35; Rabbetts, 2007: 234-235). Because the fovea is static, one 

obtains a single value for the chosen longitudinal object distance in front of the 

eye. 

If, for example, we assume that the eye is centred mm0P y  and that the 

fovea is 5 from the optical axis, then this equates to an approximate distance of 

1.46 mm at the retina for a model eye. Substituting these two illustrative values 

into the equations in Table 10.5.4, we obtain a chromatic difference in object 

position, summarized for Le Grand’s eye in the right-hand column of Table 10.5.4 

and for the reduced eye, the equations and numerical illustrative values are 

summarized in Table 10.5.5 .  
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Table 10.5.4 The equations for the chromatic difference in object position 
Oδy  for Le 

Grand’s eye for objects at the finite distances of –3, –2 and –0.5 m. The illustrative values 

are for a centred reduced eye with transverse retinal displacement of 1.46 mm. 

 Chromatic difference in object position Illustrative values 

–3 m     RPO 3630.14462.6δ yyy   –1.9900 mm 

–2 m     RPO 9087.02980.4δ yyy   –1.3267 mm 

–0.5 m     RPO 2273.00757.1δ yyy   –0.3318 mm 

 

Table 10.5.5 The equations for the chromatic difference in object position Oδy  for the 

reduced eye for objects at the finite distances of –3, –2 and –0.5 m. The illustrative values 

are for a centred reduced eye with transverse retinal displacement of 1.46 mm. 

 Chromatic difference in object position Illustrative values 

–3 m     RPO 5010.18915.6δ yyy   –2.1914 mm 

–2 m     RPO 0006.15943.4δ yyy   –1.4609 mm 

–0.5 m     RPO 02502.01486.1δ yyy   –0.3652 mm 

 

 

Figure 10.5.1 Chromatic difference in object position Oδy  is shown for illustrative 

working distances of –3 m, –2 m and –0.5 m from the eye. The red and blue images are 

superimposed at the retina at a chosen position, Ry , with foveal positions shown by the 

red and green vertical lines for the right and left eyes, respectively. 
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The chromatic difference in object position 
Oδy  is the Vernier separation 

from the red object point to the blue object point at illustrative working distances 

of –3 m, –2 m and –0.5 m. This is indicated in Figure 10.5.1. The red and blue 

images are superimposed at the retina at a chosen position, Ry . In Figure 10.5.1, 

the red vertical line indicates the foveal position of the right eye mm46.1R y  

and the green line indicates the foveal position of the left eye mm46.1R y . 

 

10.5.2  Chromatic difference in inclination in object space 

The chromatic difference in inclination in object space Oδa  is the angle 

subtended by the incident rays from the red and blue object points which, after 

both traversing the same position through the pupil, both reach the retina at the 

same position so as to appear superimposed to the viewer. The chromatic 

difference in inclination in object space Oδa  utilises the bottom row of OyV which  

 

Figure 10.5.2 Chromatic difference in inclination in object space Oδa  for Le Grand’s 

eye and the reduced eye as a function of retinal position. Oδa  is independent of working 

distance. 
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is independent of Oz . Substituting the relevant entries from OyV  into Equation 

7.4.6 we obtain 

    R

4

P

3

O kD105429.4kD101482.2δ yya                 (10.5.1) 

 for Le Grand’s eye and  

    R

4

P

3

O kD100032.5kD102972.2δ yya                 (10.5.2) 

for the reduced eye. If we substitute the illustrative values of 0P y  for a centred 

system and mm46.1R y  for the position of the fovea, then we obtain a  

chromatic difference in inclination in object space of 
4

O 106327.6δ a  for Le 

Grand’s eye and 
4103047.7   for the reduced eye. 

Figure 10.5.2 illustrates the relationship of Oδa  as a function of position of 

the rays reaching the retina. The red vertical line indicates the position of the 

fovea of the right eye, and the green line indicates the position of the left fovea in 

schematic eyes that have a 5º visio-optical angle. 

 

10.5.3 Chromatic difference in object size 

 The results for the chromatic difference in object size  OΔδ y  are similar 

to those in Section 10.5.1 and are given in Table 10.5.6. The relationships are all 

linear. One can think of the OyδX  as having a magnifying effect on the image size 

to obtain the chromatic difference in object size. 
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Table 10.5.6 Chromatic difference in object size for Le Grand’s eye and the reduced 

eye for the three illustrative working distances. 

 Le Grand’s eye Reduced eye 

–3 m   RO Δ3630.1Δδ yy     RO Δ5010.1Δδ yy   

–2 m   RO Δ9087.0Δδ yy     RO Δ0006.1Δδ yy   

–0.5 m   RO Δ2273.0Δδ yy     RO Δ2502.0Δδ yy   

 

10.5.4 Chromatic difference in object angular spread 

 The numerical results for chromatic difference in object angular spread 

 OΔδ a  are similar to those in Section 10.5.2 for the illustrative examples and are 

therefore given in Table 10.5.7. Again, the relationships are all linear and because 

OyδZ  is independent of working distance, we obtain one relationship for each of 

Le Grand’s and the reduced eyes. 

 

Table 10.5.7 Chromatic difference in object angular spread for Le Grand’s eye and the 

reduced eye for the three illustrative working distances. 

Le Grand’s eye Reduced eye 

    R

4

O ΔkD105429.4Δδ ya       R

4

O ΔkD100032.5Δδ ya   

 

10.5.5 Chromatic magnification in object space 

Le Grand’s eye 

The chromatic object size magnification yOM  (Equation 7.5.15) defines 

the magnification of the size of the red to blue objects. yOM  is 1.0076 for objects 

at –3 and –2 m and 1.0075 for an object at –0.5m from the eye. The chromatic 

object angular spread magnification aOM  (Equation 7.5.18) defines the 

magnification of the angular spread subtended by the red object to the angular 

spread of the blue object where both images appear to be the same size at the 

retina and is 1.0076. Because the bottom row of aOV  is independent of Oz , aOM  

is independent of object distance. These both equate to 0.75% magnification 

where the blue object is larger than the red object. That is r

O

b

O ΔΔ yy   from 

Equation 7.5.13 and r

O

b

O ΔΔ aa   from Equation 7.5.16. 
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The reduced eye 

 For the reduced eye, yOM  is 1.0083 for all three illustrative distances and 

aOM  is 1.0084. These equate to 0.83% and 0.84% with the blue object larger than 

the red object. 

 

10.6  Chromatic properties of the eye dependent on image and aperture 

positions in object space:  with a pinhole 

Experimental measurements in object space, as seen in Chapter 2, include 

the effect of placing a pinhole immediately in front of the eye. The coefficient 

matrix, P

OyV  simplifies to Equation 5.3.19 and is given in Tables 10.6.1 and 2 for 

Le Grand’s eye and the reduced eye respectively. The chromatic difference of the 

coefficient matrices P

OyδV  is summarised in Table 10.6.3. 

 

10.6.1 Chromatic difference in object positions:  with a pinhole 

The chromatic difference in object positions Oδy  is dependent on image 

Ry  and aperture positions Py . The effect of change in aperture position on Oδy  is 

direct with respect to Py  and indirect in that the longitudinal displacement from 

the pupil to the corneal plane is incorporated in P

OyV . Because the coefficient 

matrices for the eye with the pinhole P

OyV  and measurements in object space are 

derived from the coefficient matrix for the chromatic properties in object space 

OyV , the bottom row is again independent of Oz . The equations for Oδy  for the 

three illustrative distances of the object in front of the eye are given in Tables 

10.6.4 and 5 for Le Grand’s eye and the reduced eye respectively. In the right-

hand column of each table is the illustrative value calculated by a 4mm 

displacement of the pinhole immediately in front of the cyclopleged eye 

 mm4P y  and assuming that the image points are both directed at the same 

point on the retina. The illustrative values are given for an eye with, firstly, the 

fovea centred on the longitudinal axis mm0R y  and, secondly, with the fovea 

positioned at 1.46 mm to approximate a visio-optical angle of 5 .  

 



IV  FINDINGS AND DISCUSSION   10 Numerical examples of chromatic 

aberration and chromatic properties 

297 

 

Table 10.6.1 The red and blue coefficient matrices for chromatic properties of Le 

Grand’s eye in object space dependent on image and aperture positions for objects at the 

finite distances of 3, 2 and 0.5 metres, with a pinhole placed immediately in front of the 
eye. 

  Red Blue 

P

OyV

 
–3 m 












 kD0.05978kD106744.4

3441.1794023.2
4

 











 kD0.06058kD104338.1

7471.1813015.3
3

 

P

OyV

 
–2 m 












 kD0.05978kD106744.4

5628.1199349.1
4

 












 kD0.06058kD104338.1

1647.1218677.1
3

 

P

OyV

 

–0.5 

m 












 kD0.05978kD106744.4

89072.292337.1
4

 












 kD0.06058kD104338.1

2912.302831.0
3

 

 

Table 10.6.2   The red and blue coefficient matrices for chromatic properties of the 
reduced eye in object space dependent on image and aperture positions for objects at the 

finite distances of 3, 2 and 0.5 metres, with a pinhole placed immediately in front of the 

eye. 

  Red Blue 

P

OyV  –3 m 











 kD0.05986kD101855.4

5815.1792556.2
4

 












 kD0.06056kD106796.1

6796.1810387.4
3

 

P

OyV  –2 m 











 kD0.05986kD101855.4

7210.1198371.1
4

 












 kD0.06056kD106796.1

1197.1213591.2
3

 

P

OyV  
–0.5 

m 












 kD0.05986kD101855.4

9302.292093.1
4

 












 kD0.06056kD106796.1

2799.301602.0
3

 

 

Table 10.6.3 The chromatic difference in coefficient matrices for chromatic properties 

of the eye in object space dependent on image and aperture positions for Le Grand’s and 

the reduced eye for objects at the finite distances of 3, 2 and 0.5 metres, with a pinhole 
placed immediately in front of the eye. 

  Le Grand’s eye Reduced eye 

P

OyδV

 
–3 m 












 kD100099.8kD109013.1

4030.27038.5
43

 












 kD109937.6kD100981.2

0981.22943.6
43

 

P

OyδV

 
–2 m 












 kD100099.8kD109013.1

6020.18025.3
43

 












 kD109937.6kD100981.2

3987.11962.4
43

 

P

OyδV

 

–0.5 

m 












 kD100099.8kD109013.1

4005.09506.0
43

 












 kD109937.6kD100981.2

3497.00491.1
43
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Table 10.6.4 The equations for the chromatic difference in object position 
Oδy  for Le 

Grand’s eye for objects at the finite distances of –3, –2 and –0.5 m from the eye and 

pinhole displaced by mm4P y . 

 Chromatic difference in object  Illustrative values 

 position mm0R y  mm46.1R y  

–3 m     RPO 4030.27038.5δ yyy   –22.8153 mm –26.3236 mm 

–2 m     RPO 6020.18025.3δ yyy   –15.2102 mm –17.5491 mm 

–0.5 m     RPO 4005.09506.0δ yyy   –3.8025 mm –4.3873 mm 

 

Table 10.6.5 The equations for Oδy  for the reduced eye for objects at the finite 

distances of –3, –2 and –0.5 m from the eye. The illustrative values are for an eye with 

mm4P y  and  mm0R y  or mm46.1R y . 

 Chromatic difference in object  Illustrative values 

 position mm0R y  mm46.1R y  

–3 m     RPO 0981.22943.6δ yyy   –25.1773 mm –28.2406 mm 

–2 m     RPO 3987.11962.4δ yyy   –16.7849 mm –18.8271 mm 

–0.5 m     RPO 3497.00491.1δ yyy   –4.1962 mm –4.7068 mm 

 

Figure 10.6.1 gives Oδy  as a function of pinhole displacement at the 

corneal plane for the three illustrative distances from the eye. The image is 

superimpose on the retina at mm0R y . Not only does Oδy  increase as the object 

points move further away from the eye, but the magnitudes of the illustrative 

values using a pinhole are greater than those for the eye without the pinhole, given 

in Section 10.5.1. 
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Figure 10.6.1 Chromatic difference in object positions Oδy  between the red and blue 

object points as a function of transverse displacement of the pinhole Py  at three 

illustrative object distances from the eye, –3 m in black, –2 m in blue and –0.5 m in cyan. 

 

10.6.2 Chromatic difference in inclination in object space:  with a pinhole 

The chromatic difference in inclination in object space Oδa  is dependent 

on image and aperture positions. Oδa  is independent of Oz  and therefore we 

obtain one equation for each model eye. The chromatic difference in inclination in 

object space is 

    R

4

P

3

O kD100099.8kD109013.1δ yya                 (10.6.1) 

for Le Grand’s eye and 

    R

4

P

3

O kD109937.6kD100981.2δ yya                 (10.6.2) 

for the reduced eye. For the illustrative situation of mm4P y  combined with 

firstly mm0R y , then mm46.1R y , the chromatic difference in inclination in 

object space is 
3106051.7   and 

3107745.8   respectively  for Le Grand’s eye 

and 
3103924.8   and 

3104135.9   respectively for the reduced eye. From 

Equations 10.6.1 and 2 we can see that Oδa  is linearly dependent on Py . For any 

particular constant distance of the object points from the eye, Py  is “magnified”  
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Figure10.6.2 The chromatic difference in inclination in object space Oδa  as a function 

of transverse pinhole displacement Py  for Le Grand’s eye (solid lines) and the reduced 

eye (dashed lines). The black lines represent the variation in inclination when the fovea is 

centred on the optical axis 0R y  and the blue lines represent the fovea some 1.46 mm 

from the optical axis; that is at mm46.1R y  (left eye). 

 

by a constant, 
OyδY , the chromatic difference in the near directional spread 

coefficient and the slope of the line in Figure 10.6.2. If the red and blue image 

points are superimposed on the fovea, that is to say mm46.1R y , then this will 

merely add a fixed value to the chromatic difference in object inclination which 

will still vary by 
Py . This is illustrated graphically in Figure 10.6.2 by the blue 

lines. Similarly, any point in the peripheral retina can be chosen such that 0R y . 

  

10.6.3 Chromatic difference in object size:  with a pinhole 

  From Equation 7.5.6, we can see that when a pinhole is placed in front of 

the eye the effect of any transverse displacement is nullified. The only change will 

be that created by the longitudinal displacement of the pinhole, that is, from the 

plane of the pupil to the plane immediately in front of the cornea. The effect of  
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Table 10.6.6 The chromatic difference in object size for the three illustrative distances 

for Le Grand’s eye and the Reduced eye. 

 Le Grand’s eye Reduced eye 

–3 m   RO 4030.2δ yy     RO 0981.2δ yy   

–2 m   RO 6020.1δ yy     RO 3987.1δ yy   

–0.5 m   RO 4005.0δ yy     RO 3497.0δ yy   

 

P

OyδX  is to magnify the image size RΔy  to obtain the chromatic difference in 

object size. This is summarized in Table 10.6.6 for the three working distances. 

 

10.6.4 Chromatic difference in object angular spread:  with a pinhole 

 From Equation 7.5.9 we can see that the chromatic difference in object 

angular spread is also independent of any transverse displacement of the pinhole 

Py , and the magnification P

OyδZ  differs from 
OyδZ  for the chromatic difference in 

object inclination  OΔδ a  due to the longitudinal displacement of the limiting 

aperture from the pupil to the pinhole plane. Additionally, the bottom row of  P

OyV  

is independent of 
Oz  and therefore the chromatic difference in object angular 

spread  OΔδ a  with a pinhole is also independent of the distance of the object 

from the eye.  OΔδ a  is given in Table 10.6.7 for the two schematic eyes. When 

we compare the values for P

OyδZ  in Table 10.6.7 to those for 
OyδZ  in Table 10.5.7, 

we see that introducing a pinhole immediately in front of the eye has a magnifying 

effect. This is more pronounced in Le Grand’s eye than for the reduced eye. 

 

Table 10.6.7 The chromatic difference in angular spread for Le Grand’s eye and the 

reduced eye. 

Le Grand’s eye Reduced eye 

    R

4

O ΔkD100099.8Δδ ya       R

4

O ΔkD109937.6Δδ ya   
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10.6.5 Chromatic object magnification:  with a pinhole 

Chromatic object size magnification 

In Section 7.5.3 we obtained the chromatic object size magnification yOM  

(Equation 7.5.15). When a pinhole is placed immediately in front of the eye, we 

substitute values for P

OyX  instead of 
OyX  into Equation 7.5.15. Both yOM  and 

hence P

yOM  are independent of the transverse position of the pinhole, and P

yOM  is 

influenced only by the longitudinal displacement of the limiting aperture. For Le 

Grand’s eye P

yOM  is 1.0134 and for the reduced eye P

yOM  is 1.0117. Comparing 

this to the results obtained without the pinhole, the chromatic magnification has 

increased from 0.75% to 1.3% and 1.2% respectively, nearly double. 

 

Chromatic object angular spread magnification 

 The chromatic object angular spread magnification with a pinhole 

immediately in front of the eye P

aOM  is obtained from Equation 7.5.18, 

substituting values for P

OyZ . P

aOM , like aOM  is independent of any transverse 

displacement of the pinhole and any magnification is obtained by placing the 

pinhole in front of the eye, effectively moving the limiting aperture form the 

pupillary plane to the corneal plane. For Le Grand’s eye P

aOM  is 1.0134 and for 

the reduced eye we have 1.0117, exactly the same results as for P

yOM . The blue 

object is larger than the red object, that is, r

O

b

O ΔΔ yy   from Equation 7.5.13 and 

r

O

b

O ΔΔ aa   from Equation 7.5.16. 

 

10.7 Underlying implications 

 There are two underlying implications which do not appear to be 

addressed in the literature. Firstly, a chromatic difference in incident position 

occurs when measuring chromatic difference in position at the retina. The effect is 

null when a pinhole is introduced in front of the eye. Secondly, there is a 

chromatic difference in inclination at the retina when measuring the chromatic 

difference in object positions or inclinations. This effect is null for the reduced 
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eye. The effects are small and only apparent in eyes with more than one refracting 

surface and hence, real eyes. 

 

10.7.1 Chromatic difference in incident position 

In Section 7.2.2 we defined chromatic difference in image positions at the 

retina when a pencil of rays is incident at the cornea with inclination .Ka  We 

noted that while the red and blue rays both traverse the same transverse position 

through the pupil, Py , this does not necessarily mean that the red and blue rays 

originate from the same dichromatic ray that is incident on the eye or cornea. 

Instead, there are separate red and blue rays, each with incident inclination Ka  

which are refracted and traced through the same position through the limiting 

aperture Py . This is illustrated in Figure 7.2.1 where we see separate red and blue 

rays intersecting the cornea, separated by distance Kδy  and then traversing the 

pupil through the same point, but with different inclinations. 

Equation 7.2.9 enables us to calculate the chromatic difference in corneal 

position Kδy , incident onto the eye, of the red and blue rays from a distance object 

and Equation 7.2.10 likewise calculates the chromatic difference in incident 

position Kδy  for rays originating from an object at a finite distance. Substituting 

from the red and blue transferences for the anterior and posterior subsystems and 

the transference for the eye, we obtain a relationship for Le Grand’s eye, given in 

Table 10.7.1. The chromatic difference of incident position Kδy  is given as an 

illustrative example for a centred model eye 0P y  with incident inclination of 

1.0K a , in Table 10.7.1.  mm02061.0δ K y  represents a distance of more than 

5 000 times the wavelength of the blue ray or almost 3 000 times the wavelength 

of the red ray.  

For the reduced eye with a pupil the equivalent equation for the chromatic 

difference of incident position Kδy  for a distant object is given as a relationship in 

Table 10.7.2. The illustrative value for the reduced eye is also given in Table 

10.7.2 for an example where 0P y  and 1.0K a . 
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Table 10.7.1 The chromatic difference in incident position for Le Grand’s eye for an 

object point positioned –3 m, –2 m and –0.5 m from the eye and illustrated with 

mm200O y  and mm0P y . 

Distance 

from eye 
Chromatic difference in incident position Illustrative value 

Distant object   PK 004887.0mm02061.0δ yayK   0.002061 mm 

–3 m PO

6 004890.0108576.6δ yyyK    –0.001372 mm 

–2 m PO

5 004891.0100276.1δ yyyK    –0.002055 mm 

–0.5 m PO

5 004904.0100733.4δ yyyK    –0.008147 mm 

 

Table 10.7.2 The chromatic difference in incident position for the reduced eye for an 

object point positioned –3 m, –2 m and –0.5 m from the eye and illustrated with 

mm200O y  and mm0P y . 

Distance 

from eye 
Chromatic difference in incident position Illustrative value 

Distant object   PK 003614.0mm01312.0δ yayK   0.001312 mm 

–3 m PO

6 003617.0103685.4δ yyyK    4107370.8   mm 

–2 m PO

6 003618.0105493.6δ yyyK    –0.001310 mm 

–0.5 m PO

5 003631.0106074.2δ yyyK    –0.005215mm 

 

For an object at a finite distance, we summarize the three illustrative 

distances of the object from the eye in Table 10.7.1 for Le Grand’s eye and Table 

10.7.2 for the reduced eye. The illustrative values are given for an object point 

that is placed mm200O y  above the longitudinal axis and assuming that the eye 

is centred. 

 

Chromatic difference in incident position with pinhole 

When a pinhole is placed in front of the eye the chief ray is the ray 

traversing the centre of the pinhole, which is placed immediately in front of the 

eye. Equations 7.2.9 and 10 both simplify to  mm0δ Ky  and, as expected, 

there is no chromatic difference in incident position present when a pinhole is 

placed in front of either model eye. 
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10.7.2 Chromatic difference in emergent inclination from object space 

Equation 7.4.13 was derived to calculate the chromatic difference in 

inclination of the two rays that traverse, from separated object points through the 

same position in the pupil or pinhole and arrive at the retina at the same position, 

that is to say b

R

r

R yy  . For convenience, the chief rays are usually chosen. 

However, Equation 7.4.13 shows that the two rays are refracted differently and do 

indeed follow different paths through the system. Although the red and blue rays, 

by definition, are chosen to both traverse the same position through the aperture, 

they may not necessarily traverse through this aperture with the same inclination 

and will not arrive at the retina with the same inclination. This is illustrated in 

Figure 7.4.1 and has implications for the Stiles-Crawford effects. For Le Grand’s 

eye, the chromatic difference in inclination at the retina will be 

    R

6

P

5

R kD103139.7kD102635.8δ yya                 (10.7.1) 

which is independent of the distance of the object in front of the eye. For a centred 

model eye ( mm0P y ) with the fovea mm46.1R y  from the optical axis, this 

is a chromatic difference in inclination at the fovea of  5

R 100678.1δ a . When 

a pinhole is placed in front of the eye, Equation 7.4.13 becomes 

    R

5

P

4

R kD104013.2kD103746.1δ yya   .             (10.7.2) 

For a pinhole in front of the cyclopleged Le Grand model eye with transverse 

displacement of mm4P y , the chromatic difference in inclination at the optical 

axis ( mm0R y ) is 
4

R 104984.5δ a  and at the fovea ( mm46.1R y ) it 

increases in magnitude to 
4

R 108490.5δ a . However, we note that the 

direction changes when a pinhole is introduced. When light traverses the pupil, 

the blue and red rays appear as shown in Figure 7.4.1, however, when a pinhole is 

introduced the red and blue are swopped. This too has implications for the Stiles-

Crawford effects.  

The reduced eye, being a much simplified model, has no refractive 

elements posterior of the “pupil” and therefore Equation 7.4.13 simplifies to 

    RPR kD0kD0δ yya                   (10.7.3) 

and the reduced eye has zero chromatic difference in inclination at the retina. The 

same result occurs when a pinhole is placed in front of the reduced eye. 
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10.8 Summary of dependent chromatic properties 

 In Sections 10.3 to 10.6 we explored the chromatic properties of Le 

Grand’s and the reduced eye dependent on object or image and aperture position, 

both with and without a pinhole, for an object at a selection of working distances. 

All these examples can quickly become overwhelming and confusing, however, it 

soon becomes clear that all the chromatic difference relationships are linear in 

nature. The two model eyes tell the same story, however, the slope of the straight 

line is slightly different each time.  

 The distant object situation is described in terms of the incident inclination 

Ka  however the objects at a finite working distance are described in terms of 

object position, directly by the object’s transverse position Oy  and indirectly by 

incorporating the working distance Oz  into the coefficient matrices, OEV , P

OEV , 

yOV  and P

yOV . The combination of Oy  and Oz  to describe the object position can 

be summarily described by the incident inclination 
Ka . The relationship can be 

simply obtained by KOO ρρS  . Multiplying this out 

























 

K

K

O

OO

10

1



 yy
 

 to obtain 

















 

K

K

O

OOO



 yy
 

and solving for 
Ka  we obtain 

O

OK
K

z

yy
a




 .                  (10.8.1) 

From Equation 10.8.1 we can look at the distant object situation and draw 

conclusions that are general for all systems.  

Below we summarise the chromatic properties that are dependent on 

object or image and apertures position. We divide this summary into three 

sections, firstly the chromatic difference in image position, inclination, size and 

angular spread, secondly the chromatic difference in object position, inclination, 

size and angular spread and finally the chromatic magnifications. For the 

chromatic differences in image and object space, the two eyes only differ in the 
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magnitude of the slope and so we will narrow the summary down to only Le 

Grand’s eye. 

 

10.8.1 Chromatic differences in image space 

Chromatic difference in image position and inclination 

 The chromatic difference in image positions 
Rδy  and inclinations 

Rδa  

were summarised by Equation 7.2.22. Substituting for 
EδV  from Table 10.3.3 into 

Equation 7.2.22, we obtain 































R

R

K

P

δ

δ

0.006011kD0.001822

mm1258.003568.0

a

y

a

y
.              (10.8.2) 

This summarises Figures 10.3.1 and 3, which are very similar. Assuming a 

centred eye ( 0P y ), both 
Rδy  and 

Rδa  have a linear relationship with 
Ka with a 

negative slope. A decentred pupil will merely add a constant value to 
Rδy  and 

Rδa , but the slope will not change. 

 When a pinhole is placed immediately in front of Le Grand’s eye the 

values in 
EδV  change due to the longitudinal displacement of the limiting 

aperture. Equation 10.8.2 becomes 































R

R

K

P

3- δ

δ

109.3691kD0.001414

mm2212.003149.0

a

y

a

y
.               (10.8.3) 

From Equation 10.8.3 we can see that any increase in incident inclination when a 

pinhole is placed in front of the eye will magnify the 
Rδy  and 

Rδa  more than for 

the naked eye and any transverse movement of the pinhole will very slightly 

increase the effect on the 
Rδy  and 

Rδa . However, the magnitude of 
Py  is 

potentially far greater for a pinhole than for a pupil. This can be seen in Figures 

10.4.1 and 2 where it is evident that the working distance has very little effect for 

an axial object. The effect of adding a pinhole at the corneal plane is to potentially 

increase 
Rδy  and 

Rδa . This has implications for the AcuFocus Kamra corneal 

pinhole inlay.  
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Chromatic difference in image size and angular spread 

 The chromatic difference in image size  RΔδ y  and angular spread  RΔδ a  

were summarised by Equation 7.3.13. Substituting for 
EδV  from Table 10.3.3 into 

Equation 7.3.13, we obtain 































R

R

K Δ

Δ
δ

Δ

0

0.006011kD0.001822

mm1258.003568.0

a

y

a
              (10.8.4) 

which is very similar to Equation 10.8.2.  RΔδ y  and  RΔδ a  are independent of 

pupil (or pinhole) position. The relationships are linear, 
KΔa  is magnified by 

EδX  

or 
EδZ   to obtain  RΔδ y  and  RΔδ a  respectively. 

 For a pinhole in front of the eye we obtain  































R

R

K

3- Δ

Δ
δ

Δ

0

109.3691kD0.001414

mm2212.003149.0

a

y

a
              (10.8.5) 

and while the transverse displacement of the pinhole will have no effect on 

 RΔδ y  and  RΔδ a , the longitudinal change in position of the limiting aperture 

will create a magnified effect of  RΔδ y  and  RΔδ a , as can be seen by the 

increase in magnitude of P

EδX  and 
P

EδZ  from 
EδX  and 

EδZ  respectively. 

 

10.8.2 Chromatic difference in object space 

Chromatic difference in object position and inclination 

 The object space scenario was derived to mimic the experimental situation 

and as a result has been limited to finite working distances. The chromatic 

difference in object position Oδy  and inclination Oδa  is summarised by Equation 

7.4.10. Substituting for OyδV  at m3O z  from Table 10.5.3 for Le Grand’s eye 

into Equation 7.4.10 we obtain 
































O

O

R

P

43 δ

δ

kD105429.4kD101482.2

3630.14461.6

a

y

y

y
.              (10.8.6) 

Equation 10.8.6 summarises Figures 10.5.1 and 2; the peripheral retina 

experiences greater magnitudes of chromatic difference in position or inclination 

than the posterior pole. From Figure 7.4.1 it is easy to see that Oδy  and Oδa  will 

have opposite signs. We recall from Equation 5.3.14 that the bottom row of OyδV  
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is independent of working distance Oz , making Oδa  easier to compare across 

studies. 

 With a pinhole and substituting P

OyδV  at m3O z from Table 10.6.3, 

Equation 7.4.12 becomes 
































O

O

R

P

43 δ

δ

kD100099.8kD109013.1

4030.27038.5

a

y

y

y
              (10.8.7) 

which summarises Figures 10.6.1 and 2. We draw similar conclusions to the 

image space situation; Oδy  and Oδa  will increase in magnitude with an increase in 

transverse pinhole displacement or with distance at the retina from the posterior 

pole. 

 

Chromatic difference in object size and angular spread 

The chromatic difference in object size  OΔδ y  and angular spread  OΔδ a  

is summarised by Equation 7.5.10. Substituting OyδV  at m3O z   from Table 

10.5.3 into Equation 7.5.10 we obtain 
































O

O

R

43 Δ

Δ
δ

Δ

0

kD105429.4kD101482.2

3630.14461.6

a

y

y
              (10.8.8) 

which, as expected, resembles Equation 10.8.6. Similar to Oδa ,  OΔδ a  is 

independent of Oz .  OΔδ y  and  OΔδ a  are independent of any pupil decentration 

Py . It is obvious from Equation 10.8.8 that the relationship between  OΔδ y  or 

 OΔδ a  and retinal image size 
RΔy  is linear. 

 Placing a pinhole immediately in front of Le Grand’s eye merely changes 

the values of OyδV  to those of P

OyδV  so that Equation 10.8.8 becomes 
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from which we can see that moving the plane of the limiting aperture from the 

pupillary plane to immediately in front of the cornea will have a magnifying effect 

on  OΔδ y  and  OΔδ a , by almost double. 

 



IV  FINDINGS AND DISCUSSION   10 Numerical examples of chromatic 

aberration and chromatic properties 

310 

 

10.8.3 Chromatic magnifications 

 Obtaining a summarised relationship for the chromatic magnifications is 

messy and one cannot easily obtain a neat and tidy relationship like those for the 

chromatic differences (Equations 7.2.22, 7.3.13, 7.4.10 and  7.5.10). However, it is 

apparent that the influence of working distance on chromatic magnifications is so 

small as to be ignored. Therefore the magnifications are summarised in Table 

10.8.1. We recall that chromatic magnification is independent of transverse pupil 

or pinhole displacement, but placing a pinhole in front of the eye does have a 

magnifying effect on the chromatic magnification due to the longitudinal 

placement of the limiting aperture. 

As expected, we see from Table 10.8.1 that in image space the red image 

is larger than the blue image, or subtends a greater angular spread while in object 

space the blue object is larger than the red object, or subtends a larger angular 

spread. It is clear that moving the limiting aperture from the pupillary plane to the 

cornea increases the chromatic magnification, a result that has implications for the 

AcuFocus Kamra corneal pinhole inlay. 

 

Table 10.8.1 Chromatic magnifications of Le Grand’s eye and the reduced eye, firstly 
as the naked eye followed by placing a pinhole immediately in front of the eye. The 

percentages in the last column are included as a guide for comparative purposes only and 

represent the mean of chromatic magnifications for each eye. 

 
yRM  

aRM  yOM  
aOM  as % 

Le Grand’s eye 0.9925 0.9926 1.0076 1.0076 0.76% 

– with pinhole 0.9868 0.9862 1.0134 1.0134 1.34% 

Reduced eye 0.9917 0.9917 1.0083 1.0084 0.83% 

– with pinhole 0.9885 0.9885 1.0117 1.0117 1.16% 

  

10.9 Summary of dependencies 

 Nearly all the chromatic effects discussed in this chapter are dependent on 

up to three different variables, as summarised in Table 10.9.1. In particular the 

summary highlights which chromatic properties are dependent or independent of 

object distance Oz  from the eye. Chromatic aberration, independent chromatic 

properties and chromatic difference in image size and angular spread are all  
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Table 10.9.1 Summary of the dependence of the chromatic effects on variable 

parameters. In particular, chromatic aberrations or properties that are dependent on 

working distance are indicated by   and those independent of working distance are 
indicated by  . The dependencies are separated into those with an object at distance and 

those with an object at a finite distance. Dependencies given in a matrix represent the 

entries of the respective chromatic difference in coefficients. Additional dependencies are 

also given. 

   Distant object Finite distance 
Eq. 
no. 

   
Oz  Additional Oz  Additional  

Chromatic Aberration 
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independent of transverse pupil or pinhole position, 
Py . Chromatic aberration is 

dependent on the conjugate system of object and image positions while the 

dependent chromatic difference properties depend on object position(s) and 

position of the centre of the blurred image(s) on the retina. The chromatic 
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differences in image space are dependent on Oy  while those in object space are 

dependent on 
Ry . The chromatic magnification for an object at a finite distance is 

weakly dependent on the working distance and on not on the transverse object and 

image positions.  

 

10.10 Discussion 

The chromatic effects have been explored in this chapter by means of a 

number of numerical illustrative examples. Two schematic eyes were used in the 

examples, Le Grand’s and the reduced eyes. Where applicable object points were 

explored at four distances from the eye, that is, for a distant object with 1.0K a  

and at finite distances with of –3, –2 and –0.5m from the eye, each time with 

m2.0O y . The examples in object space required an image on the retina, and 

these examples included the three finite distances for the objects from the eye and 

the image at either mm0R y  or mm46.1R y  which approximates the position 

of the fovea at a visio-optical angle of 5º.   

From Figure 10.1.1 we saw that the magnitude of zδ  increases as the 

object approaches the eye. The relationship is true for both Le Grand’s eye and the 

reduced eye, although the magnitude is generally greater for the reduced eye The 

magnitude of yδ  increases as the incident inclination Oa  increases, as can be seen 

from Figures 10.1.2 and 3.  

The object or image and aperture-dependent chromatic properties are 

defined either in image space or object space and each in turn is explored for the 

naked eye and the eye with a pinhole aperture immediately in front of the eye. The 

dependence of each of the dependent chromatic properties is summarised in Table 

10.9.1.  

Finally, two underlying implications arising from the literature are 

examined. When a pencil of rays is incident on the eye and the red and blue chief 

rays are traced through the pupil, the incident red and blue rays are distinctly 

separate by more than 3000 times their wavelength and cannot be assumed to 

originate from a single dichromatic ray. Furthermore, in the experimental set-up 

where the red and blue objects are separated in object space and the images are 
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superimposed at the same position on the retina, the red and blue rays reaching the 

retina for Le Grand’s eye have different inclinations, which may have 

implications for the Stiles-Crawford effects or other physiological stimulus-

response mechanisms that are beyond the scope of this dissertation. The 

simplified design of the reduced eye nullifies this measurement. 

The Stiles-Crawford effects describe the directional sensitivity of the 

cones. The Stiles-Crawford effects show that the cones are far more sensitive to 

light that strikes the retina head-on than to light which enters obliquely. The first 

Stiles-Crawford effect describes how oblique rays appear disproportionately less 

bright than rays that strike the retina head-on while the second describes that 

monochromatic rays of different wavelengths appear to have altered hue and 

saturation when striking the retina obliquely compared to rays striking head-on. 

The obliquely striking rays produce a different ratio of responses in the three 

types of cones to a ray that enters head-on. Both Stiles-Crawford effects are 

produced by directional sensitivity of the cones and may affect object or image 

and aperture-dependent chromatic properties. (Stiles and Crawford, 1933; Stiles, 

1939; Lakshminarayanan, 2009; Westheimer, 2008.)  

The chromatic aberrations and object or image and aperture-dependent 

chromatic properties depend on the transverse and longitudinal position of the 

object point. The object, image and aperture-dependent chromatic properties are 

additionally dependent on the longitudinal and transverse displacement of the 

pupil or pinhole aperture, making their understanding and relationships more 

complex. The chromatic difference in power, refractive compensation and 

ametropia are properties of the system alone and are independent of object, image 

and aperture positions. The object, image and aperture-dependent chromatic 

properties are defined specially for the eye, while chromatic aberration is defined 

for systems in general, making chromatic aberration a more general definition. 
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PART V – CONCLUSION 

 

11 Concluding discussion 

 

11.1 Introduction 

We return to the oldest example of chromatic dispersion known to man, 

the rainbow. We know that the colours are created by chromatic dispersion, but 

why does the rainbow form a bow shape? The answer lies in the symmetry of the 

raindrops.  Indeed, it is not a bow, but a cone. The bow that we perceive is part of 

a full circle and the apex of the cone is at the viewer’s eye. Each colour forms its 

own cone, with the red cone outermost and each colour (or frequency) sitting 

inside the previous cone, with violet being inner-most (Lee and Fraser, 2001:112-

113). But this is what is happening in object space.  

What happens when an eye looks at a multi-chromatic object point? Is this 

comparable to the rainbow? Raindrops are spherical and so is the eye. However, 

in a raindrop as the light enters it is refracted and dispersed, then the light is 

reflected internally and finally exits the raindrop whilst being refracted and 

dispersed some more. The rainbow is created by an infinity of rays from the sun 

being dispersed, refracted and reflected by an infinity of raindrops. In the eye, the 

light enters and is imaged on the retina after undergoing refraction and dispersion 

by the eye’s structures. (The structure of the eye prevents the light rays from 

following the same path as they would in a raindrop). So while rainbows and 

chromatic effects in the eye are both caused by chromatic dispersion, there is a 

distinct difference between a rainbow and an eye. 

 

11.2 Findings and conclusions 

This study is about “The Chromatic Dependence of First-order Optical 

Properties of the Eye”. We saw, in Chapter 3, that the first-order optical properties 

of the eye can be divided into fundamental properties and derived properties. 

Therefore the dependence of each of the fundamental properties on frequency and 

on wavelength is studied. To better understand the relationship between the 

fundamental properties and their dependence on frequency, we transform the 
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transference into Hamiltonian space, study the dependence in this linear space and 

transform the straight line relationships back to a symplectic transference. 

 

Fundamental properties 

The chromatic dependence of each of the fundamental properties of the 

transferences for both the reduced eye and Le Grand’s eye as a function of 

frequency is found to be very nearly linear (Figures 8.1.3). A formula is derived 

which gives the linear dependence of the transference on the frequency of light. It 

is given by Equation 8.1.5 where   is the frequency of light and the constants are 

given in Tables 8.1.2 and 3 for the reduced eye and Le Grand’s eye, respectively. 

The result of substituting the values into Equation 8.1.5 for any chosen frequency 

is a transference that is very nearly symplectic with a mean determinant of 

approximately 1. 

When studying the dependence of the fundamental properties on 

wavelength, the dependence loses it linearity and one cannot derive an equation 

such as Equation 8.1.5 as a linear function of wavelength with nearly the same 

level of accuracy (Figure 8.1.8). This confirms what Pease and Barbeito (1989) 

state, that the linear function of the frequency scale make analysis simpler to 

compute and understand.  

When calculating the refractive index of air as a function of frequency, we 

see that, firstly, only the dilation (A) and divergence (C) are affected and that the 

change in the curve is so slight and so uniform as to be disregarded and the 

refractive index of air can be equated to 1 (Figures 8.1.4 and 5). Similarly, when 

the eyes are submerged in water and the dependence of water on the frequency of 

light is calculated using Cornu’s formula, only the dilation and divergence are 

affected (Figures 8.1.9).  

The dependence of each of the entries of the Cayley-transformed 

transference is graphed as a function of frequency and found to be very nearly 

linear for both eyes (Figures 8.2.1 and 4). When the three independent entries are 

graphed on a three-dimensional graph as a function of frequency, we obtain a 

straight line for the reduced eye and a gently curved line for Le Grand’s eye 

(Figures 8.2.3 and 6). Because of the resultant linearity of each of the entries, a 



V CONCLUSION  11 Concluding discussion 

316 

 

formula is derived which results in a transference that gives a linear dependence 

on frequency (Figures 8.2.2 and 5). This is given by Equation 8.2.3 for the 

Cayley-transformed transference and substituting it into Equation 8.2.2, we obtain 

the transference with the constants given in Tables 8.2.1 and 2 for the reduced eye 

and Le Grand’s eye in air, respectively. The advantage of Equation 8.2.3 over 

Equation 8.1.5 is that Equation 8.2.3 has fewer constants and more importantly, is 

more accurate. Equation 8.2.3 and 2 result in a symplectic transference with a 

mean determinant of exactly 1 for any chosen frequency.  

Similarly, the dependence of the entries of the logarithmic-transformed 

transference is graphed as a function of frequency and unsurprisingly found to be 

very nearly linear for both model eyes (Figures 8.2.7 and 9). However, the region 

that the transformed transference occupies within the Hamiltonian space is 

different for the Cayley-transformed transference compared to the logarithmic-

transformed transference (Figures 8.2.8 and 10). The formula for deriving the 

transference from the logarithmic-transformed transference as a linear function of 

frequency is given by Equation 8.2.5 where the constants are given in Table 8.2.5 

for the two model eyes (Figures 8.2.11 and 12). The accuracy given by this 

derivation is similar to that for the Cayley-transformed transference but because 

of the simplicity of Equation 8.2.2, this is the preferred method.  

 

Derived properties 

Next we study the chromatic dependence of a number of derived 

properties, including cardinal points. Because a relationship between specific 

derived properties is given by the characteristic matrices, each of these derived 

properties is studied for its dependence on frequency (Figures 9.2.1 to 5) and the 

relationship between the entries of each of the symmetric characteristic matrices is 

displayed as three-dimensional graphs (Figures 9.3.1 to 10). The purpose is two-

fold; firstly we wish to understand the dependence of each first-order optical 

property of the eye on the frequency of light and secondly, we wish to gain a 

deeper understanding the different linear spaces. 

Four characteristic matrices are introduced, each being symmetric and 

each entry representing a derived property. Five derived properties are of 



V CONCLUSION  11 Concluding discussion 

317 

 

particular interest and are illustrated graphically for their dependence on the 

frequency of light. Power F (Equation 3.4.3), entrance- and exit-plane refractive 

compensation 0F  and CF  (Equations 3.4.6 and 5.1.3) and front-vertex power fvF  

(Equation 3.4.16) each show a very nearly linear relationship to the frequency of 

light. Back-vertex power bvF , given by Equation 3.4.11 is representative of 

vergence at the exit-plane and has a hyperbolic relationship; clearly illustrating 

which frequency is in focus at the retina. The four characteristic matrices given in 

Section 3.7.3 represent a linear space and therefore the three independent entries 

of each characteristic matrix is graphed on a 3-dimensional graph. For the point P, 

angle Q and first mixed M characteristic matrices the relationship is linear for the 

reduced eye and nearly linear for Le Grand’s eye. The second mixed characteristic 

matrix N, expectedly, was problematic because of the division by A, the dilation, 

which approaches zero for an emmetropic eye. 

The dependence of the cardinal and anti-cardinal points on the frequency 

of light is explored for the two model eyes. For the reduced eye a number of 

points simplified and we find that the incident and emergent principal and nodal 

points are independent of frequency. The incident and emergent focal points, anti-

principal and anti-nodal points are all dependent on frequency. The chromatic 

difference between the four red and blue anti-cardinal points all have the same 

magnitude, the emergent anti-cardinal points having opposite direction to the 

incident anti-cardinal points (Figures 9.1.1, 3 and 4). 

In contrast, for Le Grand’s eye we find that all six of the cardinal points 

and all four of the anti-cardinal points are dependent on frequency and that there 

is no relationship to the magnitude of the chromatic difference between any of the 

cardinal or anti-cardinal points (Figures 9.1.2, 5 and 6). This emphasises that 

while the reduced eye is a convenient simplification, one should be cautious of 

making conclusions based on the dimensions and mathematics of the reduced eye. 

 

Chromatic aberration and chromatic properties 

A study of the chromatic dependence of the first-order optical properties 

of an eye would be incomplete without a detailed study of chromatic aberration. 

There are two approaches to defining chromatic aberration, the classical optics 
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and physiological optics approaches. Both definitions are defined in the literature 

for Gaussian systems or eyes. In this dissertation we define chromatic aberration 

for systems in general, that is, systems that may include astigmatic and decentred 

or tilted elements. Additionally, we define chromatic properties, in line with the 

physiological optics approach, also generalised for systems with astigmatic 

elements. 

In Gaussian optics longitudinal chromatic aberration is defined as 

rbδ zzz  , the signed distance  from the red image plane to the blue image 

plane. In an astigmatic system, this is the generalized distance defined as 

rbδ ZZZ   from a matrix representing the red image structure to a matrix 

representing the blue image structure; each of the red and blue image structures 

consisting of two orthogonal image line foci, separated by an interval of Sturm. 

Transverse chromatic aberration is defined as the transverse vector rbδ yyy  , 

from the transverse position of the red to the blue image structures. In Gaussian 

optics, it would seem that one could regard longitudinal and transverse chromatic 

aberration as components of a unified chromatic aberration vector. In linear 

optics, however, because of their fundamentally different characters (transverse 

chromatic aberration is a vector and longitudinal chromatic aberration is a matrix) 

this would not seem possible. Recent research suggests that it may be possible to 

represent the relationship as a five-dimensional inner-product space (Harris, 

Evans and van Gool; 2014), however, this is beyond the scope of this dissertation. 

The numerical examples give some insight into chromatic aberration, 

which, because it is based on vergence, is dependent on the object position. 

Longitudinal chromatic aberration is dependent on the longitudinal object position 

and transverse chromatic aberration is dependent on both the longitudinal and 

transverse object position. Longitudinal chromatic aberration increases in 

magnitude as the object approaches the eye (Figure 10.1.1). Transverse chromatic 

aberration has a linear dependence on transverse displacement of an object point 

from the optical axis (Figure 10.1.2 and 3). As the incident inclination increases in 

magnitude, so the transverse chromatic aberration increases in magnitude (Figure 

10.1.4).  
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The independent chromatic properties of the eye are not dependent on 

light and therefore not on the object and image positions. They are properties of 

the system alone and are derived from the fundamental properties of the system. 

This implies that one will have a single number for each of the definitions with no 

graph to illustrate any dependence on frequency. The independent chromatic 

properties of the eye include chromatic difference in power Fδ , refractive 

compensation 0δF  and ametropia Aδ , with derivations obtained from the 

transference. The results are summarized in Table 10.2.1. Of course, the 

frequencies chosen for ‘red’ and ‘blue’ will influence the results.  

Equations are obtained from the transference for the chromatic properties 

of the eye dependent on the object or image and aperture position. In image space, 

the chromatic properties dependent on the object and aperture position, derived 

from the transference, are chromatic difference in transverse image position Rδy  

and inclination at the retina Rδa . The chromatic difference in magnification is a 

misnomer and so we define chromatic difference in image size  RΔδ y  and 

angular spread  RΔδ a  at the retina. Magnification is a comparative, unitless 

measure and not defined by a difference. Therefore chromatic magnifications for 

image size yRM  and angular spread aRM  are defined and derived from the 

transference. These formulae allow us to calculate the chromatic properties at the 

imaging plane, that is to say what is happening in the eye, at the retina. Because 

the chromatic difference derivations are not dependent on the position of the nodal 

point or other structures, they measure actual distances and changes in inclination.  

Experimental measurements take place in object space and for this reason 

derivations for chromatic difference in transverse object position Oδy , inclination 

Oδa , object size  OΔδ y , object angular spread  OΔδ a , chromatic object size 

magnification yOM  and chromatic object angular spread magnification aOM  are 

included that account for chromatic differences and magnifications in object 

space. In an experimental situation one manipulates and takes measurements in 

object space whilst controlling what is happening at the retinal plane. These 



V CONCLUSION  11 Concluding discussion 

320 

 

equations allow us to compare our theoretical numerical results with published 

results obtained experimentally, and were found to compare well. 

The equations for chromatic properties dependent on object or image and 

aperture position simplify to account for the effects of introducing a pinhole in 

front of the eye. Rδy , Rδa , Oδy  and Oδa  are directly dependent on Py , the 

transverse displacement of the pinhole. However, the longitudinal shift in position 

of the limiting aperture from the pupillary plane to upstream of the cornea has a 

magnifying effect and therefore all the chromatic differences and chromatic 

magnifications are affected by this change. This has implications for both the 

Stiles-Crawford effect and for the AcuFocus Kamra corneal pinhole inlay. 

Table 11.1.1 attempts to simplify the many variations and permutations of 

the dependent chromatic properties by indicating which variables each chromatic 

property is dependent on. Any parameter marked ○ has a linear relationship with 

the chromatic property, that is, magnified by a constant. Where indicated by □, 

this constant will have its slope affected by the distance of the object in front of 

the eye. The chromatic properties are symbolized as chromatic difference in transverse 

image position Rδy , inclination Rδa ,  image size  Rδ y , angular spread  Rδ a  

retinal chromatic image size magnification yRM , retinal chromatic angular spread 

magnification aRM , chromatic difference in object position Oδy , inclination Oδa , 

object size  OΔδ y , object angular spread  OΔδ a , size magnification yOM   and 

object angular spread magnification aOM  in object space. 
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Table 11.1.1 Summary of chromatic properties and their dependencies. Variables 

marked ○ have a linear dependence on the respective variable. Objects at finite distance 

which have the slope of the linear dependence affected by the distance of the object in 

front of the eye are marked □. The table remains unchanged when a pinhole is introduced 

immediately in front of the eye. Chromatic properties in object space are defined for finite 

object distances only. 

  Distant object  Object at finite distance 

  Ka  Py   
Oz  Oy  

Py  Ry  

Im
ag

e 
sp

ac
e 

Rδy  ○ ○  □ ○ ○  

Rδa  ○ ○  □ ○ ○  

 Rδ y  ○   □ ○   

 Rδ a  ○   □ ○   

yRM     □    

aRM     □    
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b
je

ct
 s

p
ac
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Oδy  ―  □  ○ ○ 

Oδa  ―    ○ ○ 

 OΔδ y  ―  □   ○ 

 OΔδ a  ―     ○ 

yOM  ―  □    

aOM  ―      

 

11.3 Limitations in the scope of this dissertation 

 At the outset it was clear that studying “the chromatic dependence of all 

first-order optical properties of the eye” would have far too large a scope for a 

Masters dissertation and so a conscious decision was made to limit the scope of 

the study to firstly Gaussian systems, whilst keeping all derivations as general as 

possible, and secondly to limit the derived properties to those applicable to the 

characteristic matrices and appropriate for Gaussian systems. This is a long 

dissertation and there are numerous topics and derived properties that have been 

omitted. In particular there are a number of derived properties that would be more 

appropriately studied as linear systems for their chromatic dependence such as all 

the axes of the eye. There were a number of issues that were raised during the 
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study which fell outside the scope of this dissertation, but which warrant further 

studies. Indeed, this study may give some insight into some of these issues. 

There is a need for a complete set of formulae for the refractive indices as 

a function of frequency for all the media of the eye. The formula used for the 

refractive index of the reduced eye is based on relatively recent experimental data 

and is therefore considered to reflect the real eye fairly accurately for most of the 

properties studied. The refractive indices for Le Grand’s eye differed from those 

for the reduced eye and are based on a combination of refractometer readings and 

experimental data. More recent refractometer readings are incomplete for the 

human eye. While these formulae form the basis of all the numerical examples in 

this dissertation, the derivations based on these formulae are sufficiently general 

so as to accommodate new formulae that may be available in the future. 

In Section 8.2 we made use of the transformed transference. This mapping 

between the symplectic group and Hamiltonian space enabled us to develop an 

equation for the straight line dependence of the fundamental properties as a 

function of frequency and resulting in a symplectic transference with determinant 

exactly equal to 1. However, what meaning can be given to the entries of the 

Hamiltonian matrix. What region in the Hamiltonian space would be 

representative of eyes? Equation 5.6.7 may give us some insight into the meaning 

of the three-dimensional Hamiltonian space obtained using the Cayley transform 

and what region within this space is occupied by Gaussian eyes? Would it 

subsequently be possible to gain insight into what region of the ten-dimensional 

Hamiltonian space would be representative of real eyes with astigmatic surfaces? 

In Gaussian optics it is tempting to represent the longitudinal and 

transverse chromatic aberration as a single combined chromatic aberration by 

obtaining a vector from the red to the blue image point. However, in linear optics 

the longitudinal chromatic aberration is represented by a matrix and the transverse 

chromatic aberration is a vector and combining the two into a unified chromatic 

aberration seems improbable. However, recent research indicates that this might 

be possible using a five-dimensional inner-product space (Harris, Evans and van 

Gool; 2014). The definition of inner-product space is based on the point and angle 
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characteristic matrices. How the two are related is beyond the scope of this 

dissertation and is the topic of further investigation at a later stage. 

The definition for chromatic aberration includes astigmatic systems, 

however, this was not explored further; the scope of the dissertation being 

purposefully restricted to Gaussian systems. The chromatic properties too were 

defined for Gaussian systems. Where possible these definitions were generalized 

to linear optics for astigmatic systems without proof or being explored further. 

This creates an opportunity for further study of the chromatic properties for 

systems with astigmatic elements. Indeed, the two eyes studied are not only 

Gaussian, but emmetropic at a reference frequency. Additional studies into the 

chromatic properties of myopic, hyperopic, astigmatic, accommodating or even 

aging eye could be undertaken. 

Many of the findings for the chromatic properties have implications for 

Stiles-Crawford effect. This needs to be explored in more detail.  

The chromatic properties dependent on object and aperture position 

present the formulae necessary to obtain the chromatic properties induced by the 

placement of a pinhole immediately in front of the eye, or indeed, embedded in 

the corneal stroma. Further studies need to be done to explore the impact of these 

findings on the corneal pinhole inlay, such as the Kamra
®
  by AcuFocus.  

 

11.4 Summary of findings 

1.  The fundamental properties of the reduced and Le Grand’s four surface 

eyes have a nearly perfectly linear dependence on frequency. 

2. A formula is derived that gives the linear dependence of the fundamental 

properties of the transference. 

3. Derivations are given for the chromatic aberration of systems in general, 

including systems with astigmatic and heterocentric elements, such as the 

eye, and particulated for the Gaussian eye. 

4. Longitudinal chromatic aberration depends on the longitudinal position of 

the object and transverse chromatic aberration is dependent on both the 

longitudinal and transverse position of the object point. 
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5. Only the dilation and divergence are dependent on the refractive index 

upstream of the system. Disjugacy and divarication are independent of the 

medium upstream of the system. 

6. Independent chromatic properties of the eye include: 

 Chromatic difference in power, Fδ . 

  Chromatic difference in refractive compensation, 0δF . 

 Chromatic difference in ametropia, Aδ . 

7. A set of formulae is derived for the chromatic properties of the Gaussian 

eye for  

 Objects at distance and at a finite distance. 

 Image and object space. 

 The special case of a pinhole held immediately in front of the eye.  

Chromatic properties of the eye dependent on object and aperture position 

include: 

 Chromatic difference in transverse image positions, Rδy . 

 Chromatic difference in inclination at the retina, Rδa . 

 Chromatic difference in image size,  Rδ y . 

 Chromatic difference in angular spread at retina,  Rδ a . 

 Chromatic image size magnification, yRM .  

 Retinal chromatic angular spread magnification, aRM .  

Chromatic properties of the eye dependent on image and aperture position 

include: 

 Chromatic difference in object position, Oδy . 

 Chromatic difference in object inclination, Oδa . 

 Chromatic difference in object size,  Oδ y . 

 Chromatic difference in object angular spread,  Oδ a . 

 Chromatic object size magnification, yOM .  

 Chromatic object angular spread magnification, aOM .  
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8. The red and blue chief rays chosen to study the chromatic properties in 

image space are incident on the entrance-plane of the system a distance of 

some 5000 times the wavelength of the blue light apart. When the red and 

blue chief rays from two separated object points coincide at a point on the 

exit-plane, their emergent inclination is the same for the reduced eye but 

different for Le Grand’s eye. 

9. Chromatic aberration and chromatic properties are dependent on: 

 Object position (longitudinal and transverse position, or incident 

inclination). 

 Frequencies chosen for ‘red’ and ‘blue’. 

 Choice of schematic eye. 

 Formulae used for calculating the refractive indices of the media as 

a function of frequency. 

 Dependent chromatic properties can additionally be manipulated 

by introducing a pinhole in front of the eye. 

10. Derived properties that are dependent on frequency are: 

 Power (linear). 

 Corneal-plane refractive compensation (linear). 

 Exit-plane refractive compensation (linear). 

 Back-vertex power (hyperbolic). 

 Front-vertex power (linear). 

 All the cardinal and anti-cardinal points for Le Grand’s eye. 

 The anti-cardinal and focal points for the reduced eye. 

 All the chromatic properties. When the object distance remains 

stationary the dependence is linear. 

11. The incident and emergent principal and nodal points are independent of 

frequency for the reduced eye. 
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11.5 Concluding summary 

 This dissertation studies the chromatic dependence of first-order optical 

properties of the eye, investigating both the fundamental and derived properties of 

the eye as a function of frequency. An equation is obtained that gives the linear 

dependency of each of the fundamental properties of the model eyes as a function 

of frequency, giving a transference that is truly symplectic with determinant equal 

to 1 (Evans and Harris, 2014). 

 Chromatic aberration is defined for systems in general, that is systems 

with elements that may be astigmatic and decentred, including the eye. 

Longitudinal chromatic aberration is defined by a 22  matrix and is dependent 

on the longitudinal position of the object point. Transverse chromatic aberration is 

defined by a 12  vector and is dependent on both the longitudinal and transverse 

position of the object point (Harris and Evans, 2012). 

 Chromatic properties are defined as those independent of and those 

dependent on the image or object and aperture positions. The definitions are 

derived for the subset of Gaussian eyes, however, the set of equations for 

astigmatic eyes is provided. 

 A selection of derived properties including power, corneal-plane and exit-

plane refractive compensation, front- and back-vertex power and the cardinal 

points is investigated for their dependence on frequency. With the exception of 

the principal and nodal points of the reduced eye, all points investigated are 

dependent on frequency. The derived properties are related to each other through 

the characteristic matrices, which each define a linear space. 

 The transference, being a symplectic matrix, does not define a linear 

space, but can be mapped to Hamiltonian space which does define a linear space. 

Two mappings are investigated, namely the Cayley transform and the 

exponential-logarithmic mapping. The linear dependence of the entries of the 

Hamiltonian matrix on frequency is obtained. Graphs show the linear dependence 

on frequency of the individual entries as well as the three-dimensional linear 

space. 

 While understanding the meaning of Hamiltonian space and the region 

occupied by the eye is in its infancy, this study has given us insight into this linear 
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space. In particular, the Cayley transform derived from the fundamental properties 

(Equation 5.6.7) can potentially give us a deeper insight into this linear space. 

 This dissertation has opened the door to the study of the chromatic 

dependence of the first-order optical properties of the eye. A number of first-order 

optical properties, both fundamental and derived, have been investigated for their 

dependence on frequency. All the numerical examples have been purposefully 

limited to Gaussian eyes to allow insight into the dependence on frequency and 

chosen variables like object position and pinholes. We have a set of formulae that 

are not restricted to the reduced, or even schematic eyes. The stage is now set to 

generalise to systems and eyes with astigmatic and heterocentric elements.  
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Abstract

In Gaussian optics the transference is a matrix 
that is a complete representation of the effects of 
the system on a ray traversing it. Almost all of the 
familiar optical properties of the system, such as 
refractive error and power of the system, can be 
calculated from the transference. Because of the 
central importance of the transference it is useful to 
have some idea of how it depends on the frequency 
of light. This paper examines the simplest model 
eye, the reduced eye. The dependence of the trans-
ference is calculated in terms of both frequency and 

wavelength of light and both dependencies are 
displayed graphically. The principal matrix loga-
rithms are also calculated and displayed graphi-
cally. Chromatic difference in refractive compen-
sation, power and ametropia are obtained for the 
reduced eye from the transferences.  (S Afr Optom 
2011 70(4) 149-155)

Key Words: Transference, frequency, wave-
length, Emsley’s reduced eye, transformed trans-
ference, chromatic difference in: refractive com-
pensation, power and ametropia.

*Based on research towards a higher degree by T Evans under the guidance of Professor WF Harris.

Introduction
A transference is a matrix that represents the linear 

optical properties of an optical system, such as the 
eye. In Gaussian optics the transference is a complete 
representation of the effects of the system on a ray 
traversing it. Most of the optical properties of the sys-
tem, such as refractive compensation1, back- and front-
vertex power2, locations of the cardinal points3, 4 and 
power of the system5 can be calculated from the sys-
tem’s  transference. Because of the central importance 
of the transference it is useful to have some idea of how 
it depends on the frequency of the light traversing it. 
We take a look at the simplest model eye, the reduced 
eye.

The dependence of the fundamental first-order 
properties, calculated in terms of both frequency 
and wavelength of light, will be represented graphi-
cally across the visible light spectrum. Further, the 

dependence of the transformed transference will be 
represented graphically. Formulae for the calculation 
of chromatic difference in corneal-plane refractive-
compensation of the reduced eye and chromatic dif-
ference in power and ametropia are derived.

 
Emsley’s reduced eye

The advantage of the reduced eye (see Figure 1) 
is its simplicity. The reduced eye has a single stig-
matic refracting surface of radius of curvature r and 
a homogenous gap of length z. Emsley6 designed his 
reduced eye to match certain measurements of the 
Gullstrand-Emsley schematic eye. He placed specific 
emphasis on the power of 60 D and chose the refrac-
tive index in the reduced eye to be the same as that of 
water, namely 4/3. He took the index of air to be 1. 
These numbers imply a radius of curvature r of 50/9 
mm (or 1/180 m) and a length z of 200/9 mm (or 1/45 
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m)6, 7. In this paper we will make use of a reduced eye 
with the same r and z as Emsley’s eye and with an 
index n dependant on the frequency of light.

 
Figure 1. The reduced eye as a defined optical system. The 
length is z, the radius of curvature of the refracting surface is 
r, the refractive index outside the system is n0 and inside the 
system is n. The optical system has a longitudinal axis, Z and 
is bound by an entrance plane T0 immediately in front of the 
refracting surface and an exit plane T immediately in front of the 
retinal surface.

Linear optics
An optical system is bound by an entrance plane T0 

and an exit plane T and has a longitudinal axis Z. The 
transference T of a stigmatic, untilted, centred Gauss-
ian optical system is represented by8 

T = A B
C D

⎛

⎝
⎜

⎞

⎠
⎟

                                              
(1)

where A the dilation, B the disjugacy, C the divergence 
and D the divarication are the fundamental first-order 
optical properties of the system1, 8, 9. The power F is 
given simply by5, 8

F = −C .              (2)
When the system is an eye the dilation A can be 

considered to be the ametropia8 of the eye. In particu-
lar when the eye is emmetropic 
A = 0 .               (3)
The corneal-plane refractive compensation is given 
by1, 8

F0 = B
−1A .              

(4)

The transferences of the two elementary optical 
systems10, 11 are 

Tζ =
1 z

n
0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

                                                        

(5)

for a homogenous gap and 

TK =
1 0

−
n− n0
r

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

                                              

(6)

for a refracting surface. To calculate the transference 
of the reduced eye one multiplies in reverse12 as fol-
lows
T = TζTK .              

(7)

Substituting Equations 5 and 6 into Equation 7 and 
multiplying one obtains

T =
1− z

n
n− n0
r

⎛

⎝
⎜

⎞

⎠
⎟

z
n

−
n− n0
r

1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

.

           

(8)

Substituting the values for Emsley’s reduced eye into 
Equation 8 one obtains

T = 0 50
3

 mm

-0.060 kD 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

        

  (9)

It is immediately apparent from Equations 3 and 9 
that the eye is emmetropic and has a power of 60 D. 

Frequency or wavelength?
The fundamental relationship between frequency 

(ν) and vacuum wavelength (λ) is given by
c0= νλ             (10)
where light traveling in a vacuum has a speed c0=299 
792 458 m.s−1  as defined by the 17th General Confer-
ence on Weights and Measures in November 1983. 
Pease and Barbeito13  look at the relationship between 
frequency and wavelength for a number of studies in-
volving chromatic aberration and conclude that results 
using frequency or wavenumber (the inverse of wave-
length) are “nearly perfectly linear”13, 14 in contrast to 
those using wavelength. They cite several reasons to 
support using frequency rather than wavelength (per-
haps the most important being that frequency is inde-
pendent of the medium whereas wavelength is not). 
These reasons make a compelling argument to study 

n0

r
n

T0 T

z

T =
1− z

n
n− n0
r

⎛
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the dependence of the transference on the frequency 
of light rather than its dependence on wavelength. We 
will compare the dependence of the transference on 
both frequency and wavelength.

Visible light colour spectrum 
The spectrum with wavelengths in vacuum is be-

tween 400 and 700 nm and represents the range over 
which human spectral sensitivity varies between 1 and 
100%.14-16 This represents frequencies between 428.3 
THz and 749.5 THz, approximately. Six coloured ref-
erence points are shown on each of the graphs below. 
The four colours red-orange, yellow, green and blue 
represent the peak vacuum wavelengths where each 
colour is considered “pure”17 while the deep-red and 
violet-blue represent the spectral range end-points. 
The frequencies and wavelengths of the six colours 
are detailed in Table 1.

Transference as a function of refractive index 
The transference of the reduced eye in Equation 8  

shows that the variable affected by different frequen-
cies of light is the refractive index n. Entering the ra-
dius of curvature and length of Emsley’s reduced eye 
we obtain its transference as a function of the refrac-
tive indices:

T =

4n0
n
−3 200

9n
mm

−
9
50
(n− n0 ) kD 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.        (11)

Refractive index of the Reduced Eye 
Thibos et al15  represent the refractive index of the 

reduced eye as a function of wavelength as follows

n = a+ b
λ − c             

(12)

where a=1.320535, b=4.685 nm and c=214.102 nm. 
The formula is based on Cornu’s formula for refrac-
tive index of water and constants were derived from 
clinical experimentation on real eyes. Using this for-
mula, Thibos et al15 showed that the refractive index 
of the body of the reduced eye changes more rapidly 
with wavelength than a reduced eye filled with water. 
The predictions for longitudinal chromatic aberration 
using this formula more closely approximate experi-
mental data than Emsley’s reduced eye filled with wa-
ter. The refractive indices for our six reference points 
were calculated using Equation 12 and are given in 
Table 1.

Refractive index of air 
The refractive index of air differs only very slightly 

from that of a vacuum and for most optometric calcu-
lations one can put n0=1. A number of equations, for 
example Cauchy’s dispersion formula18 and Ciddor’s 
equations19, are available for calculating the refrac-
tive index of air. Cauchy’s formula is expressed in 
terms of wavelength whereas Ciddor’s equations are 
expressed in terms of wavenumber. Cauchy’s disper-
sion formula18 is 

n0 −1( )107 = p+ q
λ 2

+
t
λ 4           

(13)

Table 1.  The colours of the six reference points and their frequencies, vacuum wavelengths, refractive indices for the reduced eye, 
ametropias, powers for the reduced eye and refractive compensations are provided. The last row shows the chromatic difference 
across the spectrum 428.3 to 749.5 THz.
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where p=2726.43, q=12.288×106nm2 and t=355.5×109  
nm4 for dry air at temperature 15°C and pressure 101 
kPa.

When Cauchy’s dispersion formula is used for n0 
one obtains results that differ insignificantly from 
those for n0=1. In particular for dilation the differ-
ence is less than 0.00083 across the entire visible light 
spectrum. For divergence this difference is 0.05 D. 
This results in a very slight upward shift in the graphs 
for A and C in Figure 2, however, the curvatures are 
unaffected. 

Calculation shows that the reduced eye is emme-
tropic at the frequency 517 THz (580 nm, yellow) 
when we use n0=1 but is emmetropic at the frequency 
526 THz (570 nm, yellow-green) when the refractive 
index of air is calculated using Cauchy’s formula. 

Graphical representation of the fundamental 
properties 

The properties are calculated for frequencies ac-
cording to Equation 11 with n0=1 and n given by 
Equation 12. The results of the calculations of each of 
the fundamental first-order optical properties are giv-
en in the accompanying graphs. Figure 2 represents 
each of the fundamental properties as functions of 

frequency of light and Figure 3 as functions of wave-
length. The six coloured reference points are shown 
by means of coloured diamonds. The small black dots 
on Figure 2 represent 10 equally spaced intervals of 
frequency of approximately 32.1 THz and the crosses 
on Figure 3 represent 10 equally spaced intervals of 
30 nm wavelength. 

We note that in Figure 2 the dots are more evenly 
spaced than the crosses in Figure 3. The dashed line 
represents the slope of the curve calculated using the 
least squares method. Each of A, B and C  present as 
curves in both sets of graphs. D is a straight line at 
1 as required by Equation 11. The curves are clos-
er to straight lines in Figure 2 than in Figure 3; this 
provides some justification for preferring to think in 
terms of frequency rather than wavelength of light. 

The transferences at the extremes of the visible 
spectrum (428.3 THz or 700 nm and 749.5 THz or 
400 nm), are

T428.3 THz =
0.0071 16.7062 mm

−0.0594 kD 1

⎛

⎝

⎜
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⎞

⎠

⎟
⎟

           
(14)

T749.5 THz =
−0.0277 16.5130 mm

−0.0622 kD 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .        (15)

Figure 2.  Sub-graphs A, B, C and D represent the four fundamental optical properties of the reduced eye as a function of frequency 
of light. The six coloured diamonds indicate six reference points as indicated in Table 1. The small black dots represent 10 equal 
intervals of  32.1 THz each. Each of A, B and C present as curves, while D is a horizontal straight line at 1.
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The transformed transference 
By taking the principal matrix logarithm we 

convert each transference T into a Hamiltonian ma-
trix8, 20. We represent the transformed matrix8 by 
T̂ . Thus
T̂ = LogT .            (16)

In MATLAB the function used is logm. In terms of its 
entries we write the transformed transference8 as 

T̂ = Â B̂
Ĉ D̂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ .

           
(17)

Because T̂ is Hamiltonian20, 

Â = −D̂ .            (18)

T̂ therefore has only three independent entries. This 
creates a 3-dimensional vector space which can be 
plotted on a 3-dimensional graph as done in Figure 
4. In the figure Â, B̂  and Ĉ are along three orthogo-
nal axes, where Â, B̂ (and D̂ ) are unitless, Â, B̂  is in mil-
limetres and Ĉ  is in kilodioptres. The result is close 
to a straight line. The small black dots represent 20 
equally spaced intervals of frequency of 16.1 THz.

Transforming Equations 14 and 15, we find

 

T̂428.3 THz =
−0.5994 20.1699 mm

−0.0718 kD 0.5994

⎛
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T̂749.5 THz =
−0.6251 20.0888mm

−0.0757 kD 0.06251
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(20)

 

Figure 4.  The transformed transference of the reduced eye in 
Hamiltonian space. The three axes represent Â, B̂, Â, B̂  and Ĉ . The 
black dots represent frequencies spaced at intervals of  16.06 
THz. The six diamonds represent the six coloured reference 
points. (The azimuth of  45° and elevation of 125° were chosen 
to exaggerate any possible curvature.) 

Figure 3.  The four fundamental properties of the reduced eye as a function of wavelength. The black crosses represent 10 equal 
intervals of 30 nm each.
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Some Derived Properties
We obtain here some derived properties of the 

reduced eye that are directly and simply obtainable 
from the transference. Using Equation 2 we calcu-
late the power F of the reduced eye for a particular 
frequency of light and using Equation 4 we calcu-
late the corneal-plane refractive compensation F0 
for the frequency. We read the ametropia A directly 
from the transference for the chosen frequency of 
light. Of greater interest is the chromatic difference 
in refractive compensation ΔF0 (known by various 
terms including longitudinal chromatic aberration21, 
chromatic difference of refractive error21, chromatic 
difference in refraction14, and axial chromatic aber-
ration21), chromatic difference in power (also known 
as chromatic difference of equivalent power14) and 
chromatic difference in ametropia across a specified 
spectrum of visible light to be studied.

Each of these derived properties in chromatic dif-
ference between two frequencies or wavelengths can 
be calculated in two ways: either directly from the 
two transferences or using the equations below. Equa-
tions 21, 23, 24 and 26 are general equations while 
Equations 22, 25 and 27 apply to the reduced eye.

To calculate the chromatic difference in corneal-
plane refractive compensation across a specified 
spectrum we take values from the two transferences 
(Equation 1) and substitute them into Equation 4 as 
follows: 
ΔF0 = B2

−1A2 −B1
−1A11ΔF0 = B2

−1A2 −B1
−1A11ΔF0 = B2

−1A2 −B1
−1A1 .           (21)

Now substituting from Equation 8 and also substitut-
ing the values for z and r for the reduced eye, we find
ΔF0 = (−135 D)Δn                                                  (22)

where ∆n  simplifies to

Δn = b 1
λ 2−c

−
1

λ1− c

⎛

⎝

⎜
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⎞

⎠

⎟
⎟
           

(23)

and b and c are the same constants as for Equation 12.
To calculate chromatic difference in power we 

similarly take values from the transferences and sub-
stitute them into Equation 2 as follows
ΔF = −(C 2 −C1)ΔF = (180D)n                                                   (24)
and substituting from Equation 8 and then substitut-
ing the value for r  for the reduced eye we find

 ΔF = (180D)n .           (25)

The chromatic difference in ametropia is derived di-
rectly from the transferences and therefore
ΔA = A2 − A1 .               (26)

Substituting values for z and r we obtain

ΔA = 4 1
n2
−
1
n1

⎛

⎝
⎜

⎞

⎠
⎟

                                                     
(27)

where n1 and n2 are calculated from Equation 12.
The chromatic difference in corneal-plane refrac-

tive compensation of the reduced eye was calculated 
across the visible light spectrum 428.3 to 749.5 THz 
and is −2.1006 D (see Table 1). The chromatic differ-
ence in power is 2.8 D. The chromatic difference in 
ametropia is −0.0348. 

Conclusion
The transference of the reduced eye depends on the 

frequency of light. The accuracy of the calculations 
depends on the formula used to calculate the refrac-
tive index as a function of either frequency of light or 
wavelength. In this article we have used Equation 12.

Results are displayed graphically for the transfer-
ences both as a function of frequency and as a func-
tion of wavelength. Divarication D is constant while 
ametropia A, disjugacy B and divergence C exhibit 
curved lines. The graph for the transformed transfer-
ence in Hamiltonian space is approximately a straight 
line.

Chromatic difference in refractive compensation, 
chromatic difference in power and chromatic differ-
ence in ametropia are calculated directly from the 
transference for the reduced eye.
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The theory is illustrated here for a model eye with four tilted astigmatic refracting surfaces.  

The optical system is the visual optical system of the eye from immediately in front of the 

cornea to immediately in front of the retina.  The curvatures, tilts, and separations are listed in 

Table A1.  K1 and K2 are the first and second surfaces of the cornea and L1 and L2 are the 

first and second surfaces of the lens of the eye.  K1 has principal meridians at °180  and °90 ; 

the radii of curvature along them are 6.5 and 8 mm respectively.  The horizontal and vertical 

components of tilt of K1 are 0.06 and 05.0−  (radians) respectively; the right side of the 

cornea would be tilted away from and the top towards an observer looking at the eye.  We use 

the equations for refractive index of the cornea, aqueous, lens, and vitreous published by 

Villegas, Carretero, and Fimia1.  The index in front of the eye is 10 =n .  We use the vacuum 

wavelengths 656.3 nm for red and 486.1 nm for blue respectively that have been used by 

others2.  In order to show small differences we retain more digits than may be physically 

meaningful. 

 

TABLE A1. 

Principal radii of curvature, separation, and tilt of surfaces of the model eye used in the 

numerical example. 

Surface Principal radii 

mm{degr}mm 

Separation 

mm 

Tilt 

K1 { }81805.6   ( )T05.006.0 −  

  0.5  

K2 { } 2.7208.5   ( )T06.004.0  

  3  

L1 { } 7.81002.10   ( )T1.007.0−  

  4  

L2 { } 5.6705.4 −−   ( )T03.005.0 −−  

  16.5  

 



2 

 

 The transferences calculated by the method described elsewhere3 for red and blue 

light turn out to be 























−−−
−−−−

−−−
−−−−

=

10000
0084.08840.00103.00619.00011.0
0176.00104.09046.00012.00686.0

1936.03221.161290.00125.00121.0
3134.01292.05690.160134.01513.0

rT              (A1) 

and 























−−−
−−−−

−−−
−−−−

=

10000
0086.08820.00105.00632.00011.0
0179.00106.09030.00012.00700.0

1957.02137.161307.00279.00123.0
3185.01309.04641.160136.01687.0

bT              (A2) 

Entries in the last three columns of the first two rows are in millimetres; entries in the first 

two columns of the third and fourth rows are in kilodiopters. 

 

Distant Object Point 

 

Consider a distant object point O in a vertical plane containing longitudinal axis Z.  Rays 

from O arrive at the model eye with inclination 







−

=
05.0

0
Oa  relative to Z.  Details of the 

calculation are summarized in Table A2.  For example, the red blurred image has a near 

vertical line (it is at about °90.94 ) 2.9567 mm in front of the retina; the other line is 0.2455 

mm in front of the retina.  (The blue image has a line at °87.94 , not quite the same as for the 

red image.)  The longitudinal chromatic aberration is Z∆  as listed.  Its principal structure is 

3235.0−  mm along °96.96  and 2884.0−  mm.  The horizontal and vertical components of 

the transverse chromatic aberration are 0008.0−  mm and 0.0160 mm respectively. 

 It may also be of interest to calculate the chromatic difference of refractive 

compensation for the eye.  The refractive compensation is given by4 ABF 1
0

−= , a dioptric 

power matrix.  We obtain it from the transferences (Eqs. A1 and A2).  In conventional 

spherocylindrical terms the results are 50.955194.86958.0 ×−−  and 

59.956850.86481.1 ×−−  for red and blue light respectively.  The chromatic difference of 

refractive compensation turns out to be 



3 

 

TABLE A2. 

Longitudinal Z∆  and transverse y∆  chromatic aberration of a model heterocentric 

astigmatic eye and a distant object point with 







−

=
05.0

0
Oa . 

 red blue 

L   (kD)  (Eq.11) 







−

−
3960.54236.0

4236.04874.0
 








−

−
3414.21643.0

1643.04270.0
 

Z   (mm) (Eq.4) 







−−
−−

2653.02306.0
2306.09369.2

 







−−
−−

5882.02263.0
2263.02258.3

 

−z    (mm) 9567.2−  2451.3−  

+z    (mm) 2455.0−  5960.0−  

+v   







− 9964.0

0853.0
 








− 9964.0

0849.0
 

V   (mm) (Eq. 26) 







−−
−−

1989.01729.0
1729.02021.2

 







−−
−−

4389.01689.0
1689.04070.2

 

( ) 0nVDB +    (mm) 







−

−
1480.162833.0
2592.05787.14

 







−

−
8283.152785.0
2545.02923.14

 

πVe +    (mm) 






−
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2762.0

 






−
1950.0
2767.0
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−

−
=+∆

3197.00048.0
0047.02864.0

n0VDB  mm 
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−
=+∆

0000.0
0006.0

πVe  mm 

 







−

−
=∆

3230.00042.0
0042.02889.0

Z  mm   (Eq. 5) 

 






−
=∆

0160.0
0008.0

y  mm   (Eq. 29) 

 

 

 



4 

 









−−
−−

=−=∆
9565.00298.0
0298.01136.1

r0b00 FFF  D which is 37.1001680.09510.0 ×−−  as a 

spherocylindrical power.  It follows from the definitions that there is no simple relationship 

between chromatic difference of refractive compensation and longitudinal chromatic 

aberration for a distant object point. 

 

Near Object Point 

 

Table A3 lists the details for the model eye and object point O 400 mm in front of the eye and 

with transverse position 






−
=

30
30

Oy  mm relative to longitudinal axis Z.  For an observer 

looking at the eye along Z, with O between the observer and the eye, O is up and to the left.  

The principal structure of the longitudinal chromatic aberration is 3555.0−  mm along 

°25.97  and 3139.0−  mm.  The principal longitudinal chromatic aberrations are slightly 

larger in magnitude compared with those for the distant object and the principal meridians 

have undergone a small anticlockwise rotation.  The horizontal and vertical components of 

the transverse chromatic aberration are 0238.0−  mm and 0.0262 mm. 
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TABLE A3. 

Longitudinal Z∆  and transverse y∆  chromatic aberration of a model heterocentric 

astigmatic eye and object point with 400zO −=  mm and 






−
=

30
30

Oy  mm. 

 red blue 

L    (kD) (Eq. 10) 







−

−−
9984.12359.0
2359.05773.0
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Chromatic Aberration in Heterocentric
Astigmatic Systems Including the Eye

William F. Harris* and Tanya Evans†

ABSTRACT
Purpose. There is inconsistency in the literature in the definitions of longitudinal and transverse chromatic aberration, and
there appear to be no definitions that make allowance for astigmatism and heterocentricity. The purpose is to propose
definitions of longitudinal and transverse chromatic aberration that hold for systems which, like the typical eye, may be
heterocentric and astigmatic and to develop the associated optics.
Methods. Common definitions of longitudinal and transverse chromatic aberration based on Gaussian optics are gener-
alized naturally in terms of linear optics to accommodate heterocentricity and astigmatism.
Conclusions. The definitions offered here apply to systems in general, including the visual optical system of the eye, and
hold for homocentric stigmatic systems in particular. Care is advocated in the use of the terms longitudinal and transverse
chromatic aberration.
(Optom Vis Sci 2012;89:e37Ye43)

Key Words: longitudinal chromatic aberration, transverse chromatic aberration, astigmatism, heterocentricity, transfer-
ence, fundamental properties

Definitions in the literature1Y6 of first-order chromatic
aberration treat the optical system in question as homo-
centric and as having refracting elements that are stig-

matic. There appear to be no published definitions of longitudinal
and transverse chromatic aberration in systems that are hetero-
centric and astigmatic. The lack of definitions would seem un-
fortunate in view of the fact that heterocentricity and astigmatism
are features of the typical eye. It might also suggest that such defi-
nitions may not be easy to come by. This note has the limited
objective of proposing definitions and developing the linear optics
of longitudinal and transverse chromatic aberration of systems that
may be heterocentric and astigmatic. The definitions are natural
generalizations of familiar definitions in Gaussian optics. They
hold for systems in general and apply to the eye in particular,
and they allow one to explore the effects of changes to the eye in-
cluding those that accompany accommodation and refractive sur-
gery for example.

There is inconsistency in the optometric literature over the use
of the term chromatic aberration, particularly, perhaps, in the

more clinically oriented literature. This does not facilitate com-
munication within the discipline and between optometry and
other disciplines. Greater care needs to be taken over terminol-
ogy; usage should be as consistent as possible with that of the
broader scientific community, and distinct concepts should be
assigned distinct names. (We take up these points at the end of
this note.) In keeping with these thoughts we take our point of
departure to be a definition of chromatic aberration used com-
monly in the literature of both general optics and optometry.1Y3

HOMOCENTRIC SYSTEMS WITH STIGMATIC
ELEMENTS

Fig. 1 illustrates definitions1Y3 of longitudinal and transverse
chromatic aberration. The definitions are in terms of Gaussian
optics. System S consists of refracting elements invariant under
rotation about, and centered on, a common axis Z, the optical
axis of S. None of its refracting surfaces is shown. S has entrance
plane T0 and exit plane T, both transverse to axis Z. The indices
of refraction are n0 and n upstream and downstream, respectively,
of S. Object point O has longitudinal position zO and transverse
position yO. Fig. 1 is drawn with yO 9 0 and zO G 0. The location
of the image point I depends on the frequency M of light involved.
Consider two particular frequencies Mr and Mb. It will be conve-
nient to refer to the light as red and blue, respectively. The red
and blue images of O are represented in Fig. 1 as Ir and Ib,
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respectively, with longitudinal zr and zb and transverse yr and yb

positions, all being positive in the figure. We need to distinguish
the incident n0r and n0b and emergent nr and nb indices cor-
responding to frequencies Mr and Mb. By definition

$z ¼ zb � zr ð1Þ

and

$y ¼ yb � yr ð2Þ

are the longitudinal (or axial) and transverse (or lateral) chromatic
aberrations, respectively.

We note that longitudinal and transverse chromatic aberra-
tions do not depend on the properties of system S alone; they
depend on the properties of system S and the property of object
point O. Most properties of a system depend on the context or
environment of the system, that is, the indices n0 and n. For
convenience, we take reference to properties of a system to imply
the context as well. The property of object point O is its position
in space. In Fig. 1, it is represented by its longitudinal and
transverse positions zO and yO. It follows that for a given system
S, the chromatic aberration is not unique. There is usually an
infinity of longitudinal and transverse chromatic aberrations. The
chromatic aberration of the system becomes unique when the
location of the object point is specified.

By these definitions, both longitudinal $z and transverse $y
chromatic aberrations are lengths measured orthogonally and
represented by scalars. One is tempted, therefore, to regard the
two chromatic aberrations as Cartesian components of a vectorial
chromatic aberration and to insert an arrow from Ir to Ib to
represent it in Fig. 1. We could then treat chromatic aberration
holistically and not have to write separate equations for the two
components. We shall find below, however, that the two aspects
are fundamentally different and cannot meaningfully be com-
bined in this way.

HETEROCENTRIC SYSTEMS WITH STIGMATIC
ELEMENTS

A two-dimensional drawing, like that of Fig. 1, suffices for re-
presenting chromatic aberration in the case of homocentric sys-
tems free of astigmatism because optical axis Z, object point O,
and images Ir and Ib all lie in a common plane; that plane becomes
the plane of the paper. However, when homocentricity is relaxed,
this is usually no longer the case. In general, for heterocentric
systems with stigmatic elements, we need a three-dimensional
representation like that attempted in Fig. 2. In Fig. 2, system S
contains refracting elements that may be mutually decentered. S
may contain prisms and tilted surfaces. Z is no longer an optical
axis but merely a longitudinal axis.

FIGURE 1.
Chromatic aberration in Gaussian optics. S is an optical system with entrance and exit planes T0 and T, respectively. Z is the optical axis. Corresponding to
an object point O are red and blue image points Ir and Ib. By definition, the longitudinal chromatic aberration of S for O is the signed length $z. The
transverse chromatic aberration of S for O is the signed length $y. Usually zr 9 zb and not as shown here.

FIGURE 2.
Longitudinal chromatic aberration $z (a scalar) and transverse chromatic aberration $y (a vector) of heterocentric stigmatic system S for object point O.
Longitudinal axis Z is not an optical axis.
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It is apparent that the definition for longitudinal chromatic
aberration $z in the case of homocentric systems with stigmatic
elements (Eq. 1) can be generalized to heterocentric systems un-
changed. This is not the case for transverse chromatic aberration
however. Transverse chromatic aberration becomes a two-com-
ponent vector $y defined by

$y ¼ yb � yr ð3Þ
where yr and yb are the transverse position vectors of images Ir

and Ib. Transverse chromatic aberration $y can be decomposed
into horizontal and vertical components in the transverse plane
if desired.

One still needs to resist any temptation to lump longitudinal and
transverse chromatic aberration into a single concept of chromatic
aberration that could be represented by an arrow (not shown) in
Fig. 2 from Ir to Ib.

HETEROCENTRIC ASTIGMATIC SYSTEMS

We now relax the requirement that the elements of system S of
Fig. 2 be stigmatic; the elements of S may be heterocentric and
astigmatic. Each image point, Ir and Ib, in Fig. 2 becomes blurred
in Fig. 3. One can think of each image point as dissociating
longitudinally into a pair of orthogonal image lines. The struc-
ture becomes that of the familiar interval of Sturm, its nature and
location being dependent on the frequency of the light. We need
to allow for the fact that the orientations of the image lines
usually do not match; that is, the first image line of the red
blurred image is usually not parallel to the first image line of the
blue blurred image. How now do we define longitudinal and
transverse chromatic aberration?

Let us first consider chromatic aberration in a system with
astigmatic elements that are centered on Z. Z then is an optical
axis. Suppose, further, that object point O lies on Z. Red image Ir

is then centered on Z, and its associated line segments intersect Z.
The same holds for blue image Ib. Evidently, there is no trans-
verse chromatic aberration. What chromatic aberration there is
longitudinal. But how do we define it? The definition should
surely account for the fact that the two blurred images may differ

not only in longitudinal position but also in the nature and de-
gree of blur. In other words, longitudinal chromatic aberration
would need at least three numbers for its complete quantitative
representation.

The images themselves do not suggest an obvious answer. In-
stead, we shift focus to the pencils of light containing them. In
the absence of astigmatism, the red pencil would have reduced
vergence Lr = nr/zr in exit plane T where zr is the longitudinal
position of the image point relative to T. Turning the equation
around, we obtain zr = nr/Lr. In the presence of astigmatism, the
generalization of the scalar reduced vergence L is the matrix re-
duced vergence L introduced by Fick7,8 and, independently, by
Keating.9 L is a 2 � 2 symmetric matrix10 identical in mathe-
matical character to the dioptric power matrix F described by
Fick7,8 and Long11 if not by others before them. Its entries have
the units of reciprocal length and so can be in diopters. Lr is the
reduced vergence at exit plane T of system S of the red astigmatic
pencil defined by O, and Lb is the same but for the blue pencil.

We define

Z ¼ L�1n: ð4Þ

Z is symmetric and has the units of length and can be regarded as
a generalized position of the blurred image relative to exit plane
T. The eigenvalues of Z give the longitudinal positions of the
image lines, and the eigenvectors define their orientations.
(Eigenvalues and eigenvectors are treated in standard texts in
linear algebra and have been applied in this context in several
articles.9Y11) (For the moment, we assume that Lj1 exists and
return to the issue of nonexistence later.) Let the eigenvalues of Z
be zj and z+ where zj e z+ and let the corresponding nor-
malized eigenvectors be vj and v+. Then, the first image line has
longitudinal position zj relative to exit plane T and is parallel to
the complementary eigenvector v+, and the second image line
has longitudinal position z+ and is parallel to vj.

Eq. 1 suggests the definition

$Z ¼ Zb�Zr ð5Þ

for the longitudinal chromatic aberration of a homocentric astig-
matic system S for object point O on the optical axis. There is no

FIGURE 3.
Chromatic aberration of a system S with heterocentric astigmatic elements. Corresponding to object point O are blurred images Ir and Ib, each of which has
a pair of longitudinally separated orthogonal image lines shown here by means of short line segments connected by a line segment parallel to Z. Lon-
gitudinal chromatic aberration is defined by Eq. 5 in terms of the reduced vergence of light at emergence from S at T. Transverse chromatic aberration is
the vector $y. If Z is an optical axis and O is on Z then $y = o and Ir and Ib are centered on Z.
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transverse chromatic aberration. $Z characterizes the longitudinal
difference of the two images completely. By this definition, lon-
gitudinal chromatic aberration becomes the 2� 2 symmetric ma-
trix $Z and, as such, can be characterized by three independent
numbers. However, we need to examine it further.

Now reduced vergence (either as scalar L or as matrix L) de-
pends on the relative longitudinal positions of object point and
refracting elements and is independent of relative transverse posi-
tions. Thus, provided relative longitudinal positions are maintained,
decentering the object point and elements of the system has no ef-
fect on the longitudinal positions and natures of the blurred images
including the longitudinal positions and orientations of the image
lines. It follows, therefore, that we can relax the requirement that O
and the centers of the elements of S be on axis Z and take Eq. 5 to be
the definition of the longitudinal chromatic aberration $Z of a
heterocentric astigmatic system for an object point anywhere.

Because $Z is 2 � 2 and symmetric, longitudinal chromatic
aberration has two orthogonal principal meridians. They are the
meridians within which the longitudinal chromatic aberration is
a maximum and a minimum. The maximum and minimum
values are the principal longitudinal chromatic aberrations. They
are the eigenvalues of $Z, and the corresponding principal mer-
idians are the corresponding eigenvectors.

The only effect of relative decentration of object point and
system elements is to cause transverse displacement yr and yb

of blurred images Ir and Ib of object point O in heterocentric
astigmatic system S. Then, Eq. 3 defines the transverse chromatic
difference $y of the images. We, therefore, call $y the transverse
chromatic aberration of system S for object point O.

CHROMATIC ABERRATION IN GENERAL

Eqs. 3 and 5 represent the generalizations to optical systems in
general of the definitions (Eq. 1 and 2) for systems whose
refracting elements are all stigmatic and centered on an optical
axis. Eq. 3 defines $y transverse and Eq. 5 $Z longitudinal
chromatic aberration in general; the first is a two-dimensional
vector, and the second is a 2 � 2 symmetric matrix. The essential
difference in mathematical character between transverse and
longitudinal chromatic aberration highlights the fact that the two
types of aberration are fundamentally different in nature and
cannot meaningfully be combined into a single unified concept
of chromatic aberration.

All this holds in particular for systems whose elements are
stigmatic and homocentric. However, in a context in which
only such systems are under discussion $y and $Z can be re-
duced to the scalar quantities $y and $z and sketched in one
plane as in Fig. 1. Then, $y is one component of $y, the other
being zero and perpendicular to the plane of the paper, and $z is
the scalar coefficient in the scalar matrix $Z = I$z, I being an
identity matrix.

QUANTIFYING CHROMATIC ABERRATION

Having defined them, and given the makeup of an optical
system, how do we calculate longitudinal and transverse chro-
matic aberration? Here, we derive general formulae in linear
optics. The key is the system’s ray transference, which is a function

of the frequency of light.12 For systems that may be heterocentric
and astigmatic, the transference is the 5 � 5 matrix13,14

T ¼
A B e
C D P

oT oT 1

0
@

1
A: ð6Þ

A, B, C, and D are 2 � 2 and e and P are 2 � 1 submatrices.
They are the fundamental properties of the system. oT is the
matrix transpose of the 2 � 1 null matrix o. The fifth row of T is
the trivial (0 0 0 0 1). e and P account for the effects of tilt and
decentration; each is null if the longitudinal axis is an optical axis.15

Longitudinal Chromatic Aberration

If the reduced vergence is L0 at entrance plane T0 of system S,
then the reduced vergence is10,16

L ¼ðDL0� CÞðA� BL0Þ�1 ð7Þ

at the exit plane T of S. For an object point O at longitudinal
position zO relative to T0

L0 ¼ In0=zO: ð8Þ

Hence

L ¼ðDn0=zO � CÞðA � Bn0=zOÞ�1 ð9Þ
or

L ¼ðD� CzO=n0ÞðAzO=n0 � BÞ�1 ð10Þ
with two special cases,

L ¼jCAj1 ð11Þ
for zO Y V and

L ¼�DB�1 ð12Þ

for zO = 0. (Eq. 11 represents the back-vertex power of system
S.17) Adding subscripts to all the parameters in these equations
(except zO) gives expressions for the red and blue reduced ver-
gences Lr and Lb at exit plane T. Substitution into Eq. 5 then gives
the longitudinal chromatic aberration $Z for system S and object
point O.

Transverse Chromatic Aberration

Perhaps surprisingly, the problem of calculating the transverse
chromatic aberration is more challenging. We first examine ob-
ject points at finite distances.

Consider the compound system from the transverse plane of O
to the transverse plane containing an image line of a blurred
image. Let the longitudinal position of the plane of the image line
be z relative to exit plane T of system S. The compound system’s
transference is obtained by multiplying the transferences of the
components in reverse order in the usual way.14 Its top block row
turns out to be

Aþ Cz=n B þDz=n �ðAþ Cz=nÞzO=n0 e þPz=n
�
:

�
ð13Þ

Combining this with the equation for the transverse position at
emergence (Eq. 14 of a previous article14), we see that a ray of
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inclination aO at object point O arrives at the transverse plane of
the image line with transverse position

y¼ðAþCz=nÞyOþ
�
B þ Dz=n� ðAþ Cz=nÞzO=n0

�
n0a O

þ e þ Pz=n: ð14Þ
In particular for the ray parallel to longitudinal axis Z at O

y ¼ ðA þ Cz=nÞyO þ e þ Pz=n: ð15Þ
We write this as

y ¼ AyO þ ðCyO þ PÞz=n þ e: ð16Þ
The first image line goes through the point given by Eq. 16

with z = zj and is parallel to v+. Hence, we can write a para-
metric equation for the first image line as

y� ¼ vþk� þ AyO þ ðCyO þ PÞz�=n þ e ð17Þ
for all real scalars kj. Interchanging the plus and minus signs gives the
equation of the second image line. But v+ is orthogonal to vj so we
can write the equation for the second image line as

yþ ¼ Evþkþ þ AyO þ ðCyO þ PÞzþ=n þ e ð18Þ

where E ¼ 0 1
�1 0

� �
. Subtracting Eq. 17 from Eq. 18 we

obtain

yþ � yj ¼ ðEkþ � Ik�Þvþ þ c ð19Þ

where

c ¼ðCyO þ PÞðzþ � z�Þ=n: ð20Þ
Now y+ j yj is the longitudinal projection of a vector from

a point on the first image line to a point on the second. We make
this vector parallel to Z, i.e., y+ j yj = o. Then, in terms of the
components of v+ and c, Eq. 19 becomes

k� �kþ
kþ k�

� �
vþ1

vþ2

� �
¼ c1

c2

� �
: ð21Þ

Multiplying out, rearranging, and reassembling into matrices we
obtain

vþ2 �vþ1

vþ1 vþ2

� �
kþ
k�

� �
¼ �c1

c2

� �
: ð22Þ

Because v+ is a unit vector, the 2 � 2 matrix on the left has unit
determinant. Hence

kþ
k�

� �
¼ vþ2 vþ1

�vþ2 vþ2

� �
�c1

c2

� �
ð23Þ

from which we obtain

k� ¼ vT
þc ð24Þ

in particular. Substituting from Eq. 24 into Eq. 17 and rearran-
ging one finds that the transverse position of the image is

y ¼ ðA þVCÞyO þ e þVP ð25Þ
where V is the matrix

V ¼
�
vþ v T

þðzþ � z�Þ þ Iz�
�
=n: ð26Þ

For a distant object point we take the compound system to be
system S and the homogeneous gap between S and an image line

and apply a similar method to that used above for an object point
at a finite distance. We find that, for a distant object point O, the
transverse position of the image turns out to be

y ¼ ðBþVDÞn0aO þ e þ VP ð27Þ

where aO is the inclination of the rays from O.
Eqs. 25 to 27 can be written for the red and blue blurred

images. Eq. 27 then gives yb and yr for distant object points and
Eq. 25 gives them otherwise. Hence, from Eq. 3, we obtain the
transverse chromatic aberration

$y ¼$ðA þ VCÞyO þ $ðe þ VPÞ ð28Þ

for an object point at a finite distance and

$y ¼$

�
ðB þ VDÞnO

�
aO þ $ðe þ VPÞ ð29Þ

for a distant object point.
The calculation fails when the reduced vergence L of either the

blue or red light is singular, that is, when an image line is at in-
finity. However, such cases seem of little practical interest and we
consider them no further.

Systems with Stigmatic Elements

In particular, if every element of the system is stigmatic, then
A, B, C, and D are all scalar matrices; that is, A = IA where A is a
scalar, and similarly for the other three 2 � 2 fundamental
properties. The reduced vergence at emergence is also a scalar
matrix, L = IL, and so is Z (Eq. 4), Z = IZ. The eigenvalues of Z
are not distinct: zj = z+ = Z is simply the longitudinal position of
the image point relative to exit plane T. The longitudinal chro-
matic aberration is $Z = I$Z where $Z is the longitudinal po-
sition of the blue image point relative to the longitudinal position
of the red image point. Eq. 26 reduces to V = IZ/n and, finally,
Eqs. 28 and 29 become

$y ¼$ðA þ ZC=nÞyO þ $ðe þZP=nÞ ð30Þ

and

$y ¼$

�
ðB þ ZD=nÞn0

�
aO þ $ðe þZP=nÞ: ð31Þ

Summary of the Routine for Calculating Longitudinal
and Transverse Chromatic Aberration

Suppose we know the transferences of a system S for blue and
red light. We can then calculate the longitudinal and transverse
chromatic aberrations of the system for a finite object point O with
longitudinal position zO and transverse position yO. We proceed
as follows. We use Eqs. 9 or 10 to determine the reduced vergence
L of blue light from O leaving S. Eq. 4 then gives the generalized
longitudinal position Z of the blue image. We repeat for the red
image. The longitudinal chromatic aberration is then $Z given
by Eq. 5. For Z, for blue light, we obtain the eigenvalues zj and
z+ and the corresponding normalized eigenvectors vj and v+.
Eq. 26 gives V. Hence one determines A + VC and e + VP for the
blue light. This is repeated for red light. $(A + VC) is calculated
by subtraction (blue minus red) and similarly for $(e + VP).
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Finally, the transverse chromatic aberration $y is given by
Eq. 28.

If object point O is distant then we need the inclination aO.
The calculation is the same as for a finite object point except that
the vergence L is obtained via Eq. 11, (B + VD)n0 replaces A +
VC, and Eq. 29 is used instead of Eq. 28.

The Appendix illustrates the calculations for a heterocentric
astigmatic model eye with four refracting surfaces (available at
http://links.lww.com/OPX/A107).

CONCLUSIONS

For systems with homocentric stigmatic refracting elements
definitions of chromatic aberration differ from author to author.
Several authors have remarked on the inconsistency and con-
fusion.18Y20 We believe there is a need for authors to take greater
care to define terms in general but particularly in the context of
chromatic aberration.

Here, we have offered definitions that are natural general-
izations of the familiar concepts1Y6 in Gaussian optics; they hold
for the special case of systems with homocentric stigmatic ele-
ments, and they hold for systems, like the eye, with elements that
are heterocentric and astigmatic. We have also derived expres-
sions for longitudinal and transverse chromatic aberration in
terms of the fundamental properties of the optical system.

For general systems, which may be heterocentric and astig-
matic, we have defined longitudinal chromatic aberration to be
the 2 � 2 symmetric matrix $Z given by Eq. 5. It depends on the
longitudinal position zO of the object point O but is independent
of the transverse position yO. Its eigenvectors are principal mer-
idians of longitudinal chromatic aberration, and its eigenvalues
are the principal longitudinal chromatic aberrations along them.

The transverse chromatic aberration $y, a vector defined by
Eq. 3, can be calculated by means of Eqs. 28 or 29. In general,
it is an affine function of the object’s transverse position yO

(Eq. 28) in the case of objects at finite distances or of its direc-
tion, in effect aO, (Eq. 29) in the case of distant objects. If the
refracting elements of the system are all centered on longitudinal axis
Z, then Z is an optical axis, and because e and P are both null,15

the constant term $(e + VP) in those equations vanishes, and
the transverse chromatic aberration becomes linear in yO or aO.

It may be worth mentioning that the principal meridians of the
red and blue pencils, leaving the optical system, need not match.
This is why one cannot, in general, simply calculate longitudinal
chromatic aberration separately in two orthogonal principal
meridians. Nevertheless, preliminary calculations (such as those
in the Appendix) suggest that, for many practical purposes, it
may well be sufficiently accurate to do so.

If the system in question is composed of stigmatic elements
arranged homocentrically, then the definitions here reduce to the
familiar definitions1Y6 of chromatic aberration in Gaussian op-
tics. This special case has been treated above. We note, however,
that stigmatic systems exist with astigmatic elements.21,22 For
them, the special case does not apply, although their longitudinal
chromatic aberration $Z is a scalar matrix.

We are not entirely comfortable with the word aberration in
the terms longitudinal and transverse chromatic aberration. It
suggests an optical concept beyond first order, whereas here, and

in most cases in the literature, the concept is one in first-order
optics. However, until a more suitable term is suggested, we be-
lieve longitudinal and transverse chromatic aberration be reserved
for the concepts defined here.

The definitions proposed here are not specific to the eye. The
retina, in particular, is not mentioned in the definitions. When
applied to the eye, as to any other system, it is important to be
unambiguous about how the definitions are being used. First, it
should be clear what the system is whose chromatic aberration is
being defined; in particular, the entrance and exit planes T0 and T
should be defined. For the visual optical system of the eye that
would most likely have T0 immediately in front of the tear film
on the cornea and T immediately in front of the retina. Second,
the location of longitudinal axis Z should be specified in some
way. Third, the location of the object point relative to Z should
be given. Finally, the two frequencies Mr and Mb of the light should
be given or understood.

In his or her introduction to optometry, the beginning student
often learns to refract with the interval of Sturm and its relation
to the retina in mind. What is clear from the analysis here is that
there is such an interval for each frequency, that they differ lon-
gitudinally and transversely by the longitudinal and transverse
chromatic aberration, and that, from a knowledge of the structure
of the eye, we are now able to calculate these differences. (A
somewhat different perspective on what underlies the routine of
refraction is presented elsewhere.23)

It would seem that the familiar concepts of longitudinal and
transverse chromatic aberration, as defined in Gaussian optics,1Y6

are probably less directly useful in the clinical context which may
be why a variety of concepts related to them has been devised for
use in practice. Confusion arises, however, because many of these
concepts are called by the same names. They should, we believe,
be assigned suitable distinguishing designations. Our generaliza-
tion of the concepts in Gaussian optics to allow for hetero-
centricity and astigmatism may also be of less direct use in the
clinical environment. Nevertheless, it has its place in optometric
didactics and in the broader understanding of the optics of vision.
Furthermore, the theory provides tools for exploring the effects of
changes to the eye that accompany accommodation and refractive
surgery for example.

APPENDIX

The appendix is available online at http://links.lww.com/
OPX/A107.
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Abstract

Background: The line of sight and the corneal sighting centre are important refer-

ences for clinical work in optometry and ophthalmology. Their locations are not

fixed but may vary with displacement of the pupil and other changes in the eye.

Purpose: To derive equations for the dependence of the locations on properties

of an eye which may be heterocentric and astigmatic.

Methods: The optical model used is linear optics. It allows for the refracting sur-

faces of the eye to be astigmatic and tilted or decentred. Because the approach is

general it applies not only to the natural eye but also to a pseudophakic eye and

to the compound system of eye and any optical instrument in front of it. The

analysis begins with the line of sight defined in terms of the foveal chief ray.

Results: Equations are derived for the position and inclination of the line of sight

at incidence onto the eye. They allow one to locate the line of sight and corneal

sighting centre given the structure (curvatures, tilts, spacings of refracting sur-

faces) of the eye. The results can be generalized in several ways including applica-

tion in the case of extra-foveal fixation and when there is a lens or other optical

instrument in front of the eye. The calculation is illustrated in the Appendix for a

model eye with four separated, astigmatic and tilted refracting surfaces.

Conclusions: The equations allow routine calculation of the line of sight for an

eye of known structure and of the eye combined with an optical device such as a

spectacle lens. They also allow exploration of the dependence of the line of sight

on the location of the centre of the pupil and on other properties in the eye. There

is a dependence of the line of sight on the frequency (or vacuum wavelength) of

light but this may not be of clinical significance.

Introduction

Among the several axes defined for the eye the line of sight

has been described as ‘the most important axis from the

point of view of visual function, including refraction proce-

dures’.1 However the line of sight is not fixed for any eye

because the centre of the pupil can vary.1–3 Indeed displace-

ment of the pupil centre is but one of many changes, inside

and outside the eye, that may alter the line of sight. Actu-

ally, even for a fixed eye, there is strictly no unique line of

sight but one for each frequency or vacuum wavelength of

light. (These statements will be justified below.) However,

how significant are these effects? Despite the importance of

the concept the literature seems to have no clear answers.

Our purpose here is to develop a framework for finding

answers. More particularly we shall make use of the power-

ful methodology of linear optics to derive an equation for

the line of sight as a function of properties of the eye with

or without an optical device in front of it.

The methodology used in this note is the same as that

used in several recent papers4–10 to which the reader is

referred for more details than are given here. The equations

derived below allow one to examine the sensitivity of the

line of sight to displacement of the centre of the pupil, to

accommodation, to decentration of an intraocular lens, to

frequency and so on. Linear optics and the concept of the

ray transference allow one to approach the problem in a

very general manner; we are not limited to particular mod-

els of the eye and can handle eyes with multiple, separated,

decentred and nonaligned astigmatic elements. Further-
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more, although we shall talk of the eye, the generality of the

approach means that the results also apply to compound

systems consisting of eye and optical instrument (lens, tele-

scope, etc.) in front of it.

Definition of the line of sight

Like many others11–16 Alpern17 defines the line of sight as

the line joining the fixation point and the centre of the

entrance pupil. It is a line in object space, that is, outside

the eye. Implicit in the definitions is that the index of

refraction of the medium (usually air but it may be water

for example) in object space is uniform and isotropic and,

hence, that the line of sight is a straight line. The general

direction of the light into the eye assigns it a positive sense.

We shall regard the line of sight as infinite; in other words

it is the directed straight line segment from fixation point

to centre of entrance pupil extended to infinity in both

positive and negative senses. It remains a line in object

space and allows for the possibility of real and virtual object

points. (We shall not consider virtual objects explicitly.)

We mention in passing that the International Organiza-

tion for Standardization (ISO) defines the line of sight in

terms of the entrance and exit pupils and the centre of the

fovea.18 ISO call it the visual axis although in the forthcom-

ing edition of the Standard the name has been changed to

line of sight (personal communication from R. B. Rabbetts).

If the cornea is astigmatic then, strictly speaking, the cen-

tre of the entrance pupil is not well defined. The image of

the centre of the (actual) pupil in the cornea is not a point

but a blurred region consisting of a pair of separated

orthogonal lines in the familiar interval of Sturm. The effect

is usually sufficiently small to be of no consequence in the

clinical environment but it does present problems in optical

analyses. Regardless of the degree of astigmatism the prob-

lems are overcome if the line of sight is defined in terms of

the foveal chief ray17,19 (the ray through the centres of the

pupil and the fovea) instead of the entrance pupil. The

Optical Society of America (OSA) defines the line of sight

as the foveal chief ray itself.19 On the other hand, for Alpern

the line of sight is that part of the foveal chief ray which

can be specified in object space17; this has more in common

with the definition in terms of entrance pupil. Accordingly,

for the purposes of this paper we take the line of sight to be

the infinite straight line defined by the portion of the foveal

chief ray in object space, that is, the portion incident onto

the eye.

The location of the line of sight can be defined by speci-

fying a single point and a direction. A convenient point is

the intersection of the line with the first surface of the cor-

nea, the corneal sighting centre in Mandell’s20 terminology.

Accordingly our primary objective will be to find formulae

for the location of the corneal sighting centre and the direc-

tion of the line of sight in terms of properties of the eye

which can be calculated from knowledge of the structure of

the eye.

Locating the line of sight

Figure 1 is a schematic representation of an eye and its line

of sight. The only physical structure of the eye actually

shown in the figure is the iris (grey). The hole in the iris,

not necessarily circular, is the pupil. The pupil lies in trans-

verse plane TP. Z is a reference longitudinal axis relative to

which transverse positions and inclinations are measured.

TK is a transverse plane immediately anterior to the tear

film on the cornea and TR a transverse plane immediately

anterior to the retina. The medium immediately anterior to

TK has index of refraction n0; the indices in the pupil and

immediately anterior to the retina are nP and nR respec-

tively. The visual optical system of the eye is from TK to TR;

we represent it as optical system S. TP partitions S into sub-

systems SA and SB. We call SA the anterior portion of the

eye or simply the anterior eye and similarly for SB, the pos-

terior portion. Properties of SA are identified by means of

subscript A and similarly for SB. We call S the eye or the

whole eye; properties of S have no subscripts.

In Figure 1 point P represents the centre of the pupil and

point R the centre of the fovea. By definition the foveal

chief ray intersects centres P and R; three of its segments

are shown, an incident segment, a segment through the

pupil and a segment arriving at the fovea. K is the corneal

sighting centre. By definition the infinite straight line

defined by the incident segment is the line of sight LL.

R

Ry

RT

Z

Ka

Py

PT

KyL

KT

SA

S

SB

K

P

L

Figure 1. The line of sight or sighting axis LL and the corneal K, pupil-

lary P and retinal R sighting centres (P and R usually being the centres of

the pupil and fovea). S is the visual optical system of an eye; it extends

from entrance plane TK, immediately anterior to the corneal tear film, to

the exit plane TR, immediately in front of the retina. The iris and pupil

are the only structures of the eye shown explicitly; they define plane TP
which partitions the eye into anterior SA and posterior SB portions. Z is

the longitudinal axis relative to which transverse positions and inclina-

tions are measured. Three segments of the foveal chief ray or sighting

ray are shown: incident onto S at K, in the pupil through P and emer-

gent from SB at R.
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Relative to longitudinal axis Z points K, P and R have

transverse positions represented by the vectors yK, yP and

yR respectively. Each vector is represented by a 2 9 1

matrix whose top and bottom entries are Cartesian compo-

nents which we may regard as its horizontal and vertical

components respectively; they are in length units.

The line of sight has transverse position yK at TK and

inclination aK. Like yK, aK is 2 9 1 and its components are

the horizontal and vertical components of the inclination;

they are in radians and, hence, unitless. yK characterizes the

location of the corneal sighting centre completely and yK
and aK together completely characterize the line of sight LL.

Our objective is to obtain expressions for yK and aK in

terms of other properties of the eye, properties that can be

calculated from curvatures, tilts and spacings of refracting

elements in the eye and of refractive indices of the media

between them.

We represent the inclination of the foveal chief ray at P

in the pupil and at R on the retina as aP and aR respectively.

We now apply the basic equations of linear optics across

the whole eye (Equations 7, 8 of a previous paper7 for

example). This gives a pair of simultaneous matrix equa-

tions in terms of the transverse positions yK and yR and

inclinations aK and aR of the foveal chief ray at incidence

onto the cornea and at the retina:

AyK þ n0BaK þ e ¼ yR ð1Þ

and

CyK þ n0DaK þ p ¼ nRaR: ð2Þ

A, B, C, D are 2 9 2 matrices and e and p 2 9 1 matrices;

they are submatrices of the ray transference T (5 9 5) of

the eye S and represent its fundamental optical properties.

A, B and e form the first or top block-row of T and C, D

and p the second block-row. It is apparent from Equation 1

that A is unitless and B and e have length units and from

equation 2 that C has reciprocal length units (dioptres, for

example) and D and p no units. Equation 1 written across

SA, the anterior eye, becomes

AAyK þ n0BAaK þ eA ¼ yP ð3Þ

where AA, BA and eA are fundamental properties of SA.

Equations 1 and 3 can be combined into the single

matrix equation
Q

yK
aK

� �
¼ yR � e

yP � eA

� �
ð4Þ

where
yK
aK

� �
is a 4 9 1 matrix which we call the incident

location of the line of sight and

Q ¼ A n0B
AA n0BA

� �
ð5Þ

is a 4 9 4 matrix whose top block-row is a property of the

whole eye S and whose bottom block-row is a property of

the anterior eye SA. We refer to Q as the coefficient matrix.

The top block-row of the 4 9 1 matrix on the right of

Equation 4 is a property of the whole eye, including the

location of the centre of the fovea yR, and the bottom

block-row is a property of the anterior eye including the

centre of the pupil yP .

A line of sight necessarily satisfies Equation 4. Equa-

tion 4 is an example of a linear equation, a standard equa-

tion in linear algebra. Depending on the coefficient matrix

and the matrix on the right of the equation it may have no

solution for
yK
aK

� �
, a unique solution or an infinity of

solutions. The conditions on existence and uniqueness, and

the set of all solutions when there is more than one solu-

tion, have been presented elsewhere.7,21

One expects a ray through P and R to be unique. Hence

one expects there to be a unique line of sight. Mathemati-

cally this means that Q should be nonsingular, that is, its

determinant should not be zero, in which case one can

solve Equation 4 to give the unique solution

yK
aK

� �
¼ Q�1

yR � e
yP � eA

� �
: ð6Þ

An exception occurs when P and R happen to be conjugate

points; there are then an infinity of lines of sight. It is hard

to imagine a situation in which there is no line of sight. It

seems safe to disregard such exceptions and take Equa-

tion 6 to be the unique solution for the line of sight of an

eye. Should they occur, however, one would need to turn

to the conditions and expressions presented before.7,21 We

consider them no further here.

We conclude that Equation 6 locates the line of sight in

terms of the properties of the eye (represented by Q, e and

eA) including the locations of the centres of the pupil and

fovea yP and yR. It gives the transverse position yK and

inclination aK of the line of sight at incidence onto the cor-

nea, that is, at the corneal sighting centre. For reference

below we note from Equation 6 that the incident location

yK
aK

� �
of the line of sight is linear in the matrix

yR � e
yP � eA

� �
.

Because it is a straight line the line of sight intersects the

retina in the point with transverse position
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yKR ¼ yK þ zaK: ð7Þ

z is the length of the eye. This point on the retina provides

another way of visualizing the line of sight. It is the trans-

verse position of the image of the centre of the fovea for an

observer looking along the line of sight.

Rearranging Equation 2 and substituting from Equa-

tion 6 we obtain

aR ¼ C n0Dð ÞQ�1 yR � e
yP � eA

� �
=nR þ p=nR; ð8Þ

the inclination, relative to longitudinal axis Z, of the foveal

chief ray at the fovea explicitly in terms of properties of the

eye.

The use of Equations 6, 7 and 8 is illustrated in the Appen-

dix where the line of sight is determined for a model eye with

four separated, astigmatic and tilted refracting surfaces. The

calculation is performed for two frequencies of light.

Sensitivity to changes in the eye

Coefficient matrix Q, defined by Equation 5, depends on

fundamental properties A and B of the whole eye and of

the anterior portion of the eye. These fundamental proper-

ties in turn depend on curvatures and separations of the

refracting surfaces in the eye but they are independent of

tilts or decentrations of those surfaces.8 Thus Q is usually

affected by changes in curvatures and spacings of the

refracting surfaces but not by changes in tilt or decentra-

tion. Fundamental property e, however, is usually altered

by changes in curvatures, spacings, tilts and decentrations.

This means that changes in transverse position of the cen-

tres of the pupil and fovea, yP and yR, and changes in tilt

and decentration of the refracting surfaces in the eye

change
yR � e
yP � eA

� �
without changing Q; the incident loca-

tion of the line of sight is, therefore, linear in such changes.

Relatively simple explicit equations are easily obtained as

illustrated below for changes in yP and yR.

Because changes in curvatures and spacings of refracting

surfaces may change Q, e and eA one expects from Equa-

tion 6 that the sensitivity of the line of sight to such

changes should be much more complicated. By making use

of the fact that properties A, B and e of a system are partic-

ular affine functions of curvatures and spacings of the

refracting surfaces8 one could, if desired, obtain explicit

equations for the sensitivity to changes in curvature and

separation of refracting surfaces in the eye. However

because such equations are probably very messy, differ for

each surface and gap and depend on the particular model

eye chosen it seems unwarranted to attempt to do so here.

Furthermore they are probably of little interest because the

change in the line of sight can be determined simply by

applying Equation 6 twice, once before and once after a

change. (This is illustrated in the Appendix for changes in

curvature of the first and third surfaces of the four-surface

model eye and in the distance between the second and third

surfaces.)

Alternative approaches

Equation 6 represents a direct and relatively simple routine

for locating the line of sight of an eye of known optical

structure. It is unlikely to present problems in most appli-

cations of interest. However it displays little information

on relationships and gives little insight. There are a number

of different approaches which lead to equations which do

not have those disadvantages. Each of these other

approaches, however, brings with it additional problems

concerning singularity and possible associated computa-

tional difficulties. We outline some of them here.

From Equation 1 one can write

aK ¼ B�1 yR � e� AyKð Þ=n0: ð9Þ

Substitution into Equation 3 gives an equation in yK which

can be solved to give

yK ¼ AA � BAF0ð Þ�1 yP � BAB
�1 yR � eð Þ � eA

� �
;

ð10Þ

the transverse position of the corneal sighting centre rela-

tive to longitudinal axis Z. Here

F0 ¼ B�1A ð11Þ

is the corneal-plane refractive compensation of the eye.22

Equation 9 holds under the assumption that fundamental

property B of the eye is nonsingular; Equation 10 holds

under the assumption that both B and AA�BAF0 are non-

singular. Substitution from Equation 10 into Equation 9

gives an explicit equation for the inclination aK of the line

of sight. Together yK and aK locate the line of sight com-

pletely relative to longitudinal axis Z.

We could also find the line of sight by solving Equation 1

for yK, substituting into Equation 3 and, hence, obtaining

expressions for yK and aK. The first step in that approach

assumes that A is nonsingular. A is strictly a measure of the

ametropia of the eye22; it is singular whenever a distant

object point maps to a point (emmetropia) or a line (sim-

ple astigmatism or what we might call semi-emmetropia)

on the retina. Equations for the line of sight

obtained this way would fail, therefore, for such eyes at
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least. Furthermore one would anticipate computational

problems and uncertainty for eyes that are close to these

conditions if not for others.

Yet more equations can be obtained for the line of sight

if one begins by solving Equation 3 for yK or aK and substi-

tuting into Equation 1.

Although these equations have limitations arising out of

possible singularity they may all have their uses for particu-

lar applications. For example suppose the centre of the

pupil undergoes a transverse displacement DyP. Then it fol-

lows from Equation 10 that the corneal sighting centre is

displaced by

DyK ¼ AA � BAF0ð Þ�1DyP: ð12Þ

Equation 12 shows explicitly that change in the location of

the corneal sighting centre, and the incident position of the

line of sight, is linear in the transverse displacement of the

centre of the pupil, the proportionality matrix being the

property (AA�BAF0)
�1 of the eye. According to Equation 9

transverse displacement of the centre of the pupil has no

effect on the inclination of the line of sight. On the other

hand both the inclination and the incident position of the

line of sight are dependent on the location of the centre of

the fovea; from Equations 9 and 10 we obtain a transverse

shift in incident position

DyK ¼ � AA � BAF0ð Þ�1BAB
�1DyR ð13Þ

and change in inclination

DaK ¼ B�1 Iþ BB�1A AAA
�1 � I

� ��1� �
DyR=n0 ð14Þ

of the line of sight corresponding to a transverse displace-

ment DyR of the centre of the fovea. (We are not implying

that the fovea actually shifts; we could, for example, be

comparing the lines of sight of two model eyes identical

except for the locations of the centres of their foveas.) I rep-

resents the identity matrix. Both dependences are linear.

The proportionality matrices in Equations 12 to 14 are

calculated for the model eye in the Appendix.

In effect Equations 9, 10 and 12–14 all represent special

cases of the linearity in
yR � e
yP � eA

� �
represented by Equa-

tion 6 and discussed above under the heading Sensitivity

to changes in the eye.

Chromatic dependence

Equation 6 expresses the location of the line of sight in

terms of the fundamental properties (more particularly the

top block-row fundamental properties) of the whole eye

and the anterior eye. However, the fundamental properties

are dependent on the frequency of light.23 Hence we expect

there to be a line of sight for each frequency. One can

define a chromatic difference for lines of sight by

D
yK
aK

� �
¼ yK

aK

� �b

� yK
aK

� �r

ð15Þ

where the superscripts b and r denote light of two specified

frequencies. In the numerical example in the Appendix the

corneal sighting centres for red and blue light are more

than two wavelengths apart and the inclinations of the lines

of sight differ by a little more than 0.001 radians. These dif-

ferences are small and may be of little clinical significance.

Generalizations

Although we have talked here of the eye and the centres of

the pupil and fovea there is nothing in the mathematics

that limits application to the eye as such or that requires

the points in the pupil and fovea to be their centres. This

means that the results described above can be generalized.

We outline three generalizations.

The results apply equally well, for example, to a com-

pound system of eye and lens or other optical instrument

in front of the eye. In the analysis above system S then

becomes the compound system, and, instead of being

immediately anterior to the tear film on the cornea,

transverse plane TK is now immediately anterior to the

first surface of the optical instrument. TR, immediately in

front of the retina, is unchanged. TP is unchanged at the

plane of the pupil unless an aperture in the optical

instrument becomes the limiting aperture of the com-

pound system in which case TP is at that limiting aper-

ture. As above, system SA is from TK to TP and SB is

from TP to TR. yR remains the position vector relative to

longitudinal axis Z of the centre of the fovea on the ret-

ina. yP remains the centre of the pupil or becomes the

centre of the limiting aperture if the pupil is not the lim-

iting aperture. The line of sight for the compound system

is located by Equation 6 in which aK is its inclination at

incidence onto the instrument and yK is its transverse

position on the first surface of the instrument. Instead of

being the corneal sighting centre yK becomes the sighting

centre as it were on the front of the instrument. In the

case of a thin spectacle lens yK locates the visual point on

the lens with respect to longitudinal axis Z. It can also be

obtained directly from Equation 10.

In the case of extra-foveal fixation one can interpret yR
as the transverse position of the centre of visual attention

on the retina. The results above then can be applied in

physiological and pathological conditions in which fixation

is not centred on the centre of the fovea.
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There may be circumstances in which one wishes to

interpret yP as the transverse position relative to Z of a

point in the pupil other than the centre. We have in mind

here the Stiles-Crawford effect24 and Tscherning’s com-

ment15 that ‘In sighting … the image of the point fixed …
has nothing to do with the centre of the pupil’. Or the pupil

may be irregular in shape with a centre not easy to define.3

A line of sight could be located using the results above if yP
were known.

Concluding remarks

Equation 6 represents the central result of this paper; it

locates the line of sight of an eye (natural or pseudophakic)

in terms of properties of the eye. It does so by giving the

transverse position yK at incidence onto the eye and the

inclination aK of the line of sight, both being relative to lon-

gitudinal axis Z. Coefficient matrix Q in Equation 6 is

defined by Equation 5 and depends on the top block-rows

of the transferences of the whole eye and the anterior por-

tion of the eye. The transferences can be determined from

knowledge of the structure of the eye. (The use of the equa-

tions is illustrated in the Appendix for a particular hetero-

centric astigmatic eye.)

The usual definition of line of sight in terms of the

entrance pupil may suggest that the line of sight of an eye

depends on the location of the centre of the entrance pupil

and is independent of other structures. The analysis here

shows that in fact it may vary with change of any structure

in the eye; in particular one expects it to vary with accom-

modation.

Strictly there is a line of sight for each frequency of light.

Whether the differences between them are of any signifi-

cance remains to be seen.

Although we refer here to the eye, with some appropriate

reinterpretations (described under Generalizations), the

analysis has much broader application. It can be applied,

for example, to the compound system of eye and any opti-

cal instrument in front of the eye. yK and aK, then, given by

Equation 6, represent the transverse position and inclina-

tion of the line of sight relative to Z at incidence onto the

anterior surface of the instrument.

The analysis can also accommodate physiological and

pathological conditions in which fixation is not foveal or

phenomena such as the Stiles-Crawford effect in which it

may be appropriate to use a point in the pupil other than

the centre. In situations such as these it seems appropriate

to extend Mandell’s terminology20 (corneal sighting centre)

to other surfaces. Hence we have retinal sighting centre, for

example, whose location is given by yR. Usually it is the

centre of the fovea but it is elsewhere in extra-foveal fixa-

tion. Similarly yP locates the pupillary sighting centre which

may usually be taken as the centre of the pupil but could be

elsewhere. The visual point on a thin spectacle lens would

be the spectacle sighting centre.

The line of sight was defined above in terms of the foveal

chief ray but, when the retinal or pupillary sighting centres

are not the centres of the fovea or pupil, then the ray in terms

of which the line of sight is defined is not the foveal chief ray.

In general one might refer to the ray through the pupillary

and retinal sighting centres as the sighting ray. Usually one

would expect the sighting ray to be the foveal chief ray.

It is possible for Equation 6 for the line of sight to fail.

This occurs when matrix Q is singular. We do not expect

that to happen in the case of eyes but it is conceivable when

the eye is a component of a compound system. In such

cases, depending on the nature of Q and the matrix on the

right of Equation 4, there may be no line of sight or multi-

ple lines of sight. Equation 4 is standard in linear algebra.

Conditions of existence and uniqueness of solutions are

presented elsewhere.7,21 When there are multiple solutions

the equation for all solutions is also given in those papers.

Alternative equations for the line of sight can be

obtained. Examples include Equations 9 and 10. Some give

additional insight into relationships and may be useful but

all have potential problems associated with singularity.

The equations here allow one to explore the effects of

changes both inside and outside the eye, for example when

a spectacle lens is placed in front of the eye or there is

accommodation or shift in location of the centre of the

pupil. The location of the pupil centre, if regarded as the

pupillary sighting centre, is represented explicitly as yP in

Equation 6 and accommodation changes at least the top-

block row of Q in that equation.

The nature of Equation 6 suggests a complicated depen-

dence of the line of sight on changes of curvature and spac-

ings of refracting surfaces within the eye. However, tilts and

decentrations of refracting surfaces and the locations of the

centres of the pupil and fovea (or pupillary and retinal

sighting centres) are exceptional in that changes in them

produce linear changes in the line of sight. If there are no

other changes Equation 9 shows that a transverse shift of

the centre of the pupil has no effect on the inclination of

the line of sight; its effect on the incident position of the

line of sight is linear (Equation 12). For the model eye trea-

ted in the Appendix the corneal sighting centre undergoes a

shift approximately 13% larger than the pupillary sighting

centre and approximately in the same direction. Equa-

tions 13 and 14 show that the incident transverse position

and inclination of the line of sight are both linearly sensi-

tive to position of the retinal sighting centre. The sensitivi-

ties are calculated for the model eye in the Appendix.

The Appendix also illustrates application of Equation 6 to

determine the effect on the line of sight of other particular

changes within the eye, including changes of curvature of the

first and third surfaces of the eye and separation between the
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second and third surfaces. In most of these cases the effects

are small and, perhaps, of little significance in many applica-

tions. They depend, however, on the particular model eye

chosen for the analysis and should not necessarily be

regarded as representative of eyes in general. Nevertheless

the numbers do suggest that accommodation and other

changes in the eye are less significant than displacement of

the centre of the pupil. It is also evident that change in

curvature, tilt or decentration of the first surface of the eye

causes no shift in position of the corneal sighting centre.

The line of sight is based on the incident segment of the

sighting ray, the segment external to the eye. However, the

Stiles-Crawford phenomenon24 and what Bradley and

Thibos25 describe as the retina’s ‘inherent optical axis’ sug-

gest that there might be merit in also defining an axis based

on the segment of the sighting ray at the retina. We would

then distinguish between the incident or external line of sight

of an eye (what we have simply been calling the line of sight)

and the eye’s retinal line of sight. The latter would be the

infinite straight line containing the segment of the sighting

ray at the retina. The retinal line of sight is located by

Equation 8 which gives its inclination, its transverse position

at the retina, of course, being the retinal sighting centre.

Ordinarily a lens or other instrument placed in front of a

fixed eye changes the incident line of sight but not the reti-

nal line of sight. It is only if an aperture in the instrument

becomes limiting that both incident and retinal lines of

sight may change.

One expects the pupillary sighting centre to be the centre

of the pupil but it may be elsewhere in the pupil. If the

structure of the anterior part of the eye and the location of

the line of sight are known then the location of the pupillary

sighting centre can be calculated by means of Equation 3.

The entrance pupil of an eye is in object space. Thus the

traditional definition of line of sight in terms of point of

fixation (in object space) and entrance pupil (also in object

space) might, at first sight, give the impression that the line

of sight of an eye is more a property of object space and less

a property of the eye. The equations developed here stress

the fact that the line of sight of an eye is a property of the eye

alone. In particular it does not depend on a fixation point.

Indeed the line of sight exists even if there is no fixation

point (in the dark for example). The only provisos are that

the index of refraction immediately in front of the eye does

not change and that the pupil remains the limiting aperture.

(The line of sight changes, for example, if an eye in air sub-

merges in water or a pinhole aperture is placed in front of

the eye.) We can think of the eye as having a pointer attached

to it at the cornea along the line of sight and directed

forward. The act of fixating a point object involves turning

the eye so that the pointer points at the object in question.

Line of sight is a term not unique to optometry, ophthal-

mology and vision science. It is common in several fields,

cosmology26 being but one example. In such fields, in con-

trast to the term we have been using, the term does not nec-

essarily imply an eye at all. The line of sight is simply a ray

from some object in question. If one wishes to see the

object then one needs to bring the line of sight of an eye, or

of each eye, into coincidence locally with a line of sight of

the object. Again ‘eye’ here may also be interpreted ‘com-

pound system of eye and instrument in front of it’.

Partly because two such distinct concepts have the same

name we have reservations about the term ‘line of sight’ for

the property of the eye. Implicit in the traditional definition

is that the line is straight, but lines are not necessarily

straight. ‘Axis’ seems more appropriate than ‘line’; it better

suggests a straight line and is more in keeping with the

names of other axes of the eye including optical axis, visual

axis and achromatic axis. ‘Sighting axis’ seems a possible

alternative to ‘line of sight’. An eye would then have cor-

neal, pupillary and retinal sighting centres, a sighting ray

and a sighting axis. To see a distant object one would need

to turn the eye to bring its sighting axis into coincidence

with a line of sight of the object.

We have used here the powerful methodology of linear

optics to obtain explicit equations for the location of the

line of sight in the case of an eye with multiple separated

refracting surfaces that may be heterocentric, tilted and

astigmatic. All that is required beyond refractive indices

and axial separations is the paraxial geometry of each

refracting surface. As with the simpler optical model,

Gaussian optics, we need to keep in mind, however, that

the theory is paraxial and that accuracy declines with

increasing distances and inclinations relative to the longitu-

dinal axis. For greater accuracy we would need to turn to

geometrical optics but then we would need the whole

geometry of every surface (which we seldom have) and we

would usually have to be satisfied with numerical computa-

tion. The explicit equations obtained here are, we assert,

the best obtainable.

Traditionally the line of sight is defined in terms of the

entrance pupil. But, strictly speaking, an entrance pupil is

not well defined if the eye has an astigmatic cornea; its cen-

tre, as any other point in it, is blurred out as an interval of

Sturm. Although this effect may be negligible for clinical

purposes it presents a problem for optical analyses includ-

ing the analysis presented here. By making use of the actual

pupil instead the entrance pupil, as one does when defining

the line in terms of the foveal chief ray, one avoids the

problem. The clinician, however, does not have the luxury

of access to the pupil and has to be satisfied with the

entrance pupil. Nevertheless, for most purposes, there is no

conflict between the two definitions; the clinician and the

theoretician are talking about the same thing and merely

approaching it with the particular tools that each has at his

or her disposal.
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Appendix

We illustrate application of the theory by locating the line

of sight, including the corneal sighting centre, for a particu-

lar ametropic heterocentric astigmatic model eye. We also

illustrate the effect on the line of sight of changes in fre-

quency of light, transverse position of the centres of the

pupil and fovea, curvature of the third and first refracting

surfaces and separation of the second and third surfaces.

The model eye has four separated astigmatic and tilted

refracting surfaces the details of which are listed in Table 1.

The principal radii of curvature of the first surface of the

cornea (K1) are 5.8 mm along the horizontal and 7 mm

along the vertical and the surface has tilts 0.06 in the

horizontal (from in front of the eye the right of the surface

would appear pushed away relative to the left) and �0.05
in the vertical (the bottom of the surface would appear

pushed away relative to the top) all measured at the refer-

ence axis Z. The tilts are in radians or, equivalently, no

units. The curvatures and tilts of the second surface of the

cornea (K2) and the first (L1) and second (L2) surfaces of

the lens of the eye should be interpreted similarly. The
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separation between K1 and K2 is 0.5 mm. The expressions

for refractive index as a function of vacuum wavelength

published by Villegas et al.27 have been used.

The principal meridians of the refracting surfaces are not

aligned. The eye is in air; hence we set n0 = 1. The eye’s

length is z = 24.5 mm. We suppose the centre of the pupil

is located 1 mm to the left of axis Z. Hence, taking it to be

the pupillary sighting centre, we set yP ¼
�1
0

� �
mm .

We also suppose that the retinal sighting centre is located

1 mm from Z in the 45° direction. It may be at the centre

of the fovea but this makes no difference to the calculation.

Thus yR ¼
cos 45�

sin 45�

� �
mm.

The calculation is done for light of frequencies corre-

sponding to the vacuum wavelengths 486.1 (‘blue’) and

656.3 (‘red’) nm; the results are summarized in Table 2.

A is the top left 2 9 2 submatrix of the transference, B

the top middle 2 9 2 matrix and e the top right 2 9 1

submatrix. Below A, B and e in the transference are C, D

and p respectively. The coefficient matrices Q were calcu-

lated using Equation 5. Their determinants turn out to

be approximately 205 and 202 mm2 for red and blue

respectively which confirms that the lines of sight exist

uniquely and that Equation 6 gives their transverse posi-

tions yK and inclinations aK at incidence on to the

eye. The red and blue corneal sighting centres are about

1.3 mm left and 0.2 mm below longitudinal axis Z.

The lines of sight slope up and to the right into the

eye at about 0.04 radians (4 prism dioptres) away

from axis Z. The chromatic difference for the eye

of the red and blue lines of sight is (Equation 15)

D
yK
aK

� �
¼

0:001335mm
�0:000432 nm
�0:00101
�0:00016

0
BB@

1
CCA .

Thus the red and blue corneal sighting centres are a few

wavelengths apart. The lines of sight intersect the retina in

the point represented by yKR calculated by means of Equa-

tion 7. The blue and red sighting rays arrive at the retina

with inclination aR given by Equation 8; here they are iden-

tical up to a few tens of microradians.

The last row in Table 2 lists the proportionality matrix

(AA�BAF0)
�1 of Equation 12. It differs only slightly for red

and blue light and is close to the scalar matrix 1.13I. In

other words a transverse shift of the centre of the pupil

causes a shift of the line of sight, and hence of the corneal

sighting centre, that is approximately 13% larger in magni-

tude and in approximately the same transverse direction.

The proportionality matrices in Equations 13 and 14 also

turn out to be close to identity matrices, �0.24I and

0.057I mm�1 respectively. Thus a shift of the retinal sight-

ing centre causes a shift in the corneal sighting centre that

is about a quarter in magnitude but in approximately the

opposite direction and it causes the inclination of line of

sight to change by about 5.7 prism dioptres or 3.3 degrees

per millimetre in approximately the same direction.

Repeating the calculation using Equation 6 but with the

principal powers of the third surface of the model eye each

increased by 1 D we obtain a change in incident location of

the line of sight by about

0:0033717mm
0:0000003mm
�0:0008066
�0:0000008

0
BB@

1
CCA. Thus the

corneal sighting centre has been shifted by roughly 3 lm
approximately to the right and the inclination of the line of

sight has increased by about 0.05 degrees approximately to

the left.

If instead 1 D is added to each principal power of the

first surface Equation 6 shows that the change in incident

location of the line of sight is

0 mm
0 mm

�0:0012896
�0:0001956

0
BB@

1
CCA. Thus the

corneal sighting centre is not moved, as is to be expected,

while the inclination of the line of sight increases by about

0.08 degrees approximately to the left.

Increasing the distance between the second and third

surfaces (the depth of the anterior chamber) by 1 mm the

incident location of the line of sight changes by

�0:0640562mm
�0:0437903mm
�0:0036075
�0:0020368

0
BB@

1
CCA , that is, the incident position shifts

about 0.08 mm in the 214-degree direction (left and down)

and the incident inclination increases by about 0.24 degrees

in the 209-degree direction.

Many of these numbers may well be negligibly small for

most purposes. The degree to which they are representative

of eyes, however, remains to be examined.

Table 1. Principal radii of curvature, separation, and tilt of surfaces (K1

and K2 of the cornea and L1 and L2 of the lens) of the model eye used

in the numerical example

Surface

Principal radii,

mm{degr}mm

Separation,

mm Tilt

K1 5.8{180} 7 0:06� 0:05ð ÞT

0.5

K2 5{10}6.2 0:04 0:06ð ÞT

4

L1 4.1{20}5 �0:070:1ð ÞT

4

L2 �5{70}�6.2 �0:05� 0:03ð ÞT

16
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Dependence of the ray transference of model eyes on 

the frequency of light 
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The transference defines the first-order character of an optical system; almost all the 

system’s optical properties can be calculated from it. It is useful, therefore, to have 

some idea of how it depends on the frequency of light. We examine the dependence for 

two Gaussian eyes. It turns out to be nearly linear for all four fundamental properties. 

The result is an equation for the dependence of the transference on frequency which is 

almost symplectic. We also transform the transference into Hamiltonian space, obtain 

equations for the least-squares straight line for the three independent transformed 

properties and map them back to the group of transferences. The result is an equation 

for the dependence of the transference on frequency which is exactly symplectic and 

therefore representative of an optical system. The results may approximate those of real 

eyes and give estimates of the dependence of almost all optical properties on frequency. 

Keywords: ray transference; frequency; symplecticity 

Introduction 

The ray transference is of central importance in linear optics. Nearly all the familiar optical 

properties of an eye such as power, refractive compensation, magnification and cardinal points can 

be derived from the transference. It is therefore useful to have some idea of how it depends on the 

frequency of light. In this presentation we examine the dependence of the transference of the 

reduced eye [1] and Le Grand’s four-surface schematic eye [2] on frequency with the objective of 

obtaining an equation for the dependence. Consequently, the dependence of the eye’s optical 

properties on frequency, as well as their chromatic difference between two frequencies, can be 

obtained from the frequency-dependent transference. This forms part of a much larger study. Many 

of these chromatic properties can be generalised to astigmatic heterocentric eyes.  

Method 

The underlying method used here is that of first-order optics. We make use of the ray transference 

which is a complete representation of the first-order effects of an optical system on the rays 

traversing it [3]. We represent the transference as  











DC

BA
S             (1) 

where A the dilation, B the disjugacy, C the divergence and D the divarication are the four 

fundamental properties of the Gaussian system [4]. 

Being a member of the symplectic group, the transference has unit determinant [4, 5]. Symplectic 

matrices are closed under multiplication, inversion and transposition but are not closed under 
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addition nor multiplication by a scalar [4, 5]. This creates problems when doing quantitative 

analyses on sets of transferences [5]. To overcome this limitation, we make use of the mapping 

from the symplectic group to the set of Hamiltonian matrices. The set of all Hamiltonian matrices 

defines a linear (vector) space and is therefore closed under matrix addition and multiplication by a 

scalar, [4, 5]. This makes the set of Hamiltonian matrices suitable for quantitative analysis including 

conventional statistical analysis. We explore two mappings. Firstly, the principal matrix logarithm 

of a symplectic matrix is a Hamiltonian matrix and inversely the matrix exponential of a 

Hamiltonian matrix is a symplectic matrix. Secondly, the Cayley transform, being its own 

functional inverse, provides a mapping between symplectic and Hamiltonian matrices. The Cayley 

transform is defined as [6] 

   1ˆ 
 SISIS            (2) 

where the caret (^) denotes the Hamiltonian transformed transference. 

We are interested in the dependence of the transference on the frequency of light across the visible 

spectrum, 430 to 750 THz ( 112s10  ). Frequency is independent of the medium whereas 

wavelength is not and energy is proportional to frequency, good reasons for studying the 

dependence of properties on the frequency of light rather than on wavelength [7]. When obtaining 

the transference, it is the refractive index that is dependent on frequency. We make use of the 

formula for the refractive index as a function of wavelength developed for the chromatic eye [8] and 

the formulae for the refractive indices as functions of wavelength for the cornea, aqueous, lens and 

vitreous developed by Villegas et al. [9] based on the polynomial fit of Le Grand’s findings [10] for 

the four-surface schematic eye. Both sets of equations are based on experimental findings. The 

refractive index of air is approximated by 10 n . The transferences were calculated as described 

elsewhere [11]. 

Results 

In Figure 1 the dependence of the transference on the frequency of light is shown for the reduced 

eye (blue) and Le Grand’s eye (black) and is very nearly linear for each of the fundamental 

properties. The dashed straight lines shown in the figure are obtained using the least-squares 

method. The formula for the straight lines as a function of frequency ( ν ) is given by 




















22

22

11

11

dc

ba
ν

dc

ba
S           (3) 

with constants given in Table 1 for the reduced and Le Grand’s eyes. This gives us a good 

approximation for the transference of a Gaussian eye as a function of frequency.  

Transforming the frequency-dependent transferences into Hamiltonian matrices, we are able to 

obtain the least-squares straight line for each of the three independent entries in Hamiltonian space, 

which we map back to symplectic matrices. This allows us to obtain an expression for the 

dependence of the transference on the frequency of light which is exactly symplectic. The least-

squares straight line in Hamiltonian space is 



































22

22

11

11

ˆˆ

ˆˆ

ˆˆ

ˆˆˆ

ac

ba
ν

ac

ba
S          (4) 

with the constants for the reduced and Le Grand’s eyes given in Table 2 for the Cayley transform 

and Table 3 for the logarithmic transform. To obtain the transference as a function of frequency one  
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Figure 1. The fundamental properties of the reduced and Le Grand’s eyes as functions of frequency. The 

least squares straight lines (Equation 3) are shown with dashed lines. The coloured markers represent equal 

spacings of 64 THz (
112 s10  ) and approximate the colours represented at each frequency. 

 

Table 1. Constants for Equation 3, the units being picoseconds ( s10 12 ), metres and dioptres (
1m
). 

Reduced eye Le Grand’s eye 

ps10069.1 4
1

a  0549.02 a  ps10997.0 4
1

a  0516.02 a  

psm10939.5 7
1

b  m10972.16 3
2

b  psm10034.7 7
1

b  m10038.17 3
2

b  

psD10605.8 3
1

c  D579.552 c  psD10975.7 3
1

c  D849.552 c  

ps01 d  12 d  ps10115.1 5
1

d  910.02 d  

 

Table 2. Constants for Equation 4 for the Cayley transform. 

Reduced eye Le Grand’s eye 

ps10780.4ˆ 5
1

a  309.0ˆ
2 a  ps10263.4ˆ 5

1
a  289.0ˆ

2 a  

psm0ˆ
1 b  m10111.11ˆ 3

2
b  psm10633.4ˆ 8

1
b  m10509.11ˆ 3

2
b  

psD10206.7ˆ 3
1

c  D298.36ˆ
2 c  psD10111.7ˆ 3

1
c  D630.37ˆ

2 c  

 

Table 3. Constants for Equation 4 for the logarithmic transform. 

Reduced eye Le Grand’s eye 

ps10905.7ˆ 5
1

a  564.0ˆ
2 a  ps10887.6ˆ 5

1
a  523.0ˆ

2 a  

psm10491.2ˆ 7
1

b  m10281.20ˆ 3
2

b  psm10567.3ˆ 7
1

b  m10781.20ˆ 3
2

b  

psD10145.12ˆ 3
1

c  D312.66ˆ
2 c  psD10743.11ˆ 3

1
c  D009.68ˆ

2 c  
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needs to map the transformed transference back to its respective transference using either the 

Cayley transform (Equation 2) or the matrix exponential. The frequency-dependent transference is 

easy to obtain using pencil and paper and either the Cayley transform of Equation 2 or, easier still, 

 
I

S

SI
S 






ˆdet1

ˆ2
.           (5) 

On the other hand, the logarithmic transform requires the use of sophisticated matrix software.  

Conclusion 

The four fundamental properties of a Gaussian eye are shown to have a very nearly linear 

dependence on frequency. An equation is obtained for the least-squares straight line dependence of 

the fundamental properties on frequency, the estimated transference is almost symplectic. A 

transference, that is, a matrix which is exactly symplectic, is obtained by fitting a straight line in 

Hamiltonian space, giving the dependence of the transference of a Gaussian eye on the frequency of 

light across the visible spectrum. These equations allow one to write approximate equations for the 

dependence of almost all the optical properties of the eye, both fundamental and derived, on 

frequency. 
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Because dioptric power matrices of thin systems constitute a (three-dimensional) inner-

product space it is possible to define distances and angles in the space and so do 

quantitative analyses on dioptric power for thin systems.  That includes astigmatic 

corneal powers and refractive errors.  The purpose of this paper is to generalize to thick 

systems.  The paper begins with the ray transference of a system.  Two 10-dimensional 

inner-product spaces are devised for the holistic quantitative analysis of the linear 

optical character of optical systems.  One is based on the point characteristic and the 

other on the angle characteristic; the first has distances with the physical dimension 1L  

and the second with the physical dimension L .  A numerical example calculates the 

locations, distances from the origin and angles subtended at the origin in the 10-

dimensional space for two arbitrary astigmatic eyes. 

Keywords: ray transference; inner-product space; linear optics; astigmatism 

Introduction 

The optical character of a thin system in linear optics can be represented by a symmetric 22  

matrix F, the symmetric dioptric power matrix.  The set of all such powers defines a three-

dimensional linear (or vector) space, symmetric dioptric power space [1].  Because the matrix has 

uniform physical dimensionality [2] (each entry has the dimension 1L  and is usually measured in 

dioptres) one can define an inner-product on the space and the space becomes an inner-product 

space.  Because symmetric dioptric power space is an inner-product space we have been able to 

define distances, angles, orthonormal axes, confidence ellipsoids, etc. in the space.  This has 

provided the basis for the quantitative analysis we have done on powers including refractive errors 

and corneal powers (e.g. [3]). 

For some years we have sought to extend this type of analysis to thick systems like the eye (e.g. [4]).  

In linear optics the optical character of a system that may be thick or thin is completely 

characterized by the ray transference (a real 44  matrix) 











DC

BA
S             (1) 

of the system [5].  In strong contrast to the set of symmetric dioptric powers the set of transferences 

is neither a linear space nor does it have uniform dimensionality.  There is, therefore, no inner-

product space that would provide a basis for holistic quantitative analysis of the optical character of 

thick systems like the eye.  The purpose of this paper is to show how inner-product spaces can in 
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fact be constructed for general optical systems. 

Method 

The method is based on the transference.  The transference S (Equation 1) obeys the equation [5] 

EESS T
            (2) 

where 













OI

IO
E             (3) 

and I and O are identity and null matrices respectively.  Such matrices are called symplectic [6].  A, 

B, C and D are 22  submatrices of S and represent the fundamental (linear) optical properties of 

the system [7].  B has the physical dimension L  and C the physical dimension 1L ; the other two 

fundamental properties are dimensionless. Other optical properties of the system can be obtained 

from the fundamental properties; for example the power of the system is given by [7] 

CF              (4) 

and, for eyes, the corneal-plane refractive compensation (or refractive error) is given by [7] 

ABF
1

0
 .            (5) 

Two matrices related to the transference are the point characteristic 


































WV

VU

DBB

BAB
P T1T

11

         (6) 

and the angle characteristic 






























ZY

YX

ACC

CDC
Q T1T

11

.         (7) 

Elsewhere [8] we use these matrices to calculate average systems. 

Results 

From P and Q we construct the 62  matrices 

 WVUG             (8) 

and 

 ZYXH  .           (9) 

It is a consequence of symplecticity (Equation 2) that U, W, X and Z are symmetric; V and Y are 

general.  (Properties of symplectic matrices are summarised elsewhere [9]).  The set of all matrices 

G is a linear space and G has uniform physical dimensionality ( 1L ).  Similarly matrices H define a 

dimensionally uniform (dimension L) vector space.   

G can be expanded as 
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    (10) 

where 











10
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J , 










01

10
K , 












01

10
L .  Also 

  2/2211 vvV I    2/2211 vvV J    2/2112 vvV K    2/2112 vvV L   (11) 

and similarly for IU  and the other coefficients in Equation 10.  We define the coordinate vector 

 TKJILKJIKJIg WWWVVVVUUU      (12) 

relative to the basis 

        KOOOOKOOJOOI ,,,,  .     (13) 

Consider two optical systems 1 and 2.  Their coordinate vectors are 1g  and 2g .  Now we define the 

inner product of 1g  and 2g  by 

2
T
121, gggg  .           (14) 

Consequently we have distances (magnitudes) g and angles   in the space defined by 

gg
Tg             (15) 

and 

21

2
T
1cos

gg

gg
             (16) 

respectively. 

Thus we have a 10-dimensional inner-product space for quantitative analysis of optical systems in 

linear optics for which B is nonsingular.  One can think of distances in the space as powers (e.g. 

dioptres). 

For matrices of the form H (Equation 9) one can follow a similar approach.  It leads to a second 10-

dimensional inner-product space.  It applies for optical systems for which C is nonsingular and 

distances in the space are lengths (e.g. metres). 

We illustrate the theory using two optical systems whose transferences have been presented before 

[8]: 
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00000020000031020660
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S  
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863700024097345634150

002408670034550919057

01970000001399000600

00000019700060016410

2

....

....

....

....

S , 

the units being dioptres and metres.  The coordinate vectors (Equation 12) turn out to be 

 T1 08500075009200420000000501550043500765010 ....... g  D 

and 

 T2 1218008380926443000761450304606142071577 ....... g  D. 

These vectors locate the two optical systems relative to the origins of the space.  Their distances 

from the origin are 77.661 g  D and 57.672 g  D respectively and they subtend an angle 

 90.2  at the origin. 

Conclusion 

We have here constructed two inner-product spaces for the linear optical characters of optical 

systems.  One is based on the point characteristic and the other on the angle characteristic.  Both 

spaces can be used for eyes because they have nonsingular B and C.  We now have the machinery 

for holistic quantitative analysis of optical systems in general and eyes in particular. 
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Symbol Meaning Ch 
Sym-

bol 

Sub-

script 

Super

script 

A Anterior 3  •  

A, A Dilation (scalar, 22 ) 3, 1 •   

a Angle between visual axis and red chief ray 2 •   

a, a Inclination of the ray relative to Z (scalar, 12 ) 3 •   

Aq Aqueous / anterior camber 4 • •  

aO Of inclinations from two object points 7  •  

aR Of angular spread at the retina 7  •  

Â , B̂ , Ĉ , D̂ , 

Â , B̂ , Ĉ , D̂  

Entries of the transformed transference Ŝ  (scalar, 

22 ) 
3 •   

B Posterior 3  •  

B, B Disjugacy (scalar, 22 ) 3, 1 •   

b Angle between visual axis and blue chief ray 2 •   

b Blue 2  • • 

bv Back-vertex 3  •  

C Exit-plane compensation system 5  •  

C Compound system 6  •  

C,  C Divergence (scalar, 22 ) 3, 1 •   

 SC  The Cayley transform 3 •   

c Speed of light 4 •   

D Dioptres 4 •   

D Fraunhofer line D ( nm3.589D ) 2  •  

D,  D Divarication (scalar, 22 ) 1 •   

det Determinant 3 •   

E Eye (with distant object) 3  •  

E The symplectic unit matrix 3 •   

e Equivalent 2  •  

e Euler’s number 3 •   

e Transverse translation ( 12 ) 3 •   

eq Equivalent (measured from principal plane) 3  •  

F Fovea 2 •   

F Focal point 3 • •  

F, F Power (scalar, 22 ) 2, 3 •   

f Focal length (measured from transverse plane T) 3 •   

fn Front-neutralising 3  •  

fv Front-vertex 3  •  

G A matrix Lie Group 3 •   

GL General linear group 3 •   

g The Lie algebra of G 3 •   

gl The Lie algebra of GL 3 •   

H Hamiltonian matrix 3 •   

H The symplectic Lie group 3 •   
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Symbol Meaning Ch 
Sym-

bol 

Sub-

script 

Super

script 

h 

Transverse displacement of pinhole from visual axis 

or displacement in entrance pupil of rays with respect 

to achromatic axis 

2 •   

h 
The set of Hamiltonian matrices, the symplectic 

algebra of H 
3 •   

I Image 2 • •  

I Identity matrix 3 •   

i Angle between normal to the surface and the ray 3 •   

K Cornea (refracting surface) 3 • •  

K1 Corneal anterior surface 4 • •  

K2 Corneal posterior surface 4 • •  

kD Kilodioptres 5 •   

kPa KiloPascal 4 •   

L Lens 4 • •  

L Locator line 3 •   

L, L Vergence (scalar, 22 ); reduced wavefront curvature 3 •   

L1 Lens anterior surface 4 • •  

L2 Lens posterior surface 4 • •  

M Magnification 2 •   

M First mixed characteristic 3 •   

mm Millimetres 4 •   

N Nodal point 2, 3 • •  

N  Anti-nodal point 3 • •  

N Second mixed characteristic 3 •   

n Refractive index 2 •   

nn  or n Size of a square matrix 3 •   

nm Nanometres  m10 9  4 •   

O 
Object or subsystem from object to first surface of 

eye; Object point or in object space 
2, 3 • •  

O Null matrix 3 •   

o Reference 2  •  

o Null matrix ( 12  or 14 ) 3 •   

OA 
Super-system from object, including anterior 

subsystem 
5  •  

Oa 
Measurements of inclination made at a finite distance 

in front of the eye 
5  •  

OE Super-system from object, including eye 5  •  

Oy In object space, with respect to y, transverse position,      

Oy 
Measurements of distance made at a finite distance in 

front of the eye 
5  •  

P Principal point 3 • •  

P  Anti-principal point 3 • •  

P Pupillary 3  •  

P Pinhole 5   • 

P Point characteristic 3 •   

ppm Parts per million 4 •   
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Symbol Meaning Ch 
Sym-

bol 

Sub-

script 

Super

script 

ps Picosecond ( s10 12 ) 8 •   

Q A cardinal point 3  •  

Q Angle characteristic 3 •   

R Retina (imaging surface) or in image space 3 • •  

R Ray 3 •   

R Set of real numbers 3 •   

r Red 2  • • 

r Radius of curvature 2 •   

r State of the ray with unreduced inclination ( 12 ) 5 •   

S General system 3, 5 • •  

S Transference  ( 44  or 22 ) 3 •   

Ŝ  The transformed transference 3 •   

Sl(2;R) The group of 22  real matrices with determinant 1 3 •   

Sp Symplectic group (Lie group) 3 •   

sp Lie algebra (set of Hamiltonian matrices) 3 •   

T Transverse plane 2 •   

T Matrix transpose 3   • 

T Augmented transference ( 55 ) 3 •   

THz Terahertz   112 s10   4 •   

t Transverse (magnification) 3  •  

t Transverse chromatic aberration 2 •   

t All real numbers 3 •  • 

tr Trace 5 •   

V Vitreous/ Posterior chamber 4 • •  

V Coefficient matrix 5 •   

v Vitreous 2  •  

v Input vector 5 •   

W, W Image blur coefficient (scalar, 22 ) 5 •   

X, X Image size coefficient (scalar, 22 ) 5 •   

X Characteristic 3 •   

X Set of all real matrices 3 •   

Y, Y Directional spread coefficient (scalar, 22 ) 5 •   

y Transverse position (scalar) 2, 3 •   

y Transverse position ( 12 ) 3 •   

yO Of size or separation distance of the object(s) 7  •  

yR Of size at the retina 7  •  

Z Longitudinal axis 2 •   

Z, Z Directional coefficient (scalar, 22 ) 5 •   

Z Generalised distance ( 22 )      

z 
Longitudinal position or gap, measured from a 

transverse plane T 
3 •   

z Axial (magnification) 3  •  

  Infinity 3 •   

0 Associated with incidence or upstream 2  •  
(No subscript) Associated with emergence or downstream 2  •  

 , α  Reduced inclination (scalar, 12 ) 3 •   
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Symbol Meaning Ch 
Sym-

bol 

Sub-

script 

Super

script 

  Angular (magnification) 3  •  

Δ  Physical difference  2 •   

δ  Chromatic difference 2 •   

δ  
System vector accounting for prism and decentration 

of elements of  the system ( 14 ) 
3 •   

  Eccentricity   2 •   
γ  Augmented ray state ( 15 ) 3 •   

  Reduced angle between ray and normal 3 •   

  Wavelength 2 •   

  Frequency 4 •   

π  Deflectance ( 12 ) 3 •   
ρ  State of the ray at a transverse plane T ( 14  or 12 ) 3 •   

ζ Reduced distance 3 •   

      

bvF  Back-vertex power 3 •   

CF  Exit-plane compensation 5 •   

fvF  Front-vertex power 3 •   

0F  Refractive compensation 3 •   

aOM  Chromatic object angular spread magnification 7 •   

aRM  Retinal chromatic angular spread magnification 7 •   

yOM  Chromatic object size magnification 7 •   

yRM  Retinal chromatic size magnification 7 •   

0c  Speed of light in a vacuum 4 •   

n , K,   Constants in Cornu’s formula 4 •   

Aδ  Chromatic difference in ametropia 7 •   

Fδ  Chromatic difference in power 7 •   

0δF  Chromatic difference in refractive compensation 7 •   

Oδa  Chromatic difference in inclination in object space 7 •   

 OΔδ a  Chromatic difference in object angular spread 7 •   

Rδa  Chromatic difference in inclination at the retina 7 •   

 Rδ a  Chromatic difference in angular spread at the retina 7 •   

yδ  Transverse chromatic aberration (scalar) 6 •   

Kδy  Chromatic difference in corneal position 7 •   

Oδy  Chromatic difference in object position 7 •   

 OΔδ y  Chromatic difference in object size 7 •   

Rδy  Chromatic difference in image position 7 •   

 Rδ y  Chromatic difference in image size 7 •   

zδ  Longitudinal chromatic aberration (scalar) 6 •   

yδ , yδ  Transverse chromatic aberration (scalar, 12 ) 6 •   

zδ , Zδ  Longitudinal chromatic aberration (scalar, 22 ) 6 •   

0λ  Vacuum wavelength 4 •   
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PART II – LITERATURE REVIEW 

 

In the literature review of the chromatic dependence of the first-order 

optical properties of the eye we consider three aspects, firstly chromatic 

aberrations, secondly first-order optical properties, both fundamental and derived, 

and finally the eye as a Gaussian optical system. For this reason, the literature 

review is divided into three chapters, each chapter dealing with these three aspects 

of this dissertation in turn.  

In Chapter 2 we take a look at chromatic dispersion which is the basis for 

chromatic aberration, and how chromatic dispersion is measured for the media of 

the eye. We then take an in-depth look at the current definitions of chromatic 

aberration in both the classical and ophthalmic optics literature.  

In Chapter 3 we look at the background theory of linear optics. In 

particular we are interested in Gaussian systems. The transference defines the 

fundamental properties of the eye and this enables one to trace the state of a ray 

through a system. A selection of derived properties that are of interest to this 

study of chromatic effects in the eye will be looked at. Because magnification, 

cardinal points and vergence form a pivotal role in chromatic aberration studies, 

we take a close look at how these are defined in the linear optics literature. Finally 

we take a look at the transformed transference and how this enables us to 

represent the transference in a three-dimensional space. 

Chapter 4 is the final chapter of the literature review and looks at a number 

of considerations that are needed for this study. Firstly we take a look at the 

schematic eyes that are available in the literature, choosing Emsley’s reduced eye 

and Le Grand’s four-surface eye to base the numerical examples on. Secondly, the 

visible light spectrum that shall be used in this study is defined. Next, we consider 

the reasons for using frequency rather than wavelength. Finally, we look at the 

formulae for the refractive index of the various media as a function of frequency 

and wavelength. 
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PART III - DEFINITIONS AND DERIVATIONS  

 

This study of the chromatic dependence of the first-order optical properties 

of the eye relies mostly on linear optics of systems in general. The background 

theory of Gaussian and linear optics needed for this study was summarized in 

Chapter 3. There are, however, formulae that we will need for this dissertation 

that have not been published in the literature which are derived in Part III.  

In Chapter 5 we take a look at derivations for systems and rays that are 

needed as background equations that are not available in the literature. The 

chapter consists of an assortment of properties, derived from the transference, that 

are needed in Chapters 6 and 7. In particular, we shall revisit derived properties, 

magnification, cardinal points and Cayley’s transform. Formulae are derived for 

the reduced and Le Grand’s eyes as a function of refractive index and hence 

frequency. 

In Chapter 6 longitudinal and transverse chromatic aberration are defined 

for systems in general and then simplified for the Gaussian model eye. The basis 

of the definition is the classical optics definition of chromatic aberration given in 

Section 2.2 which is generalized to systems that include astigmatic and decentred 

elements (Harris and Evans, 2012).  

In Chapter 7 a number of formulae for quantifying chromatic properties 

are derived from the transference. The bases for these derivations are the 

physiological optics’ definitions of the chromatic properties as defined in the 

literature in Section 2.3. Numerous formulae for chromatic properties both 

independent of and dependent on the object or image and aperture positions, each 

with a variety of alternatives, are summarized in tables at the end of the chapter.  

Part III concentrates on Gaussian optics and linear optics of systems in 

general. All the formulae in this part, consisting of three chapters, are derived 

from the transference with special interest in the effect of frequency on the 

transference. The properties derived in these three chapters are done so 

specifically to illustrate and emphasise the effect of frequency on systems in 

general and the eye. Numerical examples, represented graphically and in tabular 

form, will be given in Part IV based on the derivations given in Part III.  
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PART IV – FINDINGS AND DISCUSSIONS 

 

Because of the central importance of the transference it is useful to have 

some idea of how it depends on the frequency of light. In this part we examine the 

dependence of the transference of the reduced eye and Le Grand’s four-surface 

schematic eye on frequency for several chromatic properties.  

The considerations discussed in Chapter 4 will be applied or explored in 

the three chapters that make up this part. We will use the refractive index formula 

for the chromatic eye, developed by Thibos et al (1992), to calculate the refractive 

index of the reduced eye (Section 4.4.2) and the formula of Villegas, Carretero 

and Fimia (1996) for the refractive indices of Le Grand’s complete theoretical eye 

given by Equation 4.4.3. As discussed in Section 4.2, the visible light spectrum, 

between the frequencies of 430 and 750 THz and will be used.  

In Chapter 8 we examine the dependence of the fundamental properties of 

the model eyes on the frequency of light. The effect of the refractive index of air 

as a function of frequency is considered. Also studied are the dependence of the 

transference on vacuum wavelength and on frequency when the eye is submerged 

in water. The two transformed transferences will be calculated and displayed 

graphically both in terms of their individual entries and as three-dimensional 

graphs. These three-dimensional graphs show how the entries of the Hamiltonian 

matrix are related and begin to give us some insight into the meaning of 

Hamiltonian space. 

In Chapter 9, various derived properties will be studied as a function of 

frequency. The effect of frequency on the cardinal points will be calculated and 

displayed using graphical construction and Pascal’s ring methods. The formulae 

for both the derived properties and the cardinal points were given in Chapter 3 and 

further formulae derived in Chapter 5. The dependence of the four characteristic 

matrices on the frequency of light will be studied and the relationships among 

various derived properties will be explored. 

Finally in Chapter 10, chromatic aberration will be calculated numerically 

and displayed according to changes in the object position. In Chapter 7 we derived 

the formulae for a variety of chromatic difference properties. These will be 
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calculated in both object and image space for the two model eyes. Numerical 

examples are given for all of the chromatic properties given by the equations 

summarized in Sections 7.4 and 5. 

The numerical examples in Chapter 10 and the cardinal points examples in 

Section 9.1 show the difference between the two end points of the chosen 

spectrum and do not give us any insight into the dependence of the system on 

frequency across the visible light spectrum. In contrast to this, the numerical 

examples of the two model eyes in Chapter 8 and Sections 9.2 and 3 show us the 

dependence of the system on frequency across the spectrum. Firstly the 

fundamental properties of the transference, then the entries of the Hamiltonian 

matrix and finally the derived properties and the characteristic matrices are all 

studied to understand the dependence of each on the frequencies of light. 
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ABSTRACT 

Many first-order optical properties depend on chromatic dispersion and, 

hence, on frequency of light. The purpose of this theoretical study is to investigate 

the dependence of first-order optical properties of model eyes on frequency. In 

this study we are purposefully not concerned with subjective measurements. 

Instead, definitions are obtained that are general for optical systems that have 

astigmatic and decentred elements, and then simplified for Gaussian systems. 

In linear optics the transference is a matrix that is a complete representation 

of the effects of the system on a ray traversing it. Almost all of the familiar optical 

properties of the system can be obtained from the transference. From the 

transference S we obtain the four fundamental properties namely dilation A, 

disjugacy B, divergence C and divarication D, submatrices of S. Transferences are 

symplectic and do not define a linear space.  Linear spaces are amenable to 

statistical analyses and therefore a number of mappings to linear spaces are 

investigated, including the Cayley and logarithmic mappings to Hamiltonian 

space and the four characteristic matrices. In each case, the individual entries of 

the transform are studied for their dependence on frequency and then the 

chromatic dependence relationship between the entries is compared graphically. 

Four aspects of chromatic dependence of Gaussian systems are explored, 

namely the fundamental properties, derived properties, transverse and longitudinal 

chromatic aberration, and independent and dependent chromatic properties. 

Formulae are derived that apply to first-order optical systems in order to illustrate 

the chromatic dependence, chromatic difference or the chromatic magnification of 

each property. Numerical examples are given for the reduced eye and Le Grand’s 

eye across the spectrum 430 to 750 THz. 

 

Fundamental properties 

The fundamental properties of the reduced and Le Grand’s four surface eyes 

have a nearly perfectly straight-line dependence on frequency.  

 Straight-line fits are obtained for the dependence of the fundamental 

properties on frequency. The resulting transference has a determinant of 

approximately 1 for every frequency.  
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 Straight-line fits in Hamiltonian space give a frequency-dependent 

transference with a determinant of exactly 1 for every frequency. 

 Of the fundamental properties, only dilation A and divergence C are 

dependent on the refractive index upstream of the system. Disjugacy B and 

divarication D are independent of the medium upstream of the system. 

 

Derived properties 

Derived properties that are dependent on frequency are: 

 Power, corneal-plane refractive compensation, exit-plane refractive 

compensation and front-vertex power have a straight-line dependence. 

 Back-vertex power has a hyperbolic dependence. 

 The cardinal and anti-cardinal points for Le Grand’s eye, the anti-cardinal 

and focal points for the reduced eye and all the chromatic properties are 

dependent on frequency. 

The incident and emergent principal and nodal points for the reduced eye are 

independent of frequency. 

 

Chromatic aberration 

Chromatic aberration is defined for linear systems, that is, for systems 

possibly with astigmatic and heterocentric elements such as the eye, using the 

classical optics definition as a departure point. The definition is then specialised 

for a Gaussian eye. 

 Longitudinal chromatic aberration is defined as a 22  symmetric matrix 

for systems that have astigmatic elements. It depends on the longitudinal 

position of the object and simplifies to a scalar for Gaussian systems.  

 Transverse chromatic aberration is defined as a 12  transverse vector for 

systems that have astigmatic or decentred elements. It depends on both the 

longitudinal and transverse position of the object point and simplifies to a 

scalar for Gaussian systems. 
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Independent and dependent chromatic properties 

Chromatic properties of the system both independent of and dependent on 

the object or image and aperture positions are derived from the transference based 

on the definitions in the physiological optics literature. 

Independent chromatic properties of the eye include chromatic difference in 

power, Fδ , chromatic difference in refractive compensation, 0δF  and chromatic 

difference in ametropia, Aδ . 

Formulae are derived for the chromatic properties of the Gaussian eye for (i) 

distant objects and objects at a finite distance, (ii) image and object dependent 

properties and (iii) the special case of a pinhole held in front of the eye.  

 Chromatic properties of the eye dependent on object and aperture position 

include chromatic difference in retinal position Rδy , retinal inclination 

Rδa , image size  RΔδ y , image angular spread  RΔδ a , retinal chromatic 

image size magnification  yRM  and angular spread magnification aRM . 

Chromatic properties of the eye dependent on image and aperture position 

include: chromatic difference in object position Oδy , inclination in object 

space Oδa , object size  Oδ y , object angular spread  Oδ a , chromatic 

object size magnification yOM  and object angular spread magnification 

aOM . When the distance of the object from the eye is constant the 

dependence of the chromatic differences present as straight lines.  

 The red and blue chief rays chosen to study the chromatic properties in 

image space are incident on the cornea a distance of some 5000 times the 

wavelength of the blue light apart. 

 When the red and blue chief rays from two separated object points 

coincide at a point on the exit-plane, their emergent inclination is the same 

for the reduced eye but different for Le Grand’s eye. 

 Though applied to model eyes one expects the results, particularly for Le Grand’s 

eye, to give an idea of what happens in the case of real eyes, at least those close to 

emmetropia. 
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PART I – INTRODUCTION  

The objective of this study is to explore chromatic properties and other 

chromatic effects of the eye, particularly in the context of Gaussian optics. 

Numerous optical properties are investigated for their dependence on the 

frequency of light, specifically those optical properties that are relevant to 

Gaussian systems, that is, systems that are rotationally symmetric about a 

common optical axis (Guillemin and Sternberg, 1984:7).  

 

1 INTRODUCTION 

From Babylonia to Egypt and Nigeria and from Papua New Guinea to 

Mexico and Peru, human beings have been fascinated by the rainbow since the 

beginning of time (Lee and Fraser, 2001: 2-33). The phenomenon that creates the 

rainbow is chromatic dispersion, that is, the separation of white light into its 

spectral components or the variation of the refractive index with wavelength 

(Sharma, 2006: 45, 50; Le Grand, 1956: 9). Chromatic aberration, in turn, is 

defined by El Hage and Le Grand (1980:4) as “the influence of chromatic 

dispersion in the eye”. That is to say, the white light entering the system is 

dispersed across the visible light spectrum and creates a rainbow effect as it exits 

the system or reaches an imaging surface such as the retina.  

Chromatic aberration is quantified according to the classical (or physical) 

optics definition as the distance measured between the projections of the two focal 

points when light of two frequencies representing the two ends of the visible light 

spectrum are traced through the system. Measurements parallel to the longitudinal 

axis are defined as longitudinal chromatic aberration and measurements 

perpendicular to the longitudinal axis are defined as transverse chromatic 

aberration (Born and Wolf, 2002: 186-187). The definition is limited to systems 

that are Gaussian and distances that are unsigned. 

In the literature of physiological optics many definitions exist. 

Longitudinal (or axial) chromatic aberration is defined in physiological optics as 

chromatic difference in power, refractive error, focus or ametropia (Atchison, 

Smith and Waterworth, 1993; Cooper and Pease, 1988; Rabbetts, 2007: 289-293; 

Thibos, Bradley, Still, Zhang and Howarth, 1990; Thibos, Bradley and, Zhang, 
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1991; Thibos, Ye, Zhang and Bradley, 1992; Wald and Griffin, 1947; Zhang, 

Thibos and Bradley, 1991). Transverse (or lateral) chromatic aberration is defined 

in physiological optics as chromatic difference in position or magnification 

(Rabbetts, 2007:289-293; Simonet and Campbell, 1990; Thibos et al, 1990, 1991, 

1992; Zhang et al, 1991). Researchers have sought to define a relationship 

between longitudinal and transverse chromatic aberration and have succeeded for 

the reduced eye (Zhang et al, 1991) and for schematic eyes (Katz, 2002:261). The 

limitations of these definitions is that they are based on Gaussian schematic eyes, 

usually the reduced eye, and do not generalise to eyes with astigmatic or 

decentred elements. There is a risk of making assumptions or conclusions that 

pertain only to the reduced eye. We shall explore two such underlying 

implications in Chapter 7. 

Gaussian optics has served as the foundation of optometry and the basis of 

visual optics and is a powerful tool (MacKenzie, 2004: 153-154). It is limited, 

however, in that it firstly assumes that all surfaces in the system are rotationally 

symmetric about an optical axis. Secondly, Gaussian optics relies on concepts 

such as principal points, nodal points, entrance- and exit-pupils which work well 

for Gaussian systems, but do not generalize well to astigmatic or heterocentric 

systems. However, the success of Gaussian optics in optometry and visual optics 

is evidence that the human eye is largely a first-order optical instrument (Le 

Grand, 1956:9; MacKenzie, 2004:3).  

Linear optics is a method that fully accounts for all the aspects of first-

order paraxial optics. The three-dimensional linear optics approach can account 

for elements that are astigmatic and decentred which traditional two-dimensional 

Gaussian techniques fall short of. Linear optics makes use of linear algebra and 

specifically a matrix, called here the ray transference S, that is, a complete 

representation of the effects of the system on a ray traversing it. Almost all of the 

familiar optical properties of the system can be calculated from the transference 

(Torre, 2005: 60). Linear optics can therefore describe the first-order behaviour of 

the eye as an optical instrument. 

From the transference we obtain the four fundamental properties namely A 

dilation, B disjugacy, C divergence and D divarication. From these four 
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fundamental properties we can obtain a variety of seemingly unrelated derived 

properties such as power (Harris, 1997), refractive compensation (Harris, 1999a; 

Keating, 1988: 236), front- and back-vertex power (Keating, 1988: 236; Harris, 

2010a), magnification, blur, image size and image position, (Harris, 2001a,b), 

cardinal points (Harris, 2010b, 2011a, b), Pascal’s ring (Harris, 2011a) and locator 

lines (Harris, 2011b). This is by no means a comprehensive list of derived 

properties. By and large these properties have been studied under the assumption 

of a single reference wavelength. Of special interest is that the cardinal points, 

which form the basis of Gaussian ray-tracing optics, are derived properties. 

Similarly, power and refractive compensation are derived properties.  

The transference that accounts for astigmatism is a 44  matrix with each 

of the four fundamental properties a 22  submatrix (Guillemin and Sternberg, 

1984:26; Harris, 2010d). When elements that may be decentred or tilted are 

accounted for in the transference, we obtain an augmented transference that is of 

order 55  (Harris,  2004a, 2010d, 2012c). In contrast, when all the elements are 

stigmatic and rotationally symmetric about an optical axis, each of the four 

fundamental submatrices simplifies to a scalar matrix and we can reduce the 

transference to a 22  matrix. This can be thought of as representing the Gaussian 

subset of  44  and 55  transferences (Guillemin & Sternberg, 1984: 7-11, 

Harris, 2010d). Because the topic of chromatic dependence of the eye is broad it is 

necessary to limit the scope of the study. Except where it is necessary to use a 

44  transference S or an augmented 55  transference T in order to gain insight 

into the nature and character of chromatic dependence of the eye, this study shall 

be limited to the Gaussian subset. However, most of the formulae obtained readily 

generalise to linear systems. Transferences are dealt with in more detail in Section 

3.2. 

Advantages are gained by limiting the scope of the study to the Gaussian 

subset. In particular, it becomes possible to display many of the dependencies on 

frequency in two- and three-dimensional space. However, the transference does 

not conform to the definition of a vector space (Anton and Rorres, 2005: 222; 

Harris, 2010d; 2007a,  van Gool and Harris, 2005) although it is possible to map 

the symplectic transference to a Hamiltonian space in a number of ways. 
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Transformed transferences are Hamiltonian and therefore fulfil the definition of a 

vector space, allowing us to graphically map the dependency in a three-

dimensional space. A 22  transformed transference has three independent entries  

which can be represented graphically (Harris, 2010d). On the other hand a 44  

transformed transference has 10 and a 55  transformed transference has 14 

independent entries requiring representation in 10- or 14-dimensional space 

(Harris, 2007a), a graphical impossibility. Insight is gained because many of the 

Gaussian derivations are simplified and can be represented graphically. 

We have seen that there are many properties that can be derived from the 

transference. An objective of this dissertation is to study the dependence of the 

transference on frequency. The reasons why frequency is preferable to vacuum 

wavelength will be explored in Chapter 4. To understand the dependency of the 

optical system of the eye on frequency we explore a number of transformed 

transferences and characteristic matrices. The characteristic matrices are 

symmetric and therefore are amenable to mapping the relationships between the 

entries also in three-dimensional space. Because each of the entries of the 

characteristic matrices is a derived property, each of these derived properties will 

be explored independently and then in relationship to other entries of the four 

characteristic matrices. We therefore restrict the derived properties studied to 

power, corneal-plane refractive compensation, exit-plane compensation and front- 

and back-vertex power. These derived properties will be explored for both their 

dependence on frequency across the visible light spectrum and the chromatic 

difference between the values at the spectral end-points.  

 

1.1 Purpose 

The purpose of this dissertation is to study the chromatic dependence of 

the first-order optical properties of the eye. Specifically, we wish to explore the 

chromatic dependence of optical properties and other effects of the eye 

particularly in the context of Gaussian optics.  

Many first-order optical properties are dependent on the effects of 

chromatic dispersion and hence on frequency of light. This study explores the 

effects of chromatic dispersion on a number of fundamental and derived 
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properties. The dependence of the transference, the transformed transferences, 

characteristic matrices and derived properties on the frequency of light are 

explored, including graphical representation. A formula is obtained for the linear 

dependence of the transference on the frequency of light.  

A study of chromatic effects of the eye would be incomplete without 

including chromatic aberration. Chromatic aberration, based on the classical 

optics definition, is defined for systems in general, including systems with 

astigmatic and heterocentric elements. Chromatic properties, as defined in the 

physiological optics literature, are obtained from the transference. Numerical 

examples of chromatic aberration and all the chromatic properties are given.  

 

1.2 Outline 

 

1.2.1 Part II - Literature review 

The literature review is divided into three chapters. In Chapter 2 the 

current definitions of chromatic aberration in both the classical and physiological 

optics literature are reviewed.  

Chapter 3 outlines linear optics. While much of this chapter may be 

familiar to the reader, it is included in part for completeness but predominantly to 

form a basis for derivations in Part III. After placing linear optics within the much 

larger field of optics, a summary of linear optics of first-order systems is given. 

The four fundamental properties are defined and briefly explored. Only a small 

selection of derived properties can be accommodated in this study and the 

derivations of power, corneal-plane refractive compensation and front- and back-

vertex power are given. Both the classical and physiological optics approaches to 

defining magnification are explored. 

Cardinal points form the basis of Gaussian optics and can be derived from 

the transference (Harris, 2010b, f). We are interested in the dependence of the 

cardinal points on the frequency of light and therefore the derivations for cardinal 

points from the transference are given. Two novel methods to display 

relationships among the cardinal points of a system and changes or differences 

between the cardinal points of two systems will be given. 
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The transference is symplectic and does not define a vector space and, 

hence, does not allow conventional statistical analyses (Harris, 2010d). We 

therefore investigate a number of transforms, including the Cayley (Cardoso and 

Harris, 2007) and logarithmic transforms (Harris and Cardoso, 2006; Harris, 

2004b, 2005, 2007a) and the four characteristic matrices (van Gool and Harris, 

2005; Harris and van Gool, 2004), to seek a suitable vector space. The 

characteristic matrices form combinations of derived properties and are also 

symmetric. As a result, each characteristic matrix has three independent entries 

and can be represented graphically in three-dimensional space. 

Chromatic aberration depends on the longitudinal and transverse position 

of the object. Because we wish to know where the conjugate image point is we 

turn our attention to vergence as an alternative to tracing a pencil of rays through 

the system. In the literature review, we define vergence and wavefronts relating to 

the system, from the transference, and the position of the image relative to the exit 

plane of the system. 

Chapter 4 deals with a number of considerations that need to be taken into 

account for this study of chromatic dependence. Schematic eyes are by definition 

Gaussian eyes and two schematic eyes are singled out for inclusion in the study.  

The limits of the visible light spectrum that will be included in the study are 

defined. The advantages and disadvantages of studying the dependence of 

chromatic properties as a function of frequency or vacuum wavelength are 

discussed. 

It is the refractive index of the medium that is dependent on frequency. 

There are a limited number of formulae available that define refractive index of 

the media of the eye as a function of wavelength or frequency. The refractive 

indices as a function of vacuum wavelength are given for the reduced eye, the four 

media of Le Grand’s four-surface eye, air and water. 

 

1.2.2 Part III– Definitions and derivations 

The objective in Part III is, firstly, to define chromatic aberration for 

systems in general, including systems with astigmatic and heterocentric elements 

and secondly to derive equations from the transference for chromatic properties of 
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the system both independent of and dependent on the positions of the object and 

limiting aperture. The starting point for these derivations is the derived properties 

presented in Chapter 3. However, not all the necessary derived properties and 

definitions are available in the current literature and so in Chapter 5 we define 

those formulae that are needed to define chromatic properties. Chapter 5 therefore 

is a collection of seemingly unrelated derivations. 

 We start Chapter 5 by defining exit-plane compensation and revisiting 

magnification. The magnification, blur and ray state at the retina is defined for 

object points at a finite distance. Anti-cardinal points are added to the study of the 

cardinal points and these are extended beyond the formulae and relationships 

available in the current literature. 

The transferences are calculated for the reduced eye and for Le Grand’s 

eye for their intended reference frequency. Formulae for the transference as a 

function of refractive index are derived and given for both schematic eyes.  

There are a number of formulae available that define Cayley’s transform. 

In this section each of these transforms are dissected for their usefulness for our 

purposes and for the method and way that it maps to Hamiltonian space and back 

into the set of symplectic matrices. Only one Cayley transform fulfils the 

requirements and is chosen with reasons given. The Cayley transform simplifies 

for the reduced eye and the formula for the transformed transference of the 

reduced eye is given. 

In Chapter 6 chromatic aberration is defined for systems in general and 

then specialised for the Gaussian subset. The point of departure is the classical 

optics definition. By first defining chromatic aberration using linear optics we 

gain insight into the nature of the longitudinal and transverse chromatic 

aberrations. 

Chapter 7 defines the chromatic properties of the eye and of the eye 

dependent on the positions of the object or image and aperture. These chromatic 

properties are derived from the transference based on the definitions for chromatic 

aberration in physiological optics. Included are chromatic properties of the eye 

independent of object or image and aperture positions which include chromatic 

differences in power, refractive compensation and ametropia. The chromatic 
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properties of the system dependent on object and aperture positions include the 

chromatic difference in position, inclination, image size and angular spread and 

chromatic image size and angular spread magnifications. The formulae derived 

are specialised for Gaussian schematic eyes but apply to both the pupil and the 

pinhole. 

 

1.2.3 Part IV – Findings and discussions 

The three chapters in Part IV together comprise the results of this 

dissertation and in each case both the reduced eye and Le Grand’s eye are studied.  

In Chapter 8 the dependence of the fundamental properties on frequency is 

displayed graphically and discussed. Four scenarios are considered, namely with 

the refractive index of air equated to 1, with the refractive index of air as a 

function of frequency using Cauchy’s formula and with the eye submerged in 

water. Cornu’s formula for the refractive index of water as a function of frequency 

is used. Finally the dependence of the fundamental properties as functions of 

vacuum wavelength are given, with the refractive index of air equated to 1. 

The dependence of the transformed transferences is studied for both the 

logarithmic and Cayley transforms. This includes the dependence on the 

individual entries as well as the three-dimensional graph of the three independent 

entries. A formula for the linear dependence of the fundamental properties on the 

frequency of light is derived. This forms an important finding in this dissertation. 

Chapter 9 looks at the dependence of derived properties on the frequency 

of light. First, the dependence of the cardinal and anti-cardinal points are studied 

and displayed using the locator line diagram and Pascal’s ring. Each of the 

derived properties is studied separately for its dependence on frequency and 

finally the dependence of the characteristic matrices on the frequency of light are 

displayed using three-dimensional graphs. Each entry is a derived property and 

the relationship between certain derived properties can be seen. 

Chapter 10 gives details of the numerical and graphical results for both 

schematic eyes for all the derivations of chromatic aberration and chromatic 

properties of the eye both independent of and dependent on the object or image 

and aperture positions. Object points at distance and three near working distances 
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are illustrated. Both the naked eye with centred pupil and the eye with a decentred 

pinhole immediately in front of the eye are illustrated. 

 

1.2.4 Part V - Conclusion 

Chapter 11 concludes that the transference, the fundamental properties and 

almost all the derived properties included in the study are dependent on the 

frequency of light. Certain derived properties are observed to be independent of 

frequency when the reduced eye model is used, but are dependent when Le 

Grand’s eye is used. Formulae for the longitudinal and transverse chromatic 

aberration of systems in general are derived. Formulae for the chromatic 

properties of the eye, according to the definitions in the physiological optics 

literature, are derived from the transference. An important formula for deriving 

the linear relationship of each of the fundamental properties in the transference is 

obtained. 
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2 Definitions and measurements of chromatic aberration 

 

Introduction, historical perspective 

Humans have been admiring the rainbow since the beginning of time and 

different cultures have ascribed to the rainbow much religious and mystical 

significance (Lee and Fraser, 2001: 2-33). Whether or not the Irish leprechaun 

really has hidden a pot of gold at the end of a rainbow remains to be discovered. 

However, chromatic dispersion and its effects have enchanted men and women for 

millennia and people still spend fortunes purchasing diamonds for their sparkly 

effects caused by chromatic dispersion. The earliest documented academic studies 

of colour vision and the rainbow date back to Aristotle, around 384-322 BCE 

(Aristotle, 1906: 55-63 ; 1928; Lee and Fraser, 2001: 102-114). 

We now know that the rainbow represents a continuum of colours but it is 

Newton who receives the most credit for his study of “Opticks”. He was by no 

means the first to study colour, nor to discover a technique to create chromatic 

dispersion, however he is credited with naming the colours in the visible light 

spectrum. He originally chose five colours and later changed this to seven because 

he felt that the central colours were “crowded” and he wished to “divide the image 

into parts more elegantly proportioned to one another”. He then observed that “the 

parts of the image occupied by the colors were proportioned to a string divided so 

it would cause the individual degrees of the octave to sound”. He appears to have 

been particularly pleased and encouraged by this connection between colour and 

music (Newton, c1670).  

 

2.1 Chromatic dispersion 

It is Newton (c1670) who is credited with the scientific proof of chromatic 

dispersion. During the period 1670 to 1672 he conducted a series of experiments 

in which he successfully split white light up into a continuum of colours through a 

prism. He defined seven colours and named them according to the familiar 

colours of the rainbow: red, orange, yellow, green, blue, indigo and violet. The 

colour Newton called blue, is more of a sea-green that we now refer to as cyan. 

The colour Newton referred to as indigo is today’s perception of blue, and green 
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he compared to leek green (Newton, c1670; Hastings, 1901:42; Waldman, 2002: 

193).  

Chromatic dispersion is defined as the separation of white light into its 

spectral components or the variation of the refractive index with wavelength 

(Sharma, 2006: 45, 50; Le Grand, 1956: 9). Dispersion is quantified 

mathematically by various dispersion formulae for the refractive index of the 

medium as a function of wavelength or by the Abbe number, also known as the 

constringency or refractive efficiency (Keating, 2002: 443–445). The latter allows 

us to quantify and compare by means of a single number the dispersive property 

of one material with another material and is more commonly used for laboratory-

type media, including spectacle lenses. On the other hand, the formulae for the 

refractive index of a medium as a function of wavelength allows us to calculate 

the refractive index of a medium for any chosen wavelength or frequency; this is 

the quantitative method that we will use in this dissertation. There are a number of 

such formulae available for many materials, such as spectacle lens materials, 

glass, water, air, etc. (Walther, 1995:115–117; Herzberger, 1959) but there are 

limited formulae available for the media of the eye (Rabbetts, 2007: 287-288; 

Sivak and Mandelman, 1982). 

There are two methods of determining the formulae for the refractive 

index of the media of the eye as a function of wavelength. One is to measure the 

medium of an enucleated eye with a refractometer, which poses some problems, 

and the other is to measure experimentally the chromatic aberration present in a 

sample of (living) eyes and interpolate the formulae according to the results. Wald 

and Griffin (1947) made some measurements with a refractometer of the aqueous 

and vitreous humours of cattle. They could not obtain measurements of the cornea 

because it was too thin and made only a crude measurement of the lens, however 

the measurement was not reliable because the lens needed to be compressed and 

distorted in order to take the measurement. This was further compounded by the 

lens’s gradient index (Emsley, 1950: 518-519). They concluded that the humours 

have refractive indices similar to distilled water and that the lens material has 

considerably higher dispersion than water. More recently, Sivak and Mandelman 

(1982) took measurements for the refractive index at four wavelengths using a 
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refractometer on a variety of vertebrates, including cow, pig, frog, chicken, rock 

bass, rat and cat, for the aqueous and vitreous humours, the cornea and the inner 

and outer periphery and inner and outer core of the lens. They also measured the 

refractive indices for the peripheral and core of the lens for the human eye. The 

data was fitted to a polynomial. 

There are a number of dispersion formulae available for expressing the 

refractive index as a function of wavelength (or wavenumber or frequency) for a 

variety of media. Examples include the dispersion formulae of Schmidt, Cauchy, 

Sellmeier, Cornu, Hartmann, Ciddor and Herzberger (Koczorowski, 1990; Ciddor, 

1996; Herzberger, 1959). The expressions usually take the form of a polynomial 

with the variable being wavelength and constants for various materials given in 

tables. Depending on the medium, factors that influence the refractive index 

include, where relevant, temperature, humidity, carbon-dioxide content, pressure 

and even contaminants such as air pollution, and are defined as constants (Le 

Grand, 1956: 12-13; Hodgman, 1959, Ciddor, 1996) or may be included as 

variables in the expression (Ciddor, 1996).  

Le Grand (1956: 12-13) studied refractometry measurements from Kunst, 

Polack and Tagawa (done in 1895, 1923 and 1928, respectively) which he claimed 

were all in close agreement for the two humours, the cornea and the periphery and 

core of the crystalline lens. He then compiled a table of refractive indices for the 

four media of the eye (aqueous and vitreous humours, cornea and lens) for the 

wavelengths of five Fraunhofer lines (A, C, D, F and G) as well as the constants 

needed for Cornu’s formula for these four media. Villegas, Carretero and Fimia 

(1996) presented formulae for the refractive index as a function of wavelength for 

these four media using Le Grand’s table of refractive indices which they obtained 

by a polynomial fit. The formula and constants are given in Section 4.4.3.  

Thibos, Ye, Zhang and Bradley (1992) took an alternative approach. Using 

least-squares and their own measurements they obtained constants for a better fit 

for Cornu’s hyperbolic dispersion formula to the reduced eye. This formula will 

form a basis for calculations in this dissertation and will be discussed in greater 

detail in Section 4.4.2. 
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2.2 Chromatic aberration 

As several authors have remarked (Thibos, Bradley, Still, Zhang and 

Howarth, 1990; Simonet and Campbell, 1990; Rabbetts, 2007:289) there is much 

confusion in the literature regarding the definition of longitudinal and transverse 

chromatic aberration. In part, this confusion arises because each of the classical 

and physiological optics approaches define chromatic aberration differently. For 

the purposes of clarity in this dissertation, the definition of chromatic aberration 

will be that based on the classical optics definition given in Section 2.2.1 below 

and generalized for all optical systems, including those with elements that may be 

astigmatic, tilted or decentred in Chapter 6. The definitions of chromatic 

aberration in the physiological optics literature, which are specialized for the eye, 

will be referred to as physiological chromatic properties or chromatic properties. 

These are defined in the literature in Section 2.3 below and defined from the 

transference for Gaussian eyes in Chapter 7. 

Until now, chromatic aberrations and chromatic properties have been 

studied using ray tracing and reverse ray tracing techniques which involve the 

extensive use of cardinal points, in particular the nodal point. There appears to be 

no reference in the literature to chromatic aberrations and properties in astigmatic 

systems. An exhaustive search of the literature, including personal 

correspondence (Thibos, 2011), confirms this.  

This literature review looks at how these concepts are defined and 

measured in the literature, and the limitations imposed by the definitions. The 

literature makes use of the terms object space and image space. By the classical 

definition adopted here, chromatic aberration is associated with image space. It is 

not (yet) possible to measure the chromatic aberration in an eye, so measurements 

are usually done in object space. Coincidence of the red and blue images is 

presumed on the retina and “dispersion” from separate red and blue objects is 

measured outside of the eye.  

It is important to separate the classical definition of chromatic aberration 

from the ophthalmic and physiological optics definitions that attempt to measure 

the various chromatic properties in the eye, both experimentally, in object space 

and calculation-based, in image space. The classical definition defines transverse 
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and longitudinal chromatic aberration for all Gaussian systems. Rabbetts (2007: 

289) differentiates between physiological and classical optics definitions, 

however, this distinction is not drawn in most of the literature referred to in this 

study. Furthermore, only the more recent literature draws a distinction between 

calculated and measured chromatic properties and distinguishes between object 

and image space in these definitions. The definitions in the ophthalmic and 

physiological optics literature define transverse chromatic properties in eyes 

which include chromatic difference in position and chromatic difference in 

magnification and longitudinal chromatic properties in eyes which include 

chromatic difference in power and chromatic difference in refractive 

compensation. It is the intention in this study to clearly define longitudinal and 

transverse chromatic aberration in general to include astigmatic, decentred and 

heterocentric optical systems. 

 

2.2.1 Definition of chromatic aberration 

Born and Wolf (2002:186-187) define the first-order chromatic aberrations 

for systems in general within the limits of Gaussian optics as the distances zδ  and 

yδ  between the projections of the two focus points for the two different 

wavelengths in the directions parallel and perpendicular to the optical axis as 

longitudinal and transverse chromatic aberration respectively. The distances are 

unsigned, as shown in Figure 2.2.1. One notes that the chromatic aberrations 

depend on the position of the object. The definition holds for optical systems with 

stigmatic elements. This definition is consistent with Keating (1988:429; 

2002:442-443), Katz (2002: 258-261) and Sharma (2006: 250) and is the 

definition that forms the starting point for the general definition that will be used 

in this study which holds for astigmatic, decentred and heterocentric optical 

systems. This definition will be discussed in Chapter 6.  

 Figure 2.2.1 defines the longitudinal zδ  and transverse yδ  chromatic 

aberration of an arbitrary homocentric system S with stigmatic elements. System 

S has an entrance plane 0T  and exit plane T. None of the refracting elements of S 

is shown. 0T  and T do not coincide with a refracting surface. Z is the optical axis. 
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rI  and 
bI  are the red and blue images of object O, respectively. We introduce the 

symbols δ  to denote a chromatic difference and Δ  to denote a physical difference 

between two dimensions. The above definition applies to Gaussian systems in 

general. It is what we refer to here as the classical definition of chromatic 

aberration.  

A number of longitudinal and transverse chromatic properties are defined 

that apply specifically to the eye or model eye. A review of the literature reveals 

that most approaches make use of stigmatic models and, in particular, the reduced 

eye (Simonet & Campbell, 1990; Thibos, 1987; Thibos, Bradley and Zhang, 1991, 

Thibos et al, 1992; Zhang, Thibos and Bradley, 1991). References to schematic 

eyes were found (Atchison, Smith and Waterworth 1993; Le Grand 1956: 13; 

Rabbetts, 2007: 291; Zhang, Thibos and Bradley, 1991) but are limited to systems 

with stigmatic elements. There appears to be no clear distinction between the 

definition of chromatic aberration and the measurement of the chromatic 

properties in the eye. Rabbetts (2007: 289-293) and Atchison and Smith (2000: 

180-186) both state that there are two primary chromatic aberrations, namely 

longitudinal and transverse. Thibos, Bradley and Zhang (1991) argue that there 

are three primary forms of chromatic aberration, namely chromatic difference of 

focus, chromatic difference of magnification and chromatic difference of position. 

 

 

Figure 2.2.1  Longitudinal zδ  and transverse yδ  chromatic aberration of an arbitrary 

homocentric system with stigmatic elements. The system is drawn in the usual sense of a 

system such as the eye where br zz  . 
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In Chapter 7 we will derive formulae for chromatic properties that are general for 

all Gaussian schematic eyes, regardless of the number of refracting surfaces. In 

Chapter 10 we will obtain numerical values for these derived formulae for 

chromatic aberration and chromatic properties for the reduced eye and Le Grand’s 

four-surface eye. 

 

2.3 Measurements of chromatic properties of the eye  

Thibos, Bradley and Zhang (1991) emphasize that “chromatic aberration is 

the most important optical imperfection of the well corrected eye”. The main 

differences in the definitions of longitudinal and transverse chromatic properties 

in the literature revolve around the use of reference points versus reference (or 

chief) rays and axes for the measurement and the units which are used. Some 

authors distinguish between image and object space, while others view them as 

the same thing (for example, Wald and Griffin, 1947).  

Much work has been done to define a relationship between longitudinal 

and transverse chromatic aberration in the eye. Some authors (Simonet & 

Campbell, 1990) say there is no relationship, while others (Thibos et al, 1990, 

1991; Zhang et al, 1991; Zhang, Bradley and Thibos, 1993) have derived 

formulae for a relationship. In Chapter 6, we show that longitudinal and transverse 

chromatic aberrations are fundamentally different (Harris and Evans, 2012). 

 

2.3.1 Longitudinal chromatic properties 

According to Rabbetts (2007: 289), longitudinal chromatic properties are 

defined in the physiological optics literature as the variation in focusing distance 

with wavelength. The literature defines two methods of measuring longitudinal 

chromatic properties of the eye, namely chromatic difference in refractive 

compensation and chromatic difference in power, each known by various names. 

Chromatic aberration is the distance measurement between the image points or 

object points created by two different wavelengths often measured as inverse units 

of distance (Wald and Griffin, 1947) and more commonly defined in object space 

as the difference in refractive compensation or object vergences required to 

provide clear imagery for two different wavelengths (Atchison, Smith and 
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Waterworth, 1993). Chromatic difference in power, or chromatic difference in 

focus (Wald & Griffin, 1947), is usually measured experimentally as chromatic 

difference in refractive error (Thibos et al, 1990, 1991; Wald & Griffin, 1947; 

Atchison, Smith and Waterworth 1993; Rabbetts, 2007).  

Chromatic difference in refractive compensation is known as the 

chromatic difference in focus (Thibos, Bradley and Zhang, 1991; Atchison, Smith 

and Waterworth (1993)), chromatic difference in equivalent power (Atchison, 

Smith and Waterworth, 1993; Rabbetts, 2007:287-293), chromatic difference in 

power (Wald & Griffin, 1947), chromatic difference in refractive error
  

(Thibos, 

Bradley and Zhang, 1991), chromatic difference in refraction (Rabbetts, 2007: 

287-293), chromatic difference in ametropia (Atchison, Smith and Waterworth, 

1993), axial chromatic aberration (Thibos, Bradley and Zhang, 1991; Wald & 

Griffin, 1947) or wavelength-dependent refractive error (Zhang, Thibos and 

Bradley, 1997). 

Chromatic difference in power and chromatic difference in refractive 

compensation are not the same. Some authors use them interchangeably (Wald & 

Griffin, 1947), while others derive a linear relationship between them (Le Grand, 

1956:14-16; Atchison, Smith and Waterworth, 1993; Thibos, Bradley and Zhang, 

1991).  

 

Chromatic difference in power 

Thibos et al (1990) define the ocular longitudinal chromatic aberration in 

image space as “the distance between the image planes for different wavelengths” 

or “the variation of the eye’s focusing power for different wavelengths”, which is 

essentially the chromatic difference in power. Zhang, Thibos and Bradley (1991) 

define the chromatic difference in power as 

r

n
FFF

δ
δ 21          (2.3.1) 

where nδ  is the difference between refractive indices of the medium for two 

wavelengths ( 1  and 2 ) and r is the radius of curvature of the single refracting 

surface of the reduced eye. 1F  and 2F  are the powers of the same reduced eye for 

the two different wavelengths. 
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 Chromatic difference in power is represented as longitudinal chromatic 

aberration (LCA) in Figure 2.3.1 for the reduced eye. The reduced eye has a single 

refracting surface, a longitudinal axis Z, which is also the achromatic axis and an 

optical axis, a nodal point N and a pupil or limiting aperture. The centre of 

curvature of the refracting surface coincides with the nodal point. The refractive 

index inside the reduced eye is n and before the reduced eye is 0n . Light from an 

object point O is refracted more for the short wavelength (shown in blue) than for 

the longer wavelength (shown in red). In Figure 2.3.1, the light with short 

wavelength creates a blue point focus bI  before the retinal plane and the light with 

the longer wavelength creates a red point focus rI  behind the retina. In Figure 

2.3.1, the chromatic difference in power is shown as the distance between the 

image planes for different wavelengths, measured in units of inverse lengths. 

Similarly, Rabbetts (2007: 290) defines chromatic difference in equivalent power 

 eδF  as 

oλeδ FFF      (2.3.2) 

where λF  is the equivalent power of the eye at a specified wavelength and oF  is 

the equivalent power of the eye at a reference wavelength.  

 

 

 

Figure 2.3.1 Chromatic difference in power shown as longitudinal chromatic 

aberration (LCA) for the reduced eye as the distance between the image planes for 

different wavelengths. (Figure adapted from Thibos et al, 1990.) 
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Chromatic difference in refractive compensation  

Thibos et al (1990) define ocular longitudinal chromatic aberration in 

object space for the purposes of experimental study as the distance or dioptric 

interval between multiple object points of differing wavelengths that are 

positioned such that they focus simultaneously on the retina, thereby forming a 

single polychromatic image I shown in Figure 2.3.2. The dioptric interval is the 

difference in inverse distances from the refracting surface given by (Thibos et al, 

1990) 

rb

0

11
δ

zz
F           (2.3.3) 

where 0δF  is the chromatic difference in refractive compensation, and rz  and bz  

are the distances from the eye to the conjugate object points rO  and bO  

respectively. The subscripts r and b represent red and blue, however, the exact 

wavelengths that they represent may differ from study to study. This effectively 

defines the chromatic difference in refractive compensation. Simply put, the 

chromatic difference in refractive compensation is the difference in power of the 

lens needed to compensate for the distance ametropia created by each wavelength 

(Thibos, Bradley and Zhang 1991). Rabbetts (2007: 290) defines chromatic 

difference in refraction as  

0o0λ0δ FFF   

 

 

Figure 2.3.2 Chromatic difference in refractive compensation shown as longitudinal 

chromatic aberration (LCA) in the reduced eye, as the distance between the object planes 

for different wavelengths. (Figure adapted from Thibos et al, 1990). 
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where 0λF  is the refraction of the eye at a specified wavelength and 0oF  is the 

refraction of the eye at a reference wavelength. Furthermore, Rabbetts gives a 

relationship between chromatic difference in power and chromatic difference in 

refractive compensation for Gaussian schematic eyes as 

0o0 δδ F
n

nn
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where 
vn  is the refractive index of the vitreous at a specified wavelength and 

ovn  

is the refractive index of the vitreous at a reference wavelength.  

Zhang, Thibos and Bradley (1991) and Thibos, Bradley and Zhang (1991) 

give the relationship between chromatic difference in power and chromatic 

difference in refractive compensation as 
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where Dn  is the refractive index for the Fraunhofer line D ( nm3.589D ) at 

which the reduced eye is emmetropic. D  is the reference wavelength for the 

reduced eye. All other symbols remain the same as already defined. 

 

Experimental measurements 

Wald and Griffin (1947) conducted an experiment using a spectral 

stigmatoscope with which they measured the axial chromatic aberration in 

dioptres as the refractive compensation required at each wavelength to bring the 

eye to the same power it possesses at the reference wavelength 578 nm. 

Cooper and Pease (1988) conducted their experiment using a Badal 

optometer in order to measure wavelength in focus. Their aim was to establish 

which wavelength the eye preferred when accommodating on a near target. Their 

results are also expressed in dioptres for the refractive compensation required to 

focus light with a corresponding wavelength on the retina. They define this as 

longitudinal chromatic aberration.  

Similarly, Thibos et al (1990) conducted an experiment using the Badal 

optometer as part of a larger experiment to find a relationship between 

longitudinal chromatic aberration (chromatic difference in refractive 
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compensation) and transverse chromatic aberration (chromatic difference in 

position). 

Thibos et al (1992) conducted further experimental measurements using 

the two-colour Vernier method to measure the chromatic difference in refractive 

compensation. The aim of the set of experiments was to develop a reduced eye 

model that closely mimicked the real eye for chromatic aberration predictions. To 

this effect they developed the “chromatic eye” with three improvements over the 

reduced eye. Firstly, they refit Cornu’s dispersion formula for the refractive index 

of the medium as a function of wavelength for the reduced eye to closely follow 

the experimental results. This formula will be discussed in Section 4.4.2. 

Secondly, they made the refracting surface aspherical (a prolate spheroid) to 

improve transverse chromatic aberration predictions. Finally, they included the 

pupil that Thibos (1987) previously introduced allowing for a reference axis and 

pupil centre to be defined.  

Howarth and Bradley (1986) determined the chromatic difference in 

refractive compensation using a Badal optometer. The results showed that the 

Powell and Lewis achromatising lenses approximately corrected for the average 

longitudinal chromatic aberration. They also were able to conclude that individual 

differences in chromatic difference in refractive compensation are small, an 

important conclusion for this dissertation. 

 

2.3.2 Transverse chromatic properties 

 According to Rabbetts (2007:289) when an off-axis polychromatic object 

point “produces laterally separated images on the retina due to dispersion … this 

is defined in the physiological optics literature as transverse chromatic aberration” 

and can also exist for an axial object point with a displaced artificial pupil. 

However, he states “in classical optics literature this is known as the transverse 

component of longitudinal chromatic aberration”.  

A number of terms and approaches are used to quantify transverse 

chromatic properties which are also referred to as lateral chromatic aberration, 

chromatic difference of magnification and chromatic difference of position. 

Zhang, Thibos and Bradley (1997) refer to wavelength-dependent image 
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magnification and wavelength-dependent shifts in image position, respectively, 

which they describe as eccentricity-dependent transverse chromatic aberration. 

Transverse chromatic aberration is defined either in image or object space and 

measured in object space. Measurements for transverse chromatic aberration are 

calculated either for an off axis object or a decentred pinhole.  

Simonet and Campbell (1990) define transverse chromatic aberration as 

“the displacement of the image principal rays with wavelength”. Certain 

definitions require that the chief ray should continue being projected to the retina 

or reference plane and the measurement taken as being from the centre of the 

projected blur patch to the centre of the second projected blur patch (e.g. Simonet 

& Campbell, 1990; Thibos, 1987;  Thibos et al, 1990).  

Thibos et al (1990) describe transverse chromatic aberration as the 

“variation in image position with wavelength”. This creates a chromatic difference 

in position. The same mechanism will create a difference in image size called the 

chromatic difference in magnification. The chief ray from an object point is 

defined as the ray that traverses the centre of the pupil and therefore identifies the 

centre of the corresponding blur circle on the retina. The red and blue chief rays 

strike the retina at different positions, thereby defining the chromatic difference in 

position as the angle between the chief rays for different wavelengths, which 

Thibos et al (1990) define as transverse chromatic aberration. The chromatic 

difference in position depends on the pupil or pinhole position and the object 

location, which determines the incident inclination. The experimental variation of 

the position of the pinhole to control the position of the achromatic axis is referred 

to by Thibos et al (1990) as induced transverse chromatic aberration. 

Thibos et al (1990) define the achromatic axis as the chief nodal ray; that 

is the ray that connects the centre of the pupil and the nodal point and which 

displays no transverse chromatic aberration. Typically, this would not intersect the 

fovea, however, when a pinhole is placed in front of the cornea, the achromatic 

axis can be manipulated to intersect the fovea. The nodal point is independent of 

wavelength (Thibos et al, 1990) for the reduced eye, however we will show in 

Section 9.1 that this is not strictly true of other schematic eyes or for eyes in 

general. According to Thibos et al (1990), the achromatic axis is important in 
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experimental situations because it represents the position where transverse 

chromatic aberration is null and thereby creates a link between theoretical and real 

eyes. They add that the achromatic axis can be manipulated experimentally, for 

example redirected to the fovea or other peripheral position, and therefore 

establishes a link between the optical theory and real eyes. 

 

Chromatic difference in position 

The chromatic difference in position is defined as the angular separation 

between the red and blue chief rays from a single object point in radians or 

minutes (Thibos et al, 1990, 1991). The chromatic difference in position is shown 

by angle t in Figure 2.3.3 (a), (b) and (c) (Thibos, 1987; Thibos et al, 1990). 

Thibos et al (1990) describe three approaches to defining and measuring 

chromatic difference in position: firstly in image space for a single object point, 

secondly in object space for the naked eye and finally also in object space, but 

manipulating the transverse position of the incident rays with a pinhole. These 

three approaches are shown in Figure 2.3.3 (a), (b) and (c).  

According to Thibos (1987), Thibos et al (1990, 1991), the chromatic 

difference in position t will vary linearly with the angle of incidence of the chief 

rays, the angle of stimulus eccentricity, and the distance between the pupil centre 

and nodal point. t is also linearly related to the chromatic difference in refractive 

compensation (Thibos, Bradley and Zhang 1991). The transverse chromatic 

aberration depends on both the object location and the pupil location within the 

eye. The former will determine the angle of incidence of the selected rays while 

the latter will influence the position of the chief ray which is used in the 

calculations for transverse chromatic aberration. 

For induced chromatic difference in position, Thibos et al (1990) conclude 

that each millimetre of displacement of the centre of the pinhole from the visual 

axis is approximately the same as 15 degrees of stimulus eccentricity.  This means 

that, to first approximation, the two approaches to measuring chromatic difference 

in position in object space are directly proportional, with the constant of 

proportion being the displacement of the pinhole centre from the visual axis. 
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Thibos et al (1990) give the transverse chromatic aberration, shown in 

Figure 2.3.3(c), as 

0

rb
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abt         (2.3.5) 

where the equation utilises the approximation of small angles. rz  and 
bz  are the 

distances from the red and blue object points respectively to the eye and h is the 

transverse displacement of the pinhole from the visual axis (in a reduced eye with 

a defined pupil and fovea). 

Simonet and Campbell (1990) define optical transverse chromatic 

aberration  “at the fovea as the difference for distinct wavelengths in the position 

of the centres of the images projected onto the retina”. More specifically, the red 

chief ray is directed at the fovea and chromatic difference in position is measured 

as the angular difference in position of the blue chief ray relative to the fixed 

position of the red chief ray. The transverse chromatic aberration t is defined and 

measured experimentally in object space, consistent with t in Figure 2.3.3 (b), 

except that the red chief ray intercepts the fovea at the retina. They note that 

optical transverse chromatic aberration will have a vertical and horizontal 

component, but restrict their experimental measurements to only the horizontal 

component.  

Simonet and Campbell (1990) also describe the relationship given by 

Equation 2.3.5 where h is the displacement in the entrance pupil of the rays with 

respect to the achromatic axis. 0δF  describes the slope of the relationship between 

transverse chromatic aberration t and displacement h in the entrance pupil. 

Simonet and Campbell make use of a Maxwellian view to direct the red and blue 

rays through the desired position in the pupil plane in contrast with Thibos et al 

(1990) who use a pinhole at the corneal plane. 

Figure 2.3.3 illustrates the chromatic difference in position t for the 

reduced eye. Figure 2.3.3 (a) represents the chromatic difference in position in 

image space for the naked eye. Light from object point O is refracted at the single 

refracting surface. Light with a shorter wavelength (indicated in blue) is refracted 

more than light of a longer wavelength (indicated in red). t is measured as the 

angle between the blue and red light rays and represents the chromatic difference 
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in position. We can see that the red and blue rays each strike the retina at a 

different position, and that both images rI  and bI  are out of focus at the retina.  

Figure 2.3.3 (b) represents the chromatic difference in position in object 

space for the naked eye. Light with a longer wavelength and originating from a 

red object point rO  along with light with a short wavelength originating from a 

blue object point bO  are refracted at the refracting surface and create a single, 

simultaneous image point I at the retina. In Figure 2.3.3 (b), the chromatic 

difference in position t is the angle between the red and blue rays in object space.  

Figure 2.3.3 (c) represents the chromatic difference in position in object space for 

the eye with artificial limiting aperture immediately in front of the refracting 

surface. The pinhole aperture allows us to choose the image point to arrive at the 

fovea F, making the line joining the object points rO  and bO , the nodal point N 

and the fovea to be the visual axis. a is the angle between the red ray and the 

visual axis, b is the angle between the blue ray and the visual axis and h is the 

displacement of the pinhole from the visual axis. Similar to (b), the chromatic 

difference in position is the angle t between the red and blue rays in object space.  

Thibos, Bradley and Zhang (1991) derived a relationship between 

chromatic difference in refractive compensation 0δF  and chromatic difference in 

position t. For chromatic difference in position for an off-axial object point the 

approximate equation is given as 

sinδ 0Fzt            (2.3.6) 

where z is the distance between the iris and the nodal point and   is the 

eccentricity as shown in Figure 2.3.4 (a).  For a displaced pinhole, Thibos, 

Bradley and Zhang (1991) define the approximate relationship as 0δFht  . 

However the definition is subtly different from that as given in the Equation 2.3.5 

by Thibos et al (1990). The definition in Equation 2.3.6 and its approximation are 

given as approximations and the angle t is subtended at the nodal point and shown 

in Figure 2.3.4 (a) and (b), whereas in Figure 2.3.3 (a), (b) and (c) the angle is 

subtended at the refracting surface. Comparing these two equations, Thibos, 

Bradley and Zhang (1991) also conclude that each millimetre of displacement of 
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an external pinhole or limiting aperture results in 15  of eccentricity for the naked 

eye.  

Zhang, Thibos and Bradley (1997) schematically define transverse chromatic 

aberration as the angle subtended at the refracting surface, according to 

 

 

Figure 2.3.3  The chromatic difference in position t for the reduced eye. (a) The 

chromatic difference in position in image space for the naked eye. (b) The chromatic 

difference in position in object space for the naked eye. (c) The chromatic difference in 

position in object space for the eye with artificial limiting aperture immediately in front 

of the refracting surface. Figure not drawn to scale and adapted from Thibos et al (1990). 
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Figure 2.3.3 (a), however, they define transverse chromatic aberration 

algebraically as the angle subtended at the nodal point and shown in Figure 2.3.4. 

Zhang, Thibos and Bradley (1997) estimate that the angle subtended at the nodal 

point of the eye to be approximately 1.333 times larger than the angle subtended 

at the refracting surface.   

 

Chromatic difference in magnification 

The chromatic difference in magnification is defined as the magnification of the 

angle between the red and blue chief rays or difference in size between the centres 

of the red and blue retinal images as a percentage (Thibos, Bradley and Zhang, 

1991; Zhang, Thibos and Bradley, 1991) or as a ratio (Rabbetts, 2007; Thibos, 

Bradley and Zhang, 1991) or seconds of arc (Simonet & Campbell, 1990), 

 

Figure 2.3.4 Chromatic difference in position t for the reduced eye in image space. (a) 

The ray arrives at the naked eye at eccentricity  . t is the angle subtended at N by the 

intersections of the two rays with the retina. (b) A decentred pinhole aperture ensures that 

the ray arrives at the eye at some distance h from the achromatic axis. t is the angle 

subtended at N by the retinal intersections of the two rays. (Figure adapted from Thibos et 

al, 1991)   
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regardless of defocus. The chromatic difference in magnification is the variation 

in retinal image size with variation in wavelength (Thibos et al, 1990). One or 

both of the images for the two wavelengths used in the calculation will be out of 

focus (Thibos et al, 1990). Theoretically, chromatic difference in magnification 

can be calculated in both image and object space, however, because most of the 

experimental magnitudes measured are for chromatic difference in position, 

chromatic difference in magnification is usually calculated in image space.  

Simonet and Campbell (1990) give the chromatic difference in 

magnification as 

brδ yyM           (2.3.7) 

where ry and by  are the red and blue image sizes at the retina, with the red image 

on the centre of the fovea F, regardless of defocus, and corresponding to object 

size Oy  in seconds of arc. This is shown in Figure 2.3.5. 

Chromatic difference in magnification is defined as an angular 

magnification given as 



t
M δ          (2.3.8) 

where t is the angle between the red and blue chief rays as given in Figure 2.3.3 

(a) and   is the eccentricity shown in Figure 2.3.4 (a) (Thibos, Bradley and 

Zhang, 1991; Zhang, Thibos and Bradley, 1991). Equation 2.3.8 gives the 

relationship between chromatic difference in position t and chromatic difference 

in magnification. 

 

Figure 2.3.5 Chromatic difference in magnification is the difference between the 

image size for the two images created at the retina for two different chosen wavelengths, 

by  and ry , corresponding to object size Oy . ry  corresponds to F, the centre of the 

fovea.  
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Thibos, Bradley and Zhang (1991) and Zhang, Thibos and Bradley (1991) 

give the chromatic difference in magnification Mδ  as 

0δδ FzM           (2.3.9) 

where z is the distance between the pupil and the nodal point, shown in Figure 

2.3.5. According to Thibos, Bradley and Zhang (1991), z is typically estimated at 

0.4 cm, 
0δF  is approximately 2 D and the chromatic difference in magnification is 

0.8% across the visible light spectrum. Thibos, Bradley and Zhang (1991) 

conclude that chromatic difference in magnification is directly proportional to 

chromatic difference in refractive compensation and to the axial location of the 

entrance pupil relative to the nodal point. In the naked eye they find that this 

amounts to 0.8%, but by implication, the chromatic difference in magnification 

will increase when the limiting aperture is outside the eye, for example with a 

pinhole or optical instrument in front of the eye. 

Of interest is the similarity between Equations 2.3.6 and 9. The chromatic 

difference in position is proportional to the sine of the eccentricity while the 

chromatic difference in magnification is independent of the eccentricity.  

 

Experimental measurements 

We recall that Thibos et al (1990) conducted an experiment as part of a 

larger experiment to find a relationship between longitudinal chromatic 

aberration (chromatic difference in refractive compensation) and transverse 

chromatic aberration (chromatic difference in position). They used a pinhole 

aperture to manipulate the angle of incidence of the foveal chief ray and measured 

the magnitude of the aberration as a function of pinhole displacement using a two-

colour Vernier-alignment task.  

Simonet and Campbell (1990) conducted experiments to measure 

longitudinal chromatic aberration (chromatic difference in refractive 

compensation) and optical transverse chromatic aberration (chromatic difference 

in position at the fovea). They made use of firstly, a dual Maxwellian view and 

vertical Vernier targets with the red target being the fixed target and the blue 

target being manipulated. This enabled them to take experimental measurements 
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of both longitudinal chromatic aberration and transverse chromatic aberration. 

They noted that the factors affecting the average and variability of transverse 

chromatic aberration include the value of angle   and any displacement of the 

pupil.  

The experimental measurements of Thibos et al (1992) using the two-

colour Vernier method also measured the induced chromatic difference in position 

in object space for pinhole positions. We recall that the aim of the set of 

experiments was to develop a reduced eye model that closely mimicked the real 

eye for chromatic aberration predictions. They developed the “chromatic eye” 

with three improvements over the reduced eye. The adaption that was most 

essential to measuring chromatic difference in position was the inclusion of a 

pupil that Thibos (1987) originally introduced allowing for a reference axis and 

pupil centre to be defined. Thibos et al (1992) show that the chromatic eye, by 

design, matches the experimental data almost exactly, enabling accurate 

prediction of chromatic difference in refractive compensation and position. 

Zhang, Thibos and Bradley (1997) did a further experiment to compare the 

image sizes between the two eyes produced by an eccentric object point. The 

procedure measured interocular differences in image size produced 

stereoscopically and measured the amount of image magnification difference 

which are introduced by interocular differences in wavelength. They used the 

same procedure to compare firstly the naked eye and natural pupils, secondly, the 

naked eye with pinhole apertures in front of both eyes and measurements taken at 

three different vertex distances and finally while the subjects wore an 

achromatizing lens in front of the right eye. The achromatizing lenses compensate 

for wavelength-dependent refractive error, however, they exaggerate wavelength-

dependent magnification by a factor of up to 7. In comparison, the artificial pupil 

at 20 mm vertex distance, showed the greatest increase in transverse chromatic 

aberration. 

 

2.4 Summary 

 The assortment of terms and definitions is a source of confusion in the 

literature of chromatic aberration. For the purposes of this dissertation, we shall 
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differentiate between the classical optics definition of chromatic aberration and 

the ophthalmic and physiological optics definitions. We shall define first-order 

chromatic aberration according to the classical optics definition given by Born 

and Wolf (2002) and given in Section 2.2.1. This definition for longitudinal and 

transverse chromatic aberration is limited to Gaussian optics and in Chapter 6 we 

generalise this definition to include systems with astigmatic and heterocentric 

elements. 

We shall distinguish between the definitions of ocular chromatic 

aberration found in the ophthalmic and physiological optics literature from the 

classical definition by referring to the former as ocular chromatic properties and to 

the latter as chromatic aberration. We shall distinguish between chromatic 

properties that are independent or dependent on object or image and aperture 

position. Independent chromatic properties include chromatic difference in power 

and chromatic difference in refractive compensation. Chromatic properties 

dependent on object or image and aperture positions include chromatic difference 

in position and chromatic difference in magnification. Chromatic properties in 

both image and object space will be examined.  

In Chapter 7 we obtain formulae for calculating the chromatic properties 

in image and object space from the transference. The transference will enable us 

to calculate all of the chromatic properties of a compound Gaussian eye quickly 

and easily, and we will not have to restrict ourselves to the reduced eye.  

The definitions in the literature consider the difference between 

wavelengths at two end-points of the visible light spectrum. While this is 

important, we shall, in Chapters 8 and 9, take a look at the dependence of the 

fundamental and derived properties of the transference on the frequency of light 

across the entire visible light spectrum. 
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3 BACKGROUND THEORY: OPTICS  

 

First-order optics and the approximation of small angles are used 

throughout this study.  Historically, the physiological optics approach to 

chromatic aberration has used ray tracing and cardinal points and for this reason, 

hence we take a brief look at this approach. However, the model of choice in this 

dissertation is linear optics; often simplified for Gaussian systems. Linear optics is 

a powerful tool in that it allows for surfaces that are astigmatic and tilted or 

decentred. The optical character of compound systems comprising multiple 

elements is represented by a single matrix, the transference. In linear and 

Gaussian optics, the transference is a complete representation of the first-order 

effects of an optical system on the ray traversing it (Torre, 2005: 60). 

We start this chapter with a brief overview of the theories of light to 

ascertain where both linear and Gaussian optics are positioned in the field of 

optics. We then take a detailed look at linear optics, define the optical system, 

derive the transference of elementary and compound systems and show how it 

changes the state of the ray traversing the system. The fundamental properties of a 

system are defined. We see how the transference can be augmented to allow for 

tilt and decentration or simplified for a Gaussian system with only centred 

stigmatic elements.  

In order to gain some insight into the fundamental properties, we take a 

look at four special systems. There are a number of familiar properties of optical 

systems that can be derived from the transference. We take a look at those that 

have implications for the study of chromatic properties of the eye. The derived 

properties that we will consider include power, compensating lenses, front- and 

back vertex power, magnification and cardinal points. There are many other 

properties that can be derived from the transference, however, we will limit this 

study to those just mentioned. 

Because the transference is symplectic, there are a number of implications, 

for its mathematical manipulation. In particular there are limitations on the 

statistical analysis of the transference. To overcome this we turn to the literature 

to establish how to get around these limitations.  It turns out that we can transform 
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the transference into an element of linear space which then allows quantitative 

analysis. Each of these transformed transferences will be studied in turn, and one 

in particular will be pivotal to the development, in Chapter 8, of a formula for the 

dependence of the transference on the frequency of light. 

Finally, we look at how vergence and wavefronts are represented in linear 

and Gaussian optics. Of course, light is not a property of the system, but we are 

interested in the effect of the system on light. Because vergence is the basis for 

how we will be defining chromatic aberration in Chapter 6, we take a look at how 

vergence and wavefronts are defined in the linear optics literature. 

 

3.1 Gaussian and Linear Optics 

Gaussian and linear optics assume that rays are paraxial and therefore 

make use of the assumption of small angles and that the rays are close to the 

longitudinal axis. In the optics literature this is commonly referred to as either the 

Gaussian approximation or paraxial approximation. In the mathematics literature 

it is referred to as the first-order approximation; all quadratic (or higher-order) 

expressions in angles are ignored (Guillemin & Sternberg, 1984:5,23). The 

approximations  sin ,  tan  and 1cos   are used and Snell’s law 

simplifies to 2211 inin   or 21    where ni .  Both the ray tracing and matrix 

approaches in Gaussian optics make use of this assumption. In addition both 

Gaussian and linear optics assume that all media are homogenous and isotropic 

between refracting surfaces. This implies that rays are straight lines between 

refracting surfaces and geometrical aberrations are ignored (Guillemin & 

Sternberg, 1984:7). 

 

3.1.1 Theories of light 

In physics, as new theories supersede old ones, the older theory may still 

hold some relevance. It may be an approximation of the new theory or it may be 

valid in certain circumstances or a special case of the new theory (Guillemin & 

Sternberg, 1984:3). This is certainly true in optics in particular. Guillemin and 

Sternberg (1984:3-17, 37) describe the theories of light, a summary of which is 

presented below. 
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Quantum electrodynamics is the current theory of light and describes the 

interaction between light and charged particles, including its photo-electric effect 

and wavelike character of electro-magnetic radiation. Maxwellian 

electrodynamics is an approximation of quantum electrodynamics and ignores the 

quantum effects. It explains electricity, magnetism and electromagnetic radiation, 

including its source and propagation, but fails at the atomic or subatomic level. 

Wave theory is mostly ascribed to Fresnel and is concerned with the 

propagation of light through various media. It includes diffraction, interference 

and polarization. It deals with certain wavelengths of light and ignores the 

emission of radiation. 

Geometrical optics is an approximation of wave theory which ignores the 

wave character of light, diffraction, interference and polarization. Geometrical 

optics is valid for apertures of large dimension (when compared with the 

wavelength of light), provided one ignores what is happening in the vicinity of 

shadows and foci. Geometrical optics uses Snell’s law ( 2211 sinsin inin  ) without 

the approximation of small angles and the refractive indices of heterogeneous 

media may vary smoothly and sometimes rapidly. The deviations between linear 

and geometrical optics are known as geometrical or Seidel’s (third-order) 

aberrations.  

Linear optics is an approximation of geometrical optics which ignores 

Seidel’s aberrations and uses the approximation of small angles. In linear optics a 

ray is defined in three-dimensional space at a fixed transverse plane for direction 

and position using four variables. A symplectic 44  matrix represents the system 

through which this ray will traverse. The trajectory of the light ray is traced as it 

passes through the various refracting and reflecting surfaces and homogenous 

gaps of the optical system. A coordinate system is introduced with a longitudinal 

axis Z and various transverse planes T, usually two. Because linear optics applies 

in three-dimensions, it accounts for all the effects of astigmatism. An augmented 

symplectic 55  matrix can account for the additional effects of tilted surfaces 

and decentred elements (Harris, 1994).  

Gaussian optics is a special case of linear optics where all surfaces are 

rotationally symmetric about a central axis, hence the longitudinal axis Z 
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coincides with the optical axis. The rays studied are all coplanar, that is, they all 

lie on one plane, the reference plane. The transference simplifies to a 22  matrix 

and the vector representing the ray at a transverse plane is 12 .  

 

3.2 First-order optics 

In this section we consider first-order optics, both Gaussian and linear, that 

will form the basis for the remaining chapters. It is not intended as a complete 

account of linear optics.  

 

3.2.1  Definition of an optical system 

An optical system is bound by two transverse planes, an entrance plane T0 

and an exit plane T, and has a longitudinal axis Z (see Figure 3.2.1). The entrance 

and exit planes can be chosen to be anywhere except at a refracting or reflecting 

surface. Usually the planes are taken to be immediately before or after a refracting 

or reflecting surface.  

 

3.2.2 The state of the ray 

The state of the ray at transverse plane T is defined as  











α

y
ρ          (3.2.1) 

where 

aα n           (3.2.2) 

is the reduced inclination. (‘Reduced’ has the same sense as in ‘reduced to a 

common denominator’; it does not mean ‘made less’.) ρ is a 14  matrix 

consisting of two submatrices, y and α . y is a 12  matrix which represents a 

position vector with Cartesian coordinates 1y  and 2y :  











2

1

y

y
y .         (3.2.3) 

a is a 12  matrix that represents the inclination of the ray at T relative to Z. In 

terms of horizontal and vertical Cartesian coordinates  











2

1

a

a
a .         (3.2.4) 
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In Figure 3.2.1 we distinguish between the incident ray state 0ρ  at 

entrance plane 0T  and emergent ray state ρ at exit plane T. 

 

3.2.3 The transference and fundamental properties 

The transference S of an untilted, centred (homocentric) linear optical 

system is a 44  matrix often conveniently represented by (Guillemin and 

Sternberg, 1984: 26; Harris, 2010d)  











DC

BA
S          (3.2.5) 

where A the dilation, B the disjugacy, C the divergence and D the divarication 

are the fundamental first-order optical properties of the system (Harris,
 
1999a; 

2001c). Each of A, B, C and D is a 22  matrix.  

The fundamental properties are strictly properties of the system itself and 

do not represent properties of anything else including light, vergence, image foci 

or object points (Harris, 1999b). A system may comprise a series of elementary 

systems, namely refracting surfaces and homogenous gaps between the entrance 

and exit planes.  

 

 

Figure 3.2.1 An optical system S is bound by an entrance plane 0T  and an exit plane T 

and has a longitudinal axis Z. A ray enters system S at 0T  with incident ray segment 0R  

at transverse position 0y  and inclination 0a . The ray exits the system at T; the emergent 

ray segment R has position y and inclination a. The refractive index upstream of the 

system is 0n
 
and downstream it is n.  

 



II  LITERATURE REVIEW  3 Background theory: Optics 

38 

 

Let system 1S  have transference 1S  and similarly for systems 2S , 3S , etc. 

Then the transference of the compound system m...SSSS 321  
made up of m 

juxtaposed optical systems is (Keating, 2002:325-345, Harris, 1994) 

123... SSSSS m .        (3.2.6) 

Multiplication is in reverse order. 

The transference of a homogenous gap of width z and index n is 

(Guillemin and Sternberg, 1984: 9, 27) 











IO

II
S

ζ
         (3.2.7) 

where ζ is a scalar and is the reduced width defined by 

n

z
  .         (3.2.8) 

I and O are the 22  identity and null matrices, respectively. The transference of 

a refracting surface or thin lens of power F (a symmetric matrix) is (Guillemin 

and Sternberg, 1984: 10, 27; Harris, 2010d; Keating, 1982) 













IF

OI
S  .        (3.2.9) 

 

3.2.4 The basic equation of a ray traversing a system 

A ray traversing system S has its state at incidence 0ρ  and emergence ρ  related 

by 

ρSρ 0                    (3.2.10) 

an equation referred to as the basic equation of linear optics (Harris, 1999a,b).  

Substituting from Equations 3.2.5, 1 and 2 into Equation 3.2.10 and 

multiplying out, we obtain two matrix equations for a system centred about an 

optical axis: 

yBaAy  000 n                   (3.2.11) 

aDaCy nn  000 .                  (3.2.12) 
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3.2.5 Symplecticity 

 The general linear group over the real numbers is denoted GL(n;R) and is 

the group of all nn  invertible matrices with real entries. (We will restrict this 

dissertation to the set of real numbers). The general linear group is a matrix Lie 

group and is closed under matrix multiplication. The real symplectic group, 

denoted Sp(n;R), is a subgroup of GL(n;R) and is the set of all nn 22   matrices 

(Hall, 2004:3-8). 

By definition (Guillemin and Sternberg, 1984:26; Watkins, 2004; Hall, 

2004:8), a nn 22   matrix S is symplectic if it obeys the equation 

EESS T                    (3.2.13) 

where 













OI

IO
E                    (3.2.14) 

and I and O are nn  identity and null matrices respectively and E is a nn 22   

matrix, sometimes known as the symplectic unit matrix (Torre, 2005: 11; Harris, 

2010d). The superscript T represents the matrix transpose. In Gaussian optics 

1n  implying the simplest of optics, that on the reference plane, with the system 

being stigmatic, centred and 2-dimensional. In linear optics 2n , giving us the 

simplest optical theory, that in 3-dimensions (Harris, 2010d).  

Substituting from Equations 3.2.5 and 3.2.14 into Equation 3.2.13 and 

multiplying out we find 
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BA

OI
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DC

BA
T

               (3.2.15) 






























OI

IO

BDDBADCB

BCDAACCA
TTTT

TTTT

               (3.2.16) 

which gives the three distinct symplectic equations (Guillemin and Sternberg, 

1984:26) 

OACCA  TT ,                  (3.2.17) 

IBCDA  TT                   (3.2.18) 

and 

OBDDB  TT .                  (3.2.19) 
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For any 22  or 44  symplectic matrix there exists an optical system with that 

transference and any matrix that is not symplectic does not represent the 

transference of an optical system (Guillemin and Sternberg, 1984:23-27; Harris, 

2004a, 2010d).  

Manipulating Equation 3.2.18 and substituting the equality from either 

Equation 3.2.17 or 19 and the rule   TTT
ABAB  , one obtains four expressions, 

namely 

T1   DCBDA ,                  (3.2.20) 

T1   CDACB ,                  (3.2.21) 

T1   BADBC ,                  (3.2.22) 

T1   ABCAD                   (3.2.23) 

(Harris and van Gool, 2004; Harris, 2010d). The expression CBDA
TT  is 

known as the Schur complement of A in S and similarly there are Schur 

complements of B, C and D. They have proven useful in visual optics and are 

particularly useful in simplifying complicated equations. 

In a Gaussian system the three symplectic equations effectively reduce to 

the single equation 

1CBAD                    (3.2.24) 

which is the equation for unit determinant. For a 22  matrix this is the only 

requirement for symplecticity (Guillemin & Sternberg, 1984:11, 15, 24) and any 

22 matrix with determinant 1 is the transference of some optical system.  

While the 44  transference of an optical system always has a unit 

determinant, the converse is not always true (Guillemin & Sternberg, 1984:23-24; 

Harris, 2010d). In order to test for symplecticity one needs to test whether the 

matrix obeys Equation 3.2.13, or, equivalently, whether it obeys all of Equations 

3.2.17 to 19 (Harris, 2004a, 2010d). 

All symplectic matrices have unit determinant (Bernstein, 2005:114; Hall, 

2004:8,40). The implication of this is that because  

BAAB detdet)det(                    (3.2.25) 

the product of all transferences will also have unit determinant (Bernstein, 

2005:40-41; Anton and Rorres, 2005:104-105; Keating, 2002:330; Harris, 2010d) 
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and therefore all transferences are invertible. We note that the matrix in Equation 

3.2.7 is symplectic and similarly the matrix in Equation 3.2.9 is symplectic 

provided F is symmetric (from Equation 3.2.17), which is true of refracting 

surfaces and thin lenses. While Harris and van Gool (2009) have considered the 

theoretical possibility of a thin lens of asymmetric power, it will not be considered 

here. 

 

3.2.6 Augmented transferences and heterocentric systems  

Up to this point, the optical systems described have been homocentric, that 

is all centred on a longitudinal axis Z, which is therefore an optical axis. Elements 

may have been stigmatic or astigmatic and represented by Gaussian 22  or linear 

44  transferences respectively. We now briefly consider the effects of including 

elements that are tilted or decentred (heterocentric).  

We define a 14  matrix (Harris, 1993) 











π

e
δ .                   (3.2.26) 

It accounts for all the effects of prism, tilt and decentration. The transverse 

translation e and deflectance π are each 12  submatrices of δ and along with A, 

B, C and D are also fundamental first-order optical properties of the system 

(Harris 2010e). e has units of length and  π  is dimensionless. It is often 

convenient to think of π  in radians.  

In order to account for these effects we generalise Equation 3.2.10 to 

ρδSρ 0 .                   (3.2.27) 

For a compound system consisting of n subsystems (Harris, 1993)  

    δδδδδSSS  nn ...... 32123 .               (3.2.28) 

Instead of Equation 3.2.28, Harris (1994) defines a 55  augmented transference 

T 











1T
o

δS
T                    (3.2.29) 

where o is a 14  null matrix, the fifth row being a trivial row, and a 15  

augmented ray state γ   
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1

ρ
γ .                   (3.2.30) 

The qualifier “augmented” will not be used repetitively and we will rely on the 

context to make clear whether the transference or ray state is augmented or not. 

Equation 3.2.27 now generalises to 

γTγ 0                    (3.2.31) 

which is simple and elegant like Equation 3.2.10 and encompasses all the detail of 

Equation 3.2.27. The proof is provided by Harris (1994). T is a matrix that 

represents all the first-order optical characteristics of the system, including 

homogenous spaces and astigmatic elements that may be tilted and decentred 

(heterocentric) or have prismatic effects (Harris, 2012c). Rewriting T with all six 

of its fundamental properties we have 



















1TT
oo

πDC

eBA

T .                  (3.2.32) 

Each of A, B, C and D are 22  submatrices, e, π  and o are 12  submatrices 

with o being a null vector. In particular, T represents the way the system will 

operate on the state of the ray traversing the system (Harris, 2001a). We note here 

that in order for a matrix to be symplectic it needs to be of the order nn 22  . T 

fails this requirement although it does have unit determinant. However, because 

submatrix S is symplectic one can call T an augmented symplectic matrix (Harris, 

2010d, 2004a). Like symplectic matrices, augmented symplectic matrices remain 

closed under multiplication and are not closed under addition nor multiplication 

by a scalar. 

Because of symplecticity and similarly to Equation 3.2.6 we can now 

obtain the transference for a compound heterocentric system (Harris, 1994): 

123... TTTTT m .                  (3.2.33) 

Substituting from Equations 3.2.32 and 30 into Equation 3.2.31 and 

multiplying out, we now obtain the two matrix equations 

yeBαAy  00   
                (3.2.34) 

απDαCy  00 .                  (3.2.35) 
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3.2.7 Gaussian systems 

We recall that a Gaussian system is defined where all surfaces are 

rotationally symmetric about a central axis. The longitudinal axis Z coincides with 

the optical axis creating an axis of symmetry. The implication is that all refracting 

surfaces are stigmatic and oδ  . Specifically, each of the fundamental properties 

simplifies to a scalar matrix so that IA A , IB B , IC C  and ID D . 

Therefore, in a Gaussian system each of the fundamental properties reduces to a 

scalar and S to a 22 matrix. This is the equivalent to the study of the group 

Sl(2;R); the group of 22  real matrices with determinant 1 (Guillemin and 

Sternberg, 1984:7-11).  

 

In particular Equations 3.2.7 and 9 simplify to 











10

1 
S                    (3.2.36) 

and  













1

01

F
S                    (3.2.37) 

respectively (Guillemin and Sternberg, 1984: 9-11). In general the transference 

simplifies to a 22  matrix represented by 











DC

BA
S                    (3.2.38) 

 and the 12  matrix representing the ray at a plane is  











na

y
ρ                     (3.2.39) 

(Guillemin and Sternberg, 1984: 7-11). All the entries of S and ρ  are scalars, as 

opposed to the non-scalar submatrices shown in Equations 3.2.5 and 1. Equations 

3.2.34 and 35 reduce to 

yBanAy  000                   (3.2.40) 

naDanCy  000 .                  (3.2.41) 
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3.3 Fundamental properties 

 The fundamental properties are not usually encountered as such in 

optometry. Most of the properties that are encountered in optometry are derived 

properties. Certain derived properties need some additional information, such as 

length of the system, or its context, that is, the refractive indices upstream and 

downstream of the system (Harris, 2012c). Equations 3.2.34 and 35 are useful for 

these derivations, and are discussed in detail below. 

In this section, an attempt is made to understand each of the fundamental 

properties of a Gaussian optical system. The fundamental properties are 

essentially mathematical and take on physical meanings only for particular 

situations. We use the transference for a Gaussian system defined in Equation 

3.2.38 starting with Harris’s (1999a) definition of ametropia. We then look at four 

special systems that result when each of the fundamental properties in turn is zero. 

Each of these situations results in interesting and familiar systems and 

relationships. Ultimately we can use this information to define systems that 

simplify the mathematics. 

 

3.3.1 Ametropia 

Harris (1999a) regards A in Equation 3.2.38 as representing ametropia. For 

a distant object all rays enter the eye parallel at some reduced inclination 0α .  For 

0A  the eye is emmetropic and from Equation 3.3.1 below we see that all rays 

from a distant object point map to the same position y on the retina, a point focus. 

When 0A   then the eye is ametropic, A represents a “squashing factor” where 

all rays entering the eye at different incident transverse positions map to 

respective positions on the retina. For an emmetropic eye, all rays with the same 

inclination will map to a single point on the retina. Positive values of A imply a 

hyperopic eye and negative values of A a myopic eye with the rays crossing over 

and inverting the direction of the position vector (Harris 1999b). There are 

exceptions to this rule (Harris, 1999b, 2007b).   
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3.3.2 Four special systems 

We follow Harris’ lead and start by looking at the four types of two-

dimensional vector fields as obtained from the mathematical structure of the 

transference of a Gaussian system (Harris, 1996a). These are exit-plane focal 

systems where 0A , conjugate systems where 0B , afocal or telescopic 

systems where 0C  and entrance-plane focal systems where 0D .  

 

Exit-plane focal systems ( 0A ) 

We start with the exit-plane focal system shown in Figure 3.3.1. Equation 

3.2.40 simplifies to 

yBα 0          (3.3.1) 

when 0A . From Equation 3.3.1 we see that if all incident rays have the same 

reduced inclination then the emergent transverse position is the same for all the 

rays. This is shown in Figure 3.3.1. One can think of B as a sort of optical 

thickness, although it is not usually simply related to the actual length of a system. 

B therefore relates the emergent position through the system to the incident 

reduced inclination. Examples of an exit-plane focal system are an emmetropic 

eye, most schematic eyes and the compound system of an eye and distance 

compensating spectacle or contact lens in front of it. 

 

 

 

Figure 3.3.1 A Gaussian exit-plane focal system ( 0A ). All incident rays enter at 

the entrance plane 0T  with the same reduced inclination 0α . All emergent rays exit at T 

at the same transverse position y.  
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Conjugate systems ( 0B ) 

Again, looking at Equation 3.2.40 we obtain 

yAy 0          (3.3.2) 

when 0B . This is shown in Figure 3.3.2. In a conjugate system the incident 

inclination plays no role and if all rays enter the system at point 0y
 
they will map 

to a conjugate point y on the exit plane. A is the transverse magnification. When 

we define a system to have the entrance plane at the object point and the exit 

plane at the image point, we have defined a conjugate system. This is an example 

of a system where, even though 0B , the system itself does not usually have 

zero length. Conjugate systems are only defined for finite systems. 

 

 

Figure 3.3.2 A conjugate system ( 0B ). When all incident rays enter the system at 

the same transverse position 0y , they will exit at y. Points at  0y  and y are conjugate with 

each other.  

 

Afocal systems ( 0C ) 

Substituting 0C  into Equation 3.2.41 we obtain 

αDα 0          (3.3.3) 

which is the formula for an afocal system such as a telescope used in low vision. 

It implies that for incident light, when all rays are parallel, the emerging light 

segments are also parallel to each other, but not necessarily parallel to the incident 

pencil, or to the longitudinal axis.  This will be discussed in greater detail in 

Section 3.5.1. An afocal system is shown in Figure 3.3.3.  
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Figure 3.3.3 An afocal system ( 0C ). If all incident rays are parallel to each other 

at reduced inclination 0α  then all emergent rays are parallel to each other at reduced 

inclination α .  

 

Entrance-plane focal systems ( 0D ) 

Finally, staying with Equation 3.2.41 but this time substituting 0D , we 

obtain 

αCy 0 .         (3.3.4) 

A point object at position 0y  on the entrance plane emits a pencil of light of zero 

vergence from the system at a reduced inclination ofα . An entrance- plane focal 

system is shown in Figure 3.3.4. Examples include reversed emmetropic eyes and 

reversed ametropic eyes combined with the direct ophthalmoscope lens in 

ophthalmoscopy (Harris and van Gool, 2004).  

 

Figure 3.3.4 An entrance-plane focal system ( 0D ). If all incident rays enter the 

system at the same position 0y  then they emerge parallel to each other with emergent 

reduced inclination α .   
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3.4 Derived properties 

The fundamental properties of a first-order optical system can be obtained 

directly from the transference. In addition there are a number of first-order optical 

properties that can be derived from the transference. Certain of these derived 

properties are obtained from the transference alone, while others need input about 

the actual length of the system (e.g. Harris, 2009). Until now these properties have 

been studied under the assumption of a single reference wavelength.  

The transference depends on its context, meaning the refractive indices 

upstream and downstream of the system. There are a number of derived properties 

that are of interest to this dissertation because they are dependent on frequency. 

These include the power of the system (Harris, 1997), magnification and blur 

(Harris, 2001a, b), compensatory systems such as entrance-plane refractive 

compensation (or neutralizing lens) (Harris, 1999a; Keating, 1988:236), front- and 

back-vertex power (Keating, 1988:236) and locations of the cardinal points 

(Harris, 2010d, 2011a,b). These derived properties are discussed in the rest of this 

chapter. 

Additionally, in Chapter 6 this study derives formulae for longitudinal and 

transverse chromatic aberration from the transference and its context (Harris & 

Evans, 2012). In line with previous calculations done on Gaussian systems to 

quantify chromatic properties in the eye, in Chapter 7 this dissertation will derive 

equations from the transference for Gaussian systems for chromatic difference in 

power, refractive compensation, magnification and position. Other derived 

properties that will not form part of this dissertation are converter systems 

(Keating, Harris and van Gool, 2002), corneal patches and referred apertures 

(Harris, 2011c, 2012d, and a number of axes such as optical (Harris, 2009) visual 

(Harris, 2010c) and pupillary (Harris, 2013) axes and line of sight (Harris, van 

Gool and Evans, 2013). Achromatic axes have recently been defined from the 

transference for dichromatic light (Harris, 2012a, b). 

Referred apertures, corneal patches and pinholes have significant 

relevance to current research being done on the intracorneal inlay, for example the 

AcuFocus Kamra corneal pinhole inlay. (Gatinel, 2010; Seyeddain, Riha, 

Hohensinn, Nix, Dexl and Grabner, 2010; Waring, 2010)). Two aspects are of 



II  LITERATURE REVIEW  3 Background theory: Optics 

49 

 

interest to this study. Firstly the chromatic properties resulting from positioning of 

the pinhole plane longitudinally within the cornea instead of the iridial plane and 

secondly, misplacement of the pinhole inlay during surgery in the transverse 

plane. The size of the pinhole and light entering the eye from around the inlay will 

also influence the chromatic properties in the eye. Thibos et al (1990) used a 

displaced pinhole to induce and measure transverse chromatic aberration 

experimentally.  A misplaced pinhole results in a number of visual complaints, 

among which sensitivity to chromatic properties will be of special interest to this 

study.  

 

3.4.1 Power 

Power is well defined for refracting surfaces and thin lenses both as a 

power matrix and clinically as sphere / cylinder × axis. The power matrix is 

symmetric and has been derived by Fick (1972; 1973a; Blendowske, 2003) and 

Long (1976), apparently independently. Recently, we noted that the power matrix 

was being hinted at by Le Grand (1945: 326-327) and possibly by others before 

him. The equivalent power of a two surface thick lens system was defined by 

Keating (1981a, 1982, 2002: 343) who showed that the power matrix for such a 

system could be asymmetric, in which case it cannot be equivalent to a thin lens. 

Harris (1996a) derives a formula for the (equivalent) power for a system 

comprising three thin astigmatic lenses each separated by a gap. 

Harris (1997) was the first to define power for optical systems in general. 

He defines power as 

CF  .         (3.4.1) 

Power is therefore a first-order optical property derived from the transference of a 

system. 

For Gaussian systems  

IC C          (3.4.2) 

where I is an identity matrix. Hence for a Gaussian system we can write the power 

as 

CF  .         (3.4.3) 
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The eigenvalues of F are the two principal powers of an astigmatic system 

and the corresponding eigenvectors represent the directions of the two principal 

meridians (Keating, 1981a, b; Long, 1976; Harris, 2001c). Together the principal 

powers and meridians can be represented either by a power cross, or in principal 

meridional representation of power (Harris, 2000, 2001c). It is possible for a thick 

system, such as the eye, to have an asymmetric power, with corresponding non-

orthogonal eigenvectors or meridians (Keating, 1981a, 1982). For any refracting 

surface or thin lens system, the power matrix is symmetric and the principal 

meridians therefore are orthogonal (Anton and Rorres, 2005: 381).  

For thin systems equations were derived to convert from the clinical 

representation of power to the power matrix by Long (1976) and Fick (1972; 

Blendowske, 2003) and to revert back from the power matrix to clinical 

representation by Keating (1980) and Fick (1973b; Blendowske, 2003). Keating 

(1981b, 1997b) showed that the power matrix for a thick system comprising two 

or more astigmatic powers with nonaligned principal meridians will result in an 

asymmetric power matrix which corresponds to a power which has non-

orthogonal meridians. Harris (2000, 2001c) developed conversion formulae to 

convert between principal meridional representation of power and matrices. This 

enables one to convert an asymmetric power matrix into power along two 

principal meridians which are not orthogonal. 

 

3.4.2 Entrance-plane refractive compensation 

We saw in Section 3.3.2 that an exit-plane focal system is defined by 

0A  (Harris, 1996a) which Harris (1999a) refers to as the “condition for 

emmetropia”. The power of a thin lens juxtaposed immediately upstream to the 

system can be calculated in order to create such a system. Harris (1999a) refers to 

this as the “condition for compensation”. 

An example of an entrance-plane system is an emmetropic eye, or an 

ametropic eye compensated for distant viewing. Because of this, Harris (1999a) 

derives a formula for the power of the corneal-plane refractive compensation 0F . 

Making use of Equations 3.2.6, 37 and 38, we write the transference of the 

compound system of eye and compensating lens 0F  as  
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where the dots represent values not needed here. Because this is an exit-plane 

focal system, we obtain 

00EE  FBA         (3.4.5) 

and solving we obtain the corneal-plane refractive compensation 

E

1

E0 ABF  .         (3.4.6) 

Equation 3.4.6 shows that the corneal-plane refractive compensation 

depends on the dilation A and the disjugacy B. The divergence C (or power F) of 

the eye does not play a direct role, but does have an indirect role through the 

symplectic relations. 

 

3.4.3 Front- and back-vertex power  

Back-vertex power bvF , shown in Figure 3.4.1(a), can be defined as either 

the vergence L leaving the system when incident rays are parallel or the reciprocal 

of the reduced emergent focal (or back-vertex) length (Keating, 2002:138-9, 145; 

Harris, 2010a). The definitions are equivalent. The front-vertex power fvF , which 

is also called front neutralizing power fnF  and is shown in Figure 3.4.1(b),  is 

defined as the negative of the incident vergence ( 0L ) (or power of the neutralizing 

effect of the system) in order for emerging rays to exit parallel (Keating, 2002: 

138-9; Harris, 2010a). This is equivalent to the negative reciprocal of the incident 

reduced focal length. 

The term power as it is used here is rather misleading. Vertex power is 

actually a measurement of vergence and as such the matrix is always symmetric 

(Keating, 1981a; Harris, 1996b). These vertex power formulae were originally 

derived by Keating (1981a, 1982) and the derivation was later simplified, using a 

different approach, by Harris (2010a). We take our lead from Harris (2010a), 

simplifying for Gaussian systems. 
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Derivation of back-vertex power  

Comparing Figure 3.4.1 (a) and (c) we see that the thin postjuxtaposed lens of 

power bnF  compensates for the emergent vergence, such that the rays leave the 

system parallel and therefore we start with 

bnbv FF  .         (3.4.7) 

We obtain bnF  from the transference of the compound system S  made up of the 

transference of the system ES  followed by the transference of the thin lens bS  

and then equating 0C  for an afocal system, such that 
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SSS .   (3.4.8) 

 

 

Figure 3.4.1 An optical system is shown as S. (a) Back-vertex power shown as 

emerging vergence L  exiting the system when incident rays are parallel. (b) Front- 

vertex power, the negative of incident vergence shown as  0L   when the emerging rays 

are parallel. (c) A postjuxtaposed thin lens bnF  in combination with the system S creates 

an afocal compound system. (d) A prejuxtaposed thins lens fnF  creates an afocal system 

in combination with the system S. 
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therefore 

0EEbn  CAF         (3.4.9) 

and  

1

EEbn

 ACF .                   (3.4.10) 

Substituting Equation 3.4.10 into 3.4.7 we define back-vertex power as 

1

EEbv

 ACF .                   (3.4.11) 

 

Derivation of front-vertex power  

Similarly to back-vertex power, Figures 3.4.1 (b) and (d) illustrate that the 

power of the thin neutralizing lens at the front-vertex of the system is the negative 

of the vergence at incidence onto the system 

fnfv FF                     (3.4.12) 

The transference of the compound system S  made up of the transferences of a 

thin lens fS  followed by the system ES  to create an afocal system is  
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1

01

FDCFDC

BA
SSS .             (3.4.13) 

Equating 0C  for this afocal system 

0fnEE  FDC                   (3.4.14) 

we calculate the power of  fnF  as 

E

1

Efn CDF  .                   (3.4.15) 

Substituting from Equation 3.4.12 into 3.4.15 we obtain the definition for front-

vertex power 

E

1

Efv CDF  .                   (3.4.16) 

The derivations for front- and back-vertex power given above are from 

Harris (2010a). However, the typographical error in the original manuscript (a 

missing minus sign) for the equation for front-vertex power has been corrected 

here. 
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3.5 Magnification 

Because a large proportion of the research on chromatic properties has 

focussed on chromatic difference of magnification and position (Atchison and 

Smith, 2002: 181-182; Rabbetts, 2007: 289-293; Thibos Bradley and Zhang, 

1991), magnification and conjugation of points will be studied in more detail for 

its first-order effects. Three types of magnification are defined for conjugate 

Gaussian systems, namely transverse or lateral magnification, axial or 

longitudinal magnification and angular magnification (Meyer-Arendt, 1984:54; 

Keating, 2002: 56-62, 110, 154, 347-370; Smith and Atchison, 1997: 43-44, 71-

72). We shall take a closer look at all three types in Gaussian systems.  

 

3.5.1 Magnification of Gaussian systems 

Transverse magnification 

Transverse magnification is defined as  

0

t
y

y
M           (3.5.1) 

as shown in Figure 3.5.1 (Emsley, 1950:33; Meyer-Arendt, 1984:54; Smith and 

Atchison, 1997:43; Keating, 2002:56, 110).  

 

 

 

Figure 3.5.1 Transverse magnification of a thin system defined by Equation 3.5.1.  0y  

is the height of the object at distance 0z  from the lens and y is  the height of the image at 

a distance z from the lens. 
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Axial magnification 

Axial magnification is defined by (Meyer-Arendt, 1984:56; Keating, 

2002:154; Smith and Atchison, 1997:71-2) 

0

z
z

z
M




          (3.5.2) 

where 0z is the difference in axial length between the front and back of the 

object and z the corresponding axial length of the image. This is shown in Figure 

3.5.2.  

 

Figure 3.5.2 Axial magnification of a thin system. The two arrow bases (subscript 1) 

are conjugate and the two arrowhead apexes (2) of the object and image are conjugate. 

The axial magnification is the ratio of axial length of image to axial length of object.  

 

Angular magnification 

Angular magnification, commonly referred to as “magnifying power”, is 

the most important type of magnification according to Meyer-Arendt (1984:57). 

This is the magnification that is used to define the magnifying power of afocal 

telescopes and binoculars and is typically denoted by an “×”. It is defined as the 

ratio of the image’s reduced inclination to the object’s reduced inclination (Smith 

and Atchison, 1997:44, 69, 768). For axial objects this is defined as  

0


 M .         (3.5.3) 

where   is the reduced inclination as defined in Equation 3.2.2 and simplified for 

a Gaussian system. 

 In Figure 3.5.3 we see angular magnification created in two ways. In (a) 

the angular magnification is created by approach magnification. The system 

represents a reduced eye consisting of a refracting surface K and image surface R. 

An object of size 01y  is positioned at a distance 01z  from the reduced eye, creating 
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an image of size 1y  at R and an incident inclination of 01a . The object is now 

brought closer to the reduced eye by distance 
0z , to a position at a distance 02z . 

The size of the object has not changed  0201 yy  . However the size of the image 

has been magnified from 1y  to 2y  at R and the inclination has been magnified to

02a . Relative size magnification can be achieved by increasing the size of 01y  to 

magnify incident inclination from 01a  to 02a  with corresponding image size 

increase at the image plane.  In Figure 3.5.3(b) angular magnification is created by 

a thin lens. The system initially is the same as system 1 in (a) with incident 

inclination 01a  (not redrawn in (b)). A lens F is added at a vertex distance vz . We 

note that the object appears to be magnified to size iy  and the image at R has 

been magnified from 1y  to 3y  while the inclination has been magnified from 01a  

to 03a .  

Figure 3.5.3 (a) Angular magnification created by approach magnification. The 

system represents a reduced eye consisting of a refracting surface K and image surface R. 

System 1 consists of object  of size 0y  at position 01z  creating an image of size 1y  at the 

retina. In system 2 the object has moved closer to the eye to position 02z  to create a larger 

image of size 2y . (b) Angular magnification created by a thin lens. Diagrams are not to 

scale and angles have been exaggerated for clarity. All angles are within the paraxial 

limits. The diagrams are intended merely to demonstrate angular magnification and 

accommodation and ametropia have not been taken into account.  
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Relationships between the magnifications 

The relationship between transverse and angular magnification is (Meyer-

Arendt, 1984:60, Smith & Atchison, 1997:44, 382) 

tM
M

1
 .         (3.5.4) 

Keating (2002: 154) and Smith and Atchison (1997:383) derive the relationship 

2

tz MM  .         (3.5.5) 

between axial and transverse magnification. 

 

3.5.2 Limitations of defining magnification in terms of conjugate object and 

image points  

Defining magnification in terms of the longitudinal and transverse 

positions of the object and image points is simple and shows some very useful 

relationships between magnification as defined in Section 3.5.1 and the 

fundamental properties for conjugate and afocal systems as defined in Section 

3.3.2. However, in physiological optics interest lies in what is happening to the 

image at the retina. If the image is not in focus on the retina then the approach of 

defining the magnification in terms of the object and image points (a conjugate 

system) will have limitations. This is further exacerbated when a single object 

point produces more than one image, such as the two line foci produced by an 

astigmatic system, or an infinity of coloured images resulting from chromatic 

dispersion. 

If we bear in mind that in order to study the magnification of images on 

the retina, regardless of whether the images are in focus, or not, then we need to 

take a different tack on how we define magnification at the retina or exit plane. 

We now turn our attention to magnification of images at the retina. 

 

3.5.3 Magnification, blur and the ray state at the retina 

In physiological optics, magnification is calculated at the retina or image 

plane, regardless of the effects of blur. In order to do this we trace the chief ray 

from an object, through the centre of the pupil or a pinhole and do our calculations 

at the retina. In this section we wish to study and obtain the equations for 
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magnification at an image plane and will use this to derive formulae for the 

magnification of chromatic properties in Chapter 7. 

We will be concentrating on the naked eye, or more specifically, model 

eyes, without any refractive or other compensation. We start by taking a look at 

systems where the object point is distant and then derive the formulae for systems 

where there is an object point at a finite distance in Chapter 5. 

 

Systems with a distant object point  

The system of a compound model eye is shown in Figure 3.5.4. It comprises two 

subsystems, divided by the pupillary plane PT  into anterior A and posterior B. An 

arbitrary ray is incident onto the cornea with ray state Kρ , it traverses the centre 

of the pupil with ray state Pρ  and emerges from the system at the retinal plane 

with emergent ray state Rρ . We want to solve for Rρ . We need Kα , the reduced 

inclination at the cornea, which will be the same for all rays incident on the 

system from a distant object. However, because we wish to trace the chief ray 

through the system we are interested in Py , the centre of the pupil rather than Ky  

the transverse position of the ray at the cornea.  

For the system shown in Figure 3.5.4, a transference is calculated for each 

of the sub-systems and for the eye itself. To differentiate the three transferences, 

 

Figure 3.5.4  An exploded diagram of a compound model eye. The eye is defined by 

the entrance plane KT  immediately in front of the cornea, an exit plane  RT  immediately 

in front of the retina and a longitudinal axis Z.   
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each of the fundamental properties is subscripted with either an A, B or E for 

anterior, posterior or eye, respectively. Similarly the state of the ray at the three 

positions is subscripted K, P or R for corneal plane, pupillary plane or retinal 

plane respectively. The corneal plane is immediately in front (upstream) of the 

tear layer, the pupillary plane immediately upstream of the crystalline lens, at the 

pupil and the retinal plane immediately in front (upstream) of the retina or image 

plane. The retina itself is not part of the optical system. 

We calculate the transference of the eye as follows: 
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   (3.5.6) 

Harris (2001a) derived the following equations for the magnification, blur 

and ray state at the retina for a general naked eye 

RK

1

ABP

1

AE yαAByAA          (3.5.7) 

and 

RK

1

ABP

1

AE ααADyAC   .       (3.5.8) 

Interestingly, Py  is also a property of the eye, but not a fundamental property. The 

pupil centre is not necessarily fixed, but may shift slightly with dilation and  

 

 

Figure 3.5.5 A simplified Gaussian model eye, divided by pupil P into anterior A and 

posterior B subsystems. Rays from infinity are incident onto the system initially parallel 

to the longitudinal axis, mapping the chief ray to a point on the retina on the longitudinal 

axis and then at an inclination that maps to a second point on the retina. 0

1

AB nAB 
 

magnifies the incident inclination Ka  to an image size as shown with the double-headed 

arrow.  
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constriction of the pupil (Wilson, Campbell and Simonet, 1992; Yang, Thompson 

and Burns, 2002).  

In Figure 3.5.5 we can see how the magnification for a distant object is 

projected onto the retina of a Gaussian eye. An axial object of size Ka  is 

magnified by 0

1

AB nAB   to obtain retinal image size Ry . Because we are working 

with the chief ray of a centred Gaussian system, 0P y  and 1

AE

AA  is negated. 

The pupil size is defined as 1P2P yyp  ,  where 1Py  and 2Py  are the 

margins of the pupil. For a pencil of rays from a distant axial object point  0K a  

the size of the corresponding blur patch on the retina will be R

1

AE ypAA  . Hence, 

the size of the blur patch, corresponding to a single object point, is dependent on 

pupil size. The blur is not shown in Figure 3.5.5 because the size of the blur patch 

is dependent on the pupil size, which is outside the scope of the topic of this 

study. 

Similarly, from Equation 3.5.9 we obtain the distant directional spread  

1

AE

AC  magnifying the pupil size and distant directional coefficient 1

AB

AD  

magnifying Ka  to obtain the inclination(s) at the retina. From Equations 3.5.7 and 

8, we have  TRR y , the ray state at the retina. This will be discussed in greater 

detail in Section 5.2. 

 

Systems with an object point at a finite distance 

To calculate the magnification and blur at the retinal plane for a near 

system we take a different approach to Harris (2001b). We derive formulae for the 

magnification, blur and ray state at the retina for systems where the object point is 

at a finite distance in Section 5.2.2. 

 

3.6 Cardinal points 

There are two methods to trace the path of a ray through a system, the 

graphical method and the numerical method (Meyer-Arendt, 1984:52). The 

numerical method uses transferences (Section 3.2) and traces a ray from incidence 

onto a system, defining a ray of light by its inclination and position at incidence 
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onto a system, through a system and giving us the inclination and position of the 

ray as it exits the system.  

The graphical method traces rays from an object point, through a system to 

a corresponding image point. Numerically one can apply Snell’s law at each 

refracting surface and simple geometry rules across each homogenous gap 

(Meyer-Arendt, 1984:52). Methods of simplifying systems have been sought 

using cardinal points. Graphical ray tracing (Meyer-Arendt, 1984: 52-77) makes 

use of cardinal points and the approximation of small angles. 

In Chapter 2 we saw how the definitions of chromatic aberration in the 

physiological optics literature make use of the cardinal points and paraxial ray 

tracing techniques. There are a number of interesting relationships between the 

cardinal points, all of which can be derived from the transference. Crucially, the 

positions of the cardinal points are dependent on the frequency of light. For this 

reason we wish to include cardinal points in this study. For completeness, we will 

start this section with a short overview of the use of cardinal points in ray tracing 

techniques followed by the derivation of the cardinal and anti-cardinal points from 

the transference. We will then take a look at two methods of visually displaying 

both the relationship of the points to each other in a system, but also changes to 

the points when that system undergoes a change, such as accommodation or the 

dependence on the frequency of light.  

 

3.6.1 Ray tracing and cardinal points   

We know that in order to simplify the graphical ray tracing through a system, the 

cardinal points are combined with three rays and a set of rules. We briefly revise 

the purpose of the cardinal points for completeness. Figure 3.6.1 shows a system 

with the incident and emergent principal planes in line with the incident and 

emergent principal points, 0P  and P respectively and likewise 0F  and F are the 

focal points. The system has the same refractive index upstream and downstream  

and  therefore  the  nodal  points  are  coincident  with  the  principal points. 

Figure 3.6.1 shows that from an object point O, the focal ray (3) goes through 0F , 

refracts at the incident principal plane 0P  and emerges parallel to the optical axis 

Z. The parallel ray (1) travels from the object point O parallel to the optical axis 
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Z, refracts at the emergent principal plane P and then passes through the emergent 

focal point F. Finally the third ray is the chief ray (2) which passes through the 

centre of the lens or system. It goes to 0P
 
at its intersection with the optical axis, 

is translated along the optical axis and exits at P parallel to its incident inclination. 

All three rays are parallel to the optical axis between the two principal planes 

(Meyer-Arendt, 1984:53). The three rays intersect at the image I indicating that 

the object and image are conjugate. The focal ray and the parallel ray are what 

Keating (2002:44-46) refers to as “predictable rays” and the chief ray is a nodal 

ray. These in turn undergo refraction at the principal plane(s) and map to a 

conjugate image point. The three rays used in the ray tracing diagrams map a 

point on the object to a point on the image and do not represent the actual path of 

any rays. 

For a thin system, all the refraction occurs at the plane of the refracting 

surface or lens, which is the single principal plane. In a compound system where 

the refractive indices upstream and downstream are the same, for example a thick 

lens in air, graphical ray-tracing uses the focal points, the principal planes and the 

chief ray, shown in Figure 3.6.1. The refraction appears to occur at the two 

principal planes. 

 

 

Figure 3.6.1  Diagram of a general Gaussian system with the same refractive index 

upstream and downstream of the system.  
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In a system where the refractive indices upstream and downstream of the 

system are the same the principal points and nodal points coincide. In systems 

where the indices of refraction are different upstream and downstream, such as the 

eye, then the principal and nodal points separate and all three pairs of cardinal 

points are needed for graphical ray-tracing (Figure 3.6.2). The focal and parallel 

rays are the same as in Figure 3.6.2. The chief ray can now clearly be seen as a 

nodal ray in Figure 3.6.2. Where the refractive indices are different upstream and 

downstream, the nodal points will move towards the side of the higher index. The 

nodal points are points where no refraction takes place (Meyer-Arendt, 1984:76). 

We differentiate incident focal length 
0f  as the distance from the entrance 

plane 
0T  to the incident focal point 

0F  from incident equivalent focal length 
eqf 0

 

which is the distance from the incident principal plane 
0P  to the incident focal 

point. In Figure 3.6.2 both 
0f  and 

eqf 0
 have negative direction. Similarly the 

emergent focal length f is the distance from the exit plane T to the emergent focal 

point F compared to the emergent equivalent focal length 
eqf  which is from the 

emergent principal plane to the emergent focal point. In Figure 3.6.2 we can see 

that the f has a negative direction in contrast with 
eqf   which is positive.

 

 

 

Figure 3.6.2  A diagram of a general Gaussian system with different refractive indices 

upstream 0n  and downstream n, resulting in the nodal points dissociating from the 

principal points.  
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3.6.2 Locations of the cardinal points obtained from the transference 

The locations of the cardinal points can be derived from the transference. 

The positions of the incident cardinal points are measured from the entrance plane 

and for emergent cardinal points the positions are measured from the exit plane. 

The incident and emergent focal, principal and nodal points make up the six 

cardinal points for any optical system that are traditionally defined (Pascal, 1939; 

Smith, 1993,1995; Atchison and Smith, 2000: 7; Sharma, 2006: 168-171). The 

principal planes are not only conjugate, but have positive unit magnification 

(Smith and Atchison, 1997:56) 

However there are other points, such as anti-nodal and anti-principal 

points (Katz, 2002: 143; Korsch, 1991: 48, 57;  Hastings, 1901: 202) which all 

belong to a much larger set of special points (Harris, 2010b, 2010f). We refer to 

the set of anti-nodal and anti-principal points as the anti-cardinal points. Keating 

(2002: 63-64, 114-115, 308) refers to symmetry points as twice the equivalent 

focal length (both incident and emergent). An object at the incident symmetry 

plane will map to an image at the emergent symmetry plane with negative unit 

magnification (Keating, 2002:63-64, 114-115). Katz (2002: 143) refers to these 

same points as anti-principal points, giving a transverse magnification of –1 and 

similarly, the anti-nodal points result in an angular magnification of –1. 

In order to show the relationships among cardinal points, Harris (2011b) 

developed a method of graphical construction of the locations of the cardinal 

points from the transference using locator lines. Pascal (1939, 1947, 1950a, b) 

developed a “Benzene ring” which Harris (2011a) elaborated on. Pascal’s ring 

allows one to see the change in position of the six cardinal points with respect to 

each other when an optical system undergoes a change, such as that brought about 

by accommodation. Cardinal and anti-cardinal points derived from the 

transference, graphical construction and Pascal’s ring will be explored in this 

section and Section 5.4. 

Harris (2010b, f, 2011a, b) gives two equations, derived from the 

transference, which give us the locations of the incident and emergent cardinal 

and anti-cardinal points respectively. The equation for the locations of the incident 

points is given as 
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Table 3.6.1 Characteristics of the cardinal points of a general optical system.  

         Incident Characteristic 

X 

Emergent 

Cardinal point Symbol Symbol Cardinal point 

Anti-nodal 
0N  0nn  N  Anti-nodal 

Anti-principal 
0P  1  P  Anti-principal 

Focal 
0F  0 ––– ––– 

Principal 
0P  1 P  Principal 

Nodal 
0N  0nn  N  Nodal 

––– –––   F  Focal 

 

C

XD
nz


 00Q         (3.6.1) 

where the subscript Q represents the respective point and the characteristic X is 

given in Table 3.6.1. The length 0Qz  is measured from the entrance plane 0T . D 

and C are entries of the transferences of the system (Equation 3.2.38).  Similarly, 

the locations of the emergent points are given by 

C

X
A

nz

1

Q



         (3.6.2) 

where the length Qz  is measured from the exit plane T. 0n  is the refractive index 

upstream of the system and n the refractive index downstream of the system. X is 

the characteristic of any particular pair of special points. A and C are entries of the 

transference of the system. With the exception of the focal points, each emergent 

point is in conjugation with the corresponding incident point and can be seen to 

share the same value for X (Harris, 2010b, 2011a). The incident and emergent 

focal points are conjugates of infinity (Smith and Atchison, 1997: 72). 

 

3.6.3 Relationships among the points 

It is well known that there are a number of relationships among the 

cardinal points (Pascal, 1939, 1947,1950a, b; Smith and Atchison, 1997: 74-75). 

These are illustrated in Figure 3.6.3. Using Equations 3.6.1 and 2 and substituting 

the values for the characteristic X from Table 3.6.1, we can calculate the distances 
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for the position of each of the cardinal points. From there we can calculate and 

simplify the equalities between the points in terms of the fundamental properties 

and the addition of the refractive indices up- and downstream of the system and 

the length of the system z. The distances and equalities are shown in Figure 3.6.3. 

Starting with the incident cardinal points and in the sequence given in 

Table 3.6.1 we find the distance from the entrance plane to the respective point is 

(Harris, 2010b) 

 nDnCz  

0

1

0N
,        (3.6.3)  

 11

00P
  DCnz ,        (3.6.4)  

 

 

Figure 3.6.3 Cardinal points and their relationships and equalities. Gaussian system S 

of length z has an entrance plane 0T ,  an exit plane T and a longitudinal axis Z. Refractive 

index upstream 0n  is different from n downstream. All points are defined as being on the 

optical axis for a Gaussian system. Above the longitudinal axis, the distances from 0T  to 

the incident cardinal point and from T to the emergent cardinal point are shown with the 

thin arrows. All the symbols and subscripts are given in Table 3.6.1. Below the 

longitudinal axis the equalities are shown as follows: the equivalent length or “thickness” 

eqz  (red), incident equivalent focal length eqf0  (blue), emergent equivalent length 
eqf  

(orange), and equivalent radius of curvature eqr  (green).  
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1

0

1

00F

  fvFnDCnz ,       (3.6.5)  

  1

00F

1

00P 1   CnzDCnz       (3.6.6)  

and 

  1

0F0

1

0N

  nCznDnCz .      (3.6.7) 

The distance of each emergent cardinal point, in the sequence given in the last two 

columns of Table 3.6.1, from the exit plane to the respective cardinal point is 

(Harris, 2010b) 

 0

1

N
nnACz   ,        (3.6.8)  

 11

P
  AnCz ,        (3.6.9)  

  1

F

1

P 1   nCzAnCz  ,                (3.6.10) 

  1

0F0

1   CnznnACzN                 (3.6.11)  

and 

11

F

  bvnFAnCz .                  (3.6.12)  

These distances are all shown in Figure 3.6.3 above the optical axis Z. Harris 

(2010b) gives all these distances for linear systems; here they are specialized for 

Gaussian systems. fvF  and bvF  are the front- and back-vertex powers (Section 

3.4.3). 

Smith (1993) also developed a set of equations for the cardinal points in 

terms of the entries of the Gaussian transference, however his methodology is 

based on ray tracing. His matrix symbolism and arrangement of entries differs 

from that used in this dissertation so they have been adjusted to retain consistency. 

His equations are equivalent to those given by Harris above for incident focal and 

nodal points and emergent focal and principal points. His incident principal and 

emergent nodal point equations (Equations 3.6.7 and 11) are more complicated, 

but reduce under symplecticity to be the equivalent to those given above.  

A summary of the equalities is given by Pascal (1939, 1947,1950a, b) for 

lengths only, without an indication of direction. The formulae are given by Harris 

(2011a) in terms of the entries of the Gaussian transference with the addition of 

direction. The incident equivalent focal length is the distance from 0P  to 0F   
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1

0000 FNFP  Cnf eq                  (3.6.13) 

and, similarly, the emergent equivalent focal length is 

1

00NFPF  nCfeq .                 (3.6.14) 

Additional equalities are 

  1

000 PNNP  Cnnreq ,                (3.6.15) 

which Pascal (1950a) refers to as the “equivalent” radius, and 

eqzNNPP 00  ,                  (3.6.16)  

which Pascal (1950a) refers to as the “thickness” (his quotation marks). Pascal 

(1950a) appears to have reservations about the terminology because he uses the 

terms “first” and “second” with quotation marks. He also refers to systems as 

being “thinner” or “thicker” (his quotation marks) according to variations in the 

equality given in Equation 3.6.16. 

The equivalent focal lengths are directed from the principal plane to the 

respective focal point. Smith (1993) also gives the equalities for incident and 

emergent focal length, however his incident focal length formula is more 

involved, but can be simplified to that of Harris, given in Equation 3.6.13 above.  

Harris (2010b) gives additional equalities which we specialize from linear 

optics: 

0PP0F00NN0 2 zzzzz  ,                 (3.6.17) 

PPFNN 2 zzzzz                   (3.6.18) 

and 

NP0FF0PN0 zzzzzz                   (3.6.19) 

which show that the cardinal and anti-cardinal points are not independent. 

The lengths and directions of each of the equalities between incident and 

emergent cardinal points are shown in Figure 3.6.3 above the optical axis (Z). 

Lengths are given as z with subscripts given in Table 3.6.1. Below the 

longitudinal axis, the thicker arrows denote the equalities. 

 

3.6.4 Graphical construction and locator lines 

Harris (2011b) developed a method to obtain the positions of the six 

cardinal points through graphical construction. Not only does this construction 
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make it easier to see the relationships among the points but also to observe the 

relationship as the points move when the system changes, for example due to 

accommodation or age.  

Harris (2011b) rewrites Equation 3.6.1 as 

D
n

Cz
X 




0

0Q
                  (3.6.20) 

and Equation 3.6.2 as  

A
n

Cz

X


Q1
.                   (3.6.21) 

and interprets them as straight lines. Harris (2011b) terms these two lines the 

locator lines because they can be used to find the locations of the cardinal points. 

With the additional knowledge of the refractive indices 0n  and n  they can be 

obtained directly from the transference. They exist uniquely for any system.  

The construction is superimposed over the system (Figure 3.6.4). The optical axis 

Z is horizontal. The X axis is superimposed over the entrance plane 0T  

 

Figure 3.6.4 Graphical representation of a general optical system showing the locator 

lines for system S (not to scale). Line 0L  represents Equation 3.6.20 and line L Equation 

3.6.21. Axis X  is superimposed on entrance plane 0T  and axis X1  on exit plane T. T is 

a  distance z downstream from 0T . The focal points lie on the optical axis at intersection 

with the corresponding locator line. The principal points are shown in red and the nodal 

points in green. All symbols are described in Table 3.6.1. All incident points show 

intersection with the incident locator line and have subscript 0, while the emergent points 

intersect the emergent locator line L with no subscript. 
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and the 
X

1
axis is superimposed over the exit plane T with the origin at Z. T is a 

distance z downstream from 0T . The incident locator line 0L  has intersection 

DX   in 0T  and slope 
0n

C
 while emergent locator line L has intersection 

A
X


1
 in T and slope 

n

C
. 

To find the location of the incident cardinal points along the optical axis, 

one draws a horizontal line at the value for the characteristic X in 0T  (Table 3.6.1) 

and where it intersects 0L  one constructs a vertical line. The intersection of the 

vertical line with Z locates the position of the corresponding incident cardinal 

point. Similarly, for the emergent cardinal points, one draws a horizontal line at 

the value of 
X

1
 in T and constructs a vertical line at the intersection of the 

horizontal line with L. The intersection of the vertical line with Z locates the 

position of the corresponding emergent cardinal point. 

 

3.6.5 Pascal’s ring  

Pascal (1939, 1947, 1950a, b) described a memory scheme in the shape of 

a benzene ring to remember the equalities between the six cardinal points, shown 

in Figure 3.6.5. He gives the equalities without any proof, his main purpose is to 

create a memory scheme to aid practitioners (Pascal, 1939). In successive articles  

 

Figure 3.6.5 Pascal’s ring, showing the equalities as distances among the cardinal 

points of a general system. From the diagram we can see that each of two sides that are 

parallel are equal in their distance apart in the system. Therefore we have four equalities 

N,NPP 00   NFPF 00  , PFNF 00   and PNNP 00  .  
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he then uses the “benzene ring” to show how the points shift when a 

compensatory system is placed with its emergent principal point at the incident 

focal point of the system or eye (Pascal, 1950a), or how aphakia affects the ring 

(Pascal, 1947). Pascal states that “distances represented by opposite parallel lines 

are equal”. He gives the four equalities NNPP 00  , NFPF 00  , PFNF 00   and 

PNNP 00  . In Pascal’s initial article (1939) he placed less emphasis on the fourth 

equality, but later included it and stated that the distance PNNP 00   represents 

the “equivalent radius of the system” eqr  (1950a) which is the radius of a single 

refracting surface that can replace the system. 

In an eye the principal and nodal points are located very close together and 

it is difficult to see, firstly, what the sequence of points is and, secondly, the shifts 

when the system undergoes some change such as refractive compensation or 

accommodation. In this way Pascal’s ring is particularly useful in that it 

“magnifies” the changes in the relationships between the cardinal points when 

comparing more than one system. It is important to note that Pascal’s ring is not 

drawn to scale but the sides represent a proportional change between two or more 

systems.  

Harris (2011a) proved Pascal’s equalities and further proposed that the 

equalities in the ring represent not just magnitude, but he gave the distances 

between the cardinal points direction as well. This ties up with the directions of 

the equalities given in Figure 3.6.3. In Figure 3.6.6, we see Pascal’s ring again, 

 

 

Figure 3.6.6 Pascal’s ring showing equalities and their distances and directions among 

the cardinal points of a general system. Arrows that are the same colour are equal in 

length follow the same direction, consistent with Equations 3.6.13 to 16. All the 

directions have the sense of travelling from left to right, the same as light. 
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but this time with the equalities represented by distance and direction and using 

the same colour-coding that was given in Figure 3.6.3. The blue line represents 

the negative incident equivalent focal length. 

 

3.7 The transformed transference  

In Section 3.2.5 we saw that symplectic matrices (Sp( nn 22  ;R)) are 

closed under multiplication, inversion and transposition but are not closed under 

addition nor multiplication by a scalar. This creates a problem when we wish to 

calculate, for example, an average of symplectic matrices, including transferences 

in particular. In an effort to find an average eye, researchers have investigated a 

number of transformed transferences and characteristic matrices. These include 

the exponential-mean-log transference (Harris and Cardoso, 2006; Harris, 2004b, 

2005, 2007, Mathebula, Rubin and Harris, 2007), metric geometric mean 

transference (Harris, 2008), Cayley transforms (Cardoso and Harris, 2007) and 

four characteristic matrices (van Gool and Harris, 2005; Harris and van Gool, 

2004).  

Our interest in these transformed transferences, for the purpose of this 

dissertation, lies not in calculating an average transference, but in the transformed 

matrix itself. Both the logarithm of a symplectic matrix and the Cayley transform 

are Hamiltonian and the characteristic matrices are symmetric. For 1n  this 

lends itself to being represented graphically in a three-dimensional space. The 

metric geometric mean has the limited scope of only calculating the mean of two 

transferences and therefore will not be explored further. We take a look at each of 

these transformations in the general sense. 

 

3.7.1 The logarithmic transform 

 The exponential-mean-log-transference has proven to be particularly 

useful in calculating a meaningful average of an optical system. Mathebula, Rubin 

and Harris (2007) and Mathebula and Rubin (2011) have successfully used this 

method to calculate the mean of a number of readings of the cornea with 

allowance for thickness using the Pentacam, in a group of subjects. Consequently, 

Mathebula, Rubin and Harris (2007) and Mathebula and Rubin (2011) were able 
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to calculate the variance-covariance matrix in Hamiltonian space of the linear 

optical character of the cornea and the spread of the power of the cornea.  

The Lie algebra is related to the matrix Lie group through the matrix 

exponential by passing information from the Lie algebra to the matrix Lie group. 

In particular, the Lie algebra defines a linear space, thereby making the Lie 

algebra not only simpler, but more understandable. To define the Lie algebra, let 

G be a matrix Lie group. The Lie algebra of G, denoted by g, is the set of all 

matrices X such that Xte  is in G for all real numbers t. If X is any nn  real 

matrix, then Xte  will be real and invertible. The Lie algebra of GL(n;R) 

represented by the set of matrices X is real and denoted gl(n;R) (Hall, 2004:27, 

38-39). 

 The Lie algebra of the real symplectic group is denoted sp(n;R) and is the 

space of nn 22   real matrices. If H is any nn 22   real matrix, then Hte  will be 

real and invertible. sp(n;R) is a subset of gl(n;R) and is therefore also a linear 

space, allowing one to do statistical analyses. We refer to the set of matrices h that 

define the symplectic algebra as Hamiltonian matrices (Hall, 2004: 41). 

In simpler terms, the principal matrix logarithm of a real symplectic matrix 

(belonging to Sp(n;R)) results in a Hamiltonian matrix (belonging to sp(n;R)) and 

the principal matrix exponential of a Hamiltonian matrix results in a symplectic 

matrix (Sanyal, 2001: 71; Bernstein, 2005: 88-89, 434; Dieci, 1996, 1998; Harris 

and Cardoso, 2006; Harris, 2005
; 

Hall, 2004: 41). This relationship between 

symplectic and Hamiltonian matrices is referred to as the exponential map and the 

matrix logarithmic map (Sanyal, 2001: 72-73). Because the set of Hamiltonian 

matrices defines a linear space it is closed under matrix addition, multiplication by 

a scalar, transposition and the commutator operator (Dieci, 1996, 1998), they are 

amenable to the calculation of an average of any number of Hamiltonian matrices. 

The exponential-mean-log-transference is defined as (Harris and Cardoso, 

2006; Harris, 2004b, 2005, 2007) 














 



N

j

j
N 1

Log
1

exp:
~

SS .       (3.7.1) 
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The principal matrix logarithm is calculated in Matlab
®
 by using the command 

logm and the matrix exponential by using expm. (This is not the same as the 

command log which takes the logarithm of each entry in the matrix separately.) 

In general 

GX Log          (3.7.2) 

where G
X e  and 

nnRG  provided G is invertible and has no negative real 

eigenvalues (Dieci, 1996, 1998). Any matrix that is invertible has at least one 

logarithm (Dieci, 1996), which for our purposes means that, because all 

transferences are invertible, they have at least one logarithm. Cardoso (2005) 

shows that the principal matrix logarithm of matrix G is an infinite series.  

We represent the transformed transference by Ŝ .  In terms of its entries we 

follow Harris’s (2005) lead and write the transformed transference as  
















DC

BA
S

ˆˆ

ˆˆ
ˆ           (3.7.3) 

where Ŝ  is Hamiltonian. However, our interest lies not in the average of 

transferences, but in the Hamiltonian space itself. A nn 22   matrix H is 

Hamiltonian if (Bernstein, 2005: 85; Dieci, 1996, 1998; Fiori, 2011; Watkins, 

2004; Hall, 2004:41)  

HEEH
TT           (3.7.4) 

where  













OI

IO
E .         (3.7.5) 

It follows from Equations 3.7.3 to 5 that 

Tˆˆ DA           (3.7.6) 

and the B̂ and Ĉ  are both symmetric (Sanyal, 2001: 69; Dieci, 1996; Harris, 

2007; Hall, 2004:41). Because D̂  is dependent on Â  there are four independent 

entries between them and because B̂  and Ĉ  are symmetric they each have three 

independent entries, therefore Ŝ  has only ten independent entries (Harris, 2007a). 

However, our reservation with this transformed matrix is that each of the entries 

has a different unit. Â  and T
D̂  are unitless, B̂  is in units of length and Ĉ  is in 
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units of inverse length. So while Ŝ  defines a linear space, it does not define an 

inner-product space. 

For a Gaussian system Equation 3.7.3 simplifies to  
















DC

BA

ˆˆ

ˆˆ
Ŝ             (3.7.7) 

where each of the entries is a scalar and  

DA ˆˆ  .         (3.7.8) 

The result is that for Gaussian systems Ŝ  has only three independent entries. This 

implies that we can create a three-dimensional graph of the relationship among the 

three entries. The chromatic properties on a Gaussian system will be shown in 

Chapter 8 and was shown as a nearly perfectly straight line for the reduced eye in 

an accompanying article (Evans and Harris, 2011). 

 

3.7.2 The Cayley transform 

Similar to the logarithmic transference, a Cayley transform maps a 

symplectic matrix (Sp(n;R)) into a Hamiltonian matrix (sp(n;R)). Cardoso and 

Harris (2007) introduced this and a few other transforms as alternative methods 

for mapping symplectic matrices into Hamiltonian matrices, and reversing the 

process in an effort to find other methods of calculating an average eye, or more 

generally, an average system. Cardoso and Harris (2007) note that one can 

construct an infinity of rational matrix functions that transform symplectic into 

Hamiltonian matrices. The one that plays an important role in several fields of 

mathematics and engineering (Cardoso and Harris, 2007; Fiori, 2011) and which 

we shall study is the Cayley transform. The Cayley mean is given by Cardoso and 

Harris (2007) as  

 













 




N

j

j
N 1

1

C

1~
SS CC        (3.7.9) 

where  SC  is the Cayley transform of S and 1C  represents the inverse Cayley 

transform. 

In general, the Cayley transform is defined as (Bernstein, 2009: 208, 239; 

Sanyal, 2001: 72; Cardoso and Harris, 2007; Puzio, 2013) 
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      IAIAIAIAB 
 11

               (3.7.10) 

and its inverse is defined as (Bernstein, 2009: 208; Sanyal, 2001: 72) 

      IBIBIBIBA 
 11

                (3.7.11) 

where A and B are nn  real matrices provided the respective inverses exist and I 

is the nn  identity matrix. From Equation 3.7.10 we can see that the factors of B 

are commutative. From Equations 3.7.10 and 11 we can see that the Cayley 

transform is its own functional inverse (Bernstein, 2009:208-209; Tsiotras, 

Junkins and Schaub, 1997; Sanyal, 2001: 72).  

  Others (Fiori, 2011; Golub and van Loan, 1996: 73; Puzio, 2013; 

Bernstein, 2009: 239) define the inverse as  

      BIBIBIBIA 
 11

               (3.7.12) 

where A and B are defined above, the factors of A are commutative and provided 

the respective inverses exist. This inverse is simple to derive from the Cayley 

transform given by Equation 3.7.10 and is given by Puzio (2013). 

The Cayley transform is defined slightly differently by Tsiotras, Junkins 

and Schaub (1997), and Courant and Hilbert (1953: 536-7). Tsiotras, Junkins and 

Schaub (1997), Fallat and Tsatsomeros (2002), Hadjidimos and Tzoumas (2008, 

2009) and Bernstein (2009: 208-209) define the Cayley transform as  

   1
 QIQIC                   (3.7.13) 

(or its commutative equivalent) where C and Q are nn  real matrices and exists 

provided  QI   is invertible. Fallat and Tsatsomeros (2002) and Hadjidimos and 

Tzoumas (2008, 2009) both define the Cayley transform for the set of nn  

complex matrices, however, we will restrict this study to real matrices. Tsiotras, 

Junkins and Schaub (1997) give the inverse transformation as identical to itself. 

Solving Equation 3.7.13 for Q we obtain the same result. Fallat and Tsatsomeros 

(2002) and Courant and Hilbert (1953: 536-7) state that the order of factors may 

be reversed and  QI   commutes with   1
QI . 

For the set of matrices of the order nn 22  , B is a symplectic matrix as 

defined in Equation 3.7.10  and A is a Hamiltonian matrix as defined in Equation 

3.7.11 by Bernstein, 2009: 208-209; Sanyal, 2001: 72 and in Equation 3.7.12 by 

Bernstein, 2009: 239 and Cardoso and Harris, 2007. Equation 3.7.13 is its own 
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functional inverse and so if C is symplectic, Q is the resultant Hamiltonian matrix 

and for the inverse, if C is Hamiltonian, Q is the resultant symplectic matrix.  

In linear optics, because the Cayley transform of a transference is 

Hamiltonian, the units of the entries are the same as for a transference, that is, 

mixed units (Cardoso and Harris, 2007). Because of Equation 3.7.8, the Gaussian 

transformed transference has three independent entries, enabling us to create a 

three-dimensional graph of the Hamiltonian space represented by the Cayley 

Transform (Evans and Harris, 2011).  

We mention in passing that Hamiltonian matrices fulfil the requirements 

for a vector space (Hall, 2004: 43; Anton and Rorres, 2005: 222) and therefore the 

mathematics of vector spaces can be applied to the three-dimensional (for 22S ) , 

ten-dimensional (for 44S ) and fourteen-dimensional (for 55T ) spaces. Symplectic 

matrices on the other hand disobey the requirements for vector spaces and the 

rules of vector spaces cannot be meaningfully applied to symplectic matrices. The 

one-to-one mapping between the symplectic matrices and Hamiltonian spaces 

allows us to not be confined by the restrictions placed on symplectic systems. This 

is important to this dissertation and will be used to this effect in Section 8.2 to 

derive a formula for the dependence of the transference on the frequency of light.  

 

3.7.3 The characteristic matrices  

In an effort to find a set of matrices, related to the transference, that would 

offer a solution to quantitative analyses of the optical character of optical systems, 

Harris and van Gool (2004) turned to the four characteristic matrices. These are 

the point characteristic matrix P, the angle characteristic matrix Q, and the first 

and second mixed characteristic matrices, M and N respectively. According to 

Guillemin and Sternberg (1984:17, 35-37) the terminology point, angle and mixed 

characteristic was introduced by Hamilton, however, modern physics literature 

refers to them as the point and angle eikonals. Walther (1995:22, 238-241) refers 

to P as Hamilton’s point characteristic and distinguishes between the point 

eikonal P and the angle eikonal Q. Arnaud (1970), discusses the point 

characteristic P and the ray matrix S . The characteristic matrices are, in each 

case, defined for linear systems, however, we will concentrate on the application 
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to Gaussian systems. Harris and van Gool (2004) and van Gool and Harris (2005) 

apply the characteristic matrices to the 55  transference of the astigmatic 

heterocentric system, whereas Guillemin and Sternberg (1984: 35-36), Walther 

(1995:22, 238-241) and Arnaud (1970) apply the characteristic matrices to the 

44  transference of the astigmatic homocentric system.   

For any given Gaussian system S, the incident position 0y  and reduced 

inclination 0  of the ray is mapped to the emergent position y and reduced 

inclination   by Equation 3.2.10. This equation pre-supposes that the incident 

state of the ray is known and that the emergent state of the ray is sought. Of 

course, if the opposite is true, that is if the emergent state of the ray is known, then 

it is a simple matter to calculate the incident state of the ray by 

ρSρ
1

0

                    (3.7.14) 

where 1
S  is the matrix inverse of the transference. In both these situations, with 

regards to the state of the ray, there are two dependent and two independent 

variables.  

However, Harris and van Gool (2004) point out that it is possible for other 

combinations of two dependent and two independent variables to exist. Each of 

the four characteristic matrices represents one of the four possible combinations 

of dependent and independent variables with respect to the incident and emergent 

positions and inclinations. In each case, the characteristic matrix functions as the 

operator on the chosen vector. The four operations are represented in Equations 

3.7.15, 16, 18 and 19, below, as given by Harris and van Gool, (2004).  

The point characteristic defines the incident and emergent inclinations 

when the positions are chosen:  





















00

y

y
P .                  (3.7.15) 

Similarly the angle characteristic defines the incident and emergent positions 

when the reduced inclinations are known: 



















y

y00




Q .                  (3.7.16) 
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As Harris and van Gool (2004) point out, from the above two equations it is 

obvious that 

1QP                    (3.7.17) 

provided Q is non-singular. The derivations for P and Q make use of the Schur 

complements (Equations 3.2.20 to 23) (Harris, 2010d).  

The first and second mixed characteristic matrices operate as follows: 



















y

y 00 


M                   (3.7.18) 

and  





















 00 y

y
N .                  (3.7.19) 

1NM                    (3.7.20) 

provided N is non-singular. 

 

Point characteristic 

The point characteristic is defined for a Gaussian optical system as  
























11

11

DBB

BAB
P                   (3.7.21) 

provided 0B . Difficulties can be anticipated as B approaches zero (van Gool 

and Harris, 2005), which should not pose a problem for any “reasonable” eye. 

This would be a problem for conjugate systems including thin systems, but for an 

eye or schematic eye 0B . The matrix is symmetric and Harris and van Gool 

(2004) note that the minus sign in front of 0  (Equation 3.7.15) is what creates 

the symmetry. Of particular interest is the first entry which is the refractive 

compensation (Equation 3.4.6) (Harris and van Gool, 2004; van Gool and Harris, 

2005).  

 

Angle characteristic  

The angle characteristic Q is the inverse of P. From Equations 3.7.15 and 

16 this appears obvious, however From Equations 3.7.21 and 22 this is not 
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immediately apparent, but is the result of symplecticity (Equation 3.2.24). Q is 

defined for a Gaussian optical system as 




















11

11

ACC

CDC
Q                   (3.7.22) 

provided 0C . 0C  defines an afocal system, which the eye is clearly not. The 

matrix is again symmetric, a consequence of the minus sign in front of the 0  in 

Equation 3.7.16 (Harris and van Gool, 2004). Walther (1995:242) explores the 

advantage that for the angle eikonal it is easy to shift the entrance and exit planes. 

We can see this is possible from Equation 3.7.16. 

 

First mixed characteristic  

The first mixed characteristic is defined for a Gaussian system as 




















11

11

BDD

DCD
M                  (3.7.23) 

provided 0D , that is, provided the system is not entrance-plane focal.  

 

Second mixed characteristic  

The second mixed characteristic N is the inverse of M (Equation 3.7.20) 

which is easy to prove and is a result of symplecticity. N is defined for a Gaussian 

system as  




















11

11

CAA

ABA
N                   (3.7.24) 

provided 0A . In Section 3.3.1 we saw that A defines the ametropia of the 

system (Harris, 1999a). This is potentially a problem for eyes because 0A  

defines an emmetropic eye. Problems can be anticipated in eyes where A 

approaches zero (van Gool and Harris, 2005), which includes emmetropic eyes, 

compensated eyes and most schematic eyes.  

It is the very issue of singularity of these characteristic matrices that 

implies that the choice of any two of 0y , y, 0  or   does not necessarily fix the 

other two (Harris and van Gool, 2004). Existence and uniqueness create potential 

problems in the use of these characteristic matrices. 
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3.8 Vergence and wavefronts  

Thus far in this chapter on linear optics and Gaussian systems, we have 

been studying the optics of systems with a strong emphasis on the transference 

and the properties of the system, both fundamental and derived. Vergence and 

wavefronts are not  properties of a system, but rather our handle on light. Thus far 

we have considered the effect of the system on a single ray, quantified as a vector 

ρ . We now turn our attention to the effect of the system on a pencil of light, 

quantified as a matrix L. 

Vergence is merely the local reduced curvature of the wavefront. The 

wavefront is denoted as positive (converging) or negative (diverging). It also has a 

local inclination (Harris, 1996b).  

 

3.8.1 Stigmatic vergence and wavefronts 

The reduced vergence at entrance plane 0T
 
of system S is 0L . For an 

object O at a longitudinal distance Oz  upstream of the entrance plane we have 

reduced vergence given as 

O

0
0

z

n
L  .         (3.8.1) 

There are two special cases, when the object point is distant, Oz , we have 

00 L D, and when the object point is at the entrance plane, 0O z m and 

0L . 

 

3.8.2 Astigmatic vergence and wavefronts 

In the presence of astigmatism the generalisation of the scalar reduced 

vergence L is the matrix reduced vergence L (Fick, 1973d; Keating, 1981a,b). L is 

a 22  symmetric matrix identical in mathematical character to the dioptric power 

matrix F of a thin system (Fick, 1972, 1973a, b ; Long, 1976). That is to say, for 

an astigmatic wavefront, the eigenvalues are the vergences (reduced principal 

curvatures) along the two principal meridians given by the eigenvectors (Keating, 

1981a, b; Harris, 1996b). The vergence matrix L is always symmetric, even when 

it emerges from a thick astigmatic system with an asymmetric power matrix 
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(Keating, 1981a, b) and for which Harris (1996b) gives a proof, based on the 

symplecticity of the transference. The implication of this is that the two principal 

meridians are always orthogonal. 

For a wavefront incident onto an astigmatic system from an object point O 

at longitudinal position Oz  relative to 0T , Equation 3.8.1 generalizes to 

IL
O

0
0

z

n
 .         (3.8.2) 

For a distant object point OL 0 D. 

 

3.8.3 The wavefront, its curvature and direction: distant object 

For a distant object point, Harris (1996b) derives the equation for a 

wavefront at the optical axis as 

nn
z 

αyLyy
TT

2
.        (3.8.3) 

This equation describes the geometry of the wavefront exiting the system and can 

be thought of as the sagitta at the optical axis of the wavefront as it exits the 

system. 

1 CAL          (3.8.4) 

is the reduced wavefront curvature and  

0

T
αAα



           (3.8.5) 

is the reduced direction of the emergent wavefront at the optical axis. y is the 

transverse position of the ray at the exit plane. When the eigenvalues of L are 

distinct, the wavefront is astigmatic and when the eigenvalues are not distinct, the 

wavefront is a paraboloid of revolution (stigmatic). When A is singular, Equations 

3.8.3 to 5 do not hold and the wavefront is not defined. The wavefront has 

reduced to a singularity and there is a focal point or line in the transverse plane. 

 

3.8.4 Vergence emergent from a system: object at a finite distance 

We now consider a system S with entrance plane 0T , exit plane T and 

longitudinal axis Z. The vergence incident onto the system at 0T  is 0L . Harris 

(1996b) gives the vergence emergent from the system at exit plane T as 
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   1

00


 BLACDLL        (3.8.6) 

and the emergent direction of the wavefront as 

  0

T

0 



  αBLAα .        (3.8.7) 

0α  and α are the reduced inclinations of the rays at the optical axis incident and 

emergent to the system at the entrance and exit planes respectively. 

 

3.8.5 Vergence across elementary systems 

Homogenous gap 

The transference of a homogenous gap of width z is given by Equation 

3.2.7. Substituting into Equation 3.8.6 we obtain (Harris, 1996b) 

  LIL 
 11

0  ,        (3.8.8) 

the generalization of the equation for vergence across a homogenous gap.  

 

Refracting surface 

The transference of a thin system is given by Equation 3.2.9 with F 

symmetric. Both the power of a refracting surface and the power of a thin lens F 

are symmetric matrices. Substituting from Equation 3.2.9 into Equation 3.8.6 we 

obtain 

LFL 0 ,         (3.8.9) 

the generalization of Gauss’ equation, first derived by Keating (1981a) and then 

by Harris (1996b). 

 

3.8.6 Position of point or line foci 

Calculations often require us to determine where focal points or lines are 

for a given object point. The calculation usually will give an answer as a distance, 

along the longitudinal axis, either upstream or downstream from the reference or 

image plane. For a stigmatic system this is simply obtained by solving 

L

n
z                      (3.8.10) 
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(from Equation 3.8.1). For an astigmatic wavefront one will obtain two orthogonal 

line foci (Keating, 1981b). The derivation for determining the longitudinal and 

transverse positions and orientations of the line foci will be given in Chapter 6. 

 

3.9 Summary 

This chapter has taken an in-depth look at linear and Gaussian optics and 

in particular the transference. We saw that we can calculate the effect that the 

system has on light by tracing either a single ray (Equation 3.2.31) or a pencil of 

light (Equation  3.8.6) through the optical system. Familiarly, these are the state of 

the ray vector or vergence, respectively. We took a look at the fundamental 

properties of an optical system as well as four special systems. We then spent 

some time studying a selection of derived properties of the optical system. 

The derived properties that form part of this study include power, 

refractive compensation, front- and back-vertex power, magnification and the 

locations of the cardinal points. In addition two transformed transferences and 

four characteristic matrices are included as options for studying the dependence of 

the transference on the frequency of light and as vector spaces that allow 

statistical analysis.  

This chapter is by no means a comprehensive account of Gaussian and 

linear optics and all derived properties. We have limited ourselves to a small 

selection of derived properties that are affected by the frequency of light in a 

Gaussian optical system. We also saw that not all the derived properties that we 

will need for our study of chromatic properties are available in the literature. 

Additional formulae will be derived in Chapter 5. 
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4 BACKGROUND THEORY: CONSIDERATIONS 

 

The previous two chapters took a detailed looked, firstly, at how chromatic 

aberrations have been defined in classical and physiological optics and, secondly, 

at Gaussian and linear optics of systems. Chapter 3 gave a broad overview of 

linear optics in general, the fundamental properties and a selection of derived 

properties from the transference. We saw how we can trace either a single ray 

through a system, or the effect of a system on a pencil of rays in the section on 

vergence and wavefronts.  However, there are a few additional considerations that 

need to be addressed.  

Firstly, we take a look at schematic eyes. After a brief overview of the 

history of schematic eyes, we look at the classification of schematic eyes, from 

the simplest single-surface reduced eye to multi-surface schematic eyes that 

closely mimic a real eye. We then narrow our choice of eyes for this dissertation 

to two, that of the reduced eye, often used in previous studies on chromatic 

properties and Le Grand’s four-surface schematic eye.  

Secondly we take a look at the visible spectrum across which we will base 

our analyses. We define the frequencies we will highlight in tables and graphs in 

Part IV of this dissertation. 

 Thirdly, we consider the arguments for and against using frequency or 

wavelength in our treatment. 

Finally, we take a look at the formulae available for the refractive index of 

a medium as a function of wavelength. We look at formulae for the refractive 

index of water, the medium of the reduced eye, the four media of Le Grand’s 

model eye and air. 

 

4.1 Schematic eyes 

 

4.1.1 A short history of schematic eyes 

Smith (1995) presents a comprehensive history of schematic eyes and this 

is discussed briefly, although we shall mention only the better known schematic 

eyes. For centuries the eye and the functions of the various structures within it 
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were misunderstood. The ancient Greeks and Arabs believed that light emanated 

from the lens inside the eye and caused a visual response when these light rays 

touched an object. This view prevailed till approximately 1000 AD when Ibn al-

Haitham proposed that the light rays travelled from an object into the eye. 

However, it was not until the early sixteenth century that Leonardo da Vinci (c. 

1500 AD) proposed that the lens was responsible for refracting the light.  

Snell discovered the exact law of refraction in 1621 and published by 

Descartes in 1637. Scheiner was the first to attempt to measure the radius of 

curvature of the anterior corneal surface by the rather rudimentary method of 

comparing the size of reflection off the cornea with reflections from various sized 

marbles. Once the correct anatomical structure was understood, Christian 

Huygens proposed the first schematic eye in the seventeenth century.  

Another two centuries went by before Young, in 1801, made more 

accurate measurements of the anterior refracting surface and anterior and posterior 

lenticular surfaces, the depth of the anterior chamber and the refractive indices of 

the humours and lens. As a result the first accurate schematic eye was attributed to 

Listing who described a three-surface schematic eye in 1851 (Emsley, 1950: 524). 

Emsley designed a reduced eye, based on certain parameters of the Gullstrand-

Emsley eye, which is widely accepted (Emsley, 1950: 543-544). 

According to Smith (1995) both the Gullstrand and the Le Grand 

schematic eyes enjoy reasonable popularity. In 1945, Le Grand (1945: 50-51) 

presented two schematic eyes, a full theoretical eye consisting of four surfaces and 

a simplified eye with a single cornea and a lens of zero thickness which too, was 

limited in its usefulness (Smith, 1995; Atchison and Smith, 2002: 45). Le Grand 

(1956: 9-27) did a number of calculations to determine the chromatic dispersion 

of each of the refractive indices. Because of the availability of refractive indices 

as a function of wavelength for all four media it is one of the theoretical model 

eyes to be used in this dissertation. This will be looked at in more detail in Section 

4.4.3. 
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4.1.2 Classification of schematic eyes 

According to Smith (1995) paraxial schematic eyes are classified into 

three classes, exact, simplified and reduced. Exact schematic eyes attempt to 

model a real eye as much as possible with a minimum of four spherical surfaces. 

Simplified schematic eyes reduce the number of surfaces to two or three. Reduced 

schematic eyes transfer all the refracting power to a single refracting surface or 

“cornea”, usually resulting in a smaller radius of curvature and shortening of the 

axial length. Apart from the refractive index of the internal medium, none of the 

dimensions represent those of a real eye.  

It is important to acknowledge the limitations of any model being studied. 

The limitations of paraxial schematic eyes are firstly that all surfaces are 

rotationally symmetrical, spherical and centred.  

Secondly, it is assumed that the medium is homogenous and isotropic 

within each element. In a real eye the lens, in particular, is a gradient index lens. 

For these two reasons, the schematic eyes are poor predictors of monochromatic 

aberrations.  

Thirdly, the eye is built from a combination of average parameters, each 

considered to be averages of many individual values. These average parameters 

are combined to represent an “average eye”. It is important to note that this 

average eye is not an average of many eyes, but an eye created by a combination 

of average parameters (Rabbetts, 2007: 221-241; van Gool and Harris, 2005). This 

average eye is completely different to the average eye mentioned in Section 3.7 

and sought by Harris, van Gool and Cardoso (Harris, 2004b, 2005, 2007; Harris 

and van Gool, 2004; van Gool and Harris, 2005; Harris and Cardoso, 2006; 

Cardoso and Harris, 2007; Harris, 2008).  Individuals may vary significantly from 

these values. With the exception of the variations on the Bennett-Rabbetts eye, the 

schematic eyes are usually attempts to represent an emmetropic eye, based on a 

monochromatic reference wavelength which is usually yellow light.  

Fourthly, the cornea is assumed to be spherical in shape, whereas a real 

cornea is aspherical (ellipsoid). Finally, the fovea is assumed to be on the optical 

axis and as a result the optical and visual axes coincide (Smith, 1995).  
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For completeness it is necessary to mention a newer class of schematic 

eyes, namely finite or wide angle schematic eyes. This class of model eyes 

attempts to overcome some of the limitations of the paraxial schematic eyes by 

including aspheric refracting surfaces, gradient index lenses, a curved retina and 

lack of surface alignment along a longitudinal axis (Smith, 1995; Atchison and 

Smith, 2002:39). A number of such eyes have been developed, mostly over the 

past forty years (Smith, 1995; Rabbetts, 2007:227-8). Of particular interest is the 

chromatic eye developed by Thibos et al (1992) with the express purpose of 

creating a reduced eye that mimics the effects of chromatic aberration found 

experimentally. 

Paraxial schematic eyes are well suited to study numerous properties of 

the eye within Gaussian optics, including power, positions of the six cardinal 

points, pupil positions and sizes, retinal image size of small objects, 

magnifications and to a limited extent, the causes and effects of refractive errors 

and accommodation. Because the paraxial schematic eyes are Gaussian models, 

calculations are restricted to small image sizes and small pupils. The choice of eye 

will depend on the complexity of the subject being studied and level of accuracy 

desired. These model eyes are excellent models for calculations of chromatic 

aberrations. This is because the eye’s media are composed mainly of water and 

the refractive indices vary little across eyes (Smith, 1995). 

 

4.1.3 Emsley’s reduced eye 

The concept of the reduced eye was first proposed by Listing (Emsley, 

1950: 543).  The advantage of the reduced eye (see Figure 4.1.1) is its simplicity. 

The reduced eye has a single stigmatic refracting surface of radius of curvature r 

and a homogenous gap of length z. It implies that any ray intersecting the 

refracting surface orthogonally is an optical axis and therefore there is an infinity 

of optical axes. We choose one such ray as our longitudinal ray.  

When designing the reduced eye, Emsley (1950: 523-544) based a number of 

parameters on the Gullstrand-Emsley schematic eye. He noted that the principal 

points of the schematic eye are very close together (0.3 mm apart) and he allowed 

these “to coalesce into a single intermediate point”. He then reduced the schematic 
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eye into a single spherical refracting surface. Emsley wanted the focal points to 

coincide with those of the schematic eye. According to him, this fixed the power, 

radius of curvature and position of the single refracting surface all at once. He 

placed the vertex of the refracting surface at the principal point of the reduced eye, 

5/3 mm behind that of the Gullstrand-Emsley schematic eye. The centre of the 

radius of curvature was placed at the single intermediate nodal point, giving a 

radius of curvature r of 50/9 mm (or 1/180 m).  Because the eye is emmetropic, 

the length z of the eye is now 200/9 mm (or 1/45 m) and is also the emergent focal 

length. The incident focal length increases to 50/3 mm upstream of the refracting 

surface. He placed specific emphasis on the power 60 D and chose the refractive  

index in the reduced eye to be the same as that of water which, according to 

Emsley, is 4/3. He took the index of air to be 1 (Emsley, 1950: 525-527, 543-544; 

Bennett & Rabbetts, 1984: 18). 

The reduced eye works well for calculating chromatic properties 

independent of object, image and aperture positions. In order to include chromatic 

properties dependent on object or image and aperture position, Thibos (1987) 

adapted the reduced eye by placing a pupil plane in line with that of the 

Gullstrand-Emsley schematic eye. This places the pupil 3.63 mm before the nodal 

point, or 1.926 mm behind the refracting surface. Thibos et al (1992) further 

adapted the reduced eye to enable calculations of chromatic properties to closely 

equate to those results found experimentally. They adapted the constants in 

Cornu’s formula to match their experimental values and modified the corneal  

 

 

Figure 4.1.1 The reduced eye as a defined optical system. The length is z, with optical 

axis Z, the radius of curvature of the refracting surface is r, the refractive index outside 

the system is 0n and inside the system is n.  
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profile to an ellipsoid. They refer to this reduced eye with three modifications as 

the “Chromatic eye”. In this dissertation we will make use of a reduced eye with 

the same r and z as Emsley’s eye and with an index n dependant on the frequency 

of light based on the modified formula proposed by Thibos et al (1992).  

 

4.1.4 Le Grand’s full theoretical eye 

Le Grand proposed his two schematic eyes in 1945. Each schematic eye 

had an unaccommodated and accommodated version (Le Grand, 1945: 50-51, 

1980: 65-67). This dissertation uses the unaccommodated full theoretical version 

which has four refracting surfaces. A schematic diagram of Le Grand’s eye is 

shown in Figure 4.1.2. The dimensions of Le Grand’s full theoretical 

unaccommodated eye are given in Table 4.1.1 (Le Grand, 1945:50). Subscripts 

used here are defined in Table 4.1.1 and Figure 4.1.2.  

The dimensions given in Table 4.1.1 are limited to the radii of curvature of 

the refracting surfaces and the width of the gaps between them. The refractive 

indices in Table 4.1.1 are for a reference refractive index of 589 nm (Fraunhofer 

line D). At this reference refractive index, Le grand’s schematic eye is 

emmetropic (Le Grand, 1956: 12-19).  

 

 

 

Figure 4.1.2 Le Grand’s Complete Theoretical Eye, comprising four refracting 

surfaces and four homogenous gaps. The refracting surfaces are the anterior and posterior 

corneal surfaces (K1 and K2) and anterior and posterior lens surfaces (L1 and L2). The 

gaps are the thickness of the cornea (K), the depth of the anterior chamber (Aq), the 

thickness of the crystalline lens (L) and the depth of the posterior chamber (V). The 

optical axis Z is chosen to be centred with each of the stigmatic refracting surfaces, 

implying no deflectance or tilt in either system. 

 



II  LITERATURE REVIEW  4 Background theory: Considerations 

91 

 

Table 4.1.1 The dimensions of Le Grand’s full theoretical unaccommodated eye (Le 

Grand, 1945: 50). 

Refracting surface 

or medium 

Abbreviated 

subscript 

Radius of 

curvature 

(mm) 

Width  (mm) Refractive 

index 

Corneal anterior surface K1 7.8   

Cornea K  0.55 1.3771 

Corneal posterior surface K2 6.5   

Anterior chamber Aq  3.05 1.3374 

Lens anterior surface L1 10.2   

Lens L  4.0 1.42 

Lens posterior surface L2 –6   

Posterior chamber V  16.5965 1.336 

 

4.2 Visible spectrum 

The limits of the visible spectrum differ among studies and industries. The 

definition of the colour bands also differs (compare Sears, Zemansky and Young, 

1987:827 and Keating: 2002: 475). For the purposes of this dissertation, we adopt 

the spectrum with frequencies between 430 and 750 THz (Sears, Zemansky and 

Young, 1987: 827) which represents vacuum wavelengths between 399.7 and 

697.2 nm, approximately. This represents the range over which human spectral 

sensitivity ranges from 1 to 100% (Rabbetts, 2007: 287; Thibos et al, 1992; Le 

Grand, 1957: 7-8, 55-58, 71-73).
  

In Part IV wherever results are displayed graphically and where possible, six 

coloured reference points will be displayed. These six points represent an even 

spread across the chosen spectrum, with a gap of 64 THz between each reference 

point. The six colours are red, orange, yellow, green, blue and violet, and include 

the two spectral range end-points. The purpose is to create a consistent visual 

display that is comparable across all the results. The frequencies and 

corresponding calculated wavelengths of the six colours are detailed in Table 

4.2.1. Frequency is given in THz  112 s10   and wavelength in nm  m10 9 . 

The printed colours are not intended to be an exact replication of that particular 

frequency, but merely a key to the graph and the reference points. 
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Table 4.2.1 The frequencies and wavelengths of the six specified coloured reference 

points. 

Colour Frequency in THz  Vacuum wavelength in nm   

Red 430 697.2 

Orange 494 606.9 

Yellow 558 537.3 

Green 622 482.0 

Blue 686 437.0 

Violet 750 399.7 

 

4.3 Frequency versus wavelength  

Pease and Barbeito (1989) look at the relationship between frequency and 

wavelength for a number of studies involving chromatic aberration and conclude 

that results using frequency or wavenumber (the inverse of wavelength) are 

“nearly perfectly linear” in contrast to those using wavelength. They cite several 

reasons to support using frequency rather than wavelength, perhaps the most 

important being that frequency is independent of the medium whereas wavelength 

is not and that energy is directly proportional to frequency. Furthermore, we note 

from Cornu’s hyperbolic formula for chromatic dispersion, that refractive index 

varies inversely with wavelength. These reasons make a compelling argument to 

study the dependence of properties on the frequency of light rather than on 

wavelength. Koczorowski (1990) and Rabbetts (2007:290, 292) both show this 

linear relationship graphically. Confirmation will be obtained in Chapter 8.  

 

4.3.1 Frequency, wavelength and refractive index relationships 

The fundamental relationship between frequency   and vacuum 

wavelength 0λ  is given by 

00 c          (4.3.1) 

where light traveling in a vacuum has a speed 1

0 m.s458792299 c  as defined 

by the 17th General Conference on Weights and Measures in November 1983. As 

light travels from one medium to another, the frequency remains the same 

whereas the wavelength and speed change.  
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In a particular medium light travels at speed 0cc  . The index of 

refraction in the medium is defined by      

c

c
n 0 .         (4.3.2) 

Hence, 



0n          (4.3.3) 

where λ  is the wavelength in a medium. 

According to Sears, Zemansky and Young (1987: 843) indices of 

refraction (for white light) are typically quoted for yellow light from a sodium 

lamp and with a wavelength of nm589 , which is near the middle of the 

visible spectrum. The light emitted from this sodium lamp is inexpensive and 

nearly monochromatic. The refractive index of air for yellow light is 

approximately 1.0003 but is usually expressed as 1. 

 

4.3.2 Frequency scale and linearity 

Pease and Barbeito (1989) argue that the use of the frequency scale 

facilitates data analysis for the study of chromatic aberration. The linear nature of 

the frequency scale makes analysis simpler to compute and to understand.  

 

4.4 Refractive index as a function of frequency for optical media and air 

According to Rabbetts (2007: 287), “dispersion is the variation in 

refractive index of a medium with wavelength”. The constringence or Abbe 

number is the reciprocal of dispersion (Sivak and Mandelman, 1982).  

There are few formulae available that give the refractive index of a 

medium as a function of wavelength (Sivak and Mandelman, 1982; Rabbetts, 

2007: 287). Cornu’s formula gives the refractive index for water as a function of 

wavelength, includes three constants and has the form of Equation 4.4.1. This 

formula has formed the basis for a number of formulae used for the media of the 

four-surface eye and the reduced eye, with different values being given for the 

constants. Thibos et al (1992) based their formula on Cornu’s formula, the 

constants being calculated from experimental data.  
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According to Le Grand (1956: 12), early results of the dispersion of the 

cornea, aqueous, lens and vitreous were obtained by Kunst in 1923. In 1923 

Polack obtained Abbe numbers for the cornea, aqueous and lens, but had 

reservations about the value for the lens. These results were confirmed by Tagawa 

in 1928. Le Grand (1956: 11-13) considered Cornu’s formula to be an adequate 

approximation for the humours of the eye within the visible spectrum. He 

calculated the constants by averaging the refractive indices of water and saline for 

a number of wavelengths. Based on Cornu’s formula, and from Polack’s 

experimental data, he was able to tabulate the refractive indices for the four media 

of his schematic eye for each of the Fraunhofer lines (A, C, D, F and G). Villegas, 

Carretero and Fimia (1996) extended Le Grand’s tabulated results and obtained a 

polynomial fit of the refractive indices for the four media. 

According to Koczorowski (1990) other formulae are available for 

calculating the dispersion of media such as those of Schmidt, Sellmeier, Hartman 

and Herzberger. However the constants in these formulae have not specifically 

been calculated for the media of the eye. Conrady’s modification of Schmidt’s 

formula is applicable to optical materials and Cauchy’s formula is more suited to 

media with absorption in the shortwave part of the spectrum. Cauchy’s and 

Sellmeier’s formulae are rough approximations of each other while Cornu’s, 

Hartmann’s and Herzberg’s formulae appear to have a heuristic rather than 

theoretical basis (Koczorowski, 1990).  

More recently Sivak and Mandelman (1982) obtained mean refractive 

indices at four wavelengths of the ocular media of cow, pig, frog, chicken, rock 

bass, albino rat and cat using Abbe and Pulfrich refractometry. They also 

measured the human lens and obtained mean refractive indices and constringence 

values for the periphery and core for the four wavelengths. They concluded that 

the humours of the eyes are less dispersive than water, the cornea is more 

dispersive at short wavelengths and the lens is considerably more dispersive than 

water. According to Rabbetts (2007:288) Sivak and Mandelman’s study is the 

only significant experimental study on the dispersion of human ocular media since 

Kunst and Polack.  



II  LITERATURE REVIEW  4 Background theory: Considerations 

95 

 

Formulae for the refractive index of air also exist. The refractive index 

varies with air temperature, humidity, air pressure, carbon dioxide level and 

pollution. Cauchy’s and Sellmeier’s formulae specify standard levels for each of 

these factors (Hodgman, 1959: 2943). Lorentz’s formula can accommodate 

humidity levels, however Ciddor’s formula can account for each of these factors 

and calculate the refractive index for that situation (Ciddor, 1996).  

 

4.4.1 Refractive index of water 

Le Grand (1956: 11) bases his calculations of the refractive index of the eye on 

Cornu’s formula, although it lacks a theoretical basis. He gives Cornu’s formula 

as 




 


nn         (4.4.1) 

where the three positive constants are given in Table 4.4.1. The three constants for 

pure water he based on Dorsey’s work of 1940 and the constants for sea water, 

with salinity 37.4 parts per thousand, he based on Bein from 1935. The 

measurements were all done at 20°C. In Le Grand’s table of measured versus 

calculated values, the refractive indices compare well across the visible spectrum 

for both pure water and saline water. 

 

Table 4.4.1 The constants given by Le Grand (1956: 11) for Cornu’s formula 

(Equation 4.4.1) for pure water and for sea water (salinity 37.4 parts per thousand) at 

temperature 20°C. 

 Pure water Sea water 

n  1.31848 1.32492 

  0.0066620 nm 0.0068153 nm 

   0.1292 nm 0.1333 nm 

 

 

4.4.2 Refractive index of the reduced eye  

Thibos et al (1992)
 
represent the refractive index of the reduced eye as a 

function of wavelength as follows 

c

b
an





         (4.4.2) 
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where 535320.1a , nm685.4b  and nm102.214c . The formula is based 

on Cornu’s formula for refractive index of water and constants were derived from 

clinical experimentation on real eyes. Using this formula Thibos et al (1992)
 

showed that the refractive index of the body of the reduced eye changes more 

rapidly with wavelength than a reduced eye filled with water. The predictions for 

longitudinal chromatic aberration using this formula more closely approximate 

experimental data than Emsley’s reduced eye filled with water.  

 

4.4.3  Refractive indices of Le Grand’s full theoretical eye 

Le Grand (1956: 9-27) studied chromatic dispersion and chromatic 

aberration in detail. He too based his calculations on Cornu’s formula. He 

published a table of refractive indices for the cornea, aqueous humour, lens and 

vitreous humour for five wavelengths represented by Fraunhofer lines A, C, D, F 

and G.  

Villegas, Carretero and Fimia (1996) took Le Grand’s table of refractive indices 

as a function of wavelength and, using a polynomial fit, expressed the data as 

formulae for refractive index as a function of wavelength. They then compared the 

results of their calculations from these formulae with those calculated using 

Emsley’s reduced eye filled with water and with Thibos et al’s (1992) chromatic 

eye for chromatic difference in refractive compensation and chromatic difference 

of position. Because the chromatic eye was designed for the purpose of 

calculating chromatic properties, it is the best fit to the experimental data for 

chromatic difference in refractive error and chromatic difference in position. They 

concluded that the Le Grand eye is slightly underestimated for chromatic 

difference of refractive compensation but is approximately equivalent for 

chromatic difference of position. Because of these results, the Villegas, Carretero 

and Fimia (1996) formulae for Le Grand’s eye is used in this study. The formula 

derived by Villegas, Carretero and Fimia (1996) are given as 

  432  edcban        (4.4.3) 

and the constants are given in Table 4.4.2. 
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Table 4.4.2 The constants for use in Equation 4.4.3 to calculate the refractive index 

for each of the four media in Le Grand’s eye from Villegas, Carretero and Fimia (1996). 

 Units Cornea Aqueous humour Lens Vitreous humour 

a — 1.511 67 1.490 72 1.538 08 1.456 34 

b 1m  0.000 636 054 0.000 805 138 0.000 448 268 0.000 561 861 

c 2m  61017.1   61068.1   71074.5   61002.1   

d 3m  91001.1   91066.1   101061.2   101070.8   

e 4m  131031.3   131031.6   0 131084.2   

 

4.4.4 Refractive index of air 

The refractive index of air differs only very slightly from that of vacuum 

and for most optometric purposes one can write 10 n . A number of equations, 

for example Cauchy’s dispersion formula (Hodgson, 1959) and Ciddor’s 

equations (Ciddor, 1996), are available for calculating the refractive index of air. 

Cauchy’s formula is expressed in terms of wavelength whereas Ciddor’s 

equations are expressed in terms of wavenumber. Cauchy’s dispersion formula is  

 
42

7

0 101


tq
pn         (4.4.4) 

where 43.7262p , 26 nm10228.12 q  and 49 nm105.355 t  for dry air at 

temperature 15°C, pressure 101 kPa and carbon dioxide content of 450 ppm. 

Ciddor’s equations calculate the refractive index of air for variations in any of 

these values as well as air pollution density. This, however, would typically be of 

interest to the field of precise interferometry or geodetic surveying which requires 

an accuracy to a few parts in 810 .  

In the majority of cases we will use 10 n  for the refractive index of air 

and for illustrative value one data set on the reduced and Le Grand’s eyes will be 

shown using Cauchy’s equation. A graph set will be shown comparing 

calculations using 10 n
 
 and Cauchy’s formula.  

 

4.5 Discussion 

There are a number of schematic eyes available to the ophthalmic optics 

researcher, differing in the number and shape of refracting surfaces. Some 
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schematic eyes are available with a pupil or even a gradient index lens. However, 

because this dissertation focuses on the dependence of the first-order optical 

properties of the eye on frequency, we need to select schematic eyes for which the 

refractive indices of all media as a function of frequency (or wavelength) are 

known. For this reason we have selected the reduced eye and Le Grand’s four-

surface eye. The reduced eye forms an ideal basis because it is an excellent 

predictor of chromatic properties. However, the reduced eye is a very simple 

model and so we include Le Grand’s four-surface eye which is somewhat more 

representative in structure. This point will become clearer later once we calculate 

the transferences of the two eyes. 

The visible spectrum selected in numerical calculations in this dissertation 

is the range of frequencies from 400 THz to 700 THz. Frequency, rather than 

wavelength, is used in all calculations and graphical representations. 
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5 DERIVATIONS FOR BACKGROUND THEORY  

 

In this chapter we derive formulae that will be needed for our study of 

chromatic dependence of first-order optical properties. As such Chapter 5 is made 

up of a random assortment of seemingly unrelated derivations. The equations that 

are presented in Chapter 3 and this chapter together will form the basis from 

which we will either study chromatic dependence directly or derive formulae for 

chromatic aberrations and quantifying of chromatic properties. While this chapter 

focusses on the eye as our system, we note that the formulae derived and figures 

presented are general for all Gaussian systems. 

 

5.1 Exit-plane refractive compensation 

As mentioned in Section 3.4.2 the derivation for exit-plane refractive 

compensation is not available in the literature. This is presumably because this 

derived property has no application to the eye. However it is defined here for 

systems in general. While this dissertation is primarily concentrating on the eye as 

a system, we include this derived property because it has a bearing on certain 

entries of the point characteristic P. 

The exit-plane refractive compensation is the power of a thin lens 

juxtaposed immediately downstream to a general system so that the combined 

system becomes an entrance-plane focal system. Writing the transference of the 

combined system 
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  (5.1.1) 

and setting 0D  for the exit-plane system 

0SSC  DBF         (5.1.2) 

we obtain the exit-plane refractive compensation for system SS  

1

SSC

 BDF .         (5.1.3) 

This equation generalizes readily to linear systems. 
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5.2 Magnification 

There is a relationship between the definition of magnification defined for 

a Gaussian system for conjugation of the object and image and the fundamental 

properties of the system’s transference. Indeed, the relationship between 

transverse and angular magnification is to be found in the symplectic equation 

(Equation 3.2.24). 

In Section 3.5.3 we saw how Harris (2001a) defined magnification, blur 

and the ray state at the retina for distant objects. We take a different approach to 

Harris (2001b) to define magnification, blur and the ray state at the retina for 

finite distances and these definitions are derived in Section 5.2.2. 

The use of a pinhole immediately in front of the eye forms a large role in 

the experiments for chromatic properties of eyes, particularly chromatic properties 

dependent on object or image and aperture positions. For this reason we simplify 

this special situation for magnification of an object at a finite distance in Section 

5.2.4. 

 

5.2.1 Relationships between the types of magnification 

In Section 3.3.2, we looked at the four special types of systems resulting 

from equating each of the fundamental properties in turn to zero.  Then, in Section 

3.5.1, we looked at the three types of magnification defined for Gaussian systems. 

We now observe that there are distinct similarities in the definitions between two 

of these systems. Transverse and angular magnification are related to the 

transference through their being defined in the same way as two of the special 

systems, that is the conjugate and afocal systems. Also, in a similar way to the 

relationship that we saw between these two magnifications in Section 3.5.1, the 

two types of magnification are inversely related to each other through the 

symplectic equation. 

 

Transverse magnification 

Where we have a conjugate system 0B  such that an object at the 

entrance plane is positioned as height from the optical axis 0y , the point image 
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will form on the exit plane at position y. Equation 3.5.1 is the same as Equation 

3.3.2 and A represents transverse magnification in a conjugate system. Therefore 

tMA           (5.2.1) 

as long as 0B . This equation is true for all Gaussian systems, both thin and 

thick, provided the object is at the entrance plane. Should the object be elsewhere, 

then A magnifies the ray height and Equation 5.2.1 does not apply. 

 

Angular magnification 

The equation for angular magnification, Equation 3.5.3 is the same 

equation as Equation 3.3.3. We can therefore state that  

MD  .          (5.2.2) 

This is true of all afocal systems 0C  and provided the object point is distant. 

 

Relationships between the magnifications 

Equation 3.5.4 gave us the relationship between angular and transverse 

magnification as the one being the inverse of the other. To confirm this, from the 

symplectic Equation 3.2.24, and substituting 0B , we can see that  

1AD .         (5.2.3) 

The same is true if we substitute 0C  into the symplectic equation. Substituting 

Equations 5.2.1 and 2 into Equation 5.2.3, we obtain Equation 3.5.4.  

 

5.2.2 Summary of magnification, blur and ray state at the retina 

 Equations 3.5.7 and 8 define the magnification, blur and ray state 

at the retina. We recall that  TRRR yρ  defines the state of the ray at the 

retina. However, instead of  R  we are interested in the unreduced inclination at 

the retina Ra , and indeed elsewhere in the system. Therefore we define  











R

R

R
a

y
r           (5.2.4) 

for the purposes of defining chromatic properties dependent on object and 

aperture positions. Equations 3.5.7 and 8 become 

RK0

1

ABP

1

AE yanAByAA          (5.2.5) 
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and 

RK0

1

AB

1

P

1

AE

1 aanADnyACn         (5.2.6) 

where n is the refractive index of the vitreous humour. 

We write these two equations in the form  

REE rvV           (5.2.7) 

where  





























0

1

AB

11

AE

1

0

1

AB

1

AE

EE

EE

E
nADnACn

nABAA

ZY

XW
V ,     (5.2.8) 

is the distance coefficient matrix and with subscript E for eye and 











K

P

E
a

y
v .          (5.2.9) 

Harris (2001a) names each of the coefficients according to their characters 

and properties. EW  is the distance image blur coefficient, EX  is the distance 

image size coefficient, EY  is the distance directional spread coefficient, and EZ  is 

the distance directional coefficient. While we have defined the coefficients 

slightly differently with regard to the refractive indices, the meaning conveyed is 

the same. 

 

5.2.3 Magnification, blur and ray state at the retina for object points at 

finite distances 

To calculate the magnification and blur at the retinal plane for a system 

where the object point is at a finite distance we take a different approach to Harris 

(2001b). We define the system of the eye, as shown in Figure 5.2.1, as having the 

entrance plane KT  immediately upstream of the tear layer on the cornea and the 

exit plane RT  immediately in front of the retina. The eye naturally divides into 

two subsystems at the plane of the pupil PT  which also acts as a limiting aperture. 

We divide our system, which represents the eye, into two subsystems, anterior, 

with subscript A and posterior, with subscript B. Immediately upstream of the eye 

is the homogenous gap of width Oz  measured from the corneal plane KT  to the 

object plane OT , which represents the finite working distance. The object is 
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located at the entrance plane OT  and is positioned at a transverse distance of Oy  

with respect to the longitudinal axis Z.  

We are interested in solving for the state of the ray Rρ  at the retina in 

terms of its transverse position in the pupil Py  and the transverse position of the 

object Oy , instead of the incident inclination of the ray at the cornea Kα  which we 

used for the system with a distant object in Section 3.5.3. The advantage of 

defining the system this way is that we can either use the pupil as our partitioning 

plane or we can use any limiting aperture within an optical device through which 

the eye is looking, including a pinhole in front of the eye. The formulae we derive 

are general and we will show how they simplify further still when using a pinhole 

immediately in front of the eye. We noted earlier (Section 3.5.3) that the position 

of the centre of the pupil does vary slightly with changes in diameter, however, 

the use of a pinhole allows us to manipulate Py  to a much greater extent. In this 

case Py  is the distance from the longitudinal axis to the centre of the pinhole at 

the corneal-plane KT . The near system and symbolism is introduced in Figure 

5.2.1. 

 

 

 

Figure 5.2.1 The Gaussian system of the eye ES  is partitioned into two subsystems by 

a pupillary plane PT   and consists of an anterior subsystem AS  and posterior subsystem 

BS  which are juxtaposed. The object plane is located at position 0O z   measured from 

the cornea. The width of  OS  is Oz . 
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The system of the eye ES  is made up of the anterior AS  and posterior BS    

subsystems to obtain the transference: 
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                    (5.2.10) 

and for the compound systems of homogenous gap OS  upstream from the eye and 

either anterior subsystem AS  or eye ES  the transferences are: 
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                    (5.2.11) 
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and 
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SSS  . 

                    (5.2.13) 

A ray is traced from the object across the homogenous gap and through the 

anterior system to its ray state at the pupil to obtain 

POOA ρρS                     (5.2.14) 

and 

POOAOOA yαByA                   (5.2.15) 

POOAOOA ααDyC  .                 (5.2.16) 

Similarly from the pupillary plane to the retinal plane 

RPB ρρS                     (5.2.17) 

and  

RPBPB yαByA                   (5.2.18) 

RPBPB ααDyC  .                  (5.2.19) 

Equation 5.2.15 is solved for Oα ,  
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OOA

-1

OAP

-1

OAO yAByBα                   (5.2.20) 

and substituted into Equation 5.2.16 to obtain 

OOA

-1

OAOAP

-1

OAOAOOAP yABDyBDyCα  .               (5.2.21) 

From Equations 5.2.21 and 5.2.18 we obtain 

    .OOA

-1

OAOABOABP

-1

OAOABBR yABDBCByBDBAy   

Manipulating, we obtain 

    OOA

1

OAOAOABP

1

OAOABOABR yABDCByBDBBAy   . 

From OEB , Equation 5.2.12 and the third Schur complement (Equation 3.2.22) we 

obtain  

O

1

OABP

1

OAOER yBByBBy   . 

We make use here of the Schur compliment instead of the simpler unit 

determinant because of the generalisation we undertake in Section 5.2.5. 

Substituting equalities from Equations 5.2.11 and 13 into our equation we obtain 

     O

1

AOABP

1

OAAOEER yBAByABABy


  ,             (5.2.22) 

the transverse position of the ray at the retina. 

Substituting from Equation 5.2.21 into Equation 5.2.19 to get rid of Pα , 

we obtain 

    OA

-1

OAOABOABP

-1

OAOABBR yABDDCDyBDDCα   

and manipulating,
 

    OOA

1

OAOAOABP

1

OAOABOABR yABDCDyBDDBCα   . 

From the equality for OED  in Equation 5.2.12 and the third Schur complement 

(Equation 3.2.22) we obtain 

O

1

OABP

1

OAOER yBDyBDα   . 

Substituting equalities from Equation 5.2.11 and 13 into our equation we obtain 

     O

1

AOABP

1

OAAOEER yBADyABCDα


  ,             (5.2.23) 

the reduced inclination at the retina of the ray from the object. However, the 

unreduced inclination at the retina is required and so Equation 5.2.23 is rewritten 

     O

1

AOABP

1

OAAOEER ynBnADynAnBCDa


  .            (5.2.24) 
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Equations 5.2.22 and 24 represent the physical (unreduced) state of the ray 

at the retinal plane for the ray from the object point at a finite working distance 

Oz . The equations are general and any ray could be chosen, including, for 

example, a chief ray or a marginal ray. This solution is summarized, in a similar 

layout to how we presented Harris’s formulae in Equations 5.2.7 to 9, in terms of 

the system OES  as defined in Equations 5.2.12 and 13 as 

ROEOE rvV                     (5.2.25) 

where 

    

     































1

AOAB

1

OAAOEE

1

AOAB

1

OAAOEE

OEOE

OEOE

OE
nBnADnAnBCD

BABABAB

ZY

XW




V  

                    (5.2.26) 

is the near coefficient matrix for system OES  where the object point is at a finite 

working distance Oz  from the eye, Rr  is defined by Equation 5.2.4 and 











O

P

OE
y

y
v                    (5.2.27) 

is an input vector for the system OES , from the object point at Oy , through the 

pupil at position Py , to the retina. The entries in the top row of the near 

coefficient matrix OEV  are unitless while the bottom row has units of inverse 

length. Multiplying Equation 5.2.25 out we obtain 

ROOEPOE yyXyW                    (5.2.28) 

and 

ROOEPOE ayZyY  .                  (5.2.29) 

  The near coefficient matrix exists provided   1

OAA


 AB  exists. The 

coefficient matrix does not exist when 0OAA  AB , which would imply that 

0OA B . In other words the coefficient matrix exists provided the object and 

iridial planes are not conjugate.  

We note that the disjugacy B and divarication D appear to play a 

significant role in the magnification and blur of the system. Together the 

coefficient matrix OEV  and input vector OEv  define the position and unreduced 
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inclination of the pencil of rays at the retina for the system from an object at a 

finite distance. OEW  is the near image blur coefficient, OEX  is the near image size 

coefficient, OEY  is the near directional spread coefficient, and OEZ  is the near 

directional coefficient.  

Similar to our interpretation for distant objects, we can interpret Equation 

5.2.28 for a system consisting of an eye and an object point at a finite distance 

upstream. If we wish to obtain the size Ry  of the image at the exit plane 

corresponding to an object of size Oy  for a Gaussian system, we follow the rays 

from the object through the same position through the pupil such that P2P1 yy   

we obtain 

   O1O2OEP1P2OER1R2 yyXyyWyy   

which simplifies to 

OOER yXy  .                  (5.2.30) 

Equation 5.2.30 is linear in Oy   and we consider the near image size coefficient, 

OEX  to be the transverse magnification of system OES . 

  For a single object point Oy , and a pupil of diameter Py  the size of the 

blur circle on the exit plane (from Equation 5.2.28) is 

POER yWy  .                  (5.2.31) 

The size of the blur circle is dependent on the size of the pupil and the near image 

blur coefficient OEW . We can think of OEW  as a sort of blur-magnification. 

One can interpret Equation 5.2.29 in a similar fashion for the angular 

spread of the rays at the retina Ra  from an object of size Oy . For a Gaussian 

system, we follow the rays from the object through the same position in the pupil 

such that P2P1 yy   we obtain 

 OOER yZa                    (5.2.32) 

where OEZ  is the near directional coefficient. To obtain the angular spread of the 

blur across the retina produced from a single object point, we see that 0O y  

and that the blur spread is a function of pupil size Py  

POER yYa                     (5.2.33) 
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where OEY  is the near directional spread coefficient 

The difference in inclinations of the rays reaching the retina has 

implications for the Stiles-Crawford effect (Smith and Atchison, 1997: 308; 

Atchison & Smith, 2000: 124-127; Stiles, 1939).  

 

5.2.4 Eye with pinhole  

Object at a finite distance 

When a pinhole is held immediately in front of the cornea, the system and 

subsystems simplify.  The plane of the pinhole is the partitioning plane, however, 

the system upstream of the pinhole is merely the homogenous gap of system OS  

and the posterior system is that of the eye, ES . The transference of the anterior 

subsystem AS  becomes the identity matrix and posterior subsystem BS  becomes 

ES , the eye. The transverse position of the pinhole is the distance Py  from the 

optical axis and we assume that the pupil is sufficiently dilated to accommodate 

the chief ray through the pinhole. The near coefficient matrix OEV  therefore 

simplifies to 
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OE

11

OEE
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OE

1

OEE

P

OE

P

OE

P

OE

P

OEP

OE




DnDCn

BBA

ZY

XW
V              (5.2.34) 

with the superscript P representing the specialisation for a pinhole in front of the 

eye. Equations 5.2.28 and 29 become 

O

P

OEP

P

OER yXyWy                       (5.2.35) 

and 

O

P

OEP

P

OER yZyYa  .                  (5.2.36) 

Equations 5.2.28 and 29 still hold and are general for an eye with an object 

point at a finite distance, both with and without a pinhole. Equations 5.2.35 and 36 

are the same as Equations 5.2.28 and 29 with the four coefficients merely 

simplifying, as shown in Equation 5.2.34, when a pinhole is placed in front of the 

eye. For this reason we shall refer to Equations 5.2.28 and 29 in all further 

discussions, and merely substitute from P

OEV  when appropriate. 
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Distant object 

Similarly, for a distant object the coefficient matrix in Equation 5.2.8 

simplifies to 
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nDnCn
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ZY

XW
V                 (5.2.37) 

while Equation 5.2.9 remains unchanged. Equation 5.2.7 holds for the pinhole and 

the coefficients from Equation 5.2.37 may be substituted, when appropriate. 

 

5.2.5 Generalizing to linear optics 

In this section we have retained the order of multiplication and avoided 

division in an effort to allow the equations to generalize to linear optics for 

systems that have astigmatic elements. In Section 5.2.1 we can indeed generalize 

transverse and angular magnification to astigmatic systems. The equations in 

Sections 5.2.2 and 3 generalize, however we need to include a transpose which 

comes about from the symplectic equations (Equations 3.2.17 to 19) and the Schur 

compliments (Equations 3.2.20 to 23). We provide the linear generalizations 

below, the proofs following the format given in Section 5.2.3. Equation 5.2.8 

becomes 
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and Equation 5.2.26 becomes 
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nnnn
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. 

                    (5.2.39) 

The transposes in the right-hand column of these two matrices fall away when we 

simplify for the situation of a pinhole in front of the eye and so the equations in 

Section 5.2.4 readily generalize to linear optics to include eyes with astigmatic 

elements. 

 

5.3 Measurements in object space  

From the literature review in Chapter 2, we saw how chromatic difference 

in position and chromatic difference in magnification are defined in physiological 
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optics. More specifically, we saw that when these measurements are taken 

experimentally, that the chromatic difference in object position occurs in object 

space and alignment is assumed at a position on the retina. Because such 

measurements are made in the clinical environment, we shall consider the 

scenario for finite distances only. Pinholes also feature often in such experiments.  

The objective in this section is to derive formulae for the transverse 

position of an object point and the inclination of the ray incident onto the eye or 

pinhole when the position in the pupil or pinhole and the position at the retinal 

plane are known. Ultimately we keep the goal of deriving formulae for the 

chromatic difference in position or magnification in mind. These formulae will 

form the basis of the derivations for chromatic difference in position and 

magnification in Chapter 7. 

 

5.3.1 Transverse position of an object point at a finite distance 

We will start by deriving the formula for the transverse position of an 

object point at a finite distance upstream of the eye. We turn our attention to the 

system of the eye partitioned into anterior and posterior subsystems and object at 

finite distance upstream of the system illustrated in Figure 5.2.1 which we used in 

the previous section.  

Because the system OES  is the same as that described in Figure 5.2.1, with 

applicable subsystems OS , AS , BS  and combinations thereof, the equations that 

define OES  and its subsystems, given by Equations 5.2.10 to 19, apply. Solving 

Equation 5.2.18 for P  we obtain 

PB

1

BR

1

BP yAByB   .       (5.3.1) 

Substituting from Equation 5.2.21 into 5.3.1 and rearranging we obtain 

    R

1

BP

1

OAOAB

1

BOOA

1

OAOAOA yByBDAByABDC   .   (5.3.2) 

We make use of the third Schur compliment (Equation 3.2.22) and equalities in 

Equation 5.2.12 to simplify this equation to 

R

1

BP

1

OAOE

1

BO

1

OA yByBBByB   . 

Hence 

R

1

BOAPOE

1

BO yBByBBy   . 
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In terms of the distance of the object in front of the eye and the entries of the 

transferences of the eye, and anterior and posterior subsystems, this is 

    R

1

BAOAPOEE

1

BO yBBAyABBy    .     (5.3.3) 

Equation 5.3.3 gives us the transverse position of the object point Oy  at OT  of the 

ray through the pupil at transverse position Py  arriving at a position Ry  on the 

retina. 

 

Simplification when a pinhole is used 

Similar to the scenario in Section 5.2.3, the transverse position of an object 

point at a finite distance in front of the eye simplifies when a pinhole is positioned 

immediately upstream of the corneal tear film. Equation 5.3.3 becomes 

  R

1

EOPOE

1

EO 1 yByABy    .      (5.3.4) 

 

5.3.2 Incident inclination measured in object space 

We again turn our attention to Figure 5.2.1 and accompanying Equations 

5.2.10 to 19. We wish to calculate the inclination in object space, Oa  as a function 

of the ray, going through the pupil at Py  and reaching the retina at transverse 

position Ry . We solve Equation 5.2.15 for Oy  to obtain 

OOA

1

OAP

1

OAO BAyAy          (5.3.5) 

which we substitute into Equation 5.2.16: 

POOAOOA

1

OAOAP

1

OAOA ααDBACyAC    .     (5.3.6) 

We now substitute from Equation 5.3.1 into Equation 5.3.6, simplify for OAA  and 

OAC  from Equation 5.2.11 and rearrange to obtain 

    R

1

BP

1

AAB

1

BOOA

1

OAOAOA yByACABαBACD   .   (5.3.7) 

Substituting the fourth Schur compliment (Equation 3.2.23) and equalities from 

Equations 5.2.10 into Equation 5.3.7 we obtain 

R

1

BP

1

AE

1

BO

1

A yByAABαA    

and, hence, 

R

1

BAPE

1

BO yBAyABα   .       (5.3.8) 
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While there is an infinity of rays radiating from an object point, this equation 

singles out the reduced inclination of a single ray from an object point as a 

function of position in the pupil and at the retina. However, we need to calculate 

the equation for the unreduced inclination and so Equation 5.3.8 becomes 

    R

1

0BAPE

1

B0O ynBAyABna


 .     (5.3.9) 

Equation 5.3.9 gives the incident inclination of a ray, traversing a specific 

point in the pupil Py , that will reach the retina at a predetermined transverse 

position .Ry  The position through the pupil Py  may be chosen to be the chief ray 

where 0P y ; however the equation is general and any position can be chosen.  

For obvious reasons,  the reduced working distance O  and  the transverse 

position Oy  are both eliminated, implying that  Oa  is a more inclusive parameter 

to work with than the combination of Oy  and O . 

 

Simplification when a pinhole is used 

The incident inclination from a finite object point to a position at the retina 

when a pinhole is placed immediately in front of the eye enables us to simplify 

Equation 5.3.9 to 

    R

1

E0PE

1

E0O yBnyABna


 .                (5.3.10) 

Substituting from Equation 3.4.6 for the corneal-plane refractive compensation 

0F  we see that the relationship in Equation 5.3.10 represents 

  R

1

E0P0

1

0O yBnyFna
  .                (5.3.11) 

We mention in passing that for an emmetropic eye 

  R

1

E0O yBna


  

and the effect of the transverse position of the pinhole Py  in front of the 

emmetropic eye is nullified. 

   

5.3.3 Summary of object space matrix equations with respect to position on 

the retina 

Equations 5.3.3 and 9 are the two matrix equations that determine the 

incident transverse position and inclination that will result in the ray arriving at 
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the retina at a specific transverse position. Similarly to Section 3.5.3, we can 

summarise them as 
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O
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1

B0

1

BAOAOEE
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nBAABn

BBAABB 
              (5.3.12) 

which we shall abbreviate to 

OOyOy rvV                     (5.3.13) 

where the subscript Oy indicates measurements that are made at a finite distance 

in front of the eye. OyV  is the coefficient matrix defined as 
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V ,            (5.3.14) 
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P

Oy
y

y
v                    (5.3.15) 

is the input vector and Or  is the physical (unreduced) ray state at the object 

transverse plane OT  defined as 











O

O

O
a

y
r .                   (5.3.16) 

From Equation 5.3.12 we summarise Equations 5.3.3 and 9 as 

ROyPOyO yXyWy                    (5.3.17) 

and 

ROyPOyO yZyYa  .                  (5.3.18) 

 

Simplification when pinhole is used 

Similar to Section 5.2.4, we can summarise Equations 5.3.4 and 10 in the 

form given in Equation 5.3.14 for a system comprising an eye, given a specific 

position or inclination of an object point a finite distance upstream of the eye, to 

obtain the transverse position at the retina when a pinhole is held immediately in 

front of the corneal tear film. Equation 5.3.12 simplifies to 

    





































O

O

R

P

1

E0E

1
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1
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a

y

y

y

BnABn

BAB 
               (5.3.19) 

which we summarise as 



III  DEFINITIONS AND DERIVATIONS  5 Derivations for background theory 

115 

 

OOy

P

Oy rvV                     (5.3.20) 

and similar to Equation 5.2.34 the coefficient matrix in Equation 5.3.20 is given a 

superscript P to indicate the use of a pinhole immediately in front of the corneal 

tear film. 

Comment on OyV  and P

OyV  

We need to consider for a moment the existence of OyV  and P

OyV . We can 

see from Equation 5.3.12 that they exist provided 0B B , or in the case of a 

pinhole in front of the eye (Equation 5.3.19), where 0E B . The equations hold 

except in the unlikely situation in which the aperture and the retina are conjugate. 

 

5.3.4 Summary of object space matrix equations with respect to inclination 

at the retina 

When measurements are taken in object space and the corresponding 

images are perceived to be in alignment by the subject’s eye, the physiological 

optics theory is that the two image points coincide on the retina. That is to say, the 

rays arrive at the retina at the same transverse position. In the literature review, 

there was no evidence of any theories that aligned the inclination at the retina 

from two object points, only the transverse position on the retina. Therefore we 

conclude that the derivations in object space with respect to transverse position at 

the retina are considered to be more important than those with respect to 

inclination at the retina. 

Similar to the matrix equations derived in Section 5.3.3 which were 

obtained with respect to a position at the retinal plane, we can derive equations 

with respect to the inclination of a ray arriving at the retina. This has implications 

for the Stiles-Crawford effect. For completeness the summary of these formulae 

are given in Equations 5.3.21 and 22 below. It is quite possible for two rays of 

different frequency to arrive at the retina with the same inclination, but may or 

may not arrive at the same position. The exact implications of this are outside the 

scope of this dissertation. 
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The equation for the physical state of a ray Or  at the object plane in order 

for that ray traversing the pupil at transverse position Py  to arrive at the retina 

with a certain emergent inclination Ra  is 
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             (5.3.21) 

or 

OOaOa rvV  .                   (5.3.22) 

 

Simplification when pinhole is used 

Similar to Section 5.2.4 we can summarise for a system comprising an 

eye, given a specific position or inclination of an object point a finite distance 

upstream of the eye, to obtain the inclination at the retina when a pinhole is held 

immediately in front of the corneal tear film. Equation 5.3.21 simplifies to 
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              (5.3.23) 

or  

OOa

P

Oa rvV  .                   (5.3.24) 

 

Comment on OaV  and P

OaV  

The relationships derived in Equation 5.3.21 and 23 exist provided 0BD  

or 0ED  in the case of a pinhole in front of the system. This would require the 

system to be entrance-plane focal which seems unlikely in a system comprising an 

eye and in most eyes BD  and ED  are close to 1.  

 

5.3.5 Generalising to linear optics 

The proofs provided in Section 5.3 involve the use of division and Schur 

compliments whilst at the same time ignoring the order of multiplication and the 

transpose. Therefore the results cannot be readily generalized to linear optics. 

However, the resultant generalised coefficient matrices are provided below, 

without detailed proofs. Equation 5.3.14 becomes 
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Equations 5.3.13, 15, 19 and 20 readily generalise to linear optics. Specifically, 

Equation 5.3.19 becomes 
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5.4 Cardinal points 

The simplification made in ray tracing using the cardinal points relates the 

conjugal relationship between an object point and its image point but does not 

reveal what is actually happening inside the system. Linear optics makes no use of 

cardinal points for its calculations and is true paraxial ray tracing through the 

system.  

  

5.4.1 Additional relationships among the points 

In Section 3.6.3 we looked at the relationships among the cardinal points 

including the anti-cardinal points. We wish to extend these relationships and 

attempt to find simpler equations to represent the distances of the points from the 

entrance and exit plane and between the various points. The symbols used here are 

consistent with those introduced in Section 3.6.2 and Table 3.6.1. 

Starting with the incident anti-cardinal points we find the equation for the 

distance from the entrance plane to the respective point can simplify further from 

the equalities given in Equations 3.6.3 and 4 to 

,      (5.4.1) 

1

00F

1

0

1

00P

  CnzCnDCnz       (5.4.2) 

and similarly the equations for the distance of each emergent anti-cardinal point 

from the exit plane to the respective anti-cardinal point simplify from Equations 

3.6.8 and 9 to 

1

0F

1

0

1

N

  CnzCnAnCz       (5.4.3) 

1

0F

11

00N

  nCznCDCnz
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and 

1

F

11

P

  nCznCAnCz .      (5.4.4) 

There are a number of relationships among the various cardinal and anti-

cardinal points which are presented in summary in Equations 5.4.5 to 11 and 

corresponding to Figure 5.4.1. For completeness, we include the equalities given 

in Equations 3.6.13 to 16 and add additional equalities which include those that 

extend to the anti-cardinal points in Equations 5.4.5 to 8. We retain the symbolism 

introduced in Table 3.6.1. The equalities are illustrated in Figure 5.4.1 and the 

corresponding arrow colour is given in brackets for each. The incident equivalent 

focal length (blue) is therefore 

1

000000 FNPFFNFP  Cnf eq      (5.4.5) 

 and similarly, the emergent equivalent focal length (orange) is 

1

0000 PFFNNFPF  nCfeq .     (5.4.6) 

Pascal’s (1950a, b) equalities for “equivalent” radius (green) and “thickness” (red) 

can be extended to 

  eqeqeq ffCnnr  

0

1

00000 PNPNPNNP ,   (5.4.7) 

and  

  eqeqeq ffzzzCnnzzz  

00FF

1

00FF00 NNPPz  (5.4.8) 

respectively. We now derive some equalities involving the anti-cardinal points 

(violet) 

  eqeq ffzzzCnnzzz 00FF

1

00FF00 NNPP   .  (5.4.9) 

From the above equalities we can also see (−2*blue) 

eqf000 2NNPP                  (5.4.10) 

and (2*orange) 

eqf2PPNN 00  .                  (5.4.11) 

 For completeness and to compare to some of the above equalities we note that, 

while the incident to the emergent focal points (cyan) are not conjugate with each 

other, the distance from 0F  to F is 

0FF0FF zzz  .                  (5.4.12) 
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Figure 5.4.1 Cardinal points and their relationships and equalities. General Gaussian 

system S of length z has an entrance plane 0T , an exit plane T and a longitudinal axis Z. 

Refractive index upstream 0n  is different from n downstream. Points are defined as being 

on the optical axis for a Gaussian system. The distances from the entrance plane to the 

incident cardinal point and from the exit plane to the emergent cardinal point are shown 

in the section above the longitudinal axis, with the thin arrows. All the symbols and 

subscripts are given in Table 3.6.1. The equalities are shown below the longitudinal axis 

as follows: the equivalent “thickness” eqz  (red), incident equivalent focal length eqf0  

(blue), emergent equivalent length eqf  (orange), equivalent radius of curvature eqr  

(green), Equation 5.4.9 (violet) and Equation 5.4.12 (cyan). Equation 5.4.10 (blue) and 11 

(orange) can also be seen from the diagram.  

 

Symmetry points 

In Section 3.6.2, we saw that Keating defines symmetry points as the case 

where lateral magnification is –1. This occurs when the object is at twice the 

incident equivalent focal length and the image is at twice the emergent equivalent 

focal length, which we can see from Equations 5.4.10 and 11, respectively. From 

Figure 5.4.1 this is quite clearly at the position of the incident and emergent anti-

principal points.  
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In order to prove this statement, we need to prove that, firstly, the incident 

and emergent anti-principal planes are conjugate and secondly, the magnification 

is –1. We start by obtaining the transference of the compound system from 0P  to 

P  as follows 
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Substituting from Equations 3.6.4 and 9 we obtain 
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Multiplying out and substituting from the symplectic equation (Equation 3.2.24) 

we obtain 















1

01

0PP
C

SSS . 

From the definition of a conjugate system (Section 3.3.2) we see that this 

compound system is conjugate and secondly from Equation 5.2.1 we can see that 

transverse magnification has negative unit magnification ( 1t  AM ). 

 

Conjugacy of the anti-nodal planes 

Similarly, we can show that the transference of the compound system from 

the incident to emergent anti-nodal planes is 

























0

0

NN

0

0

n

n
C

n

n

SSS , 

which confirms that the two planes are conjugate and the transverse magnification 

is 
n

n0 . 

The lengths and directions of each of the incident and emergent cardinal 

and anti-cardinal points are shown in Figure 5.4.1 in the section above the optical 

axis. Lengths are given as z with subscripts given in Table 3.6.1. Below the 
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longitudinal axis, the thicker arrows denote the equalities. From Figure 5.4.1, the 

equalities given in Equations 3.6.13 to 16 and 5.4.5 to 12 can be seen. 

 

5.4.2 Graphical construction, locator lines and anti-cardinal points 

In Section 3.6.4 we saw how to obtain the slope and position of the 

incident and emergent locator lines and to use these to obtain the six cardinal 

points. We now expand this method to obtain the positions of the four anti-

cardinal points.  To find the location of the incident anti-cardinal points along the 

optical axis, one draws a horizontal line at the value for the characteristic X in 0T  

(from Table 3.6.1) and where it intersects the incident locator line 0L  one 

constructs a vertical line to intersect with Z which is the position of the respective 

incident anti-cardinal point. Similarly, for the emergent anti-cardinal points, one  

 

Figure 5.4.2 Graphical representation of a Gaussian optical system showing the 

locator lines for system S (not to scale). Line 0L  represents Equation 3.6.20 and line L 

Equation 3.6.21. Axis X is superimposed on entrance plane 0T  and axis X1  on exit 

plane T, a distance z downstream from 0T . The focal points are on the optical axis Z at 

intersection with the corresponding locator line. The principal and anti-principal points 

are shown in red and the nodal and anti-nodal points in green. All symbols are described 

in Table 3.6.1. All incident points show intersection with the incident locator line and 

have subscript 0, while the emergent points intersect the emergent locator line L with no 

subscript. 
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draws a horizontal line for the value of X

1

 in T and constructs a vertical line from 

the intersection with the emergent locator line L to Z.  

From Figure 5.4.2 we note that the values of X and X1  are positive for 

the cardinal points and negative for the anti-cardinal points. The construction is 

simple enough to be drawn by hand, however the scales on the axes have to be 

drawn accurately and for a system that includes an eye the scale on the vertical 

axis needs to be exaggerated. Numerical examples are given in Appendix 1. 

 

5.4.3 Pascal’s ring and anti-cardinal points 

In Section 3.6.5 we saw how Pascal (1939, 1947, 1950a, b) described a 

memory scheme as an aid to memorizing the equalities between the six cardinal 

points. Harris (2011a) extended Pascal’s ring and gave the equalities direction and 

gave proofs for the equalities. Here we extend Pascal’s ring further to include the 

four anti-cardinal points. 

In Figure 5.4.1 we see the relationships among the six cardinal points as 

well as the four anti-cardinal points. In Figure 5.4.3 we see Pascal’s ring extended 

to include the equalities and relationships among the cardinal and anti-cardinal 

points. We retain Pascal’s guideline that distances represented by parallel lines are 

equal.  

The relationships among the cardinal and anti-cardinal points are 

illustrated in Figure 5.4.3. For example, the four blue arrows represent equal 

distances given by Equation 5.4.5 each representing eqf0 . Equation 5.4.10 

shows the equality eqf000 2NNPP   for two consecutive blue arrows. 

Similarly for the orange arrows and eqf . The other colours represent red eqz , 

green eqr  and violet the distance between incident and emergent anti-nodal or 

anti-principal points. This emphasises what can be seen in Figure 5.4.1. If we 

consider any one of the green arrows ( eqr ), we can see that this is equivalent to an 

orange arrow ( eqf )  minus a blue arrow ( eqf0  ), which is given in Equation 

5.4.7.  One final example is to follow the violet arrow from which we can see that 

this makes up a combination of two orange, one red and two blue arrows. Any 
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such combination of equalities can be traced by following the arrows in Pascal’s 

ring. 

However the power of Pascal’s ring lies not only in its use as a memory 

schema, but also in its ability to show changes in the positions of the points with 

respect to each other. Because Pascal’s ring is not drawn to scale, the movements 

of the positions of the points are “magnified” and one is able to see how the 

changes to the system affect the locations of the points.  

In order to gain a better understanding of the data, a number of familiar changes in 

the eye are demonstrated using the Bennett and Rabbetts schematic eye (Rabbetts, 

2007: 225). These four numerical examples are given in Appendix 1. The example 

compares an emmetropic (relaxed) eye with a myopic eye and a hyperopic eye for 

changes in, firstly, axial length and, secondly, corneal curvature. The third 

example compares the emmetropic eye to changes due to accommodation and 

finally a young emmetropic eye is compared to its elderly counterpart. The first 

two changes are simple changes while the second two are compound changes. 

Refractive compensation does not form part of this study. 

The purpose of the examples is to gain an understanding of the changes in 

the cardinal and anti-cardinal points arising because of various changes in a 

system, in particular, using the two models that we have just discussed, graphical 

construction and Pascal’s ring. The examples should facilitate insight into the  

 

 

Figure 5.4.3 Pascal’s ring showing the equalities and their directions and extended to 

include the anti-cardinal points. Arrows that are the same colour are equal in length and 

are either parallel or follow the same direction. The same colour-coding has been 

maintained as in Figure 5.4.1. Equations 5.4.5 to 12 give the equalities and formulae from 

the transference. The direction of the blue arrow has been reversed to represent eqf0 . 
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changes in the cardinal points that occur in the eye due to change in the frequency 

of light, which will be examined in Section 9.1, using the two models. 

 

5.5 Transferences of the two model eyes 

The reduced eye is a simple eye and to derive its transference is a simple 

task because it is the product of only two elementary transferences. The 

transference of the reduced eye is then obtained using the parameters originally 

given by Emsley (Section 4.1.3), showing it to be emmetropic. However, we are 

interested in the dependence of the properties of the two model eyes on the 

frequency of light and so the transference of the reduced eye is derived as a 

function of the refractive index of the medium. 

Le Grand’s eye, on the other hand, is a four-surface eye and its 

transference is the product of eight elementary transferences. We therefore 

separate the derivation into anterior and posterior sub-systems, but deriving a 

single expression for the transference is impractical because the product does not 

simplify. Similarly, deriving a single expression for the transference for Le 

Grand’s eye as a function of refractive index meets with the same difficulty; there 

are four media, each with a different refractive index. The transference is 

calculated for Le Grand’s eye using his original parameters and refractive indices 

and is shown to be emmetropic. 

 

5.5.1 The transference of the reduced eye  

To calculate the transference for Emsley’s reduced eye, one makes use of 

Equations 3.2.36 and 37 which we multiply in reverse to obtain the formula for 

the transference of the reduced eye 
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We substitute the values for Emsley’s reduced eye given in Section 4.1.3 to obtain 

the transference of the emmetropic reduced eye 
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It is apparent that because 0A  that this is an exit-plane focal system and that 

the eye is emmetropic with a power of 60 D. Furthermore it has a reduced length 

of 50/3 mm (or 1/60 m). Divarication D is 1 for a reduced eye. 

 

5.5.2 The transference of the reduced eye as a function of refractive index  

The variable affected by frequency of light is the refractive index n. We 

substitute the radius of curvature and length of Emsley’s reduced eye into 

Equation 5.5.1 and simplify to obtain the transference for the reduced eye (Evans 

and Harris, 2011)  
























1kD)(
50

9

mm
9

200
3

4

0

0

nn

nn

n

S       (5.5.3) 

where 0n  is the refractive index of air and n is the refractive index of the reduced 

eye. n is calculated using Equation 4.4.2. From Equation 5.5.3 we see that dilation 

A, disjugacy B and divergence C each depend on frequency. The refractive index 

of the surrounding medium 0n  has an effect only on A and C. The divarication D 

is constant and equals 1 for all reduced eyes. 

 

5.5.3 The transference of Le Grand’s eye 

To obtain the transference of Le Grand’s eye we substitute from Equations 

3.2.36 and 37 as is appropriate and then multiplying in reverse according to 

Equation 3.2.6. We determine the transference for the anterior and posterior sub-

systems and then the transference for the eye itself. The subscripts given 

correspond to those given in Figure 4.1.2 and Table 4.1.1. Starting with the 

anterior sub-system (A) we obtain 

K1KK2AqA SSSSS          (5.5.4) 

and hence 
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Similarly we derive the formula for the posterior sub-system (B) 

L1LL2VB SSSSS  ,        (5.5.6) 

and  
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We can now obtain the transference of Le Grand’s eye as 

ABSSS  .         (5.5.8) 

This can also be formulated in one step as 

K1KK2AqL1LL2V SSSSSSSSS  .      (5.5.9) 

This is the general transference of any four-surface schematic eye.  

To calculate the transference for Le Grand’s eye we substitute the values 

from Table 4.1.1 into Equation 5.5.9 and then multiplying out we obtain  













9044.0kD0599.0

mm6832.160
S .                (5.5.10) 

That 0A  implies an emmetropic eye. Its power is 59.9404D which is the same 

as given by Le Grand (1945: 48).  

 

5.5.4 The transference of Le Grand’s eye as a function of refractive index  

Calculating the transference of the Le Grand eye as a function of refractive 

index is somewhat more complicated and does not simplify like Equation 5.5.3 for 

the reduced eye. Therefore the transference for each frequency needs to be 

calculated using Equation 5.5.9 each time.  

 

5.5.5 The refractive indices of the reduced eye and Le Grand’s eye for the 

six reference frequencies 

The numerical values for the refractive indices of each of the media for the 

six reference points are given in tabular form for both the reduced and Le Grand’s  
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Table 5.5.1 Six reference colours, their frequencies  , vacuum wavelengths ,  

refractive indices for the reduced eye using Thibos et al’s equation (Equation 4.4.2) and 

refractive indices for the four media for the Le Grand eye using the Villegas et al 

equations (Equation 4.4.3).  

   Refractive Index  

Colour     Thibos Villegas et al equations 

 THz nm et al Cornea Aqueous Lens Vitreous 

Red 430 697.2 1.3302 1.3729 1.3325 1.4161 1.3327 

Orange 494 606.9 1.3325 1.3757 1.3354 1.4191 1.3351 

Yellow 558 537.3 1.3350 1.3786 1.3382 1.4225 1.3376 

Green 622 482.0 1.3380 1.3817 1.3411 1.4261 1.3404 

Blue 686 437.0 1.3416 1.3849 1.3442 1.4300 1.3433 

Violet 750 399.7 1.3458 1.3883 1.3474 1.4339 1.3464 

 

eyes in Table 5.5.1. The frequencies and corresponding wavelengths are given for 

each of the six reference points. 

 

5.6 The Cayley transformed transference for Gaussian systems 

In Section 3.7.2 we were introduced to a number of versions of the Cayley 

transform. In order to choose the right one (or more) for our purposes, we need to 

be clear about what those purposes and subsequent requirements are. The Cayley 

transform was introduced as a method to obtain the average of a number of optical 

systems. The primary interest in the ophthalmic optics literature is its statistical 

usefulness. Our interest in this study is different; we wish to obtain a vector space 

to illustrate the dependence of the Gaussian eye on the frequency of light. 

Hamiltonian matrices belong to the Lie algebra sp(n;R) which defines a linear 

space, while symplectic matrices of the Lie group Sp(n;R) do not. The Cayley 

transform will allow us to graphically represent the dependence of the eye on the 

frequency of light. 

Returning our attention to the different versions of the Cayley transform in 

the literature we need to narrow down our choice to the Cayley transform that 

applies to the symplectic Hamiltonian mapping. Sanyal (2001: 60, 70-71) states 

that the Cayley transform map relates to Hamiltonian and symplectic matrices the 
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same way that it relates skew-symmetric matrices to orthogonal matrices, with the 

exception that the Hamiltonian and symplectic matrices need to be of the order 

nn 22  . This implies that any of the Cayley transforms given in Equations 3.7.10 

to 13 can be used as a mapping between the Lie group Sp(n;R) and its Lie algebra 

sp(n;R). However, we need to ensure that if we start with a transference S and 

map it into Hamiltonian space ( Ŝ ) and then back again, the symplectic matrix 

returned needs to be the same matrix as S that we started out with. We also wish 

to consider more favourably the Cayley transform that is most likely to exist for 

transferences of the eye. Finally, it is convenient, as Bernstein (2009:208-209), 

Tsiotras, Junkins and Schaub (1997) and Sanyal (2001: 72) suggest, that the 

Cayley transform be its own functional inverse. 

Let us start with existence. For Equations 3.7.10, 11 and 13 the inverse 

exists where the inverse of SI   exists. For Equation 3.7.12 the requirement is 

that the inverse of SI   must exist, where S is the transference of a system. 

Because it is conceivable that a transference may be the identity matrix, or 

approach the identity matrix, we will exclude Equation 3.7.12 as potentially 

problematic. It is foreseeable that the inverse of  SI   should exist for 

transferences of eyes. The requirement for the Cayley transform of a Hamiltonian 

matrix to exist is similar and requires that the inverse of  SI ˆ  exists where Ŝ is a 

Hamiltonian matrix.  

For each version of the Cayley transform given in Equations 3.7.10 to 13 

there exists an inverse. In the case of Equations 3.7.10 and 11, we see that the 

Cayley transform is its own functional inverse. The same is claimed of Equation 

3.7.13. However, let us take a closer look at Equations 3.7.10 and 13 and derive 

inverses for both of them. 

From the definition of the Cayley transform, given in Equation 3.7.10, we 

derive the inverse transform. Starting with Equation 3.7.10 and changing the 

symbolism to that for the transference S and Hamiltonian transformed 

transference Ŝ we have  

   1ˆ 
 ISISS .        (5.6.1) 

Solving for S we obtain 
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   SISIS ˆˆ
1




        (5.6.2) 

which is the inverse given in Equation 3.7.12 and different from the one given in 

Equation 3.7.11. Similarly, the inverse of Equation 3.7.12 is 3.7.10. 

Repeating this procedure to obtain the inverse of the Cayley transform 

given in Equation 3.7.13, we obtain 

   1ˆ 
 SISIS .        (5.6.3) 

Solving for S we obtain 

   SISIS ˆˆ
1




 

and because of commutativity, 

   1
ˆˆ



 SISIS         (5.6.4) 

which is its own functional inverse.  

 Commutativity is simple to show. Multiplication shows the following to 

be true: 

     AIAIAIAI  . 

Hence 

       11 
 AIAIAIAI  

provided the inverse exists.  Hence   1
AI  and AI   commute. 

We return to the issue of which Cayley transform and inverse combination 

will return the original transference. All of the Cayley transforms given in 

Equations 3.7.10 to 13 can potentially be done by hand with just a handheld 

calculator for a Gaussian system. Retaining the symbolism above, we denote the 

22  (symplectic) transference as S and the 22  (Hamiltonian) Cayley 

transformed transference as Ŝ . Starting with Equation 3.7.10 and expanding we 

get  
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simplifying and using the symplectic equation we obtain 
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Ŝ       (5.6.5) 

or 
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       (5.6.6) 

giving us the Cayley transformed transference of a Gaussian system in terms of 

the fundamental properties of the Gaussian transference. This transformed 

transference exists provided 2tr S , which is unlikely for a reasonable eye. It is, 

however, clearly a Hamiltonian matrix. 

Similarly, we can simplify Equation 3.7.13 to obtain 

  
S
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tr2
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ADC

BDA
,        (5.6.7) 

the negative equivalent of Equation 5.6.6 and clearly also Hamiltonian. 

Similarly, the Cayley transform given by Equation 3.7.12 simplifies for a 

Gaussian system to 

DAADC

BDA
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Ŝ       (5.6.8) 

or 

S
S

tr2

1

2

2ˆ















ADC

BDA
       (5.6.9) 

which is also Hamiltonian. This transformed transference exists provided 2tr S  

which is a possibility. The entries within the matrix are the same for Equations 

5.6.6, 7 and 9, but in each case they are multiplied by a different constant, giving 

different values for each of the three transformed transferences. 

From Equations 5.6.6, 7 and 9 we see that the units are the same as for a 

transference and that the entries along the diagonal are the negative equivalent of 

each other as shown in Equation 3.7.8. This gives us three independent entries and 

enables us to create a three-dimensional graph of the Hamiltonian space 

represented by the Cayley Transform.  

We derive an equation for the transference S as a function of the 

coefficients of the transformed transference Ŝ . We start with the definition of the 

inverse of the Cayley transform, given in Equation 3.7.12 and substitute the 

transformed coefficients into it from the Gaussian simplification of Equation 

3.7.7, 
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and substituting the Gaussian simplification of Equation 3.7.8, DA ˆˆ   into this 

equation we can simplify further to obtain 

BCDABCDADC
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ˆdet1

ˆ2
                  (5.6.11) 

which is the equation for the transference in terms of the Cayley transformed 

transference.  

Using the same methodology of substituting the entries from Equation 

3.7.7 into the Cayley transform given by Equation 3.7.13, we obtain  

 
I

S

SI
S 






ˆdet1

ˆ2
                  (5.6.12) 

for the transference in terms of the transformed transference for Equation 3.7.13. 

Similarly Equations 3.7.10 and 11 simplify and we obtain 

 
I

S

IS
S 






ˆdet1

ˆ2
                  (5.6.13) 

Which is the same regardless of whether we use the first or second equality, due 

to the commutativity of the Cayley transform. 

We now have three formulae for the transformed transference in terms of 

the entries of the Gaussian transference and three formulae for the transference in 

terms of the entries of the transformed transference. We return to our initial 

requirement for the choice of Cayley transform and inverse Cayley transform; that 

is, that when a transference is transformed into Hamiltonian space and then the 

transformed transference is transformed back to a symplectic matrix, then the 
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same transference must be returned. To do this, we substitute Equation 5.6.7 into 

Equation 3.7.13 and obtain 











DC

BA
S , 

the transference in its original values and with the original order. Similarly if we 

substitute Equation 5.6.12 into Equation 3.7.13 we obtain the transformed 

transference Ŝ  in its original values and with original order. This indicates to us 

that the Cayley transform given in Equation 3.7.13 is its own functional inverse 

and is the most suitable transform to use, along with the simplifications for 

Gaussian systems. We will use Equation 5.6.7 for mapping from the symplectic 

transference to the Hamiltonian matrix and Equation 5.6.12 to map from a 

Hamiltonian matrix back to its symplectic transference.  

Let us consider, for completeness, other versions of the Cayley transform 

and respective functional inverses that meet our criteria for returning the 

transference in its original form when transformed into Hamiltonian space and 

then transformed back to a symplectic transference. If we consider the possibility 

of Equation 3.7.10 being its own functional inverse (given in Equation 3.7.11) 

then we should follow the same procedure we did above for Equation 3.7.13. 

However we find that the transformed transference maps back to  















AC

BD
S                   (5.6.14) 

which is a symplectic matrix, but not the original transference. It is the negative 

inverse of the transference. Similarly the transformed transference maps back to 

S
S

ˆdet

1

ˆˆ

ˆˆ
ˆ
















DC

BA
                  (5.6.15) 

which is a Hamiltonian matrix, but not the original Hamiltonian matrix that was 

started with. We therefore can conclude that, for the 22  symplectic – 

Hamiltonian mapping, Equation 3.7.10 (and 11) is not its own functional inverse. 

However, we note that applying Equation 3.7.12 as an inverse to Equation 3.7.10 

does return the original transference and will fulfil our requirements of returning a 

transference. However this option requires a different equation to map in each 

direction whereas Equation 3.7.13 is its own functional inverse and therefore only 
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one equation transforms a transference to a transformed transference and 

conversely the transformed transference maps to the original transference. It has 

the added requirement of having the inverse exist for the transferences of all 

reasonable eyes. Equation 3.7.13 can be considered more general and convenient 

and is therefore our Cayley transform of choice. Equation 3.7.13 is expressed in 

the notation used for transferences as 

   1ˆ 
 SISIS                   (5.6.16) 

and  

   1
ˆˆ



 SISIS .                  (5.6.17) 

 

5.6.1 The Cayley transformed transference for the reduced eye 

We are now in a position to obtain a formula for the transformed 

transference of the reduced eye as a function of frequency. In Section 5.5.2 we 

looked at the reduced eye as a function of the refractive index (n). Equation 5.5.3 

gives the transference of the reduced eye with the refractive indices as the only 

unknowns. Equating the refractive index of air to be 10 n , we substitute the 

values of A, B, C and D from Equation 5.5.3 into Equation 5.6.7 to obtain 
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S .                   (5.6.18) 

Equation 5.6.18 is the Cayley transformed transference for the reduced eye. The 

units are the same as for a transference. Of interest is that the refractive indices in 

B̂  cancel out and B̂  is a constant and coincidentally it is the negative inverse of 

the constant obtained in Ĉ . Â , Ĉ  and D̂  are all functions of n.  

 

5.6.2 The Cayley transformed transference for Le Grand’s eye 

Because of the problem we had in Section 5.5.4, that there are too many 

elementary transferences, we have the same restriction on deriving a transformed 

transference for Le Grand’s eye as a function of refractive index. 
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5.7 Summary 

This chapter provides us with a collection of derived properties of the 

Gaussian system from the transference, which along with the basis for linear 

optics and derivations in Chapter 3, brings to completeness the derivations we will 

need for this dissertation. We now have all the necessary formulae to define 

chromatic aberration in the eye using linear optics. We also are in a position to 

derive equations from the transference and the ray traversing the Gaussian system 

for the chromatic properties defined in the physiological optics literature as 

studied in Chapter 2. 

The equations obtained in Sections 5.1 and 5.2 generalise to linear optics. 

In Section 5.3 the coefficient matrix defining the ray state in object space that 

maps to an image point at a selected position on the retina was given for 

astigmatic systems, although it did not generalise readily from Gaussian optics. 

Whilst Harris (2010b, e) gives formulae to obtain the position of cardinal points 

and structures for linear systems in general it is not obvious how the locator lines 

(Harris, 2011b) and Pascal’s ring (Harris, 2011a) might generalize for linear 

systems. In Section 5.5, the transferences for the two model eyes belong clearly 

within the framework of Gaussian optics. So too, in Section 5.6, the derivations 

for the transformed Cayley transference in terms of the fundamental properties 

belong within the framework of Gaussian optics. 
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6 DEFINITIONS OF LONGITUDINAL AND 

TRANSVERSE CHROMATIC ABERRATION  

 

In Chapter 2 we saw that many authors refer to chromatic difference of 

power, magnification, position or refractive error as chromatic aberration. 

Formulae to derive these properties from the transference of a Gaussian system 

will be derived in Chapter 7 to allow these definitions to be applied to more 

complex model eyes. However, there is a clear need for a general definition of 

chromatic aberration that makes allowance for astigmatic elements that may be 

tilted or decentred. This chapter defines chromatic aberration for Gaussian optical 

systems. 

 

6.1 Defining chromatic aberration 

To define longitudinal and transverse chromatic aberration we start with 

the classical definition, which is restricted to homocentric systems with stigmatic 

elements. However, we do so by defining chromatic aberration in general for 

systems with astigmatic and heterocentric elements and then simplifying for 

Gaussian systems.  

 

6.1.1 Homocentric systems with stigmatic elements 

In Section 2.2.1 and Figure 2.2.1 we saw how the first-order chromatic 

aberrations are defined within the limits of Gaussian optics as the distance 

between the projections of two focus points for two different wavelengths in the 

directions parallel and perpendicular to the optical axis as longitudinal and 

transverse chromatic aberration respectively. In this definition the distances 

between points are unsigned. The definition holds for optical systems with 

stigmatic elements. This definition is the starting point for the definition that will 

be used in this study.  

In this study we use the definition by Harris and Evans (2012) and take the 

distances between image points to be signed. This is shown in Figure 6.1.1 where 

the longitudinal chromatic aberration zδ  and transverse chromatic aberration yδ  

are shown in the positive sense as having direction from the red to the blue image 
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points, in addition to magnitude. In Figure 6.1.1, the object O corresponds to red 

and blue images rI  and bI  respectively.  

Figure 6.1.1 shows the definitions of longitudinal and transverse chromatic 

aberration in Gaussian optics and represents the point of departure for the 

definition given by Harris and Evans (2012) for astigmatic heterocentric systems. 

It differs from Figure 2.2.1 in that it has signed distances. System S is Gaussian 

and consists of any number of centred refracting surfaces with stigmatic elements, 

but which are not shown. This implies that they are invariant under rotation about 

the common axis Z, which is therefore also the optical axis. S has entrance plane 

0T  and exit plane T and refractive indices 0n  upstream and n downstream of S.  

Object point O has longitudinal position Oz  and transverse position Oy . In Figure 

6.1.1 these positions are drawn such that 0O z  and 0O y .  

The position of image point I depends on the frequency   of light. For this 

purpose we look at two frequencies on opposite ends of the visible light spectrum, 

namely red r  and blue b . The corresponding images for these two frequencies 

are red image rI  and blue image bI . The corresponding longitudinal positions are 

 

 

Figure 6.1.1  Longitudinal zδ  and transverse yδ  chromatic aberration in a 

homocentric system with stigmatic elements.  
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rz  and bz  and transverse positions ry  and by . In Figure 6.1.1, all image positions 

and directions are drawn in the positive sense, however, in a usual system such as 

the eye br zz  . 

Subscripts r and b will be used throughout this chapter. They denote two 

frequencies usually near opposite ends of the visible light spectrum, however, any 

two frequencies could be chosen. We call them ‘red’ and ‘blue’ for convenience. 

On the visible light spectrum, the blue is the higher frequency and the red is the 

lower frequency. Therefore the blue photons have a higher energy than the red 

photons which seems to suggest that we should subtract a lower energy from the 

higher energy. For this reason we chose to subtract red from blue in all chromatic 

aberration formulae. However, the formulae derived are general for any chosen 

frequencies. In Chapters 9 and 10 two frequencies are chosen for illustrative 

purposes. 

We note that Figure 6.1.1 is a two-dimensional diagram and that the 

optical axis Z, object O and both the image points rI  and bI  lie in the same plane, 

that of the page. This is because system S is homocentric and has only stigmatic 

elements within it. Furthermore, a distinction is drawn between incident refractive 

indices r0n  and b0n  and emergent refractive indices rn  and bn .  

We define longitudinal (or axial) chromatic aberration as (Harris and 

Evans, 2012) 

rbδ zzz           (6.1.1) 

and transverse (or lateral) chromatic aberration as 

rbδ yyy  .         (6.1.2) 

For convenience, the context of the system is implied when referring to the 

properties of a system. The chromatic aberration will also depend on the position 

of a point in object space, O. In Figure 6.1.1 this position is denoted by 

longitudinal position Oz  and transverse position Oy .   

For any system S, the chromatic aberration is not unique and usually there 

will exist an infinity of longitudinal and transverse chromatic aberrations. The 

chromatic aberration of a system is unique only when the object position is 
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specified. In other words, chromatic aberration depends on Oz  and Oy . As will be 

shown, longitudinal chromatic aberration is dependent on Oz  and transverse 

chromatic aberration on Oy . Chromatic aberration does not exist for the system in 

isolation. It is a measurement of a phenomenon of the images formed and for this 

reason is a property of the object point and the system.  

From these definitions, longitudinal zδ  and transverse yδ  chromatic 

aberration are lengths measured orthogonally to each other and represented here 

by scalars. From Figure 6.1.1 one is tempted to draw an arrow from rI  to bI , to 

represent  chromatic aberration holistically as a vector with longitudinal and 

transverse chromatic aberration as components. However, when we make 

allowance for astigmatism one finds that the two aberrations are fundamentally 

different and cannot be combined into a single vector (Harris and Evans, 2012). 

We therefore refrain from representing chromatic aberration as a vector here as 

well.  

 

6.1.2 Heterocentric systems with stigmatic elements 

A heterocentric system is one in which the refracting elements are not all 

centred on a common optical axis. Elements may be decentred or tilted. We retain 

the stigmatic elements, however, the longitudinal axis is no longer an optical axis 

and we need to consider a three-dimensional representation as shown in Figure 

6.1.2. In Figure 6.1.2, system S contains refracting surfaces which may be 

decentred. It may also contain prisms and surfaces which are tilted. Also shown in 

Figure 6.1.2 are the transverse planes containing the object point O at OT , the red 

image rI  at rT  and the blue image bI  at bT . The object O corresponds to red and 

blue images rI  and bI  respectively.  

From Figure 6.1.2 it becomes clear that the definition of longitudinal 

chromatic aberration zδ  in the case of homocentric systems with stigmatic 

elements can be applied to heterocentric systems, Equation 6.1.1 remains 

unchanged and zδ  remains a scalar measurement of length between the red and 

blue transverse planes. Also from Figure 6.1.2, we can see that this is not the case 
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for transverse chromatic aberration yδ . Starting at the object plane OT  we see that 

the position of object point O is now defined as a vector 











2O

1O

O
y

y
y          (6.1.3) 

with horizontal and vertical components.  

Similarly we note that the transverse positions of the red rI  and blue bI  

image points are represented by ry  and by  each with horizontal and vertical 

components. In order to obtain the transverse chromatic aberration, we project the 

red image point rI  onto the blue transverse plane bT . The projection is along the 

longitudinal axis. y is represented as the vector from the red to the blue image 

points and defines transverse chromatic aberration as  

rbδ yyy  .         (6.1.4) 

At this point we have transverse chromatic aberration, a vector, and longitudinal 

chromatic aberration, a scalar. Although one is a scalar and the other a vector, one 

is still tempted to combine them as a holistic concept of three components.  

 

 

 

Figure 6.1.2  Longitudinal and transverse chromatic aberration in a heterocentric 

system with stigmatic elements.  
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6.1.3 Heterocentric astigmatic systems 

We turn now to the general system in which elements may be decentred 

and astigmatic (Harris and Evans, 2012). System S consists of any number of 

elements which may be astigmatic, decentred, tilted or prismatic. The longitudinal 

axis Z is usually not an optical axis. In an astigmatic system image points rI  and 

bI  become fuzzy as shown in Figure 6.1.3. Each image point dissociates 

longitudinally into two orthogonal image lines and each fuzzy image becomes that 

of the interval of Sturm, which will be referred to simply as the image structure. 

The red and blue transverse image planes are no longer planes, but a fuzzy zone 

the width of the interval of Sturm and denoted by dotted lines in Figure 6.1.3. The 

system is drawn with the red and blue image zones separate, however, these may 

overlap. An additional problem arises when defining longitudinal chromatic 

aberration in that the orientations of the two sets of image lines may not match. 

That is to say, the first red image line may not be parallel to the first blue image 

line. There is a relative rotation that occurs between the red and then the blue 

image structures that must be considered. Additionally, the width of the interval of 

Sturm is not necessarily the same for each colour.  

How now does one define longitudinal chromatic aberration? Intuitively 

one may wish to calculate a scalar distance between the two image structures by 

calculating the distance between the planes of the two circles of least confusion. 

However, the circle of least confusion is not an image point and this does not fully 

represent what is happening in the system. Each image structure is represented by 

a 22  symmetric vergence matrix and therefore a scalar distance does not make 

any sense. The definition needs to account for the fact that the two fuzzy image 

structures differ in position, orientation and degree of fuzziness. Therefore the 

definition needs to include at least three numbers to represent it completely.  

The fuzzy image structure is a representation of light, so we turn our 

attention to vergence. In the absence of astigmatism the red pencil of light would 

have reduced vergence 

r

r
r

z

n
L           (6.1.5) 
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at exit plane T, where rz  is the longitudinal distance from exit plane T to 

transverse red image plane rT , as shown in Figure 6.1.1. Hence 

r

r
r

L

n
z            (6.1.6) 

and similarly for the blue vergence and longitudinal distance. In the presence of 

astigmatism the generalisation of the scalar reduced vergence L is the reduced 

vergence L, a symmetric matrix as defined in Section 3.8.  The unit of vergence is 

reciprocal length. rL  is the reduced vergence at the exit plane T of system S of 

the red astigmatic pencil defined by object O and bL
 
is the same for the blue 

pencil. 

From Equation 6.1.6, Harris and Evans (2012) generalize and define 

n1 LZ .         (6.1.7) 

Z is symmetric and has the unit length. Because the right-hand side of the 

equation is multiplied by n, Z represents the actual distance rather than the 

reduced distance. It can be regarded as the generalized position of the fuzzy image 

structure relative to the exit plane T.  

Generalizing Equation 6.1.1, we see that  

rbδ ZZZ           (6.1.8) 

represents the longitudinal chromatic aberration of a heterocentric astigmatic 

system S for object point O on the longitudinal axis. Zδ  characterises the 

longitudinal difference of the two fuzzy image points completely (Harris and 

Evans, 2012). By this definition longitudinal chromatic aberration becomes the 

22 symmetric matrix Zδ  and can be characterised by three independent 

numbers. 

From Equation 6.1.5, we see that the reduced vergence (both scalar L and 

matrix L) is dependent on the longitudinal position Oz  of object point O and 

system S and is independent of the transverse position Oy  of O. Therefore, 

provided Oz  of the object O and system S remain unchanged, decentration of the 

object point and elements of the system have no effect on the longitudinal 

positions and nature of the fuzzy image structures and we can take Equation 6.1.8 

to be the definition of longitudinal chromatic aberration Zδ of a heterocentric 
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astigmatic system for an object point at any specified position. The longitudinal 

chromatic aberration is more difficult to represent pictorially. In Figure 6.1.3 rZ  

is shown as two red lines representing the two image line foci, orthogonal to each 

other. A line is drawn between them, parallel to the longitudinal axis. And 

similarly for the blue fuzzy image structure. The longitudinal chromatic aberration 

of system S for object O is Zδ . Zδ  is a 22  distance matrix and cannot be 

represented by a vector arrow on the diagram. 

In contrast, the transverse chromatic aberration is the vector yδ , shown in 

Figure 6.1.3, from ry to by . Vectors ry  and by  are drawn from the longitudinal 

axis Z to an axis, parallel to Z, between the two orthogonal image lines within the 

transverse plane for red and blue, respectively. It is not drawn to the circle of least 

confusion. The vector for ry  can be projected onto the blue image plane and the 

transverse chromatic aberration is vector yδ . The effect of decentring an object 

point and system elements is to cause transverse displacement of the fuzzy images 

rI and bI of object point O in the heterocentric astigmatic system S. Equation 6.1.4 

defines the transverse chromatic aberration yδ  of S for O.  

 

Figure 6.1.3  Longitudinal Zδ  and transverse yδ  chromatic aberration in a 

heterocentric system with astigmatic elements.   
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6.1.4 Chromatic aberration in general 

Equations 6.1.4 and 8 are generalisations from Equations 6.1.2 and 1 to 

optical systems in general of the definitions for systems whose elements are 

stigmatic and centred on an optical axis. Equation 6.1.4 defines transverse 

chromatic aberration yδ  and Equation 6.1.8 longitudinal chromatic aberration Zδ  

in general. yδ  is a two dimensional vector and Zδ  is a 22  symmetric matrix. 

The fact that transverse and longitudinal chromatic aberration are different in 

mathematical character shows that the two types of aberration are fundamentally 

different in nature and cannot be meaningfully combined into a single unified 

concept of chromatic aberration. 

These general equations hold and indeed simplify for homocentric systems 

with stigmatic elements in particular. In such systems the transverse chromatic 

aberration yδ becomes a scalar quantity yδ  and sketched in a single plane, that of 

the page. y  is one component of yδ  with the other component being zero and 

perpendicular to the page. The longitudinal chromatic aberration Zδ  also 

becomes a scalar quantity represented as a scalar multiple of the identity matrix 

such that zδδ IZ  , where I is the 22  identity matrix, and the image is a point. 

The image too is represented as simply in the plane of the page, as shown in 

Figure 6.1.1. 

Equations 6.1.1 and 8 define longitudinal chromatic aberration and 

Equations 6.1.2 and 4 define transverse chromatic aberration in Gaussian and 

linear systems respectively. We now turn our attention to quantifying longitudinal 

and transverse chromatic aberration in Gaussian systems.   

 

6.2 Quantifying chromatic aberration in Gaussian systems 

In order to calculate the longitudinal and transverse chromatic aberration 

we need to consider the optical system which is represented by the system’s ray 

transference, where the transference is a function of the frequency of light (Evans 

and Harris, 2011). This 22  transference was defined for a Gaussian system in 

Equation 3.2.38. 
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6.2.1 Vergence across a Gaussian system derived from the transference 

The reduced vergence at an entrance plane 0T
 
of system S is 0L , given by 

Equation 3.8.1, for an object O at a longitudinal distance Oz  from 0T . Following 

from this, the reduced vergence at the exit plane T of S for O is given by Equation 

3.8.6 for light emerging from a linear system and which reduces to 

   1

00


 BLACDLL         (6.2.1) 

through a Gaussian system. Substituting Equation 3.8.1 into Equation 6.2.1 we 

find 
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From Equations 6.2.2 and 3 we note that there are two special cases to consider. 

Firstly where Oz  Equation 6.2.2 simplifies to 

1 CAL          (6.2.4) 

and where 0O z  Equation 6.2.3 simplifies to 

1 DBL .         (6.2.5) 

Equation 6.2.4 is the same as Equation 3.4.11 and represents the back-vertex 

power of the system. In order to calculate the red and blue vergences rL  and bL  at 

T, one can simply add the appropriate subscript to all the parameters of any of 

Equations 6.2.1 to 5, with the exception of Oz . Because the transference is a 

function of the frequency of light, a transference will need to be calculated for 

each of red and blue, rS and bS , using the formulae discussed in Section 5.5.  

 

6.2.2 Transference of a compound system: object at finite distance 

We now look at the system more carefully to obtain the transference of not 

just system S, but of the compound system from the object plane to the image 

plane. From Figure 6.1.1 we see that the system upstream of system S is OS  and is 
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the homogenous gap of finite length Oz . The minus sign is needed because O is 

upstream of S. 

The transference of a homogenous gap is defined by Equation 3.2.36 

where   is the reduced distance defined in Equation 3.2.8. In the same way we 

consider the system IS , downstream of system S, of length z, from the exit plane 

T of system S, up to the plane of an image line IT , corresponding to object O, of 

an image point.  

To obtain the transference of the compound system CS  we start with 

OIC SSSS           (6.2.6) 

then substitute for the individual transferences, 
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Hence 
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From Equation 3.2.40 and the top row of Equation 6.2.8, we see that a ray from 

object O at transverse position Oy  on the entrance plane OT  arrives at the 

transverse image plane IT  with transverse position 
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 .    (6.2.9) 

From Section 3.3.2, we recognise this as a conjugate system and therefore 

we set 0
0

O 
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z
DB , effectively nullifying any effect of Oa .  

Hence Equation 6.2.9 simplifies to 
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III  DEFINITIONS AND DERIVATIONS   6 Definitions of longitudinal and 

 transverse chromatic aberration 

146 

 

which gives us the transverse position of a point y at the image plane 
IT . Equation 

6.2.10 can be written for red and blue image points which would then give by  and 

ry  corresponding to an object point at a finite distance .  

 

6.2.3 Transference of a compound system: distant object 

We now define the transference of a compound system where the object 

point is at an infinite distance. Because Oz  we rather define our system as 

starting at 0T  and make use of the incident inclination 0a  of the rays at entrance 

plane 0T .  

We therefore define our system as the compound system from 0T  to IT , 

consisting of S and IS . The transference of CS  is  

SSS IC                     (6.2.11) 

and, hence, 

























DC

BA
n

z

10

1
CS                   (6.2.12) 

or 


















DC
n

z
DB

n

z
CA

CS .                 (6.2.13) 

Substituting from the top row of Equation 6.2.13 into Equation 3.2.40 we find that 

the ray will arrive in IT  at transverse position  

O0O an
n

z
DBy

n

z
CAy 

















                 (6.2.14) 

and because the system is exit-plane focal, we have 0
n

z
CA   which nullifies 

any effect of Oy  and therefore Equation 6.2.14 simplifies to 

O0an
n

z
DBy 








 .                  (6.2.15) 

y is the transverse position on the image plane IT  corresponding to a point image 

for a system with an object at an infinite distance. Equation 6.2.15 can be written 
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for red and blue image points which would then give by  and ry  for a distant 

object point. 

 

6.2.4 Transverse chromatic aberration in a Gaussian system 

The transverse chromatic aberration was defined in Equation 6.1.2 as 

rbδ yyy   for Gaussian systems. Substituting from Equation 6.2.10 we obtain 































r

r
rr

b

b

bbOδ
n

z
CA

n

z
CAyy  











n

z
CAyy δδ O

                  (6.2.16) 

similarly, for an object point at a finite distance and substituting from Equation 

6.2.15 into Equation 6.1.2 we obtain 

















 0Oδδ n

n

z
DBay                  (6.2.17) 

for systems when the object point is distant ( Oz ). 

 

6.3 Calculation routines for longitudinal and transverse chromatic 

aberration 

1. Calculate rS  and bS  the transferences of system S for red and blue light. 

2. Calculate the reduced vergence L for each of red and blue light.  

i. For a finite object point O with longitudinal position Oz  use 

Equation 6.2.3.  

ii. For a distant object where Oz , use Equation 6.2.4. 

3. Calculate the longitudinal position z of the image point for each frequency 

using Equation 6.1.6. 

6.3.1 Calculation routine for longitudinal chromatic aberration 

4. Calculate the longitudinal chromatic aberration zδ  from Equation 6.1.1. 
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6.3.2 Steps for calculating transverse chromatic aberration 

 For an object point at a finite distance of longitudinal position Oz  

upstream of the system: 

Following from steps 1, 2.i and 3. 

4. For each of red and blue calculate 
n

z
CA . 

5. Calculate 









n

z
CAδ . 

6. Calculate the transverse chromatic aberration yδ  using Equation 6.2.16.  

 For an object point at a distance where Oz  upstream of the system: 

Following from steps 1, 2.ii and 3. 

4. For each of red and blue calculate 
0n

n

z
DB 








  . 

5. Calculate 















 0δ n

n

z
DB . 

6. Calculate the transverse chromatic aberration using Equation 6.2.17. 

Numerical examples of longitudinal and transverse chromatic aberration for the 

reduced eye and Le Grand’s eye are given in Section 10.1. 

 

6.4 Comments on chromatic aberration 

In this chapter we considered the definition for chromatic aberration. 

Firstly, we looked at the familiar definition given in the literature as the first order 

chromatic aberrations within the limits of Gaussian optics as the distance between 

the projections of two focus points for two different frequencies in the directions 

parallel and perpendicular to the optical axis as longitudinal and transverse 

chromatic aberration respectively and illustrated in Figure 6.1.1. From this figure 

it appears logical to draw an arrow between image points rI  and bI , thereby 

representing both longitudinal and transverse chromatic aberration holistically as 

one vectorial chromatic aberration. This, however, would be incorrect. In order to 

understand why that is so we looked at the generalisation of this definition in 

heterocentric astigmatic systems and saw that the two aberrations have 

fundamentally different mathematical characters: longitudinal chromatic 
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aberration is represented by a 22  symmetric matrix Zδ  whereas transverse 

chromatic aberration is represented by a vector .δy  The fact that transverse and 

longitudinal chromatic aberration have different mathematical character shows 

that the two types of aberration are fundamentally different in nature and cannot 

be meaningfully combined into a single unified concept of chromatic aberration. 

For any system S the chromatic aberrations are not unique and usually 

there will exist an infinity of longitudinal and transverse chromatic aberrations. 

The chromatic aberrations of a system are unique only when the object position is 

specified. In other words, chromatic aberration is dependent on Oz  and Oy .  

We noted that chromatic aberration does not exist for the system in 

isolation. It is a measurement of a phenomenon of the images formed and for this 

reason is a result of the system and the location of the object point. From 

Equations 6.1.1 and 6 and 6.2.2, 3 and 4, longitudinal chromatic aberration is 

dependent on longitudinal position Oz  of the object point O and is independent of 

transverse position Oy . Transverse chromatic aberration is defined in Equation 

6.1.2 and from Equations 6.2.16 and 17 we see that it is a linear function of the 

object’s transverse position Oy  in the case of the objects at finite distances and its 

direction Oa  in the case of a distant object.  

Chromatic aberrations are first-order phenomena and occur in the paraxial 

region. For this reason, Harris and Evans (2012) express reservations over the use 

of the word aberration in the context of chromatic aberrations. 

 The definitions and formulae given in this section are not specific to the 

eye, but are applicable to systems in general. When applying the definitions to the 

visual system one needs to be clear how the definitions are being used. Firstly, for 

an eye or a model eye the entrance plane would be immediately in front of the tear 

film and the exit plane immediately in front of the retina. Secondly, the position of 

the longitudinal axis needs to be specified. Thirdly, the location of the object point 

needs to be given. Finally, the two frequencies of light, r  and b , need to be 

specified. 
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7 Quantifying chromatic properties  

Longitudinal and transverse chromatic aberration was defined in general 

for Gaussian optical systems in Chapter 6. In Chapter 2 we reviewed the 

physiological optics definitions and experimental approaches to measure 

chromatic effects in the eye and calculate them in model eyes. Most of these 

approaches define chromatic differences in Gaussian model eyes, usually the 

reduced eye or modifications thereof. Measurements are done experimentally and 

calculated within the framework of Gaussian systems. In order to differentiate 

between the definitions defined in classical and physiological optics, the term 

“chromatic aberration” will be reserved for the definition given in Chapter 6 and 

the definitions given in the physiological optics, in this chapter, will be termed 

“chromatic properties of the eye”.   

In this section we consider chromatic properties of the eye in two 

categories: in Section 7.1 we define those that are properties of the eye alone, the 

independent chromatic properties of the eye, and in Section 7.2 we define the 

chromatic properties of the eye that are dependent on the object (or image) and 

aperture positions. Because these definitions are specific to eyes or model eyes, 

we deem the system of the eye to be from the entrance plane immediately in front 

of the cornea to the exit plane immediately in front of the retina.  

For all the derivations that follow one needs to obtain two transferences, 

rS , the transference for the red frequency and bS , the transference for the blue 

frequency. In all the formulae below, the fundamental properties are taken from 

the two transferences with subscripts (or superscripts) r and b corresponding to the 

respective transference.  

 

7.1 Independent chromatic properties of the eye  

In Section 2.3.1 we saw that chromatic difference in power and chromatic 

difference in refractive compensation are usually categorised as longitudinal 

chromatic aberration which is in conflict with the definition for longitudinal 

chromatic aberration given in Chapter 6. In this section we will obtain formulae 

for the chromatic difference of power, refractive compensation and ametropia. 
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These chromatic properties of the eye are independent of the aperture, object and 

image, but depend on the frequencies chosen for red and blue. 

 

7.1.1 Chromatic difference in power 

Using Equation 3.4.3 we obtain the power F of the eye from the 

transference for a particular frequency of light. The chromatic difference in power 

is defined as  

rbδ FFF 
       

  (7.1.1) 

and substituting from Equation 3.4.3 we obtain the chromatic difference in power 

from the transferences (Evans and Harris, 2011) 

)(δ rb CCF  .        (7.1.2) 

 

7.1.2 Chromatic difference in refractive compensation 

We use Equation 3.4.6 to obtain the corneal-plane refractive compensation 

0F  for an eye from the transference. The chromatic difference in refractive 

compensation is defined as  

0r0b0δ FFF  .        (7.1.3) 

Hence, from Equation 3.4.6 the chromatic difference in corneal-plane refractive 

compensation is (Evans & Harris, 2011) 

r

1

rb

1

b0δ ABABF   .        (7.1.4) 

 

7.1.3 Chromatic difference in ametropia 

The term ametropia is often used to refer to refractive compensation, 

however the term is used here as defined in Section 3.3.1.We read the ametropia A 

directly from the transference for each chosen frequency of light. The chromatic 

difference in ametropia across a specified spectrum of visible light is obtained 

directly from the transferences and therefore (Evans & Harris, 2011) 

rbδ AAA  .         (7.1.5) 
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7.1.4 Chromatic properties for Emsley’s reduced eye 

In Section 4.1.3 we saw that the advantage of the reduced eye is its 

simplicity. It is a Gaussian system, has one refracting surface and there are only 

two refractive indices. We assume that Emsley’s eye is in air and that 10 n . 

What this implies is that we can derive very simple formulae for the chromatic 

difference of power, refractive compensation, and ametropia for the reduced eye. 

(Evans and Harris, 2011) 

The parameter of the reduced eye that varies with frequency is the 

refractive index. We define the chromatic difference of refractive index for the 

reduced eye as 

rbδ nnn  .         (7.1.6) 

 The refractive index for the reduced eye as a function of wavelength was given in 

Equation 4.4.2, from which we obtain (Evans & Harris, 2011) 


















cc
bn

rb

11
δ


       (7.1.7) 

where b and c are the constants given immediately after Equation 4.4.2. For the 

frequencies 430 THz and 750 THz, 542015.0δ n  for Emsley’s reduced eye. 

 

Chromatic difference in power for Emsley’s reduced eye 

From Equations 5.5.1 and 7.1.2 and the parameters for Emsley’s reduced 

eye given in Section 4.1.3 for the radius of curvature r of the refracting surface 

and the length z of the reduced eye we obtain (Evans & Harris, 2011) 

nF δ(δ D)180 ,        (7.1.8) 

the chromatic difference in power of Emsley’s reduced eye, where nδ  is 

calculated according to Equation 7.1.7. 

 

Chromatic difference in corneal-plane refractive compensation for Emsley’s 

reduced eye 

From Equations 5.5.1 and 7.1.4 and the parameters for the reduced eye 

given in Section 4.1.3 we obtain the chromatic difference in corneal-plane 

refractive compensation (Evans & Harris, 2011) 
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nF D)δ135(δ 0  .        (7.1.9) 

 

Chromatic difference in ametropia for Emsley’s reduced eye 

From Equations 5.5.1 and Equation 7.1.5 and the parameters for the 

reduced eye we obtain the chromatic difference in ametropia (Evans & Harris, 

2011) 













rb

11
4δ

nn
A .                  (7.1.10) 

The formulae, given in Equations 7.1.7 to 10, are specific to the reduced 

eye and make use of the parameters of Emsley’s reduced eye in the form of 

rational numbers. They are not general, but emphasise the simplicity of the 

reduced eye. Equations 7.1.7 to 10 enable us to very quickly obtain the chromatic 

difference in refractive index, power, refractive compensation or ametropia for 

any two chosen frequencies.  

 

Generalizing to linear optics 

Equations 7.1.1 to 5 readily generalize to linear systems. Equations 7.1.8 

to 10 pertain to the reduced eye which is a Gaussian system. 

 

7.2 Chromatic properties of the eye dependent on object and aperture 

positions  

In Section 2.3.2 we saw that the two chromatic properties usually defined 

as transverse chromatic aberration are chromatic difference in position and 

chromatic difference in magnification. They are measured in object space and 

calculated in both image and object space for model eyes. Our purpose in this 

section is to derive formulae from the transference for the chromatic properties 

that are dependent on object and aperture positions for Gaussian eyes. 

When we derive formulae for chromatic properties dependent on object 

and aperture positions we are interested in what is happening at the retina, that is, 

in image space. If we take into account that the light rays of different frequencies 

focus at different longitudinal positions, systems where the object and image are 

in conjugation, such as those discussed in Sections 3.3.2 and 3.5.1, are seldom 



III  DEFINITIONS AND DERIVATIONS  7 Quantifying chromatic properties  

154 

 

useful. Instead, we trace the chief ray from an object point projected onto the 

retina to locate the image position and magnification at the retinal plane and 

ignore the amount of blur at the retina. Chromatic difference in position is a 

commonly used term in the literature and is defined, in Section 2.3.2, as the 

difference in angular spread or difference in inclination of the red and blue 

reference rays in either image or object space. We will look at the chromatic 

difference in transverse position in both image 
Rδy  and object space Oδy  and the 

chromatic difference in inclination, again in both image 
Rδa and object space .δ Oa  

Unlike the independent chromatic properties of the eye, the chromatic 

properties discussed in this section are functions of the state of the rays at the 

retina. Changes in the position of object point and changes to the position of the 

limiting aperture will influence the state of the rays at the retina.  

A ray incident onto the eye undergoes chromatic dispersion and reaches 

the retina resembling a little rainbow dispersed across the retina (Thibos et al, 

1991). We concentrate on the two frequencies chosen for the particular study, 

usually representing the end points of the visual spectrum (as chosen for any 

specific study) and calculate the difference in position between them. Figure 7.2.1 

shows the chromatic difference in position 
Rδy  of the blue and red rays at the 

retina.  

We retain the generality of the formulae by including the refractive index 

of the medium upstream of the eye as dependent on frequency. This is applicable, 

for example, for an eye submerged in water. Furthermore, equations are written 

such that they can, as far as possible, generalise to linear optics for centred 

systems with astigmatic elements. Where equations do not readily generalise, the 

general linear equation is provided. 

 

7.2.1 Chromatic difference in coefficient matrices 

In Section 5.2.2 we defined the distant coefficient matrix EV . The matrix 

coefficients EV  and OEV  for eyes and either a distant or finite distance object 

point respectively are dependent on frequency and therefore there will be a blue 
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and a red matrix coefficient for each object distance. We now define the 

chromatic difference in distance coefficient matrices 











EE

EEr

E

b

EE
δδ

δδ
δ

ZY

XW
VVV        (7.2.1) 

where 
EδW  is the chromatic difference in distance image blur coefficient, 

EδX  is 

the chromatic difference in distance image size coefficient, 
EδY  is the chromatic 

difference in distance directional spread coefficient and 
EδZ  is the chromatic 

difference in distance directional coefficient.  

 Similarly, we can define the chromatic difference in near coefficient 

matrices OEδV  and each of the respective simplifications for when a pinhole is in 

front of the eye, namely P

EδV  and 
P

OEδV . Also, we can define the chromatic 

difference in object space coefficient matrix with respect to position at the retina 

OyδV  and with respect to the inclination at the retina OaδV  and the simplifications 

when a pinhole is used, P

OyδV  and 
P

OaδV . 

 

7.2.2 Chromatic difference in image positions at the retina 

In Figure 7.2.1 we see a pencil of rays of inclination 
Ka  incident onto the eye at 

the entrance plane 
KT . We choose to follow only one ray from this pencil. For 

convenience, we choose the chief ray, however any ray could be chosen, for 

example a marginal ray. Because of dispersion we will have a chief ray for each 

frequency of which we choose to follow the red and blue chief rays. Because 

refraction and dispersion start at the entrance plane, but the limiting aperture PT  is 

downstream of the entrance plane, there will be a different incident ray for each 

frequency. In other words r

K

b

K yy  . Similarly, the inclination of the red and blue 

chief rays will be different through the centre of the pupil, that is, r

P

b

P aa  . The 

red and blue chief rays are shown in Figure 7.2.1 to illustrate this. 

We start with Equations 5.2.7 to 9 for an eye and distant object point and 

Equations 5.2.25 to 27 for an eye and an object point at a finite distance in order 

to obtain the position and inclination of the ray at the retina.  

We define the chromatic difference in position at the retina as 
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r

R

b

RRδ yyy  .        (7.2.2) 

Substituting from Equations 5.2.5 and 8 into this equation we obtain 

K

r

EK

b

EP

r

EP

b

ERδ aXaXyWyWy   

which we rewrite as 

    KEPER δδδ aXyWy         (7.2.3) 

where 
EδW  is the chromatic difference in the distance image blur coefficients and 

EδX  is the chromatic difference in the distance image size coefficients as defined 

in Equation 7.2.1. The incident pencil of rays has inclination 
Ka  and both the red 

and blue rays go through the same position in the pupil, that is b

P

r

P yy  . Similarly, 

from Equation 5.2.28, for eyes with an object point at a finite distance we obtain  

    OOEPOER δδδ yXyWy  .       (7.2.4) 

If the model eye has its pupil centred on the optical axis, then tracing the 

chief rays such that 0P y , Equations 7.2.3 and 4 simplify to  

  KER δδ aXy          (7.2.5) 

 

 

Figure 7.2.1 Chromatic difference in image position is shown as Rδy . Rays, all 

with the same incident inclination Ka , enter the eye and traverse a selected 

position through the pupil, Py  and are traced to the retina. The chief ray is 

illustrated and represents the centre of the blur circle at the retina. At the retina the 

two rays representing the blue and red light are shown. Chromatic difference in 

image position is the difference in position on the retina of these two rays, Rδy . 

The red and blue chief rays will follow different paths as illustrated. All 

measurements are taken at the respective transverse plane. Inclinations and 

positions are exaggerated for clarity.  

for a distant object point and  
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  OOER δδ yXy          (7.2.6) 

for an object point at a finite distance. Equations 7.2.5 and 6 are both linear 

equations. From this we can see that the chromatic difference in position for an 

eye has a linear dependence on incident inclination for distant objects and on 

object position for finite objects.  

We consider distant objects first. In Equation 7.2.5 
EδX  is a constant for 

that eye and represents a magnification by the eye. The chromatic difference in 

position is then linearly dependent on the inclination of the incident light. In 

Section 5.2.2 we defined the system (subscript E) for the distant object scenario as 

consisting of just the eye while in Section 5.2.3 we define the system for the near 

object scenario (subscript OE) to include the eye and working distance. Similarly, 

at near OEδX  represents a constant, provided Oz  remains unchanged. While the 

actual value of OEδX  will be different to 
EδX  this eye too shows us that chromatic 

difference in position is linearly dependent on the position of the object. Because 

Oz  is incorporated into the coefficient matrix OEδV , OEδX  will vary with any 

change in Oz . This will be shown for a selection of numerical examples in 

Chapter 10.  

Let us look at Equations 7.2.5 and 6 in terms of the entries of the 

transferences. Substituting from Equation 5.2.8 and 5.2.26 into Equations 7.2.5 

and 6 respectively, we obtain 

K

A

0B
R δδ a

A

nB
y 








         (7.2.7) 

for a distance object and  

O

AOA

B
R δδ y

BA

B
y 















       (7.2.8) 

for an object at a finite distance before ES . These give us the chromatic difference 

in transverse position at the retina Rδy , firstly with a distant object and secondly 

with an object at a finite distance, in terms of the fundamental properties of the 

Gaussian model eye. 
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An underlying implication 

Chromatic dispersion starts as the light enters the first refracting surface, 

that is, the cornea. However, we then follow only the chief ray, defined by 
Py . 

This implies that the blue and red rays that traverse the pupil centre are not 

originating from the same ray incident on the cornea, but rather two incident rays, 

both with the same inclination, incident at different positions onto the cornea, as 

illustrated in Figure 7.2.1. This difference in position is probably rather small, but 

nonetheless worth noting. Starting with Equations 3.2.40 and 3.5.7 we can derive 

the formulae for 
Kδy , the chromatic difference in position of the two chief rays at 

the entrance plane to be 

P

A

KE

A

B

E

0
K

1
δδδ y

A
aB

A

B

A

n
y 

























































       (7.2.9)  

for a distant object and 

P

OA

O

O

OA

A
K δδδ y

B
y

B

B
y 
























                (7.2.10) 

for an object point at a finite distance from the eye.  

 

Use of pinhole 

We return to Equations 7.2.3 and 4 and consider the clinical scenario 

where a pinhole is held immediately in front of the eye. The limiting aperture is 

no longer centred on the optical axis and the chromatic difference in position 

increases in magnitude with increasing decentration of the pinhole and the object. 

The entries of 
EV  and OEV , given by Equations 5.2.8 and 26, simplify for the 

pinhole in front of the eye and therefore Equations 7.2.3 and 4 become 

    K

P

EP

P

ER δδδ aXyWy                   (7.2.11) 

and 

    O

P

OEP

P

OER δδδ yXyWy                   (7.2.12) 

where the coefficients for P

EV  and 
P

OEV  are given in Equations 5.2.37 and 5.2.34 

respectively. In terms of the entries of the transferences Equations 7.2.11 and 12 

simplify to become  
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     K0EPER δδδ anByAy                   (7.2.13) 

and 

      O

1

OEP

1

OEER δδδ yByBAy    .               (7.2.14) 

Equations 7.2.11 and 12 are the specialised versions of Equations 7.2.3 

and 4 which indicate substitution of the coefficients from P

EV  and 
P

OEV  

respectively for the special situation of a pinhole placed in front of the eye. The 

conclusions that we can draw from the four equations are similar: the chromatic 

difference in position will increase in magnitude firstly for distant objects with the 

increase in incident inclination, secondly, for object points at a finite distance with 

increase in transverse displacement of the object point from the axis and finally 

with increased transverse displacement of the pinhole or position of the ray 

through the pupil from the optical axis. These conclusions are consistent with the 

findings in the literature, discussed in Chapter 2. 

 

7.2.3 Chromatic difference in inclination at the retina 

In Section 7.2.2 we defined, quite literally, the chromatic difference in 

image position at the retina. However, in Chapter 2 it was shown that a number of 

studies treat the chromatic difference in image position as the difference in 

inclination between the red and blue dispersed rays from a single object point. 

Here we define chromatic difference in inclination at the retina as the difference in 

emergent inclination of the two coloured reference rays, dispersed by the eye, 

from a particular object point, that is to say Rδa . This definition is general and 

defined with centred astigmatic eyes in mind. In an astigmatic eye the nodal 

structure is not a point and in a multi-surface eye the nodal structure differs in 

position with frequency and is unlikely to make a pivotal point. Similarly, the 

entrance pupil is merely an image of the pupil viewed through the cornea. The 

first refracting surface is a fixed physical structure (with an infinity of optical 

axes) but is not suitable because the rays do not necessarily coincide at this point. 

The definition, therefore, measures the difference in inclination of the emergent 

chromatic rays without concern for where or even if these two rays intersect.  

We define the chromatic difference of inclination at the retina as 
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r

R

b

RRδ aaa                    (7.2.15) 

where 
b

Ra  and r

Ra  are the (unreduced) inclinations of the blue and red chief rays at 

the retina. From Equations 5.2.7 and 29 we obtain the difference in emergent 

reduced inclination from an eye 

    KEPER δδδ aZyYa                    (7.2.16) 

for a distant object point and  

    OOEPOER δδδ yZyYa                   (7.2.17) 

for a finite-distance object point. For model eyes with a centred pupil this 

simplifies to 

  KER δδ aZa                    (7.2.18) 

and 

  OOER δδ yZa                    (7.2.19) 

for distant and finite object points respectively. Equation 7.2.18, solved for 
EδZ , 

resembles Equation 2.3.8 which Thibos, Bradley and Zhang (1991) and Zhang, 

Thibos and Bradley (1991) define as the chromatic difference in magnification. 

  The Gaussian eye and a distant object point are shown in Figure 7.2.2. 

This is an extension of Figure 7.2.1 and the paths of the rays at emergence at the 

retinal plane are shown. The point where they intersect is unimportant and may, 

for example, be upstream from the lens which implies that the diagram does not 

show the actual ray path but merely a projection of the rays inside the eye. In 

Gaussian eyes, we can envision an intersection, however this may not coincide 

with the optical axis and is also not necessarily going to intersect with the pupil 

centre, a refracting surface or any of the cardinal points. This is shown in Figure 

7.2.2. It will depend on the complexity of the schematic eye being modelled. 

For a Gaussian eye, the red and blue non-parallel rays intersect at some 

position in the plane of the eye to create a chromatic difference in inclination. 

However, it is foreseeable that in a three-dimensional linear system with 

heterocentric astigmatic elements that the red and blue rays are skew rays that 

may not intersect. It is possible that they may swirl past each other and never 

coincide. Investigating this is, however, outside the scope of this dissertation. 
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Use of a pinhole 

Let us consider the situation where there is a pinhole held immediately 

before the corneal plane. Equations 7.2.16 and 17 still hold, however we substitute 

the relevant coefficients from P

EδV  and 
P

OEδV  instead of 
EδV  and OEδV . Two 

simplifications we will consider are when the light originates firstly from a distant 

object point and parallel to the optical axis that is 0K a  and secondly from an 

axial object point, where 0O y . Equations 7.2.16 and 17 simplify to 

  P

P

ER δδ yYa                    (7.2.20) 

and  

  P

P

OER δδ yYa                    (7.2.21) 

respectively. P

EY  and 
P

OEY  are defined by Equations 5.2.37 and 34. In terms of the 

entries of the transference, Equations 7.2.20 and 21 simplify to 

   P

1

ER δδ ynCa   

and 

    P

1

OEE

1

R δδ yDCna    , 

 

Figure 7.2.2 A Gaussian eye and a pencil of rays from a distant object showing 

chromatic difference in inclination between the two dispersed rays. The pivotal 

point is the where the projection of the two rays intersect to create an angle. It 

may or may not coincide with any reference structure, including the longitudinal 

axis. Inclinations in the diagram are exaggerated for clarity. 

respectively. These are both linear equations showing that, when a pinhole is held 

immediately in front of the eye, the chromatic difference in inclination at the 

retina is dependent on the position of the pinhole from the optical axis. 
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Now from Equations 7.2.16 and 17 we can see that chromatic properties 

increase with increased transverse displacement of the object point from the 

optical axis and also with increased transverse displacement of the pinhole from 

the optical axis. This is consistent with conclusions discussed in Chapter 2. 

 

In summary 

Equations 7.2.3 and 16 can be summarised as 

REE δδ rvV                     (7.2.22) 

where 
EδV  is defined by Equation 7.2.1, 

Ev  by Equation 5.2.9 and 
Rδr  as 











R

R

R
δ

δ
δ

a

y
r                    (7.2.23) 

giving us 
Rδy  the chromatic difference in transverse image position at the retina 

and 
Rδa  chromatic difference in inclination at the retina for a distant object. 

 Similarly, we can summarise Equations 7.2.4 and 17 as 

ROEOE δδ rvV                    (7.2.24) 

where OEδV  is defined in Section 7.2.1, OEv  by Equation 5.2.27 and 
Rδr  by 

Equation 7.2.23. 

 In the same way, we can summarise 
Rδy  and 

Rδa  using a pinhole in front 

of the eye as  

RE

P

E δδ rvV                     (7.2.25) 

for a distant object and for an object point at a finite distance from the eye as 

ROE

P

OE δδ rvV  .                  (7.2.26) 

 

Generalizing to linear optics 

 The chromatic difference in transverse image position at the retina 

(Equations 7.2.2 to 6), the chromatic difference in inclination at the retina 

(Equations 7.2.15 to 19) and their summary (Equations 7.2.22 to 24)  readily 

generalize to linear optics, provided one substitutes from Equations 5.2.38 and 39 

when obtaining the chromatic difference in coefficient matrices (Equation 7.2.1). 

The equations for the scenario when a pinhole is placed immediately in front of 

the eye for chromatic difference in transverse image position at the retina 
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(Equations 7.2.11 to 14), the chromatic difference in inclination at the retina 

(Equations 7.2.20 to 21) and the summary (Equations 7.2.25 and 26) also readily 

generalize to linear optics. The equations for the underlying implication of 

chromatic difference in corneal position when the rays originate from the same 

object point can be rewritten to be general as 

     PE

1

EKE0E

1

EK δδδ yWAaBXAy
  n  

for a distant object and 

          PEO

1

EE

1

OEOOEE

1

O

1

EE

1

OEOK δδδ yWBXAyBXBXAy 
  nnn

for an object at a finite distance where 
EX  and 

EW  are given in Equation 5.2.38. 

 

7.3 Chromatic properties of the eye dependent on object size or angular 

spread 

The terminology used in the literature is chromatic difference in 

magnification. Let us start by trying to understand what this term means. 

Magnification was defined in Section 3.5.1 as a ratio of either the image to object 

size or the ratio of image’s reduced inclination to the object’s reduced inclination. 

In Sections 3.5.3 and 5.2 the magnification is defined for specific circumstances 

in terms of coefficients, which are also ratios. What meaning, then, can we give to 

a difference between ratios? 

In Chapter 2 we saw that there are a number of different approaches to 

defining chromatic difference in magnification. Simonet and Campbell (1990) 

define chromatic difference in magnification as the difference in image sizes at 

the retina (Equation 2.3.7), but the measurement is given in seconds of arc. 

Similarly, we firstly define the chromatic difference in image size at the retina, 

and, secondly, we obtain the chromatic difference in angular spread across the 

retina.  

Thibos, Bradley and Zhang (1991) and Zhang, Thibos and Bradley (1991) 

define chromatic difference in magnification as the ratio of the difference in angle 

between the red and blue chief rays to the angle of eccentricity subtended by the 

object point (Equation 2.3.8). However, is this a difference in magnification or the 

magnification of differences? They give their resultant chromatic difference in 

magnification as a percentage. Similarly, we take this definition of magnification 
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and compare both the magnification of image sizes and the magnification of 

angular spread between the blue and red images. We will see that the issue of blur 

is not ignored, but rather is nullified by the definition. 

 

7.3.1 Chromatic difference in image size 

In order to obtain the chromatic difference in image size  Rδ y  we first 

need to calculate the size of each of the blue and red images from Equation 5.2.5 

and then calculate the difference in size between them. For a distant object, the 

size of the blue image will be 

K1

b

EK2

b

EP1

b

EP2

b

E

b

R aXaXyWyWy  .     (7.3.1) 

The position in the pupil or pinhole is the same for both rays, that is 
P2P1 yy    

and therefore this simplifies to 

K

b

E

b

R aXy           (7.3.2) 

and similarly for the red image. The angle subtended by the distant object is  

K1K2K aaa  .        (7.3.3) 

The chromatic difference in image size is 

    KEK

r

EK

b

E

r

R

b

RR ΔδΔδ aXaXaXyyy      (7.3.4) 

where b

Ry is the size of the blue image at the retina and likewise r

Ry  is the size 

of the red image at the retina, as indicated in Figure 7.3.1. We use the symbolisms 

  to represent a size (difference in position) or angle subtended (difference in 

inclination) and δ  to represent a chromatic difference in, for example, position, 

size, inclination or angular spread.    

The size of the blue image at the retina from an object at a finite distance 

is 

O1

b

OE2O

b

OEP1

b

OE2P

b

OE

b

R yXyXyWyWy      (7.3.5) 

but  

2P1P yy           (7.3.6) 

therefore 

O

b

OE

b

R yXy  .        (7.3.7) 
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and similarly for the size of the red image at the retina. 
b

OEX  is the near image size 

coefficient and represents a magnification of the object to the blue image. It is 

similar to Equation 3.5.1 which represents a transverse magnification. For near the 

chromatic difference in image size will be 

    OOEO

r

OEO

b

OE

r

R

b

RR δδ yXyXyXyyy      (7.3.8) 

where Oy  is the length of the object at the object plane OT .  

The result indicates that 
EδX , the chromatic difference in distance image 

size coefficients and OEδX , the chromatic difference in near image size 

coefficients, represent constants and therefore the actual size of the image will 

depend on the size of the object (for distant objects this is represented by the 

change in incident inclination of the rays) and not on any transverse displacement 

of the pupil (or pinhole). We can conclude that 
EδX  and OEδX  represent a 

chromatic difference in image size magnification by the system of either a distant 

 

 

Figure 7.3.1 Chromatic difference in image size  Rδ y  in a Gaussian system 

OES  with the object at a finite distance from the eye ES . The size of the object is 

shown at the entrance plane as Oy . Rays from the two endpoints of the object 

enter the eye and are illustrated traversing the pupil, but don’t necessarily have to 

traverse the pupil centre. The two rays are dispersed through the eye and result in 

a blue and a red image at the retina. One or both images may be blurred, however 

it is their size magnification that we are interested in. The chromatic difference in 

magnification is shown as the difference in size of the two coloured images. The 

figure is drawn for the simpler situation of an axial based object. All objects and 

images are measured at the respective transverse planes, and are drawn separately 

for clarity. 
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or near object. Figure 7.3.1 shows chromatic difference in image size for near for 

a Gaussian system and axial object, however, it is not necessary for an object to 

be axial, Equations 7.3.4 and 8 apply to non-axial objects of size Oy .    

 

7.3.2 Chromatic difference in angular spread at the retina 

The chromatic difference in angular spread at the retina  Rδ a  is 

obtained in a similar way to the chromatic difference in image size. From 

Equation 5.2.6 we can define the angular spread of the blue image on the retina as 

K1

b

EK2

b

EP1

b

EP2

b

E

b

R aZaZyYyYa  .     (7.3.9) 

Equation 7.3.6 applies and so Equation 7.3.9 simplifies to 

K

b

E

b

R aZa                     (7.3.10) 

and similarly for the angular spread of the red image across the retina. b

EZ  is the 

distance directional coefficient and represents a magnification of the angular 

spread of the incident rays to the blue emergent rays. For an axial object, Equation 

7.3.10 is similar to Equation 3.5.3, the angular magnification of image to object. 

To calculate the chromatic difference in angular spread between the red and blue 

images across the retina from an object with angular spread of 
KΔa ,  we obtain 

    KEK

r

EK

b

E

r

R

b

RR ΔδΔδ aZaZaZaaa  .             (7.3.11) 

 Similarly, the chromatic difference in angular spread for an object with 

size OΔy  at a finite distance is 

    OOER Δδδ yZa  .                 (7.3.12) 

EδZ  is the chromatic difference in distance directional coefficient and OEδZ  is the 

chromatic difference in near directional coefficient, both being constants for any 

particular chosen system. Equations 7.3.11 and 12 are linear equations with EδZ  

and OEδZ  representing the slope. EδZ  magnifies the incident angular spread from 

the object and, likewise, OEδZ  magnifies the object size to obtain the  Rδ a . 

 The angular spread Ra  is the difference in inclination of the two rays that 

subtend the end-points of an image on the retina, that is R1R2R aaa  . The 

pivotal point where these two rays ( R1a  and R2a ) meet is not necessarily 
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represented by a cardinal point, the longitudinal axis or a physical structure. The 

red and blue images have different sizes and will subtend different 
Ra . The 

pivotal points for the red and blue images will not necessarily coincide. This is a 

different definition to that defined in the literature by angle t in Figures 2.3.3 and 

4, however, it does represent the actual rays and as such has implications for the 

Stiles-Crawford effect. 

 

Chromatic difference in image size and angular spread with a pinhole 

We can obtain the chromatic difference in image size and angular spread at the 

retina when a pinhole is placed immediately in front of the eye using Equations 

7.3.4, 8, 11 and 12, and replacing the coefficients with the respective coefficients 

from P

EV  (Equation 5.2.37) and 
P

OEV  (Equation 5.2.34). The effect of placing a 

pinhole immediately in front of the eye has the effect of moving the limiting 

aperture longitudinally. However, the effect of any transverse displacement of the 

pinhole is nullified, as shown by Equation 7.3.6. 

 

In summary 

 Equations 7.3.4 and 11 can be summarized as  

REE δδ rvV                    (7.3.13) 

where EδV  is the chromatic difference in coefficient matrix given in Equation 

7.2.1,  











K

P

E
Δ

Δ

a

y
v                    (7.3.14) 

where 0Δ P y  and KΔa  is the angular spread indicating the distant object size, 

and 











R

R

R
Δ

Δ
δδ

a

y
r                   (7.3.15) 

is the chromatic difference in image sizes RδΔy  or chromatic difference in 

angular spread RδΔa  at the retina. 

 Similarly, we summarize Equations 7.3.8 and 12 as 

ROEOE δδ rvV                    (7.3.16) 
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where 











O

P

OE
Δ

Δ

y

y
v ,                  (7.3.17) 

0Δ P y  and OΔy  is the object size. When placing a pinhole immediately in front 

of the eye, we substitute P

EδV  for 
EδV  and 

P

OEδV  for OEδV  in Equations 7.3.13 

and 16 respectively.  

 

Generalizing to linear optics 

The chromatic difference in image size (Equations 7.3.1 to 8) and the 

chromatic difference in angular spread (Equations 7.3.9 to 12) as well as the 

respective summary (Equations 7.3.13 to 17) readily generalize to linear optics, 

provided one substitutes from Equations 5.2.38 and 39 when obtaining the 

chromatic difference in coefficient matrices (Equation 7.2.1).  

 

7.3.3 Retinal chromatic image size magnification 

In this section we adopt the method described by Thibos et al (1991) and 

Zhang et al (1991) of defining chromatic difference in magnification (Equation 

2.3.8) as a ratio. We first investigate the retinal chromatic image size 

magnification and then the retinal chromatic angular spread magnification. The 

retinal chromatic image size magnification is defined as the magnification of the 

size of the red image to obtain the size of the blue image at the retina as 

b

R

r

RyR yyM                    (7.3.18) 

where b

Ry  and r

Ry  are the blue and red retinal image sizes defined by Equation 

7.3.2. Substituting from Equation 7.3.2 into 7.3.18 we obtain 

K

b

EK

r

EyR aXaXM     

which simplifies to 

b

E

r

EyR XXM                     (7.3.19) 

for a distant object. Substituting from Equation 7.3.7 into 7.3.18 we obtain 

O

b

OEO

r

OEyR yXyXM    

which simplifies to 
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b

OE

r

OEyR XXM                    (7.3.20) 

for an object at a finite distance. Taking the magnification a step further, we can 

substitute the elements of the transferences, as defined in Equations 5.2.8 and 26 

into 7.3.19 and 20 to obtain 

b

0

r

A

b

B

r

0

b

A

r

ByR nABnABM                   (7.3.21) 

and 

   r

A

r

O

r

A

b

B

b

A

b

O

b

A

r

ByR BABBABM                  (7.3.22) 

respectively. From Equations 7.3.19 to 22 we can conclude that the retinal 

chromatic size magnification will be a fixed ratio for the system and does not 

depend on object size or transverse position. 

 

7.3.4 Retinal chromatic angular spread magnification 

The second approach to retinal chromatic magnifications makes use of the 

angular spread, obtaining the magnification of the red to blue angular spreads of 

the emergent chief rays reaching the retina from an object. We therefore define 

the retinal chromatic angular spread magnification as 

b

R

r

RR aaM a                    (7.3.23) 

where b

Ra  and r

Ra  are the angular spread across the retina for the blue and red 

images. We define the blue angular spread at the retina, b

Ra  as  

K1

b

EK2

b

EP1

b

EP2

b

E

b

R aZaZyYyYa                 (7.3.24) 

however, the two rays traverse the same position through the pupil and therefore 

K

b

E

b

R aZa                     (7.3.25) 

and similarly for the angular spread of the red image at the retina. The angular 

spread of a blue image at the retina from an object at a finite distance is 

O

b

OE

b

R yZa  .                  (7.3.26) 

Substituting from Equations 7.3.25 and 26 in turn into Equation 7.3.23 we obtain 

K

b

EK

r

ER aZaZM a     

which simplifies to 

b

E

r

ER ZZM a                     (7.3.27) 
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for a distant object and 

O

b

OEO

r

OER yZyZM a    

which in turn simplifies to 

b

OE

r

OER ZZM a                    (7.3.28) 

for an object at a finite distance, respectively. We now substitute from Equations 

5.2.8 and 26 into the above equations respectively to obtain 

rb

0

r

A

b

B

br

0

b

A

r

BR nnADnnADM a                   (7.3.29) 

for distance objects and 

    rr

A

r

O

r

A

b

B

bb

A

b

O

b

A

r

BR nBADnBADM a                  (7.3.30) 

for objects at a finite distance. Again we can conclude that the retinal chromatic 

angular spread magnification is not dependent on the object’s size or transverse 

position. 

Comparing Equation 7.3.21 to 7.3.29 and 7.3.22 to 7.3.30 we see that the 

only variable that is different in the two pairs of equations is the ratio 
r

B

b

B

B

B
 for 

retinal chromatic size magnification versus 
br

B

rb

B

nD

nD
 for the retinal chromatic 

angular spread magnification. We will do numerical examples in Chapter 10 to 

see how these ratios affect our ultimate result. 

 

Retinal chromatic magnifications with a pinhole 

We have seen that, when comparing image sizes of the red and blue 

images on the retina, the effect of transverse displacement of a pinhole 
Py  in front 

of the eye is nullified, however, the effect of displacing the longitudinal position 

of the limiting aperture will have an effect on the coefficients and hence on the 

magnifications. For each of Equations 7.3.19, 20, 27 and 28, we replace the 

respective coefficient with those from P

EV  (Equation 5.2.37) and 
P

OEV  (Equation 

5.2.34), the distance and near coefficient matrices for a Gaussian eye with a 

pinhole immediately in front of it. 
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Generalizing to linear optics 

 The Equations in Section 7.3 have been written and derived such that they 

readily generalize to linear optics. The proof is beyond the scope of this 

dissertation. 

  

7.4 Chromatic properties of the eye dependent on image and aperture 

positions  

The derivations in Sections 7.2 and 3 apply in image space. However, 

experimental measurements and analyses are done in object space. In Section 

2.3.2 we learnt that experiments make use of a target at a finite distance, a Vernier 

scale to measure the induced chromatic effect and a pinhole or Maxwellian view 

which controls and varies the position of the ray entering the eye (Thibos et al, 

1990, 1992; Simonet and Campbell, 1990). The pinhole has the added benefit of 

eliminating any refractive compensation needed without the use of spectacle 

lenses which could add chromatic properties to the experiment (Thibos et al, 

1990).  

 

7.4.1 Chromatic difference in object position 

Consider an eye and two coloured object points at different positions in 

object space. The two objects appear to be lined up on the retina as shown in 

Figure 7.4.1 where r

R

b

R yy  . The superimposed points may or may not be at the 

fovea, and the emergent inclination need not be the same for the red and blue rays. 

Because such experiments are conducted in the clinical environment, we shall 

derive formulae for the near scenario only.  

From Figure 7.4.1 we can see that while there are two object points of 

different frequencies at positions 
b

Oy
 
and 

r

Oy , we have a common transverse 

position through the pupil Py  for the chosen ray path for each frequency. The two 

rays arrive at a common point on the retina Ry  where it should appear to the eye 

as being one object point; that is the two image points of differing frequencies are 

superimposed.     
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We wish to obtain the chromatic distance between the two object points, 

Oδy . From Equation 5.3.17 we obtain  

   
ROyPOyO δδδ yXyWy         (7.4.1) 

where  

r

O

b

OOδ yyy          (7.4.2) 

is the distance between the red and blue object points at the object plane. OyδW  is 

the chromatic difference in near object blur coefficient and OyδX  is the chromatic 

difference in near object size coefficient, both with respect to the position of the 

image at the retina. Equation 7.4.1 gives us the chromatic difference in position 

for two object points of different frequencies in object space. This is comparable 

to the clinical or experimental scenario described in Section 2.3.2. It is a simple 

matter to choose the position of the fovea as 
Ry , where applicable. For the 

scenario where there is no pinhole and the pupil is centred on the optical axis such 

that 0P y , we obtain the linear relationship 

 
ROyO δδ yXy  .        (7.4.3) 

 

Figure 7.4.1 Chromatic difference in object position. A Gaussian system OES  at 

near. The object consists of two separated point targets of different frequencies 

and at different transverse positions. The emergent rays coincide positionally at 

the retinal plane. The figure is general and the dividing plane may represent either 

a pupil or a pinhole. All measurements are taken at the respective transverse 

planes, but these are separated in the diagram for clarity. 
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For two chosen frequencies and a set working distance, OyδX  will be a constant 

representing a magnification.  Any increase in the magnitude of 
Ry  will result in 

an increase in the separation of the red and blue object points Oδy . When fixation 

is set at the fovea it is possible to obtain the position of the fovea, 

 OyOR δ/δ Xyy   (from Equation 7.4.3), for a centred pupil. 

 

Including the use of a pinhole 

On the other hand, the preferred experimental procedure is to place a 

pinhole in front of the eye, immediately in front of the entrance plane or corneal 

plane and keep the position of the image on the retina constant. Equation 7.4.1 

still applies, except that we can substitute the coefficients from the simpler 
P

OyδV  

such that  

    R

P

OyP

P

OyO δδδ yXyWy  .       (7.4.4) 

Substituting from Equation 5.3.19 and then from Equation 3.4.6 we obtain 

            RO

1

EPO0RO

1

EPOE

1

EO δ1δδ1δδ yByFyByABy      

          (7.4.5) 

where 0F  is the refractive compensation for the eye at the specified frequency.  

For a model eye the fovea coincides with the optical axis at 0R y  

simplifying Equations 7.4.4 and 5 even further. However, the fovea is usually not 

on the optical axis, but does represent a constant for Ry . This means that Equation 

7.4.4 is the equation for a straight line with   R

P

Oyδ yX  being a constant and 

 P

OyδW  giving the slope of the straight line. From Equation 7.4.5 we can see that 

the separation of the two object points is directly proportional to the displacement 

of the pinhole from the optical axis and the constant of proportionality is related to 

the chromatic difference in refractive compensation and working distance. 

 

7.4.2 Chromatic difference in inclination in object space 

We again turn our attention to Figure 7.4.1, to obtain the chromatic 

difference in inclination in object space of each of the red and blue chief rays that 

will ultimately both reach the retina at the same point. When the aperture plane is 
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that of the pinhole, then these two rays will meet and create a point of intersection 

at the centre of the pinhole. However, when the aperture plane is the eye’s pupil, 

then the rays will undergo refraction before reaching the pupil and, in Gaussian 

optics, the straight line projections of the two rays will meet at some other point, 

which may or may not be on the optical axis.  

Figure 2.3.3(b) shows the definition of chromatic difference in position as 

the angle t between the incident chief rays for the blue and red targets. With this 

in mind we will derive equations to solve for Oδa .    

In order to obtain the angle between the red and blue chief rays from a red 

and a blue object point, respectively, on the object plane which coincide at a 

single point on the retina we can obtain, from Equation 5.3.18, an equation for 

chromatic difference in inclination in object space 

   
ROyPOyO δδδ yZyYa  .       (7.4.6) 

For a model eye with a centred pupil and no pinhole, we can equate 

0P y  and Equation 7.4.6 simplifies to 

 
ROyO δδ yZa          (7.4.7) 

from which we can see the linear relationship that the angle between the two rays 

of differing frequencies increases with increasing transverse position on the retinal 

plane from the optical axis. 

 

Including the use of a pinhole 

In Section 2.3.2 we saw that the angular difference between the two 

incident rays which vary with displacement of a pinhole from the optical axis and 

create a single image at the retina is referred to by Thibos et al (1990) as induced 

transverse chromatic aberration. This is specifically achieved by the use of a 

pinhole immediately in front of the eye and held at varying transverse distances 

from the model eye’s optical axis, that is, where Py  is not necessarily zero. 

Equation 7.4.6 is general and still applies, with substitution of the coefficients 

from 
P

OyδV  for the pinhole situation. For simplicity, we again allow the retinal 

image to coincide with the eye’s longitudinal axis, that is at 0R y . This is 
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consistent with the assumption that in model eyes the fovea coincides with the 

optical axis. Equation 7.4.6 therefore simplifies to 

  P

P

OyO δδ yYa  .        (7.4.8) 

Substituting from Equations 5.3.19 and 3.4.6 we obtain 

       P0

1

0PE

1

E0O δδδ yFnyABna 
 .     (7.4.9) 

Unsurprising, this equation, like Equation 7.4.7, gives us a linear relationship 

between the angular spread from the red to the blue object points at incidence onto 

the pinhole, the chromatic difference in refractive compensation and the 

displacement of the pinhole from the optical axis. It resembles Equation 2.3.5 

which Thibos et al (1990) define as induced transverse chromatic aberration.  

 Simonet and Campbell (1990) also describe a relationship resembling 

Equations 2.3.5 and 7.4.9 to measure the transverse chromatic aberration, 

however, in their equation h is defined at the pupillary plane whereas Thibos et al 

(1990) and Equation 7.4.9 are defined for a pinhole at the corneal plane. However, 

Oy

P

Oy δδ YY   which may explain the discrepancy in results described by Simonet 

and Campbell between their indirect derivation (using Equation 2.3.5) and direct 

measurements (obtained experimentally) and defined by Equation 7.4.6. 

Exploring this further is beyond the scope of this dissertation. 

 

In summary 

 Equations 7.4.1 and 6 can be summarized as 

OOyOy δδ rvV                    (7.4.10) 

where OyδV  is defined in Section 7.2.1, Oyv  is given by Equation 5.3.15 and  











O

O

O
δ

δ
δ

a

y
r .                   (7.4.11) 

Oδy  defines the chromatic difference in transverse object position and Oδa  is the 

chromatic difference in inclination in object space. 

 Similarly the scenario of placing a pinhole immediately in front of the eye 

can be summarized as  

OOy

P

Oy δδ rvV                    (7.4.12) 



III  DEFINITIONS AND DERIVATIONS  7 Quantifying chromatic properties  

176 

 

where 
P

OyδV  is defined by Equation 5.3.19. 

From Equations 7.4.10 and 12 we can see that chromatic difference in 

position and inclination in object space is a function of both transverse 

displacement of the retinal image from the optical axis and transverse 

displacement of the pinhole from the optical axis.  

 

An underlying implication 

We return to the experimental setup with the pinhole as the limiting 

aperture and underlying assumptions as shown in Figure 7.4.1. The experiments 

theorise that the two different chromatic images are superimposed at the retina 

and perceived as one. This implies r

R

b

R yy   . However, it is quite possible that the 

inclination at the retina of the two chromatic rays is not the same. This has 

implications for the Stiles-Crawford effect. We derive an equation to obtain the 

chromatic difference in inclination of these two rays at the retina, 
Rδa . The red 

and blue chief rays are traversing the pupil through the same position. We 

therefore start at the plane of the aperture. From Equation 5.2.18 and 19 and 

equating for 
P , simplifying, solving for 

Ra  and then taking the chromatic 

difference we obtain 

       R

1

BBP

1

BR δδδ ynBDynBa


                (7.4.13) 

which is the chromatic difference in inclination at the retina when two rays from 

separated objects of differing frequencies are superimposed at the retina.  

 

Generalizing to linear optics 

 Equations 7.4.1 to 12 readily generalize to linear optics provided we 

substitute from Equation 5.3.25 for OyV  and from Equation 5.3.26 for 
P

OyV . For 

Equation 7.4.13 we need to include a transpose to obtain 

       R

1

BBP

1T

BR δδδ yBDyBa


 nn .               (7.4.14) 
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7.5 Chromatic properties of the eye dependent on object size or angular 

spread 

 In Section 2.3.2 we saw that experiments are designed to measure 

chromatic difference in position of a red and a blue object point in object space. 

When working in object space experimentally, we are working with single red and 

blue object points rather than objects with size, according to the current literature. 

Chromatic difference in image size and angular spread are calculated in image 

space using ray tracing based on the experimental data for objects with size. It is 

conceivable that an experiment could be devised to compare the sizes of a red and 

a blue object to appear to be the same size in image space.  

 

7.5.1 Chromatic difference in object size 

The approach to obtaining the chromatic difference in object size is similar 

to that for the retinal chromatic difference in image size. Substituting from 

Equation 5.3.17, the size of the blue object is  

b

R1

b

Oy

b

R2

b

Oy

b

P1

b

Oy

b

P2

b

Oy

b

OΔ yXyXyWyWy       (7.5.1) 

where the blue rays all go through the same position in the pupil such that 

b

P1

b

P2 yy  .         (7.5.2) 

Equation 7.5.1 simplifies to obtain 

 b

R

b

Oy

b

OΔ yXy  ,        (7.5.3) 

the blue object size, where 

b

R1

b

R2

b

R yyy          (7.5.4) 

is the size of the blue image at the retina. The size of the red object is obtained in 

a similar fashion. The chromatic difference in object size is obtained when the red 

and blue images at the retina appear to have the same size, such that 

r

R

b

R yy  .         (7.5.5) 

The chromatic difference in object size is 

       ROy

r

R

r

Oy

b

R

b

Oy

r

O

b

OO δΔΔΔδ yXyXyXyyy     (7.5.6) 

where OyδX  is described in Section 7.2.1 
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7.5.2 Chromatic difference in object angular spread 

The angular spread of the blue object 
b

OΔa  is obtained from Equation 5.3.18 to be 

b

R1

b

Oy

b

R2

b

Oy

b

P1

b

Oy

b

P2

b

Oy

b

OΔ yZyZyYyYa  .     (7.5.7) 

Equation 7.5.2 applies and so Equation 7.5.7 simplifies to obtain the angular 

spread from the blue object, 

 b

R

b

Oy

b

OΔ yZa          (7.5.8) 

where the size of the blue retinal image b

Ry  is defined by Equation 7.5.4. 

Similarly, we obtain the red object angular spread. The chromatic difference in 

object angular spread is 

       ROy

r

R

r

Oy

b

R

b

Oy

r

O

b

OO δΔΔΔδ yZyZyZaaa      (7.5.9) 

where OyδX  is described in Section 7.2.1. 

 

Summary of chromatic differences in object space 

 Equations 7.5.6 and 9 can be summarized as 

 OOyOy ΔδΔδ rvV                    (7.5.10) 

where OyδV  is described in Section 7.2.1,  

  









O

O

O
Δ

Δ
δΔδ

a

y
r                   (7.5.11) 

is the chromatic difference in object size and angular spread vector and 











R

P

Oy
Δ

Δ
Δ

y

y
v                   (7.5.12) 

where 0Δ P y . 

 

7.5.3 Chromatic object size magnification 

 Similar to Section 7.3.3, we can obtain the magnification of the size of the 

red to blue objects when the red and blue images appear to have the same size to 

the subject. We define the chromatic object size magnification as 

b

O

r

OyO ΔΔ yyM  .                  (7.5.13) 

Substituting from Equation 7.5.3 for the blue and red object sizes we obtain 
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   b

R

b

Oy

r

R

r

OyyO yXyXM  .                 (7.5.14) 

The red and blue images at the retina are the same size and so Equation 7.5.5 

applies and Equation 7.5.14 simplifies to  

b

Oy

r

OyyO XXM  .                  (7.5.15) 

 

7.5.4 Chromatic object angular spread magnification 

The magnification of the angular spread of the red to blue incident rays, 

from the red and blue objects is defined as 

b

O

r

OaO ΔΔ aaM  .                  (7.5.16) 

Substituting from Equation 7.5.8 we obtain 

   b

R

b

Oy

r

R

r

OyaO yZyZM                   (7.5.17) 

and because of Equation 7.5.5 this simplifies to 

b

Oy

r

OyaO ZZM  .                  (7.5.18) 

 

Including the use of a pinhole 

We can see from Equations 7.5.6 and 9 that the transverse position of the 

rays through the pupil is nullified. When a pinhole is placed immediately in front 

of the eye its transverse displacement will have no effect on the chromatic 

difference in object size or angular spread or the chromatic object size or angular 

spread magnifications, however, the longitudinal displacement of bringing the 

limiting aperture forward will have an effect. The coefficients in Equations 7.5.6, 

9, 15 and 18  are replaced with those from 
P

OyV  (Equation 5.3.19). 

 

Generalizing to linear optics 

 The equations in Section 7.5 have all been written and derived such that 

they readily generalized to linear optics. The proofs are beyond the scope of this 

dissertation. 
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7.6 Comment on the use of the corneal pinhole inlay 

 In this section the use of the pinhole is implied in the experimental sense. 

However, the Acufocus Kamra corneal inlay is an intrastromal pinhole that is 

placed in the cornea at a depth of m170 μ  (Seyeddain, Riha, Hohensinn, Nix, 

Dexl and Grabner, 2010). The pinhole inlay is 3.8 mm in diameter and has a 

pinhole in its centre of 1.6 mm in diameter. Its effect is similar to that of moving 

the limiting aperture from the pupil to the corneal plane. Surgeons and researchers 

go to great lengths to ensure that the transverse placement of the pinhole inlay is 

correct, so as to avoid induced aberrations. Research is ongoing into establishing 

where the correct position is to place the inlay. According to Tabernero and Artal 

(2011), just a 0.5 mm transverse offset can significantly reduce the retinal image 

quality and overall vision. Numerical examples in Chapter 10 will illustrate the 

effect of a misplaced inlay is on the object and aperture-dependent chromatic 

properties at the retina. 

 

7.7 Summary of equations for chromatic properties 

 

Table 7.7.1 Summary of the independent chromatic properties of the eye. The 

equation is given as a definition and in terms of the entries of the transferences. 

Independent Chromatic Properties 

Chromatic property Equation Eq. no. 

Chromatic difference in power  rbrbδ CCFFF   7.1.1 & 2 

Chromatic difference in refractive 

compensation r

r

b

b
0r0b0δ

B

A

B

A
FFF   7.1.3 & 4 

Chromatic difference in ametropia 
rbδ AAA   7.1.5 
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Table 7.7.2 Summary of the chromatic properties of the eye dependent on 

object and aperture positions. The table is in a set of four sections each giving the 

equations for an object at distance and a finite distance. The final column gives 

the equation number for the respective equations. Only the general derivations are 

given.  

Dependent Chromatic Properties 

Chromatic 

property 
Equation at distance Equation for finite distance 

Eq. no. 

Coefficient 

matrix 





























0

1

AB

11

AE

1

0

1

AB

1

AE

EE

EE

E

nADnACn

nABAA

ZY

XW
V

 

    
     

































1

AOAB

1

OAAOEE

1

AOAB

1

OAAOEE

OEOE

OEOE

OE

nBADAnBCD

BABABAB

ZY

XW





V

 
5.2.8 

& 

5.2.26 

 

Chromatic difference in image position and inclination at the retina 

Chromatic 

difference in 

image position 

    KEPER δδδ aXyWy   
    OOEPOER δδδ yXyWy 

 
7.2.3 & 4 

Chromatic 

difference in 

inclination 

    KEPER δδδ aZyYa       OOEPOER δδδ yZyYa   
7.2.16 & 

17 

 

Chromatic difference in image size and angular spread at the retina 

Chromatic difference 

in image size 
    KER Δδδ aXy       OOER δδ yXy   7.3.4 & 8 

Chromatic difference 

in image angular 

spread 

    KER Δδδ aZa       OOER δδ yZa   
7.3.11 & 

12 

 

Chromatic magnification 

Retinal chromatic image size 

magnification 

b

E

r

EyR XXM   
b

OE

r

OEyR XXM   7.3.19 & 20 

Retinal chromatic angular spread 

magnification 

b

E

r

EaR ZZM   
b

OE

r

OEaR ZZM   7.3.27 & 28 
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Table 7.7.3 Summary of the chromatic properties of the eye dependent on 

image and aperture positions. The table gives the equations for an object at a finite 

distance. The final column gives the equation number for the respective equations. 

Only the general derivations are given. 

Chromatic Properties in Object Space                  -for finite distances- 

Coefficient matrix 
   

    





































1

0BAE

1

B0

1

BAOAOEE

1

B

OyOy

OyOy

Oy

nBAABn

BBAABB

ZY

XW



V

 5.3.14 

Chromatic difference in object 

position 
   

ROyPOyO δδδ yXyWy   7.4.1 

Chromatic difference in inclination in 

object space  
    ROyPOyO δδδ yZyYa   7.4.6 

Chromatic difference in object size    ROyO δΔδ yXy   7.5.6 

Chromatic difference in object 

angular spread 
   ROyO δΔδ yZa   7.5.9 

Chromatic object size magnification 
b

Oy

r

OyyO XXM   7.5.15 

Chromatic object angular spread 

magnification 

b

Oy

r

OyaO ZZM   7.5.18 

 

Table 7.7.4 Summary of the coefficient matrices for an eye with a pinhole 

immediately in front of the eye for either an object at distance or an object at a 

finite distance.  

Coefficient matrices for an eye with pinhole 

Equation at distance Equation for finite distance Eq. no. 




























0E

1

E

1

0EE

P

E

P

E

P

E

P

EP

E

nDnCn

nBA

ZY

XW
V

 

  





































1

OE

11

OEE

1

1

OE

1

OEE

P

OE

P

OE

P

OE

P

OEP

OE





DnDCn

BBA

ZY

XW
V

 5.2.37 & 34 

― 

    





































1

E0E

1

E0

O

1

EOE

1

E

P

Oy

P

Oy

P

Oy

P

OyP

Oy

1

BnABn

BAB

ZY

XW



V

 5.3.19 
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Table 7.7.5 Summary of the equations for the chromatic difference in corneal 

position of the two chief rays, for a single object point either at distance or at a 

finite distance and for the chromatic difference in inclination of two chief rays that 

emerge at the same position on the retina, from two separated object points at a 

finite distance. 

Underlying implications 

Chromatic 

difference in 

corneal 

position 

P

A

KE

A

B

E

0
K

1
δ

δδ

y
A

aB
A

B

A

n
y
























































 

P

OA

O

O

OA

A
K δδδ y

B
y

B

B
y 
























 

7.2.9 & 

10 

Chromatic 

difference in 

inclination 

at retina 

― 
  

    R

1

BB

P

1

BR

δ

δδ

ynBD

ynBa








 7.4.13 

 

7.8 Discussion 

In this section we unpacked and derived equations to enable us to calculate 

chromatic properties from the transferences. Contrary to the definition of 

chromatic aberration in Chapter 6 which distinguished between longitudinal and 

transverse chromatic aberration, chromatic properties are categorised as firstly 

those chromatic properties that are independent of object, image and aperture 

positions and secondly the chromatic properties of the eye that are dependent on 

the object (or image) and aperture positions. 

The derivations of the chromatic properties have in certain instances 

confirmed what we intuitively suspected and in other instances gave us new 

insight into the definitions. We saw that the independent chromatic properties of 

the eye are derived from the fundamental properties of the red and blue 

transferences alone and are not the direct property of light, nor object and image 

positions. The result is that one obtains, as a result, a single value for each of 

chromatic difference in power, refractive compensation and ametropia for the eye.  

In contrast, the derivations for chromatic properties of the eye and object 

and aperture positions are dependent on light, relying on ray tracing, and therefore 

vary with changes in both longitudinal and transverse object position and 

longitudinal and transverse aperture position. We derived formulae for chromatic 



III  DEFINITIONS AND DERIVATIONS  7 Quantifying chromatic properties  

184 

 

difference in position, firstly for chromatic difference in transverse image position 

and secondly for chromatic difference in inclination at the retina. 

An interesting underlying implication is that even when one chooses a 

pencil of rays, all having the same incident inclination, and then selects the chief 

ray through the centre of the pupil, that there is a red ray and blue ray at incidence, 

separated at the cornea by a distance 
Kδy . The two rays reaching the retina do not 

originate from the exact same multi-chromatic ray.  

After taking a close look at chromatic difference in magnification we 

determined that what is being measured in the literature is not a chromatic 

difference but rather a chromatic magnification. Nonetheless, we derived 

equations for chromatic difference in image size on the retina and chromatic 

difference in angular spread which turn out to be independent of transverse 

displacement of the pupil or pinhole. More appropriately, we derived formulae for 

the chromatic image size magnification and chromatic image angular spread 

magnification. 

Finally, we take a look at the experimental situation where two coloured 

object points are positioned a distance apart such that the two coloured images are 

superimposed at the same point on the retina. We were able to derive equations 

for the chromatic difference in object position and chromatic difference in object 

inclination of these two coloured object points. 

The underlying implication of the experimental situation is that while the 

red and blue rays reach the retina at the same position, there is a difference in 

inclination between these two rays upon reaching the retina. This has possible 

implications for the Stiles-Crawford effect, but further investigation is beyond the 

scope of this dissertation. 

It is conceivable that an experiment could be set up to compare the sizes of 

a red and a blue object to appear to be the same size to the subject. The chromatic 

difference in object size and object angular spread were defined in object space. 

The chromatic object size magnification and chromatic object angular spread 

magnification were defined in object space. 
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All the derivations for the dependent chromatic properties of the eye are 

amenable to placing a pinhole immediately in front of the eye. In each case the 

general equations still hold and the coefficients simplify.  
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8 Chromatic dependence of the transference and transformed 

transferences on frequency  

 

In this chapter the dependence of each of the four fundamental properties 

of two model eyes is calculated as a function of frequency with the refractive 

index of air assumed constant. We then compare the effect on the fundamental 

properties of the two model eyes when the refractive index of air is treated as a 

function of frequency. For comparison, the dependence of the fundamental 

properties on wavelength is displayed graphically. Finally, we consider the two 

model eyes submerged in water. 

The four fundamental properties, each dependent on the frequency of light, 

are displayed graphically and turn out to be very nearly linear. A linear equation 

for each fundamental property as a function of frequency is obtained. It turns out 

that one can utilise this equation to obtain the transference as an approximate 

function of frequency.  

We then turn our attention to the two transformed transferences that were 

introduced in Section 3.7.1 and 2. These are displayed graphically as a function of 

frequency using three-dimensional graphs. This enables us to study the 

fundamental and derived properties, their relationships to each other and their 

dependence on frequency. 

Each of the entries of the transformed transference also displays a nearly 

linear dependence on the frequency of light. These transformed spaces allow us to 

derive a formula for a transference, necessarily symplectic, as a function of 

frequency. 

 

8.1 Transference as a function of frequency 

The transference and its fundamental properties are dependent on the 

frequency of light. In order to study this we first equate the refractive index of air 

to 1, the usual assumption in optometry. For illustrative purposes, we then 

examine the effect on the fundamental properties of treating the refractive index 

of air as a function of frequency. We use Cauchy’s formula for that purpose. For 

comparison, we also consider the dependence of the transference on wavelength. 
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Finally, we take a look at the more unusual situation of the eye submerged in 

water. 

Each of the graphs in this section shows four sub-graphs, one for each of 

the fundamental properties as a function of frequency, across the spectrum from 

430 to 750 THz. Two graphs in Section 8.1.3 will be in terms of wavelength, but 

across the same spectrum and with the same six coloured reference points. For the 

graphs, values are calculated for every 1 THz, that is for 321 points across the 

spectrum. However, in the tables only the values for the six reference points are 

given.  

We make use of the SI units and prefixes for time, picosecond (ps) which 

is s10 12 , and its inverse, the derived unit for frequency, teraHertz (THz) which is 

-112 s10 .  

 

8.1.1 The transference as a function of frequency with 10 n  

The reduced eye 

The transferences of the reduced eye as a function of the frequency of light 

are given for the six reference frequencies in Table 8.1.1 with the refractive index 

of air  0n  equated to 1. The transferences for the reduced eye as a function of 

frequency are calculated according to Equation 5.5.1 with 10 n  and the 

refractive index n calculated according to Equation 4.4.2. The disjugacy B is 

given in millimetres (mm) and the divergence C in corresponding units, 

kilodioptres ( 1mmkD  ).  

Figure 8.1.1 represents each of the fundamental properties of the reduced 

eye as a function of frequency. The six coloured reference points described in 

Section 4.2 are shown by means of coloured diamonds. The coloured diamonds 

represent five equally spaced intervals (64 THz ) of frequency.  

In Figure 8.1.1, the axis scales have been chosen to exaggerate curvature. 

The range of the scale for each sub-graph indicates the chromatic difference in 

each fundamental property. The dilation  A ranges from 0.0070 to 0277.0  which 

represents a chromatic difference in ametropia of –0.0347. The chromatic  
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Table 8.1.1 Transferences of the reduced eye and Le Grand’s eye for six reference 

frequencies   (in THz), calculated with 10 n . 

Colour   Reduced eye Le Grand’s eye 

Red 430 








 1kD0594.0

mm7055.160070.0
 









 9044.0kD0594.0

mm7276.160078.0
 

Orange 494 








 1kD0598.0

mm6775.160020.0
 









 9041.0kD0598.0

mm6912.160024.0
 

Yellow 558 












1kD0603.0

mm6455.160038.0
 













9034.0kD0603.0

mm6494.160037.0
 

Green 622 












1kD0608.0

mm6082.160105.0
 













9026.0kD0608.0

mm6029.160102.0
 

Blue 686 












1kD0615.0

mm5646.160184.0
 













9018.0kD0613.0

mm5545.160170.0
 

Violet 750 












1kD0622.0

mm5126.160277.0
 













9011.0kD0619.0

mm5065.160237.0

 

 

difference for disjugacy B is –0.1929 mm and for divergence C it is kD0028.0 , 

or –2.7975 D. For divarication D the chromatic difference is zero.  

 In Figure 8.1.1, the dashed lines represent the least squares straight 

line fitted to the data for the reduced eye. Each of A, B and C present as curves in 

each sub-graph. D is a straight line at 1 as required by Equation 5.5.1. Because the 

curves in the sub-graphs of Figure 8.1.1 are nearly straight lines, Equations 8.1.1 

to 4 below can be thought of as approximations of the dependence of each 

fundamental property on frequency. The equations for the four dashed straight 

lines are 

  05494.0ps100691.1 4   A       (8.1.1) 

  mm9719.16psmm109394.5 4   B      (8.1.2) 

  kD05558.0pskD106047.8 6   C      (8.1.3) 

1D           (8.1.4) 

where   is measured in THz and the units of each  constant is given. The set of 

equations can be reconstituted into a transference such that 
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22

22

11

11

dc

ba

dc

ba
S        (8.1.5) 

where the constants for the reduced eye are given in Table 8.1.2. 

 The set of four equations given for the straight line of each fundamental 

property is an approximation of the value of each fundamental property for any 

particular frequency. Strictly speaking, because of symplecticity, it is not correct 

to determine S by obtaining expressions for the fundamental properties 

independently as done in Equation 8.1.5. However, detS has a mean of 024000.1  

and a standard deviation of 5100.4   across the spectrum which would seem to 

be sufficiently close to the required 1 for most purposes. We will explore this 

further in Section 8.2 when we look at mapping transformations into Hamiltonian 

space. 

 

 

Figure 8.1.1 Fundamental properties of the reduced eye as functions of frequency  . 

The refractive index of air is equated to 1. The four sub-graphs are for dilation A, 

disjugacy B, divergence C and divarication D. The six coloured diamonds represent the 

frequencies listed in Table 4.2.1, red, orange, yellow, green, blue and violet and are 
evenly spread at 64 THz apart. The dashed lines represent the least squares straight line. 

Each of A, B and C present as curves, while D is a horizontal straight line at 1.  
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Table 8.1.2 The constants for the reduced eye in air for Equation 8.1.5. The units are 

picoseconds (ps), millimetres (mm) and kilodioptres (kD). 

ps100691.1 4

1

a  05494.02 a  

psmm109394.5 4

1

b  mm9719.162 b  

pskD106047.8 6

1

c  kD05558.02 c  

ps01 d  12 d  

 

 

Le Grand’s eye 

Similarly we look at the fundamental optical properties for Le Grand’s 

four-surface eye. The transferences were calculated according to Equations 5.5.4 

to 8 and the refractive indices given by Equation 4.4.3 with constants listed in 

Table 4.4.2. The transferences for the six coloured reference frequencies are given 

in Table 8.1.1.  

The range along the vertical axis for each fundamental property shows the 

range along the spectrum, or chromatic difference. The chromatic difference of 

dilation  or  ametropia  is  –0.0315.  The chromatic  difference  of  disjugacy  is 

 

Figure 8.1.2 Fundamental properties of Le Grand’s eye as a function of frequency  . 

10 n .  
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Table 8.1.3 The constants for Le Grand’s eye in air for Equation 8.1.5.  

ps109973.0 4

1

a  05156.02 a  

psmm100345.7 4

1

b  mm0382.172 b  

pskD109756.7 6

1

c  kD05581.02 c  

ps101515.1 5

1

d  9095.02 d  

 

 

mm2211.0  and for divergence it is –0.0025 kD or –2.5158 D. The chromatic 

difference of divarication is –0.0033 which is a very small range from 0.9044 to 

0.9011.  

From Figure 8.1.2 we can see that the curve is nearly linear. Because of 

this linearity, the dependence of the four fundamental properties of Le Grand’s 

eye on the frequency of light can be approximated by Equation 8.1.5. The 

constants for Le Grand’s eye for Equation 8.1.5 are given in Table 8.1.3. In 

contrast to Figure 8.1.1 D is no longer a horizontal straight line at 1 but is close to 

a straight line at 9.0D , approximately. 

Table 8.1.4 gives examples of transferences calculated by means of 

Equation 8.1.5 and constants given in Tables 8.1.2 and 3. Obtaining the 

approximate transference S for each frequency in the spectrum for Le Grand’s eye 

from Equation 8.1.5, the average value for detS is 35999.0  and the standard 

deviation is 5105.3  . As for the reduced eye, this is probably sufficiently close 

to 1 for most purposes. 

 

Comparison of the two model eyes 

The graphs of the fundamental properties versus frequency for the reduced eye 

and Le Grand’s eye, are superimposed in Figure 8.1.3. By means of Figure 8.1.3 

we can compare the fundamental properties of the reduced eye (in blue) and Le 

Grand eye (in black). The six reference points are included and are circular for the 

reduced eye and diamond shaped for the Le Grand eye. For the dilation A, 

disjugacy B and divergence C we see that the dependence of each fundamental 

property on frequency is similar for the two model eyes. They are closest in the 

central part of the spectrum. The divarication D, constant at 1 for the reduced eye, 
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Table 8.1.4 Transferences of the reduced eye and Le Grand’s eye for the six 

reference frequencies (in THz), calculated by means of Equation 8.1.5 and the constants 

in Tables 8.1.2 and 3 with 10 n . 

Colour   Reduced eye Le Grand’s eye 

Red 430 








 1kD05930.0

mm7148.16008656.0
 









 9046.0kD05930.0

mm7336.16008457.0
 

Orange 494 








 1kD05986.0

mm6764.16001760.0
 









 9039.0kD05981.0

mm6890.16002117.0
 

Yellow 558 












1kD06042.0

mm6381.16005135.0
 













9032.0kD06031.0

mm6443.16004223.0
 

Green 622 












1kD06097.0

mm5998.1601203.0
 













9026.0kD06082.0

mm5997.1601056.0
 

Blue 686 












1kD06153.0

mm5615.1601893.0
 













9019.0kD06133.0

mm5551.1601690.0
 

Violet 750 












1kD06208.0

mm5232.1602582.0
 













9012.0kD06183.0

mm5104.1602324.0
 

 

 

Figure 8.1.3 Fundamental properties of the reduced eye (blue line and circles) 

and Le Grand’s eye (black line and diamonds) versus frequency   superimposed. 

The least squares straight lines are also shown. 
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 becomes weakly dependent on frequency at about 0.9 for Le Grand’s eye. It is 

also interesting to note that the curves for Le Grand’s eye more closely 

approximate straight lines than do the curves for the reduced eye. 

 

8.1.2 Transference as a function of frequency using Cauchy’s formula for 

the refractive index of air 

For most purposes the index of refraction of air 0n  is taken as 1. Here we 

examine the effects on the transferences of allowing 0n  to depend on frequency 

according to Cauchy’s dispersion formula (Equation 4.4.4). The effects are shown 

in Figures 8.1.4 and 5 for the reduced  and Le Grand’s eyes respectively. The blue 

line is for 0n  according to Cauchy’s formula and the black line is for 10 n . The 

transferences for the six reference frequencies, with 0n  calculated by means of 

Cauchy’s formula, are given in Table 8.1.6 for the reduced and Le Grand’s eyes.  

 

The reduced eye 

From Equation 5.5.1 for the reduced eye we see that  has no effect on 

the disjugacy B and the divarication D. The only fundamental properties that are 

affected are the dilation A and the divergence C. This can also be seen in Figure 

8.1.4. The effect of setting  equal to 1, and not allowing for dependence of  

on  , is to decrease A by about 83000.0  and C by about kD05000.0  across the 

spectrum. The effect, therefore, would appear to be negligible and the use of 

10 n  justifiable. 

Least-square straight lines fitted to the curves in Figure 8.1.4 lead to the 

approximate expression for transference S in terms of  given by Equation 8.1.5 

with constants given in Table 8.1.5.  

 

Table 8.1.5 Constants for the expressions in Equation 8.1.5 for dilation A and 

divergence C for the reduced eye where  is given by Cauchy’s formula. 

ps100688.1 4

1

a  05575.02 a  

pskD106012.8 6

1

c  kD05553.02 c  

  

0n

0n 0n



0n
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Table 8.1.6 Transferences for the reduced eye and Le Grand’s eye for the six 

reference frequencies in THz, calculated for 
0n given by Cauchy’s formula.  

Colour   Reduced eye Le Grand’s eye 

Red 430 








 1kD0594.0

mm7055.160078.0  









 9044.0kD0593.0

mm7276.160084.0
 

Orange 494 








 1kD0598.0

mm6775.160028.0  









 9041.0kD0598.0

mm6912.160029.0
 

Yellow 558 












1kD0603.0

mm6455.160030.0  













9034.0kD0602.0

mm6494.160031.0  

Green 622 












1kD0608.0

mm6082.160097.0  













9026.0kD0608.0

mm6029.160096.0
 

Blue 686 












1kD0615.0

mm5646.160175.0  













9018.0kD0613.0

mm5545.160164.0
 

Violet 750 












1kD0622.0

mm5126.160269.0  













9011.0kD0618.0

mm5065.160231.0
 

 

 

 

Figure 8.1.4 Fundamental properties of the reduced eye as functions of frequency. The 

black lines and diamond shaped reference points are for 10 n  and the blue lines and 

circular reference points for 0n  given by Cauchy’s formula. For B and D the curves 

coincide. 
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Le Grand’s eye 

Figure 8.1.5 shows the fundamental properties of Le Grand’s eye as 

functions of frequency. The black line is calculated with 10 n  and the blue line 

is calculated with 0n  as a function of frequency according to Cauchy’s dispersion 

formula given by Equation 4.4.4. The results are similar to those in Figure 8.1.4 

for the reduced eye in that only the dilation A and divergence C are affected.  

To see why only A and C are affected by using Cauchy’s formula for 0n , 

let us examine the effect of the refractive index of the surrounding medium on Le 

Grand’s eye. From Equations 5.5.5 and 7 we observe that the only elementary 

transference containing 0n  is K1S .  The meaning of the subscripts is given in 

Table 4.1.1. Let us write the transference of the eye as 

K1RSSS           (8.1.6) 

where  

KK2AqL1LL2VR SSSSSSSS  .       (8.1.7) 

We now substitute for K1S  from Equation 5.5.5 to obtain 
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which shows that, for Le Grand’s eye, the only fundamental properties affected by 

0n  are the dilation A and divergence C. 

In Figure 8.1.5 the lines for  and for 0n  calculated according to 

Cauchy’s formula, are very close together and appear to be approximately parallel 

in sub-graphs A and C. Sub-graphs B and D are indeed superimposed, as implied 

by Equation 8.1.8. The formulae for the least-squares straight lines for Le Grand’s 

eye shown in Figure 8.1.5 for A and C using Cauchy’s formula for 0n  as functions 

of frequency can be obtained from Equation 8.1.5 with the constants given in 

Table 8.1.7 and transferences given in Table 8.1.6. Comparing the straight lines 

for  with the straight lines using Cauchy’s dispersion formula we observe 

10 n

10 n
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Table 8.1.7 The constants for dilation A and divergence C for Le Grand’s eye for the 

straight line equations in Equation 8.1.5 where the refractive index is calculated 

according to Cauchy’s formula. 

ps109969.0 4

1

a  05214.02 a  

pskD109733.7 6

1

c  kD05582.02 c  

 

that the two straight lines ( 1a  and 1c ) are very nearly parallel and the in positions 

( 2a  and 2c ) change slightly.  

Table 8.1.8 shows the difference between the two lines for both model 

eyes for each of the six reference frequencies. The mean and standard deviation 

are calculated for every 1 THz across the spectrum. Visual inspection of both 

Table 8.1.8 and Figure 8.1.5 indicates that the two curves for A and C are very 

nearly parallel and are very close together. Because the lines are nearly parallel, 

any chromatic difference calculations will be negligibly influenced by the choice 

of refractive index for air. 

 

Figure 8.1.5 Fundamental properties of Le Grand’s eye as functions of frequency. The 

black line and diamond shaped reference points are for 10 n  and the blue line and 

circular reference points are for 0n  calculated by means of Cauchy’s formula. The two 

lines for B and D are superimposed. For A and C the blue line is displaced upwards.  
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Table 8.1.8 The differences in each of the fundamental properties between the 

transference calculated using 10 n  and using 
0n  according to Cauchy’s formula. The 

numbers indicate the difference (vertical distance) from the black to the blue line in the 
graphs in Figures 8.1.4 and 5. The mean and standard deviation are obtained for 321 

frequencies across the visible spectrum. 

  Reduced eye  Le Grand eye 

Colour   in 

THz 

A  B      

in mm 

C  

    in kD 

D   A  B      

in mm 

C  

    in kD 

D   

  310   310    310   310   

Red 430 0.8279 0 0.04956 0    0.5904 0 0.03192 0 

Orange 494 0.8293 0 0.04972 0  0.5911 0 0.03202 0 

Yellow 558 0.8309 0 0.04992 0  0.5920 0 0.03212 0 

Green 622 0.8328 0 0.05015 0  0.5930 0 0.03224 0 

Blue 686 0.8350 0 0.05041 0  0.5944 0 0.03238 0 

Violet 750 0.8374 0 0.05071 0  0.5962 0 0.03255 0 

Mean: 0.8321 0 0.05006 0  0.5927 0 0.03220 0 

Standard 

deviation: 
0.002775 0 0.000334 0  0.001629 0 0.01778 0 

 

Discussion 

Here we have examined whether the dispersive effect of air plays a 

significant role in the overall dispersion through the system ultimately reaching 

the exit plane, or retina. Figures 8.1.4 and 5 compare the eye in air, firstly, with 

10 n  and secondly, with the refractive index as a function of frequency 

calculated using Cauchy’s formula. The disjugacy B and divarication D are not 

affected. Only the dilation A and divergence C are affected. 

Table 8.1.8 shows the difference in each of the fundamental properties 

when the transference is calculated using 10 n  and when using Cauchy’s 

formula. The standard deviation shows how close to being parallel the two lines 

are and therefore gives an indication of the effect of dispersion, while the mean 

indicates how accurate the constant for 0n  is and the difference between the two 

lines. From the graphs and numerical values of the tables in this section, we 

conclude that because the two lines in each graph are very nearly parallel, the 
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amount of dispersion occurring in air is insignificant and the refractive index of 

air can be taken to be 1.  

 

8.1.3 Dependence of the fundamental properties on vacuum wavelength 

The fundamental properties of the reduced eye and Le Grand’s eye as 

functions of vacuum wavelength   are represented in Figures 8.1.6 and 7, 

respectively. In each graph the visible spectrum used is the same as used 

throughout this dissertation, that is, frequency from 430 to 750 THz, except that it 

is converted to vacuum wavelength using Equation 4.3.1 and given in Table 4.2.1. 

Figures 8.1.6 and 7 depart considerably more from straight lines than the 

corresponding figures (Figures 8.1.1 and 2) in terms of frequency  .  

 

The reduced eye 

When we compare to the fundamental properties of the reduced eye as a function 

of vacuum wavelength (Figure 8.1.6) to  frequency (Figure 8.1.1), we see that, as 

expected, the divarication D is a constant of 1, but that the other three properties 

are significantly more curved. 

 

Figure 8.1.6 Fundamental properties of the reduced eye as functions of vacuum 

wavelength   with 10 n .  
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Le Grand’s eye 

Figure 8.1.7, shows the fundamental properties of Le Grand’s eye as 

functions of vacuum wavelength  . Again the curves depart more from straight 

lines than for the fundamental properties as functions of frequency  . The four-

surface eye of Le Grand shows less curvature than the single-surface reduced eye, 

with the exception of the divarication D.  

 

Comparing the transferences of the reduced eye and Le Grand’s eye 

Figure 8.1.8 plots the results of Figures 8.1.6 and 7 together. The 

behaviour of the fundamental properties versus vacuum wavelength  is similar 

for the reduced and Le Grand’s eyes, especially in the central region of the 

spectrum. For both model eyes, the curves of the fundamental properties versus 

frequency  are closer to straight lines than the corresponding curves for vacuum 

wavelength. This provides additional justification for using frequency instead of 

the more commonly-used wavelength. 

 

Figure 8.1.7 Fundamental properties of Le Grand’s eye as a function of vacuum 

wavelength   with 10 n . The wavelengths of the six reference points are given in 

Table 4.2.1. Compared with the graphs for the fundamental properties as functions of 

frequency, these curves further depart from straight lines. 
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Figure 8.1.8 Dependence of the four fundamental properties of the reduced eye (blue 

line with circles) and Le Grand’s eye (black line with diamonds) on vacuum wavelength.  

 

8.1.4 Transference of the eye submerged in water as a function of frequency 

with Cornu’s formula used for the refractive index of water 

The formulae for the dependence of the transference of the reduced eye (Equation 

5.5.3) and Le Grand’s eye (Equations 5.5.5, 7 and 8) on the refractive indices and 

hence on the frequency of light include the possibility of 0n  also being dependent 

on frequency, including media other than air. In Section 8.1.1 we studied the two 

model eyes in air with the refractive index of air taken as 1. In Section 8.1.2 we 

compared the effect of the refractive index of air treated as a function of 

frequency. However, Equations 5.5.1 and 5.5.4 to 9 will hold for the eye in any 

medium. As an example of the model eye in a medium other than air, we calculate 

the effect on the fundamental properties of each model eye if the eye is submerged 

in water. Figure 8.1.9 allows comparison of the fundamental properties of the 

reduced eye (blue line and circles) and Le Grand’s eye (black line and diamonds) 

as functions of frequency  when the eye is submerged in water. 

In Figure 8.1.9, the refractive index of water is calculated according to 

Cornu’s formula, given as Equation 4.4.1. It is shown in Section 8.1.2 that the 
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refractive index of the medium upstream of any eye only affects the dilation A and 

divergence C. When the eyes are submerged in water the effect on A and C is still 

close to straight lines for each model eye; however there is a clear difference in 

position of the curves of the reduced and Le Grand’s eyes. We recall that in 

Figure 8.1.3 we compared the graphs for the reduced eye and Le Grand’s eye on 

the same set of sub-graphs and that the lines for the eyes were similar, often 

touching or running parallel. In Figure 8.1.9 we see that this is less so. The lines 

are similar in slope, but differ in position for A and C when the eyes are 

submerged in water.  

The constants for the least-squares straight lines for A and C (Equation 

8.1.5) for the reduced and Le Grand’s eyes are given in Table 8.1.9. The curves 

for disjugacy B and divarication C are the same as in Figures 8.1.1 and 2. We saw 

from Equations 5.5.1 and 8.1.8 that only A and C are affected by the change in 

refractive index upstream of the system.  

  

 

Figure 8.1.9 Dependence of the fundamental properties of the reduced eye (blue line 

and circles) and Le Grand’s eye (black line and diamonds) on frequency   when the eye 

is submerged in water. The disjugacy B and divarication D are, unsurprisingly, the same 

as for the eyes in air, or any other medium, however the dilation A and divergence C 
differ considerably, not only between the two eyes, but also from the eye in air. 
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Table 8.1.9 Constants for Equation 8.1.5 for A and C for the reduced and Le Grand’s 

eyes submerged in water. The refractive index of water is calculated using Cornu’s 

formula (Equation 4.4.1).  

The Reduced Eye 

ps104089.1 4

1

a  0279.12 a  

pskD106007.8 6

1

c  kD107475.1 3

2

c  

Le Grand’s Eye 

ps102838.1 4

1

a  7472.02 a  

pskD104280.8 6

1

c  kD01871.02 c  

 

Table 8.1.10 The transferences for the reduced eye and for Le Grand’s eye 

submerged in water for the six reference frequencies (in THz), calculated equating 

the refractive index of water according to Cornu’s formula (Equation 4.4.1). 

Colour   Reduced eye Le Grand’s eye 

Red 430 








 1kD002114.0

mm7055.169647.0
 










 9044.0kD02243.0

mm7276.166908.0
 

Orange 494 








 1kD002515.0

mm6775.169581.0
 










 9041.0kD02287.0

mm6912.166840.0
 

Yellow 558 








 1kD002977.0

mm6455.169504.0
 










 9034.0kD02337.0

mm6494.166761.0
 

Green 622 








 1kD003515.0

mm6082.169416.0
 










 9026.0kD02393.0

mm6029.166677.0
 

Blue 686 








 1kD004150.0

mm5646.169313.0
 










 9018.0kD02451.0

mm5545.166590.0
 

Violet 750 








 1kD004910.0

mm5126.169189.0
 










 9011.0kD02508.0

mm5065.166503.0
 

 

Constants 2a  and 2c  (Table 8.1.9) for A and C for the two model eyes are 

very different, confirming the difference in the vertical position shown in Figure 

8.1.9. The slopes ( 1a  and 1c ) are similar to those for the model eyes in air (Tables 

8.1.2 and 3). The transferences for the six reference frequencies for the two eyes 

submerged in water are given in Table 8.1.10.  
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Submerging the eye in water has the effect of increasing A and C. Because 

the power of the system is the negative of the divergence (Equation 3.4.3), 

submerging the eye in water has the well-known effect of decreasing and, hence, 

partly neutralising the power of the eye.  

 

8.1.5 Discussion 

In conclusion, we saw how the fundamental properties of the reduced and 

Le Grand model eyes depend on the frequency of light. We compared the two 

model eyes in air when the refractive index is equated to the constant of 1 and 

when it is given by Cauchy’s formula and saw firstly, that only the dilation A and 

divergence C are affected by the refractive index of the surrounding media, and 

secondly, that the effect is small and affects the vertical position of the graph. This 

provides justification for using 10 n , as is often done in practice. 

We then studied the fundamental properties as a function of vacuum 

wavelength. We observed that the curves depart further from straight lines than do 

those with frequency   as independent variable. We conclude, in addition to the 

reasons discussed in Section 4.3, that it is preferable to study chromatic properties 

as functions of   rather than  .  

Finally we considered the effect on the fundamental properties when the 

model eyes are submerged in water. Again, only the dilation A and divergence C 

are affected. There were two noticeable differences in the graphs. Firstly, in 

Figure 8.1.9, the curves for A and C differ in vertical position, but the slopes are 

similar. Secondly, when we compare the respective model eye (Figure 8.1.9) to 

the same eye in air (Figure 8.1.3) for A and C, we again see a significant change in 

position of the curve, but a similar slope. We know that the effect of submerging 

any eye in water is to tend to neutralise the refractive effect of the corneal surface. 

As a result the power F is decreased and, hence, the divergence C is increased. 

The ametropia A is increased and consequently, because of Equation 3.4.6, there 

is a need for an increased power of the refractive compensation 0F . 

In this section we have seen that the fundamental properties of the two 

model eyes are dependent on frequency. The dependence curves for the 

fundamental properties of the two model eyes were roughly similar but differed 
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due to the underlying differences in design of the two eyes. The dependence is 

very nearly linear and we obtained a linear expression for the dependence of each 

fundamental property on frequency. When these expressions are used, the 

estimated transference is approximately symplectic.  

 

8.2 The transformed transferences  

In Section 3.7, we introduced transformed transferences and characteristic 

matrices. Transformed transferences are members of Hamiltonian space whereas 

each characteristic matrix represents a combination of derived properties of the 

system. In this section we look at transformed transferences and then examine 

characteristic matrices in Chapter 9. 

 Here we consider the logarithmic and Cayley transforms introduced in 

Section 3.7, both of which are Hamiltonian. Our interest in these transformed 

transferences, for the purpose of this dissertation, lies not in calculating an 

average transference (as done elsewhere; Harris, 2004b; 2005; Harris and 

Cardoso, 2006) but rather is two-fold. Firstly we wish to study the nature of the 

transformed matrix itself and how it depends on the frequency of light. An 

advantage is that, for a Gaussian system, one can represent a transference in three-

dimensional linear space. Secondly, we utilise the mathematical properties of the 

Hamiltonian and symplectic matrices to obtain a formula for transferences as 

functions of frequency. The advantage is that the transferences one obtains are 

strictly symplectic which contrasts with the transferences obtained above 

(Equation 8.1.5) which are approximately symplectic. 

In Section 5.6 we saw that the Cayley transform can be represented as a 

simple equation (Equations 5.6.6, 7 and 9) as a function of the entries of the 

transference. In contrast, a logarithmic transform makes use of an infinite series 

(Cardoso, 2005) therefore, because of its simple form, the Cayley transform gives 

greater insight. For this reason we spend some time unpacking the Cayley 

transform in Section 8.2.1. We take a brief look at the logarithmic transform in 

Section 8.2.2 
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8.2.1 The Cayley transformed transference 

The Cayley transform is defined by Equation 3.7.13, and simplified for 

Gaussian systems to Equation 5.6.7. We use the caret (^) to denote transformed 

qualities. For example Ŝ  is the transformed S and Â  is the transformed A. 

Hamiltonian matrices are defined by Equation 3.7.4 and the resulting equality 

given by Equation 3.7.6. For a Gaussian system this simplifies to 

DA ˆˆ  .         (8.2.1) 

Hence there are only three independent variables, Â , (or D̂ ), B̂  and Ĉ , and 

therefore Ŝ  can be plotted on a three-dimensional graph. We recall that the 

Cayley transform of a symplectic matrix is Hamiltonian and, therefore, Equation 

8.2.1 applies to a Gaussian system. 

We now consider the dependence of the Cayley transformed transference 

Ŝ  on the frequency   of light. The dependence of the individual entries is shown 

in Figures 8.2.1 and 4 for the reduced eye and Le Grand’s eyes respectively. The 

relationship between the three independent entries of the transformed transference 

can be shown on a three-dimensional graph. This is shown in Figure 8.2.3 for the 

reduced eye and Figure 8.2.6 for Le Grand’s eye. The six reference frequencies, as 

defined in Table 4.2.1, are used to define the frequency at six points, evenly 

spaced at every 64 THz.   

Because Hamiltonian matrices define a vector space we are able to 

represent the transformed transference, dependent on  , in the space. The 

meaning of each axis in Hamiltonian space is outside the scope of this 

dissertation. The Hamiltonian spaces generated by the logarithmic and Cayley 

transforms differ. Equation 5.6.7 begins to give some interpretation of what 

Hamiltonian space represents. We recall that there is an infinity of transforms 

between symplectic and Hamiltonian matrices; in this study we consider just two, 

the logarithmic transform (Equation 3.7.2) and the Cayley transform defined by 

Equation 3.7.13. 

We now take a closer look at the formulae derived in Section 5.6. Firstly, 

Equation 5.6.7 is the formula for the transformed transference as a function of the 

fundamental properties of the system. This equation gives us some insight into the 
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meaning of the three independent entries of the Cayley transformed transference. 

We see that the transformed transference is multiplied by a constant that includes 

only the entries on the diagonal, that is, A and D. Within the matrix, the diagonal 

entries are the difference between the diagonal entries of the transference, while 

the two off-diagonal entries are the same as for the transference, each multiplied 

by 2. This gives us a transformed transference that is an interesting mix of the 

fundamental properties.  

 

The reduced eye  

Equation 5.6.18 gives the transformed transference for the reduced eye. 

Because we have worked with rational numbers all along, we find some 

interesting simplifications and the transformed transference for the reduced eye 

turns out to be a simple matrix dependent on the refractive index and therefore on 

the frequency of light. B̂  turns out to be a constant because the refractive indices 

cancel out. The result of this Cayley transformed transference for the reduced eye 

is shown graphically for each entry of the matrix in Figure 8.2.1 as functions of 

frequency. 

In Figure 8.2.1 the dashed red straight lines obtained using the least 

squares method represent the entries of the Cayley transformed transference as 

functions of frequency. These three straight line equations are represented as a 

matrix in Equation 8.2.3, with constants given in Table 8.2.1 for the reduced eye. 

Calculating a matrix from Equation 8.2.3 for any particular frequency results in a 

Hamiltonian matrix. This in turn, using the Cayley transform, Equation 8.2.2, 

maps to a transference. Equations 8.2.2 and 3 together give us the formula for the 

approximation of the transference for the reduced eye as a function of frequency. 

The equation to map the transference from the transformed transference 

(originally given in Equation 5.6.12) is  

 
I

S

SI
S 






ˆdet1

ˆ2
        (8.2.2) 

where 



































22

22

11

11

ˆˆ

ˆˆ

ˆˆ

ˆˆˆ

ac

ba
ν

ac

ba
S .      (8.2.3) 
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Table 8.2.1 The constants for the reduced eye in air for Equation 8.2.3. The units are 

picoseconds (ps), millimetres (mm) and kilodioptres (kD). 

ps107804.4ˆ 5

1

a  3088.0ˆ
2 a  

psmm0ˆ
1 b  mm1111.11ˆ

2 b  

pskD102055.7ˆ 6

1

c  kD106298.3ˆ 2

2

c  

 

Frequency    is in teraHertz  112 s10   and the constants for Equation 8.2.3 are 

given in Table 8.2.1 for the reduced eye in air.  

Equations 8.2.3 and 2 hold for any Gaussian eye, however, because of the 

changes in structure, that is, the exact parameters of the refracting surfaces, 

number of refracting surfaces, width of homogenous gaps and formulae of the 

refractive indices of the media, we can expect different constants for each model 

eye. Using the methodology above, it is simple for MATLAB
®
 to generate the 

constants for any Gaussian eye coded into the Matfile.  

 

 

Figure 8.2.1 Entries of the Cayley transformed transference for the reduced eye as 

functions of frequency. The solid lines represent the entries as functions of frequency and 

the red dashed lines the fitted least squares straight lines. 
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The transferences of the reduced eye, obtained using Equations 8.2.2 and 3 

are all symplectic matrices to the level of  the accuracy of MATLAB
®
. The graphs 

for the fundamental properties of the reduced eye in air as a function of frequency 

are given in Figure 8.2.2. The solid black lines with coloured diamond shaped 

reference points represent the actual transference of the reduced eye dependent on 

frequency, and are the same curved lines we saw in Figure 8.1.1. The red lines 

represent the lines obtained using Equations 8.2.2 and 3 with constants given in 

Table 8.2.1. The dashed lines representing the least squares straight lines from  

Figure 8.1.1 are superimposed with the red lines for dilation A, disjugacy B and 

divergence C and with the black line for divarication D and are therefore 

suppressed to unclutter the figure. Where previously the dashed straight lines 

created from the least squares of the fundamental properties did not produce 

transferences that were exactly symplectic, we now have the red lines for each of 

the fundamental properties representing symplectic transferences. In Hamiltonian 

space, these red lines are the straight lines produced from the least squares 

formulation of the entries of the transformed transferences shown by the dashed 

red lines in Figure 8.2.1.  

The relationship between the three independent entries of the Cayley 

transformed transference for the reduced eye where 10 n  are plotted on a three-

dimensional graph showing how these properties change with frequency. In 

Figure 8.2.3, we see how the relationship is a straight line. From Equation 8.2.3 

and Table 8.2.1 we have 

21 ˆˆˆ aaA  , 

2
ˆˆ bB   

and 

21 ˆˆˆ ccC  . 

Manipulating, we obtain  

1

2121

1

1

ˆ

ˆˆˆˆˆ
ˆ

ˆˆ
a

acca
A

a

c
C


 , 

the equation of a straight line. 
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The derivation of Equation 8.2.2 and the graphs in this section give us some 

insight into the Hamiltonian space. We have utilised the properties of the 

Hamiltonian space to derive approximate equations for a transference of the 

reduced eye as a function of any chosen frequency of light, that is symplectic with 

determinant exactly 1. Furthermore, Equation 8.2.3 has the advantage of having 

less constants – six instead of the eight needed for Equation 8.1.5. 

 

 

Figure 8.2.2 Fundamental properties of the transference of the reduced eye as 

functions of frequency. The black lines and diamond reference points represent the 

dependence as shown in Figure 8.1.1 while the red lines represent the dependence of the 
reduced eye on frequency according to the formulae and constants given in Equations 

8.2.2 and 3 and Table 8.2.1. The least squares straight lines (shown with black dashed 

lines in Figure 8.1.1) appear superimposed with the red lines for dilation A, disjugacy B 

and divergence C and have been suppressed.  
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Figure 8.2.3 Three-dimensional graph of the Cayley transformed transference of the 

reduced eye with 10 n  showing change with frequency. The azimuth is 9  and 

elevation 23 .  

 

Le Grand’s eye 

In Figure 8.2.4 the individual entries of the Cayley transformed 

transference for the Le Grand eye are graphed as a function of frequency and in 

Figure 8.2.6 the three independent entries are graphed in three-dimensions.  

If we compare the graphs for the dependence of the transformed 

transference on the frequency of light for Le Grand’s eye (Figure 8.2.4) to that of 

the reduced eye (Figure 8.2.1) we see strong similarities for Â , Ĉ and D̂ , 

however Le Grand’s eye has a curve for B̂  whereas the reduced eye has a straight 

line. However, the scale along the vertical-axis for B̂  for Le Grand’s eye, 

indicates that the chromatic difference is small (0.01485 mm) and that the solid 

lines representing the transformed transference as a function of frequency are very 

near to linear for each entry. 

Similar to the reduced eye, the equations for the dashed red straight lines 

in Figure 8.2.4 are obtainable using MATLAB
®
, giving us the constants for Le 

Grand’s eye and given in Table 8.2.2. These constants are substituted into 
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Table 8.2.2 The constants for Equation 8.2.3 for Le Grand’s eye in air. 

ps102626.4ˆ 5

1

a  2892.0ˆ
2 a  

psmm106331.4ˆ 5

1

b  mm5087.11ˆ
2 b  

pskD101114.7ˆ 6

1

c  kD107630.3ˆ 2

2

c  

 

Equation 8.2.3 to obtain the Cayley transformed transference for each 

frequency and then into Equation 8.2.2 to obtain the transference for the 

frequency.  The matrix obtained from Equation 8.2.3, by definition, is 

Hamiltonian and in turn, when transformed using the Cayley transform (Equation 

8.2.2), maps to a symplectic matrix. Checking this for every frequency in the 

visible light spectrum we find that every transference obtained this way has unit 

determinant and is indeed symplectic.  

Equations 8.2.2 and 3 represent a linear approximation to obtain the 

transference as a function of the frequency of light for any chosen frequency in 

the visible spectrum. In addition, the calculation can be done with a handheld 

 

Figure 8.2.4 The entries of the Cayley transformed transference as a function of 
frequency for the Le Grand eye. The red dashed lines represent the least-squares straight 

lines for each entry in Hamiltonian space. 
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calculator in two steps, compared to the far lengthier process of obtaining 

a refractive index for each medium and then multiplying eight transferences to 

obtain a transference for the Le Grand eye for a chosen frequency, such as that 

used to produce the curves in Figure 8.1.2. Deriving the formulae for the 

transforms enables us to gain some insight into the transformed space and 

fundamental properties. 

The fundamental properties of the transferences for Le Grand’s eye 

obtained from Equations 8.2.3 and 2 are plotted in red in Figure 8.2.5 as functions 

of the frequency of light. For comparative purposes, we include the lines for the 

transferences obtained in Figure 8.1.2 in black.  

In order to gain some insight into the relationship between the entries of 

the transformed transference, we plot the Cayley transformed transference for 

each frequency on a three-dimensional graph in Hamiltonian space. This is shown 

in Figure 8.2.6, firstly with the azimuth and elevation oriented in order to 

maximise any curvature along the line plotted and secondly oriented so as to 

attempt to look along the blue line and superimpose the six coloured diamonds to 

establish if there is any curvature present on the line. The straight line produced 

by Equation 8.2.3 is given in red in Figure 8.2.6(a). For the reduced eye we 

deduced that the line was straight, however, for the Le Grand eye, we see in 

Figure 8.2.6(b) that there is a small amount of curvature present.  

The relationship between each of the fundamental properties and its 

dependence on frequency of light is nearly linear and similarly the relationship 

between the entries of the transformed transference and its dependence on the 

frequency of light are also nearly linear. This applies to both the reduced and Le 

Grand model eyes. This is in part due to the nature of the frequency of light and 

the eye being approximately a ball of water. We know from Section 4.3, that the 

refractive index of water, according to Cornu’s equation, is approximately 

proportional to frequency. The chromatic aberration of the eye is due to the 

chromatic dispersion of the ocular media, which are mostly water and does not 

differ much between individuals (Smith, 1995).  

Because of the linear relationships, the Cayley transform has enabled us to 

derive a set of linear equations for the dependence of each of the fundamental 
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properties on the frequency of light that gives a good approximation of the 

transference as a function of the frequency of light and given by Equations 8.2.2 

and 3. Because we have derived simple equations in terms of the fundamental 

properties or entries of the transformed transference we have been able to gain 

some insight into the relationship of the fundamental properties and Hamiltonian 

space. The numerical transformed transferences for the Cayley transforms of the 

reduced and Le Grand’s eyes, obtained using Equations 8.2.3 and 2, are given in 

Table 8.2.3.  

  

  

 

 

Figure 8.2.5 Fundamental properties of Le Grand’s eye as a function of frequency of 
light. The solid black lines and diamond reference points represent the dependence as 

shown in Figure 8.1.2 while the red lines represent the dependence of Le Grand’s eye on 

frequency according to the formula and constants given in Equation 8.2.2 and 3 and Table 
8.2.2. The least squares straight lines (shown with black dashed lines in Figure 8.1.2) 

appear superimposed with the red lines for dilation A, disjugacy B and divergence C and 

have been suppressed. The dashed black least squares line for divarication D is shown 

and can be seen to be very close to the red line.  
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Figure 8.2.6 Three-dimensional graph of the Hamiltonian space of the Cayley 

transformed transference of Le Grand’s eye showing change with frequency with 10 n . 

In (a) the azimuth (
60 ) and elevation (

35 ) show a gentle curve along the blue line 

with diamond markers, representing the transformed transference. The red straight line 

with circular markers represents the least squares straight line given by Equation 8.2.3. In 

(b) the azimuth (
5.46 ) and elevation (

36 ) are oriented so as to line up the red and 

blue diamonds. It is clear from the position of the remaining diamonds that the line is not 
completely straight, However, in this position the red line creates a single point, but has 

been suppressed to unclutter the figure. 
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Table 8.2.3 The numerical values for the Cayley transformed transferences for the six 

reference frequencies in THz for the reduced and Le Grand’s eyes obtained using 

Equations 8.2.3 and 2 and constants from Tables 8.2.1 and 2. 

  Colour Reduced eye Le Grand’s eye 

430 Red 












0.3302kD0395.0

mm1.111113302.0
 













0.3079kD0.0408

mm1.487813079.0
 

494 Orange 












0.3325kD0399.0

mm1.111113325.0
 













0.3102kD0.0411

mm1.485813102.0
 

558 Yellow 












0.3350kD0.0403

mm1.111113350.0
 













0.3128kD0.0416

mm1.483413128.0
 

622 Green 












0.3380kD0.0407

mm1.111113380.0
 













0.3156kD0.0420

mm1.480413156.0
 

686 Blue 












0.3416kD0.0412

mm1.111113416.0
 













0.3185kD0.0425

mm1.476913185.0
 

750 Violet 












0.3458kD0.0419

mm1.111113458.0
 













0.3214kD0.0430

mm1.473013214.0
 

 

8.2.2 The logarithmic-transformed transference 

The logarithm of the transference was introduced in Section 3.7.1 and 

defined by Equation 3.7.2. We denote the transforms, as for Cayley transforms, by 

means of a caret (^).  

The dependence of the logarithmic transformed transference on frequency 

of light is similar to the Cayley transformed transference in that the logarithmic 

transformed transference is Hamiltonian and there are three independent entries 

which show the dependence on frequency of light. The units are the same as the 

Cayley transformed transference. The dependence of the individual entries of the 

transformed transference as a function of frequency is given in Figures 8.2.7 and 9 

for the reduced and Le Grand’s eyes respectively. The relationship represented by 

Equation 8.2.1 is clear in the graph. The relationship between the dependencies of 

the three independent entries on the frequency of light on a three-dimensional 

graph is shown in Figure 8.2.8 for the reduced eye and Figure 8.2.10 for Le 

Grand’s eye.  
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Table 8.2.4 gives the numerical values of the transformed transferences for 

six reference frequencies for each of the reduced and Le Grand’s eyes with 10 n . 

From the numerical values in the table and the lines in each of the figures, we see 

that, while the Cayley transform and the logarithmic transform are both 

Hamiltonian, they each define very different regions within the three-dimensional 

spaces. 

The constants in Equation 8.2.3 for the least-squares straight lines in 

Figures 8.2.7 and 9 for the logarithmic transform of the reduced eye and Le 

Grand’s eye are given in Table 8.2.5. Using them we obtain a transference 

dependent on frequency. 

From Section 3.7.1 we define the transference S obtained from the 

logarithmic transform Ŝ  as 

SS ˆexp          (8.2.4) 

 

 

Figure 8.2.7 The entries of the logarithmic transformed transference of the reduced 

eye as a function of frequency. Â  and D̂  are unitless and DA ˆˆ  , while B̂  is in 

millimetres and Ĉ  is in units of kilodioptres. The red dashed lines represent the least-

squares straight line for each entry. 
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Figure 8.2.8 Three-dimensional graph of the logarithmic transformed transference of 
the reduced eye showing change with frequency. In (a) we see the graph with the azimuth 

225  and elevation 
2.35  oriented so as to exaggerate any possible curvature. In (b) the 

azimuth 
135 and elevation 

2.35  are oriented so that we are looking along the line and 

the coloured diamonds are superimposed on each other showing that the line is straight. 
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Table 8.2.4 Logarithmic transformed transferences Ŝ  for six reference frequencies 

(in THz) for the reduced and Le Grand’s eyes. 

  Colour Reduced eye Le Grand’s eye 

430 Red 












0.5995kD0.0718

mm1696.205995.0
 













0.5527kD0.0732

mm6232.205527.0
 

494 Orange 












0.6032kD0.0723

mm1579.206032.0
 













0.5566kD0.0738

mm6052.205566.0
 

558 Yellow 












0.6074kD0.0730

mm1444.206074.0
 













0.5608kD0.0745

mm5845.205608.0
 

622 Green 












0.6124kD0.0737

mm1288.206124.0
 













0.5652kD0.0753

mm5610.205652.0
 

686 Blue 












0.6182kD0.0746

mm1105.206182.0
 













0.5699kD0.0761

mm5360.205699.0
 

750 Violet 












0.6252kD0.0757

mm0886.206252.0
 













0.5746kD0.0769

mm5107.205746.0
 

 

 
Figure 8.2.9 Entries of the logarithmic transformed transference of Le Grand’s eye 

showing change with frequency. The curves for each entry of the transformed 

transference are almost linear. The red dashed lines represent the least-squares straight 

line.  
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Table 8.2.5 The constants for Equation 8.2.3 for the logarithmic transformed 

transference Ŝ  as a function of the frequency of light for the reduced eye and Le Grand’s 

eye. 

The Reduced Eye 

ps109053.7ˆ 5

1

a  5640.0ˆ
2 a  

psmm104909.2ˆ 4

1

b  mm2813.20ˆ
2 b  

pskD102145.1ˆ 5

1

c  kD106312.6ˆ 2

2

c  

Le Grand’s Eye 

ps108870.6ˆ 5

1

a  5226.0ˆ
2 a  

psmm105673.3ˆ 4

1

b  mm7813.20ˆ
2 b  

pskD101743.1ˆ 5

1

c  kD108009.6ˆ 2

2

c  

 

and substituting from Equation 8.2.3 into this equation we obtain 

















































22

22

11

11

ˆˆ

ˆˆ

ˆˆ

ˆˆ
exp

ac

ba
ν

ac

ba
S       (8.2.5) 

the equation for the transference as an approximate dependence on any chosen 

frequency of light, and which is symplectic. Equation 8.2.5 needs an appropriate 

software programme such as MATLAB
®
 to execute the principal matrix exponent 

(expm).  

 The relationship between the three independent entries of the logarithmic 

transformed transference for Le Grand’s eye as a function of frequency is shown 

by the blue line and diamond markers in Figure 8.2.10(a). By comparison, the red 

line and circular markers show the relationship obtained from Equation 8.2.5, also 

for Le Grand’s eye. When the blue line is oriented so as to look along the line in 

Figure 8.2.10 (b), we see that the line is very slightly curved. The red line is 

straight and is suppressed to unclutter the figure. 

In Figures 8.2.11 and 12 the black line with diamonds indicates the 

dependence of the fundamental properties as functions of frequency and matches 

the curves in Figures 8.1.1 and 2 for the two model eyes. The red line with circles 

shows the approximate dependence of the fundamental properties on frequency as 

calculated using Equation 8.2.5.  
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Figure 8.2.10 Three-dimensional graph of the Hamiltonian space of the logarithmic 
transformed transference of Le Grand’s eye showing change with frequency. In (a) the 

azimuth (
325 ) and elevation (

35 ) are oriented so as to exaggerate the very slight curve 

in the line. The blue line and diamond markers show the transformed transference and the 

red line and circular markers indicate the approximate transformed transference according 

to Equation 8.2.5. In (b) the azimuth (
5.134 ) and elevation (

5.35 ) are oriented so as to 

attempt to line up the coloured diamonds and look along the blue line. This is not 

completely possible and we note a very slight curvature to the line. 
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Figure 8.2.11 Fundamental properties of the reduced eye as functions of frequency. 

The black line and diamond reference points show the transference as an exact function 
of frequency and the red lines and circular reference points show the approximate 

transference calculated from the exponential of the linear dependence of the logarithmic 

transformed transference (Equation 8.2.5). The dashed straight lines seen in Figure 8.1.1 
are superimposed on the red lines for dilation A, disjugacy B and divergence C and have 

been supressed. For divarication D it is the straight line at 1. 

 

 
Figure 8.2.12 The fundamental properties of Le Grand’s eye as functions of frequency.  
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The transference for any chosen frequency of light, obtained using the 

linear approximation given in Equation 8.2.5 and constants in Table 8.2.5 has unit 

determinant and is symplectic 

 

8.3 Discussion 

This chapter has looked at the dependence of the transference on the 

frequency of light. In Section 8.1, we saw that this relationship for each of the 

fundamental properties is very close to linear. We obtained an equation for each 

fundamental property using the least squares method for the straight line, 

Equation 8.1.5 (shown by a black dashed straight line on each sub-graph). Once 

combined, the fundamental properties for any particular frequency create an 

estimated transference whose determinant is approximately 1. 

In Section 8.2, we looked at the transformed transference in Hamiltonian 

vector space. In particular we considered the Cayley and the logarithmic 

transforms. Because the 22  Hamiltonian matrix has three independent entries 

we were able to visualise the relationship between the entries in three-dimensional 

vector space. For the reduced eye the relationship is linear and for Le Grand’s eye 

it is nearly perfectly linear. However, when the entries of the transference or 

transformed transference are looked at independently, Le Grand’s eye appears to 

be closer to linear. 

We looked at the dependence of the individual entries of the transformed 

transference Ŝ  on the frequency of light and noted, similar to the fundamental 

properties of the transference S, that the entries of Ŝ  are nearly linear. We 

obtained equations for the least-squares straight line for each of the three 

independent entries of the Cayley transformed transference (Equation 8.2.3). 

When transformed back to a symplectic matrix using Equation 8.2.2, it turns out 

that we have a matrix for every frequency with a determinant of exactly 1. These 

two equations are significant because we now have a formula for the straight line 

approximation giving us the dependence of the fundamental properties and hence 

the Gaussian transference which is symplectic and therefore the transference of an 

optical system. The constants are given for Equation 8.2.3 for the reduced eye 

(Table 8.2.1) and Le Grand’s eye (Table 8.2.2). 



IV  FINDINGS AND DISCUSSIONS  8 Chromatic dependence of the transference 

and transformed transferences on frequency  

225 

 

The formula for the linear dependence of the transference on the frequency 

of light is based on the Cayley transform. This allows us to create simple 

equations that are possible to calculate using a handheld calculator. We also 

derived constants for Equation 8.2.3 for the straight lines of the logarithmic 

transformed transferences (Table 8.2.5), however Equation 8.2.4 shows that to 

transform this equation from Hamiltonian space to a symplectic matrix would 

require the principal matrix exponential which requires sophisticated software 

such as MATLAB
®

.  Because of this, the Cayley transform gives greater insight. 
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9 Chromatic dependence of derived properties 

 

Sections 3.4 and 5.1 looked at some familiar optical properties derived 

from the transference, including power, entrance- and exit-plane refractive 

compensation, and front- and back-vertex power. Then, Sections 3.6 and 5.4 

looked at the cardinal and anti-cardinal points and ways to represent the 

relationships among the points using graphical construction and Pascal’s ring. The 

distances from the system to the points are also properties of the system that can 

be derived from the transference. Here we study the dependence of these derived 

properties on frequency. 

Section 3.7.3 introduced the four characteristic matrices. These 

transformed transferences are not Hamiltonian matrices, but each in its own right 

creates a vector space enabling us to do certain calculations in these vector spaces. 

However, unlike the Cayley and Logarithmic transformed transferences, the point 

P and angle Q characteristics are dimensionally uniform.  Because each 

characteristic matrix is symmetric in Gaussian optics, it comprises three 

independent entries which can be graphed in three-dimensions. The dependence of 

the entries of each of the four characteristic matrices on the frequency of light will 

be graphed in Section 9.3 below. 

 

9.1 Cardinal and anti-cardinal points 

Sections 3.6 and 5.4 looked at the cardinal and anti-cardinal points of 

systems in general. We now look at how the frequency of light affects the 

positions and spread of the various points in the reduced and Le Grand’s eyes.  

We start by obtaining the incident and emergent cardinal and anti-cardinal points 

for the six reference frequencies for each eye. These are given in Tables 9.1.1 to 4. 

We include the chromatic difference in positions, mean and standard deviation for 

each cardinal and anti-cardinal point in the tables. The chromatic difference in 

positions is calculated as  

rbδ QQQ zzz           (9.1.1) 

where Q represents any of the cardinal or anti-cardinal points and b and r 

represent the blue and red frequencies respectively. Longitudinal positions, z, are  
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Table 9.1.1 The positions of the incident cardinal points of the reduced eye for the six 

reference points, the chromatic difference in positions, mean and standard deviation across 

the spectrum 430 to 750 THz. Longitudinal positions z are relative to entrance plane 0T  

and subscripts are defined in Table 3.6.1.  

Colour Freq 

THz 
0N

z  

mm 
0P

z  

mm 

0Fz  

mm 

0Pz  

mm 

0Nz  

mm 

Red 430 –39.2018 –33.6463 –16.8231 0 5.5556 

Orange 494 –38.9761 –33.4206 –16.7103 0 5.5556 

Yellow 558 –38.7198 –33.1643 –16.5821 0 5.5556 

Green 622 –38.4263 –32.8708 –16.4354 0 5.5556 

Blue 686 –38.0868 –32.5312 –16.2656 0 5.5556 

Violet 750 –37.6895 –32.1340 –16.0670 0 5.5556 

Chromatic difference 1.5123 1.5123 0.7562 0 0 

Mean –38.5343 –32.9788 –16.4894 0 5.5556 

Standard deviation 0.4343 0.4343 0.2172 0 0 

 

Table 9.1.2 Positions of the emergent cardinal and anti-cardinal points of the reduced 
eye as a function of frequency for the six reference points. The longitudinal positions z are 

given in millimetres from the exit plane T which is 22.2222 mm downstream of the 

entrance plane. The chromatic difference in position between the red and blue emergent 

points, the mean and standard deviation across the spectrum are given. Subscripts are 
defined in Table 3.6.1. 

Colour 
   
THz 

Pz  

mm 
Nz  

mm 

Fz  

mm 
N

z  

mm 
P

z  

mm 

Red 430 –22.2222 –16.6667 0.1565 16.9796 22.5352 

Orange 494 –22.2222 –16.6667 0.0436 16.7539 22.3095 

Yellow 558 –22.2222 –16.6667 –0.0845 16.4976 22.0532 

Green 622 –22.2222 –16.6667 –0.2313 16.2041 21.7596 

Blue 686 –22.2222 –16.6667 –0.4011 15.8646 21.4201 

Violet 750 –22.2222 –16.6667 –0.5997 15.4673 21.0229 

Chromatic difference 0 0 –0.7562 –1.5123 –1.5123 

Mean –22.2222 –16.6667 –0.1773 16.3121 21.8676 

Standard deviation 0 0 0.2172 0.4343 0.4343 

 

relative to the corresponding transverse plane. Consistent with Section 4.2 the 

frequency of red is taken to be 430 THz and blue to be   
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Table 9.1.3 The positions of the incident cardinal and anti-cardinal points of Le 

Grand’s eye as a function of frequency for six reference frequencies. Positions are relative 

to the entrance plane.   

Colour Freq 

THz 
0N

z  

mm 
0P

z  

mm 

0Fz  

mm 

0Pz  

mm 

0Nz  

mm 

Red 430 –37.6878 –32.0833 –15.2365 1.6103 7.2148 

Orange 494 –37.4540 –31.8489 –15.1221 1.6048 7.2098 

Yellow 558 –37.1882 –31.5854 –14.8489 1.6028 7.2056 

Green 622 –36.9000 –31.3001 –14.8489 1.6022 7.2022 

Blue 686 –36.6078 –31.0094 –14.7042 1.6010 7.1994 

Violet 750 –36.3241 –30.7255 –14.5637 1.5637 7.1967 

Chromatic 

difference 
1.3638 1.3578 0.6728 –0.0122 –0.0182 

Mean –37.0320 –31.4304 –14.9137 1.6029 7.2045 

Standard deviation 0.4032 0.4006 0.1990 0.0027 0.0052 

 

Table 9.1.4 Positions of the emergent cardinal and anti-cardinal points for Le Grand’s 
eye as a function of frequency for six reference frequencies. The distances are relative to 

the exit plane, which is 24.1965 mm downstream from the entrance plane.  

Colour 
Freq 

THz 
Pz  

mm 
Nz  

mm 

Fz  

mm 
N

z  

mm 
P

z  

mm 

Red 430 –22.2758 –16.6712 0.1756 17.0223 22.6269 

Orange 494 –22.2793 –16.6742 0.0526 16.7795 22.3845 

Yellow 558 –22.2788 –16.6760 –0.0819 16.5122 22.1150 

Green 622 –22.2765 –16.6765 –0.2254 16.2258 21.8258 

Blue 686 –22.2750 –16.6766 –0.3714 15.9338 21.5322 

Violet 750 –22.2754 –16.6766 –0.3714 15.9338 21.5322 

Chromatic difference 0.0004 –0.0056 –0.6906 –1.3756 –1.38105 

Mean –22.2771 –16.6755 –0.1588 16.3578 21.9594 

Standard deviation 0.0017 0.0015 0.2028 0.4044 0.4070 

 

750 THz, the end-points of the spectrum. The mean and standard deviation are 

calculated across the spectrum from 430 to 750 THz at every 1 THz. 
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The reduced eye 

Tables 9.1.1 and 2 show that the incident 0P  and emergent P principal points of 

the reduced eye both coincide with the entrance plane (or cornea) 0T  and the 

incident 0N  and emergent N nodal points both coincide with each other at the 

centre of curvature which is 5.5556 mm downstream of the entrance plane. This 

implies that 0P , P, 0N  and N are independent of frequency in the reduced eye and 

remain single point structures. On the other hand, the incident 0F  and emergent F 

and anti-cardinal points 0P , P , 0N  and N  depend on frequency and are therefore 

not point structures, but spread out like little rainbows into fuzzy zones rather than 

points. Furthermore, the magnitude of the chromatic difference in position of each 

of the anti-cardinal points is the same for the reduced eye, that is, 

mm5123.1δ 
Q

z .  

 

Le Grand’s eye 

Tables 9.1.3 and 4 show that all ten of the cardinal and anti-cardinal points for Le 

Grand’s eye depend on frequency and each is a fuzzy zone like a little rainbow. 

This is represented by both the chromatic difference and standard deviation. 

Because the points are mathematical concepts they will not actually be visible as a 

rainbow, with the exception of F. The statistical data at the bottom of each table 

shows that the fuzzy spread is greater for the anti-cardinal points than for the 

cardinal points. The 0P ’s and P’s demonstrate the least spread, with the fuzzy 

spread increasing with each point as it moves further away from the 0P ’s and P’s. 
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9.1.1 Graphical construction 

The data given in Tables 9.1.1 to 4 is displayed visually using graphical 

construction as introduced in Sections 3.6.4 and 5.4.2. For this we construct the 

locator lines and points for the red and blue transferences for each of the reduced 

and Le Grand’s eyes. In order to prevent the graph from being too cluttered, only 

the locator lines for the transferences representing the red (430 THz) and blue 

(750 THz) frequencies will be displayed. The positions of the ten cardinal and 

anti-cardinal points are shown. 

 

Graphical construction of the reduced eye 

Figure 9.1.1 shows the graphical construction for the reduced eye showing 

the locator lines for the red and blue transferences and the ten cardinal and anti-

cardinal points. In Figure 9.1.1 the black horizontal line represents the optical axis 

Z, positioned at 0X . The two vertical black lines represent the entrance plane 

0T  at 0z  and the exit plane T a distance z downstream from 0T  at mm
9

200
z , 

which is the length of the reduced eye. The locator lines 0L  and L for the reduced 

eye are drawn in red (430 THz) and blue (750 THz). From Section 3.6.4, the slope 

of the incident locator lines 0L   is given by 
0n

C
. For the reduced eye in air, the 

refractive index of air is constant, 1, however, we know that C depends on 

frequency, and therefore the slope of 0L  also varies with frequency. The slope of 

the emergent locator line L is given by 
n

C
. Both C and n depend on frequency and 

hence so does the slope of L. The slope of the blue locator line is steeper in 

magnitude than that of the red line for both 0L  and L.  

In Figure 9.1.1 0F  and F are positioned at the point of intersection between 

the respective locator line 0L  and L and the optical axis Z. The 0F ’s show that the 

blue 0F  is closer to the eye than the red 0F . More applicably, for F, the blue F is 

before the exit-plane T or retina and the red F is behind the retina. While the result 

is not surprising, the locator lines visibly illustrate this. 
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Locator line diagrams were described in Section 3.6.2. In Figure 9.1.1 

horizontal lines are drawn in green at 1X  and 1X  and vertical lines 

extended to the longitudinal axis for 0P  and P in green for the red points and cyan 

for the blue points. 0P  and P are coincident with 0T  for the reduced eye and only 

the cyan line is visible in the diagram. The red and blue anti-principal points 0P  

and P  are distinct. 0P  and P simplify as follows: for 0Pz  for the reduced eye 

1D  (from Equation 5.5.1), regardless of frequency. Substituting 1D  and 

1X  for 0P  from Table 3.6.1 into Equation 3.6.1, it simplifies to 0 making 0Pz  

coincident with the entrance plane for all frequencies. For 
Pz , by substituting 

1X  and A and C from Equation 5.5.1 into Equation 3.6.2, 
Pz  simplifies to z . 

Because z is the length of the reduced eye, P is also coincident with 0T  for all 

frequencies. This is illustrated in Figure 9.1.1 where all four locator lines cross at 

the entrance-plane at both 1X  and 1
1


X
, shown by the uppermost green 

horizontal line. 

 

 

Figure 9.1.1 The graphical construction for the reduced eye showing the locator lines 
for the red and blue transferences and the ten cardinal and anti-cardinal points. 
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The nodal and anti-nodal points are indicated in Figure 9.1.1 with 

horizontal lines at 
0n

n
 for 0N  and 0N  and 

n

n0  for N  and N  in red and blue 

respectively. Because the indices depend on frequency, we obtain different 

positions for the red and blue horizontal lines. In turn vertical lines are extended 

to indicate the position of the nodal points on the longitudinal axis. For the 

reduced eye 0N  and N coincide, however 0N  and N  are distinct. The coincidence 

of 0N  and N is found in Equation 5.5.1; substituting C, D and X into Equation 

3.6.1, N0z  simplifies to r, the radius of curvature of the corneal refracting surface. 

Therefore N0z  is independent of refractive indices, 0n  and n, and, hence, 

frequency  . This is seen in Figure 9.1.1 by the single blue line dropping to the 

position for 0N . Similarly, substituting for X, and A and C from Equation 5.5.1 

into Equation 3.6.2 and simplifying, we obtain the position for N as zrz N  

with respect to T. This places N at position r with respect to 0T  for all frequencies. 

N is therefore independent of frequency and coincident with 0N . 

 

Simplifications of anti-cardinal points for the reduced eye 

We now turn our attention to the anti-cardinal points of the reduced eye, 

starting with 0P  and P . We know that the horizontal line to find the position of 

the points on the locator lines needs to be drawn at 1X , shown by the lower 

green horizontal line in Figure 9.1.1. From the figure and from Equations 5.5.1 

and 3.6.1 and 2, we see that 0P  and P  depend on frequency. Similarly, 0N  and N

are also dependent on frequency. 0N  and N  for the reduced eye are equidistant 

from the entrance-plane, albeit in opposite directions. From Tables 9.1.1 and 2 we 

see that each of the anti-cardinal points is equidistant between the red and blue 

positions (chromatic difference); this is shown algebraically for 0P , P , 0N  and 

N  below.  

Most of the simplifications that occur for the reduced eye above and in 

Figure 9.1.1 stem from the transference and the fact that 1D  for all 
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transferences of the reduced eye, regardless of the frequency. Let us look at this in 

more detail. Firstly, 0N  and N  are equidistant from 0T , in opposite directions. 

Starting with Equation 3.6.3, we substitute the values for C and D from Equation 

5.5.1 and 10 n  to obtain 

r
n

n
z

1

1
0N 


         (9.1.2) 

for the position of 0N  of the reduced eye and 

zr
n

n
z 






1

1
N

        (9.1.3) 

for the position of N  of the reduced eye. Because the emergent points are defined 

as the distance from the exit-plane, we expect that the incident and emergent 

formulae will differ by the length of the reduced eye, z. From Equations 9.1.2 and 

3, we see that 0N  and N  are equidistant from 0T , 0N  being upstream and N   

downstream of 0T .  

Similar equations derived for 0P  and P , from 0T  and T respectively, turn 

out to be 

1

2
0P 




n

r
z          (9.1.4) 

for the distance of 0P   from 0T , and 

z
n

nr
z 




1

2
P

         (9.1.5) 

for the distance of P  from T. These are clearly not equidistant from 0T  and 

confirms what we deduce from Figure 9.1.1. 

Secondly, we examine the result in Tables 9.1.1 and 2 that the magnitude 

of the distance between the red and blue anti-cardinal points in the reduced eye is 

the same for all four anti-cardinal points. Starting with the chromatic difference 

between points defined in Equation 9.1.1 and substituting in turn the equations 

derived for each of the anti-cardinal points in Equations 9.1.2 to 5, we obtain the 

chromatic difference in position of 0P  

 
  11

2
δ

0P0P0P





rb

rbrb

nn

nnr
zzz .      (9.1.6) 
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The equation for 
0N

δz , the chromatic difference in distance between the red and 

blue 0N ’s is equal to Equation 9.1.6. The chromatic difference in position of P  

and N  are equal in magnitude, but the negative of the incident equation. That is to 

say  

PN0P0N
δδδδ zzzz  .       (9.1.7) 

The negative value found in the chromatic difference of the emergent anti-cardinal 

points indicates that the positions of the red and blue anti-cardinal points are 

switched compared to the incident points. The equalities derived in Equations 

9.1.2 to 7 only apply to the reduced eye and cannot be generalised to other eyes. 

We conclude that while the reduced eye is well suited to the study of most 

chromatic properties, it is not suitable for studying cardinal points and, in 

particular, not suitable for studying the dependence of the cardinal points on 

frequency. 

 

Graphical construction of Le Grand’s eye 

Let’s us, therefore, consider a more complex Gaussian eye, that of Le 

Grand’s four-surface eye. From Table 8.1.1 and Section 8.1.1 we already know 

that all four fundamental properties depend on the frequency of the light 

traversing the system. Figure 9.1.2 shows the graphical construction of the locator 

lines for Le grand’s eye for the red (430 THz) and blue (750 THz) frequencies. 

The optical axis Z, entrance-plane 0T  and exit-plane T are the same as in 

Figure 9.1.1. It is apparent that Le Grand’s eye does not simplify to the extent that 

the reduced eye does. We start with the incident locator lines 0L , the slope of 

which, from the equation for the slope given above and from Figure 9.1.2, depend 

on frequency. The slope of 0L  is 0.05936 kD for the red line and 0.06187 kD for 

the blue line. Unsurprisingly, the intersection of 0L   with Z shows that the blue 

0F  is in closer proximity to the eye than the red 0F . 0L  intersects the entrance-

plane at position D. From the transferences listed in Table 8.1.1 we know that the 

entries for D depend on frequency and therefore the two 0L s cross 0T  at different 
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positions. The values for D are, however, very close and it is difficult to see the 

separation on Figure 9.1.2. The red and blue 0L s cross at  

rb

rb
Q0

CC

DD
z




         (9.1.8) 

which is 1.32 mm downstream of 0T . 

The emergent locator lines L intersect T at A. From Section 3.3.1, we 

know that a positive value for A implies hyperopia and a negative value, myopia. 

This is visible in Figure 9.1.2, where the red L indicates a positive value for A and 

intersects Z behind T or the retina and the blue L shows a negative value for A and 

intersects Z with F before the retina. The red and blue L’s intersect at position 

b

b

r

r

rb
Q

n

C

n

C

AA
z




          (9.1.9) 

which is –22.4474 mm from T, or 1.7491 mm from 0T . The position of 

intersection of the incident red and blue 0L ’s does not coincide with the same for 

L’s, nor does either intersection coincide with the position of either 0P ’s or P’s. 

The slopes of the L’s are –0.04454 kD for the red line and –0.04596 kD for the 

Figure 9.1.2 The graphical construction for Le Grand’s eye showing the locator lines 

for the red and blue transferences and the ten cardinal and anti-cardinal points.  
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blue line. Because the difference in slope of the 0L ’s and L’s is so slight, it is 

difficult to distinguish the point of intersection of the red and blue lines in Figure 

9.1.2. 

In Figure 9.1.2 the principal and anti-principal horizontal lines are drawn 

in green at 1 or –1 respectively and vertical lines extended to Z in green for the 

red points and cyan for the blue points. The 0P ’s and P’s are separate, and do not 

coincide with 0T . The red and blue 0P ’s and P’s are also distinct, but too close to 

be discernible in the diagram. The cyan lines appear superimposed over the green 

lines and from the diagram it appears that each of 0P  and P is the same for the red 

and blue lines. However, if we look at the values given in Tables 9.1.3 and 4, we 

see that the red and blue transferences have different values for the 0P ’s and P’s 

and therefore the 0P ’s and P’s depend on frequency. The 0P ’s and P ’s are 

distinct. 

In Figure 9.1.2 the nodal and anti-nodal points are indicated with 

horizontal lines at 
0n

n
  at 0N  and 0N  and 

n

n0  for N  and N  in red and blue 

respectively. Because the indices depend on frequency, we obtain different 

positions for the horizontal lines. For Le Grand’s eye the 0N ’s and N’s are 

distinct and the red and blue points are also distinct, but too close to be 

distinguishable in the diagram. For clarity, we see from Tables 9.1.3 and 4 that the 

red and blue 0N ’s and N’s are distinct and therefore the 0N ’s and N’s depend on 

frequency, implying that the 0N ’s and N’s  are not points, but rather fuzzy nodal 

zones. The 0N ’s and N  ‘s  are distinct for red and blue.     

Unlike the reduced eye, the chromatic difference in position between each 

of the four anti-cardinal points for Le Grand’s eye is different for all four points.  

 

Summary 

We have illustrated how the principal and nodal points for the reduced eye 

are independent of frequency and that 0P  and P are positioned at the entrance 

plane while  0N  and N are positioned at the centre of curvature of the single 
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refracting surface. For the reduced eye, 0F , F and the anti-cardinal points depend 

on frequency and the chromatic difference in distance between the red and blue 

position of each of the anti-cardinal points is the same, but the sequence is 

different for incidence and emergence.  

On the other hand, for the four-surface Le Grand eye, all six cardinal and 

four anti-cardinal points depend on frequency and are distinct from each other, 

implying that these cardinal points are not points but fuzzy zones.  

 

9.1.2 Pascal’s ring 

In the previous section, we looked at the positions and changes among the 

various cardinal and anti-cardinal points. Tables 9.1.1 to 4 gave numerical values 

and we were able to see which points were dependent on frequency. The graphical 

constructions given in Figure 9.1.1 for the reduced eye and Figure 9.1.2 for Le 

Grand’s eye showed the relationships between the positions of the points, 

however, certain points are so close together as to be indiscernible in the figures. 

Pascal’s ring was introduced in Section 3.6.5 and expanded on in Section 5.4.3 

and while the ring is not drawn to scale, it does show the relationships among the 

points and the directions of the changes. Pascal’s ring emphasises which points 

are dependent, or, in the case of the reduced eye, independent, of frequency. 

 

Pascal’s ring for the reduced eye 

Pascal’s ring for the reduced eye as a function of frequency is shown in 

Figure 9.1.3. For clarity, we compare the rings for only the red and blue cardinal 

points. From the graphical construction of the reduced eye in Figure 9.1.1, there is 

no separation of principal planes nor nodal points and so for Pascal’s ring the 

central square fuses to become a single vertical line. As expected, the blue focal 

points are both closer to the eye than the red focal points and this is represented in 

Pascal’s ring. When we consider the Pascal’s ring in Figure 9.1.3 and the 

extended Pascal’s ring in Figure 9.1.4 we see that, for the reduced eye, the blue 

ring contracts towards the principal-nodal line. The width, between the focal 

points, is narrower for the blue than for the red ring structure. The vertical height 

of both red and blue structures is equal.  
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Figure 9.1.3 Pascal’s ring for the reduced eye for the red and blue cardinal points. The 
vertical black line is common to both frequencies.  

 

 

 
Figure 9.1.4 Extended Pascal’s ring for the reduced eye showing the addition of anti-

cardinal points and directions of all relationships.  
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Pascal’s ring for Le Grand’s eye 

The reduced eye has both advantages and disadvantages that come hand in 

hand with the simplest model eye available. In order to highlight some of the 

disadvantages of the simplification, let us take a look at Pascal’s ring for the four- 

surface Le Grand eye. Pascal’s ring is shown in Figure 9.1.5 and the extended 

Pascal’s ring in Figure 9.1.6. 

Pascal’s ring is shown in Figure 9.1.5 for Le Grand’s eye for the set of six 

cardinal points for the red and blue frequencies derived from the transferences. 

The blue ring is narrower than the red ring for the distance between 0F  and F, 

which matches what we found in the graphical construction in Figure 9.1.2. The 

blue inner square is wider and shorter than the red inner square. This width  

 

Figure 9.1.5 Pascal’s ring for Le Grand’s eye showing rings for the red and blue 
frequencies.  

 

 

 

Figure 9.1.6 Extended Pascal’s ring of Le Grand’s eye for red and blue frequencies, 
showing the cardinal and anti-cardinal points and the directions of the relationships. 
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represents the distance between 0P  and P, which Pascal called the “thickness” 

(Pascal, 1950a), and also between 0N  and N. While the difference is too small to 

be evident in the graphical construction, from Tables 9.1.3 and 4 we calculate the 

width of the square to be 0.3230 mm for the blue “thickness” and 0.3105 mm for 

the red. This represents a chromatic difference of 0.0126 mm between the red and 

blue “thicknesses”. The height of the square represents the distance between 0P  

and 0N  or between P and N. The blue P and N are positioned closer together than 

the red P and N. From Tables 9.1.3 and 4 we calculate the distance from P to N to 

be 5.5986 mm for blue and 5.6046 mm for red. This represents a chromatic 

difference of 0060.0  mm which is not discernible in Figure 9.1.2.  

The equivalent incident focal length eqf0  is represented by the distance 

from 0P  to 0F  and is equal to the distance from F to N. For the blue eqf0  this is a 

distance of mm1618.16  and for the red eqf0  this is mm8468.16 , giving us a 

chromatic difference of mm6850.0 . eqf  is the length from P to F and is equal to 

the length from 0F to 0N . This is a distance of 21.7604 mm for the blue eqf  and 

22.4513 mm for the red eqf , giving us a chromatic difference of –0.6910 mm. 

These are very small differences and not obvious from Figure 9.1.2, but do 

indicate that the positions of, and relationships among the cardinal points of Le 

Grand’s eye are all dependent on frequency. When we compare eqf0  and eqf  it 

becomes obvious why we cannot draw Pascal’s ring to scale. The distortion 

created by the unequal eqf0  and eqf  would create a shape that resembles a 

lightning bolt at best, or one that would not join up at all. 

In Figure 9.1.6 we observe that the blue extended Pascal’s ring appears to 

be contracted compared to the red ring. It becomes obvious that, despite the rings 

not being drawn to scale, the chromatic difference in position of the anti-cardinal 

points is greater than the same for the cardinal points. 
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Conclusion 

From Pascal’s ring we see which points depend on frequency and which 

are independent of frequency. The reduced eye clearly shows that the principal 

and nodal points are independent of frequency, but that the focal points and the 

anti-cardinal points do depend on frequency. Pascal’s ring for Le Grand’s eye 

shows clearly that all six cardinal and four anti-cardinal points do depend on 

frequency. In addition the ring shows the direction of chromatic differences of 

each point. 

 

9.2 Derived properties as a function of frequency 

In Sections 3.4 and 5.1 we looked at a selection of derived properties, 

including power, entrance- and exit-plane refractive compensation and front- and 

back-vertex power. For each of these derived properties, we graph its dependence 

on the frequency of light. Although certain derived properties, such as exit-plane 

refractive compensation, apply to systems in general and have little application to 

the eye, we will include them because they have application to the characteristic 

matrices that will be discussed in Section 9.3. 

 

9.2.1 Power 

Power of a system is the simplest derived property, given by Equation 

3.4.3. From the simplicity of the definition, we see that the dependence will be 

similar to that in Section 8.1.1 for each of the C sub-graphs. We therefore look at 

the dependence of power on the frequency of light only briefly. 

Figure 9.2.1 shows the dependence of power of the system on the 

frequency of light for the reduced eye (blue with circles) and Le Grand’s eye 

(black with diamonds). The curves represent the actual values calculated from the 

transference as a function of frequency and the dotted-dashed lines represent the 

power approximated from the linear dependence on the frequency of light 

(Equations 8.2.2 and 3).  

The numerical values for the powers at the six reference points are given 

in Table 9.2.1. In addition the chromatic difference in power is given for the 

actual and approximate power values, represented by the dashed lines in Figure  
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Table 9.2.1 The power of the reduced and Le Grand’s eyes at six reference 

frequencies, and their comparative values according to the formula for the symplectic 

straight line dependence on the frequency of light derived in the previous chapter 
(Equations 8.2.2 and 3).  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual  

D 

Approximate 

D 

Actual  

D 

Approximate 

D 

430 Red 59.4419 59.2756 59.3586 59.2736 

494 Orange 59.8434 59.8299 59.7841 59.7877 

558 Yellow 60.3058 60.6825 60.2625 60.2999 

622 Green 60.8444 60.9335 60.7860 60.8104 

686 Blue 61.4794 61.4828 61.3301 61.3192 

750 Violet 62.2394 62.0304 61.8744 61.8263 

Chromatic difference in 

power 
2.7975 2.7548 2.5158 2.5526 

 

9.2.1, for the reduced and Le Grand eyes. The values in the column labelled 

“approximate” have been obtained using Equations 8.2.2 and 3.  

 

 

Figure 9.2.1 The dependence of power of the model eyes on the frequency of light. The 

corresponding dot-dashed lines in blue and black respectively show the straight line 
relationship according to Equations 8.2.2 and 3. 
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The values for the actual and approximate powers given in Table 9.2.1 

compare well. Additionally, the values for chromatic difference in power compare 

favourably to published values (Section 2.3.1). These vary according to the 

frequencies chosen for red and blue ends of the spectrum.  

 

9.2.2 Corneal-plane and exit-plane refractive compensation 

The formulae for entrance-plane and exit-plane refractive compensation 

are given by Equations 3.4.6 and 5.1.3 respectively. While both of these formulae 

are general for all systems, entrance-plane refractive compensation for an eye is 

the equivalent of corneal-plane refractive compensation, however, exit-plane 

refractive compensation is not of conventional optometric interest. However, 

because the formula is related to the fourth entry for the point characteristic 

matrix, we will include exit-plane refractive compensation in our discussion. The 

dependence of the entrance- and exit-plane refractive compensations on frequency 

are shown in Figures 9.2.2 and 3, respectively.  

Figure 9.2.2 shows that the corneal-plane refractive compensation is 

similar for the reduced and Le Grand’s eyes. The reduced eye shows a more 

curved dependence than Le Grand’s eye, which reflects the underlying structure 

of the two model eyes and the formulae for the refractive indices of the media. 

The values obtained using the actual transferences dependent on frequency are 

very similar to the approximated values obtained using the linear symplectic 

calculated transferences. The values for six reference frequencies are given in 

Table 9.2.2 for the refractive compensation of the two eyes and compared with the 

values obtained using Equations 8.2.2 and 3. 

The exit-plane refractive compensation in Figure 9.2.3 shows almost six 

dioptres difference between the lines for the two eyes while the chromatic 

difference between the red and blue frequencies is far less for each eye compared 

with the corneal-plane refractive compensation. The dotted-dashed straight line is 

almost indistinguishable from the solid curved line for Le Grand’s eye. From 

Table 9.2.3 we see that the chromatic difference in exit-plane refractive 

compensation is 0.69 D for the reduced eye and 0.52 D for Le Grand’s eye. 
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Table 9.2.2 The entrance-plane refractive compensation of the reduced and Le Grand’s 

eyes at six reference frequencies, and their comparative values according to the formula for 

the symplectic straight line dependence on the frequency of light derived in the previous 
chapter (Equations 8.2.2 and 3).  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual 

D 

Approximate 

D 

Actual 

D 

Approximate 

D 

430 Red 0.4185 0.5412 0.4674 0.5250 

494 Orange 0.1175 0.1264 0.1412 0.1387 

558 Yellow –0.2294 –0.2876 –0.2216 –0.2470 

622 Green –0.6333 –0.7007 –1.6155 –0.6322 

686 Blue –1.1095 –1.1130 –1.0243 –1.0169 

750 Violet –1.6796 –1.5245 –1.4338 –1.4009 

Chromatic difference in 

entrance-plane refractive 

compensation 

–2.0981 –2.0657 –1.9013 –1.9260 

 

 

 

Figure 9.2.2 The dependence of the entrance-plane refractive compensation of the 
reduced and Le Grand’s eyes on the frequency of light. The entrance-plane refractive 

compensation approximated from Equations 8.2.2 and 3 for the linear symplectic 

dependence transference is indicated by the straight dotted-dashed lines in corresponding 
colours. 
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Table 9.2.3 The exit-plane refractive compensation of the reduced and Le Grand 

model eyes at the six reference frequencies, and their comparative values according to the 

formula for the symplectic straight line dependence on the frequency of light derived in the 
previous chapter (Equations 8.2.2 and 3).  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual 

D 

Approximate 

D 

Actual 

D 

Approximate 

D 

430 Red 59.8605 59.8253 54.0673 54.05699 

494 Orange 59.9608 59.9612 54.1638 54.1624 

558 Yellow 60.0765 60.0980 54.2611 54.2658 

622 Green 60.2111 60.2355 54.3644 54.3699 

686 Blue 60.3698 60.3739 54.4751 54.4749 

750 Violet 60.5599 60.5131 54.5920 54.5807 

Chromatic difference in 

exit-plane refractive 

compensation 

0.6994 0.6878 0.5247 0.5208 

 

 

 

Figure 9.2.3 The dependence of the exit-plane refractive compensation of the reduced 
eye and Le Grand’s eye on the frequency of light. The approximate exit-plane refractive 

compensation obtained from Equations 8.2.2 and 3 for the linear symplectic dependence 

transference is indicated by the straight dotted-dashed lines in corresponding colours.  
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9.2.3 Front- and back-vertex power 

The formulae for front- and back-vertex power of systems in general, 

derived from the transference, were given in Equations 3.4.16 and 11, 

respectively. From the definition, back-vertex power measures the vergence at 

emergence from the system when incident vergence is zero. For an eye, including 

a model eye, this measures the vergence at the retinal-plane. Because light focuses 

at or close to the retina, we expect the back-vertex power to approach infinity. 

This is seen in Figure 9.2.4. The formula for back-vertex power is found in the 

first entry of the first mixed characteristic matrix M (Equation 3.7.23). 

In Figure 9.2.4 we see the vergence initially increasing rapidly as we move 

from the red markers to the orange markers and asymptotes to infinity. The back-

vertex power between 430 and 517 THz is positive. The vertical lines indicate a 

jump from infinity to minus infinity and show the frequency at which each eye 

forms a focal point (image). This is 517 THz for the reduced eye and 520THz for 

Le Grand’s eye. The vergence then, again increasing as we move from yellow 

through green and blue to violet, asymptotes from minus infinity and eventually 

asymptotes to the zero dioptre vergence line in the ultra-violet range. The back-

vertex powers of six reference frequencies are given in Table 9.2.4 for the two 

model eyes, compared with the values obtained using Equations 8.2.2 and 3. 

Front-vertex-power defines the vergence at the entrance plane required for 

light to emerge with zero vergence. This is plausible for systems in general, but 

makes little sense for the eye. It may have an application for the reversed eye, 

however this is beyond the scope of this dissertation. Nonetheless, because the 

formula for front-vertex power is the negative of the fourth entry of the second 

mixed characteristic matrix N (Equation 3.7.24) we shall include it here. The 

dependence of the front-vertex power on frequency is shown in Figure 9.2.5. The 

dependence is very nearly linear for the two model eyes. 

From Table 9.2.5 and Figure 9.2.5 we see that there is approximately a 6 D 

difference between the two model eyes. The chromatic difference in front-vertex 

power is 2.80 D for the reduced eye and 3.09 D for Le Grand’s eye. 
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Table 9.2.4 Back-vertex power of the reduced and Le Grand’s model eyes for six 

coloured reference points. The columns are separated into actual values and those 

approximated using Equations 8.2.2 and 3.  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual 

D 

Approximate 

D 

Actual 

D 

Approximate 

D 

430 Red 8 501 6 551 7 591 6 745 

494 Orange 30 548 28 382 25 373 25 824 

558 Yellow –15 795 –12 618 –16 336 –14 664 

622 Green –5 786 –5 238 –5 948 –5 794 

686 Blue –3 345 –3 335 –3 617 –3 642 

750 Violet –2 244 –2 462 –2 614 –2 673 

 

 

 

Figure 9.2.4 Back-vertex power of the two model eyes as a function of frequency. The 
corresponding dashed lines are approximated according to Equations 8.2.2 and 3 for the 

linear relationship of the transference’s dependency on frequency. The vertical axis has 

been restricted to [–20 000 D  35 000 D] in order to include all six reference points and to 
discern the individual curves, which approach ± infinity dioptres. 
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Table 9.2.5 Front-vertex power of the reduced and Le Grand’s model eyes for the six 

coloured reference points. Chromatic difference of front-vertex power is given. The 

columns are separated into actual values and those approximated using Equations 8.2.2 and 
3.  

Frequency 

THz 
Colour 

Reduced eye Le Grand’s eye 

Actual 

D 

Approximate 

D 

Actual 

D 

Approximate 

D 

430 Red 59.4419 59.2671 65.6319 65.5111 

494 Orange 59.8434 59.8250 66.1284 66.1355 

558 Yellow 60.3058 60.0380 66.7053 66.7570 

622 Green 60.8444 60.9031 67.3450 67.3755 

686 Blue 61.4794 61.1478 68.0077 67.9910 

750 Violet 62.2394 62.2023 68.6638 68.6035 

Chromatic difference in 

front-vertex power 
2.7975 2.7556 3.0320 3.0924 

 

 

Figure 9.2.5 Front-vertex power of the two model eyes as a function of frequency. The 
solid lines represent the actual values from the transference while the dotted-dashed lines 

are approximated from the linearly transformed transferences according to Equation 8.2.2.  
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9.3 Characteristic matrices 

The four characteristic matrices were introduced in Section 3.7.3; they are 

symmetric and represent familiar derived properties in relationship to each other. 

Our interest lies in the fact that each of the characteristic matrices is symmetric 

and therefore can be represented in a three-dimensional vector space. Of these 

characteristic matrices, the point characteristic P and the angle characteristic Q 

appear to be the most promising for our objective because they each have the 

same units throughout. P has units of inverse length and Q units of length. It is the 

uniformity of units of the point- and angle-characteristics that holds appeal for our 

purposes. M and N each have mixed units, however there are some interesting 

relationships among the entries of each of the four characteristic matrices and 

many of the familiar properties of systems.  

Equations 3.7.15, 16, 18 and 19 give the four characteristic matrices in 

terms of varying combinations of incident or emergent transverse positions or 

reduced inclinations. In each case, two knowns map to two unknowns. Then the 

entries of the four characteristic matrices are defined in terms of the fundamental 

properties of the Gaussian transference in Equations 3.7.21, 22, 23 and 24. 

What becomes apparent in Section 3.7.3 is that for each characteristic 

matrix there are issues of singularity that limit the usefulness of each matrix for 

particular situations. It further implies that the choice of any two of 0y , y, 0  or 

  does not necessarily fix the other two (Harris and van Gool, 2004). 

 

9.3.1 Point characteristic  

As is apparent from Equation 3.7.21, the point characteristic exists 

provided the disjugacy is not zero, or does not approach zero. This would be 

problematic in a conjugate or thin system, however we foresee no problem in a 

model eye. As pointed out in Section 3.7.3, the first entry represents the corneal-

plane refractive compensation (
0F ) given by Equation 3.4.6 and the second and 

third entries are the negative inverse of disjugacy ( 1 B ). The fourth entry is the 

exit-plane refractive compensation (
CF ) of the system (Equation 5.1.3). This is of 

interest for systems in general, but apparently holds little practical meaning for the  
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Table 9.3.1 The point characteristic matrices P for the reduced and Le Grand’s eyes 

for six reference frequencies. 

Frequency  Point characteristic P in dioptres 

THz Colour Reduced eye Le Grand’s eye 

430 Red 












59.86058605.59

59.86054185.0
 













54.06737814.59

59.78144674.0
 

494 Orange 












59.96089608.59

9608.591175.0
 













54.16389117.59

9117.591412.0
 

558 Yellow 












60.07650765.60

0765.600.2294
 













54.26110623.60

0623.600.2216
 

622 Green 












60.21112111.60

2111.600.6333
 













54.36442304.60

2304.600.6155
 

686 Blue 












60.36983698.60

3698.601.1095
 













54.47514064.60

4064.601.0243
 

750 Violet 












60.55995599.60

5599.601.6796
 













54.59205824.60

5824.601.4338
 

 

eye. The divergence of the system does not play a role. We summarise the entries 

of the point characteristic matrix as 
























C

1

1

0

B

B

F

F
P . 

The entrance- and exit-plane refractive compensation, dependent on 

frequency, was shown for the two model eyes in Figures 9.2.2 and 3. The 

dependence of B on frequency is shown in Figure 8.1.3. The dependence of 1 B  

resembles a nearly straight line, similar to that shown in Figure 8.1.3. The 

chromatic difference in 1 B  is –0.6994 D and –0.8010 D for the reduced and Le 

Grand’s eyes, respectively. In Figure 9.3.1, we represent the point characteristic of 

the reduced eye in a three-dimensional vector space. The axes are labelled 

according to the derived property that each represents and the units are dioptres. 

Unsurprisingly the relationship is perfectly linear and is seen when the azimuth 

and elevation are oriented such that all the diamonds line up behind each other 

perfectly. We note that the coloured reference points, which are evenly spread at  
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Figure 9.3.1 The three independent entries of P the point characteristic for the 

reduced eye. Units are dioptres.  

 

 

Figure 9.3.2 The three independent entries of P the point characteristic as a function of 

frequency for the Le Grand eye. The line is slightly curved. Units are dioptres. 

 



IV  FINDINGS AND DISCUSSION  9 Chromatic dependence of derived properties 

252 

 

The three independent entries of P for Le Grand’s eye are illustrated in 

every 64 THz, appear to be closer together on the red end of the spectrum 

compared to the blue end of the spectrum. Figure 9.3.2 and show a slightly 

curved line. The point characteristic matrices of the two model eyes are given in 

Table 9.3.1 for six reference frequencies. 

 

9.3.2 Angle characteristic  

The angle characteristic Q (Equation 3.7.22) exists provided the 

divergence C is not zero. This would be a problem for an afocal system; however 

this poses no problem for an eye or model eye. Of interest is the relationship of 

the diagonal elements to the negative inverse of front- ( fvF ) and back-vertex 

power ( bvF ), as given in Equations 3.4.16 and 11. The dependencies of fvF  and 

bvF  on frequency are displayed graphically in Figures 9.2.4 and 5. Also related, 

are the incident ( 0Fz ) and emergent focal lengths (
Fz ) (Equations 3.6.5 and 12). 

The relationships of the focal lengths to the system were discussed in Sections 3.6 

and 5.4 and their dependence on frequency displayed graphically in Section 9.1. 

However all the entries are in units of length and, similar to P, make the axes 

comparable once graphed. 

Down the diagonal, the first entry is 1

fv

 F  and the last entry is 1

bv

 F . 

There is also a relationship between the first entry and incident focal length in that 

F0

0

1 1
z

n
DC           (9.3.1) 

and between the fourth entry and the emergent focal length as 

F

1 1
z

n
AC  .         (9.3.2) 

The off-diagonal entries represent the inverse of divergence and are related to the 

incident and emergent equivalent focal lengths as 

eqeq f
n

f
nC

111
0

0

 .        (9.3.3) 

These relationships can be summarised as 
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1

bveq

1-

eq0

1

0

1

fv

n Ff

fnF
Q  

or 






















F

1

eq

1

eq0

1

00F

1

0

n znf

fnzn
Q . 

We saw from Section 9.1 that all of these focal lengths depend on the frequency 

of light. These relationships are shown in Figure 9.3.3 for the reduced eye and 

Figure 9.3.4 for Le Grand’s eye as a function of frequency. Unsurprisingly, the 

relationships, as for P, form a straight line for the reduced eye and a nearly 

straight line for Le Grand’s eye. Q is given for six reference frequencies in Table 

9.3.2. 

As per the point characteristic, the relationships among the independent 

entries of Q is linear. Furthermore, the spacing between the six reference 

frequencies is more spread out at the blue end of the spectrum. While the 

differences between the red and blue angle characteristic matrices are similar for 

the two model eyes, the actual positions are slightly different. This can be seen by 

comparing the numerical values in the angle characteristic matrices given in Table 

9.3.2. 

 

Figure 9.3.3 The angle characteristic Q of the reduced eye. Units are millimetres.  
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Table 9.3.2 The angle characteristic matrices Q for the six reference frequencies for 

the reduced eye and Le Grand’s eye.  

Frequency  Angle characteristic Q in millimetres 

THz Colour Reduced eye Le Grand’s eye 

430 Red 












0.11768231.16

8231.168231.61
 













0.13178468.16

8468.162365.51
 

494 Orange 












0.03277103.16

7103.167103.61
 













0.039417269.16

7269.161221.51
 

558 Yellow 












0.06335821.16

5821.165821.61
 













0.06125941.16

5941.169913.41
 

622 Green 












0.17294354.16

4354.164354.61
 













0.16814511.16

4511.168489.41
 

686 Blue 












0.29892656.16

2656.162656.61
 













0.27653052.16

3052.167042.41
 

750 Violet 












0.44560670.16

0670.160670.61
 













0.38251618.16

1618.165637.41
 

 

 

Figure 9.3.4 Angle characteristic Q for Le Grand’s eye. The units are millimetres. 
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9.3.3 First mixed characteristic  

The first mixed characteristic M (Equation 3.7.23) exists provided 0D . 

The entries of M is summarised as  




















1

C

1

1

fv

FD

DF
M . 

The dependence of front-vertex power fvF  on the frequency of light was shown in 

Figure 9.2.5 and the same for exit-plane refractive compensation CF  in Figure 

9.2.3. From Equation 5.5.1 we see that for a reduced eye 1D , regardless of the 

frequency   and for multi-surface eyes D is usually close to 1, but does vary 

weakly with  . For systems in general, D will have different values. 

In Figures 9.3.5 and 6 we represent M on a three-dimensional graph for 

the reduced eye and Le Grand’s eye. For the reduced eye we see that the line is 

perfectly straight, however Le Grand’s eye produces a visible S-shaped curve. fvF  

has a chromatic difference of 2.7974 D for the reduced eye and 3.0320 D for Le 

Grand’s eye. 

 

Figure 9.3.5 The first mixed characteristic M of the reduced eye. The vertical axis 

represents 
1

C

F   in meters, the middle axis represents fvF , the front vertex power, in 

dioptres and the right-hand axis represents 
1D , which is 1 for all frequencies. 
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Table 9.3.3 The First mixed characteristic matrix M  for the six reference frequencies 

for the reduced eye and Le Grand’s eye.  

Frequency  First mixed characteristic M 

THz Colour Reduced eye Le Grand’s eye 

430 Red 








m01671.01

1D4419.59
 









m01850.01057.1

1057.1D6319.65
 

494 Orange 








m01668.01

1D8434.59
 









m01846.01061.1

1061.1D1284.66
 

558 Yellow 








m01665.01

1D3058.60
 









m016843.01069.1

1069.1D7053.66
 

622 Green 








m01661.01

1D8444.60
 









m01840.01079.1

1079.1D3450.67
 

686 Blue 








m01657.01

1D4794.61
 









m01836.01089.1

1089.1D0077.68
 

750 Violet 








m01651.01

1D2319.62
 









m01832.011097

1097.1D6638.68
 

 

Figure 9.3.6 The first mixed characteristic M of the Le Grand eye. The vertical axis 

represents 
1

C

F   in meters, the right-hand axis represents fvF  in dioptres and the middle 

axis represents 
1D . 
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9.3.4 Second mixed characteristic  

The second mixed characteristic N (Equation 3.7.24) exists provided the 

dilation A is not zero. For the model eye as a function of frequency, we see A 

approaching zero as we reach the reference frequency, usually in the yellow band, 

the exact frequency will differ for each model eye and is given in Section 9.2.3 for 

the reduced eye and Le Grand’s eye. It is also dependent on 0n . The problems 

arising when A approaches zero are seen in Figure 9.2.4 where the back-vertex 

power is graphed as a function of frequency. We see that where A approaches 

zero, back-vertex power approaches infinity, indicating a focal point (or image 

point) on the exit plane or retina and the curves of the graph extend off the scale. 

The entries of N are summarised as 
























bv

1

11

0

FA

AF
N .  

The dependence of entrance-plane refractive compensation 0F  (Equation 3.4.6) 

on frequency is shown in Figure 9.2.2 and similarly for back-vertex power bvF  

(Equation 3.4.11) in Figure 9.2.4. Figures 9.3.7 and 8 show N for the reduced eye 

and Le Grand’s eye are graphed, respectively.  

We anticipated a problem in calculating N for eyes where 0A  or where 

A approaches 0. The axes limits were adjusted to include the orange (494 THz) 

and yellow (558 THz) points and ignore the values at infinity. The result is that all 

six reference points are distinct, however, they are no longer sequenced according 

to their frequencies and instead the sequence is orange, red, then violet, blue, 

green and yellow. The line does not stop at orange or yellow, but continues to 

infinity or negative infinity. With infinity (or emmetropia) lying between 494 and 

558 THz we conclude that the model eyes’ reference frequencies for emmetropia 

lie between these two frequencies.  
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Table 9.3.4 The second mixed characteristic matrices N  for the six reference 

frequencies for the reduced eye and Le Grand’s eye.  

Frequency  Second mixed characteristic N 

THz Colour Reduced eye Le Grand’s eye 

430 Red 












D3857.85010200.431

0200.143m3892.2
 













D4352.75918910.127

8910.127m1393.2
 

494 Orange 












D1908.305484690.510

4690.510m5134.8
 













D4668.253734182.424

4182.424m0841.7
 

558 Yellow 












D6100.157949085.261

9085.261m3596.4
 













D78153.163350772.271

0772.271m5133.4
 

622 Green 












D0746.57850799.95

0799.95m5791.1
 













D9146.59478500.97

8500.97m6246.1
 

686 Blue 












D0822.33454098.54

4098.54m9013.0
 













D9941.36169759.58

9759.58m9763.0
 

750 Violet 












D1573.22440568.36

0568.36m5954.0
 













D3169.26142520.42

2520.42m6974.0
 

 

 

Figure 9.3.7 The second mixed characteristic N of the reduced eye. The sequence of the 
coloured reference points is not in order of frequency.  
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Figure 9.3.8 The second mixed characteristic N of Le Grand’s eye.  

 

 

9.4 Discussion 

In this chapter we looked at the cardinal and anti-cardinal points of the 

reduced and Le Grand’s eyes and used graphical construction and Pascal’s ring 

methods in an effort to better understand how the cardinal and anti-cardinal points 

are affected by the frequency of light. 

The reduced eye showed that the incident and emergent principal and 

nodal points are independent of the frequency of light and are not distinct for 

incidence and emergence. The locations of the focal points and four anti-cardinal 

points depend on frequency. Interesting relationships arose because of the 

simplicity of the reduced eye. Firstly, the incident and emergent anti-nodal point 

pairs are equidistant from the entrance-plane for each frequency, but in opposite 

directions. Secondly, each of the red and blue pairs of anti-cardinal points are 

equidistant between the red and blue positions, however the incident anti-cardinal 

points have the red upstream of the blue points and the emergent anti-cardinal 

points have the red points downstream of the blue points. 

From Le Grand’s eye we conclude that the locations of all ten cardinal and 

anti-cardinal points depend on the frequency of light and their positions are 
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distinct. In summary, the incident or emergent blue point is always positioned 

closer to its corresponding entrance- or exit-plane than its paired red point. The 

frequency-dependent cardinal and anti-cardinal points are more like fuzzy zones 

than actual points. 

We then looked at a selection of optical properties derived from the 

transference. In particular, we considered power of the system, entrance- and exit-

plane refractive compensation and front- and back-vertex power, all of which 

depend on the frequency of light. 

Finally, we explored the characteristic matrices using three-dimensional 

graphs. Each characteristic matrix has three independent entries which are related 

in some way to the derived properties and therefore allow us to see the 

relationships among these properties in three-dimensional space. For the reduced 

eye all the relationships are linear while for Le Grand’s eye the relationships 

appear nearly perfectly linear for P, Q and N, but has an S-shaped curve for M.  
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10 Numerical examples of chromatic aberration and chromatic 

properties 

 

The aim of this chapter is to examine the equations derived in Chapters 6 

and 7 numerically. The transferences of the reduced and Le Grand’s eyes for the 

red and blue frequencies were given in Table 8.1.1, with 10 n  for all 

frequencies. 

In Gaussian systems longitudinal and transverse chromatic aberration are 

defined by Equations 6.1.1 and 2. Chromatic aberration depends on the 

longitudinal and transverse position of the object ( Oz  and Oy ) corresponding to 

longitudinal and transverse image positions (z and y). For a distant object point, 

the position of the object is defined by its inclination Oa . 

In Chapter 7 two categories of chromatic properties of an eye were 

defined; those independent of and those dependent on the object or image and 

aperture positions. Three independent chromatic properties of an eye were 

defined, namely chromatic difference in power Fδ , refractive compensation      

0δF  and ametropia Aδ .  

The chromatic properties of the eye dependent on object and aperture 

positions depend on both the eye and the longitudinal and transverse object ( Ka  or 

Oz  and Oy ) and aperture ( Py ) positions. Chromatic difference in position is 

defined by chromatic difference in transverse image position at the retina, Rδy  

and chromatic difference in inclination at the retina, Rδa . Chromatic difference in 

magnification is defined by the chromatic difference in image size  RΔδ y  or 

chromatic difference in angular spread  .Δδ Ra  Retinal chromatic size 

magnification yRM  and retinal chromatic angular spread magnification aRM  are 

also defined.  

The chromatic properties of the system dependent on image ( Ry ) and 

aperture ( Py ) positions in object space mimic the experimental situation. The 

chromatic difference in transverse object position Oδy , chromatic difference in 
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inclination 
Oδa , chromatic difference in object size  OΔδ y , chromatic difference 

in angular spread  OΔδ a ,  chromatic  object  size  ratio  yOM   and  chromatic  

object  angular  spread  ratio aOM  are included. 

The chromatic aberration and object or image and aperture-dependent 

chromatic properties for the two model eyes are illustrated numerically by means 

of a selection of parameters. Specifically, the numerical examples include a 

distant object and an object at three illustrative finite distances measured from the 

entrance plane, namely 3O z  m, –2 m and –0.5 m. For distant objects, the 

inclination from an object will be illustrated for 1.0K a  (radian) and for objects 

at finite distances, an object of 200O y  mm in size will be used in the examples. 

According to the situation, the fovea may be assumed to be centred on the optical 

axis, or offset mm1.46R y  to approximate a visio-optical angle (angle alpha) of 

5 . 

 Finally, we look at the two underlying implications derived in Chapter 7 

and resulting from the simplifications that occur when basing chromatic studies 

on the reduced eye and the use of chief rays.  

 

10.1 Chromatic aberration 

In Chapter 6 chromatic aberration was defined for homocentric systems 

with stigmatic elements, that is, for Gaussian systems in general. It was shown 

that chromatic aberration is not a property of the system alone, but on the system 

and the location of the object point.  

 

10.1.1 Longitudinal chromatic aberration 

Le Grand’s eye 

The steps for calculating longitudinal chromatic aberration were given in 

Section 6.3.1. Equation 6.2.4 defines the vergence exiting the system when 

incident vergence is from a distant object. For Le Grand’s eye the red and blue 

emergent vergences are 

kD5914.7rL                   (10.1.1) 

and  
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kD6143.2bL                   (10.1.2) 

respectively. Hence from Equation 6.1.6 one obtains 

mm1756.0r z                   (10.1.3) 

and 

mm5150.0b z ,                  (10.1.4) 

the positions of red and blue image points from the exit plane. The longitudinal 

chromatic aberration is (Equation 6.1.1), 

mm0.6906δ z .                  (10.1.5) 

The signed distance of the longitudinal chromatic aberration is from red to blue, 

and therefore, the direction of zδ  is from behind the retina to in front of the retina. 

 

 
Figure 10.1.1 The longitudinal chromatic aberration zδ  as a function of object distance 

Oz  for Le Grand’s eye in black and the reduced eye in blue. Oz  is measured from the 

cornea to the object point. 

  



IV  FINDINGS AND DISCUSSION   10 Numerical examples of chromatic 

aberration and chromatic properties 

264 

 

Table 10.1.1 Summary, for Le Grand’s eye, of the red and blue wavefront vergences 

(L), image distances (z) from the retina and longitudinal chromatic aberration ( zδ ) at 

object distances (
Oz ) of –3, –2 and –0.5 m. 

Oz  –3 m –2 m –0.5 m 

rL  4.4089 kD 3.6400 kD 1.3943 kD 

bL  –3.3896  kD –3.9849 kD 6.4280 kD 

rz  0.3023 mm 0.3661 mm 0.9558 mm 

bz  –0.3972 mm –0.3379 mm 0.2095 mm 

zδ  –0.6995 mm –0.7040 mm –0.7463 mm 

 

Equation 6.2.3 defines the vergence emerging from a system when 

incident vergence originates from a finite object, as a function of the distance of 

the object in front of the system (in millimetres). For red vergence this becomes 

7276.16007819.0

05936.09044.0

O

O






z

z
Lr

                 (10.1.6) 

and for blue vergence it is 

5065.1602367.0

06187.09011.0

O

O






z

z
Lb

.                 (10.1.7) 

The red and blue emergent vergence L, image distances z and longitudinal 

chromatic aberration zδ  for the three illustrative object distances Oz  are 

summarized in Table 10.1.1. From Table 10.1.1 and Figure 10.1.1 we see that as 

an object approaches the eye, so the magnitude of the longitudinal chromatic 

aberration increases. 

 

The reduced eye 

For the reduced eye we summarize the results for zδ  in Table 10.1.2. We see from 

Table 10.1.2 and Figure 10.1.1 that the magnitude of zδ increases as the object 

approaches the eye. The summary in Table 10.1.2 and Figure 10.1.1 both 

emphasise that as the object point approaches the eye, so the magnitude of the zδ  

increases. From Figure 10.1.1 we see that the changes in zδ  are similar for the  
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Table 10.1.2 Summary, for the reduced eye, of the red and blue wavefront vergences 

(L), image distances from the retina (z) and longitudinal chromatic aberration  ( zδ ) at 

object distances (
Oz ) distant, –3, –2 and –0.5 m. 

Oz  Distant –3 m –2 m –0.5 m 

rL  8.5014 kD 4.7059 kD 3.8412 kD 1.4217 kD 

bL  –2.2442 kD –2.7848 kD –3.1698 kD 11.3848 kD 

rz  0.1565 mm 0.2827 mm 0.3463 mm 0.9356 mm 

bz  –0.5997 mm –0.4833 mm –0.4246 mm 0.1182 mm 

zδ  –0.7562 mm –0.7659 mm –0.7709 mm –0.8174 mm 

 

two model eyes, but the magnitude of zδ  is greater for the reduced eye (blue line) 

than for Le Grand’s eye (black line). 

 

10.1.2 Transverse chromatic aberration 

Le Grand’s eye 

The steps to calculate transverse chromatic aberration ( yδ ) are given in 

Section 6.3.2. The first three steps have already been calculated above for 

longitudinal chromatic aberration. yδ  is dependent on Oa  or a combination of Oz  

and Oy . Starting with a distant object, we continue with step 4 and Equation 

6.2.17. Substituting from the red and blue transferences rS  and bS  (Table 8.1.1) 

and from Section 10.1.1 for rz  and bz  (Equations 10.1.3 and 4) we obtain 

 mm6850.0δ O  ay                  (10.1.8) 

a linear relationship. For the purposes of illustrating yδ  of a distant object, we 

substitute 1.0O a  into Equation 10.1.8 to obtain mm06850.0δ y  and the red 

image point is located superior to the blue image point.  

For an object point at a finite distance the position of the object is determined by 

Oz  and Oy . For illustrative purposes, we use the three distances for Oz , and 

mm200O y as described above. Continuing with step 4 of Section 6.3.2 
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Table 10.1.3 Summary, for Le Grand’s eye, of the transverse chromatic aberration 

 yδ  at working distances of –3, –2 and –0.5 m for an object position  Oy  200 mm 

above the longitudinal axis. 

Oz  –3 m –2 m –0.5 m 

yδ  0.04614 mm 0.06958 mm 0.2918 mm 

 

to calculate yδ  for an object at a finite distance and substituting into Equation 

6.2.16 we obtain 

 rbO kD04454.0kD04595.003149.0δ zzyy               (10.1.9) 

as a function of Oy  and the respective red rz  and blue bz  image positions, which 

are, in turn, dependent on Oz  and given in Table 10.1.1. The numerical results for 

yδ  are given in Table 10.1.3. The dependence of yδ  on Oy  for any chosen Oz  

will be linear. 

 

 
Figure 10.1.2 The dependence of the transverse chromatic aberration yδ  on the 

incident inclination Oa  for a distant object for Le Grand’s eye in black and the reduced 

eye in blue.  
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Figure 10.1.3 The transverse chromatic aberration ( yδ ) of Le Grand’s eye (solid lines) 

and the reduced eye (dashed lines) for three longitudinal distances ( Oz ) as a function of 

transverse object position Oy . The coloured lines represent the distance of the object 

from the eye with black being at –3 m, blue at –2 m and cyan at –0.5 m. 

 
Figure 10.1.4 The transverse chromatic aberration ( yδ ) of Le Grand’s eye (black line) 

and the reduced eye (blue line) as a function of change in Oz  for an object at 

mm200O y .  
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Table 10.1.4 Summary, for the reduced eye, of the transverse chromatic aberration 

 yδ  for a distant object with incident inclination of 1.0O a  and for an object at finite 

object distances  Oz  of  –3, –2 and –0.5 m with the object at mm200O y  above the 

longitudinal axis. 

Oz  Distance –3 m –2 m –0.5 m 

yδ  –0.07562 mm 0.05097 mm 0.07687 mm 0.3234 mm 

 

 

The results are unsurprising, as the object approaches the eye, so the 

incident inclination increases in magnitude. To gain a better understanding, we 

show the effect of changes in Oy  at the three illustrative positions of Oz  in Figure 

10.1.3. Figure 10.1.4 shows yδ  as a function of Oz when the object remains at 

mm200O y  above the longitudinal axis. 

 

The reduced eye 

Similarly, we obtain the values for yδ  for the reduced eye for a distant 

object point and for an object at –3, –2 and –0.5 m from the eye at a distance of 

200 mm above the longitudinal axis. The results are summarized in Table 10.1.4. 

The conclusion of the effect of transverse chromatic aberration in the 

reduced eye is similar to that for Le Grand’s eye. The relationship between yδ  

and Oa  (distant objects) or Oy  (objects at a finite distance) at any particular 

working distance Oz  is linear, however yδ for the reduced eye is slightly greater 

than that for Le Grand’s eye.  

 

10.2 Independent chromatic properties of the eye 

The chromatic properties of the eye (alone) are defined as functions of the 

fundamental properties (or derivations thereof) of the red and blue transferences 

( rS  and bS ). They are not directly dependent on light and therefore also not on 

object and image points. The three independent chromatic properties of the eye 

were defined in Section 7.1 as the chromatic difference in power, Fδ  (Equation 

7.1.2), chromatic difference in refractive compensation, 0δF  (Equation 7.1.4) and 

chromatic difference in ametropia, Aδ  (Equation 7.1.5). The values for the  
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Table 10.2.1 Independent chromatic properties of Le Grand’s and the reduced eyes. 

Chromatic difference in: Le Grand’s eye Reduced eye 

Power ( Fδ ) 2.5158 D 2.7975 D 

Refractive compensation ( 0δF ) –1.9013 D –2.0981 D 

Ametropia ( Aδ ) –0.03149 –0.03473 

 

chromatic properties for Le Grand’s and the reduced eye are given in Table 

10.2.1. 

For both model eyes, Fδ is more than a half dioptre greater in magnitude 

than 0δF  and therefore the two definitions cannot be interchanged. Also apparent 

is that the magnitude of all three independent chromatic properties is greater for 

the reduced eye than for Le grand’s eye.  

The chromatic difference in refractive compensation has been the subject 

of numerous experimental measurements and the consensus is that there is very 

little variation between studies and between subjects (Howarth and Bradley, 1986; 

Cooper and Pease, 1988; Simonet and Campbell, 1990; Atchison, Smith and 

Waterworth, 1993; Wald and Griffin, 1947; Bennett and Rabbetts, 2007:292-3; 

Atchison and Smith, 2000: 184-5). Adjusting for the different wavelengths chosen 

for each study, the results in Table 10.2.1 compare well to experimental studies. 

 

10.3 Chromatic properties of the eye dependent on object and aperture 

positions 

The chromatic properties dependent on object and aperture positions were 

defined in Chapter 7. Sections 7.2 and 3 looked at the object and aperture-

dependent chromatic properties in image space and Sections 7.4 and 5 looked at 

the image and aperture-dependent chromatic properties in object space. 

Definitions for the chromatic properties in image space (subscript R) were derived 

for both distant objects and objects at finite distances. The definitions for 

chromatic properties in object space (subscript O) were limited to finite distances 

to mimic the experimental or clinical situation where these properties are present.  
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Table 10.3.1 The red and blue coefficient matrices for Le Grand’s eye for distant 

objects, EV  and objects at the finite distances of –3, –2 and –0.5 m from the eye, 
OEV . 

  Red Blue 

EV  Distant 








 0.8142kD0.05031

mm7038.16008832.0
 













0.8082kD0.05213

mm5780.1602685.0
 

OEV  –3 m 












kD0002711.0kD0.05000

005562.001511.0
 













kD0002691.0kD05182.0

005520.002059.0
 

OEV  –2 m 












kD0004065.0kD04984.0

008339.001825.0
 













kD0.0004035kD05167.0

008276.001746.0
 

OEV  –0.5 m 












kD001619.0kD04848.0

03321.004634.0
 













kD0.001607kD05031.0

03296.001054.0
 

 

Table 10.3.2 The red and blue coefficient matrices for the reduced eye for distant 

objects, EV  and objects at the finite distances of –3, –2 and –0.5 m from the eye, OEV . 

  Red Blue 

EV  Distant 








 0.8225kD0.04889

mm6944.16007650.0
 














0.8157kD0.05077

mm5562.1603045.0
 

OEV  –3 m 












kD0.0002740kD0.04859

005562.001374.0
 














kD0.0002718kD05047.0

005516.002439.0
 

OEV  –2 m 












kD0.0004109kD04844.0

008341.001678.0
 














kD0.0004075kD05032.0

008272.002137.0
 

OEV  –0.5 m 












kD0.001640kD04710.0

03328.004407.0
 













kD0.001626kD04898.0

03301.0005790.0
 

 

The derivations for chromatic properties dependent on object and aperture 

positions in image space are all based on the coefficient matrices for distant 

objects EV  (Equation 5.2.8) and for objects at a finite distance OEV  (Equation 

5.2.26), both given in the summary in Table 7.7.2. OEV  is a function of the 

distance of the object point in front of the eye, Oz . Consistent with the three 

illustrative distances used throughout this chapter, OEV  is calculated at each  
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Table 10.3.3 The chromatic difference in red and blue coefficient matrices for Le 

Grand’s and the reduced eye for distant objects, EδV  and objects at the finite distances of 

–3, –2 and –0.5 m from the eye, 
OEδV . 

  Le Grand’s eye Reduced eye 

EδV  Distant 












0.006011kD0.001822

mm1258.003568.0

 














0.006813kD0.001877

mm1383.003810.0

 

OEδV  –3 m 

















kD101.9998kD0.001823

101853.403570.0
6-

-5

 






















kD102.2687kD001878.0

106047.403813.0
6

5

 

OEδV  –2 m 




















kD102.9968kD001823.0

102720.603571.0
6

5

 






















kD103.4013kD001879.0

109034.603814.0
6

5

 

OEδV  –0.5 m 




















kD101.1883kD001828.0

104873.203580.0
5

4

 






















kD101.3541kD001886.0

107484.203828.0
5

4

 

 

distance for red and blue frequencies. These are summarized for Le Grand’s eye 

in Table 10.3.1 and for the reduced eye in Table 10.3.2. The chromatic difference 

in coefficient matrices for distant objects EδV  and objects at a finite distance 

OEδV  as defined by Equation 7.2.1 are given in Table 10.3.3 for both model eyes. 
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10.3.1 Chromatic difference in transverse image positions at the retina 

Le Grand’s eye 

The chromatic difference in transverse image positions at the retina, Rδy  is 

defined by Equation 7.2.3 for an object at distance. Substituting the values from 

the entries of EδV we obtain the relationship for Rδy  for a distant object, given in 

the first line of Table 10.3.4. From this relationship one can see that Rδy  is 

dependent on any decentration of the pupil Py  and the incident inclination of the 

pencil of rays from a distant object, Ka . For a centred Gaussian model eye 

( 0P y ) the relationship simplifies to   KR mm1258.0δ ay  . This is illustrated 

in Figure 7.2.1 and the results shown graphically in Figure 10.3.1. For the 

illustrative inclination of 1.0K a  radians we obtain mm01258.0δ R y . 

Similarly, we substitute the values from OEδV , given in Table 10.3.3, for 

the three illustrative object distances Oz  into Equation 7.2.4 to obtain 

relationships for the three illustrative finite working distances for Le Grand’s eye, 

summarised in Table 10.3.4. Unsurprisingly, the closer the object is to the eye, so 

Rδy  increases, which is seen in Figure 10.3.2  

We now substitute the illustrative value of mm200O y  for the 

displacement of the object point from the longitudinal axis at each Oz  and we 

obtain Rδy , in Table 10.3.4. As expected, from these numerical examples and 

Figure 10.3.2, we can see that the magnitude of Rδy  increases as the object 

approaches the eye for an off-axial object point. 

 

The reduced eye 

The results and conclusions for Rδy  for the reduced eye are similar to Le 

Grand’s eye. The constants for the reduced eye for Equations 7.2.3 and 4 are 

given in Table 10.3.5. 

From Figures 10.3.1 and 2, we see that Rδy  for the centred reduced eye is 

slightly greater in magnitude across object points at all distances than for Le  
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Table 10.3.4 The chromatic difference in image position at the retina, Rδy  for Le 

Grand’s eye. The illustrative example is for the centred reduced eye with 1.0K a  for 

the distant object point and mm200O y  for the three finite distance object points. 

Chromatic difference in image position Illustrative example 

Distant 

object 
    KPR mm1258.003568.0δ ayy   mm01258.0δ R y  

–3 m     O

5

PR 101853.403570.0δ yyy   mm008371.0δ R y  

–2 m     O

5

PR 102720.603571.0δ yyy   mm01254.0δ R y  

–0.5m     O

4

PR 104873.203580.0δ yyy   mm04975.0δ R y  

 

Grand’s eye. The reason for this is revealed in Table 10.3.3 where we see that 

EδX  and OEδX are greater in magnitude for the reduced eye than for Le Grand’s 

eye. Comparing Equations 5.2.8 and 26, we can determine that the discrepancies 

lie in the underlying structural differences in the two model eyes, that is, number 

of refracting surfaces and their positions relative to the pupil or limiting aperture. 

 

 
Figure 10.3.1 The chromatic difference in transverse image position at the retina Rδy  

as a function of incident inclination Ka  for Le Grand’s eye (solid black line) and reduced 

eye (dashed blue line) for a distant object point. 
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Table 10.3.5 The chromatic difference in image position at the retina, Rδy  for the 

reduced eye. The illustrative example is for the centred reduced eye with 1.0K a  for 

the distant object point and mm200O y  for the three finite distance object points. 

Chromatic difference in image position Illustrative example 

Distant 

object 
    KPR mm1383.003810.0δ ayy   mm01383.0δ R y  

–3 m     O

5

PR 106047.403813.0δ yyy   mm009209.0δ R y  

–2 m     O

5

PR 109034.603814.0δ yyy   mm01381.0δ R y  

–0.5m     O

4

PR 107484.203828.0δ yyy   mm05497.0δ R y  

 

 

 
Figure 10.3.2 The chromatic difference in image position at the retina, Rδy  as a 

function of transverse displacement of the object point from the longitudinal axis, Oy  at 

the three illustrative distances, –3, –2 and –0.5 m for Le Grand’s eye (solid lines) and the 

reduced eye (dashed line). 
 

 

  



IV  FINDINGS AND DISCUSSION   10 Numerical examples of chromatic 

aberration and chromatic properties 

275 

 

10.3.2 Chromatic difference in inclination at the retina 

Le Grand’s eye 

Perhaps more insight can be gained from the chromatic difference in 

inclination at the retina, Rδa . Starting with a distant object and substituting from 

EδV  for Le Grand’s eye in Table 10.3.3 into Equation 7.2.16 we obtain a 

relationship for Rδa  for a distant object point. This is summarised in Table 10.3.6 

and shown in Figure 10.3.3, with the magnitude of Ka  being magnified slightly 

more for the reduced eye than for Le Grand’s eye. 

Similarly, we substitute the respective entries of OEδV  in Table 10.3.3 for 

the three illustrative Oz s in front of the eye into Equation 7.2.17 to obtain 

relationships at three working distances and summarised in Table 10.3.6. The 

relationships between Rδa  and Oy  are illustrated graphically in Figure 10.3.4. 

The illustrative values obtained from Equations 7.2.16 and 17 are 

summarised in Table 10.3.6. As the object approaches the eye, so the magnitude 

of the emergent angular spread between the red and blue chief rays increases, as 

expected. Rδa  is measured as the emergent inclination from the red ray to the 

emergent blue ray at the retina. For illustrative purposes, the chief ray has been 

chosen as mm0P y . 

 

The reduced eye 

The results and conclusions for Rδa  for the reduced eye are similar to Le Grand’s 

eye, however the values vary slightly. From Figure 10.3.4, one can see that the 

magnitude of Rδa  is consistently slightly greater in magnitude for the reduced eye 

than for Le Grand’s eye. The illustrated values for Rδa  for the centred reduced 

eye for a distant object with 1.0K a  or for an object placed at mm200O y  are 

summarised in Table 10.3.7. 
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Table 10.3.6 The chromatic difference in inclination at the retina Rδa  for Le Grand’s 

eye. The illustrative example is for a centred reduced eye and 1.0K a  for a distant 

object point or mm200O y  for an object point at the three finite distances. Rδa  is 

given in radians. 

Chromatic difference in inclination at the retina 
Illustrative 

example 

Distant 

object 
    KPR 006011.0kD001822.0δ aya   4100110.6   

–3 m     O

6

PR kD109998.1kD001823.0δ yya   4109996.3   

–2 m     O

6

PR kD109968.2kD001823.0δ yya   4109936.5   

–0.5m     O

5

PR kD101883.1kD001828.0δ yya   3103767.2   

 

 

 
Figure 10.3.3 The chromatic difference in inclination at the retina Rδa  as a function of 

incident inclination Ka  for Le Grand’s eye (black line) and the reduced eye (blue line). 
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Table 10.3.7 The chromatic difference in inclination at the retina Rδa  for the reduced 

eye. The illustrative example is for a centred reduced eye and 1.0K a  for a distant 

object point or mm200O y  for an object point at the three finite distances.  

Chromatic difference in inclination at the retina 
Illustrative 

example 

Distant 

object 
    KPR 006813.0kD001877.0δ aya   4108133.6   

–3 m     O

6

PR kD102687.2kD001878.0δ yya   4105374.4   

–2 m     O

6

PR kD104013.3kD001879.0δ yya   4108025.6   

–0.5m     O

5

PR kD103541.1kD001886.0δ yya   002708.0  

 

 

 
Figure 10.3.4 The chromatic difference in inclination at the retina Rδa  as a function of 

transverse displacement of the object point from the longitudinal axis 
Oy  at the three 

illustrative distances  of –3, –2 and –0.5m from the eye for Le Grand’s eye (solid lines) 
and the reduced eye (dashed lines). 
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10.3.3 Chromatic difference in image size 

Le Grand’s eye 

Section 7.3.1 showed that the chromatic difference in image size,  Rδ y  

simplified to a linear relationship between the object and image sizes  Ry . The 

size of a distant object is defined by the difference in incident inclination  KΔa  

or angular spread and at a finite distance Oz , by the object size  Oy . 

Substituting the relevant entry from EδV  for Le Grand’s eye given in Table 10.3.3 

into Equation 7.3.4 for a distant object and from OEδV  in Table 10.3.3 into 

Equation 7.3.8 we obtain relationships for  Rδ y  for Le Grand’s eye.  

For  Rδ y , the pupil position is nullified (Section 7.3.1) and therefore we 

obtain the same values as for Rδy  when the system is assumed to be centred. 

Therefore the numerical examples for the two model eyes are not repeated. The 

graphical relationship for a distant object of size 1.0Δ K a  will be identical to 

that shown in Figure 10.3.1 and Figure 10.3.2 for the object of size 

mm200Δ O y  at finite distances.  

 

The reduced eye 

The linear relationships for  Rδ y  of the reduced eye are summarized in 

Table 10.3.8. The conclusions drawn are similar to those for Le Grand’s eye.  

 

Table 10.3.8 The Chromatic difference in image size at the retina  Rδ y  for Le 

Grand’s and the reduced eyes. 

 Le Grand’s eye Reduced eye 

Distant object     KR Δmm1258.0δ ay       KR Δmm1383.0δ ay   

–3 m     O

5

R 101853.4δ yy  
     O

5

R 106047.4δ yy  
 

–2 m     O

5

R 102720.6δ yy  
     O

5

R 109034.6δ yy  
 

–0.5m     O

4

R 104873.2δ yy  
     O

4

R 107484.2δ yy  
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10.3.4 Chromatic difference in angular spread at the retina 

Le Grand’s eye 

Equation 7.3.11 defines the chromatic difference in angular spread across 

the retina,  Rδ a , as a linear relationship with the angular spread of the incident 

rays directed from a distant object. For Le Grand’s eye this relationship is given in 

Table 10.3.9. Equation 7.3.12 defines  Rδ a  as a linear relationship with the 

object size OΔy  for an object at a finite distance. The values for the  Rδ a  at the 

three illustrative distances are given in Table 10.3.9.  

 

Table 10.3.9 The chromatic difference in angular spread across the retina  Rδ a  for 

Le Grand’s and the reduced eyes. 

 Le Grand’s eye Reduced eye 

Distant object   KR Δ006011.0δ aa     KR Δ006813.0δ aa   

–3 m     O

6

R 109998.1δ ya  
     O

6

R 102687.2δ ya  
 

–2 m     O

6

R 109968.2δ ya  
     O

6

R 104013.3δ ya  
 

–0.5m     O

5

R 101883.1δ ya  
     O

5

R 103541.1δ ya  
 

 

The Reduced eye 

The values for the chromatic difference in angular spread across the retina 

are given in Table 10.3.9 for the reduced eye. 

 

10.3.5 Retinal chromatic magnification 

Le Grand’s eye 

In Sections 7.3.3 and 4 formulae for the retinal chromatic image size 

magnification yRM  and retinal chromatic angular spread magnification RaM  were 

obtained. These are chromatic magnifications and not chromatic differences and 

give a magnification of the red compared to the blue image size or angular spread 

at the retina. The magnification is dependent on the longitudinal distance of the 

object in front of the eye Oz , however, we expect these magnifications to be 

similar in value. Substituting the relevant values from the red and blue coefficient 
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matrices EV  in Table 10.3.1 into Equation 7.3.19 we obtain yRM  for a distant 

object, where 10 n  for both the red and blue incident light in air, given in Table 

10.3.10. To obtain the retinal chromatic image size magnification for the three 

illustrative finite object distances in front of Le Grand’s eye, we substitute the 

entries of the red and blue near coefficient matrices OEV  from Table 10.3.1 into 

Equation 7.3.20 to obtain the yRM  for objects at the three illustrative distances in 

front of the eye, summarised in Table 10.3.10.  

Similarly the retinal chromatic angular spread ratios RaM  are obtained by 

substituting the relevant entries of EV  and OEV  into Equations 7.3.27 and 28. The 

values are also summarised in Table 10.3.10.  

The chromatic magnification of image sizes is 0.75% for distant objects 

and objects at a finite distance, with the red image being slightly larger than the 

blue image, which is very much in line with the calculated values in the literature 

(Thibos et al, 1991; Rabbetts, 2007: 291). Similarly, the retinal chromatic angular 

spread ratio is 0.74% for the objects at a finite distance in front of Le Grand’s eye, 

implying that the red near directional spread is greater than the blue near 

directional spread.  

 

The reduced eye 

The numerical results for the reduced eye are given in Table 10.3.11. 

Table 10.3.11 indicates that for the reduced eye the retinal chromatic image size 

magnification is 0.83% regardless of the distance that the object is in front of the 

reduced eye. The distance and near image size coefficients EX  and OEX  are 

greater for red than blue. The retinal chromatic angular spread ratio is 

also  %83.0  and the distance of the object in front of the reduced eye Oz  plays 

very little part. The distance and near directional coefficients EZ  and OEZ  are 

greater for red than for blue. The object distance plays a negligibly small role.  

These results are comparable to those in the literature. Zhang et al (1991) 

and Thibos et al (1991) give the magnification calculated using Equation 2.3.9. 
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Table 10.3.10 The retinal chromatic image size and angular spread magnifications for 

Le Grand’s eye. 

Retinal 

chromatic: 
image size ratio angular spread ratio 

Distant object 9925.0yRM  9926.0R aM  

–3 m 9925.0yRM  9926.0R aM  

–2 m 9925.0yRM  9926.0R aM  

–0.5m 9925.0yRM  9927.0R aM  

 

Table 10.3.11 The retinal chromatic image size and angular spread magnifications for 
the reduced eye. 

Retinal 

chromatic: 
image size ratio angular spread ratio 

Distant object 9917.0yRM  9917.0R aM  

–3 m 9917.0yRM  9917.0R aM  

–2 m 9917.0yRM  9917.0R aM  

–0.5m 9917.0yRM  9917.0R aM  

 

Adjusting for the differences in wavelengths, the results obtained using Equations 

7.3.19 and 27 compare well for all the examples given by Zhang et al. The same 

is true when a pinhole is held at a vertex distance of 15 mm and the retinal 

chromatic image size magnification increases to 4.3% for the reduced eye and 

4.1% for Le Grand’s eye. 

 

10.4 Chromatic properties dependent on object and aperture positions in 

an eye – with a pinhole 

In Section 5.2.4 we saw that when we introduce a pinhole immediately in 

front of the eye, Figures 3.5.4 and 5.1.1 simplify; the posterior system BS  is now 

the eye and the anterior system simplifies to the identity matrix. The coefficient 

matrix for an object at distance becomes simpler, given by P

EV  in Equation 5.2.37 

and for an object at a finite distance in front of the eye, P

OEV  is given by Equation 
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5.2.34. The coefficient matrices for Le Grand’s and the reduced eye with a 

pinhole immediately in front are given in Tables 10.4.1 and 2 and the chromatic 

difference in coefficient matrices with a pinhole in Table 10.4.3. 

The methodology for each of the transverse chromatic properties was 

worked through step by step in Section 10.3. Therefore, in this section, the results 

are simply given in tabular form and the results discussed, without repeating the 

methodology.  

 

Table 10.4.1 The red and blue coefficient matrices for Le Grand’s eye with a pinhole 

immediately in front (superscript P) for distant objects (subscript E) and objects at the 

finite distances of –3, –2 and –0.5 m from the eye (subscript OE). 

  Red Blue 

P

EV  Distant 










 0.6786kD0.04454

mm7276.16007819.0  













0.6693kD0.04596

mm5065.1602367.0  

P

OEV  –3 m 












 kD102622.2kD0.04431

005576.001340.0
4

 












 kD102309.2kD0.04573

005502.001817.0
4

 

P

OEV  –2 m 












 kD103932.3kD0.04420

008364.001618.0
4

 












 kD103464.3kD0.04562

008253.001541.0
4

 

P

OEV  –0.5 

m 












 kD103573.1kD0.04318

03346.004127.0
3

 












 kD103386.1kD0.04462

03301.0009345.0
3

 

 

Table 10.4.2 The red and blue coefficient matrices for the reduced eye with a pinhole 

immediately in front for distant objects and objects at the finite distances of –3, –2 and    

–0.5 m. 

  Red Blue 

P

EV  Distant 








 0.7517kD0.04469

mm7055.16006992.0
 













0.7431kD0.04625

mm5126.1602773.0
 

P

OEV  –3 m 











 kD105058.2kD0.04443

005569.001256.0
4

 












 kD104769.2kD0.04600

005514.002223.0
4

 

P

OEV  –2 m 











 kD107587.3kD0.04431

008353.001534.0
4

 












 kD107153.3kD0.04588

008256.001948.0
4

 

P

OEV  
–0.5 

m 












 kD105035.1kD0.04318

03341.004040.0
3

 












 kD104861.1kD0.04476

03303.0005291.0
3
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Table 10.4.3 The chromatic difference between red and blue coefficient matrices for 

Le Grand’s and the reduced eye with a pinhole immediately in front for distant objects 

and objects at the finite distances of –3, –2 and –0.5 m from the eye. 

  Le Grand’s eye Reduced eye 

P

EδV  Distant 











3-109.3691kD0.001414

mm2212.003149.0  













0.008682kD0.001563

mm1929.003473.0  

P

OEδV  –3 m 




















kD101230.3kD00417.0

103721.703156.0
6

5

 





















kD108938.2kD0.001566

104307.603479.0
6

5

 

P

OEδV  –2 m 




















kD106845.4kD0.001419

101058.103160.0
6

4

 





















kD103408.4kD0.001567

106461.903482.0
6

5

 

P

OEδV  
–0.5 

m 





















kD108738.1kD0.001433

104233.403193.0
5

4

 





















kD107363.1kD0.001580

108584.303511.0
5

4

 

 

 

10.4.1 Chromatic difference in transverse image positions and inclinations at 

the retina with pinhole in front of the eye 

The chromatic difference in transverse image positions Rδy  (Equations 

7.2.11 and 12) and inclinations Rδa  (Equations 7.2.20 and 21) at the retina when a 

pinhole is immediately in front of the eye is given in Table 10.4.4 for Le Grand’s 

eye and Table 10.4.5 for the reduced eye.  

To generate numerical examples for the chromatic difference in transverse 

image positions Rδy  and inclinations Rδa  at the retina, we assume that the object 

is on the longitudinal axis; that is to say 0K a  or 0O y . Furthermore, an eye 

that is cyclopleged will allow for 4 mm of pinhole decentration and we therefore 

equate mm4P y . The values are summarized in Table 10.4.6.  

Inspecting the results, in each case there is a very small difference 

resulting from the change in longitudinal position of the object point from the eye. 

Additionally, the results obtained for the two eyes are distinct for both Rδy  and 

Rδa .  This  is  emphasized  in  Figures 10.4.1  and 2 which give Rδy  and Rδa  as a 

function of transverse displacement of the pinhole Py  held immediately in front of 

the eye. 
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Table 10.4.4 The chromatic difference in transverse image positions Rδy  and 

inclinations Rδa  at the retina when a pinhole is immediately in front of Le Grand’s eye. 

 Chromatic difference in transverse 

image positions 

Chromatic difference in inclinations at the 

retina 

Distant     KPR mm2212.003149.0δ ayy       KPR 009369.0kD001413.0δ aya   

–3 m     O

5

PR 103721.703156.0δ yyy       O

6

PR kD101230.3kD001417.0δ yya   

–2 m     O

4

PR 101058.103160.0δ yyy       O

6

PR kD106845.4kD001419.0δ yya   

–0.5 m     O

4

PR 104233.403193.0δ yyy       O

5

PR kD108738.1kD001433.0δ yya   

 

Table 10.4.5 The chromatic difference in transverse image positions Rδy  and 

inclinations Rδa  at the retina when a pinhole is immediately in front of the reduced eye. 

 Chromatic difference in transverse 

image positions 

Chromatic difference in inclinations at 

the retina 
Distant     KPR mm1929.003473.0δ ayy       KPR 008682.0kD001563.0δ aya   

 –3 m     O

5

PR 104307.603479.0δ yyy       O

6

PR kD108938.2kD001566.0δ yya   

–2 m     O

5

PR 106461.903482.0δ yyy       O

6

PR kD103408.4kD001567.0δ yya   

–0.5 m     O

4

PR 108584.303511.0δ yyy       O

5

PR kD107363.1kD001580.0δ yya   

 

Table 10.4.6 The values for the chromatic difference in transverse image positions 

Rδy  and inclinations Rδa  at the retina for Le Grand’s eye and the reduced eye. The 

object is on the longitudinal axis and the pinhole in front of the cyclopleged eye is 

displaced 4 mm from the optical axis. 

 Chromatic difference in transverse 

image positions Rδy  

Chromatic difference in 

inclinations Rδa  

 Le Grand Reduced eye Le Grand Reduced eye 

Distant –0.1259 mm –0.1389 mm –0.005657 –0.006251 

–3 m –0.1262 mm –0.1392 mm –0.005670 –0.006262 

–2 m –0.1264 mm –0.1393 mm –0.005676 –0.006268 

–0.5 m –0.1277 mm –0.1404 mm –0.005732 –0.006320 

 

The relationship obtained for the chromatic difference in inclination at the 

retina using a pinhole compares well with the theoretically calculated values given 

by Thibos et al (1991). 
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Figure 10.4.1 Chromatic difference in transverse image positions Rδy  as a function of 

displacement of a pinhole Py  immediately in front of the eye. The red, black, blue and 

cyan lines appear to be superimposed for both the Le Grand and reduced eyes. 

 

 
Figure 10.4.2 Chromatic difference in retinal inclinations Rδa  as a function of pinhole 

displacement Py  in front of the eye. The red, black, blue and cyan solid lines 

representing Le Grand’s eye appear to be superimposed and similarly, the red, black, blue 

and cyan dashed lines representing the reduced eye also appear superimposed. 
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10.4.2 Chromatic difference in image size, angular spread and chromatic 

magnifications:  with a pinhole 

The equations that define the chromatic difference in image size 

(Equations 7.3.4 and 8), chromatic difference in angular spread (Equations 7.3.11 

and 12), retinal chromatic image size magnification (Equations 7.3.19 and 20) and 

retinal chromatic angular spread magnification (Equations 7.3.27 and 28) are each 

independent of transverse displacement in the pupil or pinhole planes. However, 

the longitudinal displacement of the aperture from the plane of the pupil to the 

plane of the pinhole immediately in front of the cornea will have an effect. 

 

Chromatic difference in image size and angular spread – with a pinhole 

The chromatic difference in image size  RΔδ y  when a pinhole is placed 

immediately in front of the eye is summarized in Tables 10.4.7 and 8 for the two 

model eyes. It is obvious from Tables 10.4.7 and 8 that the chromatic difference 

in image sizes and angular spread  RΔδ a  at the retina are all linear equations 

dependent on the object size. 

 RΔδ a  has been defined differently in this study to those definitions in 

the literature. We saw in Section 2.3.2 that the definitions in the literature differ 

by the position of the pivotal point used to measure the chromatic difference in 

angular spread at the retina (for example nodal point, entrance pupil, refracting 

surface or “cornea”), with adjustments included in the formulae for such 

differences in choice of pivotal point. In contrast, this study defines the actual 

difference in the ray inclinations at the retina. For Gaussian eyes these rays will 

intersect on the Gaussian plane but in astigmatic heterocentric eyes the two rays 

may not intersect. When comparing the results in this study for the two model 

eyes to the results in the literature, the results appear similar for the naked centred 

eye. However, it is when the pinhole is placed away from the eye that the 

difference in the definitions becomes apparent. This is because the actual point of 

intersection moves further upstream from those used in the literature. This is an 

important discrepancy to note. The equations for  RΔδ a  suggest that the 

chromatic difference in ray inclinations at the retina have implications for the 

Stiles-Crawford effects that previous definitions have not highlighted. 
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Table 10.4.7 The chromatic difference in image sizes  RΔδ y  and angular spread 

 RΔδ a  at the retina when a pinhole is immediately in front of Le Grand’s eye. 

 Chromatic difference in image sizes 

at the retina 

Chromatic difference in angular 

spread at the retina 

Distant     KR Δmm2212.0Δδ ay       KR Δ009369.0Δδ aa   

–3 m     O

5

R Δ103721.7Δδ yy       O

6

R ΔkD101230.3Δδ ya   

–2 m     O

4

R Δ101058.1Δδ yy       O

6

R ΔkD106845.4Δδ ya   

–0.5 m     O

4

R Δ104233.4Δδ yy       O

5

R ΔkD108738.1Δδ ya   

 

Table 10.4.8 The chromatic difference in image size  RΔδ y  and angular spread 

 RΔδ a  at the retina when a pinhole is immediately in front of the reduced eye. 

 Chromatic difference in image sizes 

at the retina 

Chromatic difference in angular 

spread at the retina 

Distant     KR Δmm1929.0Δδ ay       KR Δ008682.0Δδ aa   

 –3 m     O

5

R Δ104307.6Δδ yy       O

6

R ΔkD108938.2Δδ ya   

–2 m     O

5

R Δ106461.9Δδ yy       O

6

R ΔkD103408.4Δδ ya   

–0.5 m     O

4

R Δ108584.3Δδ yy       O

5

R ΔkD107363.1Δδ ya   

 

Chromatic image size and angular spread magnifications - with a pinhole  

The effect of replacing the pupil with a pinhole has a magnifying effect. 

We substitute from the respective red and blue coefficient matrices P

EV  and P

OEV  

in Tables 10.4.1 and 2 into Equations 7.3.19, 20, 27 and 28. For Le Grand’s eye 

with a pinhole the retinal chromatic image size magnification is 9868.0P

yR M  

and the retinal chromatic angular spread magnification is 9862.0P

aR M  for all 

four illustrative distances. For the reduced eye with a pinhole the retinal chromatic 

image size magnification, P

yRM  and the retinal chromatic angular spread 

magnification, P

aRM  are both 0.9885 for all four illustrative distances. This 

equates to magnifications ranging between 1.1 and 1.4%, and compares well to 

the values given by Zhang et al (1991). These values represent an increased 

magnification over the naked model eyes. 
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10.4.3 AcuFocus Kamra corneal pinhole inlay 

 The AcuFocus Kamra corneal inlay was discussed in Section 7.6 and 

consists of an intrastromal pinhole inlay. The examples in Section 10.4 have 

illustrated what the effect of the corneal pinhole inlay are on the visual system. 

Only the chromatic difference in image position and image inclination are directly 

dependent on the transverse displacement of the pinhole. A misplaced pinhole 

inlay of only 0.5 mm can have a significant detrimental effect on the vision of the 

eye (Tabernero and Artal, 2011). 

All the chromatic differences and chromatic magnifications in image space 

indirectly depend on the longitudinal shift in position of the limiting aperture from 

the pupillary plane to the corneal plane. Comparison of the equations in Table 

10.3.9 with those in Tables 10.4.7 and 8, shows that  RΔδ a  increases when a 

pinhole is placed at the corneal plane and that this effect is greater for Le Grand’s 

eye than for the reduced eye. When P

yRM  and P

aRM  are compared with yRM  and 

aRM  in Tables 10.3.10 and 11 we see that both P

yRM  and P

aRM  increase when a 

pinhole is placed at the corneal plane and that these chromatic magnification 

effects are greater in Le Grand’s eye than the reduced eye. Additionally, the 

results for P

yRM  and P

aRM  indicate that the chromatic magnification effects are 

greater for the retinal inclination than for retinal position. The increase in 

chromatic magnification will have implications for eyes that have an AcuFocus 

Kamra corneal pinhole inlay, something that is raised as a concern by Tabernero 

and Artal (2011).  

The corneal pinhole inlay has an outer diameter of 3.8 mm (Seyeddain et 

al, 2010; Tabernero and Artal, 2011). Even with the best centration, a normal 

pupil, without pharmacological intervention, can dilate wider than the inlay. If we 

imagine a pencil of rays from an object point, then the effect of rays entering the 

eye as a full ring around the outer diameter of the inlay will be to create a 

rainbow-type arc forming a full circle on the retina. For a distant axial object point 

this will create a chromatic difference in position Rδy  of mm1197.0  for Le 

Grand’s eye. The red ring will be positioned outer-most and the blue ring will be 
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the inner-ring. The rainbow-ring will not necessarily be in focus and will be 

positioned in the peripheral retina.  

The rainbow that we see in the sky is part of a full circular-arc, the lower 

part of which is hidden from view below the horizon. However, the shape of the 

rainbow is not a bow, but rather a cone shape, the apex of the cone being 

positioned at the viewer’s eye (Lee and Fraser, 2001: 112-113, 322). In effect, the 

rainbow-ring created in the eye by the outer edge of the pinhole inlay is an image 

at the retina of a cone of light, with each frequency creating its own cone. The 

apexes of the cones are unlikely to coincide and the angle between the red and the 

blue cones is represented by the chromatic difference in image inclination  Rδa  

and is 
3103694.5   (radians) for Le Grand’s eye. 

 

10.5 Chromatic properties of the eye dependent on image and aperture 

positions in object space 

Chromatic properties of the eye dependent on image and aperture positions 

in object space mimic the set-up created in the experimental environment. They 

differ from the object and aperture dependent chromatic properties of the eye in 

image space in that the red and blue image points are directed at the same point on 

the retina and the chromatic separation occurs in object space. The Vernier 

distance between the red and blue object points is measured when the two points 

appear to coincide to the subject. Because the use of a pinhole to manipulate and 

induce transverse chromatic effects features strongly experimentally, we shall 

include the pinhole alternative in this section. Additionally, because experimental 

set-ups are conducted at finite distances the study of image- and aperture-

dependent chromatic properties in object space shall be limited to finite distances. 

The coefficient matrix for the chromatic properties in object space for 

objects at finite distances ( OyV ) was defined for the eye by Equation 5.3.14 and 

with a pinhole in front of the eye (
P

OyV ) by Equation 5.3.19. Only the top row is 

dependent on the longitudinal distance of the object in front of the eye, Oz , while 

the bottom row is independent of object distance in front of the eye. This implies  

 



IV  FINDINGS AND DISCUSSION   10 Numerical examples of chromatic 

aberration and chromatic properties 

290 

 

Table 10.5.1 The red and blue coefficient matrices OyV  for image and aperture 

dependent chromatic properties in object space for Le Grand’s eye for objects at the finite 
distances of 3, 2 and 0.5 metres. 

  Red Blue 

OyV  –3 m 











 kD0.05987kD102871.5

7819.1797172.2
4

 











 kD0.06032kD106195.1

1450.1817289.3
3

 

OyV  –2 m 











 kD0.05987kD102871.5

9154.1191885.2
4

 












 kD0.06032kD106195.1

8241.1201095.2
3

 

OyV  
–0.5 

m 












 kD0.05987kD102871.5

1155.303954.1
4

 












 kD0.06032kD106195.1

3428.303197.0
3

 

 

Table 10.5.2 The red and blue coefficient matrices for image and aperture dependent 

chromatic properties in object space for the reduced eye for objects at the finite distances 
of 3, 2 and 0.5 metres. 

  Red Blue 

OyV

 
–3 m 












 kD0.05990kD105825.4

7954.1794696.2
4

 











 kD0.06040kD108389.1

2964.1814219.4
3

 

OyV

 
–2 m 












 kD0.05990kD105825.4

8953.1190114.2
4

 












 kD0.06040kD108389.1

8959.1205829.2
3

 

OyV

 

–0.5 

m 












 kD0.05990kD105825.4

0450.303240.1
4

 












 kD0.06040kD108389.1

2951.301754.0
3

 

 

Table 10.5.3 The chromatic difference in coefficient matrices for image and aperture 
dependent chromatic properties in object space for Le Grand’s and the reduced eye for 

objects at the finite distances of 3, 2 and 0.5 metres. 

  Le Grand’s eye Reduced eye 

OyδV  –3 m 











 kD105429.4kD101482.2

3630.14461.6
43

 












 kD100032.5kD102972.2

5010.18915.6
43

 

OyδV

 
–2 m 












 kD105429.4kD101482.2

9087.02980.4
43

 












 kD100032.5kD102972.2

0006.15943.4
43

 

OyδV

 

–0.5 

m 












 kD105429.4kD101482.2

2273.00757.1
43

 












 kD100032.5kD102972.2

2502.01486.1
43

 

 

that the chromatic difference in inclination, Oδa  (Equation 7.4.6) will be 

independent of Oz . 
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The red and blue coefficient matrices, OyV  for Le Grand’s eye are given in 

Table 10.5.1 and for the reduced eye in Table 10.5.2. The chromatic difference in 

coefficient matrices OyδV  is given in Table 10.5.3 for both eyes. 

 

10.5.1 Chromatic difference in object position 

The chromatic difference in object position Oδy  measures the difference in 

the transverse position from the red object point to the blue object point when the 

two coloured image points are superimposed on the retina and appear to the 

subject as a single dichromatic image. The position on the retina Ry  can be 

manipulated and may be on the fovea, or some chosen point in the peripheral 

retina. For model eyes, the fovea is often assumed to be coincidental with the 

optical axis, thus nullifying the visio-optical angle (angle alpha). 

We substitute the relevant entries from OyδV  in Table 10.5.3 into Equation 7.4.1 

to obtain Oδy  for three illustrative distances of the object from Le Grand’s eye. 

These are given in Table 10.5.4. If we assume that the pupil is centred on the 

longitudinal axis, then Oδy  is dependent on the position chosen for the image 

point to reach the retina, Ry . If this is the fovea, then Oδy  is dependent on the 

visio-optical angle, the angle between the visual and optical axes (Atchison and 

Smith, 2000: 30-35; Rabbetts, 2007: 234-235). Because the fovea is static, one 

obtains a single value for the chosen longitudinal object distance in front of the 

eye. 

If, for example, we assume that the eye is centred mm0P y  and that the 

fovea is 5 from the optical axis, then this equates to an approximate distance of 

1.46 mm at the retina for a model eye. Substituting these two illustrative values 

into the equations in Table 10.5.4, we obtain a chromatic difference in object 

position, summarized for Le Grand’s eye in the right-hand column of Table 10.5.4 

and for the reduced eye, the equations and numerical illustrative values are 

summarized in Table 10.5.5 .  
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Table 10.5.4 The equations for the chromatic difference in object position 
Oδy  for Le 

Grand’s eye for objects at the finite distances of –3, –2 and –0.5 m. The illustrative values 

are for a centred reduced eye with transverse retinal displacement of 1.46 mm. 

 Chromatic difference in object position Illustrative values 

–3 m     RPO 3630.14462.6δ yyy   –1.9900 mm 

–2 m     RPO 9087.02980.4δ yyy   –1.3267 mm 

–0.5 m     RPO 2273.00757.1δ yyy   –0.3318 mm 

 

Table 10.5.5 The equations for the chromatic difference in object position Oδy  for the 

reduced eye for objects at the finite distances of –3, –2 and –0.5 m. The illustrative values 

are for a centred reduced eye with transverse retinal displacement of 1.46 mm. 

 Chromatic difference in object position Illustrative values 

–3 m     RPO 5010.18915.6δ yyy   –2.1914 mm 

–2 m     RPO 0006.15943.4δ yyy   –1.4609 mm 

–0.5 m     RPO 02502.01486.1δ yyy   –0.3652 mm 

 

 

Figure 10.5.1 Chromatic difference in object position Oδy  is shown for illustrative 

working distances of –3 m, –2 m and –0.5 m from the eye. The red and blue images are 

superimposed at the retina at a chosen position, Ry , with foveal positions shown by the 

red and green vertical lines for the right and left eyes, respectively. 
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The chromatic difference in object position 
Oδy  is the Vernier separation 

from the red object point to the blue object point at illustrative working distances 

of –3 m, –2 m and –0.5 m. This is indicated in Figure 10.5.1. The red and blue 

images are superimposed at the retina at a chosen position, Ry . In Figure 10.5.1, 

the red vertical line indicates the foveal position of the right eye mm46.1R y  

and the green line indicates the foveal position of the left eye mm46.1R y . 

 

10.5.2  Chromatic difference in inclination in object space 

The chromatic difference in inclination in object space Oδa  is the angle 

subtended by the incident rays from the red and blue object points which, after 

both traversing the same position through the pupil, both reach the retina at the 

same position so as to appear superimposed to the viewer. The chromatic 

difference in inclination in object space Oδa  utilises the bottom row of OyV which  

 

Figure 10.5.2 Chromatic difference in inclination in object space Oδa  for Le Grand’s 

eye and the reduced eye as a function of retinal position. Oδa  is independent of working 

distance. 

 



IV  FINDINGS AND DISCUSSION   10 Numerical examples of chromatic 

aberration and chromatic properties 

294 

 

is independent of Oz . Substituting the relevant entries from OyV  into Equation 

7.4.6 we obtain 

    R

4

P

3

O kD105429.4kD101482.2δ yya                 (10.5.1) 

 for Le Grand’s eye and  

    R

4

P

3

O kD100032.5kD102972.2δ yya                 (10.5.2) 

for the reduced eye. If we substitute the illustrative values of 0P y  for a centred 

system and mm46.1R y  for the position of the fovea, then we obtain a  

chromatic difference in inclination in object space of 
4

O 106327.6δ a  for Le 

Grand’s eye and 
4103047.7   for the reduced eye. 

Figure 10.5.2 illustrates the relationship of Oδa  as a function of position of 

the rays reaching the retina. The red vertical line indicates the position of the 

fovea of the right eye, and the green line indicates the position of the left fovea in 

schematic eyes that have a 5º visio-optical angle. 

 

10.5.3 Chromatic difference in object size 

 The results for the chromatic difference in object size  OΔδ y  are similar 

to those in Section 10.5.1 and are given in Table 10.5.6. The relationships are all 

linear. One can think of the OyδX  as having a magnifying effect on the image size 

to obtain the chromatic difference in object size. 
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Table 10.5.6 Chromatic difference in object size for Le Grand’s eye and the reduced 

eye for the three illustrative working distances. 

 Le Grand’s eye Reduced eye 

–3 m   RO Δ3630.1Δδ yy     RO Δ5010.1Δδ yy   

–2 m   RO Δ9087.0Δδ yy     RO Δ0006.1Δδ yy   

–0.5 m   RO Δ2273.0Δδ yy     RO Δ2502.0Δδ yy   

 

10.5.4 Chromatic difference in object angular spread 

 The numerical results for chromatic difference in object angular spread 

 OΔδ a  are similar to those in Section 10.5.2 for the illustrative examples and are 

therefore given in Table 10.5.7. Again, the relationships are all linear and because 

OyδZ  is independent of working distance, we obtain one relationship for each of 

Le Grand’s and the reduced eyes. 

 

Table 10.5.7 Chromatic difference in object angular spread for Le Grand’s eye and the 

reduced eye for the three illustrative working distances. 

Le Grand’s eye Reduced eye 

    R

4

O ΔkD105429.4Δδ ya       R

4

O ΔkD100032.5Δδ ya   

 

10.5.5 Chromatic magnification in object space 

Le Grand’s eye 

The chromatic object size magnification yOM  (Equation 7.5.15) defines 

the magnification of the size of the red to blue objects. yOM  is 1.0076 for objects 

at –3 and –2 m and 1.0075 for an object at –0.5m from the eye. The chromatic 

object angular spread magnification aOM  (Equation 7.5.18) defines the 

magnification of the angular spread subtended by the red object to the angular 

spread of the blue object where both images appear to be the same size at the 

retina and is 1.0076. Because the bottom row of aOV  is independent of Oz , aOM  

is independent of object distance. These both equate to 0.75% magnification 

where the blue object is larger than the red object. That is r

O

b

O ΔΔ yy   from 

Equation 7.5.13 and r

O

b

O ΔΔ aa   from Equation 7.5.16. 
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The reduced eye 

 For the reduced eye, yOM  is 1.0083 for all three illustrative distances and 

aOM  is 1.0084. These equate to 0.83% and 0.84% with the blue object larger than 

the red object. 

 

10.6  Chromatic properties of the eye dependent on image and aperture 

positions in object space:  with a pinhole 

Experimental measurements in object space, as seen in Chapter 2, include 

the effect of placing a pinhole immediately in front of the eye. The coefficient 

matrix, P

OyV  simplifies to Equation 5.3.19 and is given in Tables 10.6.1 and 2 for 

Le Grand’s eye and the reduced eye respectively. The chromatic difference of the 

coefficient matrices P

OyδV  is summarised in Table 10.6.3. 

 

10.6.1 Chromatic difference in object positions:  with a pinhole 

The chromatic difference in object positions Oδy  is dependent on image 

Ry  and aperture positions Py . The effect of change in aperture position on Oδy  is 

direct with respect to Py  and indirect in that the longitudinal displacement from 

the pupil to the corneal plane is incorporated in P

OyV . Because the coefficient 

matrices for the eye with the pinhole P

OyV  and measurements in object space are 

derived from the coefficient matrix for the chromatic properties in object space 

OyV , the bottom row is again independent of Oz . The equations for Oδy  for the 

three illustrative distances of the object in front of the eye are given in Tables 

10.6.4 and 5 for Le Grand’s eye and the reduced eye respectively. In the right-

hand column of each table is the illustrative value calculated by a 4mm 

displacement of the pinhole immediately in front of the cyclopleged eye 

 mm4P y  and assuming that the image points are both directed at the same 

point on the retina. The illustrative values are given for an eye with, firstly, the 

fovea centred on the longitudinal axis mm0R y  and, secondly, with the fovea 

positioned at 1.46 mm to approximate a visio-optical angle of 5 .  
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Table 10.6.1 The red and blue coefficient matrices for chromatic properties of Le 

Grand’s eye in object space dependent on image and aperture positions for objects at the 

finite distances of 3, 2 and 0.5 metres, with a pinhole placed immediately in front of the 
eye. 

  Red Blue 

P

OyV

 
–3 m 












 kD0.05978kD106744.4

3441.1794023.2
4

 











 kD0.06058kD104338.1

7471.1813015.3
3

 

P

OyV

 
–2 m 












 kD0.05978kD106744.4

5628.1199349.1
4

 












 kD0.06058kD104338.1

1647.1218677.1
3

 

P

OyV

 

–0.5 

m 












 kD0.05978kD106744.4

89072.292337.1
4

 












 kD0.06058kD104338.1

2912.302831.0
3

 

 

Table 10.6.2   The red and blue coefficient matrices for chromatic properties of the 
reduced eye in object space dependent on image and aperture positions for objects at the 

finite distances of 3, 2 and 0.5 metres, with a pinhole placed immediately in front of the 

eye. 

  Red Blue 

P

OyV  –3 m 











 kD0.05986kD101855.4

5815.1792556.2
4

 












 kD0.06056kD106796.1

6796.1810387.4
3

 

P

OyV  –2 m 











 kD0.05986kD101855.4

7210.1198371.1
4

 












 kD0.06056kD106796.1

1197.1213591.2
3

 

P

OyV  
–0.5 

m 












 kD0.05986kD101855.4

9302.292093.1
4

 












 kD0.06056kD106796.1

2799.301602.0
3

 

 

Table 10.6.3 The chromatic difference in coefficient matrices for chromatic properties 

of the eye in object space dependent on image and aperture positions for Le Grand’s and 

the reduced eye for objects at the finite distances of 3, 2 and 0.5 metres, with a pinhole 
placed immediately in front of the eye. 

  Le Grand’s eye Reduced eye 

P

OyδV

 
–3 m 












 kD100099.8kD109013.1

4030.27038.5
43

 












 kD109937.6kD100981.2

0981.22943.6
43

 

P

OyδV

 
–2 m 












 kD100099.8kD109013.1

6020.18025.3
43

 












 kD109937.6kD100981.2

3987.11962.4
43

 

P

OyδV

 

–0.5 

m 












 kD100099.8kD109013.1

4005.09506.0
43

 












 kD109937.6kD100981.2

3497.00491.1
43
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Table 10.6.4 The equations for the chromatic difference in object position 
Oδy  for Le 

Grand’s eye for objects at the finite distances of –3, –2 and –0.5 m from the eye and 

pinhole displaced by mm4P y . 

 Chromatic difference in object  Illustrative values 

 position mm0R y  mm46.1R y  

–3 m     RPO 4030.27038.5δ yyy   –22.8153 mm –26.3236 mm 

–2 m     RPO 6020.18025.3δ yyy   –15.2102 mm –17.5491 mm 

–0.5 m     RPO 4005.09506.0δ yyy   –3.8025 mm –4.3873 mm 

 

Table 10.6.5 The equations for Oδy  for the reduced eye for objects at the finite 

distances of –3, –2 and –0.5 m from the eye. The illustrative values are for an eye with 

mm4P y  and  mm0R y  or mm46.1R y . 

 Chromatic difference in object  Illustrative values 

 position mm0R y  mm46.1R y  

–3 m     RPO 0981.22943.6δ yyy   –25.1773 mm –28.2406 mm 

–2 m     RPO 3987.11962.4δ yyy   –16.7849 mm –18.8271 mm 

–0.5 m     RPO 3497.00491.1δ yyy   –4.1962 mm –4.7068 mm 

 

Figure 10.6.1 gives Oδy  as a function of pinhole displacement at the 

corneal plane for the three illustrative distances from the eye. The image is 

superimpose on the retina at mm0R y . Not only does Oδy  increase as the object 

points move further away from the eye, but the magnitudes of the illustrative 

values using a pinhole are greater than those for the eye without the pinhole, given 

in Section 10.5.1. 
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Figure 10.6.1 Chromatic difference in object positions Oδy  between the red and blue 

object points as a function of transverse displacement of the pinhole Py  at three 

illustrative object distances from the eye, –3 m in black, –2 m in blue and –0.5 m in cyan. 

 

10.6.2 Chromatic difference in inclination in object space:  with a pinhole 

The chromatic difference in inclination in object space Oδa  is dependent 

on image and aperture positions. Oδa  is independent of Oz  and therefore we 

obtain one equation for each model eye. The chromatic difference in inclination in 

object space is 

    R

4

P

3

O kD100099.8kD109013.1δ yya                 (10.6.1) 

for Le Grand’s eye and 

    R

4

P

3

O kD109937.6kD100981.2δ yya                 (10.6.2) 

for the reduced eye. For the illustrative situation of mm4P y  combined with 

firstly mm0R y , then mm46.1R y , the chromatic difference in inclination in 

object space is 
3106051.7   and 

3107745.8   respectively  for Le Grand’s eye 

and 
3103924.8   and 

3104135.9   respectively for the reduced eye. From 

Equations 10.6.1 and 2 we can see that Oδa  is linearly dependent on Py . For any 

particular constant distance of the object points from the eye, Py  is “magnified”  
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Figure10.6.2 The chromatic difference in inclination in object space Oδa  as a function 

of transverse pinhole displacement Py  for Le Grand’s eye (solid lines) and the reduced 

eye (dashed lines). The black lines represent the variation in inclination when the fovea is 

centred on the optical axis 0R y  and the blue lines represent the fovea some 1.46 mm 

from the optical axis; that is at mm46.1R y  (left eye). 

 

by a constant, 
OyδY , the chromatic difference in the near directional spread 

coefficient and the slope of the line in Figure 10.6.2. If the red and blue image 

points are superimposed on the fovea, that is to say mm46.1R y , then this will 

merely add a fixed value to the chromatic difference in object inclination which 

will still vary by 
Py . This is illustrated graphically in Figure 10.6.2 by the blue 

lines. Similarly, any point in the peripheral retina can be chosen such that 0R y . 

  

10.6.3 Chromatic difference in object size:  with a pinhole 

  From Equation 7.5.6, we can see that when a pinhole is placed in front of 

the eye the effect of any transverse displacement is nullified. The only change will 

be that created by the longitudinal displacement of the pinhole, that is, from the 

plane of the pupil to the plane immediately in front of the cornea. The effect of  
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Table 10.6.6 The chromatic difference in object size for the three illustrative distances 

for Le Grand’s eye and the Reduced eye. 

 Le Grand’s eye Reduced eye 

–3 m   RO 4030.2δ yy     RO 0981.2δ yy   

–2 m   RO 6020.1δ yy     RO 3987.1δ yy   

–0.5 m   RO 4005.0δ yy     RO 3497.0δ yy   

 

P

OyδX  is to magnify the image size RΔy  to obtain the chromatic difference in 

object size. This is summarized in Table 10.6.6 for the three working distances. 

 

10.6.4 Chromatic difference in object angular spread:  with a pinhole 

 From Equation 7.5.9 we can see that the chromatic difference in object 

angular spread is also independent of any transverse displacement of the pinhole 

Py , and the magnification P

OyδZ  differs from 
OyδZ  for the chromatic difference in 

object inclination  OΔδ a  due to the longitudinal displacement of the limiting 

aperture from the pupil to the pinhole plane. Additionally, the bottom row of  P

OyV  

is independent of 
Oz  and therefore the chromatic difference in object angular 

spread  OΔδ a  with a pinhole is also independent of the distance of the object 

from the eye.  OΔδ a  is given in Table 10.6.7 for the two schematic eyes. When 

we compare the values for P

OyδZ  in Table 10.6.7 to those for 
OyδZ  in Table 10.5.7, 

we see that introducing a pinhole immediately in front of the eye has a magnifying 

effect. This is more pronounced in Le Grand’s eye than for the reduced eye. 

 

Table 10.6.7 The chromatic difference in angular spread for Le Grand’s eye and the 

reduced eye. 

Le Grand’s eye Reduced eye 

    R

4

O ΔkD100099.8Δδ ya       R

4

O ΔkD109937.6Δδ ya   
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10.6.5 Chromatic object magnification:  with a pinhole 

Chromatic object size magnification 

In Section 7.5.3 we obtained the chromatic object size magnification yOM  

(Equation 7.5.15). When a pinhole is placed immediately in front of the eye, we 

substitute values for P

OyX  instead of 
OyX  into Equation 7.5.15. Both yOM  and 

hence P

yOM  are independent of the transverse position of the pinhole, and P

yOM  is 

influenced only by the longitudinal displacement of the limiting aperture. For Le 

Grand’s eye P

yOM  is 1.0134 and for the reduced eye P

yOM  is 1.0117. Comparing 

this to the results obtained without the pinhole, the chromatic magnification has 

increased from 0.75% to 1.3% and 1.2% respectively, nearly double. 

 

Chromatic object angular spread magnification 

 The chromatic object angular spread magnification with a pinhole 

immediately in front of the eye P

aOM  is obtained from Equation 7.5.18, 

substituting values for P

OyZ . P

aOM , like aOM  is independent of any transverse 

displacement of the pinhole and any magnification is obtained by placing the 

pinhole in front of the eye, effectively moving the limiting aperture form the 

pupillary plane to the corneal plane. For Le Grand’s eye P

aOM  is 1.0134 and for 

the reduced eye we have 1.0117, exactly the same results as for P

yOM . The blue 

object is larger than the red object, that is, r

O

b

O ΔΔ yy   from Equation 7.5.13 and 

r

O

b

O ΔΔ aa   from Equation 7.5.16. 

 

10.7 Underlying implications 

 There are two underlying implications which do not appear to be 

addressed in the literature. Firstly, a chromatic difference in incident position 

occurs when measuring chromatic difference in position at the retina. The effect is 

null when a pinhole is introduced in front of the eye. Secondly, there is a 

chromatic difference in inclination at the retina when measuring the chromatic 

difference in object positions or inclinations. This effect is null for the reduced 
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eye. The effects are small and only apparent in eyes with more than one refracting 

surface and hence, real eyes. 

 

10.7.1 Chromatic difference in incident position 

In Section 7.2.2 we defined chromatic difference in image positions at the 

retina when a pencil of rays is incident at the cornea with inclination .Ka  We 

noted that while the red and blue rays both traverse the same transverse position 

through the pupil, Py , this does not necessarily mean that the red and blue rays 

originate from the same dichromatic ray that is incident on the eye or cornea. 

Instead, there are separate red and blue rays, each with incident inclination Ka  

which are refracted and traced through the same position through the limiting 

aperture Py . This is illustrated in Figure 7.2.1 where we see separate red and blue 

rays intersecting the cornea, separated by distance Kδy  and then traversing the 

pupil through the same point, but with different inclinations. 

Equation 7.2.9 enables us to calculate the chromatic difference in corneal 

position Kδy , incident onto the eye, of the red and blue rays from a distance object 

and Equation 7.2.10 likewise calculates the chromatic difference in incident 

position Kδy  for rays originating from an object at a finite distance. Substituting 

from the red and blue transferences for the anterior and posterior subsystems and 

the transference for the eye, we obtain a relationship for Le Grand’s eye, given in 

Table 10.7.1. The chromatic difference of incident position Kδy  is given as an 

illustrative example for a centred model eye 0P y  with incident inclination of 

1.0K a , in Table 10.7.1.  mm02061.0δ K y  represents a distance of more than 

5 000 times the wavelength of the blue ray or almost 3 000 times the wavelength 

of the red ray.  

For the reduced eye with a pupil the equivalent equation for the chromatic 

difference of incident position Kδy  for a distant object is given as a relationship in 

Table 10.7.2. The illustrative value for the reduced eye is also given in Table 

10.7.2 for an example where 0P y  and 1.0K a . 
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Table 10.7.1 The chromatic difference in incident position for Le Grand’s eye for an 

object point positioned –3 m, –2 m and –0.5 m from the eye and illustrated with 

mm200O y  and mm0P y . 

Distance 

from eye 
Chromatic difference in incident position Illustrative value 

Distant object   PK 004887.0mm02061.0δ yayK   0.002061 mm 

–3 m PO

6 004890.0108576.6δ yyyK    –0.001372 mm 

–2 m PO

5 004891.0100276.1δ yyyK    –0.002055 mm 

–0.5 m PO

5 004904.0100733.4δ yyyK    –0.008147 mm 

 

Table 10.7.2 The chromatic difference in incident position for the reduced eye for an 

object point positioned –3 m, –2 m and –0.5 m from the eye and illustrated with 

mm200O y  and mm0P y . 

Distance 

from eye 
Chromatic difference in incident position Illustrative value 

Distant object   PK 003614.0mm01312.0δ yayK   0.001312 mm 

–3 m PO

6 003617.0103685.4δ yyyK    4107370.8   mm 

–2 m PO

6 003618.0105493.6δ yyyK    –0.001310 mm 

–0.5 m PO

5 003631.0106074.2δ yyyK    –0.005215mm 

 

For an object at a finite distance, we summarize the three illustrative 

distances of the object from the eye in Table 10.7.1 for Le Grand’s eye and Table 

10.7.2 for the reduced eye. The illustrative values are given for an object point 

that is placed mm200O y  above the longitudinal axis and assuming that the eye 

is centred. 

 

Chromatic difference in incident position with pinhole 

When a pinhole is placed in front of the eye the chief ray is the ray 

traversing the centre of the pinhole, which is placed immediately in front of the 

eye. Equations 7.2.9 and 10 both simplify to  mm0δ Ky  and, as expected, 

there is no chromatic difference in incident position present when a pinhole is 

placed in front of either model eye. 
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10.7.2 Chromatic difference in emergent inclination from object space 

Equation 7.4.13 was derived to calculate the chromatic difference in 

inclination of the two rays that traverse, from separated object points through the 

same position in the pupil or pinhole and arrive at the retina at the same position, 

that is to say b

R

r

R yy  . For convenience, the chief rays are usually chosen. 

However, Equation 7.4.13 shows that the two rays are refracted differently and do 

indeed follow different paths through the system. Although the red and blue rays, 

by definition, are chosen to both traverse the same position through the aperture, 

they may not necessarily traverse through this aperture with the same inclination 

and will not arrive at the retina with the same inclination. This is illustrated in 

Figure 7.4.1 and has implications for the Stiles-Crawford effects. For Le Grand’s 

eye, the chromatic difference in inclination at the retina will be 

    R

6

P

5

R kD103139.7kD102635.8δ yya                 (10.7.1) 

which is independent of the distance of the object in front of the eye. For a centred 

model eye ( mm0P y ) with the fovea mm46.1R y  from the optical axis, this 

is a chromatic difference in inclination at the fovea of  5

R 100678.1δ a . When 

a pinhole is placed in front of the eye, Equation 7.4.13 becomes 

    R

5

P

4

R kD104013.2kD103746.1δ yya   .             (10.7.2) 

For a pinhole in front of the cyclopleged Le Grand model eye with transverse 

displacement of mm4P y , the chromatic difference in inclination at the optical 

axis ( mm0R y ) is 
4

R 104984.5δ a  and at the fovea ( mm46.1R y ) it 

increases in magnitude to 
4

R 108490.5δ a . However, we note that the 

direction changes when a pinhole is introduced. When light traverses the pupil, 

the blue and red rays appear as shown in Figure 7.4.1, however, when a pinhole is 

introduced the red and blue are swopped. This too has implications for the Stiles-

Crawford effects.  

The reduced eye, being a much simplified model, has no refractive 

elements posterior of the “pupil” and therefore Equation 7.4.13 simplifies to 

    RPR kD0kD0δ yya                   (10.7.3) 

and the reduced eye has zero chromatic difference in inclination at the retina. The 

same result occurs when a pinhole is placed in front of the reduced eye. 
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10.8 Summary of dependent chromatic properties 

 In Sections 10.3 to 10.6 we explored the chromatic properties of Le 

Grand’s and the reduced eye dependent on object or image and aperture position, 

both with and without a pinhole, for an object at a selection of working distances. 

All these examples can quickly become overwhelming and confusing, however, it 

soon becomes clear that all the chromatic difference relationships are linear in 

nature. The two model eyes tell the same story, however, the slope of the straight 

line is slightly different each time.  

 The distant object situation is described in terms of the incident inclination 

Ka  however the objects at a finite working distance are described in terms of 

object position, directly by the object’s transverse position Oy  and indirectly by 

incorporating the working distance Oz  into the coefficient matrices, OEV , P

OEV , 

yOV  and P

yOV . The combination of Oy  and Oz  to describe the object position can 

be summarily described by the incident inclination 
Ka . The relationship can be 

simply obtained by KOO ρρS  . Multiplying this out 

























 

K

K

O

OO

10

1



 yy
 

 to obtain 

















 

K

K

O

OOO



 yy
 

and solving for 
Ka  we obtain 

O

OK
K

z

yy
a




 .                  (10.8.1) 

From Equation 10.8.1 we can look at the distant object situation and draw 

conclusions that are general for all systems.  

Below we summarise the chromatic properties that are dependent on 

object or image and apertures position. We divide this summary into three 

sections, firstly the chromatic difference in image position, inclination, size and 

angular spread, secondly the chromatic difference in object position, inclination, 

size and angular spread and finally the chromatic magnifications. For the 

chromatic differences in image and object space, the two eyes only differ in the 
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magnitude of the slope and so we will narrow the summary down to only Le 

Grand’s eye. 

 

10.8.1 Chromatic differences in image space 

Chromatic difference in image position and inclination 

 The chromatic difference in image positions 
Rδy  and inclinations 

Rδa  

were summarised by Equation 7.2.22. Substituting for 
EδV  from Table 10.3.3 into 

Equation 7.2.22, we obtain 































R

R

K

P

δ

δ

0.006011kD0.001822

mm1258.003568.0

a

y

a

y
.              (10.8.2) 

This summarises Figures 10.3.1 and 3, which are very similar. Assuming a 

centred eye ( 0P y ), both 
Rδy  and 

Rδa  have a linear relationship with 
Ka with a 

negative slope. A decentred pupil will merely add a constant value to 
Rδy  and 

Rδa , but the slope will not change. 

 When a pinhole is placed immediately in front of Le Grand’s eye the 

values in 
EδV  change due to the longitudinal displacement of the limiting 

aperture. Equation 10.8.2 becomes 
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From Equation 10.8.3 we can see that any increase in incident inclination when a 

pinhole is placed in front of the eye will magnify the 
Rδy  and 

Rδa  more than for 

the naked eye and any transverse movement of the pinhole will very slightly 

increase the effect on the 
Rδy  and 

Rδa . However, the magnitude of 
Py  is 

potentially far greater for a pinhole than for a pupil. This can be seen in Figures 

10.4.1 and 2 where it is evident that the working distance has very little effect for 

an axial object. The effect of adding a pinhole at the corneal plane is to potentially 

increase 
Rδy  and 

Rδa . This has implications for the AcuFocus Kamra corneal 

pinhole inlay.  
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Chromatic difference in image size and angular spread 

 The chromatic difference in image size  RΔδ y  and angular spread  RΔδ a  

were summarised by Equation 7.3.13. Substituting for 
EδV  from Table 10.3.3 into 

Equation 7.3.13, we obtain 
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which is very similar to Equation 10.8.2.  RΔδ y  and  RΔδ a  are independent of 

pupil (or pinhole) position. The relationships are linear, 
KΔa  is magnified by 

EδX  

or 
EδZ   to obtain  RΔδ y  and  RΔδ a  respectively. 

 For a pinhole in front of the eye we obtain  
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and while the transverse displacement of the pinhole will have no effect on 

 RΔδ y  and  RΔδ a , the longitudinal change in position of the limiting aperture 

will create a magnified effect of  RΔδ y  and  RΔδ a , as can be seen by the 

increase in magnitude of P

EδX  and 
P

EδZ  from 
EδX  and 

EδZ  respectively. 

 

10.8.2 Chromatic difference in object space 

Chromatic difference in object position and inclination 

 The object space scenario was derived to mimic the experimental situation 

and as a result has been limited to finite working distances. The chromatic 

difference in object position Oδy  and inclination Oδa  is summarised by Equation 

7.4.10. Substituting for OyδV  at m3O z  from Table 10.5.3 for Le Grand’s eye 

into Equation 7.4.10 we obtain 
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Equation 10.8.6 summarises Figures 10.5.1 and 2; the peripheral retina 

experiences greater magnitudes of chromatic difference in position or inclination 

than the posterior pole. From Figure 7.4.1 it is easy to see that Oδy  and Oδa  will 

have opposite signs. We recall from Equation 5.3.14 that the bottom row of OyδV  
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is independent of working distance Oz , making Oδa  easier to compare across 

studies. 

 With a pinhole and substituting P

OyδV  at m3O z from Table 10.6.3, 

Equation 7.4.12 becomes 
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which summarises Figures 10.6.1 and 2. We draw similar conclusions to the 

image space situation; Oδy  and Oδa  will increase in magnitude with an increase in 

transverse pinhole displacement or with distance at the retina from the posterior 

pole. 

 

Chromatic difference in object size and angular spread 

The chromatic difference in object size  OΔδ y  and angular spread  OΔδ a  

is summarised by Equation 7.5.10. Substituting OyδV  at m3O z   from Table 

10.5.3 into Equation 7.5.10 we obtain 
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which, as expected, resembles Equation 10.8.6. Similar to Oδa ,  OΔδ a  is 

independent of Oz .  OΔδ y  and  OΔδ a  are independent of any pupil decentration 

Py . It is obvious from Equation 10.8.8 that the relationship between  OΔδ y  or 

 OΔδ a  and retinal image size 
RΔy  is linear. 

 Placing a pinhole immediately in front of Le Grand’s eye merely changes 

the values of OyδV  to those of P

OyδV  so that Equation 10.8.8 becomes 
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from which we can see that moving the plane of the limiting aperture from the 

pupillary plane to immediately in front of the cornea will have a magnifying effect 

on  OΔδ y  and  OΔδ a , by almost double. 
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10.8.3 Chromatic magnifications 

 Obtaining a summarised relationship for the chromatic magnifications is 

messy and one cannot easily obtain a neat and tidy relationship like those for the 

chromatic differences (Equations 7.2.22, 7.3.13, 7.4.10 and  7.5.10). However, it is 

apparent that the influence of working distance on chromatic magnifications is so 

small as to be ignored. Therefore the magnifications are summarised in Table 

10.8.1. We recall that chromatic magnification is independent of transverse pupil 

or pinhole displacement, but placing a pinhole in front of the eye does have a 

magnifying effect on the chromatic magnification due to the longitudinal 

placement of the limiting aperture. 

As expected, we see from Table 10.8.1 that in image space the red image 

is larger than the blue image, or subtends a greater angular spread while in object 

space the blue object is larger than the red object, or subtends a larger angular 

spread. It is clear that moving the limiting aperture from the pupillary plane to the 

cornea increases the chromatic magnification, a result that has implications for the 

AcuFocus Kamra corneal pinhole inlay. 

 

Table 10.8.1 Chromatic magnifications of Le Grand’s eye and the reduced eye, firstly 
as the naked eye followed by placing a pinhole immediately in front of the eye. The 

percentages in the last column are included as a guide for comparative purposes only and 

represent the mean of chromatic magnifications for each eye. 

 
yRM  

aRM  yOM  
aOM  as % 

Le Grand’s eye 0.9925 0.9926 1.0076 1.0076 0.76% 

– with pinhole 0.9868 0.9862 1.0134 1.0134 1.34% 

Reduced eye 0.9917 0.9917 1.0083 1.0084 0.83% 

– with pinhole 0.9885 0.9885 1.0117 1.0117 1.16% 

  

10.9 Summary of dependencies 

 Nearly all the chromatic effects discussed in this chapter are dependent on 

up to three different variables, as summarised in Table 10.9.1. In particular the 

summary highlights which chromatic properties are dependent or independent of 

object distance Oz  from the eye. Chromatic aberration, independent chromatic 

properties and chromatic difference in image size and angular spread are all  
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Table 10.9.1 Summary of the dependence of the chromatic effects on variable 

parameters. In particular, chromatic aberrations or properties that are dependent on 

working distance are indicated by   and those independent of working distance are 
indicated by  . The dependencies are separated into those with an object at distance and 

those with an object at a finite distance. Dependencies given in a matrix represent the 

entries of the respective chromatic difference in coefficients. Additional dependencies are 

also given. 

   Distant object Finite distance 
Eq. 
no. 
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independent of transverse pupil or pinhole position, 
Py . Chromatic aberration is 

dependent on the conjugate system of object and image positions while the 

dependent chromatic difference properties depend on object position(s) and 

position of the centre of the blurred image(s) on the retina. The chromatic 
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differences in image space are dependent on Oy  while those in object space are 

dependent on 
Ry . The chromatic magnification for an object at a finite distance is 

weakly dependent on the working distance and on not on the transverse object and 

image positions.  

 

10.10 Discussion 

The chromatic effects have been explored in this chapter by means of a 

number of numerical illustrative examples. Two schematic eyes were used in the 

examples, Le Grand’s and the reduced eyes. Where applicable object points were 

explored at four distances from the eye, that is, for a distant object with 1.0K a  

and at finite distances with of –3, –2 and –0.5m from the eye, each time with 

m2.0O y . The examples in object space required an image on the retina, and 

these examples included the three finite distances for the objects from the eye and 

the image at either mm0R y  or mm46.1R y  which approximates the position 

of the fovea at a visio-optical angle of 5º.   

From Figure 10.1.1 we saw that the magnitude of zδ  increases as the 

object approaches the eye. The relationship is true for both Le Grand’s eye and the 

reduced eye, although the magnitude is generally greater for the reduced eye The 

magnitude of yδ  increases as the incident inclination Oa  increases, as can be seen 

from Figures 10.1.2 and 3.  

The object or image and aperture-dependent chromatic properties are 

defined either in image space or object space and each in turn is explored for the 

naked eye and the eye with a pinhole aperture immediately in front of the eye. The 

dependence of each of the dependent chromatic properties is summarised in Table 

10.9.1.  

Finally, two underlying implications arising from the literature are 

examined. When a pencil of rays is incident on the eye and the red and blue chief 

rays are traced through the pupil, the incident red and blue rays are distinctly 

separate by more than 3000 times their wavelength and cannot be assumed to 

originate from a single dichromatic ray. Furthermore, in the experimental set-up 

where the red and blue objects are separated in object space and the images are 
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superimposed at the same position on the retina, the red and blue rays reaching the 

retina for Le Grand’s eye have different inclinations, which may have 

implications for the Stiles-Crawford effects or other physiological stimulus-

response mechanisms that are beyond the scope of this dissertation. The 

simplified design of the reduced eye nullifies this measurement. 

The Stiles-Crawford effects describe the directional sensitivity of the 

cones. The Stiles-Crawford effects show that the cones are far more sensitive to 

light that strikes the retina head-on than to light which enters obliquely. The first 

Stiles-Crawford effect describes how oblique rays appear disproportionately less 

bright than rays that strike the retina head-on while the second describes that 

monochromatic rays of different wavelengths appear to have altered hue and 

saturation when striking the retina obliquely compared to rays striking head-on. 

The obliquely striking rays produce a different ratio of responses in the three 

types of cones to a ray that enters head-on. Both Stiles-Crawford effects are 

produced by directional sensitivity of the cones and may affect object or image 

and aperture-dependent chromatic properties. (Stiles and Crawford, 1933; Stiles, 

1939; Lakshminarayanan, 2009; Westheimer, 2008.)  

The chromatic aberrations and object or image and aperture-dependent 

chromatic properties depend on the transverse and longitudinal position of the 

object point. The object, image and aperture-dependent chromatic properties are 

additionally dependent on the longitudinal and transverse displacement of the 

pupil or pinhole aperture, making their understanding and relationships more 

complex. The chromatic difference in power, refractive compensation and 

ametropia are properties of the system alone and are independent of object, image 

and aperture positions. The object, image and aperture-dependent chromatic 

properties are defined specially for the eye, while chromatic aberration is defined 

for systems in general, making chromatic aberration a more general definition. 
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PART V – CONCLUSION 

 

11 Concluding discussion 

 

11.1 Introduction 

We return to the oldest example of chromatic dispersion known to man, 

the rainbow. We know that the colours are created by chromatic dispersion, but 

why does the rainbow form a bow shape? The answer lies in the symmetry of the 

raindrops.  Indeed, it is not a bow, but a cone. The bow that we perceive is part of 

a full circle and the apex of the cone is at the viewer’s eye. Each colour forms its 

own cone, with the red cone outermost and each colour (or frequency) sitting 

inside the previous cone, with violet being inner-most (Lee and Fraser, 2001:112-

113). But this is what is happening in object space.  

What happens when an eye looks at a multi-chromatic object point? Is this 

comparable to the rainbow? Raindrops are spherical and so is the eye. However, 

in a raindrop as the light enters it is refracted and dispersed, then the light is 

reflected internally and finally exits the raindrop whilst being refracted and 

dispersed some more. The rainbow is created by an infinity of rays from the sun 

being dispersed, refracted and reflected by an infinity of raindrops. In the eye, the 

light enters and is imaged on the retina after undergoing refraction and dispersion 

by the eye’s structures. (The structure of the eye prevents the light rays from 

following the same path as they would in a raindrop). So while rainbows and 

chromatic effects in the eye are both caused by chromatic dispersion, there is a 

distinct difference between a rainbow and an eye. 

 

11.2 Findings and conclusions 

This study is about “The Chromatic Dependence of First-order Optical 

Properties of the Eye”. We saw, in Chapter 3, that the first-order optical properties 

of the eye can be divided into fundamental properties and derived properties. 

Therefore the dependence of each of the fundamental properties on frequency and 

on wavelength is studied. To better understand the relationship between the 

fundamental properties and their dependence on frequency, we transform the 
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transference into Hamiltonian space, study the dependence in this linear space and 

transform the straight line relationships back to a symplectic transference. 

 

Fundamental properties 

The chromatic dependence of each of the fundamental properties of the 

transferences for both the reduced eye and Le Grand’s eye as a function of 

frequency is found to be very nearly linear (Figures 8.1.3). A formula is derived 

which gives the linear dependence of the transference on the frequency of light. It 

is given by Equation 8.1.5 where   is the frequency of light and the constants are 

given in Tables 8.1.2 and 3 for the reduced eye and Le Grand’s eye, respectively. 

The result of substituting the values into Equation 8.1.5 for any chosen frequency 

is a transference that is very nearly symplectic with a mean determinant of 

approximately 1. 

When studying the dependence of the fundamental properties on 

wavelength, the dependence loses it linearity and one cannot derive an equation 

such as Equation 8.1.5 as a linear function of wavelength with nearly the same 

level of accuracy (Figure 8.1.8). This confirms what Pease and Barbeito (1989) 

state, that the linear function of the frequency scale make analysis simpler to 

compute and understand.  

When calculating the refractive index of air as a function of frequency, we 

see that, firstly, only the dilation (A) and divergence (C) are affected and that the 

change in the curve is so slight and so uniform as to be disregarded and the 

refractive index of air can be equated to 1 (Figures 8.1.4 and 5). Similarly, when 

the eyes are submerged in water and the dependence of water on the frequency of 

light is calculated using Cornu’s formula, only the dilation and divergence are 

affected (Figures 8.1.9).  

The dependence of each of the entries of the Cayley-transformed 

transference is graphed as a function of frequency and found to be very nearly 

linear for both eyes (Figures 8.2.1 and 4). When the three independent entries are 

graphed on a three-dimensional graph as a function of frequency, we obtain a 

straight line for the reduced eye and a gently curved line for Le Grand’s eye 

(Figures 8.2.3 and 6). Because of the resultant linearity of each of the entries, a 
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formula is derived which results in a transference that gives a linear dependence 

on frequency (Figures 8.2.2 and 5). This is given by Equation 8.2.3 for the 

Cayley-transformed transference and substituting it into Equation 8.2.2, we obtain 

the transference with the constants given in Tables 8.2.1 and 2 for the reduced eye 

and Le Grand’s eye in air, respectively. The advantage of Equation 8.2.3 over 

Equation 8.1.5 is that Equation 8.2.3 has fewer constants and more importantly, is 

more accurate. Equation 8.2.3 and 2 result in a symplectic transference with a 

mean determinant of exactly 1 for any chosen frequency.  

Similarly, the dependence of the entries of the logarithmic-transformed 

transference is graphed as a function of frequency and unsurprisingly found to be 

very nearly linear for both model eyes (Figures 8.2.7 and 9). However, the region 

that the transformed transference occupies within the Hamiltonian space is 

different for the Cayley-transformed transference compared to the logarithmic-

transformed transference (Figures 8.2.8 and 10). The formula for deriving the 

transference from the logarithmic-transformed transference as a linear function of 

frequency is given by Equation 8.2.5 where the constants are given in Table 8.2.5 

for the two model eyes (Figures 8.2.11 and 12). The accuracy given by this 

derivation is similar to that for the Cayley-transformed transference but because 

of the simplicity of Equation 8.2.2, this is the preferred method.  

 

Derived properties 

Next we study the chromatic dependence of a number of derived 

properties, including cardinal points. Because a relationship between specific 

derived properties is given by the characteristic matrices, each of these derived 

properties is studied for its dependence on frequency (Figures 9.2.1 to 5) and the 

relationship between the entries of each of the symmetric characteristic matrices is 

displayed as three-dimensional graphs (Figures 9.3.1 to 10). The purpose is two-

fold; firstly we wish to understand the dependence of each first-order optical 

property of the eye on the frequency of light and secondly, we wish to gain a 

deeper understanding the different linear spaces. 

Four characteristic matrices are introduced, each being symmetric and 

each entry representing a derived property. Five derived properties are of 
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particular interest and are illustrated graphically for their dependence on the 

frequency of light. Power F (Equation 3.4.3), entrance- and exit-plane refractive 

compensation 0F  and CF  (Equations 3.4.6 and 5.1.3) and front-vertex power fvF  

(Equation 3.4.16) each show a very nearly linear relationship to the frequency of 

light. Back-vertex power bvF , given by Equation 3.4.11 is representative of 

vergence at the exit-plane and has a hyperbolic relationship; clearly illustrating 

which frequency is in focus at the retina. The four characteristic matrices given in 

Section 3.7.3 represent a linear space and therefore the three independent entries 

of each characteristic matrix is graphed on a 3-dimensional graph. For the point P, 

angle Q and first mixed M characteristic matrices the relationship is linear for the 

reduced eye and nearly linear for Le Grand’s eye. The second mixed characteristic 

matrix N, expectedly, was problematic because of the division by A, the dilation, 

which approaches zero for an emmetropic eye. 

The dependence of the cardinal and anti-cardinal points on the frequency 

of light is explored for the two model eyes. For the reduced eye a number of 

points simplified and we find that the incident and emergent principal and nodal 

points are independent of frequency. The incident and emergent focal points, anti-

principal and anti-nodal points are all dependent on frequency. The chromatic 

difference between the four red and blue anti-cardinal points all have the same 

magnitude, the emergent anti-cardinal points having opposite direction to the 

incident anti-cardinal points (Figures 9.1.1, 3 and 4). 

In contrast, for Le Grand’s eye we find that all six of the cardinal points 

and all four of the anti-cardinal points are dependent on frequency and that there 

is no relationship to the magnitude of the chromatic difference between any of the 

cardinal or anti-cardinal points (Figures 9.1.2, 5 and 6). This emphasises that 

while the reduced eye is a convenient simplification, one should be cautious of 

making conclusions based on the dimensions and mathematics of the reduced eye. 

 

Chromatic aberration and chromatic properties 

A study of the chromatic dependence of the first-order optical properties 

of an eye would be incomplete without a detailed study of chromatic aberration. 

There are two approaches to defining chromatic aberration, the classical optics 
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and physiological optics approaches. Both definitions are defined in the literature 

for Gaussian systems or eyes. In this dissertation we define chromatic aberration 

for systems in general, that is, systems that may include astigmatic and decentred 

or tilted elements. Additionally, we define chromatic properties, in line with the 

physiological optics approach, also generalised for systems with astigmatic 

elements. 

In Gaussian optics longitudinal chromatic aberration is defined as 

rbδ zzz  , the signed distance  from the red image plane to the blue image 

plane. In an astigmatic system, this is the generalized distance defined as 

rbδ ZZZ   from a matrix representing the red image structure to a matrix 

representing the blue image structure; each of the red and blue image structures 

consisting of two orthogonal image line foci, separated by an interval of Sturm. 

Transverse chromatic aberration is defined as the transverse vector rbδ yyy  , 

from the transverse position of the red to the blue image structures. In Gaussian 

optics, it would seem that one could regard longitudinal and transverse chromatic 

aberration as components of a unified chromatic aberration vector. In linear 

optics, however, because of their fundamentally different characters (transverse 

chromatic aberration is a vector and longitudinal chromatic aberration is a matrix) 

this would not seem possible. Recent research suggests that it may be possible to 

represent the relationship as a five-dimensional inner-product space (Harris, 

Evans and van Gool; 2014), however, this is beyond the scope of this dissertation. 

The numerical examples give some insight into chromatic aberration, 

which, because it is based on vergence, is dependent on the object position. 

Longitudinal chromatic aberration is dependent on the longitudinal object position 

and transverse chromatic aberration is dependent on both the longitudinal and 

transverse object position. Longitudinal chromatic aberration increases in 

magnitude as the object approaches the eye (Figure 10.1.1). Transverse chromatic 

aberration has a linear dependence on transverse displacement of an object point 

from the optical axis (Figure 10.1.2 and 3). As the incident inclination increases in 

magnitude, so the transverse chromatic aberration increases in magnitude (Figure 

10.1.4).  
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The independent chromatic properties of the eye are not dependent on 

light and therefore not on the object and image positions. They are properties of 

the system alone and are derived from the fundamental properties of the system. 

This implies that one will have a single number for each of the definitions with no 

graph to illustrate any dependence on frequency. The independent chromatic 

properties of the eye include chromatic difference in power Fδ , refractive 

compensation 0δF  and ametropia Aδ , with derivations obtained from the 

transference. The results are summarized in Table 10.2.1. Of course, the 

frequencies chosen for ‘red’ and ‘blue’ will influence the results.  

Equations are obtained from the transference for the chromatic properties 

of the eye dependent on the object or image and aperture position. In image space, 

the chromatic properties dependent on the object and aperture position, derived 

from the transference, are chromatic difference in transverse image position Rδy  

and inclination at the retina Rδa . The chromatic difference in magnification is a 

misnomer and so we define chromatic difference in image size  RΔδ y  and 

angular spread  RΔδ a  at the retina. Magnification is a comparative, unitless 

measure and not defined by a difference. Therefore chromatic magnifications for 

image size yRM  and angular spread aRM  are defined and derived from the 

transference. These formulae allow us to calculate the chromatic properties at the 

imaging plane, that is to say what is happening in the eye, at the retina. Because 

the chromatic difference derivations are not dependent on the position of the nodal 

point or other structures, they measure actual distances and changes in inclination.  

Experimental measurements take place in object space and for this reason 

derivations for chromatic difference in transverse object position Oδy , inclination 

Oδa , object size  OΔδ y , object angular spread  OΔδ a , chromatic object size 

magnification yOM  and chromatic object angular spread magnification aOM  are 

included that account for chromatic differences and magnifications in object 

space. In an experimental situation one manipulates and takes measurements in 

object space whilst controlling what is happening at the retinal plane. These 
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equations allow us to compare our theoretical numerical results with published 

results obtained experimentally, and were found to compare well. 

The equations for chromatic properties dependent on object or image and 

aperture position simplify to account for the effects of introducing a pinhole in 

front of the eye. Rδy , Rδa , Oδy  and Oδa  are directly dependent on Py , the 

transverse displacement of the pinhole. However, the longitudinal shift in position 

of the limiting aperture from the pupillary plane to upstream of the cornea has a 

magnifying effect and therefore all the chromatic differences and chromatic 

magnifications are affected by this change. This has implications for both the 

Stiles-Crawford effect and for the AcuFocus Kamra corneal pinhole inlay. 

Table 11.1.1 attempts to simplify the many variations and permutations of 

the dependent chromatic properties by indicating which variables each chromatic 

property is dependent on. Any parameter marked ○ has a linear relationship with 

the chromatic property, that is, magnified by a constant. Where indicated by □, 

this constant will have its slope affected by the distance of the object in front of 

the eye. The chromatic properties are symbolized as chromatic difference in transverse 

image position Rδy , inclination Rδa ,  image size  Rδ y , angular spread  Rδ a  

retinal chromatic image size magnification yRM , retinal chromatic angular spread 

magnification aRM , chromatic difference in object position Oδy , inclination Oδa , 

object size  OΔδ y , object angular spread  OΔδ a , size magnification yOM   and 

object angular spread magnification aOM  in object space. 
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Table 11.1.1 Summary of chromatic properties and their dependencies. Variables 

marked ○ have a linear dependence on the respective variable. Objects at finite distance 

which have the slope of the linear dependence affected by the distance of the object in 

front of the eye are marked □. The table remains unchanged when a pinhole is introduced 

immediately in front of the eye. Chromatic properties in object space are defined for finite 

object distances only. 

  Distant object  Object at finite distance 

  Ka  Py   
Oz  Oy  

Py  Ry  

Im
ag

e 
sp

ac
e 

Rδy  ○ ○  □ ○ ○  

Rδa  ○ ○  □ ○ ○  

 Rδ y  ○   □ ○   

 Rδ a  ○   □ ○   

yRM     □    

aRM     □    

O
b
je

ct
 s

p
ac

e 

Oδy  ―  □  ○ ○ 

Oδa  ―    ○ ○ 

 OΔδ y  ―  □   ○ 

 OΔδ a  ―     ○ 

yOM  ―  □    

aOM  ―      

 

11.3 Limitations in the scope of this dissertation 

 At the outset it was clear that studying “the chromatic dependence of all 

first-order optical properties of the eye” would have far too large a scope for a 

Masters dissertation and so a conscious decision was made to limit the scope of 

the study to firstly Gaussian systems, whilst keeping all derivations as general as 

possible, and secondly to limit the derived properties to those applicable to the 

characteristic matrices and appropriate for Gaussian systems. This is a long 

dissertation and there are numerous topics and derived properties that have been 

omitted. In particular there are a number of derived properties that would be more 

appropriately studied as linear systems for their chromatic dependence such as all 

the axes of the eye. There were a number of issues that were raised during the 
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study which fell outside the scope of this dissertation, but which warrant further 

studies. Indeed, this study may give some insight into some of these issues. 

There is a need for a complete set of formulae for the refractive indices as 

a function of frequency for all the media of the eye. The formula used for the 

refractive index of the reduced eye is based on relatively recent experimental data 

and is therefore considered to reflect the real eye fairly accurately for most of the 

properties studied. The refractive indices for Le Grand’s eye differed from those 

for the reduced eye and are based on a combination of refractometer readings and 

experimental data. More recent refractometer readings are incomplete for the 

human eye. While these formulae form the basis of all the numerical examples in 

this dissertation, the derivations based on these formulae are sufficiently general 

so as to accommodate new formulae that may be available in the future. 

In Section 8.2 we made use of the transformed transference. This mapping 

between the symplectic group and Hamiltonian space enabled us to develop an 

equation for the straight line dependence of the fundamental properties as a 

function of frequency and resulting in a symplectic transference with determinant 

exactly equal to 1. However, what meaning can be given to the entries of the 

Hamiltonian matrix. What region in the Hamiltonian space would be 

representative of eyes? Equation 5.6.7 may give us some insight into the meaning 

of the three-dimensional Hamiltonian space obtained using the Cayley transform 

and what region within this space is occupied by Gaussian eyes? Would it 

subsequently be possible to gain insight into what region of the ten-dimensional 

Hamiltonian space would be representative of real eyes with astigmatic surfaces? 

In Gaussian optics it is tempting to represent the longitudinal and 

transverse chromatic aberration as a single combined chromatic aberration by 

obtaining a vector from the red to the blue image point. However, in linear optics 

the longitudinal chromatic aberration is represented by a matrix and the transverse 

chromatic aberration is a vector and combining the two into a unified chromatic 

aberration seems improbable. However, recent research indicates that this might 

be possible using a five-dimensional inner-product space (Harris, Evans and van 

Gool; 2014). The definition of inner-product space is based on the point and angle 
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characteristic matrices. How the two are related is beyond the scope of this 

dissertation and is the topic of further investigation at a later stage. 

The definition for chromatic aberration includes astigmatic systems, 

however, this was not explored further; the scope of the dissertation being 

purposefully restricted to Gaussian systems. The chromatic properties too were 

defined for Gaussian systems. Where possible these definitions were generalized 

to linear optics for astigmatic systems without proof or being explored further. 

This creates an opportunity for further study of the chromatic properties for 

systems with astigmatic elements. Indeed, the two eyes studied are not only 

Gaussian, but emmetropic at a reference frequency. Additional studies into the 

chromatic properties of myopic, hyperopic, astigmatic, accommodating or even 

aging eye could be undertaken. 

Many of the findings for the chromatic properties have implications for 

Stiles-Crawford effect. This needs to be explored in more detail.  

The chromatic properties dependent on object and aperture position 

present the formulae necessary to obtain the chromatic properties induced by the 

placement of a pinhole immediately in front of the eye, or indeed, embedded in 

the corneal stroma. Further studies need to be done to explore the impact of these 

findings on the corneal pinhole inlay, such as the Kamra
®
  by AcuFocus.  

 

11.4 Summary of findings 

1.  The fundamental properties of the reduced and Le Grand’s four surface 

eyes have a nearly perfectly linear dependence on frequency. 

2. A formula is derived that gives the linear dependence of the fundamental 

properties of the transference. 

3. Derivations are given for the chromatic aberration of systems in general, 

including systems with astigmatic and heterocentric elements, such as the 

eye, and particulated for the Gaussian eye. 

4. Longitudinal chromatic aberration depends on the longitudinal position of 

the object and transverse chromatic aberration is dependent on both the 

longitudinal and transverse position of the object point. 
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5. Only the dilation and divergence are dependent on the refractive index 

upstream of the system. Disjugacy and divarication are independent of the 

medium upstream of the system. 

6. Independent chromatic properties of the eye include: 

 Chromatic difference in power, Fδ . 

  Chromatic difference in refractive compensation, 0δF . 

 Chromatic difference in ametropia, Aδ . 

7. A set of formulae is derived for the chromatic properties of the Gaussian 

eye for  

 Objects at distance and at a finite distance. 

 Image and object space. 

 The special case of a pinhole held immediately in front of the eye.  

Chromatic properties of the eye dependent on object and aperture position 

include: 

 Chromatic difference in transverse image positions, Rδy . 

 Chromatic difference in inclination at the retina, Rδa . 

 Chromatic difference in image size,  Rδ y . 

 Chromatic difference in angular spread at retina,  Rδ a . 

 Chromatic image size magnification, yRM .  

 Retinal chromatic angular spread magnification, aRM .  

Chromatic properties of the eye dependent on image and aperture position 

include: 

 Chromatic difference in object position, Oδy . 

 Chromatic difference in object inclination, Oδa . 

 Chromatic difference in object size,  Oδ y . 

 Chromatic difference in object angular spread,  Oδ a . 

 Chromatic object size magnification, yOM .  

 Chromatic object angular spread magnification, aOM .  
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8. The red and blue chief rays chosen to study the chromatic properties in 

image space are incident on the entrance-plane of the system a distance of 

some 5000 times the wavelength of the blue light apart. When the red and 

blue chief rays from two separated object points coincide at a point on the 

exit-plane, their emergent inclination is the same for the reduced eye but 

different for Le Grand’s eye. 

9. Chromatic aberration and chromatic properties are dependent on: 

 Object position (longitudinal and transverse position, or incident 

inclination). 

 Frequencies chosen for ‘red’ and ‘blue’. 

 Choice of schematic eye. 

 Formulae used for calculating the refractive indices of the media as 

a function of frequency. 

 Dependent chromatic properties can additionally be manipulated 

by introducing a pinhole in front of the eye. 

10. Derived properties that are dependent on frequency are: 

 Power (linear). 

 Corneal-plane refractive compensation (linear). 

 Exit-plane refractive compensation (linear). 

 Back-vertex power (hyperbolic). 

 Front-vertex power (linear). 

 All the cardinal and anti-cardinal points for Le Grand’s eye. 

 The anti-cardinal and focal points for the reduced eye. 

 All the chromatic properties. When the object distance remains 

stationary the dependence is linear. 

11. The incident and emergent principal and nodal points are independent of 

frequency for the reduced eye. 
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11.5 Concluding summary 

 This dissertation studies the chromatic dependence of first-order optical 

properties of the eye, investigating both the fundamental and derived properties of 

the eye as a function of frequency. An equation is obtained that gives the linear 

dependency of each of the fundamental properties of the model eyes as a function 

of frequency, giving a transference that is truly symplectic with determinant equal 

to 1 (Evans and Harris, 2014). 

 Chromatic aberration is defined for systems in general, that is systems 

with elements that may be astigmatic and decentred, including the eye. 

Longitudinal chromatic aberration is defined by a 22  matrix and is dependent 

on the longitudinal position of the object point. Transverse chromatic aberration is 

defined by a 12  vector and is dependent on both the longitudinal and transverse 

position of the object point (Harris and Evans, 2012). 

 Chromatic properties are defined as those independent of and those 

dependent on the image or object and aperture positions. The definitions are 

derived for the subset of Gaussian eyes, however, the set of equations for 

astigmatic eyes is provided. 

 A selection of derived properties including power, corneal-plane and exit-

plane refractive compensation, front- and back-vertex power and the cardinal 

points is investigated for their dependence on frequency. With the exception of 

the principal and nodal points of the reduced eye, all points investigated are 

dependent on frequency. The derived properties are related to each other through 

the characteristic matrices, which each define a linear space. 

 The transference, being a symplectic matrix, does not define a linear 

space, but can be mapped to Hamiltonian space which does define a linear space. 

Two mappings are investigated, namely the Cayley transform and the 

exponential-logarithmic mapping. The linear dependence of the entries of the 

Hamiltonian matrix on frequency is obtained. Graphs show the linear dependence 

on frequency of the individual entries as well as the three-dimensional linear 

space. 

 While understanding the meaning of Hamiltonian space and the region 

occupied by the eye is in its infancy, this study has given us insight into this linear 
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space. In particular, the Cayley transform derived from the fundamental properties 

(Equation 5.6.7) can potentially give us a deeper insight into this linear space. 

 This dissertation has opened the door to the study of the chromatic 

dependence of the first-order optical properties of the eye. A number of first-order 

optical properties, both fundamental and derived, have been investigated for their 

dependence on frequency. All the numerical examples have been purposefully 

limited to Gaussian eyes to allow insight into the dependence on frequency and 

chosen variables like object position and pinholes. We have a set of formulae that 

are not restricted to the reduced, or even schematic eyes. The stage is now set to 

generalise to systems and eyes with astigmatic and heterocentric elements.  
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Abstract

In Gaussian optics the transference is a matrix 
that is a complete representation of the effects of 
the system on a ray traversing it. Almost all of the 
familiar optical properties of the system, such as 
refractive error and power of the system, can be 
calculated from the transference. Because of the 
central importance of the transference it is useful to 
have some idea of how it depends on the frequency 
of light. This paper examines the simplest model 
eye, the reduced eye. The dependence of the trans-
ference is calculated in terms of both frequency and 

wavelength of light and both dependencies are 
displayed graphically. The principal matrix loga-
rithms are also calculated and displayed graphi-
cally. Chromatic difference in refractive compen-
sation, power and ametropia are obtained for the 
reduced eye from the transferences.  (S Afr Optom 
2011 70(4) 149-155)

Key Words: Transference, frequency, wave-
length, Emsley’s reduced eye, transformed trans-
ference, chromatic difference in: refractive com-
pensation, power and ametropia.

*Based on research towards a higher degree by T Evans under the guidance of Professor WF Harris.

Introduction
A transference is a matrix that represents the linear 

optical properties of an optical system, such as the 
eye. In Gaussian optics the transference is a complete 
representation of the effects of the system on a ray 
traversing it. Most of the optical properties of the sys-
tem, such as refractive compensation1, back- and front-
vertex power2, locations of the cardinal points3, 4 and 
power of the system5 can be calculated from the sys-
tem’s  transference. Because of the central importance 
of the transference it is useful to have some idea of how 
it depends on the frequency of the light traversing it. 
We take a look at the simplest model eye, the reduced 
eye.

The dependence of the fundamental first-order 
properties, calculated in terms of both frequency 
and wavelength of light, will be represented graphi-
cally across the visible light spectrum. Further, the 

dependence of the transformed transference will be 
represented graphically. Formulae for the calculation 
of chromatic difference in corneal-plane refractive-
compensation of the reduced eye and chromatic dif-
ference in power and ametropia are derived.

 
Emsley’s reduced eye

The advantage of the reduced eye (see Figure 1) 
is its simplicity. The reduced eye has a single stig-
matic refracting surface of radius of curvature r and 
a homogenous gap of length z. Emsley6 designed his 
reduced eye to match certain measurements of the 
Gullstrand-Emsley schematic eye. He placed specific 
emphasis on the power of 60 D and chose the refrac-
tive index in the reduced eye to be the same as that of 
water, namely 4/3. He took the index of air to be 1. 
These numbers imply a radius of curvature r of 50/9 
mm (or 1/180 m) and a length z of 200/9 mm (or 1/45 
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m)6, 7. In this paper we will make use of a reduced eye 
with the same r and z as Emsley’s eye and with an 
index n dependant on the frequency of light.

 
Figure 1. The reduced eye as a defined optical system. The 
length is z, the radius of curvature of the refracting surface is 
r, the refractive index outside the system is n0 and inside the 
system is n. The optical system has a longitudinal axis, Z and 
is bound by an entrance plane T0 immediately in front of the 
refracting surface and an exit plane T immediately in front of the 
retinal surface.

Linear optics
An optical system is bound by an entrance plane T0 

and an exit plane T and has a longitudinal axis Z. The 
transference T of a stigmatic, untilted, centred Gauss-
ian optical system is represented by8 

T = A B
C D

⎛

⎝
⎜

⎞

⎠
⎟

                                              
(1)

where A the dilation, B the disjugacy, C the divergence 
and D the divarication are the fundamental first-order 
optical properties of the system1, 8, 9. The power F is 
given simply by5, 8

F = −C .              (2)
When the system is an eye the dilation A can be 

considered to be the ametropia8 of the eye. In particu-
lar when the eye is emmetropic 
A = 0 .               (3)
The corneal-plane refractive compensation is given 
by1, 8

F0 = B
−1A .              

(4)

The transferences of the two elementary optical 
systems10, 11 are 

Tζ =
1 z

n
0 1
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⎟
⎟
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(5)

for a homogenous gap and 

TK =
1 0

−
n− n0
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⎟
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(6)

for a refracting surface. To calculate the transference 
of the reduced eye one multiplies in reverse12 as fol-
lows
T = TζTK .              

(7)

Substituting Equations 5 and 6 into Equation 7 and 
multiplying one obtains

T =
1− z

n
n− n0
r

⎛

⎝
⎜

⎞

⎠
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z
n

−
n− n0
r

1
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⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
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.

           

(8)

Substituting the values for Emsley’s reduced eye into 
Equation 8 one obtains

T = 0 50
3

 mm

-0.060 kD 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

        

  (9)

It is immediately apparent from Equations 3 and 9 
that the eye is emmetropic and has a power of 60 D. 

Frequency or wavelength?
The fundamental relationship between frequency 

(ν) and vacuum wavelength (λ) is given by
c0= νλ             (10)
where light traveling in a vacuum has a speed c0=299 
792 458 m.s−1  as defined by the 17th General Confer-
ence on Weights and Measures in November 1983. 
Pease and Barbeito13  look at the relationship between 
frequency and wavelength for a number of studies in-
volving chromatic aberration and conclude that results 
using frequency or wavenumber (the inverse of wave-
length) are “nearly perfectly linear”13, 14 in contrast to 
those using wavelength. They cite several reasons to 
support using frequency rather than wavelength (per-
haps the most important being that frequency is inde-
pendent of the medium whereas wavelength is not). 
These reasons make a compelling argument to study 
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the dependence of the transference on the frequency 
of light rather than its dependence on wavelength. We 
will compare the dependence of the transference on 
both frequency and wavelength.

Visible light colour spectrum 
The spectrum with wavelengths in vacuum is be-

tween 400 and 700 nm and represents the range over 
which human spectral sensitivity varies between 1 and 
100%.14-16 This represents frequencies between 428.3 
THz and 749.5 THz, approximately. Six coloured ref-
erence points are shown on each of the graphs below. 
The four colours red-orange, yellow, green and blue 
represent the peak vacuum wavelengths where each 
colour is considered “pure”17 while the deep-red and 
violet-blue represent the spectral range end-points. 
The frequencies and wavelengths of the six colours 
are detailed in Table 1.

Transference as a function of refractive index 
The transference of the reduced eye in Equation 8  

shows that the variable affected by different frequen-
cies of light is the refractive index n. Entering the ra-
dius of curvature and length of Emsley’s reduced eye 
we obtain its transference as a function of the refrac-
tive indices:

T =

4n0
n
−3 200

9n
mm

−
9
50
(n− n0 ) kD 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.        (11)

Refractive index of the Reduced Eye 
Thibos et al15  represent the refractive index of the 

reduced eye as a function of wavelength as follows

n = a+ b
λ − c             

(12)

where a=1.320535, b=4.685 nm and c=214.102 nm. 
The formula is based on Cornu’s formula for refrac-
tive index of water and constants were derived from 
clinical experimentation on real eyes. Using this for-
mula, Thibos et al15 showed that the refractive index 
of the body of the reduced eye changes more rapidly 
with wavelength than a reduced eye filled with water. 
The predictions for longitudinal chromatic aberration 
using this formula more closely approximate experi-
mental data than Emsley’s reduced eye filled with wa-
ter. The refractive indices for our six reference points 
were calculated using Equation 12 and are given in 
Table 1.

Refractive index of air 
The refractive index of air differs only very slightly 

from that of a vacuum and for most optometric calcu-
lations one can put n0=1. A number of equations, for 
example Cauchy’s dispersion formula18 and Ciddor’s 
equations19, are available for calculating the refrac-
tive index of air. Cauchy’s formula is expressed in 
terms of wavelength whereas Ciddor’s equations are 
expressed in terms of wavenumber. Cauchy’s disper-
sion formula18 is 

n0 −1( )107 = p+ q
λ 2

+
t
λ 4           

(13)

Table 1.  The colours of the six reference points and their frequencies, vacuum wavelengths, refractive indices for the reduced eye, 
ametropias, powers for the reduced eye and refractive compensations are provided. The last row shows the chromatic difference 
across the spectrum 428.3 to 749.5 THz.
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where p=2726.43, q=12.288×106nm2 and t=355.5×109  
nm4 for dry air at temperature 15°C and pressure 101 
kPa.

When Cauchy’s dispersion formula is used for n0 
one obtains results that differ insignificantly from 
those for n0=1. In particular for dilation the differ-
ence is less than 0.00083 across the entire visible light 
spectrum. For divergence this difference is 0.05 D. 
This results in a very slight upward shift in the graphs 
for A and C in Figure 2, however, the curvatures are 
unaffected. 

Calculation shows that the reduced eye is emme-
tropic at the frequency 517 THz (580 nm, yellow) 
when we use n0=1 but is emmetropic at the frequency 
526 THz (570 nm, yellow-green) when the refractive 
index of air is calculated using Cauchy’s formula. 

Graphical representation of the fundamental 
properties 

The properties are calculated for frequencies ac-
cording to Equation 11 with n0=1 and n given by 
Equation 12. The results of the calculations of each of 
the fundamental first-order optical properties are giv-
en in the accompanying graphs. Figure 2 represents 
each of the fundamental properties as functions of 

frequency of light and Figure 3 as functions of wave-
length. The six coloured reference points are shown 
by means of coloured diamonds. The small black dots 
on Figure 2 represent 10 equally spaced intervals of 
frequency of approximately 32.1 THz and the crosses 
on Figure 3 represent 10 equally spaced intervals of 
30 nm wavelength. 

We note that in Figure 2 the dots are more evenly 
spaced than the crosses in Figure 3. The dashed line 
represents the slope of the curve calculated using the 
least squares method. Each of A, B and C  present as 
curves in both sets of graphs. D is a straight line at 
1 as required by Equation 11. The curves are clos-
er to straight lines in Figure 2 than in Figure 3; this 
provides some justification for preferring to think in 
terms of frequency rather than wavelength of light. 

The transferences at the extremes of the visible 
spectrum (428.3 THz or 700 nm and 749.5 THz or 
400 nm), are

T428.3 THz =
0.0071 16.7062 mm

−0.0594 kD 1

⎛
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(14)

T749.5 THz =
−0.0277 16.5130 mm

−0.0622 kD 1
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⎠

⎟
⎟ .        (15)

Figure 2.  Sub-graphs A, B, C and D represent the four fundamental optical properties of the reduced eye as a function of frequency 
of light. The six coloured diamonds indicate six reference points as indicated in Table 1. The small black dots represent 10 equal 
intervals of  32.1 THz each. Each of A, B and C present as curves, while D is a horizontal straight line at 1.
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The transformed transference 
By taking the principal matrix logarithm we 

convert each transference T into a Hamiltonian ma-
trix8, 20. We represent the transformed matrix8 by 
T̂ . Thus
T̂ = LogT .            (16)

In MATLAB the function used is logm. In terms of its 
entries we write the transformed transference8 as 

T̂ = Â B̂
Ĉ D̂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ .

           
(17)

Because T̂ is Hamiltonian20, 

Â = −D̂ .            (18)

T̂ therefore has only three independent entries. This 
creates a 3-dimensional vector space which can be 
plotted on a 3-dimensional graph as done in Figure 
4. In the figure Â, B̂  and Ĉ are along three orthogo-
nal axes, where Â, B̂ (and D̂ ) are unitless, Â, B̂  is in mil-
limetres and Ĉ  is in kilodioptres. The result is close 
to a straight line. The small black dots represent 20 
equally spaced intervals of frequency of 16.1 THz.

Transforming Equations 14 and 15, we find

 

T̂428.3 THz =
−0.5994 20.1699 mm

−0.0718 kD 0.5994

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      
(19)

T̂749.5 THz =
−0.6251 20.0888mm

−0.0757 kD 0.06251
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Figure 4.  The transformed transference of the reduced eye in 
Hamiltonian space. The three axes represent Â, B̂, Â, B̂  and Ĉ . The 
black dots represent frequencies spaced at intervals of  16.06 
THz. The six diamonds represent the six coloured reference 
points. (The azimuth of  45° and elevation of 125° were chosen 
to exaggerate any possible curvature.) 

Figure 3.  The four fundamental properties of the reduced eye as a function of wavelength. The black crosses represent 10 equal 
intervals of 30 nm each.
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Some Derived Properties
We obtain here some derived properties of the 

reduced eye that are directly and simply obtainable 
from the transference. Using Equation 2 we calcu-
late the power F of the reduced eye for a particular 
frequency of light and using Equation 4 we calcu-
late the corneal-plane refractive compensation F0 
for the frequency. We read the ametropia A directly 
from the transference for the chosen frequency of 
light. Of greater interest is the chromatic difference 
in refractive compensation ΔF0 (known by various 
terms including longitudinal chromatic aberration21, 
chromatic difference of refractive error21, chromatic 
difference in refraction14, and axial chromatic aber-
ration21), chromatic difference in power (also known 
as chromatic difference of equivalent power14) and 
chromatic difference in ametropia across a specified 
spectrum of visible light to be studied.

Each of these derived properties in chromatic dif-
ference between two frequencies or wavelengths can 
be calculated in two ways: either directly from the 
two transferences or using the equations below. Equa-
tions 21, 23, 24 and 26 are general equations while 
Equations 22, 25 and 27 apply to the reduced eye.

To calculate the chromatic difference in corneal-
plane refractive compensation across a specified 
spectrum we take values from the two transferences 
(Equation 1) and substitute them into Equation 4 as 
follows: 
ΔF0 = B2

−1A2 −B1
−1A11ΔF0 = B2

−1A2 −B1
−1A11ΔF0 = B2

−1A2 −B1
−1A1 .           (21)

Now substituting from Equation 8 and also substitut-
ing the values for z and r for the reduced eye, we find
ΔF0 = (−135 D)Δn                                                  (22)

where ∆n  simplifies to

Δn = b 1
λ 2−c

−
1

λ1− c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
           

(23)

and b and c are the same constants as for Equation 12.
To calculate chromatic difference in power we 

similarly take values from the transferences and sub-
stitute them into Equation 2 as follows
ΔF = −(C 2 −C1)ΔF = (180D)n                                                   (24)
and substituting from Equation 8 and then substitut-
ing the value for r  for the reduced eye we find

 ΔF = (180D)n .           (25)

The chromatic difference in ametropia is derived di-
rectly from the transferences and therefore
ΔA = A2 − A1 .               (26)

Substituting values for z and r we obtain

ΔA = 4 1
n2
−
1
n1

⎛

⎝
⎜

⎞

⎠
⎟

                                                     
(27)

where n1 and n2 are calculated from Equation 12.
The chromatic difference in corneal-plane refrac-

tive compensation of the reduced eye was calculated 
across the visible light spectrum 428.3 to 749.5 THz 
and is −2.1006 D (see Table 1). The chromatic differ-
ence in power is 2.8 D. The chromatic difference in 
ametropia is −0.0348. 

Conclusion
The transference of the reduced eye depends on the 

frequency of light. The accuracy of the calculations 
depends on the formula used to calculate the refrac-
tive index as a function of either frequency of light or 
wavelength. In this article we have used Equation 12.

Results are displayed graphically for the transfer-
ences both as a function of frequency and as a func-
tion of wavelength. Divarication D is constant while 
ametropia A, disjugacy B and divergence C exhibit 
curved lines. The graph for the transformed transfer-
ence in Hamiltonian space is approximately a straight 
line.

Chromatic difference in refractive compensation, 
chromatic difference in power and chromatic differ-
ence in ametropia are calculated directly from the 
transference for the reduced eye.

Acknowledgements
We thank RD van Gool for continued discussions.

WF Harris acknowledges support from the National 
Research Foundation. All calculations and graphs 
were done using MATLAB.

1.

2.

3.

Harris WF. Magnification, blur, and ray state at the retina 
for the general eye with and without a general optical instru-
ment in front of it. 1. Distant objects.  Optom Vis Sci 2001 
78 888-900.
Harris WF.  Back- and front-vertex powers of astigmatic 
systems.  Optom Vis Sci 2010 87 70-72.
Harris WF.  Graphical construction of cardinal points from 
the transference.  S Afr Optom 2011 70 3-13.

References

ΔF0 = (−135 D)Δn

ΔF = (180D)n



S Afr Optom 2011 70(4) 149-155                                                T Evans, WF Harris - Dependence of the transference of a reduced eye on frequency of light

The South African Optometrist          ISSN 0378-9411
155

 
4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Harris WF. Pascal’s ring, cardinal points, and refractive 
compensation. Vision Res 2011 51 1679-1685. 
Harris WF.  Dioptric power: its nature and its representation 
in three- and four-dimensional space.  Optom Vis Sci 1997 
74 349-366.
Emsley HH. Visual Optics. London: Hatton Press Ltd, 1950 
pp 525-527, 543-544.
Bennett AG, Rabbetts RB. Clinical Visual Optics. London: 
Butterworth. 1984; p 18.
Harris WF.  The log-transference and an average Gaussian 
eye.  S Afr Optom 2005 64 84-88.
Harris WF.  The four fundamental properties of Gaussian 
optical systems including the eye.  S Afr Optom 1999 58 
69-79.
Harris WF.  General approach to the sensitivity of the optics 
of an eye to change in elementary parameters with applica-
tion to the Gaussian optics of a reduced eye.  S Afr Optom 
2009 68 166-174.
Harris WF.  Symplecticity and relationships among the fun-
damental properties in linear optics.  S Afr Optom 2010 69 
3-13.
Harris WF.  Stigmatic optical systems.  Optom Vis Sci 2004 
81 947-952.
Pease PL, Barbeito R. Axial chromatic aberration of the hu-
man eye: frequency or wavelength? Ophthal Physiol Opt 
1989 9 215-217.
Rabbetts RB. Bennett and Rabbetts’ Clinical Visual Optics, 
4th Ed. Edinburgh: Butterworth Heineman Elsevier, 2007 
pp 287-293.
Thibos LN, Ye M, Zhang X, Bradley A. The chromatic eye: 
a new reduced-eye model of ocular chromatic aberration in 
humans. Appl Opt 1992 31 3594-3600.
Le Grand Y. Light, Colour and Vision. Chapman and Hall, 
London; 1957 pp 72-73.
Meyer-Arendt JR. Introduction to Classical and Modern 
Optics. New Jersey: Prentice Hall, 1995  p 5.
Hodgson CD. Handbook of Chemistry and Physics. Chemi-
cal Rubber Publishing Co, Cleveland, 1959 p 2943.
Ciddor PE. Refractive index of air: new equations for the 
visible and near infrared. Appl Opt 1996 35 1566-1573.
Harris WF. Quantitative analysis of transformed ray trans-
ferences of optical systems in space of augmented Hamilto-
nian matrices. S Afr Optom 2007 66 62-67.
Thibos LN, Bradley A, Zhang X. Effect of ocular chromatic 
aberration on monocular visual performance. Optom Vis Sci 
1991 68 599-607.



1 

 

APPENDIX to Harris WF & Evans T Chromatic Aberration in Heterocentric 

Astigmatic Systems Including the Eye Optom Vis Sci 2012;89 

 

The theory is illustrated here for a model eye with four tilted astigmatic refracting surfaces.  

The optical system is the visual optical system of the eye from immediately in front of the 

cornea to immediately in front of the retina.  The curvatures, tilts, and separations are listed in 

Table A1.  K1 and K2 are the first and second surfaces of the cornea and L1 and L2 are the 

first and second surfaces of the lens of the eye.  K1 has principal meridians at °180  and °90 ; 

the radii of curvature along them are 6.5 and 8 mm respectively.  The horizontal and vertical 

components of tilt of K1 are 0.06 and 05.0−  (radians) respectively; the right side of the 

cornea would be tilted away from and the top towards an observer looking at the eye.  We use 

the equations for refractive index of the cornea, aqueous, lens, and vitreous published by 

Villegas, Carretero, and Fimia1.  The index in front of the eye is 10 =n .  We use the vacuum 

wavelengths 656.3 nm for red and 486.1 nm for blue respectively that have been used by 

others2.  In order to show small differences we retain more digits than may be physically 

meaningful. 

 

TABLE A1. 

Principal radii of curvature, separation, and tilt of surfaces of the model eye used in the 

numerical example. 

Surface Principal radii 

mm{degr}mm 

Separation 

mm 

Tilt 

K1 { }81805.6   ( )T05.006.0 −  

  0.5  

K2 { } 2.7208.5   ( )T06.004.0  

  3  

L1 { } 7.81002.10   ( )T1.007.0−  

  4  

L2 { } 5.6705.4 −−   ( )T03.005.0 −−  

  16.5  

 



2 

 

 The transferences calculated by the method described elsewhere3 for red and blue 

light turn out to be 























−−−
−−−−

−−−
−−−−

=

10000
0084.08840.00103.00619.00011.0
0176.00104.09046.00012.00686.0

1936.03221.161290.00125.00121.0
3134.01292.05690.160134.01513.0

rT              (A1) 

and 























−−−
−−−−

−−−
−−−−

=

10000
0086.08820.00105.00632.00011.0
0179.00106.09030.00012.00700.0

1957.02137.161307.00279.00123.0
3185.01309.04641.160136.01687.0

bT              (A2) 

Entries in the last three columns of the first two rows are in millimetres; entries in the first 

two columns of the third and fourth rows are in kilodiopters. 

 

Distant Object Point 

 

Consider a distant object point O in a vertical plane containing longitudinal axis Z.  Rays 

from O arrive at the model eye with inclination 







−

=
05.0

0
Oa  relative to Z.  Details of the 

calculation are summarized in Table A2.  For example, the red blurred image has a near 

vertical line (it is at about °90.94 ) 2.9567 mm in front of the retina; the other line is 0.2455 

mm in front of the retina.  (The blue image has a line at °87.94 , not quite the same as for the 

red image.)  The longitudinal chromatic aberration is Z∆  as listed.  Its principal structure is 

3235.0−  mm along °96.96  and 2884.0−  mm.  The horizontal and vertical components of 

the transverse chromatic aberration are 0008.0−  mm and 0.0160 mm respectively. 

 It may also be of interest to calculate the chromatic difference of refractive 

compensation for the eye.  The refractive compensation is given by4 ABF 1
0

−= , a dioptric 

power matrix.  We obtain it from the transferences (Eqs. A1 and A2).  In conventional 

spherocylindrical terms the results are 50.955194.86958.0 ×−−  and 

59.956850.86481.1 ×−−  for red and blue light respectively.  The chromatic difference of 

refractive compensation turns out to be 



3 

 

TABLE A2. 

Longitudinal Z∆  and transverse y∆  chromatic aberration of a model heterocentric 

astigmatic eye and a distant object point with 







−

=
05.0

0
Oa . 

 red blue 

L   (kD)  (Eq.11) 







−

−
3960.54236.0

4236.04874.0
 








−

−
3414.21643.0

1643.04270.0
 

Z   (mm) (Eq.4) 







−−
−−

2653.02306.0
2306.09369.2

 







−−
−−

5882.02263.0
2263.02258.3

 

−z    (mm) 9567.2−  2451.3−  

+z    (mm) 2455.0−  5960.0−  

+v   







− 9964.0

0853.0
 








− 9964.0

0849.0
 

V   (mm) (Eq. 26) 







−−
−−

1989.01729.0
1729.02021.2

 







−−
−−

4389.01689.0
1689.04070.2

 

( ) 0nVDB +    (mm) 







−

−
1480.162833.0
2592.05787.14

 







−

−
8283.152785.0
2545.02923.14

 

πVe +    (mm) 






−
1950.0
2762.0

 






−
1950.0
2767.0

 

 ( )( ) 







−

−
=+∆

3197.00048.0
0047.02864.0

n0VDB  mm 

 ( ) 






−
=+∆

0000.0
0006.0

πVe  mm 

 







−

−
=∆

3230.00042.0
0042.02889.0

Z  mm   (Eq. 5) 

 






−
=∆

0160.0
0008.0

y  mm   (Eq. 29) 

 

 

 



4 

 









−−
−−

=−=∆
9565.00298.0
0298.01136.1

r0b00 FFF  D which is 37.1001680.09510.0 ×−−  as a 

spherocylindrical power.  It follows from the definitions that there is no simple relationship 

between chromatic difference of refractive compensation and longitudinal chromatic 

aberration for a distant object point. 

 

Near Object Point 

 

Table A3 lists the details for the model eye and object point O 400 mm in front of the eye and 

with transverse position 






−
=

30
30

Oy  mm relative to longitudinal axis Z.  For an observer 

looking at the eye along Z, with O between the observer and the eye, O is up and to the left.  

The principal structure of the longitudinal chromatic aberration is 3555.0−  mm along 

°25.97  and 3139.0−  mm.  The principal longitudinal chromatic aberrations are slightly 

larger in magnitude compared with those for the distant object and the principal meridians 

have undergone a small anticlockwise rotation.  The horizontal and vertical components of 

the transverse chromatic aberration are 0238.0−  mm and 0.0262 mm. 
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TABLE A3. 

Longitudinal Z∆  and transverse y∆  chromatic aberration of a model heterocentric 

astigmatic eye and object point with 400zO −=  mm and 






−
=

30
30

Oy  mm. 

 red blue 

L    (kD) (Eq. 10) 







−

−−
9984.12359.0
2359.05773.0

 







−

−−
3566.44410.0
4410.04875.0

 

Z   (mm) (Eq. 4) 







−

−−
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2601.02038.2
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−−
2818.02549.0
2549.05184.2

 

−z    (mm) 2275.2−  5414.2−  

+z    (mm) 6603.0  3048.0  

+v   







− 9959.0

0904.0
 








− 9959.0

0899.0
 

V   (mm) (Eq. 26) 







−

−−
4774.01950.0
1950.06524.1
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−−
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0419.00008.0
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0009.00000.0
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−
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πVe  mm 
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−
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3548.00052.0
0052.03145.0

Z  mm   (Eq. 5) 

 






−
=∆

0262.0
0238.0

y  mm   (Eq. 28) 

 



Chromatic Aberration in Heterocentric
Astigmatic Systems Including the Eye
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ABSTRACT
Purpose. There is inconsistency in the literature in the definitions of longitudinal and transverse chromatic aberration, and
there appear to be no definitions that make allowance for astigmatism and heterocentricity. The purpose is to propose
definitions of longitudinal and transverse chromatic aberration that hold for systems which, like the typical eye, may be
heterocentric and astigmatic and to develop the associated optics.
Methods. Common definitions of longitudinal and transverse chromatic aberration based on Gaussian optics are gener-
alized naturally in terms of linear optics to accommodate heterocentricity and astigmatism.
Conclusions. The definitions offered here apply to systems in general, including the visual optical system of the eye, and
hold for homocentric stigmatic systems in particular. Care is advocated in the use of the terms longitudinal and transverse
chromatic aberration.
(Optom Vis Sci 2012;89:e37Ye43)

Key Words: longitudinal chromatic aberration, transverse chromatic aberration, astigmatism, heterocentricity, transfer-
ence, fundamental properties

Definitions in the literature1Y6 of first-order chromatic
aberration treat the optical system in question as homo-
centric and as having refracting elements that are stig-

matic. There appear to be no published definitions of longitudinal
and transverse chromatic aberration in systems that are hetero-
centric and astigmatic. The lack of definitions would seem un-
fortunate in view of the fact that heterocentricity and astigmatism
are features of the typical eye. It might also suggest that such defi-
nitions may not be easy to come by. This note has the limited
objective of proposing definitions and developing the linear optics
of longitudinal and transverse chromatic aberration of systems that
may be heterocentric and astigmatic. The definitions are natural
generalizations of familiar definitions in Gaussian optics. They
hold for systems in general and apply to the eye in particular,
and they allow one to explore the effects of changes to the eye in-
cluding those that accompany accommodation and refractive sur-
gery for example.

There is inconsistency in the optometric literature over the use
of the term chromatic aberration, particularly, perhaps, in the

more clinically oriented literature. This does not facilitate com-
munication within the discipline and between optometry and
other disciplines. Greater care needs to be taken over terminol-
ogy; usage should be as consistent as possible with that of the
broader scientific community, and distinct concepts should be
assigned distinct names. (We take up these points at the end of
this note.) In keeping with these thoughts we take our point of
departure to be a definition of chromatic aberration used com-
monly in the literature of both general optics and optometry.1Y3

HOMOCENTRIC SYSTEMS WITH STIGMATIC
ELEMENTS

Fig. 1 illustrates definitions1Y3 of longitudinal and transverse
chromatic aberration. The definitions are in terms of Gaussian
optics. System S consists of refracting elements invariant under
rotation about, and centered on, a common axis Z, the optical
axis of S. None of its refracting surfaces is shown. S has entrance
plane T0 and exit plane T, both transverse to axis Z. The indices
of refraction are n0 and n upstream and downstream, respectively,
of S. Object point O has longitudinal position zO and transverse
position yO. Fig. 1 is drawn with yO 9 0 and zO G 0. The location
of the image point I depends on the frequency M of light involved.
Consider two particular frequencies Mr and Mb. It will be conve-
nient to refer to the light as red and blue, respectively. The red
and blue images of O are represented in Fig. 1 as Ir and Ib,
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respectively, with longitudinal zr and zb and transverse yr and yb

positions, all being positive in the figure. We need to distinguish
the incident n0r and n0b and emergent nr and nb indices cor-
responding to frequencies Mr and Mb. By definition

$z ¼ zb � zr ð1Þ

and

$y ¼ yb � yr ð2Þ

are the longitudinal (or axial) and transverse (or lateral) chromatic
aberrations, respectively.

We note that longitudinal and transverse chromatic aberra-
tions do not depend on the properties of system S alone; they
depend on the properties of system S and the property of object
point O. Most properties of a system depend on the context or
environment of the system, that is, the indices n0 and n. For
convenience, we take reference to properties of a system to imply
the context as well. The property of object point O is its position
in space. In Fig. 1, it is represented by its longitudinal and
transverse positions zO and yO. It follows that for a given system
S, the chromatic aberration is not unique. There is usually an
infinity of longitudinal and transverse chromatic aberrations. The
chromatic aberration of the system becomes unique when the
location of the object point is specified.

By these definitions, both longitudinal $z and transverse $y
chromatic aberrations are lengths measured orthogonally and
represented by scalars. One is tempted, therefore, to regard the
two chromatic aberrations as Cartesian components of a vectorial
chromatic aberration and to insert an arrow from Ir to Ib to
represent it in Fig. 1. We could then treat chromatic aberration
holistically and not have to write separate equations for the two
components. We shall find below, however, that the two aspects
are fundamentally different and cannot meaningfully be com-
bined in this way.

HETEROCENTRIC SYSTEMS WITH STIGMATIC
ELEMENTS

A two-dimensional drawing, like that of Fig. 1, suffices for re-
presenting chromatic aberration in the case of homocentric sys-
tems free of astigmatism because optical axis Z, object point O,
and images Ir and Ib all lie in a common plane; that plane becomes
the plane of the paper. However, when homocentricity is relaxed,
this is usually no longer the case. In general, for heterocentric
systems with stigmatic elements, we need a three-dimensional
representation like that attempted in Fig. 2. In Fig. 2, system S
contains refracting elements that may be mutually decentered. S
may contain prisms and tilted surfaces. Z is no longer an optical
axis but merely a longitudinal axis.

FIGURE 1.
Chromatic aberration in Gaussian optics. S is an optical system with entrance and exit planes T0 and T, respectively. Z is the optical axis. Corresponding to
an object point O are red and blue image points Ir and Ib. By definition, the longitudinal chromatic aberration of S for O is the signed length $z. The
transverse chromatic aberration of S for O is the signed length $y. Usually zr 9 zb and not as shown here.

FIGURE 2.
Longitudinal chromatic aberration $z (a scalar) and transverse chromatic aberration $y (a vector) of heterocentric stigmatic system S for object point O.
Longitudinal axis Z is not an optical axis.
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It is apparent that the definition for longitudinal chromatic
aberration $z in the case of homocentric systems with stigmatic
elements (Eq. 1) can be generalized to heterocentric systems un-
changed. This is not the case for transverse chromatic aberration
however. Transverse chromatic aberration becomes a two-com-
ponent vector $y defined by

$y ¼ yb � yr ð3Þ
where yr and yb are the transverse position vectors of images Ir

and Ib. Transverse chromatic aberration $y can be decomposed
into horizontal and vertical components in the transverse plane
if desired.

One still needs to resist any temptation to lump longitudinal and
transverse chromatic aberration into a single concept of chromatic
aberration that could be represented by an arrow (not shown) in
Fig. 2 from Ir to Ib.

HETEROCENTRIC ASTIGMATIC SYSTEMS

We now relax the requirement that the elements of system S of
Fig. 2 be stigmatic; the elements of S may be heterocentric and
astigmatic. Each image point, Ir and Ib, in Fig. 2 becomes blurred
in Fig. 3. One can think of each image point as dissociating
longitudinally into a pair of orthogonal image lines. The struc-
ture becomes that of the familiar interval of Sturm, its nature and
location being dependent on the frequency of the light. We need
to allow for the fact that the orientations of the image lines
usually do not match; that is, the first image line of the red
blurred image is usually not parallel to the first image line of the
blue blurred image. How now do we define longitudinal and
transverse chromatic aberration?

Let us first consider chromatic aberration in a system with
astigmatic elements that are centered on Z. Z then is an optical
axis. Suppose, further, that object point O lies on Z. Red image Ir

is then centered on Z, and its associated line segments intersect Z.
The same holds for blue image Ib. Evidently, there is no trans-
verse chromatic aberration. What chromatic aberration there is
longitudinal. But how do we define it? The definition should
surely account for the fact that the two blurred images may differ

not only in longitudinal position but also in the nature and de-
gree of blur. In other words, longitudinal chromatic aberration
would need at least three numbers for its complete quantitative
representation.

The images themselves do not suggest an obvious answer. In-
stead, we shift focus to the pencils of light containing them. In
the absence of astigmatism, the red pencil would have reduced
vergence Lr = nr/zr in exit plane T where zr is the longitudinal
position of the image point relative to T. Turning the equation
around, we obtain zr = nr/Lr. In the presence of astigmatism, the
generalization of the scalar reduced vergence L is the matrix re-
duced vergence L introduced by Fick7,8 and, independently, by
Keating.9 L is a 2 � 2 symmetric matrix10 identical in mathe-
matical character to the dioptric power matrix F described by
Fick7,8 and Long11 if not by others before them. Its entries have
the units of reciprocal length and so can be in diopters. Lr is the
reduced vergence at exit plane T of system S of the red astigmatic
pencil defined by O, and Lb is the same but for the blue pencil.

We define

Z ¼ L�1n: ð4Þ

Z is symmetric and has the units of length and can be regarded as
a generalized position of the blurred image relative to exit plane
T. The eigenvalues of Z give the longitudinal positions of the
image lines, and the eigenvectors define their orientations.
(Eigenvalues and eigenvectors are treated in standard texts in
linear algebra and have been applied in this context in several
articles.9Y11) (For the moment, we assume that Lj1 exists and
return to the issue of nonexistence later.) Let the eigenvalues of Z
be zj and z+ where zj e z+ and let the corresponding nor-
malized eigenvectors be vj and v+. Then, the first image line has
longitudinal position zj relative to exit plane T and is parallel to
the complementary eigenvector v+, and the second image line
has longitudinal position z+ and is parallel to vj.

Eq. 1 suggests the definition

$Z ¼ Zb�Zr ð5Þ

for the longitudinal chromatic aberration of a homocentric astig-
matic system S for object point O on the optical axis. There is no

FIGURE 3.
Chromatic aberration of a system S with heterocentric astigmatic elements. Corresponding to object point O are blurred images Ir and Ib, each of which has
a pair of longitudinally separated orthogonal image lines shown here by means of short line segments connected by a line segment parallel to Z. Lon-
gitudinal chromatic aberration is defined by Eq. 5 in terms of the reduced vergence of light at emergence from S at T. Transverse chromatic aberration is
the vector $y. If Z is an optical axis and O is on Z then $y = o and Ir and Ib are centered on Z.
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transverse chromatic aberration. $Z characterizes the longitudinal
difference of the two images completely. By this definition, lon-
gitudinal chromatic aberration becomes the 2� 2 symmetric ma-
trix $Z and, as such, can be characterized by three independent
numbers. However, we need to examine it further.

Now reduced vergence (either as scalar L or as matrix L) de-
pends on the relative longitudinal positions of object point and
refracting elements and is independent of relative transverse posi-
tions. Thus, provided relative longitudinal positions are maintained,
decentering the object point and elements of the system has no ef-
fect on the longitudinal positions and natures of the blurred images
including the longitudinal positions and orientations of the image
lines. It follows, therefore, that we can relax the requirement that O
and the centers of the elements of S be on axis Z and take Eq. 5 to be
the definition of the longitudinal chromatic aberration $Z of a
heterocentric astigmatic system for an object point anywhere.

Because $Z is 2 � 2 and symmetric, longitudinal chromatic
aberration has two orthogonal principal meridians. They are the
meridians within which the longitudinal chromatic aberration is
a maximum and a minimum. The maximum and minimum
values are the principal longitudinal chromatic aberrations. They
are the eigenvalues of $Z, and the corresponding principal mer-
idians are the corresponding eigenvectors.

The only effect of relative decentration of object point and
system elements is to cause transverse displacement yr and yb

of blurred images Ir and Ib of object point O in heterocentric
astigmatic system S. Then, Eq. 3 defines the transverse chromatic
difference $y of the images. We, therefore, call $y the transverse
chromatic aberration of system S for object point O.

CHROMATIC ABERRATION IN GENERAL

Eqs. 3 and 5 represent the generalizations to optical systems in
general of the definitions (Eq. 1 and 2) for systems whose
refracting elements are all stigmatic and centered on an optical
axis. Eq. 3 defines $y transverse and Eq. 5 $Z longitudinal
chromatic aberration in general; the first is a two-dimensional
vector, and the second is a 2 � 2 symmetric matrix. The essential
difference in mathematical character between transverse and
longitudinal chromatic aberration highlights the fact that the two
types of aberration are fundamentally different in nature and
cannot meaningfully be combined into a single unified concept
of chromatic aberration.

All this holds in particular for systems whose elements are
stigmatic and homocentric. However, in a context in which
only such systems are under discussion $y and $Z can be re-
duced to the scalar quantities $y and $z and sketched in one
plane as in Fig. 1. Then, $y is one component of $y, the other
being zero and perpendicular to the plane of the paper, and $z is
the scalar coefficient in the scalar matrix $Z = I$z, I being an
identity matrix.

QUANTIFYING CHROMATIC ABERRATION

Having defined them, and given the makeup of an optical
system, how do we calculate longitudinal and transverse chro-
matic aberration? Here, we derive general formulae in linear
optics. The key is the system’s ray transference, which is a function

of the frequency of light.12 For systems that may be heterocentric
and astigmatic, the transference is the 5 � 5 matrix13,14

T ¼
A B e
C D P

oT oT 1

0
@

1
A: ð6Þ

A, B, C, and D are 2 � 2 and e and P are 2 � 1 submatrices.
They are the fundamental properties of the system. oT is the
matrix transpose of the 2 � 1 null matrix o. The fifth row of T is
the trivial (0 0 0 0 1). e and P account for the effects of tilt and
decentration; each is null if the longitudinal axis is an optical axis.15

Longitudinal Chromatic Aberration

If the reduced vergence is L0 at entrance plane T0 of system S,
then the reduced vergence is10,16

L ¼ðDL0� CÞðA� BL0Þ�1 ð7Þ

at the exit plane T of S. For an object point O at longitudinal
position zO relative to T0

L0 ¼ In0=zO: ð8Þ

Hence

L ¼ðDn0=zO � CÞðA � Bn0=zOÞ�1 ð9Þ
or

L ¼ðD� CzO=n0ÞðAzO=n0 � BÞ�1 ð10Þ
with two special cases,

L ¼jCAj1 ð11Þ
for zO Y V and

L ¼�DB�1 ð12Þ

for zO = 0. (Eq. 11 represents the back-vertex power of system
S.17) Adding subscripts to all the parameters in these equations
(except zO) gives expressions for the red and blue reduced ver-
gences Lr and Lb at exit plane T. Substitution into Eq. 5 then gives
the longitudinal chromatic aberration $Z for system S and object
point O.

Transverse Chromatic Aberration

Perhaps surprisingly, the problem of calculating the transverse
chromatic aberration is more challenging. We first examine ob-
ject points at finite distances.

Consider the compound system from the transverse plane of O
to the transverse plane containing an image line of a blurred
image. Let the longitudinal position of the plane of the image line
be z relative to exit plane T of system S. The compound system’s
transference is obtained by multiplying the transferences of the
components in reverse order in the usual way.14 Its top block row
turns out to be

Aþ Cz=n B þDz=n �ðAþ Cz=nÞzO=n0 e þPz=n
�
:

�
ð13Þ

Combining this with the equation for the transverse position at
emergence (Eq. 14 of a previous article14), we see that a ray of
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inclination aO at object point O arrives at the transverse plane of
the image line with transverse position

y¼ðAþCz=nÞyOþ
�
B þ Dz=n� ðAþ Cz=nÞzO=n0

�
n0a O

þ e þ Pz=n: ð14Þ
In particular for the ray parallel to longitudinal axis Z at O

y ¼ ðA þ Cz=nÞyO þ e þ Pz=n: ð15Þ
We write this as

y ¼ AyO þ ðCyO þ PÞz=n þ e: ð16Þ
The first image line goes through the point given by Eq. 16

with z = zj and is parallel to v+. Hence, we can write a para-
metric equation for the first image line as

y� ¼ vþk� þ AyO þ ðCyO þ PÞz�=n þ e ð17Þ
for all real scalars kj. Interchanging the plus and minus signs gives the
equation of the second image line. But v+ is orthogonal to vj so we
can write the equation for the second image line as

yþ ¼ Evþkþ þ AyO þ ðCyO þ PÞzþ=n þ e ð18Þ

where E ¼ 0 1
�1 0

� �
. Subtracting Eq. 17 from Eq. 18 we

obtain

yþ � yj ¼ ðEkþ � Ik�Þvþ þ c ð19Þ

where

c ¼ðCyO þ PÞðzþ � z�Þ=n: ð20Þ
Now y+ j yj is the longitudinal projection of a vector from

a point on the first image line to a point on the second. We make
this vector parallel to Z, i.e., y+ j yj = o. Then, in terms of the
components of v+ and c, Eq. 19 becomes

k� �kþ
kþ k�

� �
vþ1

vþ2

� �
¼ c1

c2

� �
: ð21Þ

Multiplying out, rearranging, and reassembling into matrices we
obtain

vþ2 �vþ1

vþ1 vþ2

� �
kþ
k�

� �
¼ �c1

c2

� �
: ð22Þ

Because v+ is a unit vector, the 2 � 2 matrix on the left has unit
determinant. Hence

kþ
k�

� �
¼ vþ2 vþ1

�vþ2 vþ2

� �
�c1

c2

� �
ð23Þ

from which we obtain

k� ¼ vT
þc ð24Þ

in particular. Substituting from Eq. 24 into Eq. 17 and rearran-
ging one finds that the transverse position of the image is

y ¼ ðA þVCÞyO þ e þVP ð25Þ
where V is the matrix

V ¼
�
vþ v T

þðzþ � z�Þ þ Iz�
�
=n: ð26Þ

For a distant object point we take the compound system to be
system S and the homogeneous gap between S and an image line

and apply a similar method to that used above for an object point
at a finite distance. We find that, for a distant object point O, the
transverse position of the image turns out to be

y ¼ ðBþVDÞn0aO þ e þ VP ð27Þ

where aO is the inclination of the rays from O.
Eqs. 25 to 27 can be written for the red and blue blurred

images. Eq. 27 then gives yb and yr for distant object points and
Eq. 25 gives them otherwise. Hence, from Eq. 3, we obtain the
transverse chromatic aberration

$y ¼$ðA þ VCÞyO þ $ðe þ VPÞ ð28Þ

for an object point at a finite distance and

$y ¼$

�
ðB þ VDÞnO

�
aO þ $ðe þ VPÞ ð29Þ

for a distant object point.
The calculation fails when the reduced vergence L of either the

blue or red light is singular, that is, when an image line is at in-
finity. However, such cases seem of little practical interest and we
consider them no further.

Systems with Stigmatic Elements

In particular, if every element of the system is stigmatic, then
A, B, C, and D are all scalar matrices; that is, A = IA where A is a
scalar, and similarly for the other three 2 � 2 fundamental
properties. The reduced vergence at emergence is also a scalar
matrix, L = IL, and so is Z (Eq. 4), Z = IZ. The eigenvalues of Z
are not distinct: zj = z+ = Z is simply the longitudinal position of
the image point relative to exit plane T. The longitudinal chro-
matic aberration is $Z = I$Z where $Z is the longitudinal po-
sition of the blue image point relative to the longitudinal position
of the red image point. Eq. 26 reduces to V = IZ/n and, finally,
Eqs. 28 and 29 become

$y ¼$ðA þ ZC=nÞyO þ $ðe þZP=nÞ ð30Þ

and

$y ¼$

�
ðB þ ZD=nÞn0

�
aO þ $ðe þZP=nÞ: ð31Þ

Summary of the Routine for Calculating Longitudinal
and Transverse Chromatic Aberration

Suppose we know the transferences of a system S for blue and
red light. We can then calculate the longitudinal and transverse
chromatic aberrations of the system for a finite object point O with
longitudinal position zO and transverse position yO. We proceed
as follows. We use Eqs. 9 or 10 to determine the reduced vergence
L of blue light from O leaving S. Eq. 4 then gives the generalized
longitudinal position Z of the blue image. We repeat for the red
image. The longitudinal chromatic aberration is then $Z given
by Eq. 5. For Z, for blue light, we obtain the eigenvalues zj and
z+ and the corresponding normalized eigenvectors vj and v+.
Eq. 26 gives V. Hence one determines A + VC and e + VP for the
blue light. This is repeated for red light. $(A + VC) is calculated
by subtraction (blue minus red) and similarly for $(e + VP).
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Finally, the transverse chromatic aberration $y is given by
Eq. 28.

If object point O is distant then we need the inclination aO.
The calculation is the same as for a finite object point except that
the vergence L is obtained via Eq. 11, (B + VD)n0 replaces A +
VC, and Eq. 29 is used instead of Eq. 28.

The Appendix illustrates the calculations for a heterocentric
astigmatic model eye with four refracting surfaces (available at
http://links.lww.com/OPX/A107).

CONCLUSIONS

For systems with homocentric stigmatic refracting elements
definitions of chromatic aberration differ from author to author.
Several authors have remarked on the inconsistency and con-
fusion.18Y20 We believe there is a need for authors to take greater
care to define terms in general but particularly in the context of
chromatic aberration.

Here, we have offered definitions that are natural general-
izations of the familiar concepts1Y6 in Gaussian optics; they hold
for the special case of systems with homocentric stigmatic ele-
ments, and they hold for systems, like the eye, with elements that
are heterocentric and astigmatic. We have also derived expres-
sions for longitudinal and transverse chromatic aberration in
terms of the fundamental properties of the optical system.

For general systems, which may be heterocentric and astig-
matic, we have defined longitudinal chromatic aberration to be
the 2 � 2 symmetric matrix $Z given by Eq. 5. It depends on the
longitudinal position zO of the object point O but is independent
of the transverse position yO. Its eigenvectors are principal mer-
idians of longitudinal chromatic aberration, and its eigenvalues
are the principal longitudinal chromatic aberrations along them.

The transverse chromatic aberration $y, a vector defined by
Eq. 3, can be calculated by means of Eqs. 28 or 29. In general,
it is an affine function of the object’s transverse position yO

(Eq. 28) in the case of objects at finite distances or of its direc-
tion, in effect aO, (Eq. 29) in the case of distant objects. If the
refracting elements of the system are all centered on longitudinal axis
Z, then Z is an optical axis, and because e and P are both null,15

the constant term $(e + VP) in those equations vanishes, and
the transverse chromatic aberration becomes linear in yO or aO.

It may be worth mentioning that the principal meridians of the
red and blue pencils, leaving the optical system, need not match.
This is why one cannot, in general, simply calculate longitudinal
chromatic aberration separately in two orthogonal principal
meridians. Nevertheless, preliminary calculations (such as those
in the Appendix) suggest that, for many practical purposes, it
may well be sufficiently accurate to do so.

If the system in question is composed of stigmatic elements
arranged homocentrically, then the definitions here reduce to the
familiar definitions1Y6 of chromatic aberration in Gaussian op-
tics. This special case has been treated above. We note, however,
that stigmatic systems exist with astigmatic elements.21,22 For
them, the special case does not apply, although their longitudinal
chromatic aberration $Z is a scalar matrix.

We are not entirely comfortable with the word aberration in
the terms longitudinal and transverse chromatic aberration. It
suggests an optical concept beyond first order, whereas here, and

in most cases in the literature, the concept is one in first-order
optics. However, until a more suitable term is suggested, we be-
lieve longitudinal and transverse chromatic aberration be reserved
for the concepts defined here.

The definitions proposed here are not specific to the eye. The
retina, in particular, is not mentioned in the definitions. When
applied to the eye, as to any other system, it is important to be
unambiguous about how the definitions are being used. First, it
should be clear what the system is whose chromatic aberration is
being defined; in particular, the entrance and exit planes T0 and T
should be defined. For the visual optical system of the eye that
would most likely have T0 immediately in front of the tear film
on the cornea and T immediately in front of the retina. Second,
the location of longitudinal axis Z should be specified in some
way. Third, the location of the object point relative to Z should
be given. Finally, the two frequencies Mr and Mb of the light should
be given or understood.

In his or her introduction to optometry, the beginning student
often learns to refract with the interval of Sturm and its relation
to the retina in mind. What is clear from the analysis here is that
there is such an interval for each frequency, that they differ lon-
gitudinally and transversely by the longitudinal and transverse
chromatic aberration, and that, from a knowledge of the structure
of the eye, we are now able to calculate these differences. (A
somewhat different perspective on what underlies the routine of
refraction is presented elsewhere.23)

It would seem that the familiar concepts of longitudinal and
transverse chromatic aberration, as defined in Gaussian optics,1Y6

are probably less directly useful in the clinical context which may
be why a variety of concepts related to them has been devised for
use in practice. Confusion arises, however, because many of these
concepts are called by the same names. They should, we believe,
be assigned suitable distinguishing designations. Our generaliza-
tion of the concepts in Gaussian optics to allow for hetero-
centricity and astigmatism may also be of less direct use in the
clinical environment. Nevertheless, it has its place in optometric
didactics and in the broader understanding of the optics of vision.
Furthermore, the theory provides tools for exploring the effects of
changes to the eye that accompany accommodation and refractive
surgery for example.

APPENDIX

The appendix is available online at http://links.lww.com/
OPX/A107.
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Abstract

Background: The line of sight and the corneal sighting centre are important refer-

ences for clinical work in optometry and ophthalmology. Their locations are not

fixed but may vary with displacement of the pupil and other changes in the eye.

Purpose: To derive equations for the dependence of the locations on properties

of an eye which may be heterocentric and astigmatic.

Methods: The optical model used is linear optics. It allows for the refracting sur-

faces of the eye to be astigmatic and tilted or decentred. Because the approach is

general it applies not only to the natural eye but also to a pseudophakic eye and

to the compound system of eye and any optical instrument in front of it. The

analysis begins with the line of sight defined in terms of the foveal chief ray.

Results: Equations are derived for the position and inclination of the line of sight

at incidence onto the eye. They allow one to locate the line of sight and corneal

sighting centre given the structure (curvatures, tilts, spacings of refracting sur-

faces) of the eye. The results can be generalized in several ways including applica-

tion in the case of extra-foveal fixation and when there is a lens or other optical

instrument in front of the eye. The calculation is illustrated in the Appendix for a

model eye with four separated, astigmatic and tilted refracting surfaces.

Conclusions: The equations allow routine calculation of the line of sight for an

eye of known structure and of the eye combined with an optical device such as a

spectacle lens. They also allow exploration of the dependence of the line of sight

on the location of the centre of the pupil and on other properties in the eye. There

is a dependence of the line of sight on the frequency (or vacuum wavelength) of

light but this may not be of clinical significance.

Introduction

Among the several axes defined for the eye the line of sight

has been described as ‘the most important axis from the

point of view of visual function, including refraction proce-

dures’.1 However the line of sight is not fixed for any eye

because the centre of the pupil can vary.1–3 Indeed displace-

ment of the pupil centre is but one of many changes, inside

and outside the eye, that may alter the line of sight. Actu-

ally, even for a fixed eye, there is strictly no unique line of

sight but one for each frequency or vacuum wavelength of

light. (These statements will be justified below.) However,

how significant are these effects? Despite the importance of

the concept the literature seems to have no clear answers.

Our purpose here is to develop a framework for finding

answers. More particularly we shall make use of the power-

ful methodology of linear optics to derive an equation for

the line of sight as a function of properties of the eye with

or without an optical device in front of it.

The methodology used in this note is the same as that

used in several recent papers4–10 to which the reader is

referred for more details than are given here. The equations

derived below allow one to examine the sensitivity of the

line of sight to displacement of the centre of the pupil, to

accommodation, to decentration of an intraocular lens, to

frequency and so on. Linear optics and the concept of the

ray transference allow one to approach the problem in a

very general manner; we are not limited to particular mod-

els of the eye and can handle eyes with multiple, separated,

decentred and nonaligned astigmatic elements. Further-
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more, although we shall talk of the eye, the generality of the

approach means that the results also apply to compound

systems consisting of eye and optical instrument (lens, tele-

scope, etc.) in front of it.

Definition of the line of sight

Like many others11–16 Alpern17 defines the line of sight as

the line joining the fixation point and the centre of the

entrance pupil. It is a line in object space, that is, outside

the eye. Implicit in the definitions is that the index of

refraction of the medium (usually air but it may be water

for example) in object space is uniform and isotropic and,

hence, that the line of sight is a straight line. The general

direction of the light into the eye assigns it a positive sense.

We shall regard the line of sight as infinite; in other words

it is the directed straight line segment from fixation point

to centre of entrance pupil extended to infinity in both

positive and negative senses. It remains a line in object

space and allows for the possibility of real and virtual object

points. (We shall not consider virtual objects explicitly.)

We mention in passing that the International Organiza-

tion for Standardization (ISO) defines the line of sight in

terms of the entrance and exit pupils and the centre of the

fovea.18 ISO call it the visual axis although in the forthcom-

ing edition of the Standard the name has been changed to

line of sight (personal communication from R. B. Rabbetts).

If the cornea is astigmatic then, strictly speaking, the cen-

tre of the entrance pupil is not well defined. The image of

the centre of the (actual) pupil in the cornea is not a point

but a blurred region consisting of a pair of separated

orthogonal lines in the familiar interval of Sturm. The effect

is usually sufficiently small to be of no consequence in the

clinical environment but it does present problems in optical

analyses. Regardless of the degree of astigmatism the prob-

lems are overcome if the line of sight is defined in terms of

the foveal chief ray17,19 (the ray through the centres of the

pupil and the fovea) instead of the entrance pupil. The

Optical Society of America (OSA) defines the line of sight

as the foveal chief ray itself.19 On the other hand, for Alpern

the line of sight is that part of the foveal chief ray which

can be specified in object space17; this has more in common

with the definition in terms of entrance pupil. Accordingly,

for the purposes of this paper we take the line of sight to be

the infinite straight line defined by the portion of the foveal

chief ray in object space, that is, the portion incident onto

the eye.

The location of the line of sight can be defined by speci-

fying a single point and a direction. A convenient point is

the intersection of the line with the first surface of the cor-

nea, the corneal sighting centre in Mandell’s20 terminology.

Accordingly our primary objective will be to find formulae

for the location of the corneal sighting centre and the direc-

tion of the line of sight in terms of properties of the eye

which can be calculated from knowledge of the structure of

the eye.

Locating the line of sight

Figure 1 is a schematic representation of an eye and its line

of sight. The only physical structure of the eye actually

shown in the figure is the iris (grey). The hole in the iris,

not necessarily circular, is the pupil. The pupil lies in trans-

verse plane TP. Z is a reference longitudinal axis relative to

which transverse positions and inclinations are measured.

TK is a transverse plane immediately anterior to the tear

film on the cornea and TR a transverse plane immediately

anterior to the retina. The medium immediately anterior to

TK has index of refraction n0; the indices in the pupil and

immediately anterior to the retina are nP and nR respec-

tively. The visual optical system of the eye is from TK to TR;

we represent it as optical system S. TP partitions S into sub-

systems SA and SB. We call SA the anterior portion of the

eye or simply the anterior eye and similarly for SB, the pos-

terior portion. Properties of SA are identified by means of

subscript A and similarly for SB. We call S the eye or the

whole eye; properties of S have no subscripts.

In Figure 1 point P represents the centre of the pupil and

point R the centre of the fovea. By definition the foveal

chief ray intersects centres P and R; three of its segments

are shown, an incident segment, a segment through the

pupil and a segment arriving at the fovea. K is the corneal

sighting centre. By definition the infinite straight line

defined by the incident segment is the line of sight LL.

R

Ry

RT

Z

Ka

Py

PT

KyL

KT

SA

S

SB

K

P

L

Figure 1. The line of sight or sighting axis LL and the corneal K, pupil-

lary P and retinal R sighting centres (P and R usually being the centres of

the pupil and fovea). S is the visual optical system of an eye; it extends

from entrance plane TK, immediately anterior to the corneal tear film, to

the exit plane TR, immediately in front of the retina. The iris and pupil

are the only structures of the eye shown explicitly; they define plane TP
which partitions the eye into anterior SA and posterior SB portions. Z is

the longitudinal axis relative to which transverse positions and inclina-

tions are measured. Three segments of the foveal chief ray or sighting

ray are shown: incident onto S at K, in the pupil through P and emer-

gent from SB at R.
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Relative to longitudinal axis Z points K, P and R have

transverse positions represented by the vectors yK, yP and

yR respectively. Each vector is represented by a 2 9 1

matrix whose top and bottom entries are Cartesian compo-

nents which we may regard as its horizontal and vertical

components respectively; they are in length units.

The line of sight has transverse position yK at TK and

inclination aK. Like yK, aK is 2 9 1 and its components are

the horizontal and vertical components of the inclination;

they are in radians and, hence, unitless. yK characterizes the

location of the corneal sighting centre completely and yK
and aK together completely characterize the line of sight LL.

Our objective is to obtain expressions for yK and aK in

terms of other properties of the eye, properties that can be

calculated from curvatures, tilts and spacings of refracting

elements in the eye and of refractive indices of the media

between them.

We represent the inclination of the foveal chief ray at P

in the pupil and at R on the retina as aP and aR respectively.

We now apply the basic equations of linear optics across

the whole eye (Equations 7, 8 of a previous paper7 for

example). This gives a pair of simultaneous matrix equa-

tions in terms of the transverse positions yK and yR and

inclinations aK and aR of the foveal chief ray at incidence

onto the cornea and at the retina:

AyK þ n0BaK þ e ¼ yR ð1Þ

and

CyK þ n0DaK þ p ¼ nRaR: ð2Þ

A, B, C, D are 2 9 2 matrices and e and p 2 9 1 matrices;

they are submatrices of the ray transference T (5 9 5) of

the eye S and represent its fundamental optical properties.

A, B and e form the first or top block-row of T and C, D

and p the second block-row. It is apparent from Equation 1

that A is unitless and B and e have length units and from

equation 2 that C has reciprocal length units (dioptres, for

example) and D and p no units. Equation 1 written across

SA, the anterior eye, becomes

AAyK þ n0BAaK þ eA ¼ yP ð3Þ

where AA, BA and eA are fundamental properties of SA.

Equations 1 and 3 can be combined into the single

matrix equation
Q

yK
aK

� �
¼ yR � e

yP � eA

� �
ð4Þ

where
yK
aK

� �
is a 4 9 1 matrix which we call the incident

location of the line of sight and

Q ¼ A n0B
AA n0BA

� �
ð5Þ

is a 4 9 4 matrix whose top block-row is a property of the

whole eye S and whose bottom block-row is a property of

the anterior eye SA. We refer to Q as the coefficient matrix.

The top block-row of the 4 9 1 matrix on the right of

Equation 4 is a property of the whole eye, including the

location of the centre of the fovea yR, and the bottom

block-row is a property of the anterior eye including the

centre of the pupil yP .

A line of sight necessarily satisfies Equation 4. Equa-

tion 4 is an example of a linear equation, a standard equa-

tion in linear algebra. Depending on the coefficient matrix

and the matrix on the right of the equation it may have no

solution for
yK
aK

� �
, a unique solution or an infinity of

solutions. The conditions on existence and uniqueness, and

the set of all solutions when there is more than one solu-

tion, have been presented elsewhere.7,21

One expects a ray through P and R to be unique. Hence

one expects there to be a unique line of sight. Mathemati-

cally this means that Q should be nonsingular, that is, its

determinant should not be zero, in which case one can

solve Equation 4 to give the unique solution

yK
aK

� �
¼ Q�1

yR � e
yP � eA

� �
: ð6Þ

An exception occurs when P and R happen to be conjugate

points; there are then an infinity of lines of sight. It is hard

to imagine a situation in which there is no line of sight. It

seems safe to disregard such exceptions and take Equa-

tion 6 to be the unique solution for the line of sight of an

eye. Should they occur, however, one would need to turn

to the conditions and expressions presented before.7,21 We

consider them no further here.

We conclude that Equation 6 locates the line of sight in

terms of the properties of the eye (represented by Q, e and

eA) including the locations of the centres of the pupil and

fovea yP and yR. It gives the transverse position yK and

inclination aK of the line of sight at incidence onto the cor-

nea, that is, at the corneal sighting centre. For reference

below we note from Equation 6 that the incident location

yK
aK

� �
of the line of sight is linear in the matrix

yR � e
yP � eA

� �
.

Because it is a straight line the line of sight intersects the

retina in the point with transverse position
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yKR ¼ yK þ zaK: ð7Þ

z is the length of the eye. This point on the retina provides

another way of visualizing the line of sight. It is the trans-

verse position of the image of the centre of the fovea for an

observer looking along the line of sight.

Rearranging Equation 2 and substituting from Equa-

tion 6 we obtain

aR ¼ C n0Dð ÞQ�1 yR � e
yP � eA

� �
=nR þ p=nR; ð8Þ

the inclination, relative to longitudinal axis Z, of the foveal

chief ray at the fovea explicitly in terms of properties of the

eye.

The use of Equations 6, 7 and 8 is illustrated in the Appen-

dix where the line of sight is determined for a model eye with

four separated, astigmatic and tilted refracting surfaces. The

calculation is performed for two frequencies of light.

Sensitivity to changes in the eye

Coefficient matrix Q, defined by Equation 5, depends on

fundamental properties A and B of the whole eye and of

the anterior portion of the eye. These fundamental proper-

ties in turn depend on curvatures and separations of the

refracting surfaces in the eye but they are independent of

tilts or decentrations of those surfaces.8 Thus Q is usually

affected by changes in curvatures and spacings of the

refracting surfaces but not by changes in tilt or decentra-

tion. Fundamental property e, however, is usually altered

by changes in curvatures, spacings, tilts and decentrations.

This means that changes in transverse position of the cen-

tres of the pupil and fovea, yP and yR, and changes in tilt

and decentration of the refracting surfaces in the eye

change
yR � e
yP � eA

� �
without changing Q; the incident loca-

tion of the line of sight is, therefore, linear in such changes.

Relatively simple explicit equations are easily obtained as

illustrated below for changes in yP and yR.

Because changes in curvatures and spacings of refracting

surfaces may change Q, e and eA one expects from Equa-

tion 6 that the sensitivity of the line of sight to such

changes should be much more complicated. By making use

of the fact that properties A, B and e of a system are partic-

ular affine functions of curvatures and spacings of the

refracting surfaces8 one could, if desired, obtain explicit

equations for the sensitivity to changes in curvature and

separation of refracting surfaces in the eye. However

because such equations are probably very messy, differ for

each surface and gap and depend on the particular model

eye chosen it seems unwarranted to attempt to do so here.

Furthermore they are probably of little interest because the

change in the line of sight can be determined simply by

applying Equation 6 twice, once before and once after a

change. (This is illustrated in the Appendix for changes in

curvature of the first and third surfaces of the four-surface

model eye and in the distance between the second and third

surfaces.)

Alternative approaches

Equation 6 represents a direct and relatively simple routine

for locating the line of sight of an eye of known optical

structure. It is unlikely to present problems in most appli-

cations of interest. However it displays little information

on relationships and gives little insight. There are a number

of different approaches which lead to equations which do

not have those disadvantages. Each of these other

approaches, however, brings with it additional problems

concerning singularity and possible associated computa-

tional difficulties. We outline some of them here.

From Equation 1 one can write

aK ¼ B�1 yR � e� AyKð Þ=n0: ð9Þ

Substitution into Equation 3 gives an equation in yK which

can be solved to give

yK ¼ AA � BAF0ð Þ�1 yP � BAB
�1 yR � eð Þ � eA

� �
;

ð10Þ

the transverse position of the corneal sighting centre rela-

tive to longitudinal axis Z. Here

F0 ¼ B�1A ð11Þ

is the corneal-plane refractive compensation of the eye.22

Equation 9 holds under the assumption that fundamental

property B of the eye is nonsingular; Equation 10 holds

under the assumption that both B and AA�BAF0 are non-

singular. Substitution from Equation 10 into Equation 9

gives an explicit equation for the inclination aK of the line

of sight. Together yK and aK locate the line of sight com-

pletely relative to longitudinal axis Z.

We could also find the line of sight by solving Equation 1

for yK, substituting into Equation 3 and, hence, obtaining

expressions for yK and aK. The first step in that approach

assumes that A is nonsingular. A is strictly a measure of the

ametropia of the eye22; it is singular whenever a distant

object point maps to a point (emmetropia) or a line (sim-

ple astigmatism or what we might call semi-emmetropia)

on the retina. Equations for the line of sight

obtained this way would fail, therefore, for such eyes at

Ophthalmic & Physiological Optics 33 (2013) 57–66 © 2012 The College of Optometrists60

Line of sight of a heterocentric astigmatic eye WF Harris et al.



least. Furthermore one would anticipate computational

problems and uncertainty for eyes that are close to these

conditions if not for others.

Yet more equations can be obtained for the line of sight

if one begins by solving Equation 3 for yK or aK and substi-

tuting into Equation 1.

Although these equations have limitations arising out of

possible singularity they may all have their uses for particu-

lar applications. For example suppose the centre of the

pupil undergoes a transverse displacement DyP. Then it fol-

lows from Equation 10 that the corneal sighting centre is

displaced by

DyK ¼ AA � BAF0ð Þ�1DyP: ð12Þ

Equation 12 shows explicitly that change in the location of

the corneal sighting centre, and the incident position of the

line of sight, is linear in the transverse displacement of the

centre of the pupil, the proportionality matrix being the

property (AA�BAF0)
�1 of the eye. According to Equation 9

transverse displacement of the centre of the pupil has no

effect on the inclination of the line of sight. On the other

hand both the inclination and the incident position of the

line of sight are dependent on the location of the centre of

the fovea; from Equations 9 and 10 we obtain a transverse

shift in incident position

DyK ¼ � AA � BAF0ð Þ�1BAB
�1DyR ð13Þ

and change in inclination

DaK ¼ B�1 Iþ BB�1A AAA
�1 � I

� ��1� �
DyR=n0 ð14Þ

of the line of sight corresponding to a transverse displace-

ment DyR of the centre of the fovea. (We are not implying

that the fovea actually shifts; we could, for example, be

comparing the lines of sight of two model eyes identical

except for the locations of the centres of their foveas.) I rep-

resents the identity matrix. Both dependences are linear.

The proportionality matrices in Equations 12 to 14 are

calculated for the model eye in the Appendix.

In effect Equations 9, 10 and 12–14 all represent special

cases of the linearity in
yR � e
yP � eA

� �
represented by Equa-

tion 6 and discussed above under the heading Sensitivity

to changes in the eye.

Chromatic dependence

Equation 6 expresses the location of the line of sight in

terms of the fundamental properties (more particularly the

top block-row fundamental properties) of the whole eye

and the anterior eye. However, the fundamental properties

are dependent on the frequency of light.23 Hence we expect

there to be a line of sight for each frequency. One can

define a chromatic difference for lines of sight by

D
yK
aK

� �
¼ yK

aK

� �b

� yK
aK

� �r

ð15Þ

where the superscripts b and r denote light of two specified

frequencies. In the numerical example in the Appendix the

corneal sighting centres for red and blue light are more

than two wavelengths apart and the inclinations of the lines

of sight differ by a little more than 0.001 radians. These dif-

ferences are small and may be of little clinical significance.

Generalizations

Although we have talked here of the eye and the centres of

the pupil and fovea there is nothing in the mathematics

that limits application to the eye as such or that requires

the points in the pupil and fovea to be their centres. This

means that the results described above can be generalized.

We outline three generalizations.

The results apply equally well, for example, to a com-

pound system of eye and lens or other optical instrument

in front of the eye. In the analysis above system S then

becomes the compound system, and, instead of being

immediately anterior to the tear film on the cornea,

transverse plane TK is now immediately anterior to the

first surface of the optical instrument. TR, immediately in

front of the retina, is unchanged. TP is unchanged at the

plane of the pupil unless an aperture in the optical

instrument becomes the limiting aperture of the com-

pound system in which case TP is at that limiting aper-

ture. As above, system SA is from TK to TP and SB is

from TP to TR. yR remains the position vector relative to

longitudinal axis Z of the centre of the fovea on the ret-

ina. yP remains the centre of the pupil or becomes the

centre of the limiting aperture if the pupil is not the lim-

iting aperture. The line of sight for the compound system

is located by Equation 6 in which aK is its inclination at

incidence onto the instrument and yK is its transverse

position on the first surface of the instrument. Instead of

being the corneal sighting centre yK becomes the sighting

centre as it were on the front of the instrument. In the

case of a thin spectacle lens yK locates the visual point on

the lens with respect to longitudinal axis Z. It can also be

obtained directly from Equation 10.

In the case of extra-foveal fixation one can interpret yR
as the transverse position of the centre of visual attention

on the retina. The results above then can be applied in

physiological and pathological conditions in which fixation

is not centred on the centre of the fovea.
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There may be circumstances in which one wishes to

interpret yP as the transverse position relative to Z of a

point in the pupil other than the centre. We have in mind

here the Stiles-Crawford effect24 and Tscherning’s com-

ment15 that ‘In sighting … the image of the point fixed …
has nothing to do with the centre of the pupil’. Or the pupil

may be irregular in shape with a centre not easy to define.3

A line of sight could be located using the results above if yP
were known.

Concluding remarks

Equation 6 represents the central result of this paper; it

locates the line of sight of an eye (natural or pseudophakic)

in terms of properties of the eye. It does so by giving the

transverse position yK at incidence onto the eye and the

inclination aK of the line of sight, both being relative to lon-

gitudinal axis Z. Coefficient matrix Q in Equation 6 is

defined by Equation 5 and depends on the top block-rows

of the transferences of the whole eye and the anterior por-

tion of the eye. The transferences can be determined from

knowledge of the structure of the eye. (The use of the equa-

tions is illustrated in the Appendix for a particular hetero-

centric astigmatic eye.)

The usual definition of line of sight in terms of the

entrance pupil may suggest that the line of sight of an eye

depends on the location of the centre of the entrance pupil

and is independent of other structures. The analysis here

shows that in fact it may vary with change of any structure

in the eye; in particular one expects it to vary with accom-

modation.

Strictly there is a line of sight for each frequency of light.

Whether the differences between them are of any signifi-

cance remains to be seen.

Although we refer here to the eye, with some appropriate

reinterpretations (described under Generalizations), the

analysis has much broader application. It can be applied,

for example, to the compound system of eye and any opti-

cal instrument in front of the eye. yK and aK, then, given by

Equation 6, represent the transverse position and inclina-

tion of the line of sight relative to Z at incidence onto the

anterior surface of the instrument.

The analysis can also accommodate physiological and

pathological conditions in which fixation is not foveal or

phenomena such as the Stiles-Crawford effect in which it

may be appropriate to use a point in the pupil other than

the centre. In situations such as these it seems appropriate

to extend Mandell’s terminology20 (corneal sighting centre)

to other surfaces. Hence we have retinal sighting centre, for

example, whose location is given by yR. Usually it is the

centre of the fovea but it is elsewhere in extra-foveal fixa-

tion. Similarly yP locates the pupillary sighting centre which

may usually be taken as the centre of the pupil but could be

elsewhere. The visual point on a thin spectacle lens would

be the spectacle sighting centre.

The line of sight was defined above in terms of the foveal

chief ray but, when the retinal or pupillary sighting centres

are not the centres of the fovea or pupil, then the ray in terms

of which the line of sight is defined is not the foveal chief ray.

In general one might refer to the ray through the pupillary

and retinal sighting centres as the sighting ray. Usually one

would expect the sighting ray to be the foveal chief ray.

It is possible for Equation 6 for the line of sight to fail.

This occurs when matrix Q is singular. We do not expect

that to happen in the case of eyes but it is conceivable when

the eye is a component of a compound system. In such

cases, depending on the nature of Q and the matrix on the

right of Equation 4, there may be no line of sight or multi-

ple lines of sight. Equation 4 is standard in linear algebra.

Conditions of existence and uniqueness of solutions are

presented elsewhere.7,21 When there are multiple solutions

the equation for all solutions is also given in those papers.

Alternative equations for the line of sight can be

obtained. Examples include Equations 9 and 10. Some give

additional insight into relationships and may be useful but

all have potential problems associated with singularity.

The equations here allow one to explore the effects of

changes both inside and outside the eye, for example when

a spectacle lens is placed in front of the eye or there is

accommodation or shift in location of the centre of the

pupil. The location of the pupil centre, if regarded as the

pupillary sighting centre, is represented explicitly as yP in

Equation 6 and accommodation changes at least the top-

block row of Q in that equation.

The nature of Equation 6 suggests a complicated depen-

dence of the line of sight on changes of curvature and spac-

ings of refracting surfaces within the eye. However, tilts and

decentrations of refracting surfaces and the locations of the

centres of the pupil and fovea (or pupillary and retinal

sighting centres) are exceptional in that changes in them

produce linear changes in the line of sight. If there are no

other changes Equation 9 shows that a transverse shift of

the centre of the pupil has no effect on the inclination of

the line of sight; its effect on the incident position of the

line of sight is linear (Equation 12). For the model eye trea-

ted in the Appendix the corneal sighting centre undergoes a

shift approximately 13% larger than the pupillary sighting

centre and approximately in the same direction. Equa-

tions 13 and 14 show that the incident transverse position

and inclination of the line of sight are both linearly sensi-

tive to position of the retinal sighting centre. The sensitivi-

ties are calculated for the model eye in the Appendix.

The Appendix also illustrates application of Equation 6 to

determine the effect on the line of sight of other particular

changes within the eye, including changes of curvature of the

first and third surfaces of the eye and separation between the
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second and third surfaces. In most of these cases the effects

are small and, perhaps, of little significance in many applica-

tions. They depend, however, on the particular model eye

chosen for the analysis and should not necessarily be

regarded as representative of eyes in general. Nevertheless

the numbers do suggest that accommodation and other

changes in the eye are less significant than displacement of

the centre of the pupil. It is also evident that change in

curvature, tilt or decentration of the first surface of the eye

causes no shift in position of the corneal sighting centre.

The line of sight is based on the incident segment of the

sighting ray, the segment external to the eye. However, the

Stiles-Crawford phenomenon24 and what Bradley and

Thibos25 describe as the retina’s ‘inherent optical axis’ sug-

gest that there might be merit in also defining an axis based

on the segment of the sighting ray at the retina. We would

then distinguish between the incident or external line of sight

of an eye (what we have simply been calling the line of sight)

and the eye’s retinal line of sight. The latter would be the

infinite straight line containing the segment of the sighting

ray at the retina. The retinal line of sight is located by

Equation 8 which gives its inclination, its transverse position

at the retina, of course, being the retinal sighting centre.

Ordinarily a lens or other instrument placed in front of a

fixed eye changes the incident line of sight but not the reti-

nal line of sight. It is only if an aperture in the instrument

becomes limiting that both incident and retinal lines of

sight may change.

One expects the pupillary sighting centre to be the centre

of the pupil but it may be elsewhere in the pupil. If the

structure of the anterior part of the eye and the location of

the line of sight are known then the location of the pupillary

sighting centre can be calculated by means of Equation 3.

The entrance pupil of an eye is in object space. Thus the

traditional definition of line of sight in terms of point of

fixation (in object space) and entrance pupil (also in object

space) might, at first sight, give the impression that the line

of sight of an eye is more a property of object space and less

a property of the eye. The equations developed here stress

the fact that the line of sight of an eye is a property of the eye

alone. In particular it does not depend on a fixation point.

Indeed the line of sight exists even if there is no fixation

point (in the dark for example). The only provisos are that

the index of refraction immediately in front of the eye does

not change and that the pupil remains the limiting aperture.

(The line of sight changes, for example, if an eye in air sub-

merges in water or a pinhole aperture is placed in front of

the eye.) We can think of the eye as having a pointer attached

to it at the cornea along the line of sight and directed

forward. The act of fixating a point object involves turning

the eye so that the pointer points at the object in question.

Line of sight is a term not unique to optometry, ophthal-

mology and vision science. It is common in several fields,

cosmology26 being but one example. In such fields, in con-

trast to the term we have been using, the term does not nec-

essarily imply an eye at all. The line of sight is simply a ray

from some object in question. If one wishes to see the

object then one needs to bring the line of sight of an eye, or

of each eye, into coincidence locally with a line of sight of

the object. Again ‘eye’ here may also be interpreted ‘com-

pound system of eye and instrument in front of it’.

Partly because two such distinct concepts have the same

name we have reservations about the term ‘line of sight’ for

the property of the eye. Implicit in the traditional definition

is that the line is straight, but lines are not necessarily

straight. ‘Axis’ seems more appropriate than ‘line’; it better

suggests a straight line and is more in keeping with the

names of other axes of the eye including optical axis, visual

axis and achromatic axis. ‘Sighting axis’ seems a possible

alternative to ‘line of sight’. An eye would then have cor-

neal, pupillary and retinal sighting centres, a sighting ray

and a sighting axis. To see a distant object one would need

to turn the eye to bring its sighting axis into coincidence

with a line of sight of the object.

We have used here the powerful methodology of linear

optics to obtain explicit equations for the location of the

line of sight in the case of an eye with multiple separated

refracting surfaces that may be heterocentric, tilted and

astigmatic. All that is required beyond refractive indices

and axial separations is the paraxial geometry of each

refracting surface. As with the simpler optical model,

Gaussian optics, we need to keep in mind, however, that

the theory is paraxial and that accuracy declines with

increasing distances and inclinations relative to the longitu-

dinal axis. For greater accuracy we would need to turn to

geometrical optics but then we would need the whole

geometry of every surface (which we seldom have) and we

would usually have to be satisfied with numerical computa-

tion. The explicit equations obtained here are, we assert,

the best obtainable.

Traditionally the line of sight is defined in terms of the

entrance pupil. But, strictly speaking, an entrance pupil is

not well defined if the eye has an astigmatic cornea; its cen-

tre, as any other point in it, is blurred out as an interval of

Sturm. Although this effect may be negligible for clinical

purposes it presents a problem for optical analyses includ-

ing the analysis presented here. By making use of the actual

pupil instead the entrance pupil, as one does when defining

the line in terms of the foveal chief ray, one avoids the

problem. The clinician, however, does not have the luxury

of access to the pupil and has to be satisfied with the

entrance pupil. Nevertheless, for most purposes, there is no

conflict between the two definitions; the clinician and the

theoretician are talking about the same thing and merely

approaching it with the particular tools that each has at his

or her disposal.

Ophthalmic & Physiological Optics 33 (2013) 57–66 © 2012 The College of Optometrists 63

WF Harris et al. Line of sight of a heterocentric astigmatic eye



Acknowledgements

WF Harris gratefully acknowledges a grant from the

National Research Foundation of South Africa. T Evans, a

graduate student working with him, acknowledges support

from the Medical Research Council of South Africa. We

thank Ronald B Rabbetts for helpful comments and

Margaret McGovern (Librarian, College of Optometrists,

UK) and Kay H�evey (Editorial Assistant, Optician) for help

with references.

References

1. Atchison DA & Smith G. Optics of the Human Eye. Butter-

worth-Heinemann: Oxford, 2000; pp. 31–36.

2. Yang Y, Thompson K & Burns SA. Pupil location under

mesopic, photopic, and pharmacologically dilated condi-

tions. Invest Ophthalmol Vis Sci 2002; 43: 2508–2512.

3. Wyatt HJ. The form of the human pupil. Vis Res 1995; 14:

2021–2036.

4. HarrisWF.Nodes andnodal points and lines in eyes andother

optical systems.Ophthalmic PhysiolOpt2010; 30: 24–42.

5. Harris WF. Visual axes in eyes that may be astigmatic and

have decentred elements. Ophthalmic Physiol Opt 2010; 30:

204–207.

6. Harris WF. Aperture referral in heterocentric astigmatic

systems. Ophthalmic Physiol Opt 2011; 31: 603–614.

7. Harris WF. Achromatic axes and their linear optics. Vis Res

2012; 58: 1–9.

8. Harris WF. Dependence of optical properties of heterocen-

tric astigmatic systems on internal elements, with applica-

tion to the human eye. Trans Roy Soc S Afr 2012; 67: 11–16.

9. Harris WF & Evans T. Chromatic aberration in heterocen-

tric astigmatic systems including the eye. Optom Vis Sci

2012; 89: e37–e43.

10. Harris WF. Chief nodal axes of a heterocentric astigmatic eye

and the Thibos-Bradley achromatic axis. Vis Res 2012; 73: 40–45.

11. Millodot M & Laby DM. Dictionary of Ophthalmology.

Butterworth-Heinemann: Oxford, 2002; p. 163.

12. Hofstetter HW, Griffin JR, Berman MS & Everson RW. Dic-

tionary of Visual Science and Related Clinical Terms, 5th

edn. Butterworth-Heinemann: Boston, 2000; p. 306.

13. Millodot M. Dictionary of Optometry and Visual Science,

7th edn. Butterworth-Heinemann-Elsevier: Edinburgh,

2009; p. 208.

14. Stidwill D & Fletcher R. Normal Binocular Vision: Theory,

Investigation and Practical Aspects. Wiley-Blackwell:

Oxford, 2011; p. 4.

15. Tscherning MHE. Physiologic Optics, 2nd edn. The Key-

stone: Philadelphia, PA, 1904; p. 74.

16. Le Grand Y & El Hage SG. Physiological Optics. Springer-

Verlag: Berlin, 1980; p. 72.

17. Alpern M. Specification of the direction of regard. In: Mus-

cular Mechanisms. Vol. 3 of The Eye, (Davson H, editor),

2nd edn, Academic Press: New York, 1969; pp. 5–12.

18. International Organization for Standardization. Ophthalmic

Optics Spectacle Lenses Vocabulary, International Stan-

dard ISO 13666. ISO: Geneva, 1998; p. 13.

19. Applegate RA, Thibos LN, Bradley A et al. Reference axis

selection: subcommittee report of the OSA working group

to establish standards for measurement and reporting of

optical aberrations of the eye. J Refract Surg 2000; 16: S656–

S658.

20. Mandell RB. Locating the corneal sighting center in video-

keratography. J Refract Surg 1995; 11: 253–258.

21. Harris WF. Optical axes of eyes and other optical systems.

Optom Vis Sci 2009; 86: 537–541.

22. Harris WF. A unified paraxial approach to astigmatic optics.

Optom Vis Sci 1999; 76: 480–499.

23. Evans T & Harris WF. Dependence of the transference of a

reduced eye on frequency of light. S Afr Optom 2011; 70:

149–155.

24. Stiles WS & Crawford BH. The luminous efficiency of rays

entering the eye pupil at different points. Proc Roy Soc 1933;

112: 428–450.

25. Bradley A & Thibos LN. Modelling off-axis vision. I: The

optical effects of decentering visual targets or the eye’s

entrance pupil. In: Vision Models for Target Detection and

Recognition (E Peli, editor), World Scientific: Singapore,

1995; pp. 313–337.

26. Eggleton P. Evolutionary Processes in Binary and Multiple

Stars. Cambridge University Press: Cambridge, 2006; pp. 3,

6, 10, etc.

27. Villegas ER, Carretero L & Fimia A. Le Grand eye for the

study of ocular chromatic aberration. Ophthalmic Physiol

Opt 1996; 16: 528–531.

Appendix

We illustrate application of the theory by locating the line

of sight, including the corneal sighting centre, for a particu-

lar ametropic heterocentric astigmatic model eye. We also

illustrate the effect on the line of sight of changes in fre-

quency of light, transverse position of the centres of the

pupil and fovea, curvature of the third and first refracting

surfaces and separation of the second and third surfaces.

The model eye has four separated astigmatic and tilted

refracting surfaces the details of which are listed in Table 1.

The principal radii of curvature of the first surface of the

cornea (K1) are 5.8 mm along the horizontal and 7 mm

along the vertical and the surface has tilts 0.06 in the

horizontal (from in front of the eye the right of the surface

would appear pushed away relative to the left) and �0.05
in the vertical (the bottom of the surface would appear

pushed away relative to the top) all measured at the refer-

ence axis Z. The tilts are in radians or, equivalently, no

units. The curvatures and tilts of the second surface of the

cornea (K2) and the first (L1) and second (L2) surfaces of

the lens of the eye should be interpreted similarly. The
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separation between K1 and K2 is 0.5 mm. The expressions

for refractive index as a function of vacuum wavelength

published by Villegas et al.27 have been used.

The principal meridians of the refracting surfaces are not

aligned. The eye is in air; hence we set n0 = 1. The eye’s

length is z = 24.5 mm. We suppose the centre of the pupil

is located 1 mm to the left of axis Z. Hence, taking it to be

the pupillary sighting centre, we set yP ¼
�1
0

� �
mm .

We also suppose that the retinal sighting centre is located

1 mm from Z in the 45° direction. It may be at the centre

of the fovea but this makes no difference to the calculation.

Thus yR ¼
cos 45�

sin 45�

� �
mm.

The calculation is done for light of frequencies corre-

sponding to the vacuum wavelengths 486.1 (‘blue’) and

656.3 (‘red’) nm; the results are summarized in Table 2.

A is the top left 2 9 2 submatrix of the transference, B

the top middle 2 9 2 matrix and e the top right 2 9 1

submatrix. Below A, B and e in the transference are C, D

and p respectively. The coefficient matrices Q were calcu-

lated using Equation 5. Their determinants turn out to

be approximately 205 and 202 mm2 for red and blue

respectively which confirms that the lines of sight exist

uniquely and that Equation 6 gives their transverse posi-

tions yK and inclinations aK at incidence on to the

eye. The red and blue corneal sighting centres are about

1.3 mm left and 0.2 mm below longitudinal axis Z.

The lines of sight slope up and to the right into the

eye at about 0.04 radians (4 prism dioptres) away

from axis Z. The chromatic difference for the eye

of the red and blue lines of sight is (Equation 15)

D
yK
aK

� �
¼

0:001335mm
�0:000432 nm
�0:00101
�0:00016

0
BB@

1
CCA .

Thus the red and blue corneal sighting centres are a few

wavelengths apart. The lines of sight intersect the retina in

the point represented by yKR calculated by means of Equa-

tion 7. The blue and red sighting rays arrive at the retina

with inclination aR given by Equation 8; here they are iden-

tical up to a few tens of microradians.

The last row in Table 2 lists the proportionality matrix

(AA�BAF0)
�1 of Equation 12. It differs only slightly for red

and blue light and is close to the scalar matrix 1.13I. In

other words a transverse shift of the centre of the pupil

causes a shift of the line of sight, and hence of the corneal

sighting centre, that is approximately 13% larger in magni-

tude and in approximately the same transverse direction.

The proportionality matrices in Equations 13 and 14 also

turn out to be close to identity matrices, �0.24I and

0.057I mm�1 respectively. Thus a shift of the retinal sight-

ing centre causes a shift in the corneal sighting centre that

is about a quarter in magnitude but in approximately the

opposite direction and it causes the inclination of line of

sight to change by about 5.7 prism dioptres or 3.3 degrees

per millimetre in approximately the same direction.

Repeating the calculation using Equation 6 but with the

principal powers of the third surface of the model eye each

increased by 1 D we obtain a change in incident location of

the line of sight by about

0:0033717mm
0:0000003mm
�0:0008066
�0:0000008

0
BB@

1
CCA. Thus the

corneal sighting centre has been shifted by roughly 3 lm
approximately to the right and the inclination of the line of

sight has increased by about 0.05 degrees approximately to

the left.

If instead 1 D is added to each principal power of the

first surface Equation 6 shows that the change in incident

location of the line of sight is

0 mm
0 mm

�0:0012896
�0:0001956

0
BB@

1
CCA. Thus the

corneal sighting centre is not moved, as is to be expected,

while the inclination of the line of sight increases by about

0.08 degrees approximately to the left.

Increasing the distance between the second and third

surfaces (the depth of the anterior chamber) by 1 mm the

incident location of the line of sight changes by

�0:0640562mm
�0:0437903mm
�0:0036075
�0:0020368

0
BB@

1
CCA , that is, the incident position shifts

about 0.08 mm in the 214-degree direction (left and down)

and the incident inclination increases by about 0.24 degrees

in the 209-degree direction.

Many of these numbers may well be negligibly small for

most purposes. The degree to which they are representative

of eyes, however, remains to be examined.

Table 1. Principal radii of curvature, separation, and tilt of surfaces (K1

and K2 of the cornea and L1 and L2 of the lens) of the model eye used

in the numerical example

Surface

Principal radii,

mm{degr}mm

Separation,

mm Tilt

K1 5.8{180} 7 0:06� 0:05ð ÞT

0.5

K2 5{10}6.2 0:04 0:06ð ÞT

4

L1 4.1{20}5 �0:070:1ð ÞT

4

L2 �5{70}�6.2 �0:05� 0:03ð ÞT

16
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Dependence of the ray transference of model eyes on 

the frequency of light 
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The transference defines the first-order character of an optical system; almost all the 

system’s optical properties can be calculated from it. It is useful, therefore, to have 

some idea of how it depends on the frequency of light. We examine the dependence for 

two Gaussian eyes. It turns out to be nearly linear for all four fundamental properties. 

The result is an equation for the dependence of the transference on frequency which is 

almost symplectic. We also transform the transference into Hamiltonian space, obtain 

equations for the least-squares straight line for the three independent transformed 

properties and map them back to the group of transferences. The result is an equation 

for the dependence of the transference on frequency which is exactly symplectic and 

therefore representative of an optical system. The results may approximate those of real 

eyes and give estimates of the dependence of almost all optical properties on frequency. 

Keywords: ray transference; frequency; symplecticity 

Introduction 

The ray transference is of central importance in linear optics. Nearly all the familiar optical 

properties of an eye such as power, refractive compensation, magnification and cardinal points can 

be derived from the transference. It is therefore useful to have some idea of how it depends on the 

frequency of light. In this presentation we examine the dependence of the transference of the 

reduced eye [1] and Le Grand’s four-surface schematic eye [2] on frequency with the objective of 

obtaining an equation for the dependence. Consequently, the dependence of the eye’s optical 

properties on frequency, as well as their chromatic difference between two frequencies, can be 

obtained from the frequency-dependent transference. This forms part of a much larger study. Many 

of these chromatic properties can be generalised to astigmatic heterocentric eyes.  

Method 

The underlying method used here is that of first-order optics. We make use of the ray transference 

which is a complete representation of the first-order effects of an optical system on the rays 

traversing it [3]. We represent the transference as  











DC

BA
S             (1) 

where A the dilation, B the disjugacy, C the divergence and D the divarication are the four 

fundamental properties of the Gaussian system [4]. 

Being a member of the symplectic group, the transference has unit determinant [4, 5]. Symplectic 

matrices are closed under multiplication, inversion and transposition but are not closed under 
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addition nor multiplication by a scalar [4, 5]. This creates problems when doing quantitative 

analyses on sets of transferences [5]. To overcome this limitation, we make use of the mapping 

from the symplectic group to the set of Hamiltonian matrices. The set of all Hamiltonian matrices 

defines a linear (vector) space and is therefore closed under matrix addition and multiplication by a 

scalar, [4, 5]. This makes the set of Hamiltonian matrices suitable for quantitative analysis including 

conventional statistical analysis. We explore two mappings. Firstly, the principal matrix logarithm 

of a symplectic matrix is a Hamiltonian matrix and inversely the matrix exponential of a 

Hamiltonian matrix is a symplectic matrix. Secondly, the Cayley transform, being its own 

functional inverse, provides a mapping between symplectic and Hamiltonian matrices. The Cayley 

transform is defined as [6] 

   1ˆ 
 SISIS            (2) 

where the caret (^) denotes the Hamiltonian transformed transference. 

We are interested in the dependence of the transference on the frequency of light across the visible 

spectrum, 430 to 750 THz ( 112s10  ). Frequency is independent of the medium whereas 

wavelength is not and energy is proportional to frequency, good reasons for studying the 

dependence of properties on the frequency of light rather than on wavelength [7]. When obtaining 

the transference, it is the refractive index that is dependent on frequency. We make use of the 

formula for the refractive index as a function of wavelength developed for the chromatic eye [8] and 

the formulae for the refractive indices as functions of wavelength for the cornea, aqueous, lens and 

vitreous developed by Villegas et al. [9] based on the polynomial fit of Le Grand’s findings [10] for 

the four-surface schematic eye. Both sets of equations are based on experimental findings. The 

refractive index of air is approximated by 10 n . The transferences were calculated as described 

elsewhere [11]. 

Results 

In Figure 1 the dependence of the transference on the frequency of light is shown for the reduced 

eye (blue) and Le Grand’s eye (black) and is very nearly linear for each of the fundamental 

properties. The dashed straight lines shown in the figure are obtained using the least-squares 

method. The formula for the straight lines as a function of frequency ( ν ) is given by 




















22

22

11

11

dc

ba
ν

dc

ba
S           (3) 

with constants given in Table 1 for the reduced and Le Grand’s eyes. This gives us a good 

approximation for the transference of a Gaussian eye as a function of frequency.  

Transforming the frequency-dependent transferences into Hamiltonian matrices, we are able to 

obtain the least-squares straight line for each of the three independent entries in Hamiltonian space, 

which we map back to symplectic matrices. This allows us to obtain an expression for the 

dependence of the transference on the frequency of light which is exactly symplectic. The least-

squares straight line in Hamiltonian space is 
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22

11

11

ˆˆ

ˆˆ

ˆˆ

ˆˆˆ

ac

ba
ν

ac

ba
S          (4) 

with the constants for the reduced and Le Grand’s eyes given in Table 2 for the Cayley transform 

and Table 3 for the logarithmic transform. To obtain the transference as a function of frequency one  
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Figure 1. The fundamental properties of the reduced and Le Grand’s eyes as functions of frequency. The 

least squares straight lines (Equation 3) are shown with dashed lines. The coloured markers represent equal 

spacings of 64 THz (
112 s10  ) and approximate the colours represented at each frequency. 

 

Table 1. Constants for Equation 3, the units being picoseconds ( s10 12 ), metres and dioptres (
1m
). 

Reduced eye Le Grand’s eye 

ps10069.1 4
1

a  0549.02 a  ps10997.0 4
1

a  0516.02 a  

psm10939.5 7
1

b  m10972.16 3
2

b  psm10034.7 7
1

b  m10038.17 3
2

b  

psD10605.8 3
1

c  D579.552 c  psD10975.7 3
1

c  D849.552 c  

ps01 d  12 d  ps10115.1 5
1

d  910.02 d  

 

Table 2. Constants for Equation 4 for the Cayley transform. 

Reduced eye Le Grand’s eye 

ps10780.4ˆ 5
1

a  309.0ˆ
2 a  ps10263.4ˆ 5

1
a  289.0ˆ

2 a  

psm0ˆ
1 b  m10111.11ˆ 3

2
b  psm10633.4ˆ 8

1
b  m10509.11ˆ 3

2
b  

psD10206.7ˆ 3
1

c  D298.36ˆ
2 c  psD10111.7ˆ 3

1
c  D630.37ˆ

2 c  

 

Table 3. Constants for Equation 4 for the logarithmic transform. 

Reduced eye Le Grand’s eye 

ps10905.7ˆ 5
1

a  564.0ˆ
2 a  ps10887.6ˆ 5

1
a  523.0ˆ

2 a  

psm10491.2ˆ 7
1

b  m10281.20ˆ 3
2

b  psm10567.3ˆ 7
1

b  m10781.20ˆ 3
2

b  

psD10145.12ˆ 3
1

c  D312.66ˆ
2 c  psD10743.11ˆ 3

1
c  D009.68ˆ

2 c  
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needs to map the transformed transference back to its respective transference using either the 

Cayley transform (Equation 2) or the matrix exponential. The frequency-dependent transference is 

easy to obtain using pencil and paper and either the Cayley transform of Equation 2 or, easier still, 

 
I

S

SI
S 






ˆdet1

ˆ2
.           (5) 

On the other hand, the logarithmic transform requires the use of sophisticated matrix software.  

Conclusion 

The four fundamental properties of a Gaussian eye are shown to have a very nearly linear 

dependence on frequency. An equation is obtained for the least-squares straight line dependence of 

the fundamental properties on frequency, the estimated transference is almost symplectic. A 

transference, that is, a matrix which is exactly symplectic, is obtained by fitting a straight line in 

Hamiltonian space, giving the dependence of the transference of a Gaussian eye on the frequency of 

light across the visible spectrum. These equations allow one to write approximate equations for the 

dependence of almost all the optical properties of the eye, both fundamental and derived, on 

frequency. 
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and other optical systems 
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Because dioptric power matrices of thin systems constitute a (three-dimensional) inner-

product space it is possible to define distances and angles in the space and so do 

quantitative analyses on dioptric power for thin systems.  That includes astigmatic 

corneal powers and refractive errors.  The purpose of this paper is to generalize to thick 

systems.  The paper begins with the ray transference of a system.  Two 10-dimensional 

inner-product spaces are devised for the holistic quantitative analysis of the linear 

optical character of optical systems.  One is based on the point characteristic and the 

other on the angle characteristic; the first has distances with the physical dimension 1L  

and the second with the physical dimension L .  A numerical example calculates the 

locations, distances from the origin and angles subtended at the origin in the 10-

dimensional space for two arbitrary astigmatic eyes. 

Keywords: ray transference; inner-product space; linear optics; astigmatism 

Introduction 

The optical character of a thin system in linear optics can be represented by a symmetric 22  

matrix F, the symmetric dioptric power matrix.  The set of all such powers defines a three-

dimensional linear (or vector) space, symmetric dioptric power space [1].  Because the matrix has 

uniform physical dimensionality [2] (each entry has the dimension 1L  and is usually measured in 

dioptres) one can define an inner-product on the space and the space becomes an inner-product 

space.  Because symmetric dioptric power space is an inner-product space we have been able to 

define distances, angles, orthonormal axes, confidence ellipsoids, etc. in the space.  This has 

provided the basis for the quantitative analysis we have done on powers including refractive errors 

and corneal powers (e.g. [3]). 

For some years we have sought to extend this type of analysis to thick systems like the eye (e.g. [4]).  

In linear optics the optical character of a system that may be thick or thin is completely 

characterized by the ray transference (a real 44  matrix) 
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BA
S             (1) 

of the system [5].  In strong contrast to the set of symmetric dioptric powers the set of transferences 

is neither a linear space nor does it have uniform dimensionality.  There is, therefore, no inner-

product space that would provide a basis for holistic quantitative analysis of the optical character of 

thick systems like the eye.  The purpose of this paper is to show how inner-product spaces can in 
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fact be constructed for general optical systems. 

Method 

The method is based on the transference.  The transference S (Equation 1) obeys the equation [5] 

EESS T
            (2) 

where 













OI

IO
E             (3) 

and I and O are identity and null matrices respectively.  Such matrices are called symplectic [6].  A, 

B, C and D are 22  submatrices of S and represent the fundamental (linear) optical properties of 

the system [7].  B has the physical dimension L  and C the physical dimension 1L ; the other two 

fundamental properties are dimensionless. Other optical properties of the system can be obtained 

from the fundamental properties; for example the power of the system is given by [7] 

CF              (4) 

and, for eyes, the corneal-plane refractive compensation (or refractive error) is given by [7] 

ABF
1

0
 .            (5) 

Two matrices related to the transference are the point characteristic 
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and the angle characteristic 
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Elsewhere [8] we use these matrices to calculate average systems. 

Results 

From P and Q we construct the 62  matrices 

 WVUG             (8) 

and 

 ZYXH  .           (9) 

It is a consequence of symplecticity (Equation 2) that U, W, X and Z are symmetric; V and Y are 

general.  (Properties of symplectic matrices are summarised elsewhere [9]).  The set of all matrices 

G is a linear space and G has uniform physical dimensionality ( 1L ).  Similarly matrices H define a 

dimensionally uniform (dimension L) vector space.   

G can be expanded as 
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where 
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L .  Also 

  2/2211 vvV I    2/2211 vvV J    2/2112 vvV K    2/2112 vvV L   (11) 

and similarly for IU  and the other coefficients in Equation 10.  We define the coordinate vector 

 TKJILKJIKJIg WWWVVVVUUU      (12) 

relative to the basis 

        KOOOOKOOJOOI ,,,,  .     (13) 

Consider two optical systems 1 and 2.  Their coordinate vectors are 1g  and 2g .  Now we define the 

inner product of 1g  and 2g  by 

2
T
121, gggg  .           (14) 

Consequently we have distances (magnitudes) g and angles   in the space defined by 

gg
Tg             (15) 

and 

21

2
T
1cos

gg

gg
             (16) 

respectively. 

Thus we have a 10-dimensional inner-product space for quantitative analysis of optical systems in 

linear optics for which B is nonsingular.  One can think of distances in the space as powers (e.g. 

dioptres). 

For matrices of the form H (Equation 9) one can follow a similar approach.  It leads to a second 10-

dimensional inner-product space.  It applies for optical systems for which C is nonsingular and 

distances in the space are lengths (e.g. metres). 

We illustrate the theory using two optical systems whose transferences have been presented before 

[8]: 
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S , 

the units being dioptres and metres.  The coordinate vectors (Equation 12) turn out to be 

 T1 08500075009200420000000501550043500765010 ....... g  D 

and 

 T2 1218008380926443000761450304606142071577 ....... g  D. 

These vectors locate the two optical systems relative to the origins of the space.  Their distances 

from the origin are 77.661 g  D and 57.672 g  D respectively and they subtend an angle 

 90.2  at the origin. 

Conclusion 

We have here constructed two inner-product spaces for the linear optical characters of optical 

systems.  One is based on the point characteristic and the other on the angle characteristic.  Both 

spaces can be used for eyes because they have nonsingular B and C.  We now have the machinery 

for holistic quantitative analysis of optical systems in general and eyes in particular. 
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APPENDIX A LIST OF SYMBOLS 

 

Symbol Meaning Ch 
Sym-

bol 

Sub-

script 

Super

script 

A Anterior 3  •  

A, A Dilation (scalar, 22 ) 3, 1 •   

a Angle between visual axis and red chief ray 2 •   

a, a Inclination of the ray relative to Z (scalar, 12 ) 3 •   

Aq Aqueous / anterior camber 4 • •  

aO Of inclinations from two object points 7  •  

aR Of angular spread at the retina 7  •  

Â , B̂ , Ĉ , D̂ , 

Â , B̂ , Ĉ , D̂  

Entries of the transformed transference Ŝ  (scalar, 

22 ) 
3 •   

B Posterior 3  •  

B, B Disjugacy (scalar, 22 ) 3, 1 •   

b Angle between visual axis and blue chief ray 2 •   

b Blue 2  • • 

bv Back-vertex 3  •  

C Exit-plane compensation system 5  •  

C Compound system 6  •  

C,  C Divergence (scalar, 22 ) 3, 1 •   

 SC  The Cayley transform 3 •   

c Speed of light 4 •   

D Dioptres 4 •   

D Fraunhofer line D ( nm3.589D ) 2  •  

D,  D Divarication (scalar, 22 ) 1 •   

det Determinant 3 •   

E Eye (with distant object) 3  •  

E The symplectic unit matrix 3 •   

e Equivalent 2  •  

e Euler’s number 3 •   

e Transverse translation ( 12 ) 3 •   

eq Equivalent (measured from principal plane) 3  •  

F Fovea 2 •   

F Focal point 3 • •  

F, F Power (scalar, 22 ) 2, 3 •   

f Focal length (measured from transverse plane T) 3 •   

fn Front-neutralising 3  •  

fv Front-vertex 3  •  

G A matrix Lie Group 3 •   

GL General linear group 3 •   

g The Lie algebra of G 3 •   

gl The Lie algebra of GL 3 •   

H Hamiltonian matrix 3 •   

H The symplectic Lie group 3 •   
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Symbol Meaning Ch 
Sym-

bol 

Sub-

script 

Super

script 

h 

Transverse displacement of pinhole from visual axis 

or displacement in entrance pupil of rays with respect 

to achromatic axis 

2 •   

h 
The set of Hamiltonian matrices, the symplectic 

algebra of H 
3 •   

I Image 2 • •  

I Identity matrix 3 •   

i Angle between normal to the surface and the ray 3 •   

K Cornea (refracting surface) 3 • •  

K1 Corneal anterior surface 4 • •  

K2 Corneal posterior surface 4 • •  

kD Kilodioptres 5 •   

kPa KiloPascal 4 •   

L Lens 4 • •  

L Locator line 3 •   

L, L Vergence (scalar, 22 ); reduced wavefront curvature 3 •   

L1 Lens anterior surface 4 • •  

L2 Lens posterior surface 4 • •  

M Magnification 2 •   

M First mixed characteristic 3 •   

mm Millimetres 4 •   

N Nodal point 2, 3 • •  

N  Anti-nodal point 3 • •  

N Second mixed characteristic 3 •   

n Refractive index 2 •   

nn  or n Size of a square matrix 3 •   

nm Nanometres  m10 9  4 •   

O 
Object or subsystem from object to first surface of 

eye; Object point or in object space 
2, 3 • •  

O Null matrix 3 •   

o Reference 2  •  

o Null matrix ( 12  or 14 ) 3 •   

OA 
Super-system from object, including anterior 

subsystem 
5  •  

Oa 
Measurements of inclination made at a finite distance 

in front of the eye 
5  •  

OE Super-system from object, including eye 5  •  

Oy In object space, with respect to y, transverse position,      

Oy 
Measurements of distance made at a finite distance in 

front of the eye 
5  •  

P Principal point 3 • •  

P  Anti-principal point 3 • •  

P Pupillary 3  •  

P Pinhole 5   • 

P Point characteristic 3 •   

ppm Parts per million 4 •   
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Symbol Meaning Ch 
Sym-

bol 

Sub-

script 

Super

script 

ps Picosecond ( s10 12 ) 8 •   

Q A cardinal point 3  •  

Q Angle characteristic 3 •   

R Retina (imaging surface) or in image space 3 • •  

R Ray 3 •   

R Set of real numbers 3 •   

r Red 2  • • 

r Radius of curvature 2 •   

r State of the ray with unreduced inclination ( 12 ) 5 •   

S General system 3, 5 • •  

S Transference  ( 44  or 22 ) 3 •   

Ŝ  The transformed transference 3 •   

Sl(2;R) The group of 22  real matrices with determinant 1 3 •   

Sp Symplectic group (Lie group) 3 •   

sp Lie algebra (set of Hamiltonian matrices) 3 •   

T Transverse plane 2 •   

T Matrix transpose 3   • 

T Augmented transference ( 55 ) 3 •   

THz Terahertz   112 s10   4 •   

t Transverse (magnification) 3  •  

t Transverse chromatic aberration 2 •   

t All real numbers 3 •  • 

tr Trace 5 •   

V Vitreous/ Posterior chamber 4 • •  

V Coefficient matrix 5 •   

v Vitreous 2  •  

v Input vector 5 •   

W, W Image blur coefficient (scalar, 22 ) 5 •   

X, X Image size coefficient (scalar, 22 ) 5 •   

X Characteristic 3 •   

X Set of all real matrices 3 •   

Y, Y Directional spread coefficient (scalar, 22 ) 5 •   

y Transverse position (scalar) 2, 3 •   

y Transverse position ( 12 ) 3 •   

yO Of size or separation distance of the object(s) 7  •  

yR Of size at the retina 7  •  

Z Longitudinal axis 2 •   

Z, Z Directional coefficient (scalar, 22 ) 5 •   

Z Generalised distance ( 22 )      

z 
Longitudinal position or gap, measured from a 

transverse plane T 
3 •   

z Axial (magnification) 3  •  

  Infinity 3 •   

0 Associated with incidence or upstream 2  •  
(No subscript) Associated with emergence or downstream 2  •  

 , α  Reduced inclination (scalar, 12 ) 3 •   
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Symbol Meaning Ch 
Sym-

bol 

Sub-

script 

Super

script 

  Angular (magnification) 3  •  

Δ  Physical difference  2 •   

δ  Chromatic difference 2 •   

δ  
System vector accounting for prism and decentration 

of elements of  the system ( 14 ) 
3 •   

  Eccentricity   2 •   
γ  Augmented ray state ( 15 ) 3 •   

  Reduced angle between ray and normal 3 •   

  Wavelength 2 •   

  Frequency 4 •   

π  Deflectance ( 12 ) 3 •   
ρ  State of the ray at a transverse plane T ( 14  or 12 ) 3 •   

ζ Reduced distance 3 •   

      

bvF  Back-vertex power 3 •   

CF  Exit-plane compensation 5 •   

fvF  Front-vertex power 3 •   

0F  Refractive compensation 3 •   

aOM  Chromatic object angular spread magnification 7 •   

aRM  Retinal chromatic angular spread magnification 7 •   

yOM  Chromatic object size magnification 7 •   

yRM  Retinal chromatic size magnification 7 •   

0c  Speed of light in a vacuum 4 •   

n , K,   Constants in Cornu’s formula 4 •   

Aδ  Chromatic difference in ametropia 7 •   

Fδ  Chromatic difference in power 7 •   

0δF  Chromatic difference in refractive compensation 7 •   

Oδa  Chromatic difference in inclination in object space 7 •   

 OΔδ a  Chromatic difference in object angular spread 7 •   

Rδa  Chromatic difference in inclination at the retina 7 •   

 Rδ a  Chromatic difference in angular spread at the retina 7 •   

yδ  Transverse chromatic aberration (scalar) 6 •   

Kδy  Chromatic difference in corneal position 7 •   

Oδy  Chromatic difference in object position 7 •   

 OΔδ y  Chromatic difference in object size 7 •   

Rδy  Chromatic difference in image position 7 •   

 Rδ y  Chromatic difference in image size 7 •   

zδ  Longitudinal chromatic aberration (scalar) 6 •   

yδ , yδ  Transverse chromatic aberration (scalar, 12 ) 6 •   

zδ , Zδ  Longitudinal chromatic aberration (scalar, 22 ) 6 •   

0λ  Vacuum wavelength 4 •   
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PART II – LITERATURE REVIEW 

 

In the literature review of the chromatic dependence of the first-order 

optical properties of the eye we consider three aspects, firstly chromatic 

aberrations, secondly first-order optical properties, both fundamental and derived, 

and finally the eye as a Gaussian optical system. For this reason, the literature 

review is divided into three chapters, each chapter dealing with these three aspects 

of this dissertation in turn.  

In Chapter 2 we take a look at chromatic dispersion which is the basis for 

chromatic aberration, and how chromatic dispersion is measured for the media of 

the eye. We then take an in-depth look at the current definitions of chromatic 

aberration in both the classical and ophthalmic optics literature.  

In Chapter 3 we look at the background theory of linear optics. In 

particular we are interested in Gaussian systems. The transference defines the 

fundamental properties of the eye and this enables one to trace the state of a ray 

through a system. A selection of derived properties that are of interest to this 

study of chromatic effects in the eye will be looked at. Because magnification, 

cardinal points and vergence form a pivotal role in chromatic aberration studies, 

we take a close look at how these are defined in the linear optics literature. Finally 

we take a look at the transformed transference and how this enables us to 

represent the transference in a three-dimensional space. 

Chapter 4 is the final chapter of the literature review and looks at a number 

of considerations that are needed for this study. Firstly we take a look at the 

schematic eyes that are available in the literature, choosing Emsley’s reduced eye 

and Le Grand’s four-surface eye to base the numerical examples on. Secondly, the 

visible light spectrum that shall be used in this study is defined. Next, we consider 

the reasons for using frequency rather than wavelength. Finally, we look at the 

formulae for the refractive index of the various media as a function of frequency 

and wavelength. 
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PART III - DEFINITIONS AND DERIVATIONS  

 

This study of the chromatic dependence of the first-order optical properties 

of the eye relies mostly on linear optics of systems in general. The background 

theory of Gaussian and linear optics needed for this study was summarized in 

Chapter 3. There are, however, formulae that we will need for this dissertation 

that have not been published in the literature which are derived in Part III.  

In Chapter 5 we take a look at derivations for systems and rays that are 

needed as background equations that are not available in the literature. The 

chapter consists of an assortment of properties, derived from the transference, that 

are needed in Chapters 6 and 7. In particular, we shall revisit derived properties, 

magnification, cardinal points and Cayley’s transform. Formulae are derived for 

the reduced and Le Grand’s eyes as a function of refractive index and hence 

frequency. 

In Chapter 6 longitudinal and transverse chromatic aberration are defined 

for systems in general and then simplified for the Gaussian model eye. The basis 

of the definition is the classical optics definition of chromatic aberration given in 

Section 2.2 which is generalized to systems that include astigmatic and decentred 

elements (Harris and Evans, 2012).  

In Chapter 7 a number of formulae for quantifying chromatic properties 

are derived from the transference. The bases for these derivations are the 

physiological optics’ definitions of the chromatic properties as defined in the 

literature in Section 2.3. Numerous formulae for chromatic properties both 

independent of and dependent on the object or image and aperture positions, each 

with a variety of alternatives, are summarized in tables at the end of the chapter.  

Part III concentrates on Gaussian optics and linear optics of systems in 

general. All the formulae in this part, consisting of three chapters, are derived 

from the transference with special interest in the effect of frequency on the 

transference. The properties derived in these three chapters are done so 

specifically to illustrate and emphasise the effect of frequency on systems in 

general and the eye. Numerical examples, represented graphically and in tabular 

form, will be given in Part IV based on the derivations given in Part III.  
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PART IV – FINDINGS AND DISCUSSIONS 

 

Because of the central importance of the transference it is useful to have 

some idea of how it depends on the frequency of light. In this part we examine the 

dependence of the transference of the reduced eye and Le Grand’s four-surface 

schematic eye on frequency for several chromatic properties.  

The considerations discussed in Chapter 4 will be applied or explored in 

the three chapters that make up this part. We will use the refractive index formula 

for the chromatic eye, developed by Thibos et al (1992), to calculate the refractive 

index of the reduced eye (Section 4.4.2) and the formula of Villegas, Carretero 

and Fimia (1996) for the refractive indices of Le Grand’s complete theoretical eye 

given by Equation 4.4.3. As discussed in Section 4.2, the visible light spectrum, 

between the frequencies of 430 and 750 THz and will be used.  

In Chapter 8 we examine the dependence of the fundamental properties of 

the model eyes on the frequency of light. The effect of the refractive index of air 

as a function of frequency is considered. Also studied are the dependence of the 

transference on vacuum wavelength and on frequency when the eye is submerged 

in water. The two transformed transferences will be calculated and displayed 

graphically both in terms of their individual entries and as three-dimensional 

graphs. These three-dimensional graphs show how the entries of the Hamiltonian 

matrix are related and begin to give us some insight into the meaning of 

Hamiltonian space. 

In Chapter 9, various derived properties will be studied as a function of 

frequency. The effect of frequency on the cardinal points will be calculated and 

displayed using graphical construction and Pascal’s ring methods. The formulae 

for both the derived properties and the cardinal points were given in Chapter 3 and 

further formulae derived in Chapter 5. The dependence of the four characteristic 

matrices on the frequency of light will be studied and the relationships among 

various derived properties will be explored. 

Finally in Chapter 10, chromatic aberration will be calculated numerically 

and displayed according to changes in the object position. In Chapter 7 we derived 

the formulae for a variety of chromatic difference properties. These will be 
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calculated in both object and image space for the two model eyes. Numerical 

examples are given for all of the chromatic properties given by the equations 

summarized in Sections 7.4 and 5. 

The numerical examples in Chapter 10 and the cardinal points examples in 

Section 9.1 show the difference between the two end points of the chosen 

spectrum and do not give us any insight into the dependence of the system on 

frequency across the visible light spectrum. In contrast to this, the numerical 

examples of the two model eyes in Chapter 8 and Sections 9.2 and 3 show us the 

dependence of the system on frequency across the spectrum. Firstly the 

fundamental properties of the transference, then the entries of the Hamiltonian 

matrix and finally the derived properties and the characteristic matrices are all 

studied to understand the dependence of each on the frequencies of light. 

 



328 
 

REFERENCES 

 

Anton, H and Rorres, C. (2005). Elementary Linear Algebra. Applications 

Version. 9
th

 ed. New Jersey: John Wiley & Sons, Inc. 

 

Aristotle. (1906). De Sensu and De Memoria. Text and Translation with 

Introductory Comment by Ross, GRT. Cambridge: Cambridge University Press.  

 

Aristotle. (1928). Meteorologica. Book 3, sections 4 and 5. The works of 

Aristotle, translated into English, Ross, WD (Ed). Available from: 

http://etext.lib.virginia.edu/etcbin/toccer-

new2?id=AriMete.xml&images=images/modeng&data=/texts/english/modeng/parsed&

tag=public&part=3&division=div2  Accessed 24 June 2013. 

 

Arnaud, JA. (1970). Nonorthogonal optical waveguides and resonators. The Bell 

System Technical Journal, 49: 2311-2348. 

 

Atchison, DA, Smith, G and Waterworth, MD. (1993). Theoretical effect of 

refractive error and accommodation on longitudinal chromatic aberration of the 

human eye. Optometry and Vision Science, 70: 716-722. 

 

Atchison, DA and Smith, G. (2000). Optics of the Human Eye. Oxford: 

Butterworth-Heinemann. 

 

Bennett, AG and Rabbetts, RB. (1989). Letter to the Editor (on proposals for new 

reduced and schematic eyes). Ophthalmic and Physiological Optics, 9: 228-230. 

 

Bernstein, DS. (2005). Matrix Mathematics. Theory, Facts, and Formulas with 

Application to Linear Systems Theory. Princeton: Princeton University Press. 

 

Bernstein, DS. (2009). Matrix Mathematics. Theory, Facts, and Formulas. 2
nd

 ed. 

Princeton: Princeton University Press. 

http://etext.lib.virginia.edu/etcbin/toccer-new2?id=AriMete.xml&images=images/modeng&data=/texts/english/modeng/parsed&tag=public&part=3&division=div2
http://etext.lib.virginia.edu/etcbin/toccer-new2?id=AriMete.xml&images=images/modeng&data=/texts/english/modeng/parsed&tag=public&part=3&division=div2
http://etext.lib.virginia.edu/etcbin/toccer-new2?id=AriMete.xml&images=images/modeng&data=/texts/english/modeng/parsed&tag=public&part=3&division=div2


REFERENCES   

329 
 

 

Blendowske, R. (2003). Hans-Heinrich Fick: Early contributions to the theory of 

astigmatic systems. South African Optometrist, 62: 105-110. 

 

Born, M and Wolf, E. (2002). Principles of Optics. Electromagnetic Theory of 

Propagation, Interference and Diffraction of Light. 7
th

 ed. Cambridge: Cambridge 

University Press.  

 

Cardoso, JR. (2005). An explicit formula for the matrix logarithm. South African 

Optometrist, 64: 80-83. 

 

Cardoso, JR and Harris, WF. (2007). Transformations of ray transferences of 

optical systems to augmented Hamiltonian matrices and the problem of the 

average system. South African Optometrist, 66: 56-61. 

 

Cayley, A. (1846). Sur quelques propriétés des déterminants gauches. [On some 

properties of left determinants]. Journal für die reine und angewandte 

Mathematik (Crelle). 32: 119-123. From The Collected Mathematical Papers of 

Arthur Cayley, Volume I: 332-336. Cambridge University Press (1897). Obtained 

from: 

http://quod.lib.umich.edu/u/umhistmath/abs3153.0001.001/349?didno=ABS3153.0001

.001;page=root;rgn=full+text;size=100;view=image Accessed 27 June 2013. 

 

Ciddor, PE. (1996). Refractive index of air: new equations for the visible and near 

infrared. Applied Optics, 35: 1566-1573. 

 

Cooper, DP and Pease, PL. (1988). Longitudinal chromatic aberration of the 

human eye and wavelength in focus. American Journal of Optometry and 

Physiological Optics, 65: 99-107. 

 

Courant, R and Hilbert, D. (1953). Methods of mathematical physics,  Volume I. 

New York: Interscience Publishers, Inc.  

http://quod.lib.umich.edu/u/umhistmath/abs3153.0001.001/349?didno=ABS3153.0001.001;page=root;rgn=full+text;size=100;view=image
http://quod.lib.umich.edu/u/umhistmath/abs3153.0001.001/349?didno=ABS3153.0001.001;page=root;rgn=full+text;size=100;view=image


REFERENCES   

330 
 

 

Dieci, L. (1996). Considerations on computing real logarithms of matrices, 

Hamiltonian logarithms, and skew-symmetric logarithms. Linear Algebra and its 

Applications, 244: 35-54. 

 

Dieci, L. (1998). Real Hamiltonian logarithm of a symplectic matrix. Linear 

Algebra and its Applications, 281: 227-246. 

 

El Hage, SG and Le Grand, Y. (1980). Physiological Optics. Berlin: Springer-

Verlag. 

 

Emsley, HH. (1950). Visual Optics. 4
th

 ed. London: Hatton Press Ltd. 

 

Evans, T and Harris, WF. (2011). Dependence of the transference of a reduced 

eye on frequency of light. South African Optometrist, 70: 149-155. 

 

EVANS, T and Harris, WF. (2014) Dependence of the ray transference of model 

eyes on the frequency of light. Proceedings: VII European / I World Meeting in 

Visual and Physiological Optics VPOptics 2014. Wrocław University of 

Technology, Wrocław, 25-27 Aug 2014, ed by DR Iskander and HT Kasprzak. 

74-77. 

 

Fallat, SM and Tsatsomeros MJ. (2002). On the Cayley transform of positivity 

classes of matrices, The Electronic Journal of Linear Algebra, 9: 190-196. 

 

Fick, HH. (1972). Fortschrittliche Rechnungsarten in der Augenoptik [Progressive 

calculation methods in optometry]. Der Augenoptiker, 12/1972: 60-63. 

 

Fick, HH. (1973a). Fortschrittliche Rechnungsarten in der Augenoptik 

[Progressive calculation methods in optometry]. Der Augenoptiker, 2/1973: 45-

49. 

 



REFERENCES   

331 
 

Fick, HH. (1973b). Fortschrittliche Rechnungsarten in der Augenoptik 

[Progressive calculation methods in optometry]. Der Augenoptiker, 4/1973: 39-

43. 

 

Fick, HH. (1973c). Fortschrittliche Rechnungsarten in der Augenoptik 

[Progressive calculation methods in optometry]. Der Augenoptiker, 10/1973: 55-

61. 

 

Fiori, S. (2011). Solving minimal-distance problems over the manifold of real-

symplectic matrices. Society for Industrial and Applied Mathematics: Journal on 

Matrix Analysis and Applications, 32: 938-968. 

 

Gatinel, D. (2010). Personal communications in preparation for Tshukudu 

Conference. 

 

Golub, GH and van Loan, CF. (1996). Matrix Computations. 3
rd

 ed. Baltimore: 

The Johns Hopkins University Press. 

 

Guillemin, V and Sternberg, S. (1984). Symplectic Techniques in Physics. 

Cambridge: Cambridge University Press. 

 

Hadjidimos, A and Tzoumas, M. (2008). The principle of extrapolation and the 

Cayley transform. Linear Algebra and its Applications, 429: 2464-2480. 

 

Hadjidimos, A and Tzoumas, M. (2009). On the optimal complex extrapolation of 

the complex Cayley transform. Linear Algebra and its Applications, 430: 619-

632. 

 

Hall. BC. (2004). Lie Groups, Lie Algebras, and Representations. An Elementary 

Introduction. New York: Springer. 

 



REFERENCES   

332 
 

Harris, WF. (1993). Astigmatic optical systems with separated and prismatic or 

noncoaxial elements: system matrices and system vectors. Optometry and Vision 

Science, 70: 545-551. 

 

Harris, WF. (1994). Paraxial ray tracing through noncoaxial astigmatic optical 

system, and a 55  augmented system matrix. Optometry and Vision Science, 71: 

282-285. 

 

Harris, WF. (1996a). Ray vector fields, prismatic effect, and thick astigmatic 

optical systems. Optometry and Vision Science, 73: 418-423. 

 

Harris, WF. (1996b). Wavefronts and their propagation in astigmatic optical 

systems. Optometry and Vision Science, 73: 606-612. 

 

Harris, WF. (1997). Dioptric power: its nature and its representation in three- and 

four-dimensional space. Optometry and Vision Science, 74: 349-366. 

 

Harris, WF. (1999a). A unified paraxial approach to astigmatic optics. Optometry 

and Vision Science, 76: 480-499. 

 

Harris, WF. (1999b). The four fundamental properties of Gaussian optical systems 

including the eye. South African Optometrist, 58:69-79. 

 

Harris, WF. (2000). Interconverting the matrix and principal-meridional 

representations of dioptric power and reduced vergence. Ophthalmic and 

Physiological Optics, 20: 494-500. 

 

Harris, WF. (2001a). Magnification, blur, and the ray state at the retina for the 

general eye with and without a general optical instrument in front of it: 1. Distant 

objects. Optometry and Vision Science, 78: 888-900. 

 



REFERENCES   

333 
 

Harris, WF. (2001b). Magnification, blur, and ray state at the retina for the general 

eye with and without a general optical instrument in front of it: 2. Near objects. 

Optometry and Vision Science, 78: 901-905. 

 

Harris, WF. (2001c). Interconverting the matrix and principal meridional 

representations of dioptric power in general including powers with nonorthogonal 

and complex meridians. Ophthalmic and Physiological Optics, 21: 247-252. 

 

Harris, WF. (2002). Symplecticity in visual optics. South African Optometrist, 61: 

97-100. 

 

Harris, WF. (2004a). Realizability of optical systems of given linear optical 

character. Optometry and Vision Science, 81: 807-809. 

 

Harris, WF. (2004b). The average eye. Ophthalmic and Physiological Optics, 24: 

580-585. 

 

Harris, WF. (2005). The log-transference and an average Gaussian eye. South 

African Optometrist, 64: 84-88. 

 

Harris, WF. (2007a). Quantitative analysis of transformed ray transferences of 

optical systems in a space of augmented Hamiltonian matrices. South African 

Optometrist, 66: 62-67. 

 

Harris, WF. (2007b). Subjective refraction: the mechanism underlying the routine. 

Ophthalmic and Physiological Optics, 27: 594-602. 

 

Harris, WF. (2008). The geometric mean transference and the problem if the 

average eye. South African Optometrist, 67: 48-55. 

 

Harris, WF. (2009). Optical axes of eyes and other optical systems. Optometry 

and Vision Science, 86: 537-541. 



REFERENCES   

334 
 

 

Harris, WF. (2010a). Back- and front-vertex powers of astigmatic systems. 

Optometry and Vision Science, 87: 70-72. 

 

Harris, WF. (2010b). Cardinal points and generalizations. Ophthalmic and 

Physiological Optics, 30: 391-401. 

 

Harris, WF. (2010c). Visual axes in eyes that may be astigmatic and have 

decentred elements. Ophthalmic and Physiological Optics, 30: 204-204. 

 

Harris, WF. (2010d). Symplecticity and relationships among the fundamental 

properties in linear optics. South African Optometrist, 69: 3-13. 

 

Harris, WF. (2010e). Nodes and nodal points and lines in eyes and other optical 

systems. Ophthalmic and Physiological Optics, 30: 24-42. 

 

Harris, WF. (2010f). Special rays and structures in general optical systems: 

generalized magnifications associated with the fundamental properties. South 

African Optometrist, 69: 51-57. 

 

Harris, WF. (2011a). Pascal’s ring, cardinal points, and refractive compensation. 

Vision Research, 51: 1679-1685. 

 

Harris, WF. (2011b). Graphical construction of cardinal points from the 

transference. South African Optometrist, 70: 3-13. 

 

Harris, WF. (2011c). Effective corneal patch of an astigmatic heterocentric eye. 

Ophthalmic and Physiological Optics, 31: 79-90. 

 

Harris, WF. (2012a). Achromatic axes and their linear optics. Vision Research, 

58: 1-9. 

 



REFERENCES   

335 
 

Harris, WF. (2012b). Chief nodal axes of a heterocentric astigmatic eye and the 

Thibos-Bradley achromatic axis. Vision Research, 73: 40-45. 

 

Harris, WF. (2012c). Dependence of optical properties of heterocentric astigmatic 

systems on internal elements, with application to the human eye. Transactions of 

the Royal Society of South Africa, 67: 11-16. 

 

Harris, WF. (2012d). Aperture referral in dioptric systems with stigmatic 

elements. South African Optometrist, 71: 3-11.  

 

Harris, WF. (2013a). Pupillary axis of a heterocentric astigmatic eye. South 

African Optometrist, 72: 3-10. 

 

Harris, WF. (2013b). Yves Le Grand on matrices in optics with. vision: 

Translation and critical analysis, South African Optometrist, 72: 145-166. 

 

Harris, WF and Cardoso, JR. (2006). The exponential-mean-log-transference as a  

possible representation of the optical character of an average eye. Ophthalmic and 

Physiological Optics, 26: 380-383. 

 

Harris, WF and Evans, T. (2012). Chromatic aberration in heterocentric astigmatic 

systems including the eye. Optometry and Vision Science, 89: e37-e43. 

 

Harris WF, EVANS T and van Gool RDHM. (2014) Inner-product spaces for 

quantitative analysis of eyes and other optical systems. Proceedings: VII 

European / I World Meeting in Visual and Physiological Optics. Wrocław 

University of Technology, Wrocław, 25-27 Aug 2014, ed by DR Iskander and HT 

Kasprzak. 116-119. 

 

Harris, WF and van Gool, RD. (2001). Comparing optical systems, and the 

concept of the converter system. Optometry and Vision Science, 78: 825-830. 

 



REFERENCES   

336 
 

Harris, WF and van Gool, RD. (2004). First-order characteristic matrices of 

optical systems. South African Optometrist, 63: 142-146. 

 

Harris, WF and van Gool, RD. (2009). Thin lenses of asymmetric power. South 

African Optometrist, 68: 52-60. 

 

Harris, WF, van Gool, RDHM and Evans T. (2013). Line of sight of a 

heterocentric astigmatic eye. Ophthalmic and Physiological Optics, 33: 57-66. 

 

Hastings, CS. (1901). Light; A Consideration of the More Familiar Phenomena of 

Optics. New York: Charles Scribner’s Sons. 

 

Herzberger, M. (1959). Colour correction in optical systems and a new dispersion 

formula. Optica Acta, 6: 197-215. 

 

Hodgman, CD (Editor). (1959). Handbook of Chemistry and Physics. Cleveland: 

Chemical Rubber Publishing Co. 

 

Howarth, PA and Bradley, A. (1986). The longitudinal chromatic aberration of the 

human eye, and its correction. Vision Research, 26: 361-366. 

 

Katz, M. (2002). Introduction to Geometrical Optics. Singapore: World Scientific 

Publishing Co. 

 

Keating, MP. (1980). An easier method to obtain the sphere, cylinder, and axis 

from an off-axis dioptric power matrix. American Journal of Optometry and 

Physiological Optics, 57: 734-737. 

 

Keating, MP. (1981a). A system matrix for astigmatic optical systems: I. 

Introduction and dioptric power relations. American Journal of Optometry and 

Physiological Optics, 58: 810-819. 

 



REFERENCES   

337 
 

Keating, MP. (1981b). A system matrix for astigmatic optical systems: II. 

Corrected systems including an astigmatic eye. American Journal of Optometry 

and Physiological Optics, 58: 919-929. 

 

Keating, MP. (1982). Advantages of a block matrix formulation for an astigmatic 

system. American Journal of Optometry and Physiological Optics, 59: 851-857. 

 

Keating, MP. (1988). Geometric, Physical, and Visual Optics. Boston: 

Butterworth-Heinemann. 

 

Keating, MP. (1997a). Equivalent dioptric power asymmetry relations for thick 

astigmatic systems. Optometry and Vision Science, 74: 388-392. 

 

Keating, MP. (1997b). Asymmetric dioptric power matrices and corresponding 

thick lenses. Optometry and Vision Science, 74: 393-396. 

 

Keating, MP. (2002). Geometric, Physical, and Visual Optics. 2
nd

 ed. Boston: 

Butterworth-Heinemann. 

 

Keating, MP, Harris, WF and van Gool, RD. (2002b). Relation between anterior 

and posterior converter systems. Optometry and Vision Science, 79: 459-461. 

 

Koczorowski, P. (1990). Axial chromatic aberration: linear or power function of 

wavenumber? Ophthalmic and Physiological Optics, 10: 405-408. 

 

Korsch, D. (1991). Reflective Optics. Boston: Academic Press. 

 

Lakshminarayanan, V. (2009). Introduction. Journal of Modern Optics, 56: 2159-

2163. 

 

Lee, RL and Fraser, AB. (2001). The Rainbow Bridge: Rainbows in Art, Myth and 

Science. Bellingham: The Pennsylvania State University Press. 



REFERENCES   

338 
 

 

Le Grand, Y. (1945). Optique Physiologique. Tome Premier, le Dioptrique de 

l’Œil et sa Correction [Physiological optics. First volume, dioptrics of the eye and 

its correction]. Paris: Revue d’optique. 

 

Le Grand, Y. (1956). Optique Physiologique. Tome Troisième, L’espace Visuel 

[Physiological optics. Third volume, Visual space]. Paris: Revue d’optique. 

 

Le Grand Y. (1957). Light, Colour and Vision. Translated from French by Hunt, 

RWG, Walsh, JWT and Hunt, FRW. London: Chapman & Hall Ltd. 

 

Long, WF. (1976). A matrix formulation for decentration problems. American 

Journal of Optometry and Physiological Optics, 53: 27-33. 

 

MacKenzie, GE. (2004). Linear Optics of the Pseudophakic Eye. Doctoral thesis. 

Johannesburg: Rand Afrikaans University. 

 

Mathebula, SD, Rubin, A and Harris, WF. (2007). Quantitative analysis in 

Hamiltonian space of the transformed ray transferences of a cornea. South African 

Optometrist, 66: 68-76. 

 

Mathebula, SD and Rubin, A. (2011). Application of optical transferences for ray 

tracing through the human cornea. South African Optometrist, 70: 156-167. 

 

Meyer-Arendt, JR. (1984). Introduction to Classical and Modern Optics. 2
nd

 ed. 

New-Jersey: Prentice-Hall, Inc. 

 

Newton, I. (1670-1672). Optica, Part II, Lecture 11. In The Optical Papers of 

Isaac Newton, Volume 1: The Optical Lectures 1670-1672 (1984). Edited by 

Shapiro, AE. Cambridge: Cambridge University Press.  

 



REFERENCES   

339 
 

Pascal, JI. (1939). A memory scheme for the cardinal points. Archives of 

Ophthalmology, 22: 448-449. 

 

Pascal, JI. (1947). Cardinal points in aphakia. Archives of Ophthalmology, 37: 83-

84. 

 

Pascal, JI. (1950a). Role of the cardinal points in the correction of ametropia. Eye, 

Ear, Nose and Throat Monthly, 29: 24-28. 

 

Pascal, JI. (1950b). The cardinal points in corrected ametropia. British Journal of 

Ophthalmology, 34: 261-264. 

 

Pease, PL and Barbeito, R. (1989). Axial chromatic aberration of the human eye: 

frequency or wavelength? Ophthalmic and Physiological Optics, 9: 215-217. 

 

Puzio, RS. (2013). Cayley’s parameterization of orthogonal matrices. Available 

from: http://planetmath.org/cayleysparameterizationoforthogonalmatrices (Accessed 

22 June 2013). 

 

Rabbetts, RB. (2007). Bennett & Rabbetts’ Clinical Visual Optics. 4
th

 ed. London: 

Butterworth-Heinemann-Elsevier. 

 

Sears, FW, Zemansky, MW and Young, HD. (1987). University Physics. 7
th

 ed. 

Reading, Massachusetts: Addison-Wesley Publishing Company. 

 

Seyeddain, O, Riha, W, Hohensinn, M, Nix, G, Dexl, AK and Grabner, G. (2010). 

Refractive surgical correction of presbyopia with the AcuFocus small aperture 

corneal inlay: two-year follow-up. The Journal of Refractive Surgery, 26: 707-

715. 

 

Sharma, KK. (2006). Optics. Principles and Applications. Boston: Elsevier.  

 

http://planetmath.org/cayleysparameterizationoforthogonalmatrices


REFERENCES   

340 
 

Simonet, P and Campbell, MCW. (1990). The optical transverse chromatic 

aberration on the fovea of the human eye. Vision Research, 30: 187-206. 

 

Sivak, JG and Mandelman, T. (1982). Chromatic dispersion of the ocular media. 

Vision Research, 22: 997-1003. 

 

Smith, G. (1993). Calculation of the cardinal points of an optical system. 

Ophthalmic and Physiological Optics, 13: 327-332. 

 

Smith, G. (1995). Schematic eyes: history, description and applications. Clinical 

and Experimental Optometry, 78: 176-189. 

 

Smith, G and Atchison, DA. (1997). The Eye and Visual Optical Instruments. 

Cambridge: Cambridge University Press. 

 

Stiles, WS and Crawford, BH. (1933). The luminous efficiency of rays entering 

the eye pupil at different points. Proceedings of the Royal Society of London, 

Series B, 112: 428-450. 

 

Stiles, WS. (1939). The directional sensitivity of the retina and the spectral 

sensitivities of the rods and cones. Proceedings of the Royal Society of London, 

Series B, 127: 64-105. 

 

Sunyal, AK. (2001). Geometrical Transformations in Higher Dimensional 

Euclidean Spaces. Masters dissertation. College Station: Texas A & M 

University. 

 

Tabernero, J and Artal P. (2011). Optical modelling of a corneal inlay in real eyes 

to increase depth of focus: Optimum centration and residual focus. Journal of 

Cataract and Refractive Surgery, 38: 270-277. 

 



REFERENCES   

341 
 

Thibos, LN. (1987). Calculation of the influence of lateral chromatic aberration on 

image quality across the visual field. Journal of the Optical Society of America, 4: 

1673-1680. 

 

Thibos, LN. (2011). Personal communication to Harris, WF, 7 December 2011. 

 

Thibos, LN, Bradley, A, Still, DL, Zhang, X and Howarth, PA. (1990). Theory 

and measurement of ocular chromatic aberration. Vision Research, 30: 33-49. 

 

Thibos, LN, Bradley, A and Zhang, X. (1991). Effect of ocular chromatic 

aberration on monocular visual performance. Optometry and Vision Science, 68: 

599-607. 

 

Thibos, LN, Ye, M, Zhang, X and Bradley, A. (1992). The chromatic eye: a new 

reduced-eye model of ocular chromatic aberration in humans. Applied Optics, 31: 

3594-3600. 

 

Torre, A. (2005). Linear Ray and Wave Optics in Phase Space. Amsterdam: 

Elsevier. 

 

Tscherning, M. (1904). Physiologic Optics: Dioptrics of the Eye, Functions of the 

Retina, Ocular Movements and Binocular Vision. Translated from French by 

Weiland, C. 2
nd

 ed. Philedelphia: The Keystone. 

 

Tsiotras, P, Junkins, JL and Schaub, H. (1997). Higher order Cayley transforms 

with applications to attitude representations. Journal of Guidance, Control, and 

Dynamics, 20: 528-536. 

 

Van Gool, RD and Harris, WF. (2005). The concept of the average eye. South 

African Optometrist, 64: 38-43. 

 



REFERENCES   

342 
 

Villegas, ER, Carretero, L and Fimia, A. (1996). Le Grand eye for the study of 

ocular chromatic aberration. Ophthalmic and Physiological Optics, 16: 528-531. 

 

von Helmholtz, H. (1909). Treatise on Physiological Optics, Volume I. Translated 

from the German (2005): Southall, JPC (ed), New York: Dover Phoenix Editions 

Inc. (Original work published in 1909; Original translation published in 1924). 

 

Wald, G and Griffin, DR. (1947). The change in refractive power of the human 

eye in dim and bright light. Journal of the Optical Society of America, 37: 321-

336. 

 

Waldman, G. (2002). Introduction to Light: The Physics of Light, Vision, and 

Color. New York: Dover Publications Inc. 

 

Walther, A. (1995). The Ray and Wave Theory of Lenses. Cambridge: Cambridge 

University Press. 

 

Waring, GO. (2010). Corneal inlay uses pinhole effect. Ophthalmology Times, 

35(7). Available from: 

http://ophthalmologytimes.modernmedicine.com/ophthalmologytimes/news/modern

medicine/modern-medicine-feature-articles/corneal-inlay-uses-pinhole-e (Accessed on: 

8 June 2013.) 

 

Watkins, DS. (2004). On Hamiltonian and symplectic Lanczos processes. Linear 

Algebra and its Applications, 385: 24-45. 

 

Westheimer. G. (2008). Directional sensitivity of the retina: 75 years of Stiles-

Crawford effect. Proceedings of the Royal Society B, 275: 2777-2786. 

 

Wilson, MA, Campbell, MCW and Simonet, P. (1992). Change of pupil 

centration with change of illumination and pupil size. Optometry and Vision 

Science, 69: 129-136. 

http://ophthalmologytimes.modernmedicine.com/ophthalmologytimes/news/modernmedicine/modern-medicine-feature-articles/corneal-inlay-uses-pinhole-e
http://ophthalmologytimes.modernmedicine.com/ophthalmologytimes/news/modernmedicine/modern-medicine-feature-articles/corneal-inlay-uses-pinhole-e


REFERENCES   

343 
 

 

Yang, Y, Thompson, K and Burns, SA. (2002). Pupil location under mesopic, 

photopic and pharmacologically dilated conditions. Investigative Ophthalmology 

and Visual Science, 43: 2508-2512. 

 

Zhang, X, Bradley, A and Thibos, LN. (1993). Experimental determination of the 

chromatic difference of magnification of the human eye and the location of the 

anterior nodal point. Journal of the Optical Society of America A, 10: 213-220. 

 

Zhang, X, Thibos, LN and Bradley, A. (1991). Relation between the chromatic 

difference of refraction and the chromatic difference of magnification for the 

reduced eye. Optometry and Vision Science, 68: 456-458. 

 

Zhang, X, Thibos, LN and Bradley, A. (1997). Wavelength-dependent 

magnification and polychromatic image quality in eyes corrected for longitudinal 

chromatic aberration. Optometry and Vision Science, 74: 563-569. 


	0M Front and content TEvans
	1M and PART I Introduction TEvans
	2M Chromatic aberration TEvans
	3M Background theory - Optics TEvans
	4M Background theory - Considerations TEvans
	5M Derivations for background theory TEvans
	6M Definitions of Longitudinal and Transverse Chromatic Aberration TEvans
	7M Quantifying Chromatic Effects TEvans
	8M Dependence of T & ^T on frequency TEvans
	9M Chromatic dependence of derived properties TEvans
	10M Numerical examples of chromatic aberration and chromatic proerties TEvans
	11M Conclusion Tevans
	2011SAO TE WFH Dependence of the transfernce of a reduced eye on frequency of light
	2012OVS WFH TE Chromatic aberration in heterocentric astigmatic systems including the eye appendix
	2012OVS WFH TE Chromatic Aberration in heterocentric astigmatic systems including the eye
	2013OPO WFH RvG TE Line of Sight of a heterocentric astigmatic eye
	2014VPO TE WFH Dependence of the ray transfernce of model eyes on frequency of light
	2014VPO WFH TE RdvG Inner-product spaces for quantitative analysis of eyes and other optical systems
	APPENDIX A list of symbols TEvans
	APPENDIX B List of figures TEvans
	APPENDIX C List of tables TEvans
	APPENDIX D Publications
	PART II Literature Review TEvans
	PART III Definitions and derivations TEvans
	PART IV Findings and discussions TEvans
	References TEvans
	0M Front and content TEvans
	1M and PART I Introduction TEvans
	2M Chromatic aberration TEvans
	3M Background theory - Optics TEvans
	4M Background theory - Considerations TEvans
	5M Derivations for background theory TEvans
	6M Definitions of Longitudinal and Transverse Chromatic Aberration TEvans
	7M Quantifying Chromatic Effects TEvans
	8M Dependence of T & ^T on frequency TEvans
	9M Chromatic dependence of derived properties TEvans
	10M Numerical examples of chromatic aberration and chromatic proerties TEvans
	11M Conclusion Tevans
	2011SAO TE WFH Dependence of the transfernce of a reduced eye on frequency of light
	2012OVS WFH TE Chromatic aberration in heterocentric astigmatic systems including the eye appendix
	2012OVS WFH TE Chromatic Aberration in heterocentric astigmatic systems including the eye
	2013OPO WFH RvG TE Line of Sight of a heterocentric astigmatic eye
	2014VPO TE WFH Dependence of the ray transfernce of model eyes on frequency of light
	2014VPO WFH TE RdvG Inner-product spaces for quantitative analysis of eyes and other optical systems
	APPENDIX A list of symbols TEvans
	APPENDIX B List of figures TEvans
	APPENDIX C List of tables TEvans
	APPENDIX D Publications
	PART II Literature Review TEvans
	PART III Definitions and derivations TEvans
	PART IV Findings and discussions TEvans
	References TEvans

