907 research outputs found

    Smartphone-based Calorie Estimation From Food Image Using Distance Information

    Get PDF
    Personal assistive systems for diet control can play a vital role to combat obesity. As smartphones have become inseparable companions for a large number of people around the world, designing smartphone-based system is perhaps the best choice at the moment. Using this system people can take an image of their food right before eating, know the calorie content based on the food items on the plate. In this paper, we propose a simple method that ensures both user flexibility and high accuracy at the same time. The proposed system employs capturing food images with a fixed posture and estimating the volume of the food using simple geometry. The real world experiments on different food items chosen arbitrarily show that the proposed system can work well for both regular and liquid food items

    Dietary assessment and obesity aviodance system based on vision: A review

    Get PDF
    Using technology for food objects recognition and estimation of its calories is very useful to spread food culture and awareness among people in the age of obesity due to the bad habits of food consumption and wide range of inappropriate food products.Image based sensing of such system is very promising with the large expanding of camera embedded portable devices such as smartphones, PC tablets, and laptops.In the past decade, researchers have been working on developing a reliable image based system for food recognition and calories estimation.Different approaches have tackled the system from different aspects.This paper reviews the state of the art of this interesting application, and presents its experimental results.Future work of research is presented in order to guide new researchers toward potential tracks to create more maturity and reliability to this application

    A Survey on Automated Food Monitoring and Dietary Management Systems

    Get PDF
    Healthy diet with balanced nutrition is key to the prevention of life-threatening diseases such as obesity, cardiovascular disease, and cancer. Recent advances in smartphone and wearable sensor technologies have led to a proliferation of food monitoring applications based on automated food image processing and eating episode detection, with the goal to conquer drawbacks of the traditional manual food journaling that is time consuming, inaccurate, underreporting, and low adherent. In order to provide users feedback with nutritional information accompanied by insightful dietary advice, various techniques in light of the key computational learning principles have been explored. This survey presents a variety of methodologies and resources on this topic, along with unsolved problems, and closes with a perspective and boarder implications of this field

    Analysis & Numerical Simulation of Indian Food Image Classification Using Convolutional Neural Network

    Get PDF
    Recognition of Indian food can be assumed to be a fine-grained visual task owing to recognition property of various food classes. It is therefore important to provide an optimized approach to segmentation and classification for different applications based on food recognition. Food computation mainly utilizes a computer science approach which needs food data from various data outlets like real-time images, social flat-forms, food journaling, food datasets etc, for different modalities. In order to consider Indian food images for a number of applications we need a proper analysis of food images with state-of-art-techniques. The appropriate segmentation and classification methods are required to forecast the relevant and upgraded analysis. As accurate segmentation lead to proper recognition and identification, in essence we have considered segmentation of food items from images. Considering the basic convolution neural network (CNN) model, there are edge and shape constraints that influence the outcome of segmentation on the edge side. Approaches that can solve the problem of edges need to be developed; an edge-adaptive As we have solved the problem of food segmentation with CNN, we also have difficulty in classifying food, which has been an important area for various types of applications. Food analysis is the primary component of health-related applications and is needed in our day to day life. It has the proficiency to directly predict the score function from image pixels, input layer to produce the tensor outputs and convolution layer is used for self- learning kernel through back-propagation. In this method, feature extraction and Max-Pooling is considered with multiple layers, and outputs are obtained using softmax functionality. The proposed implementation tests 92.89% accuracy by considering some data from yummly dataset and by own prepared dataset. Consequently, it is seen that some more improvement is needed in food image classification. We therefore consider the segmented feature of EA-CNN and concatenated it with the feature of our custom Inception-V3 to provide an optimized classification. It enhances the capacity of important features for further classification process. In extension we have considered south Indian food classes, with our own collected food image dataset and got 96.27% accuracy. The obtained accuracy for the considered dataset is very well in comparison with our foregoing method and state-of-the-art techniques.

    History of early life adversity is associated with increased food addiction and sex-specific alterations in reward network connectivity in obesity.

    Get PDF
    Background:Neuroimaging studies have identified obesity-related differences in the brain's resting state activity. An imbalance between homeostatic and reward aspects of ingestive behaviour may contribute to obesity and food addiction. The interactions between early life adversity (ELA), the reward network and food addiction were investigated to identify obesity and sex-related differences, which may drive obesity and food addiction. Methods:Functional resting state magnetic resonance imaging was acquired in 186 participants (high body mass index [BMI]: ≥25: 53 women and 54 men; normal BMI: 18.50-24.99: 49 women and 30 men). Participants completed questionnaires to assess ELA (Early Traumatic Inventory) and food addiction (Yale Food Addiction Scale). A tripartite network analysis based on graph theory was used to investigate the interaction between ELA, brain connectivity and food addiction. Interactions were determined by computing Spearman rank correlations, thresholded at q < 0.05 corrected for multiple comparisons. Results:Participants with high BMI demonstrate an association between ELA and food addiction, with reward regions playing a role in this interaction. Among women with high BMI, increased ELA was associated with increased centrality of reward and emotion regulation regions. Men with high BMI showed associations between ELA and food addiction with somatosensory regions playing a role in this interaction. Conclusions:The findings suggest that ELA may alter brain networks, leading to increased vulnerability for food addiction and obesity later in life. These alterations are sex specific and involve brain regions influenced by dopaminergic or serotonergic signalling

    A Framework to Estimate the Nutritional Value of Food in Real Time Using Deep Learning Techniques

    Get PDF
    There has been a rapid increase in dietary ailments during last few decades, caused by unhealthy food routine. Mobile-based dietary assessment systems that can record real time images of meal and analyze it for nutritional content can be very handy and improve the dietary habits, and therefore, result in healthy life. This paper proposes a novel system to automatically estimate food attributes such as ingredients and nutritional value by classifying the input image of food. Our method employs different deep learning models for accurate food identification. In addition to image analysis, attributes and ingredients are estimated by extracting semantically related words from a huge corpus of text, collected over the Internet. We performed experiments with a dataset comprising 100 classes, averaging 1000 images for each class to acquire top 1 classification rate of up to 85 percent. An extension of a benchmark dataset Food-101 is also created to include sub-continental foods. Results show that our proposed system is equally efficient on basic Food- 101 dataset and its extension for sub-continental foods. The proposed system is implemented as a mobile app that has its application in healthcare sector

    Collaborative design and feasibility assessment of computational nutrient sensing for simulated food-intake tracking in a healthcare environment

    Get PDF
    One in four older adults (65 years and over) are living with some form of malnutrition. This increases their odds of hospitalization four-fold and is associated with decreased quality of life and increased mortality. In long-term care (LTC), residents have more complex care needs and the proportion affected is a staggering 54% primarily due to low intake. Tracking intake is important for monitoring whether residents are meeting their nutritional needs however current methods are time-consuming, subjective, and prone to large margins of error. This reduces the utility of tracked data and makes it challenging to identify individuals at-risk in a timely fashion. While technologies exist for tracking food-intake, they have not been designed for use within the LTC context and require a large time burden by the user. Especially in light of the machine learning boom, there is great opportunity to harness learnings from this domain and apply it to the field of nutrition for enhanced food-intake tracking. Additionally, current approaches to monitoring food-intake tracking are limited by the nutritional database to which they are linked making generalizability a challenge. Drawing inspiration from current methods, the desires of end-users (primary users: personal support workers, registered staff, dietitians), and machine learning approaches suitable for this context in which there is limited data available, we investigated novel methods for assessing needs in this environment and imagine an alternative approach. We leveraged image processing and machine learning to remove subjectivity while increasing accuracy and precision to support higher-quality food-intake tracking. This thesis presents the ideation, design, development and evaluation of a collaboratively designed, and feasibility assessment, of computational nutrient sensing for simulated food-intake tracking in the LTC environment. We sought to remove potential barriers to uptake through collaborative design and ongoing end user engagement for developing solution concepts for a novel Automated Food Imaging and Nutrient Intake Tracking (AFINI-T) system while implementing the technology in parallel. More specifically, we demonstrated the effectiveness of applying a modified participatory iterative design process modeled from the Google Sprint framework in the LTC context which identified priority areas and established functional criteria for usability and feasibility. Concurrently, we developed the novel AFINI-T system through the co-integration of image processing and machine learning and guided by the application of food-intake tracking in LTC to address three questions: (1) where is there food? (i.e., food segmentation), (2) how much food was consumed? (i.e., volume estimation) using a fully automatic imaging system for quantifying food-intake. We proposed a novel deep convolutional encoder-decoder food network with depth-refinement (EDFN-D) using an RGB-D camera for quantifying a plate’s remaining food volume relative to reference portions in whole and modified texture foods. To determine (3) what foods are present (i.e., feature extraction and classification), we developed a convolutional autoencoder to learn meaningful food-specific features and developed classifiers which leverage a priori information about when certain foods would be offered and the level of texture modification prescribed to apply real-world constraints of LTC. We sought to address real-world complexity by assessing a wide variety of food items through the construction of a simulated food-intake dataset emulating various degrees of food-intake and modified textures (regular, minced, puréed). To ensure feasibility-related barriers to uptake were mitigated, we employed a feasibility assessment using the collaboratively designed prototype. Finally, this thesis explores the feasibility of applying biophotonic principles to food as a first step to enhancing food database estimates. Motivated by a theoretical optical dilution model, a novel deep neural network (DNN) was evaluated for estimating relative nutrient density of commercially prepared purées. For deeper analysis we describe the link between color and two optically active nutrients, vitamin A, and anthocyanins, and suggest it may be feasible to utilize optical properties of foods to enhance nutritional estimation. This research demonstrates a transdisciplinary approach to designing and implementing a novel food-intake tracking system which addresses several shortcomings of the current method. Upon translation, this system may provide additional insights for supporting more timely nutritional interventions through enhanced monitoring of nutritional intake status among LTC residents
    • …
    corecore