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Abstract

One in four older adults (65 years and over) are living with some form of malnutrition. This
increases their odds of hospitalization four-fold and is associated with decreased quality of life
and increased mortality. In long-term care (LTC), residents have more complex care needs and
the proportion affected is a staggering 54% primarily due to low intake. Tracking intake is
important for monitoring whether residents are meeting their nutritional needs however current
methods are time-consuming, subjective, and prone to large margins of error. This reduces the
utility of tracked data and makes it challenging to identify individuals at-risk in a timely fashion.

While technologies exist for tracking food-intake, they have not been designed for use within
the LTC context and require a large time burden by the user. Especially in light of the machine
learning boom, there is great opportunity to harness learnings from this domain and apply it
to the field of nutrition for enhanced food-intake tracking. Additionally, current approaches to
monitoring food-intake tracking are limited by the nutritional database to which they are linked
making generalizability a challenge.

Drawing inspiration from current methods, the desires of end-users (primary users: personal
support workers, registered staff, dietitians), and machine learning approaches suitable for this
context in which there is limited data available, we investigated novel methods for assessing
needs in this environment and imagine an alternative approach. We leveraged image processing
and machine learning to remove subjectivity while increasing accuracy and precision to support
higher-quality food-intake tracking. This thesis presents the ideation, design, development and
evaluation of a collaboratively designed, and feasibility assessment, of computational nutrient
sensing for simulated food-intake tracking in the LTC environment.

We sought to remove potential barriers to uptake through collaborative design and ongoing end-
user engagement for developing solution concepts for a novel Automated Food Imaging and Nu-
trient Intake Tracking (AFINI-T) system while implementing the technology in parallel. More
specifically, we demonstrated the effectiveness of applying a modified participatory iterative de-
sign process modeled from the Google Sprint framework in the LTC context which identified
priority areas and established functional criteria for usability and feasibility. Concurrently, we
developed the novel AFINI-T system through the co-integration of image processing and ma-
chine learning and guided by the application of food-intake tracking in LTC to address three
questions: (1) where is there food? (i.e., food segmentation), (2) how much food was consumed?
(i.e., volume estimation) using a fully automatic imaging system for quantifying food-intake.
We proposed a novel deep convolutional encoder-decoder food network with depth-refinement
(EDFN-D) using an RGB-D camera for quantifying a plate’s remaining food volume relative to
reference portions in whole and modified texture foods. To determine (3) what foods are present
(i.e., feature extraction and classification), we developed a convolutional autoencoder to learn
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meaningful food-specific features and developed classifiers which leverage a priori information
about when certain foods would be offered and the level of texture modification prescribed to
apply real-world constraints of LTC. We sought to address real-world complexity by assessing a
wide variety of food items through the construction of a simulated food-intake dataset emulat-
ing various degrees of food-intake and modified textures (regular, minced, puréed). To ensure
feasibility-related barriers to uptake were mitigated, we employed a feasibility assessment using
the collaboratively designed prototype. Finally, this thesis explores the feasibility of applying
biophotonic principles to food as a first step to enhancing food database estimates. Motivated
by a theoretical optical dilution model, a novel deep neural network (DNN) was evaluated for
estimating relative nutrient density of commercially prepared purées. For deeper analysis we de-
scribe the link between color and two optically active nutrients, vitamin A, and anthocyanins, and
suggest it may be feasible to utilize optical properties of foods to enhance nutritional estimation.

This research demonstrates a transdisciplinary approach to designing and implementing a novel
food-intake tracking system which addresses several shortcomings of the current method. Upon
translation, this system may provide additional insights for supporting more timely nutritional
interventions through enhanced monitoring of nutritional intake status among LTC residents.
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Chapter 1

Introduction

This thesis describes a novel approach to support enhanced food intake tracking in long-term
care homes (LTC) by addressing several shortcomings of the current systems in place and the
technological solutions designed without the lens of LTC. It explores the ideation, design, devel-
opment and evaluation of a collaboratively designed and feasibility assessment of computational
nutrient sensing for simulated food intake tracking in the LTC environment. As its focus was
application-driven, our story begins with the magnitude of the need and health implications for
when nutritional needs are not being met as described in Section 1.1. Following this, comes the
problem statement in Section 1.2, as well as a challenges and objectives nested within current
limitations in Sections 1.3 and 1.4, and a summary of research contributions in Section 1.5. This
chapter concludes with an overview of the remaining thesis structure in Section 1.6.

1.1 Motivation
The link between poor nutritional status (e.g., malnourished or at risk for malnourishment) and
disease is well established; malnutrition is associated with decreased quality of life [124], in-
creased hospital stays and pressure ulcers [222], morbidity [184] and mortality [222, 184].
Furthermore, malnutrition-related costs the health care system $10 billion per year in each the
USA and UK [80, 202]. Older adults are at increased risk for nutritional deficiency due to
physical and physiological changes (e.g., reduced lean muscle, less efficient gastrointestinal
tracts, changes in sensory ability like smell or taste), in addition to having a higher degree of
co-morbidity [33]. With one in four older adults (65 years or older) malnourished [116], an ad-
ditional 15% at medium or high risk for malnutrition [151, 113], and over 4 times higher odds
of hospitalization and $21,892 more in total charges for those with malnutrition [133], it’s clear
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nutritional status has multidomain effects with both fiscal and clinical ramifications and should
be monitored.

Canadian older adults living in long-term care (LTC)
are particularly vulnerable; 54% of the LTC popula-
tion is malnourished or at risk [121] primarily due to
low food intake [122]. This is higher than global esti-
mates ranging from 19% to 42% (37 studies, 17 coun-
tries) [19]. Additional independent risk factors for mal-
nutrition are eating challenges, and increased cognitive
impairment [122, 232] which describes between 47%
to 90% of the Ontario LTC population [86, 35]! Thus,
tracking and preventing poor food intake is paramount.
However, we lack quality tracking methods for food and
fluid intake, especially needed with multiple staff in-
volved in the care of residents over the course of a day
or week.

Best practice metrics for ongoing nutritional assessment include monitoring unintentional weight
loss, usual low intake of food, or other quality indicators to prioritise referrals and monitor ef-
fectiveness of nutritional support systems [60]. Nursing assistants or personal support workers
(PSWs) chart food and fluid intake of residents using either a paper-based or electronic form to
capture intake across a meal at 25% incremental proportions of intake. However, while inad-
equate intake is manageable [214], present guidelines for a nutritional intervention stipulate a
resident must consume less than 75% of a meal most of the time [7, 211, 212]. Half of these
residents who would benefit from an intervention are missed [211, 212] because of difficulties
assessing and charting food intake. More specifically, the accuracy and validity of these methods
is known to be poor [154, 240] with incorrect estimates over 50% of the time [39, 23]. As a
result, trust in these measurements is low, with limited utility in practice. But as we will see in
Chapter 3, care providers would like to utilize this information if measurement reliability and
trust in these measurements could be ensured [180].

Outside of LTC, while traditional methods to measure nutritional intake exist (e.g., food fre-
quency questionnaires, food diaries, 24 hour recall, and food intake patterns [178], they rely on
self-report methods which are subjective and suffer from the same two key limitations: poor
accuracy and validity [154, 240]. Alternative methods exist (e.g., weighed food record, digital
photography [240]) however, these alternatives are time-consuming, require trained personnel,
and are therefore impractical for large-scale adoption in LTC. Automated tools may provide a
time efficient, cost efficient, and objective alternative. However, they are not without their own
challenges specifically around food classification (segmentation and recognition), portion size
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estimation (scale inference), and food mixing (occlusions). While others have successfully im-
plemented automatic food intake systems, they rely on images from multiple perspectives [128],
require a single image with a fiducial marker (i.e., reference object for scale inference) [176],
or require manual segmentation and labelling for each food each item [162], which involves
personnel time and may impact accuracy.

1.2 Problem Statement
In a 2016 review, two explicit gaps in the literature were identified as persisting: the need for user
adoption studies and the need to address more complex meal scenarios [189]. For the most im-
pactful research, these challenges must be addressed to remove barriers for user-adoption which
is the focus of my research described throughout this thesis. The overall aim of this research is
to enhance food intake assessment by reducing subjectivity while improving accuracy and preci-
sion to support higher-quality food intake tracking. The technology developed and assessed for
feasibility through this process may be used as a system to assess changes in nutritional status, to
provide more reliable data for nutritional interventions, and is specifically tailored for healthcare
settings (e.g., long-term care). Figure 1.1 provides an overview with challenges and objectives
described in detail below. Specific contributions are outlined in Section 1.5. This project im-
proves upon and innovates beyond previous work by addressing three challenges (C1-C3) unique
to designing a system to support enhanced nutrition tracking in long-term care.

1.3 Challenges
Challenge 1 (C1): Understand and remove potential barriers to uptake. The first challenge
relates to the general approach of building a solution. Traditionally, technological solutions to
food tracking have been approached in a silo-ed manner. Here, we bridged the transdisciplinary
gap through collaborative design by bringing together key stakeholders across the nutrition, long-
term care sector, and engineering disciplines to ensure real-world relevance. While progress in
the field has led to successful food recognition tasks and some useful applications for calorie
tracking and weight-loss management (e.g., [128, 163, 176, 189]), there has been a disconnect
between the powerful nutrition approach as part of holistic care planning or as part of a healthy
lifestyle. As a result, these applications have had limited clinical applicability.

Challenge 2 (C2): Address real-world complexity. Classically, food tracking and food databases
oversimplify foods either in the presentation (e.g., banana in peel) or in how they are imaged
(e.g., one food per plate, only full portions). In the real-world there are fewer constraints im-
posed which must be considered in the design of a robust system to navigate complex (e.g., multi

3



foods, mixed/touching foods) meal scenarios. Additionally, in practice, food intake tracking as-
sumes equal consumption across a plate (or across the mean “plate” of all possible options) and
is recorded only at the plate level (bulk food intake). The desired output was the ability to track,
with limited human input, simulated food intake at the food item and nutrient level. Additionally,
traditional image-based approaches tend to combine segmentation with classification making it
difficult to evaluate system error.

Challenge 3 (C3): Explore food database enhancement. To date, food tracking systems rely
on food databases for nutrient content estimates however, foods included in the database may not
be representative of specific food items on the plate due to different ingredients included, cook
times, or preparation methods. Leveraging biophotonic principles for food may be possible, but
feasibility of this approach is unknown.

1.4 Objectives
Objectives to address C1. To understand and remove potential barriers to uptake, we used
novel avenues for end-user engagement and sought to understand of the problem space to inform
the physical design of a vision-based imaging system for food intake tracking driven by user
needs. Typically, collaborative design requires a large team, intensive time commitments, and
has not often been applied within the aging context. To address this, we developed a novel
infrastructure for end-user engagement enabling them to share knowledge in a timely, iterative
manner that is time and resource inexpensive. The target end-users of our primary research
goals were health care professionals (e.g., dietitians, nurses), primary care givers (e.g., personal
support workers, food aides), and clinical researchers within the long-term care domain. The
objectives of addressing this challenge were therefore:

1. To ensure the system is user-friendly by conducting focus-groups, interviews and surveys
to assemble is list of needs and priority areas with the design in mind, and

2. To reduce barriers to adoption by ascertaining feasibility from user perceptions perspective
by conducting human factors and user-centred evaluation. Specifically, the performance
and workload measures of this system were compared against traditional food intake chart-
ing methods from the end-user perspective.

Objectives to address C2. To address real-world complexities, we considered more complex
meal scenarios and facilitated user trust in the system by disentangling sources of error. The
objectives of addressing this challenge were therefore:

1. To construct a simulated food intake dataset which emulates a real-world environment and
considers various degrees of food intake (i.e., plate leftover images).
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2. To assess the feasibility and accuracy of an image-based system leveraging volume esti-
mates for estimating bulk food intake.

3. To leverage a priori information to constrain the food classification problem by considering
the long-term care context around menu planning and the likelihood of offered foods based
on set menus at certain times.

Objective to address C3. We borrowed biophotonic principles and applied them to food. The
objective of addressing this challenge was to assess the feasibility of enhanced imaging as a
foundational step to enhancing food database estimates.

1.5 Research Contributions
Based on the objectives outlined above, the research contributions outlined in this thesis can be
broadly categorized into hardware/software contributions, empirical research contributions, and
dataset contributions [241] as outlined below:

1. Hardware and Software Contributions. These outcomes resulted from successful com-
pletion of Challenges C1 and C2.

(a) Significant algorithm development to bridge disciplines and apply current machine
learning trends to food intake tracking. At each stage of the pipeline, careful application-
driven design decisions were made to consider the constraints and requirements of
workflow in LTC which led to the infrastructre for:

i. A novel food intake tracking system powered by machine learning for assess-
ing proportion of food ingested and food intake tracking at the nutrient level.
Leveraging a depth-refined imaging system for bulk food and nutrient intake
assessment informed by...

ii. Proof-of-concept mock-ups of nutrient-sensing system using end-to-end design
mentality informed by end-user engagement.

2. Empirical Research Contributions. These contributions resulted from successful com-
pletion of Challenge C1.

(a) A novel framework for conducting collaborative design of technology in a healthcare
setting through participatory iterative design.

(b) Specific design elements, functionality, priority areas, and constraints necessary to
consider for reducing barriers for uptake by end-users informed by user-needs as-
sessment.
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(c) Evaluation of the system prototype assessing feasibility, comparing perceived per-
formance and workload measures of the novel system against traditional food intake
charting methods, and user perceptions of trust.

(d) Proof of concept analysis of computational nutrient assessment theoretically moti-
vated through food biophotonic optical dilution models.

3. Dataset Contributions. Since no datasets exist that represent LTC foods, I carefully and
painstakingly curated three datasets to evaluate the algorithmic development and the accu-
racy of the system. This involved acquisition planning, building an imaging system and
chassis for consistent imaging, as well as data collection. For the regular and modified
texture long-term care food dataset, this also involved weighing each item separately fol-
lowed by hand-segmentation and hand-labelling of every image. These datasets provided
the background data upon which to tackle Challenges C2 and C3.

(a) Regular and modified texture long-term care food dataset. This 1,039-image dataset
is a fully labelled, high resolution dataset and consists of 47 foods representative of
LTC and includes a variety of fruits, vegetables, pastas, soup, and meat dishes. This
dataset is comprised of two subsets: a “regular” dataset, and a “modified texture foods
dataset”. The regular dataset is comprised of 9 regular texture foods across three
meals each containing up to three meal items and imaged at every 25% incremental
amount relative to the full portion. It yeilded 125 unique plates per meal and 375
unique plates across meals. The modified texture foods dataset is comprised 664
images across 93 classes of modified texture food samples representing 47 unique
foods prepared by a LTC kitchen. All samples include hand-segmented and hand-
labelled pixel-level segmentations. A 314-image subset of the modified texture foods
dataset representing 63 food samples (56 unique) and 27 unique foods additionally
includes full nutritional information provided by the LTC home. These foods were
imaged one per plate and samples were imaged at different simulated intake levels
by progressively removing some of the sample. Foods were imaged using the Intel
RealSense to obtain RGB images and infrared depth images. For more detail, see
Chapter 4.

(b) Dilutions: A puréed food dataset. This 3,540-image dataset is a fully-labeled, high
resolution dataset collected to study the visible spectrum optical properties of com-
mercially prepared puréed food flavours. This dataset is comprised of two subsets:
“reflectance mode”, and “transmittance mode”. The reflectance mode dataset is
comprised of six 5mL samples of each of thirteen types of commercially prepared
purées at five discrete dilutions relative to initial concentration (20%, 40%, 60%,
80%, and 100% initial concentration) for 390 unique samples. Additionally, these
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390 samples were imaged using three polarizations (i.e., unpolarized, and horizontal
and vertical linearly polarizations) and were imaged using three exposures at each
polarization for a total of 3,510 RGB (i.e., red, green, blue) images. The transmit-
tance mode dataset provides an additional 30 full-field white normalized transmit-
tance images of five calibration images and a five-tier dilution series consisting of
five vitamin-A-rich commercially-prepared food samples imaged as 15 mL aliquots.
Samples were imaged using a DSLR camera (Canon T4i) with a broadband tungsten-
halogen light source and front glass fabric diffuser. For more detail, see Chapter 6.

1.6 Thesis Structure
The remainder of this thesis is organized as follows. Chapter 2, “Background” provides a liter-
ature review or nutrient sensing with special mention of relevant machine learning, optics, and
imaging methods from three perspectives: (1) food segmentation, (2) food volume estimation,
(3) food classification. Chapter 3 provides an overview of expert user knowledge and needs
assessment and design of the Automated Food Imaging and Nutrient Intake Tracking (AFINI-
T) system, while Chapter 4 provides a technical solution to address these needs, and Chapter 5
describes and evaluates users’ receptivity to the system from the perspectives of usability, work-
load, and trust. Moving beyond the typical approach for an end-to-end food intake tracking
system, Chapter 6 summarises my work on leveraging nutrient information embedded within the
visible spectrum through the lens of food biophotonics. Finally, Chapter 7 describes the system’s
current limitations and discusses possible future directions for further enhancement.
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Chapter 2

Background

As we saw in Section 1.2, monitoring nutritional status in LTC is crucial, but difficult to do
effectively. Time constraints are a pervasive barrier in the LTC sector. This is further con-
founded by frequent retrospective charting, which increases the probability of reporting er-
rors [7]. While accuracy is important to ensure appropriate referrals of residents to a registered
dietitian (RD) [211], the current method fails to differentiate between aspects of a meal; equal
consumption across a plate is assumed. To address this, Andrews and Castellanos developed
a food-type specific tool, however, consumption was still underestimated 25% of the time [7].
The challenge remains that comparisons either require time consuming methods or need to be
completed by highly qualified personnel [211].

Technological innovations may provide a solution to remove subjectivity, enhance reproducibil-
ity, and inform higher levels of detail. In a 2010 NIH report, a plea for technological innovation
for food intake was issued [223]. This need exists largely due to the aforementioned limitations
surrounding accuracy and validity of traditional food intake methods [154, 240]. Thompson et
al. discuss that prior advances were limited to making the recording process more effective (e.g.,
cell phone recording devices with voice recognition for interviews) [223]. For context, visual
estimation of food intake versus actual weighed food records is known to have 50% error for
food items and 20% for nutrients [23] which is further corroborated with [39] reporting incorrect
portion estimation at least 56% of the time. With such a high degree of subjectivity and large
margins of error, there is an opportunity for improved methods with greater utility. As we will
see, the 2010 plea for technological innovation for food intake has been relatively unaddressed,
especially in the LTC domain.

Regarding the general progress on automatic food intake tracking systems, several devices have
been proposed for an individual to track and manage weight loss by recording intake using a
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mobile device [128, 163, 176, 189]. While these on-the-go approaches could potentially be
modified for appropriate use in LTC settings, in their current state, they are tailored for a dif-
ferent purpose, rely on self-monitoring, and do not adhere to related best practices for food and
fluid intake. Additionally, they require a series of images from multiple perspectives [128], or
depend on reference objects to infer scale (i.e., fiducial marker) [176]. In a time-constrained
environment such as LTC and hospital settings, these requirements make these approaches in-
feasible. Consistent with this apparent gap, a 2016 review by Pouladzadeh and colleagues [189]
summarize both traditional and newer (smart-phone vision-based) methods for calorie intake
tracking in the context of weight loss and weight maintenance. They conclude there remains
several challenges including: the explicit need for user acceptance studies of nutritional monitor-
ing technology, consideration of more complex meal scenarios, and computational requirement
consideration [189]. Within the LTC context, the closest technological solution was a compari-
son to estimate food waste of regular and modified texture diets either with the visual estimation
method or using digital photographs afterwards [177]. The above highlights the opportunity
for new innovations designed with the LTC context in mind. To achieve this, I embarked on
constructing a vision-based system powered by machine learning.

It may be easy for us, as humans, to take our ability to recognize food or other objects as a
relatively simple task. For example, when looking at an image of food on a plate we see a plate
and can easily identify items on the plate whether they are mixed together or not. To a computer
however, this is a much more complex yet crucial task to build upon for inference about how
much food, and which types of food or nutrients are consumed. Regardless of methodology, the
high-level sub-tasks to answer three main questions remain the same as illustrated in Figure 2.1:

1. Where is there food? This sub-task involves food detection or differentiation between food
and plate (i.e., segmentation).

2. What foods are present? This sub-task involves comparing foods on a plate to one another
(i.e., feature extraction), and deciding which type of food each item is (i.e., classification)

3. How much food remains relative to the initial amount? This sub-task involves estima-
tion about how much food is there (i.e., volume estimation) and is essential for drawing
inferences.

Since each stage relies upon all previous stages, an upstream error translates to a potentially am-
plified downstream error. The result is estimates of estimates and at each level with increasingly
larger margins for error. This may be why in the literature, few researchers have concentrated on
the entire process, and have instead focused on a subset of the process. To date, food classifica-
tion has received the most attention with less attention given to segmentation, volume estimation
and limited attention for a holistic food intake tracking system.
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Figure 2.1: From a food image to nutritional inference.

The remainder of this chapter outlines the rationale for applying machine learning in the context
of addressing three main questions to approach a machine-learning-powered food imaging sys-
tem. While in-depth reviews for classification can be found in [144, 34, 61, 189, 218]), I have
included a brief summary highlighting key classification progress and accuracy from segmenta-
tion to inference in the context of limitations and unsolved challenges.

2.1 Machine Learning for Food Intake Innovation
Machine learning methods provide a data-driven approach to remove objectivity and maintain
consistency. Several examples of machine learning techniques have been published even twenty
years ago where machines outperform humans, yet in the nutrition community these approaches
have had minimal application. It’s time to bridge these fields. For example, in a traffic sign
recognition task, [50] presented a machine learning framework, specifically using convolutional
neural network (CNN) with half the error rate of identification by humans. For object classifi-
cation within a scene more broadly, the use of CNNs have attained surprisingly strong results
on standardized image databases. For example, on an object recognition task with 1000 classes
Krizhevsy et al. achieved an accuracy of 62.5% [130], whereas random chance would yield an
accuracy of 0.1% (1/1000). Lawrence et al., applied CNNs for facial recognition and achieved
96.2% accuracy [134]. In more a complex task comparing human and machine performance,
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an additional example from the gaming community was the win of Google’s AlphaGo against a
grandmaster at the strategic game, Go [161, 74]. Intuitively, with advances in car automation and
self-driving cars, leveraging machine learning and artificial intelligence is becoming common in
our society. With promising accuracies attained by applying machine learning methods in other
fields, leveraging these methods in the world of nutrition may provide an objective and reliable
alternative to traditional food and nutrition intake methods especially when considering these
novel methods need not be perfect to match or outperform humans given human error margins
of 20%, 50%, and up to 400% [23, 39]; this is possible as discussed below.

2.1.1 Segmentation Accuracy Challenges
While food image segmentation progress has been made, error assessment in these systems tends
not to be reported, or segmentation is coupled with either classification [186, 120, 93, 162, 207,
237, 246] or volume [89]. This makes sources of error difficult to disentangle and has practical
implications. There is generally no way to systematically assess error propagation as part of the
pipeline for predicting nutritional outcomes. This results in the system operating as a “black-
box”, which may limit the uptake of these approaches in practice due to low perceived trust-
worthiness. Beyond the user and ethical perspectives, several researchers also describe the need
for accurate segmentation methods for accurately predicting nutritional information (e.g., energy,
macro-/micronutrient content) down-stream in the pipeline [162, 10, 237, 252].

One challenge comes from a lack of consistency in which segmentation accuracy is evaluated
and quantified. For example, [160] reported a receiver operating characteristic curve of 0.9982,
with precision and recall approaching 0.81 and 0.55, respectively [238]. Intersection over union
(IOU) has been the most consistently reported accuracy metric [249, 48, 10, 4]. IOU has several
advantages over more traditional precision/recall metrics as it considers the proportion of prop-
erly assigned pixels but also penalizes false positive predictions. That said, it may not necessarily
capture an assessor’s perspective on what is relevant food (e.g., to include or not include crumbs)
- more on that in Chapter 4.

Existing food intake tracking systems rely on images from multiple perspectives [129, 187], re-
quire a single image with a fiducial marker (i.e., reference object [176, 252]), or may not be suit-
able for real-time monitoring [162] because of the time required to build adequate models from
scanners. Others are limited by requiring manual selection of bounding boxes [120], to predict-
ing food areas with a bounding box [207] or require manual labelling for each food item [162].
These methods involve operator time and may impact accuracy. For example, two operators may
segment food differently, foods may be incorrectly labelled, or labels may be missed in some
cases. In the case of limiting predictions to within a bounding box, these methods cannot be used
to accurately estimate intake as they include both food and background and are not assessed on
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a per-pixel level. One semi-automatic method, interactive graph cut segmentation, has yielded
strong accuracy in food segmentation [186, 89, 120]. It does not impart the same degree of
burden as manual segmentation and we consider this as an “applied ground truth”. However,
interactive annotation graph cut [28] requires user input to initialize the segmentation process
(e.g., drawing areas to keep or discard). Even adding only a few seconds per resident per plate
when scaled within the LTC environment makes it prohibitive within this context.

Others have reported methods such as adaptive k-means segmentation yielding an IOU of 0.64
for [249] (single image analysis). This method requires the number of items (k) per plate and
forces each pixel to belong to one of the k classes and would require a separate model for each
different value of k. Other methods have achieved higher IOU using deep convolutional neural
networks (DCNN) when trained/tested on the same food dataset. Ciocca et al. achieved an IOU
of 0.79 [48], Aslan et al. achieved an IOU of 0.931 using semantic segmentation (pixel-level
labeling) [10], and Aguilar et al. achieved an IOU of up to 0.971 for spatially distinct (i.e., non-
touching) food items [4]. All of these implementations were trained and tested on the same food
dataset which may impact their generalizability to real-world scenarios because of inherently
learned biases of each dataset. This is an important consideration with LTC in mind.

Assuming every other aspect of the process from segmentation through inference were 100%
accurate, this implies food intake results would have a margin of error of up 100-error%. While
these may often fall within tolerance on this sub-task, improvements upon these methods for
increased accuracy is desired. Improper segmentation will translate to either underestimates
of food intake (i.e., the segments are smaller or do not capture all food before and after), or
overestimates (i.e., the plate is captured and counted as food ingested). This ramification requires
careful consideration when designing a system whose purpose is to achieve interpretable and
understandable accuracy for nutrient intake estimation.

2.1.2 Volume Estimation Challenges
One consideration often overlooked is not considering portion size. This may not be as large of an
issue in the context of weight loss management where the assumption is the entire imaged food is
consumed. However, in the LTC setting where low food intake is commonplace, this assumption
is violated frequently and must be accounted for any degree of utility within the LTC context.
Food volume estimation systems estimating portion sizes of consumed food by subtracting the
remainder of food from the original portion size. Several attempts have been made using template
shape matching [93, 243, 40, 110, 175, 193, 96]. Three main drawbacks of these methods are the
requirement of a shape library, difficulty with template matching with occlusions, and varying
preparation methods of the same food. For example, if a food is prepared differently, it may not
map onto the appropriate shape model (i.e., 3D banana in peel may be in the library but sliced
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or diced banana may not). Similar to the segmentation problem, others have applied a multi-
image perspective or stereo reconstruction for volume estimation [57, 190] or building a 3D
representation through point-cloud representation [194]. The main drawback of these approaches
is the time required to take the photos from different perspectives or gather enough sample points
scanned for an accurate 3D representation; lack of time is a main concern when considering the
LTC context. Another challenge of these approaches is accurate modelling/measuring of highly
textured foods. This is a particularly salient issue for LTC where modified textures are often
prescribed as part of a therapeutic diet [234] so very different foods can appear similar (e.g.,
minced or puréed foods).

Others have employed depth cameras or structured lighting to map the topology of the foods [71,
205, 162, 42, 139]. At a high level, structured lighting is when a pattern of light is projected
upon the surface with a camera to image the result. Based on the degree of deformation be-
tween the known projected pattern and resultant image captured by the camera, the topography
of the food surface can be inferred. There has been very little work on incorporating structured
lighting. Only two papers were identified to have used structured lighting for volume estima-
tion [205, 139], the latter of which reported an average error in weight of 2.56-5.01%. One
potential reason for few papers leveraging a structured light approach is that until recently, these
systems were difficult or expensive to build. However, with recent advances in the Kinect and
Intel’s RealSense RGB-D (i.e., red, green, blue plus depth) cameras, an off-the-shelf solution
is now available at relatively low cost (i.e., under $200) and in the current versions of iPhone,
depth cameras are built-in. As a result, I think moving forward, there is great promise in solutions
leveraging a structured light approach. Especially when considering the multiplicative nature of
error propagating from each stage of the system, it is promising that the accuracy of a structured
lighting approaches 97.44% [139]. One drawback of depth- and structured-light-only methods
is highly reflective foods (e.g., gelatin, soup) which can throw off the readings, but they have an
advantage at being more robust against illumination variations [139]. Taking a hybrid approach
with additional refinement from RGB images, it may be possible to circumvent these drawbacks
and capitalise on this illumination robustness advantage.

Despite the deep learning boom, acquiring adequately large and complete food datasets for train-
ing and testing has limited progress [250] of applying machine learning to volume estimation.
The few forays have been fairly early-stage as they contain either large mean volume estimation
errors (up to 400 mL error [162]), measure in terms of niche units (bread units tailored to di-
abetes [73]), or are limited to a small number of or synthetic food items in a highly controlled
environment (e.g., [142, 143]).

The most common method of inferring portion size has been using fiducial markers (e.g., an
item that is of known size and shape) to infer scale. Some have attempted using a thumb in
screen [5, 186], while others use a checkerboard approach [93]. However, this approach may not
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be practical in the LTC environment or may increase the complexity of the system to account
for the fudicial maker moving from frame to frame. Typically, after the fiducial marker is used
to infer scale, geometric shape matching is commonly applied to images to infer volume from a
two-dimensional image. For example, given the shape in an image (e.g., unpeeled orange), look
up the closest geometric model (e.g., sphere) and use that geometric model to infer volume.

This combined method has been shown to yield rather accurate results; [40] reported a percent
error of 11% based on volume estimation and [244] reported a percent error of 18% for weight
inference through volume estimation when compared to ground truth measurements. While this
method far surpasses human error in portion estimation around 56% [39], the inherent limitation
is that a geometric shape model is required for this calculation. In the case of foods served in
LTC, particularly puréed foods, shape models may not exist due to high intra and inter-class
variation for each food item. A more general approach that does not rely on prior shape or scale
inference would provide a more robust solution within this context.

2.1.3 Classification Challenges for Accurate Nutritional Inference
Considering the end goal of eventual nutritional estimation, classification is an important piece of
the puzzle. From a segmentation perspective, this could be seen as a special case of classification
in which a food image must be segmented into the food regions and the background (a two-class
classification problem). As such, the implications of misclassification errors (i.e., improperly
identifying food as background or background as food) provide relevant context. While extensive
reviews of the literature can be found elsewhere (e.g., [144, 34, 61, 189, 218]), it is clear that
automatically identifying food assigning it to a food-item category (i.e., food classification) has
received the majority of attention. Indeed, this is an important step towards an automated system
for food and nutritional intake analysis, however for malnutrition risk assessment, how much
food was consumed is more clinically relevant.

In the 2020 review by Lo et al. [144], they summarize food classification systems ranging from a
top-1 (i.e., the systems ‘best-guess’ for food category) accuracy of 50.1% on 256 classes [119],
to 94.5% on 30 classes [188] using traditional approaches on food classification (i.e., one-
vs-rest classifier [119], support vector machine classifier with handcrafted colour and texture
features [188]), and from 54.7% on 256 classes [140] to an impressive 93.0% on 101 food
classes [220] using deep learning approaches. But even when classification accuracies are high,
misclassification errors are problematic. For example, misclassifying applesauce as mayonnaise
or cream of wheat would yield wildly different nutritional compositions which limits utility in
practice. Regardless of the number of classes a system may be able to automatically detect, if the
automated classification is not always reliable, it violates at least one of the constraints required
within the LTC sector. Practically, this means the system will lack trustworthiness, undermine
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utility in practice, and may inhibit initial uptake [225]. For example, Yunus et al. [246] map
words to estimate ingredients and generate nutritional info for an entire dish or item based on
the top-1 classification (i.e., the best guess of what a food is). The strength of this approach is
the ability to detect numerous dishes (100 classes of images) and has quite a high top-1 accuracy
(up to 85%). However, this implies misclassification is occurring 15% of the time. Similarly,
Wang et al. [237] make use of classification to refine segmentation. They are able to detect many
different foods (42 items), provide a good segmentation feedback loop, account for personal-
ized preferences but are limited in accuracy; the average daily classification accuracy was at best
69.81%. In the case of Wang et al. [237] while segmentation is the goal, it relies on feedback
from the classification, so a classification error rate of 30% is problematic in this setting.

One crucial factor in determining the potential for successful classification is based on the fea-
tures used to discriminate between classes of food item. If selected features do not represent
the data correctly, their utility in distinguishing between different food types is limited. Typi-
cally, in the nutrition literature, handcrafted features have been used based on colour and texture.
Food is typically very colourful, so this has been fairly successful in the past. Since 2010,
eight articles [69, 8, 252, 245, 94, 120, 155, 90] were identified as relevant (i.e., pertaining to
food classification) leveraging handcrafted features with classification accuracies ranging from
53.7% [155] to 90% [90] on distinguishing between six [8] and 100 types of food [120]. That
said, a more data-driven approach using learned features may provide more generalizable and
better performing models upon which to classify food types. While this data-driven approach
may potentially yield less intuitive features, given food images are highly colourful, these fea-
tures may reflect handcrafted features in addition to other nuances which may not be as obvious
to humans. These learned features may provide more robust alternatives to hand-crafted. For
example, more recently, two articles focussed on food classification leveraged learned features
achieving classification accuracies of 60.47% on a 10-class [115] problem and 76.4% on a 100
class problem [140]. Conveniently, while there are few examples upon which to compare ac-
curacy between handcrafted and learned features, the 100 food class dataset example is ideal
as both papers [120, 140] used the same dataset (UEC-FOOD100) and had the same number of
classes. The 76.4% [140] was achieved through the use of learned features which provides an ex-
ample where learned features outperformed handcrafted classification accuracy at 59.6% [120].
This suggests learned features may be more powerful for distinguishing between food classes.

2.1.4 Training and Validation Dataset Selection
As we saw in 2.1.1, the notion of training and testing on the same dataset is an important concept
when considering generalizability of results as it risks learning biases and nuances specific to that
specific dataset and may limit the ability to adapt to new instances. As with all machine learning,
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pre-existing examples are necessary to build, train, and validate a model. For this work, we were
very intentional and deliberate about training and validating on a separate pre-existing dataset to
which we could then test models developed on our novel datasets. When selecting a dataset for
training and validation, careful consideration must be made when evaluating its appropriateness.
Specifically with food intake assessment in LTC we must consider:

• Colour: Food comes in many colours. Part of supporting a healthy diet includes the men-
tality of “eat a rainbow” to ensure various micronutrient needs in additional to macronutri-
ent needs are met [165]. As such, there should be a wide distribution of colours naturally
found in foods captured in the training and validation datasets. In Chapter 4, we see and
discuss limitations of our best available training dataset option because of limited repre-
sentation of green as well as steps we took to ameliorate this issue.

• Texture: Similar to colour, foods also inherently come in a variety of textures. This as-
pect is particularly salient when considering the LTC population where 47% of residents
receive modified texture diets (e.g., minced, puréed) as part of a strategy to address the
high prevalence of swallowing difficulties pervasive in LTC [234].

• Portion: Given the application to food intake assessment, the ideal training dataset would
have representative intake images that include both before and after images of meals (i.e.,
not just full portions of served food). The rationale is by having more representative exam-
ples of what foods can look like partially, or fully disassembled in the case of food mixing,
in the training dataset, the network will be more likely to learn representative examples of
foods apart from the original served context.

• Orientation: The occlusion conundrum where one food is in the way of another is very
difficult to circumvent especially in the LTC environment when taking multiple images
from many perspectives is infeasible due to time constraints. For the purpose of acquisi-
tion of LTC images “in the wild”, images taken from the above configuration is preferred
to facilitate volume estimation and down-stream nutritional intake estimation. The issue
of occlusion (e.g., seeing only the bun as part of an assembled hamburger) remains an is-
sue, however, is reasonable when accepting the assumption that complex foods (e.g., foods
with multiple components like a hamburger) are eaten in similar proportions. While this
is undoubtedly a fallible assumption, errors in down-stream nutritional estimation are con-
strained to a specific food as opposed to influencing the entire plate. As such, the ideal
training and validation database would be acquired in the top-view configuration.

• Label level: To facilitate volume estimation and down-stream nutrient estimation, image
segmentation must be conducted pixel-wise as opposed to using bounding boxes. As such,
the ideal training and validation database would be labelled at the pixel-level.

• Style: Multiple food items on a plate is common in LTC as the “family style” approach
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to eating has been shown to enhance food intake [233]. While multiple plates may also
be used in LTC (e.g., soup, side salad, dessert), the training and validation dataset would
ideally show representation consistent with “family style” as opposed to solely “single
item” plates.

• Accessibility: The ideal dataset needs to be readily available (i.e., non-proprietary).

Based on the above considerations, the most imperative are orientation and label level and the
most suitable food database available for training and validation for LTC (i.e., top-view with
pixel-wise labelling) is therefore UNIMIB2016 [49]. Table 2.1 below provides a comprehensive
comparison of existing food databases along with characteristics that are relevant to food intake
estimation and a summary of rationale for selecting UNIMIB2016 [49].

2.1.5 Advances Towards a Holistic Solution
Based on the above summary, a system to accurately identify food items and make accurate nutri-
tional inferences is complex and despite the following advances, can be considered an unsolved
problem, particularly when considering consistency in system error reporting. This section sum-
marizes progress on end-to-end systems within the context of error reporting.

A variety of approaches of end-to-end systems are described below. In several cases, the method
for segmentation was either not mentioned [42, 166, 67, 70, 45] or was explicitly stated as being
beyond the scope of the present version of the system [166]. For the papers which do mention
their segmentation methodology, GraphCut [186], semantic segmentation [162], minimum span-
ning trees [93] were applied. For feature extraction, as seen in the papers which focus explicitly
on feature extraction, as part of the holistic system, we again see the majority employed hand-
crafted features [166, 42, 93, 45] . However, in more recent years (i.e., since 2015, three quarters
of the identified systems have instead leveraged learned features [162, 186, 67].

At the level of classification, particularly in the case of learned features, this implicates the meth-
ods employed for classification as well. In the case of learned features via neural networks, with
a trained network, feature extraction and classification can be combined instead of considered as
two sub-processes as in the case of [162, 186, 67] with reported classification accuracies of 100%
(11 classes) [186], 82.5%(15 classes) [67]. Alternative methods employed for classification were
AdaBoost [166], K Nearest Neighbours [93], and support vector machines [45, 42] with reported
classification accuracies of 68.3% (50 classes) [42], 99.1%(6 classes) [45]. In these cases, com-
parison on relative performance for the ideal method for classification is difficult to establish due
to inconsistencies of datasets and the number of classes; the higher number of classes, the more
difficult the problem.

Finally at the inference level, few papers reported percent error in calorie estimation or weight
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estimation. For calorie estimation, the reported values are: 0.09% [45], 0.25% [186], 30% [67],
35% [162]. [93] reports a 10%-11% weight estimation error depending on the method used (area
vs. shape template). Using two models for comparing volumes (depth images vs. geometric
models, [70] report respective average errors of 27.3%-56.0% and 14.0%-18.0%.

Liao et al. [139] approach the problem by estimating mass of food consumed using a depth
camera and a specific gravity function to go from food density to estimated mass. One benefit of
depth camera images is they are robust against illumination variations which typically plagues
classification. They use an elegantly simple approach to determining where food is on a plate
based on depth images and inpainting where specular reflection becomes an issue for foods with
high reflectivity (e.g., soups, gelatin etc). This approach holds promise however, not all foods
specific gravities are known which limits potential reach of this method. Additionally, the mass
estimation accuracy was only tested on three food samples (egg, rice and tofu) and in its current
form, it cannot address multiple foods on a plate as is standard in LTC.

Others still report a proxy of accuracy based on correlation coefficient compared to a ground
truth method as in the case of [166](0.32), and [67] (0.78). It is important to note that a strong
correlation does not necessarily imply accurate results. For example, two signals may be highly
correlated, but one may be highly biased resulting in consistent over or underestimates.

While each of the above methods have their own quirks and limitations, the bottom line with
respect to portion size or calorie estimation is that they at least achieve similar accuracies to
average reported human error. As such, there is room for improvement.

This is where the power of leveraging a priori knowledge comes into affect. Instead of treating
classification in isolation, we have several insights driven by how food is prepared and served
within the context of long-term care. Firstly, menus are planned in advance - this provides crucial
information in terms of limiting possible foods as well as providing an opportunity to leverage
menus planned with Canada’s Food Guide in mind for the purpose of providing a nutrient level
baseline of what is in each portion of food. Secondly, certain foods are more likely to be served
at certain times of the day. While there may be exceptions to this rule for honouring preferences,
from a constraints perspective this enables us to limit the potential possibilities and simplify the
classification problem. Instead of needing to ascertain if a sandwich was from any number of
restaurants, we can assume it’s most likely to be what was on the menu for a given day and
again more likely for that sandwich to be served at lunch. With this approach to constraining
the problem, we can make some good headway towards a system that works within a naturally
constrained environment. While this approach may have blind spots for when residents leave the
home for restaurant meals with family, this remains a constant challenge within the LTC system
and are therefore treating this as outside the scope of this dissertation.

More generally, progress in this field of end-to-end systems for nutrition monitoring has been
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outside the context of LTC with an emphasis of an individual tracking and managing their per-
sonal weight loss or health tracking using mobile devices [128, 162, 176, 189, 10, 129, 4]. While
these approaches could be modified for use in LTC, in their current form, they target a different
purpose (e.g., calorie tracking), still rely on self-monitoring, and do not consider the LTC context
for food and fluid intake tracking best practices. Doulah et al. provide a review of technology-
driven methodologies including a summary of work exploring wearable devices and sensor [61].
However, these wearable sensor approaches have typically been developed for individual use and
require individuals to wear sensors like microphones or strain sensors. Within the LTC setting
the wearables approach is inappropriate from a privacy perspective, when considering the de-
gree of assistance needed during mealtime, as well as the financial implications of the number of
devices required to track intake. As such, current approaches are infeasible for large-scale mon-
itoring, especially in time-constrained and financially constrained environments such as LTC or
hospital settings. Perhaps most relevant is the work of Astell and colleagues [12], who developed
an effective electronic food record system for nutrient tracking system for community dwelling
older adults. While promising (approximately 97% agreement for energy intake compared to
food diaries), the comparison method of food diaries is similar to the monitoring already in place
within LTC so true accuracy of this method remains unclear.

Corroborated by three recent reviews [189, 218, 61], further innovation is needed. These re-
views summarize both traditional and newer (smartphone vision-based) methods for calorie in-
take tracking in the context of weight loss and weight maintenance. They conclude that sev-
eral challenges remain, including: the explicit need for user acceptance studies of nutritional
monitoring technology [189], computational requirement consideration [189], the need for a
comprehensive food image dataset for benchmarking and better generalization of learned classi-
fiers [218], consideration of more complex meal scenarios (i.e., beyond solid, separated foods, or
synthetic foods) [189, 218], the need for proper comparisons against gold standard weighed food
records as well as the need for adequate statistical analyses of methods [61]. Within the LTC
context the closest technological analog in this domain was a comparison to estimate food waste
of regular- and modified-texture diets either with the visual estimation method or by using digi-
tal photographs for retrospective analysis [177] both methods required significant operator time
as it was a manual process. More broadly, further work is needed for developing an accurate,
objective and cost-effective automated system [218, 61].

2.2 Utility of Food Biophotonics for Enhancing Estimates
Based on the current state of literature, the level of nutritional inference always relies upon some
form of food database. This presents an additional challenge relating to data quality and/or sen-
sitivity of the food database. A large portion of resources are dedicated to USDA food database,
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but accuracy is limited to the foods tested and included in database. For example, not all cooking
methods are considered, holding times for foods which may impact the nutritional composition
is not accounted for, or specific variants on food items (e.g., my maternal grandmother’s family
bun recipe) may not be reflected.

In my mind, if we can build a system that can leverage the base nutritional content from menu
planning and food databases while improving and extending beyond this technique, we will
reach a more reliable, generalizable solution. For example, by augmenting or supplementing the
nutrient estimates with measurements we take from each specific plate for nutrients of interest,
the estimates will be closer to the ground truth. While this may not be necessary in all cases,
keeping the system in mind from a research tool perspective in addition to its application in the
LTC community, this may have added value and could potentially provide a far more cost and
time-effective alternative to sending food samples for component analysis for proof-of-concept
studies. For these reasons, Chapter 6 takes a first step into the utility of visible spectrum light
and how it relates to nutrients using vitamin A and a group of antioxidants called anthocyanins
which are optically active in the visible spectrum. This section provides additional rationale for
these considerations of “beyond the database” as well as a primer on food biophotonics to aid in
that assessment.

Further motivating the need to explore additional avenues is one condition which increases the
risk for malnutrition, dysphagia (swallowing difficulty) [104, 219]. Dysphagia affects approx-
imately 590 million people worldwide [47] and at least 15% of American older adults [219]
increasing these individuals’ risk for malnutrition. In LTC 47% of residents receive modified
texture diets (e.g., minced, purées) [234] as they have been used to allow safe ingestion of
nutritional requirements in this population [78]. However, based on differences in preparation
methods, nutrient composition can be highly variable [104]. This has practical implications es-
pecially for older adults with a generally lower intake which decreases with age [122] further
confounding the problem. More specific to LTC, when the menus were assessed in LTC, [232]
reported nutrient inadequate provision of calcium for the regular texture menu choices as well
as potassium, vitamins D and E, folate for both regular and puréed textures. This is in line with
older research finding residents did not contain adequate quantities of vitamins and minerals to
meet residents needs in a full portion of food when residents typically consumed only a half
portion [239]. These findings suggest that not only are LTC residents at increased risk for mal-
nutrition even if residents were able to consume a full portion, but they would also not meet
their daily nutritional requirements for several nutrients. So, while monitoring nutritional status
is crucial to ensure inadequacy does not translate to deficiency or to facilitate early detection
and provide an opportunity for intervention, food must also be as nutritious as possible to ensure
adequate nutrient consumption is attainable.

There is currently a lack of tools to quantitatively and objectively assess the nutritional density
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of purées. To in part address this, international definitions for modified texture foods (includ-
ing purée) were recently released by the International Dysphagia Diet Standardization Initiative
(IDDSI) ([47]). However, implementation of these international definitions does not address nu-
trient density beyond purée consistency and adoption may be limited in practice. An automated
imaging system may help reduce variance within or between human assessors due to differences
in learning or experience; a seasoned purée cook has more intuition about what makes a safe
and nutritious purée than a new cook ([104]). A system that can quantify the concentration of
the purée could reduce cost and time while providing insight into nutrient density of a purée in
health care settings. More specifically, optical imaging systems may provide a powerful solu-
tion to this problem. These systems use the same type of information (visible optics) as what is
conducted by human assessor; however, computational models provide objective and repeatable
predictions.

Recent advances in machine learning have been successfully applied to a vast range of fields
from object recognition to pharmacy and genomics ([135]). Specifically, deep neural networks
(DNNs) are biologically inspired by the visual cortex for decision making ([20]), and have been
used with great success for specific complex tasks such as speech recognition ([97, 54, 85]),
object recognition ([130, 91, 136, 213]), and natural language processing ([21, 51]). In image
classification and other applications, however, there is often insufficient training data to properly
train a conventional DNN due to the nature of supervised learning which require a large number
of network parameters and an abundance of labeled training data. In the case of puréed food
analysis, data insufficiency becomes a prominent concern due to the limited amount of avail-
able labeled data. Labeled data requires the acquisition of spectral and texture information of
the puréed food via imaging, and the cumbersome manual labeling process of the images by
trained personnel. Leveraging instead, unsupervised learning techniques may provide alterna-
tive solutions when paired with food biophotonics which I describe in more detail in Chapter 6.
Borrowing from the field of biomedical optics, photon migration models have been used to esti-
mate quantitative tissue properties such as blood oxygen saturation and hemoglobin concentra-
tion ([22]). Though primarily used in biomedical applications, these models provide a theoretical
basis for quantitative nutritional assessment using optical imaging data. The remainder of this
section provides a primer on some key fundamental biophotonic principles as follows.

Figure 2.2 provides some intuition some key biophotonic principles showcasing where higher
concentration of puréed food means light coming in has more chances of bumping into food
particulates and results in it appearing darker from less light bouncing back (reflectance mode),
or less light goes through (transmittance mode). Conversely, for more diluted puréed foods, there
is more water and fewer food particles for the light to interact with so samples appear lighter from
more light bouncing back (reflectance mode), or more light goes through (transmittance mode).
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Figure 2.2: Comparing relative scattering events in reflectance (i, ii) and transmittance (iii, iv)
modes in higher and lower concentrations of puréed food samples. (i) and (iii) Depict a relatively
less diluted purée food sample. There is relatively less water compared to more diluted samples
so there are more scattering and absorption events per unit length (i.e., higher µs and µc); greater
reduction in reflected photon intensity. (ii) and (iv) Depict a relatively more diluted purée food
sample with relatively more water and therefore fewer scattering and absorption events per unit
length (i.e., lower µs and µc); less reduction in reflected photon intensity.
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So there you have it, how bright or dark a food appears can tell us about how much light is
reflected or transmitted, absorbed, or scattered. The more concentrated a sample, the more op-
portunities there are for light to be absorbed or scattered. And these principles can tell us about
the underlying composition of foods. For example, fats are highly scattering substances and iron,
and vitamin A absorb light at specific wavelengths [95, 253]. Colour can also play a role in the
underlying composition as different types of absorbers appear to absorb certain wavelengths and
reflect others to appear specific colours (e.g., vitamin A appears orange). Since we can use these
visually observable features to distinguish between types of foods with our own eyes, the goal is
to train a computer to do the same through deep learning.

UP NEXT...
We’ve now seen the general steps for going from a food image to drawing nutrient intake
estimation (segmentation, feature extraction, classification, inference), as well as opportu-
nity areas within these steps. We discussed the need for disentangling sources of error, as
well as key considerations for selecting a training and validation dataset and discussed the
theoretical potential for incorporating food biophotonics for enhanced composition anal-
ysis. With this fresh on our minds, we are ready to continue our journey towards further
enhancing the field. To set our stage, we must first understand the key players specific
to food intake tracking in LTC. Afterall, before we can “do better” we must first “know
better”, which is where Chapter 3 begins.
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Chapter 3

What We Know: Expert User Knowledge
and Needs Assessment

In the last chapter we were primed from the literature with the opportunity for an easy to use,
accurate, and comprehensive food intake system designed with LTC in mind. However, to en-
sure efforts can have real-world impact, the perspectives of end-users is essential. This chapter
describes the end goal of collaborating with representative end users to design a novel proto-
type system for Automated Food Imaging and Nutrient Intake Tracking (AFINI-T), and how we
sought to accelerate uptake of novel technological solutions through practice-informed research.
In this chapter I seek to address my thesis C1.1 to ensure the system is user friendly. More
specifically, two objectives to achieve this aspiration were:

• To identify practice-relevant problems through user-centered participatory design (O1).

• To remove feasibility-related barriers to uptake (O2).

To meet these objectives, we sought to:

• Understand workflow and the problem space (identifying primary and secondary users,
the flow of food and fluid intake charting currently in place, including user perceptions of
workload of the current system as described in Chapter 5 (A).

This chapter contains content previously published from...
KJ Pfisterer, J Boger, A Wong. Prototyping the Automated Food Imaging and Nutrient Intake Tracking (AFINI-T) system: A
modified participatory iterative design sprint. JMIR Human Factors 2019;6(2):e13017. doi: http://dx.doi.org/10.2196/13017. On
this paper, K.J.P. was the main contributor from project inception to planning, implementation, data collection, analysis, interpreta-
tion, and writing.
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• Conduct a needs assessment within the problem space (B).

• Establish functional criteria for usability and feasibility including user interface require-
ments (C).

The remainder of this chapter describes the process used to conduct rapid prototyping through
user-centred participatory iterative design adapted from the Google Sprint method, results in-
cluding interface prototypes, and discussion and limitations [180].

3.1 Overview of Design Strategy
With the end goal of creating a Goldilocks’ quality horizontal prototype, we implemented an
iterative participatory iterative design process modeled off the Google Sprint framework to de-
velop and evaluate this prototype for monitoring food and fluid intake in LTC [126, 169]. Here,
Goldilocks’ quality refers to having the “just right” amount of fidelity to elicit useful feedback
from users without having to build an entirely functional prototype [126] and a horizontal pro-
totype refers to a user interface-based design to allow user feedback on an early-stage conceptual
walk-through of the process [171]. For the creation of the prototype, the stages conducted were
as follows:

The purpose of Stage 1, Design Ideation, was to engage with end-users as
collaborators to establish design directions. Specifically, we sought to under-
stand current workflow, evaluate priorities, understand perceived workload of
the current system, and identify potential project advisors. The output from this
directly informed Reflect and Storyboard (Stage 2) and Usability Assessment
(discussed in Chapter 5).

The purpose of Stage 2, Reflect and Storyboard, was to use storyboarding to
generate solution concepts of the user interface and system output that reflect
identified needs and priorities for project advisors’ critique in the next stage.

The purpose of Stage 3, Storyboard Critiques, was to assess the storyboards
created through collaborating with expert users to establish design directions
and to finalize solution concepts for incorporation into Stage 4’s design of the
Goldilocks’ quality prototype.

The purpose of Stage 4, Design of the Goldilocks’ Quality Horizontal Proto-
type, was to create low-fidelity prototypes by incorporating the most promising
solution concepts identified through the storyboard critiques in previous stage.
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The design process was guided by my personal work experience at the Schlegel-UW Research
Institute for Aging (RIA) as the Assistant Research Coordinator as well as several conceptual
frameworks. More specifically, when I started my role at the RIA, the Schlegel Villages were
undergoing a major shift towards changing the culture (and language) of aging. This was being
conducted through participatory action research and over the course of a year, there were tan-
gible, measurable differences towards resident centred care and putting living first [38]. I had
logged this away as a clearly effective strategy across all roles within the LTC setting. But for my
thesis, since I was developing technology to support enhanced quality of care, I needed a com-
plementary perspective to support Age-Tech development. When I was introduced to the google
sprint methodology, it seemed a natural fit with an opportunity for adaptation to my purposes
including a modifications for a more rigorous evaluation using standardised tools (e.g., Subjec-
tive Usability Scale, Raw Task Load Index which are included in Chapter 5. While the sprint
methodology has long-standing success in industry, to my knowledge, it hadn’t been adapted for
use in a health care setting. However, by combining sprint methodology with additional con-
ceptual frameworks, I felt confident this approach would be an effective strategy for rapid proto-
typing in LTC. The following pertain to the considered conceptual frameworks: (1) conducting
interdisciplinary research [24, 37]; (2) leveraging user-centered design and participatory design
[185, 203]; (3) applying rapid prototyping methodology via a modified Sprint [126, 171]; and
best practices for user interface design [171, 105, 14, 114, 170, 210]. Examples of information
flow through each stage is shown in Figures 3.1 and 3.3.

3.2 Methods

3.2.1 Stage 1: Design Ideation
Stage 1 consisted of a 60-minute workshop in which three activities were completed: Activity 1:
The “Ask the Experts” activity; Activity 2: Priority ranking survey completion, and Activity 3:
“Vote with dots” exercise to keep participants engaged and reflect on priorities. Three research
assistants plus the lead author took notes during this discussion and transcribed several comments
verbatim. Following the workshop, three informal open-ended interviews were conducted to
further inform the problem-space. The lead author took notes during these interviews; several
comments were transcribed verbatim.

For the workshop, 21 participants representing 12 LTC and retirement homes were recruited
through self-enrollment with following roles: Administrative Assistant, Chef, Dining Lead (sim-
ilar to a dining room manager), Director of Recreation, Dietary Aides, Neighbourhood Coordina-
tor, Recreation Assistant, Restorative Care, Senior Nurse Consultant, Directors and Assistant Di-
rectors of Food Services, Nurse, and Personal Support Workers (PSW). Activities were discussed
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with the Schlegel-UW Research Institute for Aging’s (RIA) Research Application Specialist for
input on how to conduct this exercise successfully with front-line team members.

3.2.1.1 Activity 1: The “Ask the Experts” Activity

Workshop participants were asked about their experience with food and fluid intake. This aimed
to build participants’ confidence in the value of their experiences while probing current workflow
and problem space.

3.2.1.2 Activity 2: Priority Ranking Survey

Participants independently completed a survey to evaluate priorities and needs to limit bias. This
survey asked about the current charting process (e.g., when it is done, task completion time,
barriers and facilitators to task completion). For evaluating priorities, 5-point Likert scales were
used to rate 16 statements’ importance from “Not Important” (i.e., 0) to “Very important” (i.e.,
4) or “Not Applicable”.

3.2.1.3 Activity 3: “Vote with Dots” Exercise

Modeled from [126], participants transposed their individual Activity 2 responses into a group
response by voting their preference using stickers on giant sticky notes to amalgamate opinions,
keep participants engaged and to facilitate additional discussion.

3.2.2 Stage 2: Reflect and Storyboard
The data from Stage 1 design ideation was combined with the heuristics outlined below to create
a series of storyboard solution concepts. Each storyboard was designed using Balsamiq and
included tailored concepts developed for three types of primary users identified in Stage 1: a
PSW, registered team, and registered dietitian (RD). As the system is expected to run on iOS
based software and hardware to mesh with the current charting practice on iPads, storyboards
were loosely based on iOS Human Interface Guidelines [105]; general iOS expectations will need
to be balanced with the current electronic health record system in place (i.e., PointClickCare).

In Stage 2, we explored usability from the designer’s perspective by applying the heuristics out-
lined by Shneiderman’s 8 golden rules [210] and Nielsen and Molich’s 10 user interface design
heuristics [170] as well as considering heuristics to support trust cues and credibility [52, 76]
while adhering to best practices for user interface design [171, 105, 14, 114]. For example,
as shown in Figures 2-3, buttons were designed in accordance with the affordance principle
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where visual cues act as clues to suggest how an object might be used [171, 14] and informa-
tive labels [114] were included to reinforce affordances. Colour was used to make the buttons
appear actionable [14, 114] and users were “rewarded with visual feedback” [114] in the form
of confirmation pop-ups, as well as warning and success screens. Finally, inspiration was drawn
from three healthcare record systems (e.g., PrognoCIS EHR, ChiroSpring, and Aprima EHR
[106, 44, 68] noted as the top electronic medical records software from 2018 online reviews
[36, 215].

3.2.3 Stage 3: Storyboard Critiques
Five participants self-selected as project advisors during Stage 1’s workshop from the perspec-
tives of PSW, dining lead, LTC RD, food and nutrition consultant, and food/dietary aide. Similar
to the sprint process described by [126], storyboard critiques were conducted with each par-
ticipant. Feedback was gathered through in-person meetings or over a virtual screen sharing
teleconference (a Zoom meeting) when it was infeasible to meet in person on areas of interest,
utility, or needing improvement using a wire diagram prototype mockup developed in Stage 2.
The first author transcribed feedback in real-time with on-going participant clarification and con-
firmation. The outputs from Stage 3 included spatial heatmaps on preferred design elements and
qualitative feedback for additional consideration. These heatmaps provided feedback similar to
the vote with dots exercise described in Stage 1 where more popular concepts received more
votes.

3.2.4 Stage 4: Design of the Goldilocks’ Quality Horizontal Prototype
Design decisions were informed by heuristics as in Stage 2 [210, 171, 170] and feedback received
from the storyboard critiques in Stage 3. The following heuristics were emphasized: universal
usability was considered by testing the prototypes with different types of users (e.g., academics,
PSWs), providing informative feedback and error prevention, the output this stage (Stage 4) was
a Goldilocks quality horizontal prototype. This included interfaces for each of the three levels of
primary users currently involved in residents’ food and fluid intake charting (i.e., PSW, registered
nursing team, and RD).

3.3 Analyses
Given the nature and size of this pilot study, a preliminary thematic analysis was used for qualita-
tive components (e.g., discussions, comments, verbal/written feedback) that was combined with
descriptive statistics for quantitative information including the average (µ), standard deviation
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(σ ), mode, and median scores [198]. A weighted average was used to analyse Likert survey
questions, excluding “Not Applicable”, to yield a ranking of each statement.

3.4 Results

3.4.1 Stage 1: Design Ideation
Results from Stage 1 pertained to Objective 1: Address a practice-relevant problem through user-
centered participatory design (Goals A, B) and Objective 2: Remove feasibility-related barriers
to uptake and are as follows (Goal C):

3.4.1.1 Goal A: Identify primary users

Based on discussions, surveys and interviews in Stage 1, the following primary and secondary
users were identified Figure 3.4. Based on best practices and policies for tracking and monitoring
food intake tracking of residents, PSWs are responsible for charting. Nurses oversee based on
how intake fits into other domains of healthfulness (e.g., constipation), and the dietitian oversees
based on referrals for more closely monitoring residents at highest risk. That said, DFS were
also excited about this from a food planning perspective. Saying they could use the feedback of
what people are actually eating as well as to inform how to tweak recipes for enhancing nutrient
density. Dietary Aides, Neighbourhood Coordinators (NC) and the Recreation Team may also
interact with the AFINI-T system but to a lesser extent. From the policy side Administrators
and Directors of Care (DoC) may leverage output. Family members often ask for reports but
the Resident and family are not responsible for tracking/monitoring of food intake directly; the
resident is not involved in the recording of food and fluid intake tracking.

3.4.1.2 Goal A: Understand workflow and problem space

Based on discussions, surveys and interviews in Stage 1, the current workflow infrastructure
is illustrated in Figure 3.5. Typically, food is prepared in an industrial kitchen and held at a
temperature until it is ready to be distributed to each neighbourhood. At each neighbourhood,
dietary aides plate and serve the meals with support from PSWs. PSWs, registered nursing
team, RDs are primary usersand PSWs conduct charting of food and fluid intake on iPads. This
charting is completed whenever primary users have time which could be during meal service or
retrospectively, consistent with [7]. In a follow-up discussion with the organization-wide director
of food services who is responsible for policy, she indicated that conducting food intake in real-
time is mandated (as opposed to retrospectively), but from the workshop discussion, it is clear
there is a gap between policy and practice. While the workflow of AFINI-T is congruent with
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Figure 3.4: Primary and secondary users of the AFINI-T system. Primary users are Nurses,
Personal Support Workers (PSWs) and the Dietitian. Secondary users are the Recreation Team
(Rec Team), Directors and Assistant Directors of Food Services (DFS/ADFS), Dietary Aides,
and Neighbourhood Coordinators (NC).

this mandate, a solution to support this mandate in practice may require policy modifications. For
example, one person may need to be assigned to the sole task of tracking food and fluid intake
during mealtime, which means they would be unavailable to help with residents’ care needs for
the duration of the meal. Changing policy is outside the scope of the current AFINI-T project but
having sensitivity to this issue provides helpful context and informs that this may be a potential
barrier to uptake of the system in practice.

The main sources of nutrients are through food, fluids, and supplements. Participants felt sup-
plements were well documented as they are tracked using the medcart system. That left fluids
and foods, both of which are crucial to monitor. Feedback from the nutrition research expert
informed that while fluids receive the majority of focus in the literature and is important for
monitoring hydration status, the more clinically relevant area for nutritional status is food. With
fluids, it is easy to measure, the question is more about “will people measure fluid intake” due
to conflicting priorities. With food intake however, the question is more “can we measure food
intake” as it is more challenging. While measuring food intake is a proxy for nutritional status,
measuring food intake gives us a sense of why something might be going wrong (in combination
with biomarkers). While the utility of current food intake measurements is limited, fundamen-
tally, it raises awareness to some extent regardless of whether the measurements are inaccurate
(e.g., food spills). Currently in LTC, this charting conducted is based on visual assessment of
the plate after a meal potentially missing food spills and is accepted as an appropriate limitation.
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Figure 3.5: Current workflow of food service and food and fluid intake charting.

Better, more reliable measurements can enable more meaningful assessment of probing when,
how, and why, something may be going wrong informing intervention opportunities. In line with
this perspective, workshop participants’ domain knowledge was helpful to further converge the
focus on first monitoring food intake in a novel way.

Participants felt one facilitator to recording food and fluid intake was the PCC system enables
fluid intake measurements at the mL level. Across two sources (the “Ask the Experts”, Survey),
they thought fluids were fairly well documented/were more confident in those values (more use-
ful measurements) because there is less ambiguity around how much since it is collected to the
mL. As a result, as the first step for enhancing nutrition monitoring, I chose to focus on a system
to support food intake since this was the largest barrier with least utility.

More specifically, regarding the current system, respondents appreciated the ability to track flu-
ids so they need not manually add and the output has units (mL). While the current system is
dependable, substantial barriers and limitations were identified regarding the effectiveness and
accuracy of the current system. One workshop participant shared, “What’s being collected for
solid food isn’t useful. It’s so high level and minimal can’t make use of it. [We] can’t infer
anything regarding health or category of at-risk. [We] look at last 7 days, see ‘they had 75% of
a meal so they’re eating well’, but it doesn’t say anything. [We] don’t get a lot of info from the
charts.”

Insufficient time, data inaccuracy, unreliability and non-standardized measurements were iden-
tified as the largest barriers for task completion. Additionally, inability to differentiate between
types of foods, and lack of relation to original serving size lead to data interpretation difficulties.
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For example, some residents prefer half portions; if they eat half of their portion, this could be
recorded as 50% (i.e., half of the serving they received), or it could be input as 25% (i.e., 1/4 rel-
ative to the full portion). There is no guarantee the proportion is input accurately or consistently.
These themes were apparent through two sources, the “Ask the Experts” as well as on the survey.
For more detail regarding the current system’s retrospective analysis of perceived user workload,
see the sections of Table 3 pertaining to the “Current” system.

3.4.1.3 Goal B: Conduct a needs assessment of problem space including priority areas

Workshop participants were asked to rate need statements’ importance. The top three ranked
priorities were tied between: (1) “ease of use” and “accuracy” (µ=3.9, mode: “very important”,
15/16 votes), (2) “reliability” and “maintenance” (µ=3.9, mode: “very important”, 14/16 votes),
and (3) “The system should work well with PointClickCare.” (µ=3.8, mode: “very important”,
12/16 votes).

The following five themes emerged as wishes for a novel system to extend beyond the current
infrastructure: (1) being able to leverage weight of food as a ground truth instead of relying
solely on subjective proportions, (2) having the ability to track trends over time, (3) being able to
discriminate between types of food, (4) being able to include fluid intake as well to discriminate
between types of fluids, and (5) operating the system in different modes to accommodate various
use cases (i.e., in the dining room vs for in-room service). One additional, complementary theme
relevant to priorities identified independently through three interviews was the need to support
prioritising referrals that consider symptoms and risk flags severity. One project advisor artic-
ulated, “There is 1 Registered Dietitian for 300 residents. It’s impossible to track properly . . .
People are often missed because nurses aren’t identifying properly. . . If charting were accurate,
this would help with the referral process.”

3.4.1.4 Goal C: Establish functional criteria for usability and feasibility

The current system mode time to complete task defined the time completion target: 10-14 min-
utes maximum per neighbourhood (i.e., “ward”) of 16 residents. Of the 21 workshop attendees,
11 self-identified as being involved in charting resident food and fluid intake and were asked
about the amount of time required to complete intake charting for each of food, fluid or snack.
Survey responses are outlined in Table 3.1

3.4.2 Stage 2: Reflect and Storyboard
Design decision inspirations were drawn from PrognoCIS EHR, ChiroSpring, and Aprima EHR
[62–64] (Table 3.2). These inspirations led to a full, yet organized screen for each of the inter-
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Table 3.1: Summary of length of time required to complete food and fluid intake charting for
one neighbourhood comprised of 16 residents (Stage 1). * n is the number of responses with the
mode rating out of N, the total number of responses.

Charting Type Mode Time (minutes) (n/N responses)* Time Range
(minutes)

Food (meal) 10-14 30% (3/9) <10 to 25+
Fluid 10-14 40% (4/10) <10 to 25
Snack <10 64% (5/9) <10 to 19

faces (Figures 3.1 and 3.3). Many of the inspiration examples and informed design decisions
described in Table 2 are illustrated as the output from Stage 2’s storyboard critiques ( 3.1 and
3.3). These figures also depict how Stage 2 output informed Stage 3 (including the heatmap
overlay in the Stage 2 panes) and Stage 4 (discussed further in subsequent stages).

3.4.3 Stage 3: Storyboard Critiques
In Figures 3.1 and 3.3, the heatmap overlaid on the Stage 2 pane illustrates the most promising
concepts voted by project advisors (e.g., drop-down items and meal-specific tabs). The lower
left-hand pane depicts additional considerations captured through discussion. For example, on
the PSW interface, building a database of pre-meal images to save time along with the domain
knowledge that this solution would work for around 90% of the population (i.e., 10% may require
special pre-meal images due to residents receiving non-standard portion sizes).

When design decisions were made, the advisor’s perspective was considered and weighed ac-
cordingly. As the team of project advisors was relatively small, it will be important for the final
product to be tested with a larger sample of users to make sure concepts captured generalize
to users’ needs more broadly. Generally, the project advisor feedback on storyboard solution
concepts (Stage 3) were well received with project advisors actively engaged (e.g., “this system
will give me confidence on neighbourhoods I don’t know.”). Regarding the solution concepts
considered together, one advisor said, “This is a fantastic tool for dietitians to use. I can see it
is needed. It will advance the profession and advance quality of care for residents. And it will
happen in my lifetime”. There were no negative comments.

3.4.4 Stage 4: Design of the Goldilocks’ Quality Horizontal Prototype
Design heuristics were applied in the four ways and sample output from this stage is illustrated in
the right pane of Figures 3.1 and 3.3. First, related to universal usability, mapping was considered
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through matching the system with users language and familiar concepts in reality (e.g., Figure 2
contains tab names for snacks such as “AM”, “PM” and “HS” refer to the morning, afternoon,
and evening snacks respectively) [171, 170]. Second, informative feedback on a change of state
was provided [210, 171] when users attempted to submit or track an action, a pop-up there is a
pop-up banner at the bottom of the screen (not shown). Third, error prevention [210, 171, 169]
was incorporated through limiting types of responses and providing feedback. For example,
the PSW interface would prompt for a picture, or a progress note before submission with the
ability to finish charting at a later point of the meal service. Fourth, efforts were made to reduce
short-term memory load and enhance visibility/discoverability [210, 171, 169] by placing the
workspace into panes with all information accessible on one screen. Other features included
making “smart” suggestions when selecting items or filling out portion sizes. For example, notes
entered from RD interface (not shown) would auto-populate on RD instructions tab in the PSW
interface.

3.5 Discussion
Regarding timeliness in the time-constrained dementia care context, one substantial difference
between previous work on developing technology for consumer-centred nutrient intake tracking
(e.g., [128, 163, 176, 189]) and the work presented here is that the purpose of our technology
is to support tracking in a regulated LTC environment. This means considerations regarding
consumer uptake and use are different than with general consumer market. For example, the
novelty does not arise from tracking food and fluid intake per se; this is something that is already
mandated for at-risk residents. Instead, the novelty is in improving the method for tracking
beyond the current system in place. Other work involving diet tracking apps tend to focus on
weight loss and are meant for tracking of an individual’s food intake by the individual. Here, we
seek to leverage LTC as an infrastructure already in place to conduct more efficient mandated
multiperson monitoring.

The role of nutrition as part of a holistic care plan for individuals living with dementia is dis-
cussed in the 2015 European Society for Parenteral and Enteral Nutrition (ESPEN) guidelines.
They indicate that malnutrition contributes to disease progression and increased caregiver burden
and that “non-pharmacological strategies like nutritional interventions are of particular interest
as part of disease management” [231]. There is evidence to suggest that adhering to a particu-
lar pattern of dietary intake (e.g., the Mediterranean diet) is associated with reduced cognitive
decline [228]; however, these authors state “more conclusive evidence is needed to reach more
targeted and detailed guidelines to prevent or postpone cognitive decline”. Leveraging the neces-
sity to monitor at-risk residents living in LTC through a novel, objective approach to food intake
tracking, may be beneficial for gaining new insights for defining guidelines.
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Specifically considering the dementia care context and nutrition’s role in the process, according
to a 2016 systematic review [1], relatively few interventions have been conducted to explore the
effect of food intake in mild cognitive impairment or dementia. They conclude that all 43 con-
trolled interventions were at risk of bias and resulted in no consistent evidence either in support
or against the effectiveness of nutrition focused interventions [1]. By providing an alternative
method for tracking, we seek to improve upon how these allocated resources are used and aim
to provide more informative data. One future direction of the AFINI-T system is to use artificial
intelligence to learn food preferences.

In terms of the physical design requirements, additional discussion is required as the exact lo-
cation to house the system remains unclear as do size restrictions. What was gleaned, however,
is that the AFINI-T system must work on the iPad since this is what is currently in use. The
acceptable level of accuracy target was not well defined with project advisors. That said, we can
turn to the literature for some insight and important context. There is a tendency for frequent
overestimation of food consumption [211, 39]; in terms of degree of inaccuracy estimates of
food intake are typically over 50% for food items [39, 23] with reported over-estimation of food
22% of the time [211]. Furthermore, the source of error is said to be random [23] implying
compensation is not possible with current methods. With the AFINI-T system, we should set our
targets to be much more stringent because the automated image-based system removes subjectiv-
ity. Careful documentation and exploration of the conditions where the system does not perform
optimally will be necessary. One challenging situation is plates where the food items get mixed
up over the course of the meal. However, even more crude estimates, where we assume equal
eating distributions across types of foods for a plate average, would still improve on the current
system as it eliminates subjectivity, and reflects relative changes in mass and volume.

3.6 Conclusion
Using a multi-stage participatory iterative design sprint of a Goldilocks quality horizontal pro-
totype for the Automated Food Imaging and Nutrient Intake Tracking (AFINI-T) system, a user
interface prototype was collaboratively designed and primed for system evaluation. Specifically,
practice relevant problems were identified (the desire for more accurate food and fluid intake
tracking for enhanced clinical utility), and requirements were defined (e.g., need to integrate
with existing electronic health record system). Functional criteria for usability and feasibility
were additionally defined (e.g., ease of use, accuracy, reliability, and ease of maintenance), with
reference time to complete current food and fluid intake tracking (e.g., 10-14 minutes each for
meals and fluids for 16 residents). This provides context for the remainder of this thesis.
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3.6.1 Key Contributions
• Novel application of a modified participatory iterative design sprint in the LTC setting.

• Primary and secondary users identified, with preference for level and flow of information
and translated to requirements for an enhanced food and fluid intake system (emphasis on
food intake tracking).

• User interface for primary users reflecting requirements designed.

UP NEXT...
We’ve seen how to effectively collaborate using a new infrastructure for collaborative
design. We’ve learned pain points of the current system and re-imagined food intake data
utility with needs translated to requirements. We’ve designed the interface guided by end-
users. Now that we’ve learned how we’d like to “know better”, we can embark on “doing
getter” - which is where Chapter 4 takes us next.
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Chapter 4

Re-imagining Food Intake Tracking to
“Know Better”

Now that we’ve seen how users would prefer to interact with the system and have a sense for
priorities, we can begin working on the “guts” of the system. Recent reviews corroborate that
further work is needed for developing an accurate, automated systems [218, 61] and describe
the need for considering more complex meal scenarios (i.e., beyond solid, separated foods, or
synthetic foods) [189, 218] and require adequate statistical analyses of methods [61]. From
the food imaging perspective, this involves four subcomponents which are expanded on in the
remainder of this chapter - the first 2 in Section 4.1 and the latter two in Section 4.2:

Establishing where on a plate there is food (i.e., segmentation) for ...

Establishing how much food is present (i.e., volume estimation) so
we can infer food intake relative to an initial portion.

Establishing which foods are present (i.e., classification) so we can
tease out food intake at the food-item level and address the current
shortcoming of assuming equal consumption across foods.

Computing nutrient-level intake estimates by linking food-item level
intake with recipes.
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This chapter contains content previously published from...
KJ Pfisterer, R Amelard, AG Chung, B Syrnyk, A MacLean, HH Keller, A Wong. When segmentation is not enough: Rectifying
visual-volume discordance through multisensor depth-refined semantic segmentation for food-intake tracking in long-term care.
(Submitted: Scientific Reports). On this paper, K.J.P and R.A contributed equally to this work. K.J.P conceptualized the system,
was the main contributor to experimental design, data acquisition protocols, data collection, interpretation, and writing of the
manuscript, with additional contributions to the algorithmic design. R.A. was the main contributor to algorithmic design and
technical implementation. K.J.P and R.A. conducted data analyses.

Section 4.2 also contains an unpublished manuscript. On this paper, K.J.P, was the main contributor to experimental design, data
collection, data analysis planning, interpretation, and writing of the manuscript, with additional contributions to the algorithmic
design. R.A. led algorithmic and technical implementation. K.J.P and R.A. conducted data analyses.

4.1 Seeing food intake objectively

Section Summary
This section outlines two colour and volume food intake datasets
I collected to capture simulated intake of regular texture and mod-
ified texture foods against weighed food records. It further de-
scribes how I leveraged AI powered computer vision techniques
for food intake tracking through segmentation and volume estima-
tion. The general process was, from an image, determine where
food was on the plate and take the associated depth map for vol-
ume. To answer how much food was eaten, for leftover plates,
compare to the full portion reference image to establish % food in-
take both using segmentation maps alone as well as depth-refined
segmentation for calculating 2D and 3D % intake error.

Key take-aways:

• Depth information improved accuracy.
• We explored “visual-volume discordance”, the disagree-

ment between where food pixels are and where meaningful
food resides, where segmentation alone necessitated cap-
turing additional context (e.g., when to automatically omit
sauce remnants).

• The system excelled at modified texture food estimates and
struggled with low-density foods (e.g., salad).

Automated tools may pro-
vide a time efficient, cost ef-
fective, and objective alter-
native to current subjective
human assessor estimates.
We saw in Chapter 3, the
LTC sector requires a sys-
tem that is reliable, accurate,
cost effective and time effi-
cient for measuring food and
resulting energy, macro and
micronutrient intake [180].
In Chapter 2 we saw that for
food intake tracking we must
answer: where is there food
(segmentation), what foods
are present (classification),
and how much food remains
relative to the initial amount
(volume estimation)?

To date, food classification
has received the most atten-
tion; more-in-depth reviews
for classification can be found elsewhere (e.g., [144, 34, 61, 189, 218]), however for complete-
ness, I have included an overview of relevant works preceeded with the focus of my work. In-
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stead, I focus more on food segmentation as a relatively unexplored domain to address food
intake from imaging to estimation. For the purpose of this section, we focus on the where (seg-
mentation), and the how much (volume estimation), as types of food items in LTC are well
constrained through monthly menu-planning.

4.1.1 Food Related Segmentation and Classification Progress
While automated tools may provide a time efficient, and objective alternative, little work has been
done within the LTC context providing an opportunity for high impact in this field. The following
section provides an overview of related work around food classification, volume estimation and
nutritional intake estimation within the context of LTC’s requirements. It concludes with an
overview of the focus of our proposed solution.

Certainly there has been progress made in food classification and nutrient intake, however, these
previous efforts have tended to focus on classification in isolation ( e.g., [144, 34, 61, 189,
218]). Food segmentation is comparatively unexplored but has typically required fiducial mark-
ers [176, 252], multiple images [129, 187], manual labelling for every food item and each food
image [162], or did not predict food areas at the pixel-level (e.g., bounding boxes[207, 120]).
However, in LTC semantic segmentation is required when measuring food and nutrient intake
across a plate as many residents do not consume their entire portion. For food volume estimation,
template matching has been popular [93, 243, 40, 110, 175, 193, 96]. However, within the con-
text of LTC, the same food can take on various shapes (e.g., banana in peel versus sliced banana,
versus pureed banana) and 47% of the LTC population receives modified texture foods [234])
limiting the utility of template-matching in this context. Others have leveraged stereo recon-
struction [57, 190] for volume estimation and 3D point-clouds [194]. However, taking multiple
images and building 3D point clouds require additional time, an extremely limited commodity in
the LTC context.

An alternative route which has been gaining popularity is depth imaging and structured lighting
for mapping food topology [71, 205, 162, 42, 139]. While depth- and structured-light-only ap-
proaches are more robust to illumination variation, highly reflective foods (e.g., gelatin, soup)
pose a challenge for accurate readings [139]. Leveraging structured light for measuring vol-
ume shows promise as a means to address previous shortcomings particularly on the required
operator time with accuracy approaching 97.44% [139]. While structured light has been gain-
ing popularity in the agrifood industry for measuring volume [145], monitoring fermentation in
bread [108, 229], classifying fruits and vegetables [179] and apple quality analysis [147, 148],
there has been very little work on incorporating structured lighting for monitoring food intake
[205, 206, 139, 71]. Shang et al. imaged only 9 food replicas and did not report error [205, 206],
Fang et al. reported error of 2% but did not disclose how many foods or what was used as ground
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truth [71], but is consistent with Liao et al. reporting an average error in weight of 7.5% [139]
which is a marked improvement over methods which rely on human assessors with accuracy
less than 75% and incorrect measurements up to 66% of the time when assessed retrospectively
[7, 39]. One potential reason for few papers leveraging a structured light approach is that until
recently, these systems were difficult or expensive to build. However, with recent advances in
the Kinect and Intel’s RealSense RGB-D cameras, an off-the-shelf solution is now available at
relatively low cost (i.e., under $200) or comes standard in newer versions of iPhones and iPads.

An additional factor limiting progress in food intake estimation more broadly is the need for
large, complete food datasets [250]. As a result, few attempts have been made to solve this
problem, they have high error (up to 400 mL error [162]), or are limited to synthetic foods
[142, 143] which do not accurately represent a real-world environment. While we can borrow
inspiration from these approaches, they were not designed with the needs of LTC in mind. For
example, weight loss was the desired outcome [129, 163, 176, 189, 10, 4] which is inappropriate
in the LTC context and they were designed to be used by the user. In LTC we have proxy users
where one staff monitors many residents. While these approaches could be modified for use
in LTC, in their current form, they target a different purpose (e.g., calorie tracking), still rely
on self-monitoring, and do not consider the LTC context for food and fluid intake tracking best
practices.

Further consideration is needed to also disentangle sources of error as error assessment is typi-
cally not reported or segmentation is coupled with either classification [186, 120, 93, 162, 207,
237, 246] or volume estimation [89]. Others have also identified this as a limitation for accurately
predicting down-stream nutritional information [162, 10, 237, 252]. These gaps have been cor-
roborated by recent reviews identifying the need for automated systems [218, 61] which consider
more representative foods [189, 218] with the need for more in-depth evaluation and statistical
analyses [61].

Within the LTC context the closest technological analog in this domain was a comparison to es-
timate food waste of regular- and modified-texture diets either with the visual estimation method
or by using digital photographs for retrospective analysis [177] both methods required significant
operator time as it was a manual process. Borrowing from the hospital setting, a more recent pilot
study by Ofie et al. used a combination of RFID scanner, built-in food scale and digital photog-
raphy method [174]. They yielded promising results in terms of accuracy with relatively high
agreement between trained and untrained assessors (ICC = 0.88, P<0.01) and excellent agree-
ment for protein and energy intake between their method and the weighed food method (ICC
=0.99, P<0.01) [174]. These are encouraging results for an adjacent application in LTC. How-
ever, weighing each portion or manually imaging each plate before and after a meal to establish
what was consumed is time-consuming, may require trained personnel for best accuracy, and is
therefore impractical for large-scale adoption in our LTC setting. More broadly, further work is

46



needed for developing an accurate, objective and cost-effective automated system [218, 61]. Our
work seeks to address this gap in the context of LTC.

There is a need to address higher quality tracking with decreased margins of error (e.g., errors up
to: 400%, 24-hr recall; 50%, portion size [23], correct estimation of intake occurs only 44% for
correct portion size estimation in LTC, but is low as 38% of the time with delayed recording [39].
In line with these opportunity areas and current human-computer interaction trajectories [2],
we seek to improve trust and transparency by focusing on developing an explainable system
which approximates human assessors but with enhanced objectivity, accuracy, and precision.
Specifically, we describe and evaluate a novel fully automated depth-refined multisensor food
intake tracking system. Here the depth-refined segmentation and volume estimation have been
decoupled to disentangle and assess potential sources of error. Through this decoupling, we seek
to enhance reliability for eventual integration with nutritional intake estimation, and to reduce
potential barrier to uptake in practice. We designed the segmentation system to be used in clinical
settings (such as LTC or hospitals) with acquisition consistent with LTC food and fluid intake
visual assessment procedures. Our system is comprised of an RGB-D camera, a novel deep
convolutional neural network encoder-decoder food network, called EDFN, with fused output
from superpixel processing. It also incorporates depth information for enhanced segmentation
and volume estimation. The use of a single RGB-D camera brings simplicity over a multi-
camera or multi-perspective set-up, reducing processing and acquisition time while removing
subjectivity in the assessment. We trained our EDFN on the UNIMIB2016 dataset [49] and test
it on two novel datasets to reduce bias and enhance generalizability. The two novel datasets are 1)
a regular texture foods dataset and, 2) a modified texture foods dataset (e.g., puréed, minced). To
the best of our knowledge, this is the first modified texture foods dataset used for segmentation
or volume estimation. We conducted analyses including IOU, 2D- and 3D- percent intake error,
absolute intake error, and mean intake error bias. We use ground-truth hand segmentation and
comparison against an “applied ground truth” through the graph cut semi-automated method.
We supplement these analyses with volume disparities to illuminate how segmentation strategies
impact accuracy and under what conditions IOU may be insufficient to assess true accuracy.
Using this more holistic construct for assessment, we aim to enable trust in the system and
document potential circumstances and limitations of the system relevant to the LTC domain for
early malnutrition detection via plate-by-plate food consumption tracking.

4.1.2 Methods
4.1.2.1 Data Collection

As we saw in Chapter 3, in the Schlegel Villages, food is prepared in the central industrial
kitchen where it is held until it is time to serve from the neighbourhood servery and intake is
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assessed by personal support workers whenever they are able to after a resident has finished
their meal. To align with this standard of practice, data were collected in an industrial research
kitchen which conforms to LTC kitchen standards to enable the most realistic full-portion images
collected and to collect data under similar lighting conditions as would be the case in practice.
We constructed an image acquisition system that enabled top-down image capture. We imaged
36 foods representative of LTC where 9 were regular texture foods listed as options on a LTC
menu comprising our novel “regular texture foods” dataset. A set of 63 modified texture food
samples representing 27 unique foods were prepared by a LTC kitchen (The University Gates,
Schlegel Villages) and either minced or puréed comprising our “modified texture foods” dataset.
During image acquisition, the room temperature varied from 20.6◦C to 22.5◦C. Before and after
imaging via an RGB-D camera (Intel RealSense F200), the scale was tared with a reference
plate of the same mass to ensure consistency in portion size (via mass) relative to the matching
reference portion. The reference weight for 0% eaten (i.e., full portion) was recorded as part of
the weighed-food records for validation and used to calculate each quarter portion eaten. Images
were saved to a computer for model training and evaluation. For a summary of the types and
representation of foods imaged, see Table 4.1.

Regular Texture Foods Acquisition: We imaged 9 unique food items across three representative
meals each consisting of three food items (breakfast: oatmeal, toast, eggs; lunch: pasta, salad,
cookie; and dinner: meatloaf, mashed potatoes, corn) were selected from an LTC menu and
imaged as part of this data collection series. Each plate was assembled with up to three food
items. One full serving of each food item was defined by the nutritional label serving size by
mass. Plates were imaged at every permutation of 0%, 25%, 50%, 75%, 100% of each food item
consumed. Here, 0% corresponds to the initial, largest mass portion (P1), and 100% corresponds
to no amount of that food component remaining (P5). The largest mass portion, P1 was deemed
a “full” portion with P2-P5 representing smaller and smaller masses. These 25% incremental
bins were selected based on standard dietary intake record forms used in LTC [158, 31]. This
yielded 125 unique plates per meal (375 unique plates). Foods were selected to be representative
based on a LTC menu.

Modified Texture Foods Acquisition: We imaged 63 food samples (56 unique + 7 duplicates)
representing 27 unique food items. Each set of samples for a given unique food contained at
least one example of a modified texture (i.e., minced, puréed or both) either imaged fresh, after
being held at serving temperature, or both. Holding food at serving temperature is standard
practice in LTC serveries as meal items are prepared in advance of meal service. Each food
sample was imaged at 5 different portions (P1-P5), with one exception containing 4 portions,
by progressively removing some of the sample with a spoon to simulate varying degrees of
leftovers. The largest mass portion, P1, was deemed a “full” portion for intake purposes, with
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Table 4.1: Imaged foods represented in each of the regular texture foods dataset and the modified
texture foods dataset. Regular texture foods were derived from LTC menus and imaged with
three foods per meal (breakfast: oatmeal, toast, scrambled eggs; lunch: tortellini, salad, cookie;
dinner: meatloaf, potatoes, corn) at every 25% incremental amounts of each food item relative to
the full portion. Modified texture foods were imaged separately with five incrementally smaller
portions. Recipes were available for all modified texture foods included.

Food Component Regular Texture Foods Modified Texture Foods
Grains Cheese tortellini /w tomato sauce Bow tie pasta /w carbonara

Oatmeal Macaroni salad
Whole wheat toast Vegetable rotini

Vegetables and fruits Corn Asian vegetables
Mashed potatoes Baked polenta /w garlic
Mixed greens salad California vegetables

Greek salad
Mango & pineapple
Red potato salad
Sauteed spinach & kale
Seasoned green peas
Stewed rhubarb & berries
Strawberries & bananas
Sweet and sour cabbage

Proteins Meatloaf Baked basa
Scrambled egg Braised beef liver & onions

Braised lamb shanks
Hot dog wiener
Orange ginger chicken
Salisbury steak & gravy
Teriyaki meatballs
Tuna salad

Mixed dishes Oatmeal cookie Barley beef soup
Blueberry coffee crumble cake
Eggplant parmigiana
English trifle
Lemon chicken orzo soup

49



P2-P5 representing smaller and smaller masses. This yielded a total of 314 images. Foods were
representative of a typical LTC menu as they were prepared by the LTC kitchen and represented
a variety of fruits, vegetables, pastas, soup, and meat dishes.

4.1.2.2 Food Image Volume Estimation System with an Encoder Decoder Food Network
(EDFN)

The goal was to estimate volumetric food intake from RGB-D images of food on a plate. We
developed a deep convolutional neural network (DNN) for generating food segmentation maps,
which was refined using depth heuristics and combined with calibrated pixel-wise food heights
to estimate food consumption (in mL). Figure 4.1 shows a visual representation of the system
diagram.

More specifically, we were inspired by the success of encoder-decoder networks for semantic
image segmentation [15]. We designed the macroarchitecture of the proposed food segmentation
DNN as a multi-scale encoder-decoder network architecture tailored for downsampled, pixel-
level semantic segmentation of food images. Figure 4.1 shows the network architecture, which
consists of a residual encoder microarchitecture, a multi-scale hierarchical decoder microarchi-
tecture, and a final high-resolution, per-pixel classification layer for producing a food segmenta-
tion map. The residual encoder microarchitecture is responsible for encoding RGB images into
a set of feature maps describing the objects in the image. The encoder feature map outputs are
then processed through the decoder microarchitecture which parses the scene at multiple spatial
scales. These multi-scale representations were concatenated to the feature map outputs, and a
1x1 convolutional layer was trained to output a two-class per-pixel segmentation map (food or
no-food).

For the residual encoder microarchitecture, we leveraged a spliced ResNet101 architecture with
pre-activation [92]. The ResNet101 architecture was chosen because of its powerful represen-
tational capability for learning discriminative feature representations from complex scenes. We
leveraged the notion of transfer learning by beginning with a ResNet101 network architecture
designed for classification, trained on the ImageNet dataset of natural scenes [58], and splicing
off the deeper ResNet101 layers to create the final encoder microarchitecture. More specifically,
we splice at the third unit of the first residual block [248], leading to the proposed residual en-
coding microarchitecture, which encodes 120×160 RGB images into 256 15×20 feature maps.
As such, the image was fed through a 7×7 convolutional layer with 64 kernels and a stride of
2. Then, a 3×3 max pool with stride of 2 was performed to downsample the image. These rep-
resentations were fed through the first ResNet101 block, consisting of 64 1×1 convolution, 64
3×3 convolution, and 256 1×1 convolution layers three times, with skip connections after every
set of 3 layers. The last 3×3 layer was downsampled using a stride of 2. Thus, the encoder
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microarchitecture outputs 256 feature maps at 1/8 the input image size.

The decoder microarchitecture of the proposed food segmentation network was designed to de-
code the feature maps from the encoder microarchitecture into hierarchical global priors using a
region binning scene parsing network architecture design. It is well known that multi-scale con-
text aids pixel segmentation [141] which is particularly relevant within the context of food. As
humans observing food, there are two main components: the colour and the texture of the food.
Texture also varies across scales (i.e., food has a hierarchical visual nature to it). To account for
the multi-scale context of food, we leveraged a pyramid scene parsing network (PSPNet) [248]
which was connected to the feature outputs from the encoder microarchitecture. As such, the
PSPNet decoder microarchitecture performs analysis across four spatial scales, which adds in-
formation representing the underlying feature representation and provides local-to-global context
of the plate of food. The feature maps were fed into four parallel max-pool layers, with bin sizes
of 1×1, 2×2, 3×3, and 6×6. The upscaled hierarchical global prior outputs were concatenated
to the encoder feature maps and two class (food or no-food) pixel-level segmentation was per-
formed using a 1×1 convolution layer. A circle Hough transform [13] was used to mask the plate
from the table, eliminating detection of food outside the plate boundaries (e.g., on tables with
complex patterns).

4.1.2.3 Training and Validating the Network

We trained the proposed encoder-decoder food network (EDFN) on the UNIMIB2016 food
dataset (1027 tray images, 73 categories), which contains per-pixel ground-truth segmentation [49].
The encoder weights were frozen to conserve deep computational feature extraction from large
robust datasets, and only the decoder weights were optimized. The UNIMIB2016 dataset was
chosen due to its food variety, overhead view, and pixel-level segmentation annotation. Addi-
tionally, since our method was driven by LTC application requirements with data collection in a
specific manner, we needed a dataset that was similarly acquired (e.g., pixel-wise annotation, not
bounding boxes) so training/fine-tuning could be accomplished without bias by our novel LTC
test datasets. While our LTC test datasets comprise a representative sample albeit with relatively
few food groupings, training on the UNIMIB2016 dataset with 76 food categories enhanced gen-
eralizability. Downsampling was conducted to align the spatial feature sizes of the encoder and
decoder microarchitectures with the UNIMIB2016 dataset [49]. The UNIMIB2016 data were
resized to match our image height/width which were at the same aspect ratio (4:3). This resizing
to 120x160 images provided two key advantages: (1) computation reduction, (2) better scaled
kernels for the image size. We empirically observed that there was not enough global context at
the original resolution, resulting in the middle of foods getting misclassified. By downsampling
our image, the network was able to identify primary high-level features instead of getting stuck
in the texture of the food and could be successfully decoded by the pyramid scene parsing de-
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coder microarchitecture. The UNIMIB2016 data were randomly split into training and validation
subsets (80%/20%). Since all UNIMIB2016 plates were placed on the same tan colored tray, we
found that the machine learning model inappropriately learned that the tray colour was always
indicative of non-food. Thus, we performed data augmentation on the UNIMIB2016 data by
randomly rotating the hue channel of each image’s background (non-food) pixels and adding it
to the dataset, thus effectively doubling the training and validation datasets. The network was
trained using batch size 32 using RMSProp optimizer with softmax cross-entropy loss, a learn-
ing rate of 0.0001 and a decay of 0.995. The network was trained over 200 epochs, and the best
model according to the validation loss was kept.

4.1.2.4 Testing the Network

We tested the network on our two custom LTC datasets consisting of 689 (375+314) plates repre-
senting 36 (9+27) different foods (as outlined in Table 4.1). Original images were downsampled
from 480×640 to 120×160 to decrease the number of network parameters and improve compu-
tation time. The images were hand segmented to define ground truth segmentation masks of the
food on the plates.

We compared our results to those generated by semi-automatic graph cut segmentation. Since
user input is required for initialization, for consistency in the regular texture dataset, one line
was used to denote each food item present on the plate and one squiggled background line was
indicated around the top and right side of the image as shown in Figure 4.2. The modified texture
dataset required substantially and inconsistently more user-defined seeding. The circle Hough
transform plate masking used in our proposed system was used here too. The output from this
method is a plate-level food segmentation mask.

4.1.2.5 Segmentation Depth-Refinement

The generated food segmentation map from EDFN is based solely on visual information and
is thus privy to visual-volume discordance. We therefore developed a heuristic for excluding
labeled food areas that are irrelevant to food consumption (e.g., pasta sauce remnants). To do
this, co-aligned depth maps were acquired synchronously with the RGB images for the plate
under analysis as well as an empty calibration plate.

Ten depth maps were averaged for each acquisition to account for measurement noise. The cal-
ibration depth map dC was registered to the plate depth map dP to account for any changes in
camera-plate orientation between calibration and plate acquisitions. Food height was used to re-
fine the segmentation mask (“depth-refinement”) based on a priori knowledge that visual-volume
discordance is observed when very shallow and inconsequential foods are visually apparent, but
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are irrelevant to volumetric analysis. Specifically, the image was decomposed into 250 perceptu-
ally meaningful superpixels using simple linear iterative clustering [3] (compactness=20, σ=2).
For each superpixel Si, the constituent pixels were removed from the food map using statistical
thresholding on the pixel height distribution:

QhSi
(p) < τ (4.1)

where QhSi
is the quantile function of the distribution of pixel heights in Si. We set p = 0.75 and

τ = 2 mm based on measurement error along a flat table.

Food Volume Calculation

Food height was determined in mm units, but to calculate food volume, pixel spacing needed
to be calibrated to mm (a pixel-to-mm conversion). Using the known diameter of the plate d
(259 mm), we used the detected plate radius r̂ from the circle Hough transform to compute the
conversion:

∆x =
d

2r̂
(4.2)

Food volume in mL could then be computed by summing the per-pixel differential volumes
within the food mask:

V = ∑
i∈F

(∆x)2hi (4.3)

where F is the set of segmented food pixels. Volumetric food intake was computed by subtracting
the plate volume from the full portion volume. Similarly, percent intake was calculated relative
to the full portion volume.

4.1.2.6 Data Analysis

To compare quantitative performance between methods, we use the common performance mea-
sures of global accuracy (Equation 4.4) to describe the percentage of correctly classified pixels,
food segmentation accuracy (Equation 4.5 to describe the percentage of correctly classified food
pixels), as well as the intersection over union (IOU) (Equation 4.6) both within a meal (i.e.,
breakfast, lunch, dinner, modified texture single-imaged foods) and across meals. For this ap-
plication, the IOU provides a more representative metric for how our segmentation system is
performing as it captures accuracy within the context of the true bounded food areas since false
positive predictions are penalized. The theoretical maximum value of IOU is 1.0 when the inter-
section maps perfectly over the union without deviation. We define the metrics described above
as follows:
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Figure 4.2: Sample graph cut annotation with one line per food item (red) and one background
line (blue) and resulting segmentation mask.

Global Accuracy =
TP + TN

TP + TN + FP + FN
(4.4)

Food Segmentation Accuracy =
TP

TP + FN
(4.5)

IOU =
target ∩ prediction

target ∪ prediction
=

TP

TP + FP + FN
(4.6)

Volume estimation accuracy was assessed by computing mean absolute intake error (mL) as
volume calculated using our proposed method or the “applied ground-truth” method with or
without depth-refinement relative to the volume across the ground-truth hand segmented areas.
Error (mL) was calculated similarly but preserves the direction of error. Volume intake error
(mL) is the difference between the current portion relative to the full portion. Intake error was
calculated for both segmentation (2D) and volume (3D) data relative to the full portion. All
values are reported as mean ± SD.

4.1.3 Results
When solely considering intake using segmentation, the form factor of food inherently assumes
depth is uniform across the segmented portion. However, this approach fails to fully capture the
context of food; we refer to this as the “visual-volume discordance”. For example, consider one
tablespoon (15 mL) of tomato sauce, this sauce could be piled relatively high into a mound (i.e.,
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representing relatively few plate pixels), or could be very thinly spread across the majority of the
plate (i.e., representing many plate pixels). From a computer vision approach to segmentation,
these two plates would yield extremely different segmented areas while the absolute volume of
the sauce would be the same. A human assessor can note there is little sauce on the plate in
either configuration. Depth-refinement, either as part of the segmentation pipeline or conducted
through relative changes in volume for food volume intake assessment, circumvents this issue
by providing context beyond the pixel count of a segment and brings assessment closer (but with
higher precision and accuracy) to a human assessor. Now consider what is deemed “ground
truth” from hand segmentation of an image. Here, human assessors indicate where on the plate
there was food to generate the ground truth. However, considering segmentation accuracy in
isolation misses important context about how much food is present, which is the more pertinent
question for assessing food intake. As such, we cannot rely fully on classical segmentation accu-
racy for evaluating system performance since there can be a strong discordance between visual
(RGB) and volume (RGB-D) assessments. Volume consideration is particularly essential for es-
timating food intake when accounting for the high prevalence of modified texture foods in LTC.
While metrics pertaining to visual accuracy are most synonymous with traditional assessments of
segmentation accuracy (e.g., IOU), metrics pertaining to volume accuracy may be more represen-
tative of true intake, especially for modified texture foods which have higher fluidity. Figure 4.3
provides a visual analyses of the results taking into account these considerations while Table 4.2
provides a numerical summary of results. Data are reported as (mean ± SD).

4.1.3.1 Regular Texture Foods

Food Segmentation Accuracy

Regarding the regular texture foods dataset, food segmentation accuracy was high for our pro-
posed system without and with depth-refinement (EDFN: 0.943 ± 0.047, EDFN-D: 0.918 ± 0.048).
Our proposed, depth-refined system was comparable to the no-depth and depth-refined graph cut
implementations (GC: 0.955 ± 0.055, GC-D: 0.933 ± 0.060). Variance was similar but slightly
lower for our proposed EDFN and EDFN-D than GC and GC-D.

Segmentation Agreement

Segmentation agreement (IOU) was also good, and further improved through depth-refinement
for our proposed system (EDFN: 0.885 ± 0.069, EDFN-D: 0.927 ± 0.029). The graph cut
IOU both without and with depth-refinement outperformed our proposed methods owing to user-
specified seed points (GC: 0.938 ± 0.036, GC-D: 0.941 ± 0.029). We attribute the improvements
of both our proposed system and our applied ground truth with depth-refinement to reduction in
the visual-volume discordance due to low-profile yet visually distinct foods on a plate, such as
pasta sauce.
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Figure 4.3: Visual comparison of proposed method (EDFN) and our “applied ground truth”
(GC) both without and with depth-refinement (EDFN-D, GC-D). Examples span both regular
and modified textures and illustrate a) plates with high visual-volume discordance (i.e., many
pixels contain food but represent little volume), as well as b) examples where depth-refinement
rectified oppositional segmentation compared to human assessor (i.e., a special case of EDFN
examples of visual-volume discordance human assessors would segment differently and EDFN-
D compensates for these differences) . IOU is shown in black bold at the top of the frame while
volume error (mL) is indicated in white text at the bottom of each frame; negative volume error
implies under-segmentation (i.e., over-estimation of intake).

57



Ta
bl

e
4.

2:
C

om
pa

ra
tiv

e
an

al
ys

es
of

sy
st

em
pe

rf
or

m
an

ce
w

ith
in

an
d

ac
ro

ss
LT

C
da

ta
se

ts
be

tw
ee

n
ou

r
pr

op
os

ed
m

et
ho

d
(E

D
FN

,E
D

FN
-D

)a
nd

th
e

“a
pp

lie
d

gr
ou

nd
tr

ut
h”

gr
ap

h
cu

t(
G

C
,G

C
-D

).
%

er
ro

ri
nt

ak
e

re
fe

rs
to

th
e

pr
o-

po
rt

io
n

of
se

gm
en

te
d

pi
xe

ls
ca

lc
ul

at
ed

us
in

g
th

e
pr

ed
ic

te
d

es
tim

at
e

m
in

us
th

e
ta

rg
et

gr
ou

nd
-t

ru
th

ha
nd

se
gm

en
te

d
re

gi
on

s;
2D

:n
o-

de
pt

h,
3D

:w
ith

de
pt

h-
re

fin
em

en
t.

D
at

as
et

Se
gm

en
ta

tio
n

ac
cu

ra
cy

In
ta

ke
ac

cu
ra

cy
Vo

lu
m

e
es

tim
at

io
n

ac
cu

ra
cy

(m
L

)
M

et
ho

d
G

SA
FS

A
IO

U
2D

%
in

ta
ke

er
ro

r
3D

%
in

ta
ke

er
ro

r
M

A
E

M
E

B
V

IE
R

eg
ul

ar
te

xt
ur

e
fo

od
s

E
D

F
N

0.
97

3
(0

.0
18

)
0.

94
3

(0
.0

47
)

0.
88

5
(0

.0
69

)
-2

3.
4

(2
1.

2)
-9

.1
(8

.8
)

17
.1

(4
9.

2)
-1

4.
7

(5
0.

0)
-1

29
.2

(1
54

.3
)

E
D

F
N

-D
0.

98
4

(0
.0

12
)

0.
91

8
(0

.0
48

)
0.

92
7

(0
.0

29
)

-1
6.

5
(1

7.
6)

-9
.0

(8
.9

)
18

.0
(5

0.
0)

-1
7.

2
(5

0.
3)

-1
30

.2
(1

54
.8

)
G

C
0.

98
7

(0
.0

09
)

0.
95

5
(0

.0
55

)
0.

93
8

(0
.0

36
)

-6
.8

(1
3.

5)
0.

4
(1

.3
)

4.
5

(5
.5

)
-0

.0
(7

.1
)

1.
8

(6
.6

)
G

C
-D

0.
98

8
(0

.0
05

)
0.

93
3

(0
.0

60
)

0.
94

1
(0

.0
29

)
-5

.3
(1

2.
7)

0.
4

(1
.3

)
4.

6
(5

.4
)

-1
.8

(6
.9

)
0.

2
(6

.5
)

M
od

ifi
ed

te
xt

ur
e

fo
od

s
E

D
F

N
0.

99
0

(0
.0

11
)

0.
92

2
(0

.1
65

)
0.

84
6

(0
.1

14
)

-4
4.

0
(3

8.
6)

-0
.8

(5
.2

)
2.

8
(3

.1
)

1.
7

(3
.8

)
0.

3
(3

.6
)

E
D

F
N

-D
0.

99
1

(0
.0

14
)

0.
69

7
(0

.3
48

)
0.

81
9

(0
.1

66
)

-1
6.

5
(2

0.
0)

1.
4

(5
.9

)
2.

3
(3

.2
)

-0
.7

(3
.9

)
0.

8
(3

.6
)

G
C

0.
99

5
(0

.0
06

)
0.

83
4

(0
.1

57
)

0.
89

8
(0

.0
82

)
-2

7.
4

(2
5.

5)
0.

7
(3

.1
)

2.
2

(2
.7

)
-1

.9
(2

.9
)

-0
.9

(3
.3

)
G

C
-D

0.
99

1
(0

.0
13

)
0.

65
6

(0
.3

28
)

0.
81

9
(0

.1
65

)
-1

4.
5

(1
8.

1)
2.

1
(4

.6
)

3.
2

(3
.4

)
-3

.1
(3

.5
)

-0
.5

(3
.4

)
A

ll
fo

od
s

E
D

F
N

0.
98

1
(0

.0
17

)
0.

93
4

(0
.1

16
)

0.
86

7
(0

.0
94

)
-3

2.
8

(3
2.

0)
-5

.3
(8

.5
)

10
.8

(3
7.

4)
-7

.4
(3

8.
2)

-7
1.

4
(1

31
.7

)
E

D
F

N
-D

0.
98

7
(0

.0
13

)
0.

81
9

(0
.2

59
)

0.
87

9
(0

.1
25

)
-1

6.
5

(1
8.

7)
-4

.2
(9

.2
)

11
.0

(3
8.

1)
-9

.9
(3

8.
4)

-7
1.

8
(1

32
.3

)
G

C
0.

99
1

(0
.0

08
)

0.
90

1
(0

.1
28

)
0.

92
0

(0
.0

64
)

-1
6.

2
(2

2.
3)

0.
5

(2
.3

)
3.

5
(4

.6
)

-0
.8

(5
.7

)
0.

6
(5

.6
)

G
C

-D
0.

99
0

(0
.0

10
)

0.
80

9
(0

.2
62

)
0.

88
7

(0
.1

27
)

-9
.5

(1
6.

1)
1.

1
(3

.3
)

4.
0

(4
.7

)
-2

.4
(5

.7
)

-0
.1

(5
.3

)
V

al
ue

s
ar

e
(m

ea
n
±

SD
)G

SA
:G

lo
ba

ls
eg

m
en

ta
tio

n
ac

cu
ra

cy
,F

SA
:F

oo
d

se
gm

en
ta

tio
n

ac
cu

ra
cy

,I
O

U
:i

nt
er

-
se

ct
io

n
ov

er
un

io
n,

M
A

E
:M

ea
n

ab
so

lu
te

er
ro

r,
M

E
B

:M
ea

n
er

ro
rb

ia
s,

V
IE

:V
ol

um
e

in
ta

ke
er

ro
r.

Ta
bl

e
4.

3:
Su

m
m

ar
y

of
vo

lu
m

e
es

tim
at

io
n

ac
cu

ra
cy

ac
ro

ss
po

rt
io

n
si

ze
s

fo
r

th
e

m
od

ifi
ed

te
xt

ur
e

fo
od

s
da

ta
se

t
ac

ro
ss

ou
rp

ro
po

se
d

E
D

FN
an

d
E

D
FN

-D
.

D
at

as
et

Se
gm

en
ta

tio
n

ac
cu

ra
cy

In
ta

ke
ac

cu
ra

cy
Vo

lu
m

e
es

tim
at

io
n

ac
cu

ra
cy

(m
L

)
Po

rt
io

n
G

SA
FS

A
2D

%
in

ta
ke

er
ro

r
3D

%
in

ta
ke

er
ro

r
M

A
E

M
E

B
V

IE
E

D
F

N
(n

o-
de

pt
h-

re
fin

em
en

t)
P

1
0.

99
6

(0
.0

03
)

0.
97

0
(0

.0
66

)
0.

0
(0

.0
)

0.
0

(0
.0

)
3.

3
(3

.4
)

2.
0

(4
.3

)
0.

0
(0

.0
)

P
2

0.
99

4
(0

.0
06

)
0.

96
5

(0
.0

89
)

-3
0.

2
(1

7.
2)

-0
.8

(8
.0

)
3.

0
(3

.1
)

2.
1

(3
.8

)
-0

.1
(3

.3
)

P
3

0.
99

2
(0

.0
09

)
0.

94
1

(0
.1

25
)

-5
0.

1
(2

3.
5)

-0
.9

(5
.3

)
2.

9
(2

.9
)

1.
9

(3
.6

)
0.

1
(3

.7
)

P
4

0.
98

7
(0

.0
13

)
0.

91
2

(0
.1

76
)

-6
8.

0
(3

5.
3)

-1
.1

(5
.6

)
3.

0
(3

.2
)

1.
4

(4
.2

)
0.

6
(4

.5
)

P
5

0.
98

2
(0

.0
14

)
0.

82
1

(0
.2

54
)

-7
1.

9
(4

3.
4)

-1
.0

(3
.8

)
2.

0
(2

.6
)

1.
1

(3
.1

)
0.

9
(4

.6
)

E
D

F
N

-D
(d

ep
th

-r
efi

ne
d)

P
1

0.
99

6
(0

.0
04

)
0.

94
5

(0
.0

74
)

0.
0

(0
.0

)
0.

0
(0

.0
)

2.
6

(3
.3

)
0.

1
(4

.3
)

0.
0

(0
.0

)
P

2
0.

99
4

(0
.0

10
)

0.
90

8
(0

.1
32

)
-2

2.
8

(1
7.

5)
0.

3
(8

.7
)

1.
9

(3
.0

)
0.

0
(3

.6
)

0.
1

(3
.3

)
P

3
0.

99
2

(0
.0

13
)

0.
82

4
(0

.1
62

)
-3

0.
6

(1
7.

5)
1.

4
(6

.3
)

2.
3

(3
.5

)
-0

.5
(4

.1
)

0.
7

(4
.2

)
P

4
0.

98
7

(0
.0

18
)

0.
64

0
(0

.2
75

)
-2

5.
2

(2
0.

1)
2.

8
(6

.6
)

2.
9

(3
.8

)
-1

.7
(4

.5
)

1.
8

(4
.4

)
P

5
0.

98
6

(0
.0

16
)

0.
15

7
(0

.2
62

)
-3

.9
(1

6.
2)

2.
3

(3
.5

)
1.

7
(2

.2
)

-1
.5

(2
.4

)
1.

6
(4

.0
)

V
al

ue
s

ar
e

(m
ea

n
±

SD
)

G
SA

:G
lo

ba
ls

eg
m

en
ta

tio
n

ac
cu

ra
cy

,F
SA

:F
oo

d
se

gm
en

ta
tio

n
ac

cu
ra

cy
,

IO
U

:
in

te
rs

ec
tio

n
ov

er
un

io
n,

M
A

E
:

M
ea

n
ab

so
lu

te
er

ro
r,

M
E

B
:

M
ea

n
er

ro
r

bi
as

,
V

IE
:

Vo
lu

m
e

in
ta

ke
er

ro
r.

58



Percent Intake Error (2D and 3D) Regarding 2D percent intake error (i.e., using segmentation
alone), our non-depth-refined and depth-refined proposed systems were outperformed by the
depth-refined graph cut implementation (EDFN2D: -23.4% ± 21.2, EDFN-D2D: -16.5% ± 17.6,
GC2D: -6.8% ± 13.5, GC-D2D: -5.3% ± 12.7). These negative values, which were improved with
depth-refinement, imply a bias towards under-segmenting an image. Refer to the Discussion for
clinical implications of this bias towards under-segmentation. Regarding the 3D percent intake
error, the graph cut implementations outperformed our proposed system (EDFN3D: -9.1% ± 8.8,
EDFN-D3D: -9.0% ± 8.9, GC3D: 0.4% ± 1.3, GC-D3D: 0.4% ± 1.3).

Volume Estimation Accuracy Regarding the volume error (mL) on the regular texture dataset,
while initially it appeared depth-refinement worsened performance across methods (EDFN: -
14.7 mL ± 50.0, EDFN-D: -17.2 mL ± 50.3, GC: 0.0 mL ± 7.1, GC-D: -1.8 mL ± 6.9), the
plate-level absolute volume error was improved with depth refinement and variance was much
smaller (e.g., EDFN-D volume intake error -130.2 mL ± 154.8; EDFN-D mean absolute error
18.0 mL ± 50.0). However, intake error from volume was high and both our proposed system
and graph cut implementations (EDFN: -129.2 mL ± 154.3, EDFN-D: -130.2 mL ± 154.8, GC:
1.8 mL ± 6.6, GC-D: 0.2 mL ± 6.5). Corroborated by the negative mean error bias for EDFN
and EDFN-D, we empirically attribute this wide variance and high intake error paired with low
plate-level absolute volume error to salad. As intake error is calculated with a plate relative to
the full portion, variability in a food’s appearance could be high leading to high intake error, with
accurate absolute volume. Salad, as part of the lunch plates had low-density with widely varying
degrees of air pockets between leaves of lettuce at each plating. Depending on how “fluffy” the
salad was put into position, it could take on differing volumes. This is discussed in detail later.

4.1.3.2 Modified Texture Foods

Food Segmentation Accuracy
Regarding the modified texture foods dataset, food segmentation accuracy was high for our pro-
posed system, however depth-refinement reduced the accuracy based on classical segmentation
accuracy calculations (EDFN: 0.922 ± 0.165, EDFN-D: 0.697 ± 0.348). In both cases how-
ever, our proposed system outperformed the graph cut analogs (GC: 0.834 ± 0.157, GC-D:
0.656 ± 0.328. Depth-refinement brings the context of volume, whereas the initial ground-truth
hand segmentation used for comparison was based solely on visual appearance of food on the
plate. Modified texture foods by nature tend to spread out more due to increased fluidity and as
such, are at greater risk for the visual-volume discordance.

Segmentation Agreement (IOU)
Compared to the regular texture food dataset, segmentation agreement (IOU) was adequate (over
0.80) and relatively unaffected by depth-refinement. Our proposed system was slightly outper-
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formed by the graph cut implementation on IOU, with the graph cut variance smaller in non-
depth-refined segmentation (EDFN: 0.846 ± 0.114, GC: 0.898 ± 0.082). Our proposed method
was comparable to graph cut for the depth-refined counterparts (EDFN-D: 0.819 ± 0.166, GC-D:
0.819 ± 0.165).

Percent Intake Error (2D and 3D)

Regarding the 2D percent error of intake, non-depth-refined implementations had unacceptably
high percent error of intakes (EDFN2D: -44.0% ± 38.6, GC2D: -27.4% ± 25.5) with unacceptably
wide variances still present in depth-refined implementations (EDFN-D2D: -16.5% ± 20.0, GC-
D2D: -14.5% ± 18.1). This provides additional evidence to support the need to rectify the visual-
volume discordance, especially in modified texture foods where visually salient food remnants
are more likely to remain on the plate after consumption. For 3D percent error intake, depth-
refinement had a minimal impact on percent intake error for all implementations which already
yielded very low error in estimating volume intake error (EDFN3D: -0.8% ± 5.2, EDFN-D3D:
1.4% ± 5.9, GC3D: 0.7% ± 3.1, GC-D3D: 2.1% ± 4.6). Again, negative intake implications are
addressed in the discussion.

Figure 4.4(a) depicts these visual-volume discordance errors and illustrates how depth-refinement
(black lines) both reduced the variance of the percent intake errors as well as reduced the relative
intake error compared to the non-depth-refined counterparts (red) and using P1 as the reference
“full-portion”. Across methods, error tended to increase as the remaining portion size diminished
except for EDFN-D (2D) with error peaking at the third portion and receding across portions P4
and P5. We attribute this trend to depth-refinement compensating for higher degrees of visual-
volume discordance on plates more likely to have smearing (i.e., plates with less on the plate
relative to the initial portion size). This highlights why visual representation context of where
food resides is inadequate and how additional depth context pertinent to how much food is present
is required particularly for modified texture foods.

Volume Estimation Accuracy Across Portion Sizes

Typically, volume errors, as well as volume intake errors, were low (less than 4.0 mL) across
EDFN and GC implementations as shown in Table 4.3. To supplement this using our proposed
EDFN and EDFN-D, Figure 4.4(b) shows volume accuracy across each of the 5 portions (P1-
P5) relative to the volume across the ground-truth hand segmented food regions. While our
EDFN-D implementation was more accurate, it had similar precision to EDFN. A similar trend
in reduced error in mL across smaller portions was observed for both EDFN and EDFN-D albeit
with EDFN-D error shifted downwards. With EDFN-D, the three smallest portions (P3, P4, P5)
had negative values indicating the depth-refinement omitted depth values across additional pixels
relative to the initial segmentation and yielded a slight under-segmentation of food.
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4.1.4 Discussion
Our proposed fully automatic system imparts a reduced processing burden compared to semi-
automatic segmentation. Using graph cut as our “applied ground-truth”, task completion time
represents an additional point for consideration, and our automated approach provides a key
advantage in the food and nutrition tracking context. Empirically, user-defined seed initializa-
tion for graph cut implementation incurred approximately 5 seconds of manual annotation time
per image. Assuming 192 residents across 6 neighbourhoods (units) in LTC, this implies 48
additional minutes during a meal-service simply to annotate the images. The average time for
charting residents’ food intake for a day is already at least 270 minutes [180], which implies that
annotation could impart an 18% time increase to complete food intake charting. This approach is
infeasible and prohibitive within this context. Instead, compared to the graph cut method which
tended to under-segment food, our proposed automatic segmentation method requires minimal
additional time commitment from the user enhancing its potential for uptake in the field.

Segmentation errors (under- or over-segmentation) have clinical significance for identification of
inadequate intake before low intake progresses to eventual malnutrition. Estimated intake could
be incorrect due to either under-estimating food consumption (i.e., less food reported than actu-
ally consumed) or over-estimating food consumption (i.e., more food reported than actually con-
sumed). Over-segmenting food areas (i.e., under-estimating intake) implies the predicted food
area is over-estimated and translates to reporting that there is more food present (less food intake)
than what is true. Conversely, under-segmenting food areas (i.e., over-estimating intake) implies
the predicted food area is under-estimated and translates to reporting there is less food present
(more food intake) than there is. Over-segmentation (under-estimating food consumption) may
be the lesser of two evils for the majority of LTC residents; if food intake is better than what is
reported, residents at-risk for malnutrition may be less likely to be missed. Clinically, residents
receiving modified texture foods consume significantly fewer calories, have higher cognitive im-
pairment, and require more assistance with activities of daily living than residents on regular
texture diets [123] making these even higher-risk residents. However, under-segmentation (over-
estimating food consumption), increases risk of missing residents with nutrient inadequacies
through introducing false negatives and potentially missing residents with poor food intake that
could result in malnutrition. While under-reporting may lead to increased referrals for malnu-
trition screening, most at-risk residents who eat very little would still be identified which might
help to identify residents who could benefit from a dietary intervention.

It appears segmentation alone is inadequate and there is a need for context from volume. We
observed that under-segmentation was an issue mostly with 2D % volume intake across im-
plementations and datasets. We evaluated 2D % volume intake for consistency with existing
methods, however, the system’s 3D intake estimation is preferred whenever possible. Addition-
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ally, returning to Figure 4.4, this plot showcases the need for methods beyond segmentation for
food intake tracking. While we observed a decrease in 2D % intake error with depth-refinement
across the remaining plate portions, errors for P2, P3, and P4 were more than 20%. A system
based on segmentation methods alone may be accurate when very little food is consumed or
nearly all the food is consumed. Certainly, there is value in improved accuracy for these edge-
cases [177]. However, were we to rely on a system without-depth refinement, this degree of
error may be deemed inappropriately high and be a barrier to uptake. Depth-refined volume esti-
mations yielded additional improvement in 3D percent error intake and may provide a palatable
alternative within an acceptable error margin of less than 10% (where current practice is up to
62% error [39]; 50% for portion size [23]) with the added benefit of more fine-grained assessment
(continuous measurement vs. 25% incremental bins). While we also observed negative values
for volume intake error for our proposed system, EDFN-D, this error was largely due to salad.
It appeared GC seemed to understand the visual representation of salad better than our proposed
method. We suspect this could be improved with additional instances of salad included in the
training and validation set, which we include in Section 4.2. Green vegetables were generally
under-represented in UNIMIB2016 and provides an opportunity area for additional comprehen-
sive food intake tracking databases. Whereas the volume intake error for regular texture foods
was on the order of 130 mL, the modified texture foods circumvented the low-density foods
problem with volume intake error of 0.8 mL. Arguably, accuracy on these modified texture foods
is more clinically relevant for at-risk residents. Additionally, building in some depth redundancy
may better approximate a human assessor and improve initial acceptability.

Perhaps more pertinent to uptake of the system and recurring use of the system is how the com-
puter “sees” food on a plate and how this compares to the human experience for supporting trust
in the automated system. For example, from the human assessor perspective, a plate containing
sauce remnants would be ignored and treated as completely consumed food while the computer
vision approach would observe each of the pixels containing sauce remnants and mark it as still
containing food as in the case of Figure 4.3. This may lead to distrust in the system because the
system makes decisions differently and in opposition to how a human assessor would classify
the presence of food. Borrowing from clinicians’ perceptions of artificial intelligence tools, the
alignment between the system output and what would be expected from a human’s interpretation
is essential for continued use [225]. By incorporating depth-refinement, even though the IOU for
modified texture foods decreased, it brings the assessment closer to how a human would interpret
a plate with the added benefits of greater precision and objectivity. This area has been largely un-
explored because, with one exception (UNIMIB2015 [49]), available food datasets only include
full plates as shown in Table 2.1. For measuring food intake, additional application appropriate
metrics such as intake error and volume estimation accuracy must be considered since assessing
system performance solely from a segmentation accuracy perspective can be misleading.
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Albeit challenges with low-density foods, out system attained substantially higher accuracy than
current LTC methods. As aforementioned, current LTC home food intake accuracy shows correct
estimation of intake occurring as low as 38% of the time [39] and when portion size is mis-
estimated, has error up to 50% [23]. Part of the issue, in practice, may be that the granularity
of these estimates is also wide since estimates are recorded as 25% incremental food intake
bins [158, 30]. This may introduce further subjectivity between assessors. Hypothetically, one
human assessor may estimate a plate to be 30% eaten so a value of 25% would be recorded;
another assessor may estimate intake at 45% reflecting a record of 50% consumed. With depth-
refinement, our proposed EDFN-D removes this subjectivity, operates on a continuous scale, and
has a mean 3D % intake of estimation error of -4.2% across both datasets and a mean volume
intake error of 0.8 mL on the modified texture foods dataset.
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4.2 Inferring Nutritional Intake

Section Summary

This section concludes the AFINI-T system saga. It de-
scribes how I continued applying computer vision, ma-
chine learning, and prior knowledge of menus for identi-
fying which foods are present (i.e., classification) and fi-
nally how the accuracy of simulated nutrient-level intake
estimates using our EDFN-D segmentation method com-
pared against the ground truth weighed food records.

Key take-aways:
• Mean classification accuracy by meal: 88.9% .
• Mean absolute error food volume: 3.8±8.8 mL.
• Mean bulk 3D % absolute intake error: 9.9±9.7.
• For 13 nutrients of interest intake estimation relative

to weighed food records:
– High correlation: r2 = 0.96±0.02.
– High similarity (low bias): σmax= -2.7 kcal.

• Future work should address low-density foods (e.g.,
salad, stacked toast) which account for a high degree
of variance.

While initial results on
three regular texture foods
demonstrated a high cor-
relation and strong agree-
ment between simulated
intake from ground truth
hand segmentation and
weighed food (r ≤0.97,
σ < 20), it assumed each
food item was hand seg-
mented and hand-labelled
(not published). Given
LTC’s extreme time pres-
sures, to minimise po-
tential barriers to up-
take a level of auto-
mated segmentation (pre-
vious section) and classi-
fication is required. How-
ever, the challenge with
even the most success-
ful of generic classifica-
tion methods is they fail
to reach 100% accuracy
which may limit their utility in practice especially if classification does not include assessment
of food (or nutrient) intake accuracy. Within nutrition tracking in long-term care, this can have
very real consequences. If mayonnaise gets misclassified as low-fat greek yogurt for example,
the nutritional composition recorded may be drastically affected and limit trustworthiness of the
system. When considering the necessity for accurate nutrition tracking, we therefore need a solu-
tion that performs reasonably well and acknowledge some degree of human assessor intervention
may be required if error-margins are inappropriately high. Human-in-the-loop may be essential,
but we can limit the extent to which it is needed by:

• Incorporating a priori information about when to expect which foods (e.g., LTC menu).

• Leveraging prescribed diet for further refinement.

For example, Mrs. Brown takes her chicken minced. Let’s use today’s minced lunch classifier.
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This work builds on the first section of this chapter of leveraging a specialized food-segmentation
method powered by deep learning for automated segmentation and moves from bulk food seg-
mentation to nutritional estimation with a few additional steps which we modularized for system-
atic assessment of error through our system. Here, we focus on the characterization of changes in
volume on a whole plate level for bulk intake estimation reporting degree of consumption (i.e.,
proportion of food consumed) as well as simulated nutritional intake estimation using a nutri-
tional look-up table at the food-item and whole plate level. “Simulated” because the datasets
collected were mock-ups of plates of leftovers not true leftover plates. When considering the
application realities and needs surrounding use in LTC and specifically how classification might
be applied, an additional point for consideration is limited computational resources. To meet the
needs of this environment, we require:

(a) A salient feature extractor that can be trained in advance and supports real-time use.

(b) A classification method that is light-weight for mobile application use.

(c) A daily, easily updatable classifier to account for a priori menu plans.

With these needs steering development, the purpose of this study is to explore nutritional com-
position estimation using an integrated RGB-D camera for image acquisition and to quantify the
error of computing nutritional intake from relative changes in volume as compared to ground
truth nutritional intake from gold standard weighed-food records. This system measures food in-
take, addresses automatic segmentation with integrated RGB-D assessments, and considers both
regular and modified texture foods.

4.2.1 Methods
4.2.1.1 Climate and Context: Motivation from a Case Study

Insights motivating our technical approach here were gathered through interviews and workshop
discussion from previously unreported results from the user study outlined in Chapters 3, and 5.
Participants identified potential barriers to uptake including time, and whether the level of detail
is desired or seen as valuable. Additional insights are provided from two interviews (a registered
dietitian (RD) nutrition research expert, an RD working in LTC), and discussion with experts
during a workshop. The workshop included 21 participants representing 12 LTC and retirement
homes who were recruited through self-enrollment (for a list of roles, refer to Section 3.2.1).

Focus areas

Regarding the interviews, ultimately it was clear that the dietitian needs to be the gate-keeper to
ensure any changes to nutritional management is holistically assessed and surface-level issues
are not being masked as may be the case if dietary aides were to be automatically directed to
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suggest or encourage eating alternative foods. More specifically, the interview with the LTC RD
conveyed that, in Ontario, dietitians get one half-hour block per resident each month. This isn’t
much time. The ablity to streamline the workload by automating manual tasks (e.g., manual
calculations of individualised targets) may help to offset the time required and allow the RD to
assess resident nutritional status more deeply. This RD saw the most potential for this technology
to help make more appropriate referrals and to decrease the data overload of multiple, unranked
referrals. They indicated that more accurate intake tracking would help especially considering
there is no current discrimination between which foods were consumed. For example, if 25% of
the main dish was consumed, there is no way to know if it was the protein or the vegetable; it
assumes an even distribution across the foods offered on the plate. For this reason, our system
must provide more precise information pertaining to the types of foods consumed, and track at
a lower level (nutrient level) so key nutrients with clinical endpoints can be better monitored.
This RD identified the following clinical endpoints: falls (calcium, vitamin D, protein), new
or worsening pressure ulcers (protein), constipation (fibre, fluids), and weight loss (calories,
protein). Similarly, zinc, vitamin K, and vitamin B6 are often poorly consumed in this population
with clinical relevance pertaining to cognition, wound healing and immunity [103, 197, 123].

We took the union of nutrients of interest identified here along with the nutrients of interest iden-
tified through the design process (calories, carbohydrates, protein, fats, calcium, iron, sodium
and vitamin C). This resulted in a final set of 13 nutrients of interest. Macronutrients: calo-
ries, carbohydrates, fats, fibre, and protein. Micronutrients: calcium, iron, sodium, vitamin B6,
vitamin C, vitamin D, vitamin K, and zinc.

The interview with the RD nutrition research expert indicated that currently food intake is tracked
by team members walking around the dining room implying any sort of food imaging will impart
an increased time. Furthermore, in LTC the emphasis is more on quality of life and honouring
resident preferences, additionally corroborated during the quarterly registered dietitian meeting.
Typically, even menu planning is conducted at the macronutrient level, so this type of system has
potential to meet resistance regardless of the analytical power without some form of incentivi-
sation. Based on workshop discussion including perspectives of dietary aides, recreation staff,
and directors and assistant directors of food services, they expressed the desire to more precisely
record food and fluid intake to inform individual interventions and menu-planning more broadly.
It seems there is a strong desire to provide enhanced care and make better use of tracking infor-
mation than what is mandated, but that barrier to do so is the inaccuracy of the current system.
This suggests, knowing more “useful” data could be collected may provide incentives inherently.

Real-time use

Regarding practicalities of real-time use, insight from the workshop motivated this work. One
main emerging theme was the very clear need for the system needs to work even when internet

67



is down. They need to log into the system to track. If it was down, then currently they could
not log anything forcing retrospective charting in these situations. There was much enthusiasm
for compatibility offline and would prefer the option to save offline with the ability to sync when
able both for when the internet is down or to support dining field trips to outside restaurants.
For more than just privacy concerns and considerations, this further corroborates the need for an
on-board system. This applies both to the computational requirements of the system as well as
how classification models are updated.

Informed Design Requirements

Nutrients of concern: 13 nutrients of concern were
identified based on clinical endpoints and expert
user feedback. Macronutrients: calories, carbo-
hydrates, fats, fibre, and protein. Micronutrients:
calcium, iron, sodium, vitamin B6, vitamin C,
vitamin D, vitamin K, and zinc.

Dietitian’s role: The system must record accurate
information which can then be leveraged by the
dietitian to prioritize referrals and more easily
manage nutritional interventions as well as the
complex considerations for what level of informa-
tion to be provided to which level of care (e.g.,
dietary aide versus dietitian). The dietitian must be
the gatekeeper.

Real-time use: An on-board system without
constant internet access dependency is needed and
informs how classification models are trained and
updated.

Simplifying classification: We leverage meal time
and prescribed diet texture for constraining the clas-
sification problem.

Leveraging a priori information

Regarding the use of a priori menu-plan in-
formation, in this way, we are able to sim-
plify the classification problem by apply-
ing real-world constraints. At a given time
of day, certain foods are more likely to be
served. To start, we can limit to the set of
menu item options. One foreseen challenge
with the modified texture foods is discrim-
ination between the same food at different
levels of modification. While they are the
same foods, they are prepared differently
(e.g., broth is added to purées) making it
important to properly discriminate between
sub-categories of the same food. Here, we
make use of the additional prior of which
level of texture is prescribed to each res-
ident. As we know the AFINI-T system
needs to be linked in with the current elec-
tronic health record software (e.g., through
PointClickCare), access to this information
would be feasible.

4.2.1.2 Experimental Procedure

As described previously, data were collected in an industrial research kitchen at the Schlegel-
University of Waterloo Research Institute for Aging’s Centre of Excellence for Innovation in
Aging. This kitchen was modeled after industrial research kitchens found in LTC homes. An
optical imaging cage was constructed that enabled top-down image capture (see Figure 4.5). The

68



(a) Physical imaging set-up from above. (b) Physical imaging set-up from side.

Figure 4.5: Physical set-up of imaging and weigh stations.

camera was connected to a computer for data acquisition and plates were weighed at an adjacent
weigh station.

4.2.1.3 Regular and Modified Texture Food Datasets

We used our regular texture foods dataset and our modified texture foods dataset. Table 4.4
provides an overview of dataset characteristics and a summary of all food items imaged can be
found in Table 4.5. For each food item, one full serving was defined by the nutritional label
portion size (regular texture dataset) or the recipe-defined portion size received from the kitchen,
was weighed to the nearest 1 gram using an Ohaus Valor Scale.

For the regular texture foods dataset, where a serving size was referenced using volume, that
volume of food (e.g., corn) was weighed and the mass was used thereafter. Nutritional infor-
mation for each food item was supplied by the manufacturer except for meatloaf and mashed
potatoes. Here, the nutritional information supplied by the manufacturer was combined for both
food items and not on the individual food item level so nutritional information was approximated
using USDA’s food database. Since manufacturers supply nutritional information for minerals
as percent daily value (assuming a 2000 calorie diet), for the wholefoods dataset, minerals were
reported similarly. For consistency mass in grams was used to define all serving sizes.

For the modified texture foods dataset here, we expanded our MTF dataset with additional exam-
ples (without recipes) for further segmentation and volume estimation analysis. The nutritional
analysis was conducted on the subset of the 314 images. To approximate a true food consump-
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Table 4.4: Overview of dataset characteristics. The regular texture food dataset (RTF) was
comprised of 3 “meal” plates each consisting of 3 foods imaged at every permutation of 25%
simulated intake. The modified texture food dataset (MTF) set consisted of 134 food samples
representing 47 foods each consisting of a set of at least one purée and one minced texture food.
Each sample was imaged 5 times by progressively removing food with the exception of 6 sam-
ples consisting of 4 each with one lost image.

Dataset overview RTF MTF Total
# images 375 664 1039
# samples 3 134 137
# classes 9 93 102
# foods represented 9 47 56
# foods with recipes 9 27 36

tion more closely, the modified texture food dataset was less stringently controlled in terms of
portion size. The portion size was defined as the amount recorded on the LTC kitchen’s recipes
(defined in millilitres). Since nutritional information were provided according to a volumetric
serving size, we needed to convert from mass to volume for using weighed food for nutrient
intake validation to define the expected mass of a full portion in millilitres. To accomplish this,
we calculated the food’s density to convert by using the full plate’s “true volume” (in mL) with
its mass (in grams). This enabled us to scale nutritional information using the same pipeline as
the regular texture foods dataset for validating our findings using mass; it was not required for
the system to operate.

4.2.1.4 Training Dataset

To train our convolutional autoencoder, we again used the UNIMIB2016 dataset. However,
we were aware of key limitations that green foods were underrepresented which affected the
autoencoder’s ability to differentiate between all colours and textures. Noting the scarcity of
green foods in the original dataset, we augmented the training dataset by adding in 91 examples of
lettuce, 91 examples of peas, and 89 examples of spinach from the FoodX-251 food dataset [117].
We refer to this as the UNIMIB+ dataset. Figure 4.6 shows the effect of this under-representation
of green through an orange-ish hue across the autoencoder’s decoder output trained solely on the
UNIMIB2016 dataset for validation examples. The autoencoder was able to converge to a lower
validation loss on the UNIMIB+ dataset. Empirically, this resulted in greens appearing greener,
reds appearing redder, yellows and whites appearing less murky as well in bottom UNIMIB+
example compared to the UNIMIB2016 in Figure 4.6. This suggests the addition of the green
samples enabled the autoencoder to learn good representations and encode features more deeply
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and were aligned more closely with how a human would perceive the foods - a crucial point for
our LTC application.

4.2.1.5 Computational Methods

The following describes how our segmentation strategy was refined compared to Section 4.1, our
general classification approach, followed by system automation through the use of a convolu-
tional autoencoder.

Refined segmentation strategy

To enhance our EDFN-D beyond Section 4.1, here we incorporated more representation of green
in the UNIMIB+ dataset for training and validation, and introduced a more optimal stop-criteria
for training for segmentation for supporting more salient feature extraction. To summarize, an
integrated imaging system was developed that employed three main steps to yield food intake
volume estimates:

1. RGB information was used for automatic segmentation using a refined version of our
EDFN-D. Compared to section 4.1, for this iteration, we incorporated more representa-
tion of green in the UNIMIB+ dataset for training and validation, and introduced a more
optimal stop-criteria for training.

2. Segmentation was mapped onto depth information and converted from arbitrary depth units
to cm3 for volume estimation, and comparisons of volumes were made to infer volume of
food ingested from the relative difference to the full serving reference portion (Section 4.1)

3. Volume consumed was mapped onto nutritional information for intake approximation.
These nutrient level intake estimates were then validated against the ground truth nutri-
tional information by mass in Section 4.2.1.6.

General classification approach

Here we use the UNIMIB+ data and splice off the autoencoder at the feature map as a latent
feature extractor for classification (see Figure 4.7 for a system diagram and network architec-
ture). As we will see in Chapter 6, we have previously taken a similar approach to classification
on an similar task for predicting relative nutritional density of a dilution series of commercially
prepared purées [181]. There we trained a global autoencoder across flavours and fine-tuned
the model for flavour-specific modules and compared against hand-crafted features (64 colour;
7 texture) and the learned features. Given the similarity between this dilution series and mod-
ified texture foods which comprise 64% (664/1039) of our testing dataset and 47% of the LTC
population receives modified texture foods [234]), taking a similar approach seems appropriate.
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Automation with a convolutional autoencoder

For brevity, we report nutrient intake accuracy using the automated system (i.e., the automated
classification case). A human-in-the-loop version where there is the opportunity to correct all
misclassified regions (i.e., the best-case scenario) may improve results beyond what is reported
here. By incorporating an initial pass of automation, the goal is to reduce the degree of interven-
tion required by the user. For this automated approach, we leveraged a convolutional autoencoder
for classification of foods which was roughly inspired by a highly successful convolutional neural
network (CNN), the VGG network [213]. For a given meal or time of day, we fed the “masked”
output from our EDFN-D (food/no-food detector) into our convolutional autoencoder. CNNs
encode spatial information and given how food has differing degrees of cohesion, we felt the
context of spatial information would be an asset. We chose a convolutional autoencoder ap-
proach because while we have fully labelled data for these datasets, in practice, this may be
infeasible to collect - it will be far more likely that we have a large proportion of unlabelled
data. Autoencoders can extract meaningful, generalizable features because their framework was
built for compression, which tries to preserve as much information as possible to reconstruct
the original input in an efficient manner. They’re comprised of an encoder which learns the key
features in a compressed way, and a decoder, to get back the estimated signal and compare the
output to the input based on a cost function; as a result, they do not require labelled training
data. It also provides an advantage in interpretability because you can visualise the reconstruc-
tion and observe its behaviour as a sanity-check. As we saw in Section 4.6, this characteristic
can be incredibly valuable for understanding inherent bias of training datasets. The “convolu-
tion” refers to learning where certain features exist over an image. A good analogy is using a
blacklight flashlight at a crime scene to see blood. In this analogy the convolution is the shining
flashlight across the scene and where blood illuminates, is the activation map for the learned
blood-detector. In our case, the autoencoder learns what type of flashlight to use (i.e., a learned
kernel) to see specific features which likely encodes some form of colour and texture informa-
tion but are not easily intuitable. We trained an autoencoder to be a feature extractor using the
UNIMIB+ dataset. The data were augmented by generating 300 images from the full set of plates
and applying random flips, rotations, and increased or decreased contrast. We used one reference
image (the full-portion image) to learn what each class looked like and then mapped subsequent
instances onto these pre-labelled classes by grouping all the “full plates” of food for a given meal
into the training set. We used a 70%:30% train to validation split of augmented data. We built
a different classifier for each meal (described in more detail below); the idea is given the vast
number of options, constrain the classification problem to each meal for fewer possible options.
Given that there are many options and as new meals are planned, we will need something easily
updateable given the realities of multiple food choices each day. This is an advantage of using
our approach as only one labelled example is required. Using this method, our system requires
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one full reference portion to which we can compare leftover plates to classify foods and infer
intake. For nutritional intake estimation, we leveraged nutritional info per portion based on the
Schlegel Villages menu planning software (or supplied by the manufacturer in the regular texture
dataset) to link up proportional nutrient intake with the portion of food under the assumption that
recipes were followed exactly.

More specifically, our autoencoder takes our input image which has three channels (R,G,B) and
reduces to activations for each of 16 learned features as a global feature extractor. To go from
the natural image output from the decoder to a feature extractor, we strip off the final layer which
would output the decoded image (a lower resolution image similar to the input image) and take
the output right after the 1x1x3 convolution (1x1 convolution across the 16-dimensional latent
feature map, producing an RGB image) occurs to get activation maps of the learned features
across each of the three channels. These learned feature activation maps are used to discriminate
between foods using the reference full portion reference plates to fine-tune the network on a meal-
by-meal basis. Learned weights are frozen from the global feature extractor and the final 1x1
(per-pixel) convolution layer is fine-tuned to map features to specific food classes for each meal.
For example, in the full plate, the autoencoder learns n kernels that combine the features at each
pixel into the target class. Then, for a new image, it goes to each pixel and applies the n kernels
and says, "which one generated the strongest response?" and chooses that label for that pixel.
We apply ground truth labels to the full portion plate so we can link up the proper proportional
intake at the nutrient level and assess accuracy of the intake estimates including how this image-
based system compares to the gold-standard weighed food approach. These classes could be
left general for bulk intake estimates that are class-agnostic and would require no user input, it
would assume equal consumption across a plate, similar (but less subjective) to what is currently
being tracked in LTC. For example, lunch today contained 6 classes and this food blob belongs
to class 2. While the network doesn’t know which food comprises class 2, it knows they ate 79%
of the plate that was served to them. Here, we instead chose to incorporate an additional level of
detail (i.e., class 1 is “meatloaf”) for more accurate nutrient intake assessment to create a system
which allows for flexibility in the level of detail it provides. For example, there may be times
when bulk intake estimates are preferred for their increased efficiency, while at others, dietitians
would prefer a more fine-grained approach for a subset of at-risk referred residents. In this case
our automated approach (with possible human-in-the-loop refinement) provides a automated (or
semi-automated) alternative to support food-item specific intake without the assumption that
foods are equally consumed.

4.2.1.6 Nutrient Intake Association

This step was comprised of three general stages: (1) determine the relative consumption of each
food item compared to a full reference portion using food volume estimation from the depth
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maps, (2) compare relative consumption to nutritional information to infer nutritional intake
for each item, and (3) sum the inferred nutritional intake for each item across a plate for an
estimation of total nutrition consumed during a meal (for the modified texture foods, this was
across the plate of one food item). More specifically,

1. Use relative changes in volume to estimate food intake: The 0% eaten portion for each
food item was considered as the full portion. Each subsequent portion (i.e., 25%, 50%,
75%, 100% consumed, or portions 2, 3, 4, 5 for the MDF dataset) for each food item was
compared against the initial full portion to yield a relative volume change representing
the intake of that specific food item. The relative change in volume was compared to the
ground-truth relative change in mass for each food item.

2. Use food intake to estimate nutrient intake for each food item: The nutritional informa-
tion for one serving was used as the reference full portion for each of the priority nutrients:
calories, carbohydrates, fats, fibre, protein, calcium, iron, sodium, vitamin B6, vitamin C,
vitamin D, vitamin K, and zinc. Given the proportion of consumed food for each food
item, the nutritional information was scaled accordingly to estimate intake for each of the
priority nutrients at the food item level.

3. Use food intake to estimate overall nutrient intake: Finally, the total nutrient intake
consumed during the meal was estimated by summing the nutrient intake across all food
items for each plate.

4.2.1.7 Statistical Analyses

System accuracy

Segmentation accuracy was assessed using intersection over union as described in Section 4.1.2.6.
Classification accuracy was described using top-1 accuracy and is summarized with per-meal
classifiers. Bulk intake accuracy (i.e., class-agnostic, overall food volume intake) was assessed
using mean absolute error (mL) and 3D% intake error also described in Section 4.1.2.6 where in-
take error was calculated for volume (3D) data relative to the full portion. All values are reported
as mean ± SD. Nutrient intake accuracy was assessed using the fully automated classification
approach (i.e., without updating misclassified regions) to evaluate nutrition intake accuracy and
is reported as mean ± SD as well as % error.

Validating nutrient intake estimation against weighed-food records

All data were analyzed using Matlab version 2020b software. Linear regression was used to
determine the goodness of fit through the degree of correlation with r

2 to summarize the extent to
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Table 4.6: Converting the regular texture dataset % daily values into absolute value to match the
modified texture dataset. The Recommended Dietary Allowance (RDA) or Adequate Intake (AI)
was used for individuals over 70 years of age and an average across the two sexes was assumed
to represent 100% daily values.

RDA/AI for > 70 Years
Input Units Males Females Assumed 100% Daily Value Output Units
Fat (g) n/a n/a n/a g
Carbohydrates (g) n/a n/a n/a g
Fibre (g) n/a n/a n/a g
Protein (g) n/a n/a n/a g
Calcium% 1200 mg 1200 mg 1200 mg mg
Iron% 8 mg 8 mg 8 mg mg
Sodium (mg) n/a n/a n/a mg
Vitamin B6% 1.7 mg 1.5 mg 1.6 mg mg
Vitamin C% 90 mg 75 mg 82.5 mg mg
Vitamin D (IU) ns ns ns IU
Vitamin K (mcg) ns ns ns mcg
Zinc (%) 11 mg 8 mg 9.5 mg mg
Where: g: grams, mg: milligrams, IU: international units, mcg: micrograms. While the AI
is known for vitamins D and K, no foods in the regular texture foods dataset reported % daily
values and are thus marked as not specified (ns)

which nutritional intake information from weighed-food mass is related to estimated nutritional
information from food volume. The Bland-Altman method was used to describe the level of
agreement between nutritional intake info from weighed-food mass compared to intake volume
with mean agreement (σ) and bias (µ) between methods [79]).

Several nutrients of concern in the regular texture foods dataset were reported in % daily value
(i.e., calcium, iron, vitamin B6, vitamin C, and zinc). We converted these to absolute values
to match the modified texture foods dataset using the 2005 Health Canada reference values for
elements and vitamins. Where there was a difference across age, we used the >70 years old
reference; where there was a difference in requirement by sex, we took the average value.

4.2.2 Results
4.2.2.1 Segmentation Accuracy

Based on the output summarized in Table 4.7, segmentation accuracy was good with an average
IOU of 0.879 across datasets which was consistent with results in Table 4.2. Segmentation
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accuracy ranged from 0.823 on the modified texture dataset at lunch, to 0.944 on the regular
texture dataset for breakfast. From the perspective of IOU, the modified texture dataset was
more poorly segmented by the EDFN-D, however, as we saw in Section 4.1.3, the degree of
visual-volume discordance is higher and is discussed in Section 4.2.2.3.

4.2.2.2 Classification Accuracy

As shown in Table 4.7, classification accuracy was higher for the regular texture dataset with top-
1 ranging from 93.5% on breakfast and lunch to 95.1% on dinner. However, the regular texture
dataset had only three classes per meal, so it was a less challenging classification problem, es-
pecially when considering the modified texture dataset had less texture variance. In contrast, the
modified texture dataset ranged from 64.9% on Day 2 Dinner with 12 classes, to 89.0% on Day
1 Lunch with 15 classes. While these classification results are strong, there are still misclassifi-
cations of some segmented food regions which, as expected, may necessitate human-in-the-loop
for rectifying segmented region errors. These misclassifications tended to occur near the edges of
a food segment regardless of dataset which may be due to a less uniform representation near the
edges either due to higher crumbliness (e.g., meatloaf crumbs), or due to the convolutional kernel
extending into the "empty space" (i.e., the plate) making it easier to classify a pixel as food when
there are food pixels surrounding it. However, as we will see in Section 4.2.2.5, nutrient intake
estimation relative to ground truth weighed-food records indicate these errors in classification
of some regions do not appear translate to large intake errors and this fully automated classifi-
cation strategy may be deemed acceptable given the time-savings. Additional consideration for
technology translation is warranted.

4.2.2.3 Volume Estimation Accuracy

Similar to what we observed in the former part of this chapter, volume estimation was good with
food volume error of 2.5 ± 9.2 mL. However, this system continues to struggle with low-density
foods. Our system previously struggled with salad and continues to here with the largest food
volume error seen for RTD:L of -10.1 ± 22.2 mL. A similar issue of low-density foods is seen
through the 3D % absolute error intake of 14.4 ± 13.1 % which we suspect is due to the air
pocket below some of the pieces of toast which sit on a tangential angle to the plate, or when two
pieces are stacked with overhang as shown in Figure 4.8. This could be considered one of the
classic examples of the “occlusion conundrum” with the imaging limitation of collection from
an overhead view. This is an example of where segmentation could be done perfectly but would
translate to volume estimation errors.
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Table 4.7: Average segmentation and classification accuracies within and across datasets. There
were no samples for Day 5 Dinner. RTD: Regular texture foods dataset; MTD: Modified texture
foods dataset.

Dataset Segmentation accuracy Classification Accuracy

Meal # of classes
(# images) IOU Top-1

RTD: Breakfast 3 (125) 0.944 ± 0.019 93.5%
RTD: Lunch 3 (125) 0.919 ± 0.033 93.5%
RTD: Dinner 3 (125) 0.928 ± 0.019 95.1%
RTF subtotal 9 (375) 0.929 ± 0.027 93.9%

MTD: Day 1 - Lunch 15 (90) 0.841 ± 0.123 70.2%
MTD: Day 1 - Dinner 5 (25) 0.823 ± 0.099 89.0%
MTD: Day 2 - Lunch 12 (74) 0.863 ± 0.118 70.6%
MTD: Day 2 - Dinner 12 (91) 0.840 ± 0.122 64.9%
MTD: Day 3 - Lunch 10 (85) 0.834 ± 0.132 80.4%
MTD: Day 3 - Dinner 15 (109) 0.859 ± 0.100 70.4%
MTD: Day 4 - Lunch 9 (60) 0.871 ± 0.113 72.2%
MTD: Day 4 - Dinner 10 (90) 0.837 ± 0.107 67.8%
MTD: Day 5 - Lunch 5 (41) 0.881 ± 0.117 87.8%
MTD subtotal 93 (665) 0.849 ± 0.116 73.7%

TOTAL 104 (1040) 0.879 ± 0.101 88.9%
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Figure 4.8: The toast occlusion conundrum. Where two pieces of toast are stacked with an
overhang, the overhang is assumed to contain toast as a limitation to overhead imaging. Similarly,
since toast is rigid, if it is placed on an angle up the side of the plate, there’s a similar issue. This
is seen in the depth images where the brighter the pixel is the closer it is to the camera; brighter
pixels are foods of greater height. Toast is a rigid plane and in the first example, we see a gradient
from lower to higher near the tip with a similar, but less obvious trend in the third depth image.
The visual colour range was adjusted to exemplify the toast height.

4.2.2.4 Bulk Intake Accuracy

Table 4.8 summarizes the bulk intake accuracy within and across datasets. Compared to Sec-
tion 4.1, for this iteration, we incorporated more representation of green in the UNIMIB+ dataset
for training and validation, and introducing a more optimal stop-criteria for training for segmen-
tation. In Table 4.2, we saw the mean absolute volume error was 18.0±50.0 mL for RTFs and
2.3±3.2 mL for MTFs and mean volume intake error of 130.2±154.8 mL and 0.8±3.6 mL for
RTFs and MTFs, respectively. Here, our accuracy is higher with mean absolute food volume
error of 6.6±13.6 mL for RTFs, and 2.1±3.1 for MTFs. Similarly, the bulk intake accuracy is
higher with mean absolute intake error is greatly reduced for the RTFs with 39.9±39.9 mL but
slightly higher for MTFs 6.0±5.6 mL. The higher degree of visual-volume discordance for MTFs
compared to RTFs is again corroborated in Table 4.8 with the mean food volume error of 3.8 mL
± 8.8, and higher mean volume error on the RTF dataset (6.6±13.6 mL) than for the MTF dataset
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(2.1±3.1 mL).

4.2.2.5 Validating Nutrient Intake from Volume with Nutrient Intake from Mass

In Figure 4.9, the modified texture foods plates (blue) tended to be of lesser mass than the regular
texture foods (red) so we observe a clustering effect for the macronutrients. We also observe a
banding effect on fibre for the whole foods dataset due to how mass was controlled for matching
25% portion increments and given the relatively few foods that contained fibre in the regular
texture food dataset. There is also much higher variance for the modified texture dataset for
larger amounts of a nutrient (e.g., protein, fat, iron) with tighter variances observed on smaller
portion sizes.

Based on the coefficients of determination for all nutrients of interest, nutrient estimates by
volume are tightly linearly correlated with nutrient estimates from mass with r

2 values ranging
from 0.92 for fat to 0.99 for vitamins C, and K. Based on the Bland-Altman plots, not only
are they tightly correlated but there is also good agreement between methods as evidenced by
very little bias and zero contained within the limits of agreement. Ideally, the bias distributions
would be centred around the y-intercept (i.e., a µ of 0). This is typically the case with µ ranging
from a minimum of -0.01 for vitamin B6 (mg), zinc (mg), and fat (g), to a maximum of -2.7
for calories (kcal). This reflects the nutrient-level error having a degree of pixels misclassified
and may be further improved with human-in-the-loop refinement. Taken together, these results
suggest nutrient estimation using our AFINI-T system appears to be valid with the caveat that a
wider range of portion sizes would assist in clarifying robustness.

4.2.3 Discussion
4.2.3.1 Making sense of visual trends in Figure 4.9

There was a trend of the modified texture foods (blue) consistently appearing closer to the origin
at lower values both by volume and mass. This is was due to the size of the samples; for the
regular texture foods, the mass of these portions were greater than that of the modified texture
foods dataset. Some additional considerations to keep in mind are for the modified texture foods,
these were collected on a continuous scale, whereas for the regular texture foods, the mass was
strictly controlled to adhere to the 25% incremental bins. There was also a larger range in differ-
ent samples and foods represented in the modified texture food dataset compared to the regaular
texture foods. As a result, we see a banding pattern among the regular texture foods in fibre and
sodium which is an artefact of the data collection process. For the micronutrients, there was in-
complete data available for the regular texture food items since these were prepared by a grocery
store and a full nutritional breakdown is not mandated to be included on the nutritional label. I
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Figure 4.9: Correlation and agreement between mass and volume estimates for determining
nutritional intake at the whole plate level across all imaged samples. Left depicts the goodness
of fit with linear regression and coefficient of determination (r2), right depicts the degree of
agreement between measures and bias from the Bland-Altman method.

(a) Correlation and agreement between mass and volume estimates calories.

(b) Correlation and agreement between mass and volume estimates of carbohydrates.
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(c) Correlation and agreement between mass and volume estimates of fibre.

(d) Correlation and agreement between mass and volume estimates of protein.
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(e) Correlation and agreement between mass and volume estimates of fat.

(f) Correlation and agreement between mass and volume estimates of iron.
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(g) Correlation and agreement between mass and volume estimates of calcium.

(h) Correlation and agreement between mass and volume estimates of sodium.
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(i) Correlation and agreement between mass and volume estimates of zinc.

(j) Correlation and agreement between mass and volume estimates of vitamin B6.
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(k) Correlation and agreement between mass and volume estimates of vitamin C.

(l) Correlation and agreement between mass and volume estimates of vitamin D.
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(m) Correlation and agreement between mass and volume estimates of vitamin K.

suspect that with an increased dataset, much of the trends observed would be dampened as the
true distribution emerges, especially for higher mass samples.

4.2.3.2 Benchmarking the AFINI-T approach with current practice and requirements

With the end-to-end AFINI-T system in place, we can compare against the current workflow. One
requirement identified in Chapter 3, was for the system to run on an iPad. By design, method-
ology and models were selected to support portability. More specifically, for segmentation, the
EDFN network is 300 MB, and for classification the autoencoder is 1 MB with 0.5 MB for each
meal-specific classifier.

The second benchmark is with respect to theoretical task completion time. In terms of bench-
marking theoretical task completion time, we can compare to results from Chapter 3. When
assuming a very conservative estimate including food handling of 10 seconds per image for ac-
quisition (results from Chapter 3 did not include food handling time), the time for preprocessing
(e.g., plate finding) takes approximately 2.5 seconds per image, with segmentation taking 0.7
seconds per image and classification of 0.05 seconds per image. As shown in Table 4.12, even
based on these conservative estimates, the theoretical completion time using AFINI-T meets the
low end of task completion times (9 minutes 45 seconds vs a mode rating of 10-14 minutes of
completion time for charting one meal). Here, I’ve assumed separate imaging for each of the
appetizer, main and dessert for each resident. If instead we consider acquisition as only acquir-
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Table 4.12: Summary of length of time required to complete food and fluid intake charting
for one neighbourhood comprised of 16 residents (Stage 1) compared to theoretical AFINI-T
processing. * n is the number of responses with the mode rating out of N, the total number of
responses.

Type Mode Time
(n/N responses) Time Range AFINI-T Estimate

(1 sec acquisition)
AFINI-T Estimate
(10 sec acquisition)

Food (per meal) 10 - 14 mins (3/9) <10 to 25+ mins 2 min 34 sec 9 mins 45 sec
Fluid (per meal) 10-14 mins (4/10) <10 to 25 mins N/A N/A
Snack (per snack) <10 mins (5/9) <10 to 19 mins 52 sec 3 mins 15 sec

ing the image (estimated 1 second), this drops to 2 minutes 34 seconds. The true completion
time will likely take between these upper and lower bounds, but the key take-away is AFINI-T
is platformed to take less time than the current methodology, and with the added benefit of being
objective and capture data at a resident-centric level. Instead of a resident’s intake being binned
into the 25% bin across the average foods served that day, AFINI-T captures details to the mL,
and tracks personalized items ordered on a resident-by-resident basis.

4.2.3.3 Comparison to the literature

In terms of how this classification accuracy stacks up next to the literature, it is a bit challenging
to assess since there are no food intake datasets to benchmark against. Additional considera-
tions affecting the ability to compare include the number of classes included, inconsistencies
with “accuracy” reporting (e.g., top-1 vs top-4 accuracy) and the complexity of classification
problem (e.g., whole raw foods vs prepared meals vs modified texture versions of those prepared
foods). That said, for classification methods based on handcrafted features: Zhang et al. report
88.2% accuracy for whole foods (entire pineapple) consisting of 18 classes [247], Bolle et al.
achieved 95% using top-4 accuracy for vegetable identification in a supermarket [25], Rocha
et al. achieved 99% using top-2 accuracy for some fruits and vegetables by fusing three types
of features (including Unser’s features) [201], Arivazhagan et al achieved 85% accuracy on 15
types of produce using a minimum distance classifier [9], and Chowdury et al. attained 96.55%
accuracy on 10 vegetables using colour and texture features and a neural network classifier [46].

Regarding a trend for learned features, a deep learning approach has had a comparatively slow
adoption in the field of food imaging. As we saw in Chapter 2, accuracy around segmenta-
tion and classification tends to be either not mentioned [42, 166, 67, 70, 45] or was explicitly
stated as being beyond the scope of the present version of their system [166]. In recent years,
systems have begun to leverage learned features [162, 186, 67], an important consideration for
both classification in particular. Oftentimes, feature extraction and classification are combined,
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making sources of error difficult to disentangle. This is further confounded when segmentation
and classification accuracies are combined instead of as two sub-processes. As we saw in Chap-
ter 2, classification accuracies of 100% (11 classes) [186], 82.5%(15 classes) [67]. Alternative
methods employed for classification were AdaBoost [166], K Nearest Neighbours [93], and sup-
port vector machines [45, 42] with reported classification accuracies of 68.3% (50 classes) [42],
99.1%(6 classes) [45]. While direct comparison between the AFINI-T system and LTC intake
data isn’t possible since the AFINI-T system is the first to measure food intake and considers
modified texture foods, it would seem that based on our results, our DNN approach is on among
the highest performing approaches with a top-1 accuracy of 88.9%. Furthermore, the type of
data represented in our MTF and RTF datasets for LTC contain more complex food scenarios
as they are prepared foods (RTF: 93.9% accuracy; MTF: 73.7%), and the accuracy we report is
top-1 suggesting the AFINI-T approach may outperform the others.

At the inference level, few papers report percent error at the nutrient level and tend to focus
on calorie estimation. The few that have reported calorie estimation error of: 0.09% (mean
absolute error) on 6 categories using random forests and support vector machines [45], and 0.25%
(mean standard error) on 11 categories of entire foods (e.g., green pepper) using a CNN [186].
Additionally, [67] report 80% of calorie estimates falling within 40% error (35% within 20%
error) on 15 classes using a multi-task CNN with a maximum correlation coefficient of 0.81
(r2 0.64 equivalent), and top-1 accuracy of 82.48% [67] and they report in this manner for
comparison to [166] with 79% of calorie estimates falling within 40% error (35% within 20%
error) using hand-crafted features with a correlation coefficient of 0.32 (r2 0.10 equivalent) [166].
Our AFINI-T system had an % error of 2.4% across 13 nutrients on the 56 categories (102
classes) of food with an minimum r2 value of 0.92 (0.94 for calories). Our average top-1 accuracy
was 88.9%, ranging between 95.1% on 3 classes (RTD:Dinner) to 70.4% and 89.0% on 15 class
meals (MTD: Day 3 Dinner, MTD: Day 1 - Lunch). Based on these comparisons, our work
performs among the best despite accounting for more complex meal scenarios and across 13
nutrients. While there has been relatively little work done in this area, our results highlight
the significance of our contribution both from the technical implementation as well as from the
applied perspective working towards transalational research.

While each of the above methods have their own quirks and limitations, the bottom line with
respect to portion size or calorie estimation is that they at least achieve similar accuracies to
average reported human error. With the AFINI-T system, not only are we able to measure a
specific resident’s intake (as opposed to the proportion consumed across the average of all foods
offered), it removes subjectivity, and can be tracked to the nutrient level in competitive time. The
result: higher quality data that can be used to inform resident preferences, streamline referrals to
registered dietitians along with a data-driven approach for monitoring and evaluating nutritional
interventions.
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4.2.3.4 Additional considerations

While we were able to provide complete total automation for segmentation, classification, and
food and nutrient intake estimation for simulated intake plates, the current system relies on one
fully hand-labelled and hand segmented image for a full reference portion to provide specific
semantic segmentation and classification labels for each meal-specific classifier. If this would
be deemed as too cumbersome, the next level of automation would be incorporating a semi-
automatic method (e.g., graph cut) on the backend to aid the user in hand segmenting the ref-
erence images. In that case the dietitian or user needn’t hand segment anything - they would
simply assign a label to each of the pre-segmented types of foods present with a few lines to in-
dicate where each food type resides (as opposed to hand segmenting an outline for each segment
containing every type of food and its associated food-name label). This latter example is in line
with the co-designed user interface and workflow we saw in Chapter 3.

Our results suggest that our method for estimating food intake is in strong agreement and tightly
correlated with true intake. Especially in the case of larger intake portions, our methodology
yielded accuracy of nutrient content with less than 5% error. Interpretation of the acceptability
of the precision and accuracy of the system requires further input from users. If improvement is
warranted, it will require a degree of human input or expanded models. This may be in the form
showing output classification masks so misclassified segments could be reclassified as appropri-
ate. Alternatively it could be to seed regions from menu to select item so it’s tightly constrained
and applying region growing; this approach is in line with what was integrated into the collabo-
rative co-design prototype development outlined in Chapter 3.

While evaluation of accuracy “in the wild” is prudent, in the current approach segmentation of
only one reference image is required and we have shown even when some pixels are misclassified
(typically around the edges where a food’s variance is higher), there is reasonable nutrient intake
accuracy robustness. One other consideration is that not all foods have nutrient values for every
nutrient of interest often rely on complex imputations for estimates [107]. Nutrients like vitamin
D are often incomplete [102], and this is also reflected in the few datapoints on vitamin D plot in
Figure 4.9l. Because there has been so little work around more accurate nutrient intake tracking
within the LTC domain, the error targets may require further thought. Additional discussions
with end-users and nutrition experts is warranted to evaluate the utility and appropriateness of
reporting these values, what margin of error is deemed acceptable for supporting trust in the
system, and other considerations given the quality of data included in the underlying nutritional
databases.

With smaller intake amounts and therefore smaller relative portion differences, the error was
larger. This was ultimately why there was clustering near the origin for several of the nutrients,
especially those from the MTF dataset (shown in red). To improve on this in the future, we must
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both collect supplementary data to expand the dataset as well as consider from where this error
arose. We hypothesize this error is primarily due to segmentation, rounding, and potentially
depth map variance.

One reason we chose to keep segmentation separate from classification is because when com-
bined, it is difficult to tease out where error has been introduced into the system and to evaluate
the extent of the error. This is particularly relevant within the long-term care context where some
residents may consume very few bites of food. Monitoring these residents who are at highest
risk for malnutrition is imperative so “hidden” errors which may not be accounted for would
propagate to a decreased overall accuracy of food intake. In the case of under-estimation this is
less of a problem if dietary requirements are being met; however, over-estimation of food intake
has a large impact on quality of care and the ability to detect which residents are at risk (and their
level of risk).

With respect to rounding, recall that relative volume differences were compared between the
reference portion and the leftovers. For smaller absolute intake (or smaller portion sizes as was
the case with the modified texture foods samples), this error is then propagated forward likely
yielding a less precise nutritional intake estimate.

Regarding depth-map variance results indicate that nutritional intake estimates, had greater vari-
ation at the lower levels of intake (larger spread at lower intake levels). This may correspond
to the amount of variation in estimation at smaller levels of intake/larger food left on the plate.
We speculate this is because of a compounding of small discrepancies in depth maps which gets
propagated to volume and then to nutritional intake. Future work will address this by incorpo-
rating depth-map variance as a feature to describe the food item. For example, for a green salad,
we would expect a higher variance in depth map because it is a non-dense food item and in
contrast, meatloaf or slab cake would have very low depth-map variance across the food item as
these items are more block-like. Supporting this hypothesis was the observation that most of the
classification errors arose from the peripheral edges of a sample, where variability was higher.
Recall that the training data contained only full-reference portions. I expect that with additional
data representing a wider variety of “intake” data, that model refinement could improve in these
higher variance settings.

To support a “glass box” level of interpretability for classification we had initially considered
using support vector machines, random forests and logistic regression for classification. We first
employed colour-based features (e.g., Unser’s features, previously used regarding food [247,
227, 64, 63, 181, 201]). However, it appeared colour-based and texture features do not encode
deeply enough the nuances between food types which is an especially important consideration for
modified texture foods (e.g., minced or puréed foods) where there is less variability. Preliminary
analysis yielded classification accuracy below 70% with these methods. And while more easily
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intuitive features based on colour and texture may bring the decision process more closely to
resemble a human’s discrimination, given they do not appear to be descriptive enough in this
case, the goal here is to sacrifice a degree of intuitability to distill a feature set from training a
convolutional auto-encoder.

More broadly, future directions will be to add an additional stage for automatic food-type clas-
sification as specific foods rather than arbitrary classes with associated nutritional values (i.e.,
mashed potatoes are classified as mashed potatoes after the initial segmentation step). In addi-
tion, we wish to improve upon the algorithms to handle more complex food types (e.g., salads
and/or soups in which the food is comprised of multiple components) as well as more complex
plates of food to address food mixing as seen with mashed potatoes or more generally to address
plates “in the wild".

4.3 Conclusion
In summary, we proposed an application-driven design for a novel fully automatic multisensor
segmentation system which leverages depth-refinement for improved accuracy. We assessed our
system on two representative LTC food intake datasets which included simulated intake plates
since current datasets contain only full-plate portions or do not contain pixel-level segmentations.
For further advancing the field, additional food intake datasets with pixel-level segmentation are
needed. A system such as the one presented here which approximates a human assessor but
is objective, more consistent, and can more accurately quantify food intake measurements may
provide a valuable step towards automated tracking of food and fluid intake within LTC.

4.3.1 Key Contributions
The ability to image to nutritional intake in literature previously has not been as depth, did not
include modified texture foods, and was not designed for LTC or healthcare setting (the focus
has been individual-centric and typically for for weight loss). The AFINI-T system provides a
very different application in a way that has not been done elsewhere.

• The first simulated regular and modified texture food intake dataset for LTC.

• A novel DNN for automated depth-refined food segmentation, and with that the ability
to “see” bulk food intake objectively. This has demonstrated the novel ability to segment
foods, including modified texture foods, and it works well.

• A novel DNN for LTC food classification incorporating domain-specific priors, and with
that the ability to infer macro and micronutrient with an end-to-end solution.
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UP NEXT...
Based on these strong results, it would appear our general framework for a novel proof-
of-concept automated system to measure food intake and nutritional composition estima-
tion using an integrated RGB-D camera for image acquisition is both feasible and valid.
Specifically, our nutritional intake from relative changes in volume were strongly corre-
lated with intake from weighed-food records (r2 ≥ 0.92) with excellent agreement on
intake estimates for all thirteen nutrients (σ ≤ 2.0). But regardless of how well the de-
veloped technology performs, if the approach and methodology is not deemed acceptable
by users, it will not be used. In Chapter 5, these potential barriers to uptake are assessed
to probe AFINI-T’s palatability including acceptability, perceived workload and user per-
ceptions of trust.
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Chapter 5

A New System Prototype’s Palatability

Chapter 4 introduced the “brains” of the AFINI-T system answering the questions of where food
is on a plate, what food is there, and how much was consumed using simulated intake. But the
question remains, how might acceptability of this technology be met from the user perspective?
To set this system up for minimizing barriers to uptake user perspectives of system acceptability,
perceived workload and user perceptions of trust in the system are essential. This is the focus
of this chapter where I seek to address reducing barriers to adoption by ascertaining feasibility
from the user’s perspective. More specifically, the objectives of this chapter are to describe con-
tinued efforts to remove feasibility-related barriers to uptake and facilitate confidence in design
decisions for user-centered technology development. Here, we evaluate a user-driven, practice
relevant early-stage prototype to inform future directions including user perceptions of workload,
usability, and receptivity of the AFINI-T system prototype.

This chapter contains content previously published from...
KJ Pfisterer, J Boger, A Wong. Prototyping the Automated Food Imaging and Nutrient Intake Tracking (AFINI-T) system: A
modified participatory iterative design sprint. JMIR Human Factors 2019;6(2):e13017. doi: http://dx.doi.org/10.2196/13017. On
this paper, K.J.P. was the main contributor from project inception to planning, implementation, data collection, analysis, interpreta-
tion, and writing.
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5.1 Establishing System Acceptability, Perceived Workload,
and User Perceptions of Trust in the System

Returning to the modified participatory google sprint mentality we conducted a usability as-
sessment to elucidate preliminary feasibility with end-users early on through the evaluation of
prototypes through pilot testing. Output from this stage informed how the prototypes could be
improved for development of a working system in the future. We added one additional stage
as well for final prototype validation, to receive additional feedback from a new group of RDs,
directors and assistant directors of food services not previously involved in the prototype design
to provide a fresh perspective to minimize bias.

5.2 Methods
The system acceptability assessment built off Chapter 4 and was guided by several conceptual
frameworks: (1) conducting interdisciplinary research [24, 37]; (2) leveraging user-centered
design and participatory design [185, 203]; and (3) evaluating usability [32, 196] and perceived
workload [88]. The prototypes developed in Stage 4 of Chapter 4 were used for pilot evaluation.

Five participants self-selected as project advisors during Stage 1’s workshop from the perspec-
tives of PSW, dining lead, LTC RD, food and nutrition consultant, and food/dietary aide. By
word of mouth, two new project advisors (Director and Assistant Director of Food Services)
requested inclusion as observers for a total of seven advisors. Two technical experts with back-
grounds in systems design engineering and limited exposure to the users’ perspectives were
recruited through word of mouth for completing the Ravden Checklist. An additional 13 RDs/di-
rectors/assistant directors of food services were recruited to provide usability data who were not
previously involved with the design process as described in Section 5.2.3.

5.2.1 Interview Walk-through of Prototypes
All testing was completed in-person though one-on-one sessions. Testing sessions were audio-
recorded and relevant quotes were transcribed verbatim. Testing began with an interview walk-
through of the prototypes based on script adapted from [126] to ascertain usability and feasibility
barriers. A novel pre-defined strict set of tasks was completed by each advisor. I completed
a checklist to capture the degree of success to which each task was completed (i.e., success,
required prompting, or failed).
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5.2.2 Usability Assessment Tools
Prototypes were evaluated by comparing perceptions of the AFINI-T prototype to the system
currently in place regarding usability (user and technical expert), workload, and trust as follows:

1. Users’ Subjective usability Scale (SUS) [32]: The SUS was selected over other usability
questionnaires for its ease of use, minimal training requirements, and low application time
[216, 217]. By word of mouth, two new project advisors (Director and Assistant Director
of Food Services) requested inclusion as observers for a total of seven advisors.

2. Technical Expert’s Subjective Usability (Ravden Checklist): For evaluating usability
more formally, an adapted Ravden checklist [196] was used by two technical experts with
backgrounds in systems design engineering and limited exposure to the users’ perspectives.
The Ravden checklist was selected for its low-cost and ease of use to assess the interface
with good inter-rater reliability and predictive validity [216, 217]. Items pertaining to help,
including all of section 9, were removed as this was beyond the scope of the Goldilocks
quality horizontal prototype.

3. Users’ Subjective workload (RTLX): The RTLX [88, 87] was administered to enable
comparison of perceived workload of the current method in place with the AFINI-T sys-
tem prototype (Table 3). Perceived workload of the current system was retrospectively
evaluated with the Raw Task Load Index (RTLX) [88, 87] for its application simplicity
and comparability to the NASA-TLX [87, 216, 149, 230]. For evaluating perceived work-
load of the AFINI-T prototype, four project advisors from Stage 4 were tester participants
(PSW, Dining Lead, Dietary Aide, and Nutrition Research Expert). By word of mouth,
two new project advisors (Director and Assistant Director of Food Services) requested
inclusion as observers for a total of six advisors.

4. Users’ Perceptions of Trust (adapted from [111]): Ethical considerations around users’
perceptions of trust in technology is a crucial but often neglected aspect when conducting
computer vision research in areas that can have a major impact on societal well-being.
A subset of Jian et al. [111]’s tool was used to capture perceptions related to deception,
wariness, confidence, dependability, reliability, trust and familiarity with the system [100].
Statements were comprised of 7-point Likert scales ranging from not at all (1) to extremely
(7). Responses were re-categorized from a 7-point Likert scale to “No", “Neutral", and
“Yes" to summarize trends; the original 7-point Likert scale ratings were used for calcu-
lating a two-tailed t-test assuming unequal variances [75, 172] to compare the existing
electronic paper-based system and the AFINI-T prototype.
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5.2.3 Webinar Feedback
After testing was completed, on a separate occasion new RDs, directors and assistant directors of
food services from across the Schlegel Villages were invited to participate in a webinar outlining
the progress to date along with tandem survey completion for assessing perceived usability and
workload. 13 people participated in the webinar (43% participation rate), which is consistent
with typical attendance of quarterly dietitian meetings at Schlegel Villages due to scheduling
complexities.

5.3 Analyses
For scales with five or more categories (e.g., RTLX), µ(σ) are used; the mode was used for
categorical data with fewer than five categories (e.g., Ravden Checklist). A two-tailed t-test
assuming unequal variances [75, 172], was conducted to compare the current system and the
AFINI-T system for users’ perceived workload for the RTLX. Quantitative data were analysed
using descriptive statistics, with highlights from qualitative data as described in Stage 1.

5.4 Results

5.4.1 Users’ Subjective Usability Scores
Subjective usability was rated as “acceptable” with average SUS scores of 89.2 and 78.2 translat-
ing to a B+ or C+ on the grade scales for project advisors and webinar participants, respectively.
Mapping these scores onto the adjective ratings as described by [16, 17], the majority of usabil-
ity scores therefore fall between “excellent” and “best imaginable” for project advisors (5/6) and
“okay” to “good” for webinar participants (5/9) as shown in Figure 5.1.
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Figure 5.1: Overview of subjective usability ratings by project advisors (a), and webinar partici-
pants (b).

In line with these quantitative results, project advisor users commented that: “It’s quite intuitive,
the key things were easily found”, “It’s a lot but it’s easy to learn and it’s colourful”, “I’m not
technologically inclined, but most things I was able to do intuitively”, “I think someone could
use this if they were just thrown onto the floor with it.”

5.4.2 Technical Expert’s Subjective Usability in Context
Two technical experts completed a modified Ravden usability checklist evaluation with favourable
ratings (Table 5.1). Ratings across both raters for sections 1-8 were very satisfactory (7/8 sec-
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tions) or split between “satisfactory” and “very satisfactory” (1/8 sections) and mode for section
10 on system usability of “no problems”. Consistent with comments from user testing, the main
suggested area for improvement was to increase customisability options (e.g., sort resident list in
multiple ways, allow more flexibility in the order of operations such as allow charting before a
picture is taken).

An additional comment received pertained to “the order of operations” causing minor problems.
The AFINI-T prototype was operating on the assumption that a before picture would be taken
before selecting food items. This may not be the case, and because of this feedback, we can incor-
porate this additional flexibility moving forwards. Another example of reported minor problems
was that the “system response times were too quick for you to understand what is going on”,
which is consistent with the user testing as there were several instances in which a prompt was
needed to observe a change in state (e.g., input fluids, and not only does the fluid intake progress
bar update, so too does the nutrient intake summary). Both project advisors and technical experts
suggested highlighting these changes with colour; this should be incorporated moving forwards.

5.4.3 Users’ Subjective Workload (RTLX)
As highlighted in Table 5.2, performance was rated comparably with average score of 16.8 and
15.2 for the AFINI-T and current systems, respectively. In the case of mental demand, time de-
mand, effort and frustration, subjective workload ratings were significantly lower for the AFINI-
T system than the current system (p<0.05). This suggests the AFINI-T system is perceived to
require less effort and lower overall workload than the current system and is consistent with com-
ments from the participants including: “[This would take a] huge burden off me as a clinician.
This is hugely better than paper. . . there are no guestimates. . . I don’t have to do work.”, and
“It makes life so much easier”.

Since the focus for performance was more on workflow and process, the emphasis for either
system was on task completion, not accuracy of task completion. For the AFINI-T system, when
accuracy was considered (i.e., the number of correct task completions without any prompting
were tallied and divided by the number of valid tasks), the average accuracy was 88%. A rating of
16.8/20 equates to around 84% accuracy which indicates a very close mapping between perceived
performance and task completion accuracy; however, this may be spurious. These results are
presented only as a discussion piece as assessing accuracy of data entry is beyond the scope of
this study that aimed to address high-level interface design. Entry errors for data accuracy would
need to be assessed with the fully functional system as part of future work.
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Table 5.2: Comparing retrospective perceived users’ workload measures of current food/fluid
intake system from Stage 1 to the AFINI-T prototype results from Stage 5. Values could take on
a range from 0 to 20; 0 implies no workload, 20 implies highest imaginable workload except in
the case of performance which is reverse coded.

Workload Measure System Mean Mode(s) Min Max Responses t-Test

n n n (N)
t, df

(P-value)

Mental demand
Current 10.2 6 4 19 10 2.56, df = 13.8

(P=0.023)AFINI-T 4.4 3 1 10 6

Physical demand
Current 6.4 2 1 15 9 1.41, df = 12.5

(P=0.183)AFINI-T 3.5 1 1 6 6

Time demand
Current 16.7 19 5 20 10 4.89, df = 10.8

(P<0.001)AFINI-T 5.5 3 1 12 6

Performance
Current 15.2 18, 20 3 20 10 0.722, df = 13.7

(P=0.722)AFINI-T 16.8 20 11 20 6

Effort
Current 13.2 6 6 20 10 5.55, df = 13.5

(P<0.001)AFINI-T 3.7 3 1 7 6

Frustration
Current 11.5 15 1 20 10 3.80, df = 13.0

(P=0.002)AFINI-T 3 2 1 8 6

5.4.4 Users’ Perceptions of Trust
Consistent with our previously reported high usability (SUS score of 89.2), and significantly
higher perceived performance with the AFINI-T prototype than the existing system (P< .05)
in [180], Figure 5.2 indicates there is low trust in the existing system (55% of respondents do not
trust the system, n=11), the AFINI-T system was perceived to be more trustworthy, and generally,
AFINI-T system trust ratings were opposite and more positive compared to the existing system
for food and fluid intake charting. For example, advisors rated the AFINI-T system as less de-
ceptive (deceptive “yes”: 17% AFINI-T, 45% existing system), less wary of the system (wariness
“yes”: 0% AFINI-T, 50% existing system), and more confident in the AFINI-T system (confident
“yes”: 83% AFINI-T, 18% existing system). As shown in Figure 5.2 using a two-tailed t-test as-
suming unequal variances [75, 172] indicate that these three scores of deceptiveness, wariness,
and confidence were significantly different between systems all with p-values< 0.05. While not
statistically significant, there were additionally higher ratings for dependability, reliability, and
familiarity with the AFINI-T system prototype compared to the existing system. The statement
regarding “I can trust" the system was higher for AFINI-T system prototype than to the existing
system and this difference approached significance (p=0.08).
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Figure 5.2: Advisors’ perceived trust of existing food/fluid intake system (Existing) to the
AFINI-T prototype (AFINI-T). 7-point Likert scale ratings were condensed to “No” for Lik-
ert ratings 1-3, “neutral” for a rating of 4, and “yes” for ratings 5-7.

5.4.5 Qualitative Feedback
Project advisors’ receptivity of the AFINI-T system prototype was positive with several areas
identified for improvement. For example, regarding the general concept for the dietitian in-
terface: “[It] would be good to personalize these specific needs and set it so the flags sent to
nursing/PSW for these items based on what dietitian enters . . . This would save a lot of time es-
pecially if individualized.”, “Capturing [supplement intake] would enable dietitians to monitor
intervention adherence . . . If it shows up that they never have it, then great feedback to change
the intervention.”

Receptivity of webinar participants was moderate. The main reservation pertained to how the
system would integrate with the current method and PointClickCare (corroborated also in Chap-
ter 3), and workflow more generally. For example, three webinar participant’s direct messages
were as follows: (1) “I love the idea of this system, we are concerned about workload, as well as
if the systems (AFINI-T and PCC) talk to each other.”, (2) “Would this be a separate system that
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would be linked to PCC?”, and (3) “I hope a PCC progress note is generated from any notes [a
registered dietitian] adds”.

Additionally, webinar participants expressed reservations regarding the proposed AFNI-T sys-
tem. One dietitian expressed concern about overemphasizing the importance of nutrition “in a
population that should have the main focus of just making sure [residents] are enjoying the food
we are serving”. There was also concern over how this will translate to Ontario Ministry of
Health and Long-Term Care (MOHLTC) inspectors’ inspections and the perception that using a
system like this will take more time. Additionally, it was stated that there was no perceived value
to having access to more detailed nutrient data in the LTC population as, to them, the largest issue
contributing to malnutrition is the impact dementia has on calories consumed. However, they did
suggest that if there was an ability to screen for residents to focus on only those at greater risk for
malnutrition that the AFINI-T system would be helpful while still meeting the MOHLTC stan-
dards since only those at risk for malnutrition are mandated to track food and fluid intake. This
provides an interesting complementary perspective and warrants further probing and discussion.

5.5 Discussion
The overall purpose of this work was to continue to remove feasibility-related barriers to uptake
and empower user-centred technology development through usability assessment and prototype
validation.

While usability assessment and prototype evaluation informed the design process, one specific
opportunity for further enhancement was the opportunity for collecting webinar feedback. We
conducted a hybrid webinar survey to connect during a quarterly dietitian meeting. The con-
cept of the AFINI-T system was completely new to most participants which made it difficult to
build rapport with this group. However, we believe at this stage of the design process this was
a strength; this may have helped participants to provide candid, objective feedback. That said,
there were several examples of difficulty in keeping webinar participants engaged. For example,
the webinar was run with a brief adjournment for completion of a survey that was then used
to encourage group discussion. The ability to take a poll during the webinar may have been
more effective at keeping engagement. In addition, the method by which participants attended
was inconsistent across locations. For example, most participants joined individually, however
at venues where multiple participants joined from one location (e.g., RD, director, and assistant
director of food services), they filled out the corresponding survey together as well. This may
have resulted in bias in some of the feedback collected but also enabled conversation and col-
laborative thought. Given the exploratory, qualitative nature of the feedback received during this
stage, it does not undermine the results of previous stages, and for Stage 6, may have resulted in
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more critical appraisal from potential group discussion.

In terms of time requirements and concerns raised by webinar participants, this is valid and is a
next step. When the fully functional prototype is developed, it will be important to evaluate task
completion time. Even if the AFINI-T system requires a comparable amount of time, it will yield
a trove of powerful nutritional insights so direct comparison of approaches may be more complex
than a simple timed trial. Through this approach, the AFINI-T system may support care givers’
efforts in promoting enjoyment of food consumed for residents with communication changes
as part of living the dementia journey. Within the scientific community context, additionally,
the proposed AFINI-T system may enable knowledge discovery through a thorough automated
approach to understanding dietary patterns in the LTC context and beyond.

We were particularly interested in trust as it pertains to the ability to introduce a new level of
automation in this field by leveraging computer vision techniques. Several factors described by
others that influence trust relevant to developing computer-vision-based applications are: the type
of system, how complex the system is, how the system will be used, and the cost-benefit of using
the system (e.g., high risk or low risk) [100]. However, in the case of the AFINI-T system, we
must be careful since this is a tool to support care in a vulnerable setting (older adults). As such,
it must be clear that decision making rests with humans and reinforce that the AFINI-T system is
a decision-making aid. Specifically, when automation comes with great benefit and fewer risks,
people tend to increase reliance on automation; even under high-risk scenarios if the level of
automation is low [100, 150] and humans tend to view automated tools as more accurate than
humans [150]. This contributes to over-trust [138] and may be more important to consider than
initially thought given readiness to accept the prototype-level technology and high trust ratings
for even for the prototype that is not fully developed.

From an uptake of technology perspective, the landscape for AFINI-T appears to be promising
when reflecting on trust ratings and usability ratings, and several design considerations that were
incorporated that otherwise would have been missed if not for the diverse set of collaborators. It
is also encouraging that project advisors were anecdotally engaged with frequent comments of,
“I’m so excited!’’ and “I just want to play!” Regarding three wishes to improve, project advisors
commented: ‘‘I just want to use it now” and “[I would use food-specific info to] identify trends
with people. Try different plates, see if it changed the intake pattern. What do individual residents
like and what don’t they like. If they eat a lot, is it because they like the food, or was it a one-off?
Having data accessible opens the door to how can be analyzed.” When considered together,
output from these various phases suggest that project advisors are keen to try a technology like
this and that we’re on the right track for developing the AFINI-T system; users seem to be
engaging with it, enjoying it, and see it as value-added.

Particularly in computer vision research building intelligent systems with end-users engaged,
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we should be aware of how the perception of the technology changes through this process as
suggested through this work. Specifically, we must be wary of potential over-trust in the system,
which is when “trust exceeds system capabilities” [138]. Of interest in this application, the risk
for over-trust is higher when building tools that will be used in high stress environments due to
time constraints and have potentially large benefits over the existing method (e.g., time saving,
improved quality of care) [100]. Regarding the receptivity to the AFINI-T system, advisors
commented “This would save a lot of time especially if individualized. [The % daily value
of nutrients is a] proportional calculation [that is currently] a manual process.” In contrast,
perhaps contributing to relatively low trust in the existing system, several users articulated that
the quality of the existing method for data collection is not helpful at prioritizing resident referrals
to dietitians. When considered in the LTC environment where being short-staffed is the norm,
this may in part explain why trust ratings in the AFINI-T prototype were high and highlights the
importance of these design considerations.

This participatory iterative design methodology provided a more holistic approach to developing
a solution. We took this approach to work directly with representative end-users to understand
and incorporate their perspective and concerns to consider and appropriately support trust from
multiple angles. By doing so, we aimed to support trust cues, credibility [52, 76], and to adhere
to best practices for user interface design [105, 14, 114, 170, 171, 210]. This translated to in-
corporating ease of navigation (reinforced by click-saving features), use of good visual design
elements by on-screen chunking of relevant information, aiming for an overall professional look,
supporting search ability as well as smart guidance through transactions and overall, working
directly with users to provide appropriate and useful content. This is corroborated with qualita-
tive feedback as well. In speaking with one project advisor, they were impressed with what was
captured. Specifically, the consideration to have the reminder that dietitians need consent from
residents to make any modifications to their nutritional goals. They asked, “How did you know
to include that?” When it was explained that it came from discussion with other project advisors
they said, “You really did your homework.” This is one example of the powerful synergy of
incorporating multidisciplinary perspectives when users are included as collaborators. Instead
of being limited to domain knowledge in one field, this transdisciplinary approach allows for a
more informed and feasible solution.

Between workshop participants and project advisors (Chapter 3), 27 unique collaborators repre-
senting 15 different roles were engaged in this participatory iterative design process. This sample
size is consistent with recent analogous health-care-related user-centered design as well as usabil-
ity and feasibility studies [50–58] [59, 82, 101, 109, 125, 131, 167, 195, 199] with sample sizes
ranging from five as in [125] to 32 as in [199]. Between 11 and 13 additional participants were in-
volved in the webinar exercise and contributed to nine survey responses (several individuals filled
out a response together) and are described in Chapter 5. Therefore, the total sample size ranged
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between 35-40, however, not all collaborators contributed to every aspect of the process (e.g.,
user testing in Stage 5 was comprised of a subsample of 6 individuals). While this sample size is
consistent with early pilot project prototyping [37, 59, 82, 101, 109, 125, 131, 167, 195, 199],
generalizability remains unclear. As the team of project advisors was relatively small and from
the same organization, it will be important for the final product to be tested with a larger sample
of users to make sure concepts captured generalize well to users’ needs more broadly.

Our data collection strategy was grounded in theory, guided by several conceptual frameworks,
and grounded expertise to complement the interdisciplinary and complexity of the problem space
(e.g., [24, 37]). We also borrowed from transdisciplinary research that “explicitly recognizes the
value of partnerships and the different stakeholders along with their roles in facilitating and
supporting innovation” [24]. In the AFINI-T design this was reflected through recruiting diverse
and multidisciplinary project advisors. That said, no demographic information was collected;
this should be considered moving forward especially when recruiting for a larger sample for
user testing. A larger sample size for the final prototype will help deepen our understanding of
usability. Finally, given the stage of this research, qualitative analyses were limited to extracting
overarching themes across sources; an additional avenue for future work, pending completion of
a high-fidelity prototype is to conduct a more thorough qualitative analysis vetted in an evaluation
framework (e.g., grounded theory or narrative content analysis) alongside prototype testing and
evaluation.

5.6 Conclusion
While fast-paced and time intensive, the results gathered in this study indicate it is possible
to design AI/ML/computer vision applications with end-users and can result in high receptiv-
ity and trust in these technologies. Our experience corroborates that engaging with end-users
throughout the process as collaborators enhanced a “more comprehensive understanding of the
problem space” [24]. Moving forward, we must re-assess trust in the fully functional system
and probe more deeply into factors contributing to trustworthiness. More generally, as designers
and researchers developing accountable computer vision systems, we must be the first line of
defense and should consider our moral obligation for ensuring accuracy, system reliability, and
understanding the psychological effects of using trust cues to enhance usability. Furthermore,
output from these various stages suggest that while careful consideration for integration with the
PointClickCare system is needed. Additional consideration for policy expectations are required
but project advisors have interest to try a technology like this if these concerns are addressed.
Advisors seem to be engaging with the AFINI-T prototype, receptive to the idea, and enjoying
it. This modified participatory iterative design sprint was effective at understanding the problem
space, making informed design decisions (Chapter 3), and evaluating receptivity to a novel pro-
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totype all within a compressed period of time (i.e., 6 weeks). Future directions for the AFINI-T
system should include incorporation of learnings from this process, and the development of a
fully working prototype for further user testing and evaluation with an emphasis on timed trials
for assessing feasibility in the LTC environment.

5.6.1 Key Contributions
• Documented user acceptability.

• Reinforcement that the AFINI-T user interface is usable at right level of difficulty.

• Evidence supporting the AFINI-T system is primed for success based on trust cues and
usability.

UP NEXT...
We have now seen priorities from end-users in LTC in Chapter 3, re-imagined what food
intake might look like, evaluated our proposed solution in AFINI-T in Chapter 4, and
showed high acceptability of this approach in this chapter. But we still haven’t taken into
consideration the error-prone nature of nutritional databases. In many cases, they are the
best we can do without sending samples away to labs which is resource-intensive in terms
of both time and money. My dream would be to be able to make some sort of at-the-plate
inferences based on food biophotonic principles to “nudge” estimates closer to the truth
especially for the end-application of conducting nutritional intervention research beyond
the LTC perspective. While this is largely outside the scope of this thesis, Chapter 6, pro-
vides some encouraging results suggesting this may be within reach as a future direction.
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Chapter 6

Food Biophotonics: Optical Imaging for
Estimating Human-Observable Nutrient
Properties

So far, we’ve seen how linking food images, volume estimation and nutritional information can
yield a powerful system for objectively estimating food intake with accuracy and precision that
outperforms current LTC standards. We assessed system accuracy by disentangling segmen-
tation/volume estimation from the classification and combining it with nutritional information
through planned menu recipes (which rely on databases). But we also know that food databases
are notoriously missing information and there is also the issue of inter-chef variability in prepar-
ing foods. What if we could account for some of these shortcomings or differences by leveraging
computational visual cues to nudge estimates towards a more accurate solution? In this chapter
I seek to address my thesis C3, to explore feasibility of food database enhancement. While val-
idation for a system like this is well outside the scope of this thesis, I conducted foundational
investigations to probe the utility of computational relative nutritional density and the role of
colour in investigating nutrient content for the nutrient families of vitamin A and antioxidants
(anthocyanins). To explore this, I chose to use commercially prepared puréed foods for two rea-
sons: (1) from an application perspective, the prevalence of modified texture diets and puréed
foods in LTC is very high, and (2) commercially prepared puréed foods are well documented and
have more uniform texture consistency to simplify the food scenario.

The remainder of this chapter outlines my work (1) describing a feasibility assessment of an
image-based computational nutritional density analysis system [181], (2) assessing of the corre-
lation between 13 commercially prepared puréed food samples’ visible spectrum absorption pro-
files and nutritional composition across a flavour-stratified 5-tiered, 6-fold dilution series [183],
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and (3) exploring sweet potato and carrot as proof-of-concept for optical links to vitamin A [182],
a family of chromophores including carotenoids that are optically active in the visible spec-
trum [159].
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6.1 A New Take on Measuring Relative Nutrient Density
This dilutions study is motivated by the end-goal of nu-
trient density assessment. Using relative water concen-
tration to initial concentration (i.e., pure commercially
prepared product), we prepared a dilution series to ob-
serve the effect of relative increased water content on
optical properties (colour information, texture informa-
tion, saturation etc.) for the purpose of determining the
feasibility of using an optical imaging technique for dis-
crimination. We used stacked autoencoders with a final
softmax layer for dilution classification (i.e., discrimi-
nating between 20%, 40%, 60%, 80%, 100% initial con-
centration) as depicted in Figure 6.1.

To accomplish the task of learning what each flavour’s
dilution looks like, I leveraged autoencoders. Autoen-
coders are DNNs that use unsupervised learning to pro-
vide a robust solution that is generalizable and exten-
sible without compromising performance to complete a
specific task and therefore circumvents the unlabelled-
data problem. This study assesses the feasibility of us-
ing machine learning (i.e., DNNs) to automatically pre-
dict the concentration (as a proxy for nutrient density) of
commercially-prepared purées. Furthermore, the use of
DNNs for this task is motivated by the results of a the-
oretical optical dilution model. Since neural networks
are biologically inspired machine learning methods and
since in practice, food and food quality are often vi-
sually assessed, a theoretical optical validation of per-
ceptually quantifiable nutrition composition can provide
strong support for using machine learning. For example,
passing input, such as a hypothetical concentration into a theoretical model, would yield an ideal
output similar to the perception of the human eye. This present study, involving visible spectrum
imaging data at different polarizations, provides a novel application of image classification to
analyze thirteen types of commercially-prepared purées across three food categories (fruit, meat,
vegetables) at five dilutions relative to initial concentration [181].
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6.1.1 Methods
6.1.1.1 Sample Preparation

A six-fold five-tier dilution series for each of thirteen commercially-prepared purée flavours were
prepared relative to initial concentration (20%, 40%, 60%, 80%, 100% initial concentration). The
specific purée flavours selected were: apple, apricot, banana, beef, blueberry, carrot, chicken,
mango, parsnip, pea, strawberry, squash (butternut), sweet potato. While the intended application
is LTC, infant purées were selected to provide single food samples to avoid confounding of food
blends’ complex absorption profiles. At each of the relative dilutions, six 5 mL replicates of the
flavour sample were loaded at an approximate height of 1cm from a standardized transparency
sheet grid placed over a white reflectance plane and were imaged immediately. This yielded a
total of 390 samples.

6.1.1.2 Data Acquisition

Same-side reflectance was used (i.e., the light source and camera were positioned at the same
location). The samples were illuminated using a broadband tungsten-halogen source with a
front glass fabric diffuser for even illumination. A DSLR camera (Canon T4i) was used for
high resolution image capture in the visible spectrum with consistent white balancing, aperture,
and exposure settings. Vertically polarized images were acquired to maximize the subsurface
characteristics, since purée samples were approximately horizontally planar. The samples were
loaded onto a white reflectance plane to maximize reflectance. The room temperature varied
during imaging from 21.9◦C to 23.9◦C.

6.1.1.3 Sample Subimages

Since neural networks are biologically inspired and food consistency is presently visually in-
spected, it may be helpful to describe the data in terms of tangible features such as colour and
texture. It is important to note that colour and texture are meant only to provide intuition into
the data collected and, for our proposed system, were not used as hand-crafted features; features
used for distinguishing between classes (classification) were automatically learned given no pri-
ors through the DNN (see Section 6.1.1.5 for more details). Figure 6.7 provides a summary of
colour and texture across the samples. The images in Figure 6.1 were acquired from the sixth
sample location on the sheet. To minimize glare the horizontal polarization of entire sample
subimages were selected to provide further context with an ISO 100 and exposure 1/20 s.
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Figure 6.1: Dilution series example showing sample horizontal polarized subimages taken with
ISO 100, EXP 1/20 s. Note the visible variations across dilutions for the best performing purée
flavour, blueberry, with the stacked autoencoders and softmax layer achieved average accuracy of
99.6%; and poorest performing purée flavour, chicken, achieved an average accuracy of 73.3%.
Here, chicken has an indistinguishable colour and lack of texture consistent across the subimages
at 60% and 80% as they appear nearly absent or completely saturated.

118



6.1.1.4 Training Data Set-up

Images were processed and data were analyzed using Mathworks’ MATLAB version R2016b.
Each image was white normalized by selecting a reference white rectangle from an in-frame
white reflectance target. All images were labeled and deconstructed into six, 100×200 pixel
subimages (one for each sample on the sheet). As indicated in Figure 6.2, each three channel
(i.e., RGB) subimage was decomposed into fifty-four patches using half overlapping windows
of 50×100 pixels. Rectangular patches were selected to improve the variance observed within
a patch. These patches were downscaled to 50% of their original size (25×50) using bicubic
interpolation. The three RGB channels were concatenated to yield 378, 25×50×3 (or 75×50)
pixel patches for processing for a given dilution for a specific purée flavour and 1890 patches
for a specific purée flavour. Therefore, the final set of images consisted of 13,230 auto-labeled
patches.

6.1.1.5 Network Architecture

Images were then passed into a deep neural network (DNN), consisting of two layers of pre-
trained stacked autoencoders and a final softmax activation layer. Unlike in Section 4.2.1.5, we
did not use a covolutional neural network because the data we collected was uniform across a
food blob so position provides little context. Instead, here, at a high level, five global, general
networks were formed using randomly initiated weights and passing through all the unlabeled
patches (i.e., there was no flavour or dilution information provided to the system). These gen-
eral networks were then fine-tuned using flavour-specific labeled data. Given a specific flavour,
the system predicted the dilution class to which a patch from an image belonged as shown in
Figure 6.2. Here, we train the autoencoder, and then strip off the decoder so we can use the
learned features from the encoder. We then take these features and use them as input into another
autoencoder to further distill the feature set. After stripping off the second decoder, we pass the
distilled features into an activation function for classification into one of five output classes (20%,
40%, 60%, 80%, or 100% initial concentration). By stacking these together, we form a general
deep network where each autoencoder operates as a discrete feature extractor [98] and forces
the network to learn higher level features. Then we fine-tuned the network by running a final
iteration of backpropagation across the whole system. The result, a network that uses retained
features that is capable of differentiating between classes [98] (i.e., inherent features that repre-
sent a concept such as the blueberry-ness of a specific concentration). From this global, general
network, an additional step of fine-tuning was deployed for each flavour separately. This final
fine-tuning step is the only iteration which uses the labeled, flavour-specific data. As a result, no
hand-crafted features were used for the purpose of distinguishing between classes; all features
were automatically discovered using the stacked autoencoders.
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6.1.1.6 Validating our Network: Pretraining and Testing the Network

For each flavour-specific network, k-fold cross-validation was used by reserving one of the six
positions for testing and completing training with the remaining five positions and conducting
one final iteration of back propagation across the entire system for further fine-tuning of the
weights. This was repeated five times for each flavour-specific network; specificity and sensitiv-
ity measures were averaged across each of the left-out positions. Accuracy of the network was
assessed using confusion matrices whereby labels assigned by the network (i.e., observed class)
were compared to the ground truth labels (i.e., expected class) and summarized by sensitivity
and specificity for each class and across all classes for a given purée flavour.

6.1.1.7 Feature Extraction

For comparative purposes, two methods were applied for feature extraction: 1) automatic ex-
traction and learning of features by the second autoencoder, and 2) evaluation of hand-crafted
features based on colour (64 features) and texture (seven features) characteristics [247]. The
colour features were constructed using a discrete quantized colour histogram. Colour histograms
are relatively invariant to rotation and translation, and coarse colour quantization encourages per-
ceptual similarities through enlarged bin sizes. Environmental consistency (e.g., exposure time,
white correction, illuminant spectrum, etc.) is important for such colour comparisons. A con-
trolled optical setup was used to fix the relevant optical parameters, and is discussed further in
Section 6.1.1.2. Specifically, 64 colour features were extracted by quantizing each colour chan-
nel into four bins, yielding 4×4×4 = 64 features. Given 64 colours, the number of pixels within
a patch pertaining to each of the 64 colour bins was counted. Normalized histograms were used
such that the value for each bin in the histogram represented the percent of pixels belonging to
that colour bin. With regards to texture features, we used a set of texture descriptors based on
differential translation histograms [247] after first converting colour images to grayscale. These
histograms represent texture descriptors including mean, contrast, homogeneity, energy, vari-
ance, correlation, and entropy.

6.1.1.8 Classification Methods

Features were extracted (either from each of five general networks’ second autoencoders or from
hand crafted features) and passed into one of three classification methods as shown in Figure 6.3.

More specifically, the classification methods were used to distinguish between dilution classes
and making a prediction about to which dilution class a patch belonged. The three methods
used were a softmax layer (tacked onto the end of our stacked autoencoder), and for comparative
purposes, random forests [29], and support vector machines (SVM)(both linear and radial basis
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Figure 6.3: Overview of comparative classification methods.

function kernel) [53].

The softmax layer used the output features from the second autoencoder with the dilution labels
to output the top-1 hit (i.e., the one class with the strongest prediction) class label. This method
was applied to the features output from autoencoder 2 for each of the five general networks for
the autoencoder based features only (i.e., hand crafted features were not fed into the softmax
layer). k-fold cross-validation was applied to each iteration and results were averaged across the
five networks. The main difference in implementing these methods is that the random forest and
support vector machine approach require features to be provided, while the softmax approach
relies on automatically learned and generated features.

6.1.1.9 Data Analyses

Descriptive analyses were summarized based on accuracy at predicting concentration for a given
purée flavour from confusion matrices. Texture was summarized using entropy. Entropy is a
rotation-invariant statistical measure of disorder, and thus was used to quantify texture variation
similar to other food classification studies [26, 251]. In particular, local neighborhood entropy
was used to assess the variation (or heterogeneity) of discrete image patches. Then, the spatial
local neighborhood entropy distribution was used to summarize the texture of the entire image.
Specifically, given a grayscale image, local texture was computed as a region-wise neighborhood
entropy computation. The formulation we used resulted in low entropy for samples with smooth
homogeneous texture containing little intensity variation over localized patches, and high en-
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tropy for samples with inhomogeneous or heterogeneous rough texture contains highly varying
intensity values. We used 9× 9 pixel neighborhoods, resulting in 81 pixel intensities to populate
a distribution containing 256 bins.

Colour was summarized using the mean and standard deviation of red, green and blue values.
Finally, saturation was summarized as a value between 0 and 1 where 1 represented totally sat-
urated (white); saturation served as an indicator whether we could expect the system to work.
If entropy was low and saturation was high, the data would represent pure white and may not
contain discernible features upon which to correctly classify an image.

6.1.1.10 Optical Dilution Model

An optical dilution model was developed to motivate the use of deep neural networks for dilution
classification. As a photon traverses through the purée sample, it undergoes a series of scatter-
ing and absorption events according to the constituent chromophores, resulting in the perceived
colour. As the purée becomes diluted, the relative concentration of water increases while the
photon path length stays relatively constant, leading to decreased overall absorption and thus
changes in perceived colour. Representative perceptual image patches were derived from the
mixture absorbance spectra by computing the perceived spectra colour according to CIE LMS
cone responsivity curves [181].

Mathematically, we can express this using the Beer-Lambert law of light attenuation to produce:

A = log (I0
I
) = ϵH2O ⋅ cH2O ⋅ lH2O + ϵp ⋅ cp ⋅ lp (6.1)

where A is absorbance, I0 and I are the incident and reflected illumination respectively, ϵH2O

and ϵp are the chromophore extinction coefficients for water and purée, c is the chromophore
concentration, and l is the mean photon path length through the absorbing medium. Assuming
a homogeneous dilution mixture (lH2O ≈ lp), normalized incident illumination (I0 = 1), and
normalized relative concentration (cH2O + cp = 1), this formulation simplifies to the following
where l = lp = lH2O.:

A = −(ϵH2O(1 − cp) + ϵpcp)l (6.2)

Figure 6.4 illustrates what is mathematically described showing how relative changes in dilution
impact on the spectral absorption response using two examples of purée samples (strawberry,
and blueberry) based on published absorbance curves for blueberry and strawberry [221]. When
samples are diluted with water, there are fewer absorption events and the spectral curve becomes
more similar to pure water. Thus, a perceived increase in lightness of sample is observed as
illustrated in the theoretical image patches in Figure 6.4.
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6.1.2 Results
To understand the performance of the DNN for predicting purée sample concentration, results
are organized as follows: (1) descriptive analyses of each image class in terms of colour, texture
and saturation to provide context; (2) supporting evidence from the optical dilution model that
dilution is quantifiable through perceptual data; (3) sample patches for each class across every
purée flavour as a means to visualize and understand the underlying data; (4) an amalgamation
of observations taken from confusion matrices to support accuracy of the system.

6.1.2.1 Descriptive Analyses

Figures 6.5 and 6.6 provide information about each class of images with respect to colour (mean
R, G, B), texture (based on entropy, a statistical measure of variation) and saturation (where 0 is
black and 1 is white). In terms of colour, with the exceptions of banana and chicken the colours
appeared more vibrant as percent initial concentration increased. This is intuitive since the lower
percent initial concentration (i.e., more diluted) samples contained more water than their higher
initial concentration counterparts, resulting in texture and surface tension more similar to water
than the pure purée. While the samples were all imaged using the same lighting conditions, cam-
era settings, and were white corrected, there was a large range of saturation, texture (entropy),
and RGB values. The samples most at risk for oversaturation were the 20% of initial concentra-
tion (IC) and the least at risk for oversaturation were the 100% IC. At both the 20% and 100%
dilutions, the most saturated samples were chicken (saturation: 20% IC 0.992±0.008, 100% IC
0.988±0.015) and the least saturated samples were blueberry (saturation: 20% IC 0.538±0.071,
100% IC 0.128±0.035). With respect to texture (entropy), note the specks of blueberry seeds in
blueberry, the smooth shininess of banana, beef and chicken, the more granular surface texture
in the butternut squash, and the consistent, fine granularity across the sweet potato classes as
shown in Figure 6.7. In terms of texture (entropy) the more diluted samples were more similar in
appearance to water and aside from their colour, looked similar. Samples of lower dilution (more
highly concentrated) tended to have higher entropy, however the most cohesive of samples (e.g.,
banana, beef, chicken, sweet potato) exhibited extremely smooth surface textures (i.e., lower en-
tropy) across classes. This observation can be explained given that starches and proteins tend to
form gels [6] as these were the products with the highest starch contents (sweet potato: 5 g/128
mL, banana: 3 g/128 mL) or protein contents (beef: 12 g/100 mL, chicken: 16 g/100 mL).

6.1.2.2 Optical Dilution Model

The optical dilution model was evaluated with a candidate purée, blueberry, to motivate the
use of neural networks as purée concentration estimators. Figure 6.4 demonstrates how the ab-
sorbance spectrum changes according to the purée concentration (i.e., dilution) using published
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Figure 6.5: Descriptive analysis plots of purée flavours based on normalized RGB colour. RGB
values have been normalized. Typically colour varied between the dilution classes of a purée
flavour and were distinguishable between different purée flavours.
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Figure 6.6: Descriptive analysis plots of purée flavours based on saturation and texture (entropy).
Saturation was normalized; entropy was used to describe texture. Typically, saturation and tex-
ture, varied across a purée flavour’s dilution classes and were distinguishable between different
purée flavours.
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Figure 6.7: Sample patches for each purée flavour and dilution. Note the visible colour and tex-
ture variation across dilution classes and the indistinguishable nature of the poorest performing
purée flavour highlighted in red. The sample blueberry patches outlined in blue had the best
accuracy (99.6%±0.6%) with the autoencoders and softmax approach; these patches match the
theoretical patches generated with the optical dilution model well (see Figure 6.4).
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absorbance curves for water [200] and blueberry [221]. Blueberries contain anthocyanins which
are pH sensitive chromophores which shift from red to blue with increasing pH. For example,
pH = 1 appear red, while at a pH = 4.5 they appear colourless and at pH 7-8 they appear blue
[242]. As the undiluted blueberry purée becomes more diluted, its pH increases causing a shift
from red to blue. In its undiluted state the spectral curve matches that of blueberry. As the
purée becomes diluted with water, which has weak visible absorption, the mixture’s absorbance
decreases, resulting in an observable difference in spectral composition. These phenomena are
reflected in the generated theoretical image patches in Figure 6.4b. These findings support the
hypothesis that purée concentration can be quantifiably estimated using a perceptual machine
learning framework; there is consistency between what is visually observed and what can be
quantifiably described by the optical dilution model using intensity. Thus, DNNs, which lever-
age visually observable information and model complex non-linear relationships, seem to be a
good model for predicting purée concentrations since they are biologically inspired and modeled
after the human visual cortex for decision making [20].

6.1.2.3 Sample Patches

Figure 6.7 depicts sample patches for each class of purée flavour taken from the eighth patch
generated from the first subimage. The sample blueberry patches match the theoretical patches
generated using the optical dilution model in Figure 6.4 which supports the hypothesis that quan-
tifiable observational evidence can be used to estimate relative nutrient concentration. A colour
intensity gradient across the concentrations was observed. Several purée flavours, most promi-
nently in banana and beef, also exhibited a gradient across an image class most notably in the
higher concentrations. For example, from bottom to top, the 100% beef samples darken. This
was due to the highly cohesive nature of these samples; much more of the 5 mL sample loaded
onto the sheet vertically rather than spreading horizontally. Specifically, this was due to the prop-
erties of the initial viscosity of the samples (i.e., there was variance in the viscosity of the 100%
initial concentration) not because of the preparation of the dilution series. These gradients are
visual indications which the network may be using to distinguish between different concentration
classes.

6.1.2.4 Network Accuracy

The observations noted provide both quantitative (Figures 6.5 and 6.6) and qualitative (Fig-
ure 6.1) insight into performance. The method with the highest performance across flavours was
our proposed DNN with an overall accuracy of 92.2%±4.1%, sensitivity of 83.0%±1.5%, and
specificity of 95.0%±4.8%. This was closely followed by the handcrafted features paired with
random forests for discrimination between dilutions. The most consistently highest performing
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purée flavour was strawberry. However, the stacked autoencoder and softmax layer approach per-
formed best on blueberry. Across 10 trials, the mean accuracy for classifying blueberry dilutions
was 99.6%±0.6% (sensitivity 98.9%±1.9%, specificity 99.7%±0.5%). These results are consis-
tent with the descriptive analyses based on the high variance of colour, entropy (texture) observed
between classes of blueberry dilutions in addition to less image saturation across dilution classes.
For example, the lowest concentrations appeared more grey-blue compared to a more red-purple
of the high concentration sample. Additionally, the blueberry samples also contained flecks of
blueberry seeds or peels more visible in the lower concentrations than higher concentrations.
These intuitive observations are congruent with the optical dilution model and the quantitative
descriptive analyses with consistent and high accuracy. All other purée flavours’ average accu-
racy ranged between 73.3%±7.8% (chicken) and 98.2%±1.2% (strawberry). Across all seven
methods for discrimination between dilutions, chicken was the most difficult flavour which was
reflected in the single poorest accuracy, sensitivity, and specificity for every method. This was
unsurprising since chicken samples were relatively indistinguishable to the human eye for the
first several concentrations as they all simply looked white (i.e., high scattering, low absorption)
with no discernible features. This was consistent with the low entropy and high saturation seen in
Figure 6.6. While the softmax classification method using features from the stacked autoencoder
produced the highest accuracy across the 13 flavours, handcrafted features using random forests
for classification was a close second (accuracy: 0.922 vs 0.920).

Table 6.1: Summary of sensitivity, specificity and accuracy across all flavours using either self-
generated features extracted from an autoencoder (softmax) or colour and texture based hand-
crafted features for using random forest, SVM - linear kernel SVM, and SVM - radial basis
kernel implementations.

SUMMARY OF PERFORMANCE ACROSS 13 FLAVOURS

Method Sens Spec Acc
(µSens ± σSens) (µSpec ± σSpec) (µAcc ± σAcc)

Softmax 0.830 ± 0.150 0.950 ± 0.048 0.922 ± 0.041
SVM Linear 0.665 ± 0.188 0.890 ± 0.081 0.830 ± 0.057
SVM Radial Basis 0.577 ± 0.175 0.850 ± 0.078 0.770 ± 0.063
Random Forest 0.826 ± 0.158 0.949 ± 0.047 0.920 ± 0.044

6.1.2.5 Within-flavour Dilution Absorption Profile

The r2 values using an inverse exponential model were computed to compare the correlation and
goodness of fit between the nine colour features (three colour spaces) and nutritional informa-
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tion. To accomplish this, for each flavour at every dilution, the median was taken across the six
instances and colour information plotted against the nutritional information obtained from the
nutrition label (scaled accordingly by relative dilution). A summary of correlation coefficients
for each colour feature and nutrients across all dilutions and flavours for images can be found
in Table 6.2. Based on the trend across dilutions within a flavour, there was a clear increase in
perceived lightness (increased reflectance) with decreasing relative concentration. For example,
lower relative (e.g., 20% IC) concentrations appeared lighter than their higher relative concen-
tration counterparts (e.g., 100% IC). Looking to the optical dilution model, this is intuitive in
that lower relative concentrations would have fewer absorption events and a higher degree of
reflection from the underlying white surface upon which the images were taken. This is consis-
tent with changes and correlations with all three colour spaces. R,G,B, most consistently had
the highest correlations between colour features and flavours which all contain both chroma and
intensity information. To separate chroma and intensity information, HSV and CIELAB (Lab)
colour spaces were computed. In Lab colour space, the highest correlation was found in the L
channel comprised of the intensity information. In the case of the flavour “chicken”, consistent
with the observation that all images of this flavour were oversaturated, the correlation between
Lab channel r2 value were also the lowest with correlations of 0.11, 0.04, and 0.08, respectively.
This corroborates that the current system and analysis failed for this flavour.

Two additional trends were observed when exploring the correlation between colour features
and nutrients including: (1) the correlation between colour features and vitamin A (including
beta-carotene), which contain known chromophores in the visible spectrum, specifically with
absorption maxima around 328-575nm [253, 66] , (2) the special case of blueberry in that there
was an observable colour change shift due to the presence of anthocyanins in blueberry [221];
while the colour shift was not visibly perceptible in strawberry, they too contain anthocyanins
and were analysed for a similar trend [221]. For consistency and comparison in other food
applications [157, 192, 132, 204, 159], the Lab colour space will be discussed further.

6.1.2.6 Vitamin A Rich Purée Samples

In the case of purée samples containing high amounts of vitamin A there is a similar trend mov-
ing from highest relative initial concentration on the right with a slight up and leftward direction
with increased relative dilution. Specifically, in a 100mL sample of 100% IC samples the fol-
lowing flavours contain (% recommended daily intake): carrot (440%), sweet potato (200%),
squash (160%), mango (107%), apricot (21%). Based on Figure 6.8, this translates to a spec-
tral shift from a redder orange to a yellow and is consistent with the sample images as seen in
Figure 6.8. Lower relative concentration samples appeared more yellow, while higher relative
concentration samples appear more red. This was observed both qualitatively and quantitatively
in Figures 6.8(a) and 6.8(b) respectively.
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Table 6.2: r2 values demonstrating the correlation between different colour features and relative
nutritional density across flavours; the average and median r2 values over all flavours are also
presented.

FLAVOUR R G B H S V L a b
Apple 0.8 0.97 0.79 0.93 0.7 0.8 0.97 0.93 0.13
Apricot 0.54 1 0.92 1 0.72 0.54 0.99 0.95 0.16
Banana 0.79 0.2 0.33 0.18 0.33 0.68 0.21 0.08 0.39
Beef 0.28 0.16 0.11 0.01 0.04 0.28 0.2 0 0.12
Blueberry 0.96 0.99 0.99 0.87 0.94 0.97 1 0.46 0.09
Carrot 0.82 0.73 0.34 0.69 0.37 0.82 0.82 0.48 0.96
Chicken 0.04 0.19 0.08 0.45 0.08 0.17 0.11 0.04 0.08
Mango 0.53 0.94 0.6 0.9 0.55 0.53 0.92 0.66 0.95
Parsnip 0.67 0.6 0.25 0.66 0.22 0.67 0.62 0.05 0
Pea 0.79 0.61 0.8 0.75 0.01 0.76 0.68 0.64 0.61
Squash 0.78 0.93 0.34 0.9 0.39 0.78 0.94 0.77 0.97
Strawberry 0.94 0.98 0.93 0.91 0.88 0.94 0.99 0.79 0.28
Sweet Potato 0.88 0.73 0.17 0.67 0.18 0.88 0.81 0.53 0.87
Average 0.68 0.69 0.51 0.69 0.42 0.68 0.71 0.49 0.43
Median 0.79 0.73 0.34 0.75 0.37 0.76 0.82 0.53 0.28
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6.1.2.7 Anthocyanin-containing Purée Samples

Both blueberries and strawberries contain the phytonutrient anthocyanin which are pH sensi-
tive chromophores which shift from red to blue with increasing pH. For example, at a pH = 1,
anthocyanins appear red, while at a pH = 4.5 they appear colourless and at pH 7-8 they appear
blue [242]. As the undiluted purée becomes more diluted, its pH increases towards water causing
a shift from red to blue. Especially in the case of blueberry, this was observed both qualitatively
and quantitatively in Figures 6.9(a) and 6.9(b) respectively.

6.1.3 Discussion
While many nutrient related signals fall outside the visible spectrum and instead in the UV, IR, or
NIR, it may be possible to leverage visible spectrum colours to probe the presence or absence of
specific nutrients such as vitamin A and anthocyanins. That said, if both blueberry and strawberry
contain anthocyanins, why did the drastic colour shift only qualitatively observed in blueberry?
One potential reason for this may be that the pH of strawberry purée sample in its undiluted form
was above a pH of 4.5 (colourless anthocyanins). This may be plausible given the purée samples
contain water in the ingredients and that initially strawberries are of higher pH than blueberries
(pHblueberry = 3.64; pHstrawberry = 3.73 [56]). It may also be due to other pigment molecules
present in the strawberry which confound the anthocyanin colour shift. While qualitatively it
may not be clear, quantitatively the strawberry a,b colour features did follow the same trend as
that of blueberry.

While the highest performing method for discrimination between classes was the DNN, arguably,
the combination of hand-crafted features with random forests for discrimination performed com-
parably. However, when

Since the colour of the same sample compared between exposures was not equal it appears there
is a fundamental difference with how the light interacts with the samples. It would be interesting
to test this hypothesis by investigating whether there is a correlation between the degree of differ-
ence and composition and to explore whether there are correlations between colour (and perhaps
relative or normalized entropy) and composition of macronutrients (e.g., carbohydrates, protein,
fat) or micronutrients (e.g., vitamin A, iron). Additionally, as part of future work, this compu-
tational nutritional density analysis should be validated with traditional rheology methods. For
future extension, additional testing should be conducted using nutrient specific manipulations in
which food components to determine whether the optical dilution model holds true for changes
in substances extending beyond water content.
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6.2 Towards Computer Vision Powered Colour-Nutrient As-
sessment of Pureéd Food

Leveraging the work earlier in this chapter, we developed a second way of assessing nutrient
composition that, when paired with the autoencoder, can be used to estimate nutrient density for
optically active nutrients in the future. This second approach co-integrates machine learning and
computer vision with biophotonic analysis. Figure 6.10 shows a graphical representation of the
system architecture.

6.2.1 Methods
Fine-grained, single nutrient assessment is accomplished through biophotonic analysis and yields
an ellipse representing the Lab Gaussian distribution for each flavour and dilution, and a %
transmittance map comparing highest (sweet potato) and lowest (carrot) vitamin A content. For
this work, we used a transmittance-mode setup using petri dish samples to maintain strict volume
consistency between samples and reduce the effects of specular reflectance and maximize diffuse
reflectance. A five-tier dilution series was collected, this time in 15 mL aliquots in a petri-dish.
We selected five commercially-prepared puréed foods containing vitamin A: butternut squash,
carrot, mango, and 6- and 8-month sweet potato. Thirty full-field white normalized transmittance
images were acquired with a broadband tungsten-halogen light source and front glass fabric
diffuser under a glass loading plate. Pixelwise spectral transmittance was computed using white
and dark normalization.

To avoid photon boundary artifacts, a 35×35 mm region in the center of the sample was used
to analyze the distribution of pixel transmittance spectra. Colour values were converted to Lab
colour space, which has been shown to accurately capture the underlying chemical structure (i.e.,
conjugated double bonds) of carotenoid variants [159]. Images were processed using a photon
migration model in a homogeneous purée mixture and Beer-Lambert exponential decay of light
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attenuation [183]:

T =
I

I0
= exp(εH2O ⋅ cH2O ⋅ lH2O + εvitA ⋅ cvitA ⋅ lp) (6.3)

where T is transmittance, I0 and I are the incident and transmitted illumination respectively. In
the selected purées, we assume that the dominant absorber is vitamin A. For H2O and vitA, ε
are the chromophore extinction coefficients, c are the concentrations, and l are the mean photon
path length through each of water and the purée sample.

Coarse-grained bulk nutrient estimation was accomplished through predicting relative nutritional
density using the deep relative nutrient density autoencoder network described and trained above.
In this study, 400 RGB samples of size 25 × 50 were extracted from the transmittance image
acquisitions of the purée samples. To account for our imaging modality switch, using the trans-
mittance data, we fine-tuned our reflectance-mode pretrained sweet potato network from [181]
to a maximum of 400 epochs with a combined random 80% (n=320) of transmittance samples of
6- and 8-month sweet potato to form a general fine-tuned “sweet potato" relative nutrient density
network. To evaluate the accuracy of the proposed deep autoencoder network, we leveraged the
remaining 20% of transmittance samples and compute accuracy for each of: global sweet potato
(e.g., 6-month and 8-month combined), and individually for 6- and 8-month sweet potato. Five
separate runs were performed.

6.2.2 Results & Discussion
Figure 6.10(ii) depicts L-normalized a,b values for all tested flavours at each of five concentra-
tions relative to initial concentration. There is a trend observed with higher values of Vitamin
A nearer to the origin with lower values arching upward and to the right. This is congruent
with the visual appearance of the purées. For each flavour, the more highly concentrated purée
samples were darker and between flavours, there was an observable colour difference. Except
for carrots, the redder or more orange purées had higher %Daily Intake amounts of vitamin A.
One interesting observation is that while sweet potato had the highest % Daily Value of vitamin
A (%DVvitA), carrot, with the second lowest (%DVvitA) appeared much darker. We discuss and
rationalize this empirical observation.

To interpret these data and make sense of the carrot anomaly, a few inferences were required.
First, we had to look up the %DVvitA and scale it according to age range to obtain a specific
quantity of vitamin A. We used the adequate intake (AI) for vitamin A measured in micrograms
(mcg) of retinol activity equivalents (RAE) which compensates for the bioavailabilities of differ-
ent forms of vitamin A (e.g., 1 mcgretinol = 12 mcgβ−carotene = 24 mcgα−carotene). For infants 0-6
months and 7-12 months, the AI for vitamin A is 400 mcg, and 500 mcg for RAE [168]. When
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Table 6.3: Summary of the vitamin A related nutritional information from raw samples of sweet
potato and carrot [226, 173]

Vitamin A Component Value in mcg per 1g
Sweet Potato Carrot

Vitamin A, RAE 7.09 8.35
Retinol 0 0
β -carotene 85.09 82.85
α -carotene .07 34.77

considered together with the retinol activity equivalent, this implies that if considering a single
source of vitamin A, double the amount of α-carotene than β-carotene is required to achieve
100% adequate intake. This has some interesting optical implications. When considering the
chromophores contributing to vitamin A content, let’s focus on comparing the vitamin A com-
ponents in sweet potato (highest vitamin A) to carrot (second lowest vitamin A). While there
are similar amounts of β-carotene, in both sweet potato and carrot, carrot contains a substan-
tial amount of α-carotene (Table 6.3) [226, 173]. Assuming a homogeneous purée, normalized
incident illumination and relative concentrations, and breaking vitamin A down further into the
contributions from β- and α-carotene (pβ , pα) Equation 6.2 becomes:

A = −(εH2O(1 − cvitA) + εvitA(cpβ + cpα)l (6.4)

where A = − log T is optical absorbance. Now individually considering sweet potato (swp) with
negligible α-carotene, and carrot (car) in an undiluted pure sample we can further simplify by
assuming the contribution due to water is consistent across flavours with the same extinction
coefficient and pathlength which we represent with k, and expressing the concentration in mcg/g
we get:

Aswp = −k(85.09) (6.5)

Acar = −k(82.85 + 34.77) = −k(117.62) (6.6)

This implies carrot has a (Acar − Aswp) × 100%/Aswp = 38% higher absorbance than sweet
potato. Only considering vitamin A content as contributing to photon absorption events is likely
over-simplified especially when considering additional nutritional constituents which may affect
absorption (e.g., chlorophyll, iron) and scattering (e.g., fat, starch) of incident photons.

Visual and biophotonic trends observed can reinforce our discussion and interpretation of our
proposed fine-tuned deep autoencoder network. Regarding the former, analyzing the Lab space
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Table 6.4: Summary of sweet potato dilution prediction network accuracy.

Network Run sp6+sp8 sp6 only sp8 only
1503191536 79% 68% 92%
1503191538 80% 79% 81%
1503191540 75% 69% 81%
1503191542 79% 74% 83%
1503191544 78% 76% 79%
Average (µ ± σ): 78± 2% 73± 5% 83± 5%
Max: 80% 79% 92%

of the biophotonics transmittance data, we observed a trend with higher values of Vitamin A
nearer to the origin with lower values arching upward and to the right (Figure 6.10 (ii), Bio-
photonic Analysis left pane). This is congruent with the visual appearance of the purées; within
a flavour the more highly concentrated purée samples were darker and between flavours, there
was an observable colour difference. Except for carrots, the redder or more orange purées had
higher % Daily Value (%DV) amounts of vitamin A. While sweet potato had the highest %DV
of vitamin A (%DVvitA), carrot, with the lowest %DVvitA appeared more red. When β- and
α-carotene are considered together, it would seem carrot has more carotenoid absorbers present.
Since carotenoids absorb in the blue-green range, perhaps a larger relative amount of red is get-
ting transmitted, which may account for the higher % transmittance in carrot compared to sweet
potato as depicted in Figure 6.10 (iii). An additional observation was that while the nutritional
composition for beginner baby food (sp6) and intermediate baby food (sp8) were similar, visu-
ally they appeared different; sp6 was slightly redder and lighter than its sp8 counterpart and is
shown in Figure 6.10 (ii) and (iii) implying there were some nutritional differences perhaps not
accounted for within the nutritional label.

Given there were visible differences between flavours, we wanted to explore whether it was
possible to develop a generalizable deep autoencoder network for predicting relative nutritional
density related to vitamin A concentration. Table 6.4 shows results using a fine tuned sweet
potato deep network. For the combined testing on sp6 and sp8, we achieved a maximum top-1
prediction accuracy of 80%, with each the accuracy of sp6 and sp8 of 79%, and 92%, respec-
tively. One potential contributing factor to errors is the overlap between classes based on visual
and Lab similarity. For example, in Figure 6.10 (ii) there are three white ellipses near the in-
tercept which correspond to sp8100%, sp880%, and sp860% and these three overlap with the lower
most green ellipse which belongs to sp6100%. With more data for fine-tuning, this approach can
be expanded to additional flavours as well given that all except for carrot followed a similar trend
but shifted up the arch.
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Again, only considering vitamin A content as contributing to photon absorption events is likely
an over-simplification. However, it provides a toy-case which opens the door of possibility for us-
ing light to assess nutrient amounts for additional optically active nutrients. Additionally, actual
values of vitamin A in the purée may differ from its raw counterpart due to vitamin A’s ther-
mosensitivity and oxidation susceptibility during processing [127]. Exploring computer vision-
based techniques on how to distinguish between contributions from biophotonic absorbers and
scatterers may further enhance our ability to interpret nutritional quantity and quality. Next steps
include the integration and data fusion from these two co-processes and expansion to additional
nutrients and across a larger sample of food items.

6.3 Conclusions
We demonstrated the feasibility of automatic nutritional density analysis using deep neural net-
works to predict the concentration of commercially prepared purées. Dilution classification re-
sults were strongest for purée flavours with observable texture differences reflected in higher en-
tropy, higher variation in colour across dilution classes, and lower saturation. In contrast, purée
flavours performed more poorly when there were fewer visual cues to discriminate between di-
lution classes which was further reflected in low colour variation, low entropy across classes,
and high saturation. These findings begin to clarify the constraints of working towards classifi-
cation with naturalistic images taken in the field. Based on the promising preliminary findings
of quantitatively observing differences in vitamin A and anthocyanin content, optical techniques
leveraging visible spectrum information may be feasible for cost-effective nutrient density as-
sessment in commercially puréed food samples. Additional investigations must be conducted to
discern to which nutrients this approach may be reliably applied. This work provides evidence
in support of an optically motivated objective malnutrition risk assessment tool.

6.3.1 Key Contributions
• Novel way for assessing relative nutrient density through different optical windows (shown

here in the visible spectrum) to predict relative nutrient density of foods.

• This can inform new technology for supporting quality assessment of puréed foods.

• The application of deep learning in this field of food biophotonics is a novel contribution;
to date, machine learning approaches typically consider hand crafted features and do not
focus on predicting nutrient density.
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UP NEXT...
This chapter concludes one story of my learning journey since 2016. As with all research,
as one question is answered, another five are asked and our rear-view mirror can inform
how we might continue to improve, grow, and build beyond. Chapter 7 provides some
insight into my reflections on this learning journey, opportunities for further enhancement,
and the next important steps for translation to the LTC environment.
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Chapter 7

Towards Translation: Current Limitations
and Future Directions

This thesis brings together my work across several different fields including user-centered co-
design, nutrition, machine learning, and biophotonics. As a system, we have demonstrated that
AFINI-T shows promise for more accurately tracking resident food intake. This section brings
to a close a summary of current limitations and additional considerations followed by future
directions and opportunities to disrupt for translational impact.

7.1 Current Limitations and Additional Considerations
As with all science, there are different ways of approaching a problem with with their own unique
set of advantages, and limitations. This section outlines opportunities for further enhancing my
LTC food dataset, the issue of low-density foods, additional considerations for assessing vol-
ume estimation error, considerations for pushing food biophotonics further, and finally practical
implications of altering workflow in LTC with the AFINI-T system.

7.1.1 Datasets
The datasets collected as part of this thesis were the first representative of LTC foods, with pixel-
wise segmentation and depth map information, and at multiple simulated intake levels. These
provide a foundation upon which to grow. One initial way would be to prepare computationally
simulated plates for modified texture foods on a plate by combining modified texture single food
items from the modified texture food dataset into computationally simulated multi-item plates.
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This may provide additional insights into performance and accuracy more closely resembling
real-world data. Furthermore, additional expansion to test the system with a wider variety of
foods with fewer constraints may enhance generalizability and encourage uptake of this technol-
ogy. Moving forward, further data acquisition for additional food items and food plates would be
prudent for further enhancing generalizability and evaluating this technology in an increasingly
realistic real-world setting including piloting true intake acquisition (as opposed to simulated
levels of intake). The level of plate mixing in a real-world setting may not be similar to what was
tested within the scope of this thesis so should be considered as an avenue to further advance and
validate this research.

7.1.2 Low-Density Foods
Using the current system, low-density fluffy foods and rigid (e.g., salad, toast), highly absorptive
foods (e.g., blueberry) continue to be challenging. To further improve reliability and consistency
of the system, negative volume errors and the issue of low-density foods should be considered.
For the proposed EDFN-D, the volume errors for plates after the highest intake (P4 and P5)
were negative because the depth-refinement omitted volumes across pixels that were initially
segmented as food. As part of future work, it would be interesting to explore how necessary
initial colour-based segmentation is for establishing how much food is present or whether placing
greater weight on depth maps could improve accuracy for volume estimation accuracy. Given
the issue of low-density foods impacting volume regardless of segmentation method, this must
be considered a limitation of over-head food intake systems and these types of foods (e.g., potato
chips, salad) may need to be treated differently and separately to other foods. Perhaps repeat
imaging of these foods separately, flattening the food before imaging, or applying a general food
density score to estimate the range of volume values in these foods could address this limitation.

7.1.3 Volume Estimation
While we collected ground truth weighed food records, we did not account for ground truth
volume. As a result, we were working under the assumption that our volume estimation was
accurate. Volume validation against gold-standard ground truth (e.g., water displacement) is be
needed to corroborate the accuracy (when in actuality, some evidence suggests there’s less than
3% error [139]). This is an important consideration for more thoroughly quantifying error at
each stage. Given the state of the literature in how error is typically reported (if it is), this thesis
provides a step towards more transparent technology for supporting trust in the system.
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7.1.4 Pushing Food Biophotonics Further
If continuing to apply food biophotonics, careful consideration about which wavelengths would
be useful for capturing specific nutrients is needed. In the case of chicken, we saw that the visi-
ble spectrum was inadequate as all images, regardless of ISO, were oversaturated. Additionally,
since chicken contains fat and protein, this increases the number of scattering events making it
more difficult to make nutritional inferences. Were this approach deemed valuable to study fur-
ther, there may be more promise in applying more involved methods such as spatial frequency
domain imaging to quantify µa and µs at nutrient-specific wavelengths. To leverage visible spec-
trum information for the purpose of developing an optical imaging malnutrition risk assessment
tool capable of determining relative nutritional density, several additional steps are required.
First, a nutritional density prediction model must be developed based on the optical dilution
models of major food chromophores to predict: the concentration of chromophores in a sample
and the dilution of the sample based on the mode chromophore prediction. We can then estimate
purée depth based on: relative absorption (A), our known theoretical relative concentration (c),
and constant extinction coefficient (ε) for each puréed food flavour and potentially augment the
system with a depth camera to yield higher accuracy of pathlength estimates. From here, we may
disentangle µs from µa to make nutrient quantification inferences where µs relates to structure
and particle size whereas µa relates to composition [191]. Additionally, we could optically es-
timate particle size for food quality safety; too large of particles may impact safe consumption
of the food. Currently particle size is measured with physical deformation between the tines of
a fork [47]. An optical approach leveraging pixel depth compensation for scale inference may
improve measurement reliability, objectivity, and save personnel time. While technically chal-
lenging and interesting, the utility of this added information within the LTC context must be
weighed against the added cost and more specialized equipment required for further develop-
ment especially when considering the nutrients of interest in this population which tend not to
have optical activity in the visible spectrum.

7.1.5 Practical Implications of Altering Workflow
Since this technology would alter the workflow within the LTC context, to evaluate and validate
this work including feasibility, for translation of this work, a new model of care should be trialled.
While outside the scope of this thesis, this should include an assessment for required time neces-
sary to track residents as part of a cost-benefit analysis to a system like this, user evaluation of an
operational and integrated system within the iOS platform, and partnership with PointClickCare
for integration with their electronic health record system. When thinking towards translation to
LTC, additional considerations must include the computational power to run the analysis. Ide-
ally, the solution will be a self-contained fully integrated (perhaps battery powered) system, and
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function in real-time. There would need to be privacy considerations addressed with the need for
the technology to work both on- and offline. This is a current limitation of the system identified
through interviews with end-users. The current system requires wi-fi connectivity and practi-
cally, the wi-fi is quite intermittent within the Villages. This is also infeasible whenever residents
leave the Village setting for a dinner at a family member, friend, or restaurant. Leveraging iPads
and other edge devices may provide a unique solution and may also address potential privacy
concerns of updating resident food intake records. On the flip side, it may be prudent to con-
sider whether a missed meal necessitates more accurate tracking. Given the accepted approach
of collecting 3-day food intake records, primed with higher quality data, perhaps instead, the
focus should emphasize resident enjoyment of foods and operating within a sliding window to
assess 3-day food intake. Additional consideration for approximating intake from these settings
and linking to the USDA or Canadian Nutrient File may be beneficial for extending charting
accuracy beyond foods offered within the home.

7.2 Future Directions: Opportunities to Disrupt for Transla-
tional Impact

7.2.1 Further Automation for Decreased Time Requirements
One opportunity I see is to provide additional automation for decreased time requirements. Re-
garding the degree of human input for collecting data, hypothetically, if it was deemed too cum-
bersome to track on the food item level, we could do a bulk intake assuming equal consumption
across foods. This is how food intake is currently tracked but using subjective visual assessment.
Additionally, since food photography is inherently part of the workflow of the AFINI-T system
we would be able incorporate a posteriori assessments for dietitians to apply on a case-by-case
basis for residents requiring more in-depth assessment. This would help refine the referral pro-
cess. Currently there is no way for dietitians to know what was consumed to cross-reference
without them directly observing a mealtime experience. For the residents of interest, a dietitian
could assign specific labels for only the most at-risk individuals to get a more accurate individ-
ual assessment to go from coarse-grain to fine-grain where needed. This is distinctly different
from just using a general segmentation strategy because it has the infrastructure built-in to sup-
port fine-grain assessment by one-time application of labels to each class on the reference, full-
portion image. While in this current implementation, one reference full-portion image needs to
be hand-labelled at the pixel-level, unlike a semi-automatic method like graph cut, this reference
image can be used for ALL residents who ordered the same meal items at the same serving size
as opposed to defining it resident-by-resident image-by-image as would be required using graph
cut alone. This allows flexibility for the level of human involvement depending on the desired
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level of accuracy. By going this route even without assigning classes on the reference portion,
the system provides enhanced accuracy and removes subjectivity around bulk food intake esti-
mation in the coarse-estimation and empowers the dietitian to delve deeper for specific residents
on a further enhanced fine-grain assessment leveraging objective portion estimation enhanced
food photography. Hopefully even in this iteration instead of requiring each image to be hand-
segmented or segmented using graph cut, our approach of combining output from our EDFN-D
with the convolutional autoencoder will already remove a degree of burden and minimize barrier
to uptake. To confirm, further testing would need to be conducted to ensure these hypothetical
assumptions are valid in the real world, or the extent to which they hold true.

7.2.2 Incorporation of Fluid Intake Tracking
A second opportunity is to incorporate fluid intake tracking. While the focus here was on nu-
tritional intake through food, a system which additionally addresses fluid intake may be highly
desirable. Dehydration happens rapidly, is avoidable, and increases potentially avoidable hospi-
tal admissions [236]. In some of my unpublished work that didn’t make it into this thesis but
was presented at the Canadian Nutrition Society 2019 Annual Conference, I explored food in-
take patterns in Ontario LTC homes. This was part of secondary data analysis of the Making the
Most of Mealtimes data involving over 600 residents across 32 LTC homes in 4 provinces [123].
Through these analyses I’ve seen that proportionately large amounts of total caloric intake come
from fluids including juice (11% of calories), milk or soymilk (9%), and oral nutritional supple-
ments (3%). This is currently a blind spot in the AFINI-T system but accounts for over 20%
of average daily calories. While this is beyond the scope of this thesis, template matching for
vessel paired with a machine learning fluid module for classifying beverages based on observ-
able optical properties (e.g., colour, transparency) may be a valuable place to start and provides a
complementary and more holistic approach to food intake tracking. This may be where applying
food biophotonics could have the greatest impact from the LTC home perspective.

7.2.3 Supporting Enhanced Personalisation
A third opportunity is to support enhanced personalisation. While in the design phase, we learned
that personalisation would be valuable especially for flagging risk factors for residents, this was
not incorporated in the current form of the system. Two ways in which this could be addressed in
future iterations are (1) providing population-level food intake insights, and (2) at the individual
level. To apply population-level food intake insights, food databases and recipes could be linked
with food healthfulness scores such as the Healthy Eating Index [84] or Nutrient Rich Foods [62].
While generally in-line with the new Canada’s Food Guide recommendations of eating more of
vegetables and fruits, nuts, seeds, and plant-based protein sources [81], the Healthy Eating Index
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provides a scoring metric which encourages nutrient-dense foods and penalizes foods that are
more processed or high in saturated fat or salt. Similarly, the Nutrient Rich Food score does the
same but sums across nutrients to encourage and nutrients to limit. One other scoring system
which may be of relevance to this population is the Dietary Inflammatory Potential scale [209]
which was developed using associations between specific nutrients and blood biomarkers indi-
cating increased inflammation. As inflammation plays a role in both cardiovascular disease and
diabetes [146], two prevalent chronic conditions in this population (cardiovascular disease: 75%,
diabetes: 30% [35]), designing foods to reduce inflammatory potential may provide a comple-
mentary perspective to address chronic disease management more holistically. Incorporation of
these types of metrics may help aid menu-planning while optimising resident preferences and
choices.

7.2.3.1 AFINI-T data-driven approach to inform menu planning.

Related to the third opportunity, AFINI-T is platformed to provide actionable insights for di-
etitians and director of food services based on data-driven insights. For example, it could be
used to develop recipes that are more nutrient dense. Creating nutrient dense meals while min-
imizing cost is a contention in LTC as there is a fixed allocation of food per resident. In 2017
the raw food allocation in Ontario was $7.30–12.50 [235] and up to $9.54 in 2020 [11]. Until
recently, there was a disconnect between requirement to serve full portion to meet nutritional re-
quirements but because of budget, the foods were relatively inexpensively made and the quantity
required was unsuitable; served portions were much too large and there was a high degree of
food waste [65, 83]. AFINI-T can help provide tangible insights while switching toward more
nutrient dense foods with the ability to assess the cost benefit. Output on which foods are con-
sumed can inform how to design recipes to be smarter, more expensive but also more nutrient
dense, with the expectation of less waste and more of portion consumed, especially when paired
with software such as Food Processor for designing recipes. AFINI-T could close the loop on
what is actually consumed to provide quantitative tangible numbers to support effectiveness of
intervention trials as part of cost-benefit analysis.

It could also be used as a tool for developing more nutrient-dense recipes in which certain in-
gredients could be replaced with other. For example, replacing half of the ground beef in a chili
recipe for lentils to decrease saturated fat, cholesterol while increasing fibre. When considering
the individual-level, there may utility in learning resident preferences to support individual pref-
erences even with rotating team member support. AFINI-T can provide insights when assessing
the overall dining experience to help inform whether residents aren’t consuming a food because
they don’t like the taste. A complementary future direction would be a user study to leverage
information about what was consumed to learn whether a resident is consuming food because
it is what’s fed to them versus foods they actually enjoy. This could impact resident lives who
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are living with dementia. For example for residents who cannot communicate verbally, a valu-
able extension would be to tap into a specific resident’s intake trends over time to learn their
resident preferences through this data-driven approach to support enjoyment factor. Having a
system to provide these types of insights to new or different team members may support more
resident-directed care. Additionally, analysing individual-level food intake patterns may provide
a powerful tool to flag changes in eating habits. This could be used as a marker to potentially
flag residents’ worsening (or improving) condition. It may also serve as a means to flag resi-
dents who may be getting sick before symptoms present as a piece of infection control risk and
management.

7.2.4 Broadening AFINI-T’s Reach with the Mobile Era
The fourth opportunity relates to expanding AFINI-T both within LTC as well as beyond. Cur-
rently, menu planning and reporting to ministry is completed by the director and assistant director
of food services (DFS/ADFS). Cooks prepare the foods and dietary aides plate the food. It’s the
personal support workers who track and monitor resident intake with the registered team to pro-
cess information and dietitian overseeing with neighbourhood coordinator. The resident is not
currently in the loop. As part of the AFINI-T development, we did not include the include the
resident in the loop. For LTC not appropriate given degree of memory impairment and focus
needs to be on enjoyment not adding additional tasks. However, when considering translation to
additional settings such as retirement, independent living, or community living, it would be in-
teresting to have a system that would have the individual at centre of model of service (nurse-led
or dietitian-led) to get feedback on the individual’s specific nutrient targets. While this strategy
may not be appropriate for LTC within retirement, this may be different. Exploring acceptability
beyond LTC with the resident/patient at the centre of the process would provide valuable insights
as part of future work. In these settings, leveraging smart phones depth sensors would be ideal
as AFINI-T branches into the mobile realm. We already know that AFINI-T needs to work on
the iPad since this is how it’s currently being tracked in LTC; leveraging built-in depth sensors
already present in newer technology would enable AFIN-T to be brought into the mobile era and
provide added value especially as it broadens from LTC to the general public as an interesting
future avenue to explore.

Of course, at this stage, these hypotheses still require testing to assess their utility in practice.
While these strategies were not part of this thesis, these would be the next steps I would take
to expand the research program outlined here as I see these as providing additional supports
with great potential to impact and disrupt the way in which we assess nutrition management and
beyond.
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FINAL THOUGHTS

As you can see, the work outlined in this thesis on its journey towards translation is far
from complete but has provided me with a wealth of experiences that has helped me grow
both as a human and as a scientist. My hope is that this work may lay the foundation for
its translation through its blueprints and lessons learned. My dream would be to see this
come to fruition where after further validating and testing this technology, it could be
handed off to end-users to start assessing and making real-world impact in the daily lives
of LTC residents and beyond. And with that,

The adventure continues . . .
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