2,597 research outputs found

    Recent Trends in Computational Intelligence

    Get PDF
    Traditional models struggle to cope with complexity, noise, and the existence of a changing environment, while Computational Intelligence (CI) offers solutions to complicated problems as well as reverse problems. The main feature of CI is adaptability, spanning the fields of machine learning and computational neuroscience. CI also comprises biologically-inspired technologies such as the intellect of swarm as part of evolutionary computation and encompassing wider areas such as image processing, data collection, and natural language processing. This book aims to discuss the usage of CI for optimal solving of various applications proving its wide reach and relevance. Bounding of optimization methods and data mining strategies make a strong and reliable prediction tool for handling real-life applications

    Topological properties and organizing principles of semantic networks

    Full text link
    Interpreting natural language is an increasingly important task in computer algorithms due to the growing availability of unstructured textual data. Natural Language Processing (NLP) applications rely on semantic networks for structured knowledge representation. The fundamental properties of semantic networks must be taken into account when designing NLP algorithms, yet they remain to be structurally investigated. We study the properties of semantic networks from ConceptNet, defined by 7 semantic relations from 11 different languages. We find that semantic networks have universal basic properties: they are sparse, highly clustered, and many exhibit power-law degree distributions. Our findings show that the majority of the considered networks are scale-free. Some networks exhibit language-specific properties determined by grammatical rules, for example networks from highly inflected languages, such as e.g. Latin, German, French and Spanish, show peaks in the degree distribution that deviate from a power law. We find that depending on the semantic relation type and the language, the link formation in semantic networks is guided by different principles. In some networks the connections are similarity-based, while in others the connections are more complementarity-based. Finally, we demonstrate how knowledge of similarity and complementarity in semantic networks can improve NLP algorithms in missing link inference

    Automated Pilot Advisory System

    Get PDF
    An Automated Pilot Advisory System (APAS) was developed and operationally tested to demonstrate the concept that low cost automated systems can provide air traffic and aviation weather advisory information at high density uncontrolled airports. The system was designed to enhance the see and be seen rule of flight, and pilots who used the system preferred it over the self announcement system presently used at uncontrolled airports

    Providing Information by Resource- Constrained Data Analysis

    Get PDF
    The Collaborative Research Center SFB 876 (Providing Information by Resource-Constrained Data Analysis) brings together the research fields of data analysis (Data Mining, Knowledge Discovery in Data Bases, Machine Learning, Statistics) and embedded systems and enhances their methods such that information from distributed, dynamic masses of data becomes available anytime and anywhere. The research center approaches these problems with new algorithms respecting the resource constraints in the different scenarios. This Technical Report presents the work of the members of the integrated graduate school

    Discovering core terms for effective short text clustering

    Get PDF
    This thesis aims to address the current limitations in short texts clustering and provides a systematic framework that includes three novel methods to effectively measure similarity of two short texts, efficiently group short texts, and dynamically cluster short text streams

    Evaluation of Machine Learning Models for Smart Grid Parameters: Performance Analysis of ARIMA and Bi-LSTM

    Get PDF
    The integration of renewable energy resources into smart grids has become increasingly important to address the challenges of managing and forecasting energy production in the fourth energy revolution. To this end, artificial intelligence (AI) has emerged as a powerful tool for improving energy production control and management. This study investigates the application of machine learning techniques, specifically ARIMA (auto-regressive integrated moving average) and Bi-LSTM (bidirectional long short-term memory) models, for predicting solar power production for the next year. Using one year of real-time solar power production data, this study trains and tests these models on performance measures such as mean absolute error (MAE) and root mean squared error (RMSE). The results demonstrate that the Bi-LSTM (bidirectional long short-term memory) model outperforms the ARIMA (auto-regressive integrated moving average) model in terms of accuracy and is able to successfully identify intricate patterns and long-term relationships in the real-time-series data. The findings suggest that machine learning techniques can optimize the integration of renewable energy resources into smart grids, leading to more efficient and sustainable power systems.© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore