7,289 research outputs found

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Multiple query evaluation based on an enchanced genetic algorithm

    Get PDF
    International audienceRecent studies suggest that significant improvement in information retrieval performance can be achieved by combining multiple representations of an information need. The paper presents a genetic approach that combines the results from multiple query evaluations. The genetic algorithm aims to optimise the overall relevance estimate by exploring different directions of the document space. We investigate ways to improve the effectiveness of the genetic exploration by combining appropriate techniques and heuristics known in genetic theory or in the IR field. Indeed, the approach uses a niching technique to solve the relevance multimodality problem, a relevance feedback technique to perform genetic transformations on query formulations and evolution heuristics in order to improve the convergence conditions of the genetic process.The effectiveness of the global approach is demonstrated by comparing the retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation performed on a subset of TREC-4 using the Mercure IRS. Moreover, experimental results show the positive effect of the various techniques integrated to our genetic algorithm model

    Building simulated queries for known-item topics: an analysis using six european languages

    Get PDF
    There has been increased interest in the use of simulated queries for evaluation and estimation purposes in Information Retrieval. However, there are still many unaddressed issues regarding their usage and impact on evaluation because their quality, in terms of retrieval performance, is unlike real queries. In this paper, we focus on methods for building simulated known-item topics and explore their quality against real known-item topics. Using existing generation models as our starting point, we explore factors which may influence the generation of the known-item topic. Informed by this detailed analysis (on six European languages) we propose a model with improved document and term selection properties, showing that simulated known-item topics can be generated that are comparable to real known-item topics. This is a significant step towards validating the potential usefulness of simulated queries: for evaluation purposes, and because building models of querying behavior provides a deeper insight into the querying process so that better retrieval mechanisms can be developed to support the user

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    A new metric for patent retrieval evaluation

    Get PDF
    Patent retrieval is generally considered to be a recall-oriented information retrieval task that is growing in importance. Despite this fact, precision based scores such as mean average precision (MAP) remain the primary evaluation measures for patent retrieval. Our study examines different evaluation measures for the recall-oriented patent retrieval task and shows the limitations of the current scores in comparing different IR systems for this task. We introduce PRES, a novel evaluation metric for this type of application taking account of recall and user search effort. The behaviour of PRES is demonstrated on 48 runs from the CLEF-IP 2009 patent retrieval track. A full analysis of the performance of PRES shows its suitability for measuring the retrieval effectiveness of systems from a recall focused perspective taking into account the expected search effort of patent searchers

    A User Behavior Based Study on Search Engine Ranking

    Get PDF
    In this era of information explosion, finding convenient ways to get the desired information is becoming ever more vital today. With a review of the existing information retrieval and feedback technology, this paper puts forward a method to establish and update user profile model through obtaining user’s implicit feedbacks. The user’s explicit information is not a must. Instead, this method, with the implicit information acquired by observing the behaviors of the users when browsing web pages, establishes and updates the user profile model and thus reduces the workload.Keywords: Information retrieval?Implicit feedback?Relevance feedback; User profile mode

    PRES: A score metric for evaluating recall-oriented information retrieval applications

    Get PDF
    Information retrieval (IR) evaluation scores are generally designed to measure the effectiveness with which relevant documents are identified and retrieved. Many scores have been proposed for this purpose over the years. These have primarily focused on aspects of precision and recall, and while these are often discussed with equal importance, in practice most attention has been given to precision focused metrics. Even for recalloriented IR tasks of growing importance, such as patent retrieval, these precision based scores remain the primary evaluation measures. Our study examines different evaluation measures for a recall-oriented patent retrieval task and demonstrates the limitations of the current scores in comparing different IR systems for this task. We introduce PRES, a novel evaluation metric for this type of application taking account of recall and the user’s search effort. The behaviour of PRES is demonstrated on 48 runs from the CLEF-IP 2009 patent retrieval track. A full analysis of the performance of PRES shows its suitability for measuring the retrieval effectiveness of systems from a recall focused perspective taking into account the user’s expected search effort

    Studying and handling iterated algorithmic biases in human and machine learning interaction.

    Get PDF
    Algorithmic bias consists of biased predictions born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, the interaction between people and algorithms can exacerbate bias such that neither the human nor the algorithms receive unbiased data. Thus, algorithmic bias can be introduced not only before and after the machine learning process but sometimes also in the middle of the learning process. With a handful of exceptions, only a few categories of bias have been studied in Machine Learning, and there are few, if any, studies of the impact of bias on both human behavior and algorithm performance. Although most research treats algorithmic bias as a static factor, we argue that algorithmic bias interacts with humans in an iterative manner producing a long-term effect on algorithms\u27 performance. Recommender systems involve the natural interaction between humans and machine learning algorithms that may introduce bias over time during a continuous feedback loop, leading to increasingly biased recommendations. Therefore, in this work, we view a Recommender system environment as generating a continuous chain of events as a result of the interactions between users and the recommender system outputs over time. For this purpose, In the first part of this dissertation, we employ an iterated-learning framework that is inspired from human language evolution to study the impact of interaction between machine learning algorithms and humans. Specifically, our goal is to study the impact of the interaction between two sources of bias: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). Specifically, we investigate three forms of iterated algorithmic bias (i.e. personalization filter, active learning, and a random baseline) and how they affect the behavior of machine learning algorithms. Our controlled experiments which simulate content-based filters, demonstrate that the three iterated bias modes, initial training data class imbalance, and human action affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to increased inequality in estimated relevance and to a limited human ability to discover relevant data. In the second part of this dissertation work, we focus on collaborative filtering recommender systems which suffer from additional biases due to the popularity of certain items, which when coupled with the iterated bias emerging from the feedback loop between human and algorithms, leads to an increased divide between the popular items (the haves) and the unpopular items (the have-nots). We thus propose several debiasing algorithms, including a novel blind spot aware matrix factorization algorithm, and evaluate how our proposed algorithms impact both prediction accuracy and the trends of increase or decrease in the inequality of the popularity distribution of items over time. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5) amounted to 4\% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75\% of the relevant testing set. In the case of collaborative filtering for synthetic rating data, and when using 20 latent factors, Conventional Matrix Factorization resulted in a ranking-based blind spot (items whose predicted ratings are below 90\% of the maximum predicted ratings) ranging between 95\% and 99\% of all items on average. Both Propensity-based Matrix Factorization methods resulted in blind spots consisting of between 94\% and 96\% of all items; while the Blind spot aware Matrix Factorization resulted in a ranking-based blind spot with around 90\% to 94\% of all items. For a semi-synthetic data (a real rating data completed with Matrix Factorization), Matrix Factorization using 20 latent factors, resulted in a ranking-based blind spot containing between 95\% and 99\% of all items. Popularity-based and Poisson based propensity-based Matrix Factorization resulted in a ranking-based blind spot with between 96\% and 97\% if all items; while the blind spot aware Matrix Factorization resulted in a ranking-based blind spot with between 92\% and 96\% of all items. Considering that recommender systems are typically used as gateways that filter massive amounts of information (in the millions) for relevance, these blind spot percentage result differences (every 1\% amounts to tens of thousands of items or options) show that debiasing these systems can have significant repercussions on the amount of information and the space of options that can be discovered by humans who interact with algorithmic filters

    Simulating Users in Interactive Web Table Retrieval

    Full text link
    Considering the multimodal signals of search items is beneficial for retrieval effectiveness. Especially in web table retrieval (WTR) experiments, accounting for multimodal properties of tables boosts effectiveness. However, it still remains an open question how the single modalities affect user experience in particular. Previous work analyzed WTR performance in ad-hoc retrieval benchmarks, which neglects interactive search behavior and limits the conclusion about the implications for real-world user environments. To this end, this work presents an in-depth evaluation of simulated interactive WTR search sessions as a more cost-efficient and reproducible alternative to real user studies. As a first of its kind, we introduce interactive query reformulation strategies based on Doc2Query, incorporating cognitive states of simulated user knowledge. Our evaluations include two perspectives on user effectiveness by considering different cost paradigms, namely query-wise and time-oriented measures of effort. Our multi-perspective evaluation scheme reveals new insights about query strategies, the impact of modalities, and different user types in simulated WTR search sessions.Comment: 4 pages + references; accepted at CIKM'2
    • 

    corecore