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ABSTRACT

STUDYING AND HANDLING ITERATED ALGORITHMIC BIASES IN HUMAN AND

MACHINE LEARNING INTERACTION

Wenlong Sun

May, 2019

Algorithmic bias consists of biased predictions born from ingesting unchecked infor-

mation, such as biased samples and biased labels. Furthermore, the interaction between

people and algorithms can exacerbate bias such that neither the human nor the algorithms

receive unbiased data. Thus, algorithmic bias can be introduced not only before and after

the machine learning process but sometimes also in the middle of the learning process. With

a handful of exceptions, only a few categories of bias have been studied in Machine Learn-

ing, and there are few, if any, studies of the impact of bias on both human behavior and

algorithm performance. Although most research treats algorithmic bias as a static factor,

we argue that algorithmic bias interacts with humans in an iterative manner producing a

long-term effect on algorithms’ performance.

Recommender systems involve the natural interaction between humans and machine

learning algorithms that may introduce bias over time during a continuous feedback loop,

leading to increasingly biased recommendations. Therefore, in this work, we view a Rec-

ommender system environment as generating a continuous chain of events as a result of

the interactions between users and the recommender system outputs over time. For this

purpose, In the first part of this dissertation, we employ an iterated-learning framework

that is inspired from human language evolution to study the impact of interaction between
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machine learning algorithms and humans. Specifically, our goal is to study the impact of the

interaction between two sources of bias: the process by which people select information to

label (human action); and the process by which an algorithm selects the subset of informa-

tion to present to people (iterated algorithmic bias mode). Specifically, we investigate three

forms of iterated algorithmic bias (i.e. personalization filter, active learning, and a random

baseline) and how they affect the behavior of machine learning algorithms. Our controlled

experiments which simulate content-based filters, demonstrate that the three iterated bias

modes, initial training data class imbalance, and human action affect the models learned

by machine learning algorithms. We also found that iterated filter bias, which is prominent

in personalized user interfaces, can lead to increased inequality in estimated relevance and

to a limited human ability to discover relevant data.

In the second part of this dissertation work, we focus on collaborative filtering recom-

mender systems which suffer from additional biases due to the popularity of certain items,

which when coupled with the iterated bias emerging from the feedback loop between human

and algorithms, leads to an increased divide between the popular items (the haves) and the

unpopular items (the have-nots). We thus propose several debiasing algorithms, including

a novel blind spot aware matrix factorization algorithm, and evaluate how our proposed

algorithms impact both prediction accuracy and the trends of increase or decrease in the

inequality of the popularity distribution of items over time.

Our findings indicate that the relevance blind spot (items from the testing set whose

predicted relevance probability is less than 0.5) amounted to 4% of all relevant items when

using a content-based filter that predicts relevant items. A similar simulation using a real-

life rating data set found that the same filter resulted in a blind spot size of 75% of the

relevant testing set.

In the case of collaborative filtering for synthetic rating data, and when using 20

latent factors, Conventional Matrix Factorization resulted in a ranking-based blind spot

(items whose predicted ratings are below 90% of the maximum predicted ratings) ranging

between 95% and 99% of all items on average. Both Propensity-based Matrix Factorization

v



methods resulted in blind spots consisting of between 94% and 96% of all items; while the

Blind spot aware Matrix Factorization resulted in a ranking-based blind spot with around

90% to 94% of all items. For a semi-synthetic data (a real rating data completed with

Matrix Factorization), Matrix Factorization using 20 latent factors, resulted in a ranking-

based blind spot containing between 95% and 99% of all items. Popularity-based and

Poisson based propensity-based Matrix Factorization resulted in a ranking-based blind spot

with between 96% and 97% if all items; while the blind spot aware Matrix Factorization

resulted in a ranking-based blind spot with between 92% and 96% of all items.

Considering that recommender systems are typically used as gateways that filter

massive amounts of information (in the millions) for relevance, these blind spot percentage

result differences (every 1% amounts to tens of thousands of items or options) show that

debiasing these systems can have significant repercussions on the amount of information

and the space of options that can be discovered by humans who interact with algorithmic

filters.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Websites and online services offer large amounts of information, products, and

choices to people. This large amount of information is only useful to the extent that people

can find what they are interested in. Researchers have proposed many ways to help users

discover what they like. However, all existing approaches aid people by suppressing infor-

mation that is determined to be disliked or not relevant. Those approaches are considered

as an information filter, which allows certain type of information going through, while keeps

others away from people. Thus, all of these methods, by gating access to information, have

potentially profound implications for what information people can and cannot find, and

thus what they see, purchase, and learn.

There are two major adaptive paradigms to help sift through information, infor-

mation retrieval and recommender systems. Information retrieval techniques [1–7] have

given rise to the modern search engines which return relevant results, following a user’s

explicit query. For instance, in the probabilistic retrieval model [2], optimal retrieval is

obtained when search results are ranked according to their relevance probabilities, which

has profound effects on how users find relevant items.

Recommender systems (RS), on the other hand, generally do not await an explicit

query to provide results [8–20], consisting of recommend items which are believed to be

of interest to the users. Recommender systems can be categorizeed based on which data

they use and how they predict user interests. The first type is content-based filtering

(CBF) algorithms [10,21,22], which rely on item attributes or user demographics, but often

not relations between users (i.e. social relations), as input data. Collaborative Filtering
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(CF) [8, 15, 23–26], on the other hand, does not require item attributes or user attributes.

Rather it makes predictions about what a user would like based on what other similar users

liked. Both adopt algorithms, e.g. K-nearest neighbors [27, 28] and non-negative matrix

factorization (NMF) [16, 29–31], that have close analogs in the psychology literature on

concept learning, e.g. exemplar models [32–34] and probabilistic topic models [35,36].

Information filtering algorithms [9, 37, 38] similarly provide users with a list of rel-

evant results, but do so in response to a query. One classic example is the Rocchio fil-

ter [39–41], which modifies the user’s initial query after a first iteration of search to help

filter less relevant results. The query is modified based on the set of initial search result

documents which are labeled by the user as relevant and non-relevant, respectively. The

new query (which is treated like a pseudo-document) is modified by adding and subtracting

a weighted combination of relevant and non-relevant documents, respectively. This is quite

similar to content-based recommendation, where information about the items is used to

rank potentially relevant results. The process of interaction between query and information

filtering algorithm output forms a cyclical feedback loop.

Machine 
Learning 

Algorithms

Humans Information

Figure 1.1: Illustration of the interaction between humans, machine learning algorithms,
and information. Information is provided in the form of both data from the user to help
algorithms learn human preferences and recommendations from the algorithm to help reduce
information overload and guide the user.

Common to both recommender systems and information filters is: (1) selection, of

a subset of data about which people express their preference, by a process that is not

random sampling, and (2) an iterative learning process in which people’s responses to the
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selected subset are used to train the algorithm for subsequent iterations. The data used

to train and optimize performance of these systems are based on human actions. Thus,

data that are observed and omitted are not randomly selected, but are the consequences

of people’s choices. Recommendation systems suggest items predicted to be of interest to

a user (e.g. movies, books, news) based on their user profile [10, 11, 24]. The prediction

can be based on people’s explicit (e.g. ratings) or implicit (e.g. their browsing or purchase

history) data [42–45], or even query patterns [46]. Research into human choice suggests

that both explicit and implicit choices systematically vary based on context, especially the

other options that are present when choosing [47–49].

In addition to the simple effects of the interaction between algorithms’ recommen-

dations and people’s choices, people may reason about the processes that underlie the

algorithms. Research in cognitive science has shown that people reason about evidence

selected by other people. In [50], a computational framework was proposed for modeling

how people’s inferences may change as a consequence of reasoning about why data were

selected. This framework has been formalized in learning from helpful and knowledgeable

teachers [51–54], deceptive informants [55], and epistemic trust [56–58]. People’s reasoning

about the intentional nature of the algorithms may exacerbate the effects of cyclic interac-

tion between the algorithms’ recommendations and people’s choices.

Figure 1.1 illustrates the scope of this work. Machine learning algorithms are affected

by information flowing into it and human action. On the other hand, algorithms choose

data to use for their training and affect how the information is presented to users. Finally,

humans interact with algorithms via their action after consuming the information provided

from the algorithms.

We propose a framework for investigating the implications of interactions between

human and algorithms, that draws on diverse literature to provide algorithmic, mathemat-

ical, computational, and behavioral tools for investigating human-algorithm interaction.

Our approach draws on foundational algorithms for selecting and filtering of data from

computer science, while also adapting mathematical methods from the study of cultural
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evolution [59–61] to formalize the implications of iterative interactions.

Key to our approach is the focus on the sources and consequences of bias in data

collected “in the wild”. The two primary sources of bias are from algorithms and from

humans. Algorithms, such as recommender systems, necessarily filter information with the

goal of presenting humans with typically the most preferred content. Then, based on the

labels provided by people, learning algorithms are trained to optimize future recommenda-

tions. This framework differs from standard learning theory in that the training data are

not randomly sampled, which calls into question any guarantees about learning from such

data. The second source of bias is people. In addition to receiving iterated information

optimized to their preferences, people are also not required to provide labels for any of the

presented data. Moreover, people’s choices are highly non-random, and may reflect not

only their opinions about the presented content, but also inferences about why the content

was presented. Finally, bias introduced into the data at any point may be magnified by

retraining of models and associated implications for recommendations, yielding algorithms

whose performance is at variance with theoretical expectations. We argue that either of the

individual sources of bias is in principle sufficient to yield instability, and that this suggests

the need for new theories and methods for understanding performance of such systems in

terms of human-algorithm interactions. We propose to characterize the conditions under

which we would expect these to lead to systematic bias in the selection of information by

algorithms, and identify conditions under which we can “undo” the effects of these biases

to obtain accurate estimates from biased data. We expect the results to contribute in-

sights back to the fundamental psychology of human reasoning, choice and learning and the

fundamental computer science of learning, recommendation and information filtering.

1.2 Problem Statement

In our proposed work, we aim to build a framework for investigating the implications

of interactions between humans and algorithms in terms of bias. Five major questions will

be answered in this work:
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1) How can we build a model to simulate the interaction between humans and algo-

rithms, and how does selection bias (iterated algorithmic bias) in machine learning systems

affect algorithm performance over time?

2) How different initializations of learning algorithm lead to different trends of learn-

ing given the iterated algorithmic bias modes?

3) How human action (willing to label data whenever requested to) affects algorithm

performance over time?

4) How can we measure the impact of different iterated algorithmic bias modes on

algorithm performance.

5) How can we debias iterated bias in a recommender system.

1.3 Research Contributions

Previous research treated algorithmic bias as a static factor which fails to capture

the dynamic and iterative properties of bias that evolve as a result of human-machine

interaction. Inspired by language learning, we developed an iterated algorithmic bias model,

which considers algorithmic bias as a continuously evolving factor connecting humans and

machine learning algorithms through continuous interaction.

In this work, we first present a preliminary theoretical model and analysis of the

mutual interaction between humans and algorithms. We also define the concepts of blind

spots for analyzing the impact of the evolution of bias through iterated learning. To study

this impact, we formulate several research questions regarding the effect of iterated algo-

rithmic biases on the behavior of the iterated learning algorithms. Our research questions

aim to better understand whether and how iterated algorithmic bias can have an impact

on the behavior of simple relevance prediction algorithms.

Secondly, we argue that a recommender system is a continuous chain of events, in

which users actively interact with the output of a recommender system. We propose several

debiasing algorithms for recommender systems, particularly those based on Matrix Factor-

ization, during this chain of events. More specifically, we propose three algorithms: 1) a
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unified recommendation and active learning strategy (active recommendation) used during

the interaction between users and a RS algorithm, which tries to reduce uncertainty during

recommendations, while keeping good algorithm performance; 2) an exposure-based collab-

orative filtering recommendation model that is also combined with active recommendation

to further debias the recommendation system; and 3) a blind spot aware matrix factor-

ization algorithm, which takes into account the blind spot when learning how to predict

recommendations.

1.3.1 Study of Bias in Iterated Learning

The first part of the problem stated in section 1.2 is answered by developing a

theoretical and simulation framework for studying bias evolution in interactive learning

and elaborating several research questions, including:

(RQ 1): How does class imbalanced initialization affect learned boundaries?

(RQ 2): How do different iterated algorithmic biases have different effects on the

behavior of models learned by a ML algorithm (with human action probability

equal to 1)? We consider three aspects of a learned model to measure the

outcome algorithm’s bias:

• 1) Boundary shifts between pre and post iteration (Eq. 3.22);

• 2) Gini coefficient on predicted testing set labels (Eq. 5.10);

• 3) blind spot between pre and post iteration (Eq. 3.21).

(RQ 3): How does class imbalanced initialization affect the model learned during

iterative learning? We consider the same three aspects to measure the effects

as in RQ 1.

1.3.2 Study of Human Algorithm Interaction

The second part of the problem stated in Section 1.2 is addressed by studying how

humans’ willing to label the points will affect the algorithm performance.
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(RQ 4): How does human action (whether to label data when requested to by

the machine learning algorithm) affect the boundary shift? We consider the

same three aspects to measure the effects as in RQ 1.

1.3.3 Study of Debiasing Recommender Systems

Recommender Systems (RSs) are widely used to help online-users discover products,

books, news, music, movies, courses, restaurants, etc. One major problem with RSs is that

they may introduce biases during the continuous feedback loop that occurs with users, and

this may lead the RS to make increasingly biased recommendations over time. In this work,

we view a RS environment as generating a continuous chain of events that are the result of

interactions between users and the RS. Based on this model, we propose several debiasing

algorithms during this chain of events, and then evaluate how these algorithms impact the

predictive accuracy of the RS, as well as trends in the popularity distribution of items over

time. We also propose a novel blind spot awareness matrix factorization (MF) to debias

the RS. Results show that the proposed algorithms successfully debias the RS.

1.4 Dissertation Outline

The document started with an introduction to recommendation systems, active

learning, iterated learning and bias in Chapter 1. We review additional related work in

Chapter 2. Chapter 3 presents a formal model that can help study the problems being

researched and pave the way toward studying the impact of iterated bias experimentally.

Chapter 4 presents experimental results for the study of iterated algorithmic bias in human

and machine learning interaction. Chapter 5 presents research on debiasing recommender

systems within an iterative human and machine learning algorithms interaction. Finally,

Chapter 6 presents the conclusion of our research and future work.
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CHAPTER 2

BACKGROUND

2.1 Recommendation Systems

The large amount of information available on the Web has increased the difficulty

of finding what we really want. Also people often need to make choices without enough

personal experience with the related items. Recommendation systems are developed to

assist and help this process. Sometimes, we get recommendations from other people either

by words, online reviews, or some survey results.

Many approaches embody recommender systems as a way of personalizing their

content for users. They have the effect of guiding users in a personalized way to interesting

objects in a large pool of possible items [62]. Typically, there are three main families of

recommendation algorithms: Collaborative filtering (CF), Content-based filtering (CBF),

and Hybrid approaches (combining CF and CBF).

2.1.1 Collaborative-Filtering Recommendation Systems

The technique that is most widely used in recommendation systems (RS) is collab-

orative filtering [63]. In collaborative-filtering, items are recommended to a particular user

when other similar users also prefer those items. Similar users may be defined as users

having similar ratings on items or users having liked similar items. A collaborative filter-

ing system collects all information about a user’s interest on the items and calculates the

similarity among the users interests. Users with similar Interests will be clustered into the

same group.

Collaborative-Filtering relies only on ratings generated by the users on items [64].

The system recommends to the targeted customer items, which have been rated by other
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people, whose ratings are similar to the ratings of the targeted user. The system needs to

collect the profile of each user, which can be the set of rated items from that user, the rating

can be a Boolean or real number based on different applications. Collaboration filtering

searches for similar users (nearest neighbors) or group of users (nearest neighborhood) and

then uses ratings from this set of users (groups of users) to predict items that will be liked

by the current user [65].

Matrix factorization (MF) is one of the successful CF techniques. MF approximates

the rating, rij given by user i on item j using a factorization so that rij ≈ piqj . To solve

for pi and qj , different approaches can be used to minimize the error between rij and piqj ,

such as stochastic gradient descent [30]. Many practical approaches have been developed.

Singular value decomposition (SVD) is another form of matrix factorization, which usually

is considered as baseline to compare other methods [66]. In SVD, the aim is to obtain a

factorization of A = UΣV T . The SVD decomposition is to find a lower dimensional feature

space. Probabilistic Matrix Factorization (PMF) is a probabilistic linear model with the

assumption that the ratings follows a Gaussian distribution with noise [67].The user-item

matrix is represented as the product of a lower-rank user feature matrix and an item feature

matrix in Probabilistic Matrix Factorization (PMF). It defines the conditional distribution

over the observed ratings and latent user-feature matrix, item-feature matrix.

p(R|U, V, δ2) =

N∏
i=1

M∏
j=1

[N(Rij |UTi Vj , δ2)]Iij

p(U |δ2U ) =
N∏
i=1

N(Ui|0, δ2UI)

p(V |δ2V ) =
M∏
j=1

N(Vj |0, δ2V I)

where N(.) is the probability density function of the Gaussian distribution. Iij is the

indicator function that is equal to 1 if user i rated item j and equal to 0 otherwise. p(U |δ2U )

and p(U |δ2V ) are the probability distributions for latent space U and V , respectively.

Collaborative filtering recommendation systems have been in existence for a long

time in the academic and the industry environments. Electronic mail was one of the first
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areas where CF was used and the system was called Tapestry, which is also known as the

first recommendation system [8]. CF can also be based on implicit usage data such as web

click streams. For example, Nasraoui et al. used a fuzzy approximation reasoning method

to build an intelligent web recommendation system [68]. They extracted the user profiles

using web usage mining of implicit user interest data and applied clustering algorithms to

group the user information in the user database.

2.1.2 Content-Based Recommendation Systems

Content-based recommendation systems recommend an item to a user based on the

description of the item and user’s interests. Since the user’s interests are described in the

user’s profile, this recommendation algorithm is usually learned from the user’s profile and

his/her feedback from previous items [21]. In Content-based recommendation, filtering is

done based on users’ preferred items. In this technique, the items are recommended based

on the user and item database. In that database, different items are added from what a user

has used in the previous times based on user’s personal preferences. Based on the database,

user’s data files can be constructed according to question-query format, item ratings, or the

user’s navigation information, which shows the users’ potential interest. With content-based

recommendation techniques, systems can be built mainly based on the available database

and past experience of the users. The disadvantage of this method is that only part of

the users give ratings properly [69]. Several algorithms have been developed to learn user

profiles, along with the informative description of the items involved.

Item description is very important when using content-based recommendation sys-

tems. In many domains, data are not well structured, thus the first step for content-based

recommendation systems is to convert the data to a well structured representation. For

example, unrestricted text data are presented using stemming at the very beginning [70].

The purpose of stemming is to generate terms which really reflects the common mean-

ing behind words such as “classification”, “classifier”, “classify”, and “classifies”. TF-IDF

(term-frequency times inverse document frequency) is widely used to represent words in
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documents. The TF-IDF weight of a term t in a document d is a function which calcu-

lates the weight based on 1) the frequency of t in document d, the number of documents

which contains the term t, and finally the total number of documents in the collection.

Mooney et al. proposed content-based recommendations of books using a Naive Bayes text

classifier [71].

Content-based recommendation systems have a “Profile Learner” module as well.

This part collects data representing users’ interests in order to construct the user profiles.

For example, a web page recommender could implement a relevance feedback method, in

which it can learn the combination of vectors of positive and negative examples into a

prototype vector inferring the user profile [70].

An obvious advantage of content-based filtering algorithms is that the system does

not require domain knowledge. it is sufficient to collect clear feedback from the users

about their preferences. This would make content-based filtering the preferred algorithm in

situations where explicit ratings from users are difficult to collect. A second advantage is

that content-based filtering algorithms have better performance at finding topically similar

items than CF algorithms, since CBF systems mainly focus on content similarity (such as the

text description of items). When content information is large and complex, it is sometimes

difficult to analyze content data for the purpose of recommendations, for example movies

reviews and music.

2.1.3 Hybrid Recommendation Systems

Collaborative filtering requires a large historical data set, it also suffers from the cold-

start problem. Content-based recommendation systems need detailed profile information

on both users and items. Both techniques thus have their respective disadvantages. Hybrid

recommendation techniques aim to gain better performance with fewer of the drawbacks of

any individual technique [63].

Several combination methods have been proposed over the years. P-Tango system

used a weighted recommendation system, in which the ranking score of an item is calculated
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by all available recommendation techniques used in this system [72], then it combined

these scores using a linear model. Smyth and Cotter proposed a mixed recommendation

system for television viewing, in which they applied content-based techniques to the textual

description of the TV show, and collaborative filtering on the interest of other users [73].

Another way of combination is to consider the collaborative information as extra feature

data associated with each example, and then apply content-based techniques on this new

data set. [12] developed a feature combination system for a rule learner in which it used both

user ratings and content features for recommending movies, and got significant improvement

in accuracy. Inspired by weighted recommendation systems, researchers developed meta-

level combination, in which one recommendation technique’s output is used as the input

to another technique. Balabanovic built a web filtering system with such a meta-level

combination [74].

Other methods of combination include cascade and feature augmentation. In the

cascade technique, one recommendation technique is applied first to generate a ranking

of the candidate, then a second technique is used to refine the recommendation [63]. For

feature augmentation, the first technique is used to produce a rating of an item, then

the information of this item is combined into the processing of the next recommendation

technique.

2.1.4 User Feedback

Recommendation systems have a natural property involving human action in terms of

feedback. For example, people interact with the output of recommendation system, leading

to the impact in both ways : 1) The recommendation systems show only some ‘filtered items’

or outputs to the user; 2) The user tends to label or rate those outputs only (in the strict

case). Studies have shown that the interaction between users and recommendations will

lead to a well-known phenomenon named ‘filter bubble’ [75], and it will finally decrease the

user satisfaction about recommender systems slowly [76]. It is also important to notice that

assuming that the inner relation between users and items is not changing over time may lead
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to users seeing only a narrow part of the entire set of options available to recommend [77].

Generally, user feedback in recommendation systems is classified as either explicit

feedback which contains ratings by users regarding their preference in products, or implicit

feedback such as clicks or purchase [76]. A considerable amount of work on integrating the

information from the two types of user feedback mechanisms in recommendation system

in order to improve and personalize recommendations are performed [14, 30, 75]. Here,

we do not focus on improving the accuracy of recommender systems, but instead, we are

trying to understand how the interaction will change people’ ability to discover new items.

Another way of looking at this is to find the exploration and exploitation trade-off in filtering

algorithms.

2.2 Active Learning

Active learning (sometimes called “query learning” in statistical literature) is usually

described compared with passive learning, which is sometimes referred to as supervised

learning and aims to build up an accurate predictor from labeled training data [78]. A

passive learner receives a random data set and learns a classifier as output. However, in

many cases labeling instances is money and time consuming. In the other hand, a large

pool of unlabeled samples are easy to get. Now, instead of choosing random samples to be

manually labeled for training, the algorithm can interactively query the user to obtain the

desired data sample to be labeled [79]. Generally, there are five query approaches :

• Uncertainty sampling: In this approach, an active learner queries the users with the

sample which is least certain to label. This approach tries to label those points for

which the current model is least certain [80]. For three or more class labels, a general

uncertainty model is:

x∗ = argmaxx(1− Pθ(ŷ|x))

where ŷ = argmaxyPθ(y|x) is the class label with the highest posterior probability

under the model θ.
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• Query by committee: Several models are trained on the current labeled data then

vote on the output for unlabeled data [81]. This strategy maintains a committee

C = {θ(1), ..., θ(c)} of different models, which are all trained using the labeled set, but

indicating contradictory hypotheses. Then each committee member can vote on the

labeling of query hypotheses.

• Expected model change: This approach uses a decision-theoretic approach, selecting

the instance that would impart the greatest change to the current model if we knew

its label, and label those points which would most change the current model [82].

• Expected error reduction: Compared with the Query-by-committee approach, this

approach aims to measure how much its generalization error is likely to be reduced

instead of how much the model will change. Basically it tries to measure the expected

future error of the model trained on those remaining unlabeled instances, and labels

those points which would most reduce the model’s generalization error [82]. .

• Variance reduction: This approach tries to reduce generalization error indirectly by

minimizing the output variance, which has a closed-form solution, and labels those

points that would minimize the output variance, which is one of the components of

error [83].. A learner’s expected future error can be written as:

ET [(ŷ − y)2|x] = E[(y − E[y|x])2] + (EL[ŷ]− E[y|x])2 + EL[(ŷ − EL[ŷ])2]

Here EL[.] is an expectation over the labeled set. E[.] is an expectation over the

conditional density P (y|x), and ET is an expectation over both.

Active Learning has been widely used for decades. Simon Tang proposed a new algorithm

for performing active learning with SVM, which took advantage of the duality between the

parameter space and feature space and significantly reduced the need for labeled training

instances [84]. In text classification, most of the active learning algorithms mainly select a

single unlabeled document in each iteration, Steven Hoi developed a novel approach which

selected a batch of text documents for labeling manually in each iteration. The author

performed experiments on large-scale text categorization, and results were convincing [85].
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Active learning is also used in speech recognition [86–88]. Sequence labeling, in

natural language processing is extremely time consuming, Burr Settles presented several

query strategies for probabilistic sequence models for natural language processing [86]. The

criteria to select queries is to find a way to assess how informative each instance is. Zhang

et al. [87] modified several query models for sequences and proposed an active learning

framework for content-based information retrieval, it was tested on image retrieval from a

database. Most commonly, the approach to collect data in active learning is to select data

points that are close to the boundary. Spoken dialog systems aim to identify the intended

meaning of human utterances. The intent of the speaker is identified from the recognized

sequence by a spoken language understanding system (SLU). This task can be considered

as a classification problem. Gokhan Tur [88] combined active and semi-supervised learning

for a better understanding of spoken language.

In recommendation systems and information retrieval, active learning is also used

widely. Recommendation systems aim to present a particular item to user: to learn more

about user’s preferences, or likes and dislikes. Then active learning naturally comes in, since

user can help the recommendation system to get new information about the system [89].

Most commonly, the approach to collect data in active learning is to select data points close

to the boundary. Hieu T. Nguyen [75] built a framework which incorporated clustering into

active learning. The algorithm first constructed a classifier on cluster representatives, and

then propagated the classification decision to the other samples via a local noise model.

2.3 Iterated Learning and Language Evolution

In language learning, humans form their own mapping rules after listening to others,

and then speak the language following the rules they learned, which will affect the next

learner.

Researchers have shown that iterated learning can produce meaningful structure

patterns in language learning [90–94]. In particular, the process of language evolution can

be viewed in terms of a Markov chain, as shown in Figure 2.1. The first learner sees some
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linguistic data and forms a hypothesis, then the learner produces their own data, which is

the input to the next learner. After enough iterations, the hypothesis emerged from this

process becomes certain; we should expected an iterated learning chain to converge to the

prior distribution of all hypotheses given that the learner is a Bayesian learner [59]. That

is, the knowledge learned is not accumulated during the whole process. We refer to this

iterated learning model as pure iterated learning (PIL). One problem about this iterated

language learning model is that it is difficult practically to prove the convergence or the

boundary, even if it is proved theoretically [92]. Rafferty et al. gave an upper bound about

the convergence, saying the convergence occurs in a number of generations that is nlog(n)

for Bayesian learning of the ranking of n constraints or the n binary parameters values [95].

Extension from previous work of iterated learning on language has also attracted at-

tention from researchers. Perfors et al. revealed that the learners will converge to languages

that depend on the structure as well as their prior biases when certain assumptions about

the independence of language and the world are abandoned [96]. In Figure 2.1, there is no

dependency between current input x and the previous learned hypothesis, which represents

the graphic model of PIL.

Iterated learning, on the other hand, is similar to the online learning process [97].

However, they are different in several ways. Online learning appears in a consecutive man-

ner. The learner is required to provide an answer to a given question on each round. To

answer the question, the learner uses a prediction model, or a hypothesis, which maps from

sets of questions to the set of answers. After prediction, the quality is measured based

on the true answers. The goal is to minimize the cumulative loss in the online learning

process [98]. Meanwhile, in iterated learning, we are interested in investigating the given

information’s effect on the learned hypothesis.

2.4 Relationship between Iterated Learning and Information Retrieval

It is interesting to recognize how Iterated Learning manifests itself in the context

of adaptive information filters, as exemplified by modern search engines. Based on infor-

16



mation retrieval, modern search engines return relevant results, following a user’s explicit

query [7]. For instance, in the probabilistic retrieval model, optimal retrieval is obtained

when search results are ranked according to their relevance probabilities [2]. Recommender

systems, on the other hand, generally do not await an explicit query to provide results [14].

Both Information retrieval and recommender system, to some extent, require information

selection to get better results, thus iterated interactive learning naturally fits the purpose

of studying the interaction of algorithms and humans.

x0

h1y0 y1

x2x1

y2h2 yn

xn

hn+1hn...

Figure 2.1: Illustration of iterated learning with(bottom)/without(top) dependency from
previous iterations. In iterated learning, information is passed through selected data, where
the inputs, x, are independent of the inferred hypothesis.

2.5 Bias in Machine Learning

Studying bias within the machine learning context is not new. According to Mitchell

[99], bias is “any basis for choosing one generalization over another, other than strict consis-

tency with the instances.” Gordon extended this concept to include any factor which affects

the definition or selection of inductive hypotheses [100]. Bias is used in some well-known

machine learning algorithms. For example, decision-tree algorithms have a bias for simple

decision trees, while rule induction algorithms have a bias for simple disjunctive normal

form (DNF) expressions, neural-network methods have a bias for linear threshold functions,

and finally naive Bayes can be considered to have a bias for functions that assume condi-

tional independence between features [71]. The fit between a particular bias and a problem

generally affects the performance of a machine learning algorithm on that problem.

There are mainly two types of bias in machine learning: 1) representational bias
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and 2) procedural bias. As quoted in [100] “representational bias characterize the search

space in machine learning algorithms”. Typically, those search spaces are the spaces of the

hypotheses. A procedural bias (also called algorithmic bias ) decides the order of traversal

of the states in the space defined by a representational bias [101]. Examples of procedural

biases include the beam width in a beam search and a preference for simple or specific

hypotheses. Both representational and procedural biases can be assessed by determining

the effect they have on learning performance.

Algorithmic bias can be categorized based on the time in which it occurs during

the machine learning process [102]. Generally, selecting biased training samples leads to a

biased model [103]. Training data bias may come from various sources which depend on the

application, such as human labeling, sample selection and others. Several machine learning

techniques have been proposed to deal with this problem [104–110]. Charles Elkan proposed

to build a more economically coherent cost matrix when dealing with the classification prob-

lem in the economical domain [104]. Zadrozny formalized the sample selection bias problem

in a number of well-known classifier learning methods and studied how they are affected

the sample selection bias [105]. She categorized learning algorithms into ‘global learner’

and ‘local learner’ based on how the boundary are affected by the selected biased samples.

Bianca Zadrozny proposed a re-weighting strategy based on cost-proportionate weighting of

the training examples, which can be accomplished either by bringing the weights to the clas-

sification algorithm (as often done in boosting), or by careful sub-sampling [106]. Miroslav

Dudik et al. studied the problem of density estimation under sample selection bias and

proposed three bias-correction approaches, which are based on the statistical information

of samples [107]

The post-algorithmic bias emerges when users interpret the output of machine learn-

ing algorithms [111,112]. Ricardo Baeza-Yates [111] suggests that the most popular knowl-

edge in the web are actually coming from a few users, who are very active. When the users

take in those knowledge, they automatically become the victims of algorithmic bias [111].

Dino Pedreshi argued that algorithmic bias has been identified and critiqued for its impact
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on search engine results, social media platforms, privacy, and racial profiling [112], and sug-

gested that removing some of the discriminate features from data is not enough. The author

introduced a notion of discriminatory classification which they claimed to have better bias

correction impact.

Recent research in algorithmic bias has generally focused on the ethical problems

that machine learning algorithms might create [113–117]. For instance, Zook et al. [116]

have recently argued that researchers must carefully check the impact of algorithms on

specific groups of people (such as defined by gender and race) before deploying algorithms.

Kirkpatrick [113] illustrated the ethical problems that can occur when algorithmic bias is

introduced in the justice system. Garcia [115] stated that algorithmic bias may worsen racist

problems in certain circumstances. More recently, Kate Crawford’s presentation related to

research on the fairness of machine learning algorithms attracted more attention from the

machine learning community to the problem of algorithmic bias [116]. Helen Nissenbaum

indicated that algorithmic bias occurs when a computer system behaves in ways that catches

the implicit values of humans involved in that data collection, selection, or use [118]. Kate

Crawford argues that algorithmic bias is getting worse if the learning algorithms are ‘black-

box’ [114]. In all the above discussion of bias [113–118], the bias impact from the interaction

between humans and computer systems was not mentioned.

In statistics, bias refers to the systematic distortion of a statistic. Here we can

distinguish a biased sample, which means a sample that is incorrectly assumed to be a

random sample of a population, and estimator bias, which results from an estimator whose

expectation differs from the true value of the parameter [119].

2.6 Related Work on Debiasing Recommender Systems

Work on debiasing RSs has been done from various perspectives. Hu et al. first

proposed using an implicit feedback model to measure the level of confidence that a user

will see an item [120]. This is similar to the modern notion of a propensity score [121],

which is defined as the probability that an item will be seen by the user. Schnabel et
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al. [121] argued that recommending items in a RS is analogous to exposing a patient to a

randomized treatment in a medical study, and proposed the introduction of a propensity-

scored recommendation learning system. Liang et al. proposed that a propensity score

matrix be calculated first, followed by a weighted MF based on the propensity score ma-

trix [122, 123]. Badami et al. studied item polarization in recommender system and devel-

oped algorithms to counter polarization in recommender system [124]. Abdollahpouri et al.

proposed a fairness-aware regularization aiming to reduce popularity bias in recommender

system [125]. Chanely et al. made a series of interesting observations about how algorithms

increase the homogeneity among users, thereby decreasing the utility gained by users of the

system, and they presented a simulation to illustrate how this effect occurs [126]. Yang et

al. considered implicit feedback models instead of explicit feedback models in their study,

and proposed ways to estimate a propensity matrix based exclusively on popularity, which

essentially describes propensity as an estimator of the true probability distribution [127].

Singh et al. proposed a method to construct fair rankings among relevant items, positing

that the problem originates at the ranking step (recommendation step) and not during the

learning process [128]. Their methodology ranked the items based on a calculated utility,

and added a fairness constraint based on the propensity score. Sinha et al. considered the

RS as a feedback loop, assumed that user ratings are true prior to the feedback loop, and

proposed a method to deconvolve this feedback mechanism, assuming that each feedback

response follows a certain mathematical relationship to previous recommendations [129].

O. Nasraoui et al. considered the continuous interaction between learning algorithms and

human as a Markov Chain of event, and proposed several approaches to debias the learn-

ing algorithms [77]. Shafto et al. studied how the continuous interaction between learning

algorithms and human affect behavior patterns of human and proposed possible cognitive

intervene to debias the interaction [130].
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2.7 Summary and Conclusions

This chapter presented an introduction to collaborative filtering and content-based

recommendation systems, and how it can be used as a good way to learn human-algorithm

interaction. We then reviewed active learning and its applications as well as biases in ma-

chine learning. After that, we gave an introduction on iterated learning and its relationship

with language evolution, as well as information retrieval.
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CHAPTER 3

ITERATED ALGORITHMIC BIAS IN ONLINE LEARNING

3.1 Introduction

Recommendation systems are becoming increasingly common and powerful nowa-

days, and are widely used in industry, where websites and Apps recommend items and

change the order and the appearance of information on user interfaces to potential users to

achieve a variety of goals such as increasing sales, or to assist users in finding information

faster. Users can easily get engaged with recommendation systems on social media net-

works, such as Twitter, and Facebook. Recommendation systems are therefore good tools

to study the interaction between human users (the consumers of algorithms) and algorithms.

In our proposed work, we will focus on content-based recommendation systems, because the

adopted framework studies the interaction as more items are added to the training data

used to learn a machine learning model. We describe a methodology to study continuous

interaction between humans and algorithms while modeling iterated bias that builds-up

during this interaction.

3.2 Iterated Algorithmic Bias

We have reviewed the iterated algorithmic bias in Section 2.5 . which can refer to

a wide array of meanings depending on the field and context, ranging from social bias to

machine learning bias. Within our scope, bias is closer to the sample bias and estimator bias

from statistics, however, we are interested in what we call ‘iterated algorithmic bias‘

which is the dynamic bias that occurs during the selection by machine learning algorithms

of data to show to the user to request labels in order to construct more training data,

and subsequently update their prediction model, and how this bias affects the learned (or
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estimated) model in successive iterations. Table 3.1 shows the related work and how our

proposed framework is different from existing approaches.

Taking all the above in consideration, we observe that most previous research has

treated algorithmic bias as a static factor, which fails to capture the iterative nature of bias

that is borne from continuous interaction between humans and algorithms. We argue that

algorithmic bias evolves with human interaction in an iterative manner, which may have a

long-term effect on algorithm performance and humans’ discovery and learning.
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Figure 3.1: Evolution of bias between algorithm and human. In sub-figure (a), biased data
from a human may lead to a biased algorithm, this is pre-algorithmic bias. In sub-figure (b),
a biased algorithmic output might affect human behavior: For instance, by hiding certain
items from humans, algorithms may affect human discovery, learning, and awareness in the
long term. Sub-figure (c) indicates a continuous interaction between humans and algorithms
that generates bias that we refer to as iterated bias, namely bias that results from
repeated interaction between humans and algorithms.

In this work, we focus on simulating how the data that is selected to be presented to

users affects the algorithm’s performance and how human choice of action (specifically, to

label or not to label the selected instance(s), that are presented to them by the algorithm),

may in turn affect the algorithm’s performance (see Figure 3.1). In this work, we choose

recommendation systems as the machine learning algorithm to be studied. One reason is

that recommendation systems have more direct interaction options with humans, while in-

formation retrieval focuses on getting relevant information only. Recommendation systems

have a natural property involving human action. For example, people interact with the

output of recommendation system, leading to the impact in both ways : 1) The recommen-

dation systems show only some ‘filtered items’ or outputs to the user; 2) The user tends to

label or rate those outputs only (in the strict case) (see Figure 3.2). We further simplify
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TABLE 3.1

Different bias types in recent research. Iterated algorithmic bias happens when an algorithm
interacts with human response continuously, and updates its model after receiving feedback
from the human. Meanwhile, the algorithm interacts with the human by showing only
selected items or options. Other types of bias are static, which means they have a one-time
influence on an algorithm.

Bias type Iterative Ethical issue Pre-algorithm Post-algorithm Research

Feature 7 X X 7 [113–117]

Human
label

7 X X 7 [108–110]

Sample
selection

7 X X 7 [104–107]

Iterated
algorith-
mic

X X X X this study

the recommendation problem into a 2-class classification problem, e.g. like/relevant (class

1) or dislike/non-relevant (class 0), thus focusing on a personalized content-based filtering

recommendation algorithm.

Recommendation
system based on
Machine Learning

5 3 1

4 6 2

2 1 7

✰✰✰✰✰

✰✰✰✰

✰✰✰✰

Figure 3.2: Illustration of the feedback loop in recommender system.
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3.3 Human-Algorithm Interaction Mechanism

As stated in Section 2.3, language learning and machine learning have several prop-

erties in common. Figure 3.3 shows the analogy between language evolution and iterated

machine learning. For example, a ‘hypothesis‘ in language is analogous to a ‘model‘ in

machine learning. Learning a language which gets transmitted throughout consecutive

generations of humans is analogous to learning an online model throughout consecutive

iterations of machine learning. Inspired by the language evolution, we adopt this concept

into human-algorithm interaction.

Map symbol to 
meaning or concept

Map an option or Choice 
to a relevance label

Supervised 
machine 
learning

Language
learning

Human speakers 
reasoning 

Supervised machine 
learning algorithm

Linguistic data:
(Meaning, 
Utterances)

Training data points:
(Input item, 
Relevance/class label)

Hypothesis Predictive model

Generation Iteration

(a) Analogy between language learning and machine
learning

meaning & 
utterance

Hypothesis Hypothesis

data data data

Model Model

ML ML

...

...

meaning & 
utterance

meaning & 
utterance

data

Model Model

ML ML ...data data

(b) Chain of events in language learning (top), machine
learning (middle) and iterative human-machine learn-
ing algorithm interaction (bottom). ML refers to Ma-
chine Learning

Figure 3.3: Language learning vs. machine learning. Language learning is analogous to ma-
chine learning in several aspects, such as ‘hypothesis‘ to ‘model‘ in sub-figure (a). Learning
a language which gets transmitted throughout consecutive generations of human speakers is
analogous to learning a model through consecutive iterations of online machine learning in
sub-figure (b). In the iterative human-machine learning algorithm interaction, the output
from ML affects human behavior and human also interact with the output which affects
next iteration.

Because we are interested in studying the interaction between machine learning al-

gorithms and humans, we adopt an efficient way to observe the effect from both sides by

using iterated interaction between algorithm and human action. Researchers from behav-

ioral science have developed frameworks for investigating the effect of iterative interactions.

It is known that iterated interaction can be considered to generate Markov chains in the

long-run, which gives us a well-formed framework to analyze the asymptotic effects of local
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decision. As stated before, we consider a simplified recommendation problem consisting of

a 2-class classification problem. Thus we start with simple supervised machine learning to

predict the ’relevance’ class label of an item for a single user.

x0

h1y0 y1

x2x1

y2h2 yn

xn

hn+1hn...

Figure 3.4: Illustration of iterated learning with dependency from previous iterations. In
iterated learning, information is passed through selected data, where the next inputs are
selected based on the previous hypothesis. This is more consistent with recommender
systems and information filtering circumstances.

To begin, we consider three possible mechanisms for selecting information to present

to users: Random, Active-bias, and Filter-bias. These three mechanisms simulate

different regimes. Random selection is unbiased and used here purely as baseline for no

filtering. Active-bias selection introduces a bias whose goal is to accurately predict user’s

preferences. Filter-bias selection brings a bias whose goal is to provide relevant information

or preferred items.

Before we go into the three forms of iterated algorithmic bias, we first investigate

Pure Iterated Learning (PIL). We adopt some of the concepts from Griffiths [59]. Consider

a task in which the algorithm learns a mapping from a set of m inputs X = {x1, ..., xm} to

m corresponding outputs {y1, ..., ym} through a latent hypothesis h . For instance, based on

previous purchase or rating data (x, y), a recommendation system will collect a new data

about purchased item (xnew,ynew) and update its model to recommend more interesting

items to users. Here, x represents the algorithm’s selections and y represents people’s

responses (e.g. likes/dislikes). Following Griffiths’ model for human learners, we assume a

Bayesian model for prediction [131]

Figure 3.4 shows the iterated learning strategy with dependency comparing what is

in language evolution. We adapt some of the concepts from Griffiths [131].
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3.3.1 Iterated Learning without Dependency

Iterated learning provides a framework to analyze the evolution of the learned hy-

potheses with subsequent interactions between the user and the algorithm. Without de-

pendencies between variables, the next generated input did not depend on the previous

hypothesis learned by the algorithm. In our study, we need to take into account the depen-

dency between the current hypothesis and the next input, because the model or hypothesis

learned by the algorithm (learner) is used as a filter to the types of data that will control

what data can be seen by the user.

Consider the same task as figure 2.1. Given input data point x, hypothesis h decides

a conditional probability of y, i.e. p(y|x, h), which connects the inputs and outputs. In

the learning step n + 1, the algorithm sees data point(xn,yn) and computes a posterior

distribution over hn+1 using Bayes rule,

p(hn+1|xn,yn) =
p(yn|xn, hn+1)p(hn+1)

p(yn|xn)
(3.1)

where

p(yn|xn) =
∑
h′∈H

p(yn|xn, h′)p(h′) (3.2)

and it is assumed that each yi is independent given xi and h, so p(y|x, h′) =∏
i p(yi|xi, h′).

With multiple learning iterations, the process will form a Markov chain, in which

the posterior distribution at n + 1 depends on the distribution at n through the prior the

distribution p(hn+1) and the sampling process p(yn|xn, hn+1). With any Markov chain,

the long-run behavior of iterated learning can therefore be considered as transition matrix,

T (hn+1, hn) = p(hn+1|hn). The probability p(hn+1|hn) can be calculated as follows:

p(hn+1|hn) =
∑
x∈X

∑
y∈Y

p(hn+1|x,y)p(y|x, hn)p(x) (3.3)

where the equation has been simplified according to the dependency structure in
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figure 2.1. The asymptotic behavior of the Markov chain can be derived with the transition

matrix T (hn+1, hn). This chain, being ergodic, converges to a stationary distribution π(h)

satisfying the equation π(hn+1) =
∑

hn∈H T (hn+1, hn)π(hn).

p(hn+1) =
∑
hn∈H

p(hn+1|hn)p(hn) = p(hn) (3.4)

This means that algorithms that engage in iterated learning will converge to the prior

distribution over hypotheses. In other words, if at each step the system randomly selects

inputs x, which are then paired with outputs y, and it does not accumulate the data over

time, then it will loose all information. Without the dependency, at step n+ 1 we see input

xn+1 which is generated from a distribution p(x) that is independent of all other variables.

3.3.2 Iterated Learning with Iterated Filter-bias Dependency

The extent of the departure that we propose from a conventional machine learning

framework toward a human - machine learning framework, can be measured by the contrast

between the evolution of iterated learning without and with the added dependency. As

shown in Figure 3.4, without the dependency, the algorithm at step n accepts input point

x from a set X, which is generated from a distribution p(x) that is independent of all

other variables. We used notation q(x) to represent this independence. Here, q(x) indicates

an unbiased sample from the world, rather than a selection made by the algorithms. On

the other hand, with the dependency, the algorithm at iteration n sees input xn which is

generated from both the objective distribution q(x) and another distribution pseen(x) that

captures the dependency on the previous hypothesis hn which implies future bias of what

can be seen by the user. Thus, the probability of input item x is given by:

p(x|hn) = (1− ε)pseen(x|hn) + εq(x) (3.5)

Recall that the probability of seeing an item is related to its rank in a rating based rec-

ommendation system or an optimal probabilistic information filter [2]. For a rating based

recommendation system, the ranking is based on the prediction from the system, or the

probability of relevance from prediction. In both situations, the selected data point x is
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likely to be highly rated or relevant, given h. In most circumstances, the recommendation

system has a preferred goal, such as recommending relevant items (with y=1). Then x will

be chosen based on the probability of relevance p(y = 1|x, hn), x ∈ X. Assume that we

have a candidate pool X at time n (In practice X would be the data points or items that

the system can recommend at time n), then

pseen(x|hn) =
p(y = 1|x, hn)∑

x∈X p(y = 1|x, hn)
(3.6)

The selection of inputs depends on the hypothesis, and therefore information is not unbiased,

p(x|hn) 6= q(x). The derivations of the transition probabilities in Eq. 3.6 will be modified

to take into account Eq. 3.5, and will become

p(hn+1|hn) =
∑
x∈X

∑
y∈Y

p(hn+1|x,y)p(y|x, hn)pseen(x|hn) (3.7)

Eq. 3.7 can be used to derive the asymptotic behavior of the Markov chain with transition

matrix T (hn+1) = p(hn+1|hn), i.e.

p(hn+1) = εp(hn+1) + (1− ε)Tbias (3.8)

Tbias =

∑
x∈X

∑
y∈Y

p(hn+1|x,y)
∑
hn∈H

p(y|x, hn)pseen(x|hn)

 p(hn) (3.9)

To illustrate the effects of filter bias, we can analyze a simple and most extreme case

where the filtering algorithm shows only the most relevant data in the next iteration (e.g.

top-1 recommender). Hence

xtop = argmax
x
P (y|x, h) (3.10)

pseen(x|hn) =

 1 for x = xtop

0 otherwise

 (3.11)

Tbias =

∑
x∈X

∑
y∈Y

p(hn+1|x,y)
∑
hn∈H

p(y|xtopn , hn)

 p(hn). (3.12)

Based on equation 3.7, the transition matrix is related to the probability of item x

being seen by the user, which is the probability of belonging to class y = 1. The fact that

xtopn maximizes p(y|x, h) suggests limitations to the ability to learn from such data. This
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limitation of seeing more items causes a well-known problem in language learning study, i.e.,

‘information bottleneck’ [96]. Amy Perfors and Daniel Navarro showed that human learners

with Bayes reasoning will converge to the expected posterior distribution over languages

given meaningful event in the world [96]. Specifically, the selection of relevant data allows

the possibility of learning that an input that is predicted to be relevant is not, but does

not allow the possibility of learning that an input that is predicted to be irrelevant is

actually relevant. In this sense, selection of evidence based on relevance is related

to the confirmation bias in cognitive science, where learners have been observed to

(arguably maladaptively) select data which they believe to be true (i.e. they fail to attempt

to falsify their hypotheses) [132]. Put differently, recommendation algorithms may

induce a blind spot where data that are potentially important for understanding

relevance are never seen.

A major impact of this filter bias is that it shapes what data each leaner will see,

which is similar to ‘information bottleneck’ as stated in [96]. We now prove the convergence

of this Markov chains. Let’s assume that after long-run with filter bias, the learner will see

data x∗, x∗ ∈ q(x). We start with three important assumptions:

• 1) All the learners in the Markov chain follow a Bayesian rule;

• 2) The filter bias affects the data that the learner will see, therefore it changes the

structure of the data that the learner consumes;

• 3) The posterior probability of a hypothesis given x is close to its expected pos-

terior probability given the generating distribution q(x) for some x, i.e., p(h|x) ≈

Eq(x∗)[p(h|x∗)] =
∑

x∗ p(h|x∗)q(x∗).

Lemma: The stationary distribution of the Markov chain with filter bias is π(h),

where π(h) =
∑

x p(h|x)q(x).

Proof: According to the prove from Griffith [59] and Perfors [96], for the π(h) =∑
x p(h|x)q(x) to be the stationary distribution, the following must be true.
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π(hn+1) =
∑
hn

p(hn+1|hn)π(hn)

=
∑
hn∈H

∑
x∈X

∑
y∈Y

p(hn+1|x, y)p(y|x, hn)q(x)

π(hn)

=
∑
hn∈H

∑
x∈X

∑
y∈Y

p(hn+1|x, y)p(y|x, hn)q(x)

∑
x∗

p(hn|x∗)q(x∗)

≈
∑
hn∈H

∑
x∈X

∑
y∈Y

p(hn+1|x, y)p(y|x, hn)q(x)

 p(hn|x)

=
∑
x∈X

∑
y∈Y

p(hn+1|x, y)q(x)
∑
hn∈H

p(y|x, hn)p(hn|x)

=
∑
x∈X

q(x)
∑
y∈Y

p(hn+1|x, y)p(y|x)

=
∑
x

p(hn+1|x)q(x)

= π(hn+1) (3.13)

The proof indicates that there is a relationship between hn and x, here x are mean-

ingful events/points from the generating distribution q(x). It successively shows that the

convergence is also affected by the structure of the data.

3.3.3 Iterated Learning with Iterated Active-bias Dependency

Active learning was first introduced to reduce the number of labeled samples needed

for learning an accurate predictive model, and thus accelerate the speed of learning towards

an expected goal [78, 133]. Instead of choosing random samples to be manually labeled for

the training set, the algorithm can interactively query the user to obtain the desired data

sample to be labeled [82].

pactive(x|h) ∝ 1− p(ŷ|x, h) (3.14)

where ŷ = arg maxy (p(y|x, h)). That is, x values are selected to be least certain about ŷ,

the predicted y value.
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Assuming a simplified algorithm where only the very uncertain data are selected,

we can investigate the limiting behavior of an algorithm with the active learning bias.

Assuming a mixture of random sampling and active learning, we obtain:

xact = arg max
x

(1− p(ŷ|x, h)) (3.15)

p(hn+1) = εp(hn+1) + (1− ε)Tactive (3.16)

Where

Tactive =

∑
x∈X

∑
y∈Y

p(hn+1|x,y)
∑
hn∈H

p(y|xactn , hn)

 p(hn). (3.17)

The limiting behavior depends on the iterated active learning bias, xactn . This is, in

most cases, in opposition to the goal of filtering, the algorithm will only select data point(s)

which are closest to the learned model’s boundary, if we are learning a classifier for example.

In contrast, the filtering algorithm is almost certain to pick items that it knows are relevant.

This is, of course, consistent with the different goals of recommendation and active

learning. The analysis illustrates how the long-run implications of these different biases

may be analyzed: By deriving the transition matrices implied by iterated application of

data selection biases, we can see that both active learning and filtering have different goals,

but focus on an ever more extreme (and therefore not representative) subset of data. Sim-

ilar methods can be applied to more nuanced and interesting biases to shed light on the

consequences of iterative interactions on the data.

3.3.4 Iterated Learning with Random Selection

The iterated random selection is considered as baseline for comparison purpose. This

selection mechanism randomly choose instance to pass to next learner during iterations.

3.4 Iterated Learning with Human Action Bias

The above analysis assumes that people’s response is always observed. In the follow-

ing, we extend our analysis to the more realistic case where users have a choice of whether

to act or not on a given input.
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Assume that people have some target hypothesis, h∗, which represents optimal per-

formance for the algorithm. Data are composed of an input provided by the algorithm,

x, an output, y, and an action, a. The indicator variable a takes a value of 1 when peo-

ple have provided a response, and a value of 0 when people have not. When the value

of y is not observed, it is notated as y = NULL. These form triples d = (x, y, a) =

{(x1, y1, a1), ..., (xn, yn, an)}. The basic inference problem, from one iteration to the next,

is then, p(ht|d) ∝ p(d|ht−1, h∗)p(ht−1),

p(ht|d) ∝ p(y|x, a, h∗)p(a|y∗, x, h∗)p(x|ht−1)p(ht−1) (3.18)

where y∗ represents the output that would be observed, if an action were taken. The main

change is in people’s choice of whether to respond, p(a|y∗, x, h∗). A missing at random

assumption implies that p(a|y∗, x, h∗) does not depend on x, y, or h, thus p(y|x, a, h∗) =

p(a). If variables are missing due to a person’s choice, the probability of a missing value

almost certainly depends on x, y∗ and/or h∗. We can formalize this choice using Luce

choice [47], a special case of softmax [134]1,

p(a = 1|y∗, x, h∗) =
U(a = 1|y∗, x, h∗)

U(a = 0|y∗, x, h∗) + U(a = 1|y∗, x, h∗)
(3.19)

where the choice of whether to act depends on the relative utility of acting as opposed to

not acting. For example, if it is especially effortful to act, then people will be biased against

acting. Alternatively, the utility of acting may depend on the value of y∗. For example, it

may be that there is greater perceived utility in acting when the value of y∗ is very low, as

in the case of an angry customer or disappointed user.

In principle, one might think that this is related to the problem of dealing with

missing data that is common in statistics [136]. Indeed, in our analyses, we showed one

special case that reduces to the missing at random typically assumed in statistical appli-

cations [136]. However, the framework proposed here is in fact more general; it proposes a

theory of why data are missing, and formalizes the problem as one of understanding human

behavior [56,137,138].

1Both softmax and Luce choice have known issues for modeling human choice [47,135]
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3.5 Iterated Learning Mechanism

In order to study the interaction between humans and algorithms, we modify iterated

learning so that it involves both a human and an algorithm instead of a succession of human

agents. Figure 3.5 shows the flowchart of modified iterated learning involving both human

and algorithm.

In this framework, first we randomly select some point for initialization, or it follows

criterion such as biased initialization. Secondly the system employs a machine learning

algorithm to training a model based on purpose, for example here we focus on a two-class

recommendation problem. Third, the system applies the learned model to a candidate set

of items or data, the system select the data points to present to the user based on different

approaches. Following data selection, the system comes to the human interaction part where

we need to simulate the probability of action taken by the user. If the user selects data Xi

and labels it as yi, our framework takes this new data and adds it to the training data, and

finally proceeds to the next iteration.

Note that this framework has great flexibility in several parts. First, technically

many machine learning algorithms are applicable. Second, the number of data items selected

to show to the user can be varied according to interests. We choose one here as the number

of items in order to be consistent with a human experiment, because a human will react

only to one data point each time in our planned user experiment so that the system can

investigate iterated machine learning model boundary shift in detail.

3.6 Evaluating the Effect of Iterated Algorithmic Bias on Learning Algorithms

3.6.1 Blind spot

The blind spot is defined as the set of data available to a relevance filter algorithm,

for which the probability of being seen by the human interacting with the algorithm, that

learned the hypothesis h is less than δ:

DF
δ = {x ∈ X | pseen(x|h) < δ} (3.20)
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Initialize training data

Algorithms (training)

Human Action

Action
Bias

P(Action|x, h)

Add to Training Set

(Xi,Yi)

Prediction on candidate P(y=1|x)

Algorithmic Bias

Present to human

Figure 3.5: Flowchart of iterated learning involving both human and algorithm

In the real world, some data can be invisible to some users because of bias either

from users or from the algorithm itself. Studying blind spots can enhance our understanding

about the impact of algorithmic bias on humans. In addition, we define the class-1-blind

spot or relevant-item-blind spot as the data in the blind spot, with true label y = 1

DF+
δ = {x ∈ DF

δ and y = 1)} (3.21)

Note that the blind spot in Eq. 3.20 is also called all-classes-blind spot.

3.6.2 Boundary shift

Boundary shifting indicates how different forms of iterated algorithmic bias affect

the model h that is learned by an algorithm. It is defined as the number of points that are
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predicted to be in class y = 1 given a learned model h:

b =
∑
x∈X

p(y = 1|x, h) (3.22)

Here b is the number of points that are predicted as class y = 1 given a learned model h.

3.6.3 Gini Coefficient

We also conduct a Gini coefficient analysis on how boundary shifts affect the in-

equality of predicted relevance for the test set. Let pi = p(y = 1|xi, h). For a population

with n values pi, i = 1 to n, that are indexed in non-decreasing order ( p(i) ≤ p(i+1)). The

Gini coefficient can be calculated as follows [139]:

G = (

∑n
i=1(2i− n− 1)p(i)

n
∑n

i=1 p(i)
) (3.23)

The higher the Gini coefficient, the more unequal are the frequencies of the different labels.

Given that the Gini coefficient measures the heterogeneity of the distribution of the relevance

probabilities, it can be used to gauge the impact of different iterated algorithmic bias modes

on the heterogeneity of the predicted probability in the relevant class during human-machine

learning algorithm interaction.

3.7 Summary and Conclusions

In this chapter, We first compared our proposed iterated algorithmic bias and other

types of bias in machine learning context. We then presented an iterated learning framework

to simulate and study the learning mechanism with data dependency from one iteration to

the next. Three approaches were presented to model iterated bias, namely, Filter-Bias,

Active-Learning Bias, and Random selection.We also introduce several estimation metric

to study the effect from iterated algorithmic bias.
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CHAPTER 4

EXPERIMENTS ON ITERATED ALGORITHMIC BIAS IN HUMAN AND

MACHINE LEARNING INTERACTION

Our preliminary results are based on both synthetic and real data. As stated in

Chapter 3, we mainly focus on a two-class model of recommendation in order to perform

our study. The classes are relevant/non-relevant, or like/dislike. In this situation, any

classical supervised classification could be used in our model, such as Bayesian classifier

[140], Logistic regression [141], or Support Vector Machine (SVM) [142]. For the purpose

of easier interpretation and visualization of the boundary and to more easily integrate with

the probabilistic framework in Section 3.3, we chose the Naive Bayes classifier.

4.1 Research Questions:

We first present several research questions we aim to address. The key issue is

to show that information filtering may lead to systematic biases in the learned model, as

captured by the classification boundary. Based on three metrics, we identify several research

questions:

(RQ 1): How do different iterated algorithmic biases affect the behavior of

models learned by a ML algorithm (with human action probability equal to

1)? We consider three aspects of a learned model to measure the outcome of

algorithmic bias:

• RQ 1.1) Boundary shift pre and post iteration (Eq. 3.22);

• RQ 1.2) Gini coefficient of predicted testing set labels (Eq. 5.10);

• RQ 1.3) Blind spot size pre and post iteration (Eq. 3.21).
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(RQ 2): How does class imbalanced initialization affect the model learned during

iterative learning? We consider the same three aspects to measure the effects

as in RQ 1.

(RQ 3): How does human action (whether to label data when requested to by

the machine learning algorithm) affect the boundary shift? We consider the

same three aspects to measure the effects as in RQ 1.

4.2 Data Sets

Our preliminary results are based on both synthetic and real data. As stated in

Chapter 3, we mainly focus on a two-class model of recommendation in order to perform

our study. The classes are relevant/non-relevant, or like/dislike. In this situation, any

classical supervised classification could be used in our model, such as Bayesian classifier

[140], Logistic regression [141], or Support Vector Machine (SVM) [142]. For the purpose

of easier interpretation and visualization of the boundary and to more easily integrate with

the probabilistic framework in Section 3.3, we chose the Naive Bayes classifier.

Synthetic Data: First, a 2D data set (see figure 4.1) was generated from two

Gaussian distributions corresponding to classes y ∈ {0, 1} for like (relevant) and dislike

(non-relevant), respectively. Each class contains 1000 data points centered at {−2, 0} and

{2, 0}, with standard deviation σ = 1. The data set is then split into the following parts:

• Testing set: used as a global testing set (200 points from each class).

• Validation set: used for the blind spot analysis (200 points from each class).

• Initializing set: used to initialize the first boundary (we tested different initializations

with class 1/class 0 ratios as follows: 10/100;100/100;100/10).

• Candidate set: used as query set of data which will be gradually added to the training

set (points besides from the above three groups will be added to the candidate set).

The reason why we need the four subsets is that we are simulating a real scenario

with interaction between human and algorithm. Part of this interaction will include picking
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query data items and labeling them, thus augmenting the training set. Thus, to avoid

depleting the testing set, we need to isolate these query items in the separate “candidate

pool”. A similar reason motivates the remaining separate subsets in order to keep their size

constant throughout all the interactions of module learning.

We are also motivated to run experiments on high dimensional synthetic data set.

We thus generate 3D, 4D and 10D synthetic data to study the effects of different iterated

algorithmic bias in Section 4.4 chapter 4.
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Figure 4.1: Original data with two classes

Real-life Data Set: In addition to synthetic data, we are motivated to use a real

data set that expresses likes/dislikes that could be used as a two-category data set similar

to the synthetic data set. Here we use the movielens dataset [143], which contains 100,004

ratings on 9125 movies. These ratings were made by 671 users between January 09, 1995

and October 16, 2016. The latest dataset was generated on October 17, 2016. All 671 users

had rated at least 20 movies. The ratings range in [1, 5] and include missing values. We

discretized the ratings into two labels: the range [1,3] was mapped to class 0, while (3,5] was

mapped to class 1. The item content features were the movie genres. In order to perform

similar experiments to the synthetic data simulations, we needed to focus on one user at a

time. Thus we selected users who rated the highest number of movies and whose ratings are

balanced between the two classes, analogously to our synthetic data. We first selected user

ID = 547 to perform our study, then repeated the experiments on 7 more users. User 547

has rated 2312 movies throughout the 10 years. After removing some genres which appear
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across the movies less than 10 times, we end up with 18 valid genres. We then perform

Principal Component Analysis (PCA) to reduce the dimensionality with component cutoff

as 0.90 [144], and ended up with 11 content features. One reason we perform PCA is to be

more consistent with the Naive Bayesian assumption that all features are independent.

Methods: Each dataset contains two ground-truth categories of liked and disliked

items. We wish to simulate the human-algorithm interaction at the heart of recommen-

dation and information filtering. To do so, we consider three initialization possibilities:

unbiased initialization in which examples are randomly selected from both categories in

the same proportion; two types of biased sampling in which the relevant class (class 1)

was oversampled by 10:1 or 1:10. Note that for the real-life data set, we only explore the

unbiased initialization. We consider three forms of iterated algorithmic bias: random se-

lection, active-bias which attempts to learn the true boundary between the two categories,

and filter (or recommendation) bias which attempts to recommend only preferred items (see

Section 3.3). We simulate different types of responses by the user as action probabilities

that vary from labeling each item as it is recommended (human action probability of 1), to

two cases where the user labels only some of the items provided by the algorithm (human

action probabilities of 0.5 and 0.01). Note that absent any additional information, we as-

sume action probabilities to be 1 for the real-life data set. We then simulate runs of 200

iterations where a single iteration consists of the algorithm providing a recommendation,

the user labeling (or not) the recommendation, and the algorithm updating its model of

the user’s preferences. Each combination of parameters yields a data set that simulates

the outcome of the human and algorithm interacting. We simulate this whole process 40

times independently, which generates the data that we will use to investigate the research

questions listed in Section 4.1.

In this section, we present results using both synthetic and real-life data. We first

present results from the 2D synthetic data described in Section 4.4. We also explore high

dimensional synthetic data in Section 4.4. The real-life data set experiments are presented in

Section 4.5. Finally, we summarize the conclusions from all our synthetic data experiments
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in Table 4.27, and from the real-life data experiments in Table 4.28.

4.3 Experiments on 2D Synthetic Data

4.3.1 RQ 1: How does iterated algorithmic bias affect the learned categories?

To answer this question, we control for human action bias by assuming the data are labeled

in each iteration, i.e. the probability of action is 1, paction = 1. We adopt four different

approaches to investigating this question. First, we will compare the inferred boundaries

after interaction to the ground truth boundaries. Second, we will focus on the effects of

iteration alone by analyzing the boundary before interaction and after. Third, We use the

Gini coefficient to measure the heterogeneity or inequality of the predicted label distribution

in the testing set. Fourth, we investigate the size of the blind spot induced by each of the

iterated algorithmic bias modes. Together, these will describe the outcomes of algorithmic

bias, in terms of how it interacts with initialization, and the consequences of algorithmic

bias in terms of the induced blind spot.

RQ 1.1: Do different forms of iterated algorithmic bias have different effects on

the boundary shift?

To answer this question, we control for human action bias by assuming the data are labeled

in each iteration i.e. the probability of action is 1. And the initialization is balanced, i.e the

ratio=1:1. As shown in Eq. 3.5, we here assume that q(x) is identical for all data points,

thus we can ignore the second part of the equation, i.e. the probability of being seen is only

dependent on the predicted probability of candidate points. Note that we could get some

prior probability of Xi, in which case we could add this parameter to our framework. Here,

we assume them to be the same, hence we set ε = 0.

We wish to quantify differences in the boundary between the categories as a function

of the different algorithm biases. To do so, we generate predictions for each test point in the
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Figure 4.2: Boundary shift (Eq. 3.22) based on the three iterated algorithmic bias forms.
The y-axis is the number of testing points which are predicted to be in class y=1. This
figure shows that random selection and active learning bias do not have significant effect
with iteration goes on, and converge to the ground truth boundary. Filter bias, on the
other hand, results in decreasing numbers of points predicted in the target category class 1,
consistent with an overly restrictive category boundary. The ground truth shows the actual
proportion of points with class y=1 in the testing set.

test set by labeling each point based on the category that assigns it highest probability. We

investigate the proportion of test points with the relevant label y = 1 at two time points:

prior to human-algorithm interactions (immediately after initialization), and after human

algorithm interactions.

We run experiments with each of the three forms of algorithm bias, and compare

their effect on boundary shift. We also report the effect size based on Cohen d algorithm

[145]. In this experiment, the effect size (ES) is calculated by ES = (Boundaryt=0 −

Boundaryt=200)/standard.dev, here standard.dev is the standard deviation of the combined

samples. We will use the same strategy to calculate the effect size in the rest of this paper.

The results indicate significant differences for the filter bias condition (p < .001 by Mann-

Whitney test or t-test, effect size = 1.96). In contrast, neither the Active Learning, nor

the Random conditions resulted in statistically significant differences (p = .15 and .77 by

Mann-Whitney test, or p = .84 and 1.0 by t-test; effective sizes .03 and 0.0, respectively).

To illustrate this effect, we plot the number of points assigned to the target category

42



versus ground-truth for each iterations. Figure 4.2 shows that random selection and active

learning bias do not have significant effect with iteration goes on. Filter bias, on the other

hand, results in decreasing numbers of points predicted in the target category class 1,

consistent with an overly restrictive category boundary.

RQ 1.2: Do different iterated algorithmic bias modes lead to different trends

in the inequality of predicted relevance throughout the iterative learning, given

the same initialization?

In order to answer this question, we run experiments with different forms of iterated algo-

rithmic bias, and record the Gini coefficient when a new model is learned and applied to

the testing set during the iterations. We first run the Shapiro-Wilk normality test with all

groups [146]. The p-value for filter bias, active learning bias and random selection are 0.91,

0.63 and 0.99 respectively. Therefore, we perform a one-way ANOVA tests [147].

Although the absolute difference between the first iteration and the last iteration is

small (see Figure 4.3), a one-way ANOVA test across these three iterated algorithmic bias

forms shows that the Gini index values are significantly different. The p-value from the

ANOVA test is close to 0.000 (<0.05), which indicates that the three iterated algorithmic

bias forms have different effects on the Gini coefficient.

Interpretation of this result: Given that the Gini coefficient measures the in-

equality or heterogeneity of the distribution of the relevance probabilities, this simulated

experiment shows the different impact of different iterated algorithmic bias forms on the

heterogeneity of the predicted probability to be in the relevant class within human ma-

chine learning algorithm interaction. Despite the small effect, the iterated algorithmic bias

forms affect this distribution in different ways, and iterated filter bias causes the largest

heterogeneity level as can be seen in Figure 4.3.
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FB: Filter Bias
AL: Active Learning Bias
RM: Random Selection
first: Iteration at t=0
last: Iteration at t=200

Figure 4.3: Box-plot of the Gini coefficient resulting from three forms of iterated algorithmic
bias. An ANOVA test across these three iterated algorithmic bias forms shows that the Gini
index values are significantly different. The p-value from the ANOVA test is close to 0.000
(< 0.05), which indicates that the three iterated algorithmic bias forms have different effects
on the Gini coefficient. Here, FB, AL and RM are the abbreviations of filter bias, active
learning bias and random selection, respectively. The ‘first’ indicates the beginning of
iteration (i.e., t=0), while the ‘last’ means the end of iteration (i.e., t=200). Note that we
use these abbreviations in the rest of our paper.

RQ 1.3: Does iterated algorithmic bias affect the size of the class-1-blind spot

and the all-classes-blind spot, i.e. is the initial size of the blind spot DF
δ signifi-

cantly different compared to its size in the final iteration?

The blind spot represents the set of items that are much less likely to be shown to the user.

Therefore this research question studies the significant impact of an extreme filtering on

the number of items that can be seen or discovered by the user, within human - algorithm

interaction. If the size of the blind spot is higher, then iterated algorithmic bias results

in hiding items from the user. In the case of the blind spot from class 1, this means that

even relevant items are affected.

Recall from section 3.6 that some of the validation set data points have high prob-

ability to be seen, while others have low probability to be seen, the latter make up what

we refer to as the blind spot. We study how iterated algorithmic bias affects the size of

the blind spot. Here, δ is the threshold on the probability of being seen for an item to be

considered in the blind spot. Recall that the blind spot items from class y = 1 are called

relevant item blind spot or class-1-blind spot and the items from both classes are called
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TABLE 4.1: Results of the Mann-Whitney U test and t-test comparing the size of the
class-1-blind spot for the three forms of iterated algorithmic bias. The effect size is
(BlindSpot|t=0 − BlindSpot|t=200)/standard.dev. Bold means significance at p < 0.05.
The negative effect size shows that filter bias increases the class-1-blind spot size. For ac-
tive learning bias, the p-value indicates the significance, however the effect size is small.
Random selection has no significant effect.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 2.4e-10 0.03 0.06

t-test p-value 2.2e-10 0.03 0.06

effect size -1.22 -0.47 -0.4

all-classes-blind spot.

FB: Filter Bias
AL: Active Learning Bias
RM: Random Selection
first: Iteration at t=0
last: Iteration at t=200

Figure 4.4: Box-plot of the size of the class-1-blind spot for all three iterated algorithmic
bias forms. In this figure, the x-axis is the index of the three forms of iterated algorithms
biases. As shown in this box-plot, the initial class-1-blind spot is centered at 7. This is
because the 200 randomly selected initial points from both classes force the boundary to be
similar regardless of the randomization.

We run experiments with δ = 0.5 for the class-1-blind spot, and record the size of

the class-1-blind spots with three different iterated algorithmic bias forms. Here, we aim to

check the effect of each iterated algorithmic bias form. Filter bias has significant effects on

the class-1-blind spot, while random selection and active learning do not have a significant

effect on the class-1-blind spot size (see Figure 4.4). As shown in Figure 4.4), around

8/400 = 2% of the relevant points in testing set are hidden. The negative effect from iterated

filter bias implies a large increase in the class 1 blind spot size, effectively hiding a significant

number of ‘relevant’ items. Table 4.1 summarizes the result of the statistical analysis. Note

that the effect size is calculated by ES = (BlindSpot|t=0−BlindSpot|t=200)/standard.dev.
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TABLE 4.2: Results of the Mann-Whitney U test and t-test comparing the size of the
all-classes-blind spot for the three forms of iterated algorithmic bias. The effect size is
conducted as (BlindSpot|t=0 − BlindSpot|t=200)/standard.dev. The negative effect size
shows that filter bias increases the class-1-blind spot size. On the other hand, both active
learning and random selection have no significant effect.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 5.9e-12 0.5 0.47

t-test p-value 1.4e-19 0.18 0.13

effect size -1.44 -0.3 -0.29

We perform a statistical test on the all-classes-blind spot with δ = 0.5. We first

run the Shapiro-Wilk normality test. The p-values for the first and last iterations are

respectively, 2.74e-7 and 0.037 for filter bias; 2.74e-7 and 1 for active learning bias; and 2.74e-

7 and 2.9e-11 for random selection. Therefore, we perform a non-parametric statistical test

on the pairs of data using the Mann-Whitney U test [148]. The p-value from the Mann-

Whitney U test is close to 0.000 for filter bias. The negative effect from iterated filter

bias implies a large increase in the all-class blind spot size, effectively hiding a significant

number of ‘relevant’ and irrelevant items. For AL, the effect size has no significant effect in

hidden items (both relevant and non-relevant) based on the Mann-Whitney U test. Random

selection results in no significant effect on the blind spot size as well. Similar results can be

found in the all-classes blind spot size experiment results (see Table 4.2).

Interpretation of this result: Given that the blind spot represents the items that

are much less likely to be shown to the user, this simulated experiment studies the significant

impact of an extreme filtering on the number of items that can be seen or discovered by the

user, within human-machine interaction. Iterated filter bias effectively hides a significant

number of ‘relevant’ items that the user misses out on compared to AL. AL has no significant

impact on the relevant blind spot, but increase the all-class blind spot to certain degree.

Random selection has no such effect.
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TABLE 4.3

Prediction accuracy of different imbalanced initializations ratio (class 1: class 0) on the
testing set and ground-truth boundary

ground truth ratio=1:1 ratio=10:1 ratio=1:10

accuracy 0.985 0.982 0.94 0.95

4.3.2 RQ 2: Does class imbalanced initialization affect the boundary learned

during iterative learning?

Online systems which have a very wide set of options and where users tend to

provide initial ratings for items that they like or see, do suffer from initial class imbalance.

Class imbalance can also emerge from the algorithm intentionally asking users to rate only

the most popular items, a common strategy used to collect initial ratings for new users.

It is also important to notice that in different domains, initialization can have different

imbalance patterns. For example in the popular Movielens-100k dataset [143], around 65%

of users have rated more items with ratings higher than their own average rating. A similar

phenomenon can be observed in other data sets such as Movielens-1M [143], Movelens-

10M [143], Netflix Prize challenge dataset [149], and Book Crossings data set [150]. There

are also users who have rated more items with lower ratings.

We want to measure how imbalanced initialization affects the algorithm’s perfor-

mance. We set up three different class imbalance initialization ratios (class0 : class1): 1:10,

1:1 and 10:1. Then we compare the learned boundaries with those three ratios. As shown

in Figure 4.5, highly imbalanced class initialization leads to a bigger difference between the

learned boundary and the ground-truth boundary. The ground-truth boundary is obtained

from the Gaussian distributions that were used to generate the data points in Section 4.2.

We also quantify the difference between the learned and true boundaries by measuring how

initial boundaries predict the labels on the testing set. The accuracy of the ground-truth

boundary and three imbalanced initial boundaries are recorded in Table 4.3. We can see

that the increase in initialization imbalance ratio leads to lower accuracy on the testing set.

Note that accuracies are averaged from 10 independent runs.
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Figure 4.5: Different initialization imbalance ratios affect the starting model boundary ax
expected

We wish to understand how imbalanced initialization affects the boundary shifting

and the blind spot size during the interactive learning process. To answer this question,

we run experiments 40 times with the different class imbalanced initialization ratios and

record the number of points which cross the boundary during iterative learning as well as

the blind spot size. We will consider three imbalanced initialization (class 1: class 0) ratios,

namely 10:1, 1:1 and 1:10.

RQ 2.1: Does class imbalanced initialization affect the boundary learned during

iterative learning given a fixed iterated algorithmic bias mode?

In order to answer this question, we record the number of points whose labels are

different between the first iteration and last iterations, with imbalanced initialization ratio

set to 10:1, 1:1 and 1:10. We first perform the Shapiro-Wilk normality test with all groups

[146]. The p-value are 0.002, 0.001 and 0.06 for filter bias with four ratios; 0.01, 0.0003 and

0.001 for active learning bias; and 0.01, 0.0003 and 0.07 for random selection. Therefore,

we perform a non-parametric statistical test using the Kruskal-wallis test [34] on each form

of algorithmic bias. Figure 4.6 show the trends of label changes. The Number of label-

changed points with ratio=10:1 is higher than 2 for ratio=1:1 in the iterated filter bias
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mode, and a similar result can be seen with iterated active learning bias and iterated

random selection (see Figure 4.6). The p-values from the Kruskal-wallis test for all three

forms of iterated algorithmic bias are 5.5e-19 (filter bias), 3.27e-17 (active learning bias)

and 1.34e-15 (random selection), close to 0.00, which indicates that the class imbalance

initialization affects the boundary shift for all three forms of bias. Also, the higher the class

imbalanced initialization ratio, the more boundary shifting, as shown in Figure 4.6. On

the other hand, the boundary shift of filter bias has a big difference when the ratio is 1:10,

indicating that filter bias has a dramatic impact on the boundary shift when the imbalanced

initialization ratio is high and more points are from the irrelevant class.

(a) Filter Bias (b) Active Learning (c) Random Selection

Figure 4.6: The box-plots showing the distribution of the number of points that moved
across the boundary in the first and last iterations of the iterated learning for three iterated
algorithmic biases with different class imbalanced initialization ratios. Because the number
of points that move across the boundary indicates the intensity of the boundary shift, this
shows that for all three iterated algorithmic bias modes, a high imbalanced initialization
results in a higher boundary shift compared to a balanced initialization.

Interpretation of this result: Given that the number of label-changed points

represents the number of items that move across the relevance boundary learned by the

machine learning algorithm, this simulated experiment studies the impact of an initial class

imbalance (a ratio of 10:10 or 1:10 versus a ratio of 1:1) when an extreme filtering strategy

is used within human machine interaction.

In all cases and regardless of whether extreme filtering, AL, or random selection is

used to collect feedback from the user, the initial class imbalance has a significant impact

on the shift in the learned model’s boundary between relevant and non-relevant items. This

test confirms that a more drastic initial class imbalance in the training data has a significant

49



impact on the resulting boundary, and as a result on the judgment of items to be relevant

or not by the learned model. Online systems which have a very wide set of options and

where users tend to provide initial ratings for items that they like or see, do suffer from

initial class imbalance. Class imbalance can also emerge from the algorithm intentionally

asking users to rate only the most popular items, a common strategy used to collect initial

ratings for new users.

RQ 2.2: Does class imbalanced initialization affect the blind spot size during

iterative learning given a fixed iterated algorithmic bias mode?

We run 40 experiments with the different initialization ratios 10:1 and 1:10 and

record both class-1-blind spot and all-classes-blind spot size. We first run the Shapiro-

Wilk normality test on the class-1-blind spot size records. The p-values for imbalance ratio

10:1, for the first and last iterations were 5.5e-6 and 0.0001 for filter bias; 5.5e-6 and 1 for

active learning bias; and 5.5e-6 and 1.0e-8 for random selection. Therefore, we perform a

non-parametric statistical test on the pairs of data using the Mann-Whitney U test [148].

The p-value from the Mann-Whitney U test was close to 0 for all three different iterated

bias modes. The negative effect implies a large increase in the all-class blind spot size,

implying that a 10:1 class imbalanced initialization results in effectively hiding a significant

number of ‘relevant’ and irrelevant items (see Table 4.5). We also perform a statistical

test on all-classes-blind spot size with 10:1 imbalanced initialization ratio (see table 4.5).

The p-value for all three iterated algorithmic biases are close to 0, which indicates that

all algorithmic bias modes have significant impact on the blind spot size, when we have a

highly imbalanced initialization. We also report the blind spot analysis with initialization

ratio 1:10 in table 4.1 and table 4.2. A statistical test on the all-classes-blind spot size

(see table 4.5) yielded a p-value close to 0 for all three iterated algorithmic biases, which

indicates that they all have significant impact on the blind spot size, when starting with a

highly imbalanced initialization.

A Shapiro-Wilk normality test on the class-1-blind spot with ratio 1:10 yielded the
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TABLE 4.4: Results of the Mann-Whitney U test and t-test comparing the size of
the class-1-blind spot for the three forms of iterated algorithmic bias with imbalanced
(class 1:class 0) initialization ratio 10:1 and 1:10. The effect size is (BlindSpot|t=0 −
BlindSpot|t=200)/standard.dev. The negative effect size with ratio=10:1 shows that all
three iterated algorithm bias modes increase the class-1-blind spot size. On the other hand,
filter bias increases the class-1-blind spot size with ratio 1:10, and both active learning and
random selection decrease the class-1-blind spot size.

Measurement Filter Bias Active
Learning

Random
Selection

ratio=10:1
Mann-Whitney test p-value 4.3e-9 5.6e-17 1.7e-15

t-test p-value 1.0e-14 8.4e-28 5.0e-24
effect size -1.33 -1.91 -1.86

ratio=1:10
Mann-Whitney test p-value 2.7e-13 3.6e-16 1.1e-9

t-test p-value 2.2e-30 9e-10 1.1e-15
effect size -1.6 1.34 1.33

TABLE 4.5: Results of the Mann-Whitney U test and t-test comparing the size of the
all-classes-blind spot for the three forms of iterated algorithmic bias with imbalanced (class
1:class 0) initialization ratio 10:1 and 1:10. The results are similar to the class-1-blind spot
size analysis (see figure 4.4).

Measurement Filter Bias Active Learning Random
Selection

ratio=10:1
Mann-Whitney test p-value 1.0e-9 3.5e-15 5.3e-15

t-test p-value 6.1e-21 1.0e-18 2.0e-17
effect size -1.31 -1.75 -1.75

ratio=1:10
Mann-Whitney test p-value 2.7e-13 9.5e-17 4.5e-15

t-test p-value 1.6e-30 4.8e-13 4.7e-12
effect size -1.6 1.53 1.48

following p-values for the first and last iterations respectively for each type of algorithmic

bias: 0.0003 and 0.0003 for filter bias; 0.00031 and 1 for active learning bias; and 0.0031 and

3e-13 for random selection. Therefore, we perform a non-parametric statistical test on the

pairs of data using the Mann-Whitney U test [148]. The p-value from the Mann-Whitney

U test is close to 0 for all three different iterated bias modes. The negative effect implies

a large increase in the all-classes-blind spot size for filter bias mode, effectively hiding a

significant number of ‘relevant’ and irrelevant items (see Table 4.4). Meanwhile, active

learning and random selection lead to a significant decrease in blind spot size.

In addition, we compare the blind spot size in the last iteration of model learning

across different algorithmic bias modes themselves given a fixed imbalanced initialization
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ratio. Note here that all three modes have the same initialization points (same initial

boundary in each run). Table 4.6 shows the paired t-test results among the three iterated

algorithmic bias modes with imbalanced initialization ratio 10:1. The effect size is calculated

as ES = (BlindSpot|row −BlindSpot|column)/standard.dev. For example, we compare the

bias type of row 1 to bias type of column 4 (i.e., Filter bias vs. active learning). We can

see that filter bias has lower impact on the blind spot than active learning and random

selection when the system is initialized with high class imbalance. Active learning also has

higher impact on the all-classes-blind spot. Table 4.6 also shows the paired t-test result

among the three iterated algorithmic bias modes with imbalanced initialization ratio 1:10,

a similar result to the one obtained when the ratio is 1:1. We can therefore see that filter

bias has a higher impact on the blind spot size than active learning and random selection,

while active learning has higher impact on the blind spot than random selection.

We also compare the impact on the blind spot size with different initialization ratios

(balanced vs. highly imbalanced initialization) given a fixed iterated algorithmic bias mode.

The effect size is calculated using ES = (BlindSpot|ratio=1:1−BlindSpot|ratio=10:1)/standard.dev

at time t = 200. Table 4.7 shows the p-value resulting from comparing the blind spot

size between ratio 1:1 and ratio 10:1 for each of the iterated algorithmic bias modes.

Table 4.7 shows that imbalanced initialization has lower impact on filter bias than an

active learning and random selection, which indicates that balanced initialization with

filter bias worsens the ability of humans to discover new items. Table 4.8 shows the

all-classes-blind spot size difference between (class 1: class 0) ratios 1:1 and 1:10. Here

ES = (blindSpot|ratio=1:1 − BlindSpot|ratio=1:10)/standard.dev at t = 200. We conclude

that filter bias and random selection lead to increasing the blind spot size when the initial

imbalance ratio is 1:10 compared with balanced initialization, which indicates that relevant

items will be more likely to be hidden in case of highly imbalanced initial labeled data with

more points from the irrelevant class (class y=0). On the other hand, active learning bias

has similar impact with ratios 1:1 and 1:10.
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TABLE 4.6: Results of the t-test comparing the size of the all-classes-blind spot across
the three forms of iterated algorithmic bias with imbalanced (class 1:class 0) initialization
ratio 10:1 and 1:10 at iteration t=200. The p-values from both ratio=1:10 and ratio=10:1
indicate the significant difference between different algorithmic bias modes. The effect size
indicates that ratio=1:10 and ratio=10:1 lead to opposite trends on the comparison.

Bias type Filter
Bias

Active Learning Random Selection

ratio=10:1
Filter
Bias

− p=1.1e-10 (effect size=-1.07) p=6e-5 (effect size=-0.9)

Active
Learning

− − p=8e-8 (effect size=1)

ratio=1:10
Filter
Bias

− p=9.5e-17 (effect size=1.9) p=3.2e-15 (effect size=1.89)

Active
Learning

− − p=1.96e-10 (effect size=-
1.2)

TABLE 4.7: Results of the Mann-Whitney U test and the t-test comparing the size
of the all-classes-blind spot for the three forms of iterated algorithmic bias based on
different initialization balance (between ratio=1:1 and ratio=10:1). Here effect size is
ES = (blindSpot|ratio=1:1 − BlindSpot|ratio=10:1)/standard.dev at t = 200. The positive
effect sizes shows that Both filter bias and random selection have higher impact when the
imbalanced initialization ratio is 1:1. Active learning is insensitive to the initialization ratio.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 1.0e-14 1.0 0.0001

t-test p-value 5e-12 1.0 0.0002

effect size 1.48 0.0 0.8

TABLE 4.8: Results of the Mann-Whitney U test and the t-test comparing the size
of the all-classes-blind spot for the three forms of iterated algorithmic bias based on
different initialization (between ratio=1:1 and ratio=1:10). Here effect size is ES =
(blindSpot|ratio=1:1 − BlindSpot|ratio=1:10)/standard.dev at t = 200. The negative effect
size shows that Both filter bias and random selection have higher impact when the imbal-
anced initialization ratio is 1:10. Active learning is insensitive to the initialization ratio.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 6.5e-15 1.0 9e-9

t-test p-value 5.2e-24 1.0 1.5e-16

effect size -1.85 0.0 -1.1
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RQ 2.3: Does class imbalanced initialization affect the inequality of prediction

during iterative learning given a fixed iterated algorithmic bias mode?

In order to answer this question, we perform experiments with different forms of

iterated algorithmic bias, and record the Gini coefficient when a new model is learned and

applied to the testing set during the iterations.

We first aim to check the effect across different forms of iterated algorithmic bias with

class imbalance ratio 10:1 (see Figure 4.7). We first run the Shapiro-Wilk normality test with

all groups [146]. The p-value for filter bias, active learning bias and random selection are

2.3e-10, 5.7e-6 and 1.5e-9, respectively. Therefore, we perform a non-parametric statistical

test with the Kruskal-wallis test [34]. The Kruskal-wallis test across these three iterated

algorithmic bias forms shows that the Gini index values are significantly different. The p-

value from the Kruskal-wallis test is 3.6e-6 (<0.05), which indicates that the three iterated

algorithmic bias forms have different effects on the Gini coefficient. We then check the

effect across different forms of iterated algorithmic bias with ratio 1:10, the p-value from

the Kruskal-wallis test is 1.0e-21 (<0.05).

We also run the statistical analysis for each iterated algorithmic bias based on the

Gini coefficient between the first and last iteration during iterative learning. Table 4.9

shows that the filter bias mode will increase the inequality of predictions from the learned

model in both cases, class imbalance ratio 10:1 and ratio 1:10. However, active learning and

random selection have totally different impacts on the inequality. When the initial data is

oversampled from class 1, all three bias modes result in increased inequality of prediction.

On the other hand, when the system is oversampled from class 0, active learning and random

selection bias modes help learning the correct boundary.

It is also interesting to compare how different iterated algorithmic bias modes affect

the inequality given the same initialization with a fixed ratio. Table 4.10 shows that the

there is no significant difference between filter bias and active learning bias modes with

ratio 10:1. But, when the ratio is 1:10, filter bias results in significantly higher inequality

compared with active learning bias and random selection, which is consistent with figure
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TABLE 4.9: Results of the Mann-Whitney U test and the t-test comparing the in-
equality of predictions for the three forms of iterated algorithmic bias based on the first
and last iteration with imbalanced initialization ratio 10:1 and 1:10. The effect size is
(Gini|t=0 −Gini|t=200)/standard.dev. The negative effect size with ratio=10:1 shows that
all three iterated algorithm bias modes increase the inequality. On the other hand, filter
bias increases the inequality with ratio 1:10 and both active learning and random selection
decrease the inequality.

Measurement Filter Bias Active
Learning

Random
Selection

ratio=10:1
Mann-Whitney test p-value 3.8e-12 5.7e-14 1.5e-14

t-test p-value 1e-27 6.9e-14 7.3e-18
effect size -1.49 -1.58 -1.64

ratio=1:10
Mann-Whitney test p-value 3.2e-13 7.2e-15 8e-15

t-test p-value 3.3e-34 1.9e-18 6.9e-13
effect size -1.68 1.74 1.5

TABLE 4.10: Results of the t-test comparing the Gini coefficient across the three forms of
iterated algorithmic bias with imbalanced initialization ratio 1:10 and 10:1 at time t=200.
The effect size is (Gini|row−Gini|column)/standard.dev at t=200. Regarding the inequality,
filter bias has similar impact with active learning and random selection with the imbalance
initialization ratio is 10:1, while active learning bias mode leads to less inequality than
random selection. When the initialization ratio is 1:10, filter bias lead to more inequality
than both active learning bias and random selection. Active learning bias mode leads to
less inequality than random selection.

Bias type Filter
Bias

Active Learning Random Selection

ratio=10:1
Filter
Bias

− p=0.51 (effect size=0.16) p=0.11 (effect size=-0.3)

Active
Learning

− − p=5.4e-7 (effect size=-1)

ratio=1:10
Filter
Bias

− p=3.2e-31 (effect size=1.94) p=7.2e-29 (effect size=1.91)

Active
Learning

− − p=1.3e-22 (effect size=-1.8)

4.7.

We also compare the Gini coefficient score between balanced class initialization (ratio

1:1) and highly imbalanced initialization (ratio 10:1). Table 4.11 shows the statistical result.

As seen in table 4.11, a balanced initialization has higher impact on the Gini coefficient for

filter bias and random selection. Table 4.12 shows the statistical test results comparing

ratio 1:1 and ratio 1:10. We can see that balanced initialization leads to less inequality

than imbalanced initialization (ratio 1:10). A possible reason is that the boundary moves
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TABLE 4.11: Results of the Mann-Whitney U test and the t-test comparing Gini coef-
ficients for the computed three forms of iterated algorithmic bias based on different ini-
tialization (between ratio 1:1 and ratio 10:1). Here effect size is ES = (Gini|ratio=1:1 −
Gini|ratio=10:1)/standard.dev at t = 200. The positive effect size shows that a balanced ini-
tialization ratio results in inequality lower for for all three iterated algorithmic bias modes.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 7.1e-14 9.6e-12 6.3e-9

t-test p-value 1e-12 1e-11 6.3e-9

effect size 1.49 1.50 1.28

TABLE 4.12: Results of the Mann-Whitney U test and the t-test comparing Gini coefficients
for the three forms of iterated algorithmic bias based on different initialization (between ratio
1:1 and ratio 1:10). Here effect size is ES = (Gini|ratio=1:1 −Gini|ratio=1:10)/standard.dev
at t = 200. The negative effect sizes shows that higher initial imbalance results in more
prediction inequality for both filter bias and random selection modes.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 7.2e-15 0.0007 1.9e-7

t-test p-value 3.5e-26 0.001 1.94e-7

effect size -1.88 0.73 -1.1

towards the data from class 1 and away from class 0 with ratio 1:10, instead of being close

to the middle with ratio 1:1.

(a) ratio=10:1 (b) ratio=1:10

Figure 4.7: Box-plot of the Gini coefficient resulting from three forms of iterated algorithmic
bias with imbalanced initialization ratio set to 10:1 and 1:10. A Kruskal-wallis test across
these three iterated algorithmic bias forms shows that the Gini index values are significantly
different with both cases. The p-value from the Kruskal-wallis test are 3.6e-6 and 1.0e-10
for ratio 10:1 and ratio 1:10, which indicates that the three iterated algorithmic bias forms
have different effects on the Gini coefficient from both cases.
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4.3.3 RQ 3: Does human action bias affect the boundary?

In order to test how the human reaction affects the boundary shift, we set paction = 1.0, 0.5

and 0.01, and record the results with different iterated algorithmic bias modes.

RQ 3.1: Does human action affect the boundary shift during iterative learning

given a fixed iterated algorithmic bias mode?

We first want to compare the shift in the boundary induced by the different algo-

rithmic bias forms, alone. We do so by analyzing the change in the boundary, i.e., the

number of points in the test set which are predicted to be in class y=1. We perform the

Mann-Whitney U statistical test to see whether the different human action probabilities

affect the boundary shift of the learned model for each iterated algorithmic bias and three

possible human action probability levels. We also record results from the t-test. Effect size

is also recorded between any pair of sets of boundary shift from the first iteration and last

iteration. Table 4.13 shows that paction affects the boundary shift more with iterated filter

bias than with the other two forms of bias, which support the same conclusion as the previ-

ous experiment. The Mann-Whitney U test results agree with the t-test. Thus we conclude

that human action affects the boundary shift: the more frequent human action is, the more

significant is the effect on the boundary shift for only the iterated filter algorithmic bias.

The other bias modes are not affected by different human action probabilities. Note that

the effect size is calculated by the difference between the boundary of t = 0 and t = 200

divided by the standard deviation.

In addition, it is interesting to compare the final learned boundaries from the three

iterated algorithmic bias forms with the ground truth. Therefore, we follow the same

procedure as in Section 4.3.2, comparing the learned boundary during the iterations with the

ground truth boundary. Figure 4.8 shows the results for different iterated algorithmic bias

modes with different human action probability. We can see that for both random selection

and active learning bias, the number of points predicted as relevant has no significant change
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TABLE 4.13: Results of the Mann-Whitney U test and t-test for the boundary shift of the
computed three forms of iterated algorithmic bias based on the different probability levels of
human action. Here, effect size is ES = (Boundary|t=0 − Boundary|t=200)/standard.dev.
Bold means the significance at p < 0.05. The more the human reacts to the system, the
larger is the boundary shift.

Measurement Filter Bias Active Learning Random

paction = 1
Mann-Whitney test p-value 0.4e-11 0.9e-5 0.486

t-test p-value 7.1e-14 0.002 0.52
effect size 3.087 0.24 -0.15

paction = 0.5
Mann-Whitney test p-value 1.8e-6 0.283 0.229

t-test p-value 1.0e-5 0.08 0.75
effect size 0.87 0.19 0.08

paction = 0.01
Mann-Whitney test p-value 0.259 0.336 0.42

t-test p-value 0.38 0.6 0.9
effect size -0.27 0.14 -0.08

regardless the probability of human action. On the other hand, filter bias tends to have a

lower proportion of points predicted to be relevant with higher human action probability.

With paction = 0.01, there are no obvious trends for all three algorithmic bias forms.
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(b) paction=0.5
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(c) paction=0.01

Figure 4.8: Effect of Human action on the boundary learned during the iterations. The
y-axis is the number of testing points which are predicted to be relevant. We can see
that for both random selection and active learning bias, the number of points predicted
as relevant has no significant change regardless the probability of human action and the
number of points predicted as relevant converges to the ground truth boundary when there
is a high probability of human action. On the other hand, filter bias tends to have a lower
proportion of points predicted to be relevant with higher human action probability. With
paction = 0.01, there are no obvious trends for all three algorithmic bias forms.

58



TABLE 4.14: Results of the Mann-Whitney U test and t-test for the class-1-blind spot of the
computed three forms of iterated algorithmic bias based on the different probability levels of
human action. Here, effect size is ES = (BlindSpot|t=0 − BlindSpot|t=200)/standard.dev.
Bold means the significance at p < 0.05. The more the human reacts to the system, the
bigger is the class-1-blind spot size.

Measurement Filter Bias Active Learning Random

paction = 1
Mann-Whitney test p-value 2.4e-10 0.03 0.06

t-test p-value 2.2e-10 0.03 0.06
effect size -1.22 -0.47 -0.4

paction = 0.5
Mann-Whitney test p-value 0.0002 0.49 0.50

t-test p-value 7e-5 0.66 0.67
effect size -0.8 -0.1 -0.1

paction = 0.01
Mann-Whitney test p-value 0.16 0.5 1.0

t-test p-value 0.16 1 0.5
effect size 0.02 0.0 0.0

RQ 3.2: Does human action affect the class-1-blind spot size during iterative

learning given a fixed iterated algorithmic bias mode?

We want to compare the blind spot within each different iterated algorithmic bias

mode, alone. We do so by analyzing the class-1-blind spot size. We run experiments with

different human action probabilities and record the class-1-blind spot size comparing the

blind spot sizes from the first iteration and last iteration. As shown in table 4.14, with

higher human action probability, the class-1-blind spot size is higher through all three

iterated algorithmic bias modes.

RQ 3.3: Does class imbalanced initialization affect the relevance prediction

inequality or Gini coefficient during iterative learning given a fixed iterated

algorithmic bias mode?

We wish to compare the inequality induced by each algorithmic bias form, alone. We

do so by analyzing the Gini coefficient. We perform the Mann-Whitney U statistical test to

see whether the human action will lead to different trends in the inequality of prediction.

We run experiments with different human action probabilities, namely 1.0, 0.5 and 0.01,

and compare the inequality between the first iteration and last iteration. Table 4.15 shows

that higher human action probability leads to high inequality with the filter bias mode.
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TABLE 4.15: Results of the Mann-Whitney U test and t-test for the inequality of the
computed three forms of iterated algorithmic bias based on the different probability levels of
human action. Here, effect size is computed as ES = (Gini|t=0−Gini|t=200)/standard.dev.
Bold means the significance at p < 0.05. The more the human reacts to the system, the
bigger is the inequality in the prediction.

Measurement Filter Bias Active Learning Random

paction = 1
Mann-Whitney test p-value 2.5e-14 3.8e-9 0.46

t-test p-value 5.2e-35 2e-9 0.68
effect size -1.7 1.2 -0.05

paction = 0.5
Mann-Whitney test p-value 3.5e-26 1.84e-21 0.46

t-test p-value 2.5e-14 1.8e-14 0.54
effect size -1.3 1.78 -0.07

paction = 0.01
Mann-Whitney test p-value 0.16 0.14 0.45

t-test p-value 0.17 0.001 0.22
effect size 0.023 0.18 0.03

On the other hand, active learning significantly decreases the inequality by querying points

which are near the learned boundary.

4.3.4 RQ 4: Does human preference towards labeling relevant data affect the

boundary?

In research question 3 (RQ 3), we assumed that humans have a prior probability to act

which is not dependent on the true label of the item presented. However, in a more realistic

world, humans interact with the recommended items, according to their inner preference. In

this section, we try to simulate this by assuming that humans have a higher probability to

label or rate when the item presented is from relevant class y=1 (see Eq. 3.19). We therefore

setup the class-dependent human action probability ratio to 10:1, i.e., p(action|y = 1) =

10p(action|y = 0).

RQ 4.1: Does human preference towards labeling relevant data affect the bound-

ary shift during iterative learning given a fixed iterated algorithmic bias mode?

To answer this question, we run experiments and record the number of points which

are predicted to be in class y = 1 before and after iterative learning. We first aim to
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TABLE 4.16: Results of the Mann-Whitney U test and the t-test comparing bound-
ary shift for the three forms of iterated algorithmic bias with class-dependent hu-
man action probability ratio 10:1. The effect size is calculated as (Boundary|t=0 −
Boundary|t=200)/standard.dev. The negative effect size for filter bias shows that it de-
creases the number of points which are predicted to be in class y=1. Random selection
increases the number of points, while active learning does not have a significant effect.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 1.8e-13 0.05 4.3e-7

t-test p-value 6.4e-24 0.18 6.1e-13

effect size 1.6 -0.2 -1.1

understand how human preference changes the boundary. We do so by performing the

Mann-Whitney test and t-test. Table 4.16 shows that the filter bias significantly decreases

the number of points predicted to be in class y=1. On the other hand, random selection

significantly increases the number of points predicted to be in class y=1. Active learning has

no such significant effect. We also compare the effect across different iterated algorithmic

bias modes by performing a Kruskal-wallis test. The p-value is 1.87e-21 (< 0.01), which

indicates that the bias modes have different effects on the boundary shift (see Figure 4.9).

FB first FB last AL first AL last RM first RM last
198

199

200

201

202

203

204

205

206

Nu
m

 o
f p

oi
nt

s p
re

di
ct

ed
 a

s c
la

ss
 y

=1

FB: Filter Bias
AL: Active Learning Bias
RM: Random Selection
first: Iteration at t=0
last: Iteration at t=200

Figure 4.9: The box-plots showing the distribution of the number of points that are pre-
dicted to be in class y=1 in the first and last iterations of the iterated learning for three
iterated algorithmic biases with human action probability ratio 10:1. Filter bias signifi-
cantly decreases the number of points predicted to be in class y=1. On the other hand,
random selection significantly increases the number of points predicted to be in class y=1.
Active learning has no such significant effect.

It is also interesting to compare the effect on boundary shift for different bias modes

when the class-dependent human action probability ratios are set as 10:1 and 1:1. Table

4.17 shows the results. Both Filter bias and active learning biases show no significant
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TABLE 4.17: Results of the Mann-Whitney U test and the t-test comparing boundary
shift for the three forms of iterated algorithmic bias with class-dependent human ac-
tion probability ratio 1:1 and 10:1. The effect size is calculated as (Boundary|ratio=1:1 −
Boundary|ratio=10:1)/standard.dev at time t=200. Both Filter bias and active learning bias
show no significant difference between the two ratios. On the other hand, random selection
leads to more points predicted to be in class y=1.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 0.038 0.30 7.8e-9

t-test p-value 0.07 0.18 1.4e-9

effect size -0.4 0.04 -1.28

difference in boundary shift between the two ratios. On the other hand, random selection

has increased the number of points predicted to be in class y=1 when the ratio was 10:1.

The results are expected, since filter bias already prefers points from class y=1. Active

learning bias shows a smaller effect since this bias already prefers points that are close

to the boundary. Random selection with class-dependent human action probability prefer

points from class y=1, however randomly. Therefore, it slightly shifts the boundary to class

y=0.

RQ 4.2: Does human preference towards labeling relevant data affect the size of

the blind spot during iterative learning given a fixed iterated algorithmic bias

mode?

To answer this question, we run experiments and record the size of the class-1 blind

spot during iterative learning. Recall that the class-1 blind spot indicates how the interac-

tion affects the human’s ability to discover items. We first aim to understand how human

preference changes the blind spot size before and after iterative learning. We do so by per-

forming the Mann-Whitney test and t-test. Table 4.18 shows that filter bias significantly

increases the size of the class-1 blind spot. On the other hand, random selection significantly

decreases the size of the class-1 blind spot. Active learning has no such significant effect.

We also compare the effect across different iterated algorithmic bias modes by performing a

Kruskal-wallis test. The p-value is 3.4e-15 (< 0.01), which indicates that they have different

effects on the boundary shift (see Figure 4.10).
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TABLE 4.18: Results of the Mann-Whitney U test and the t-test comparing the size of
class-1 blind spot for the three forms of iterated algorithmic bias with class-dependent
human action probability ratio 10:1. The effect size is calculated as (Boundary|t=0 −
Boundary|t=200)/standard.dev. The negative effect size for filter bias shows that it increases
the size of the class-1-blind spot. Random selection decreases the blind spot size, while
active learning does not have a significant effect.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 1.1e-10 0.16 0.0008

t-test p-value 1.2e-9 0.32 0.002

effect size -1.2 -0.22 0.7
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Figure 4.10: The box-plots showing the size of the class-1 blind spot in the first and last
iterations of the iterated learning for three iterated algorithmic biases with human action
probability ratio 10:1. Filter bias significantly decreases the number of points predicted to
be in class y=1. On the other hand, random selection significantly increases the number of
points predicted to be in class y=1. Active learning has no such significant effect.

It is also interesting to compare the effect on the class-1 blind spot size with the

class-dependent human action probability ratio set to 10:1 and 1:1. Table 4.19 shows the

results for the class-1 blind spot size. Both Filter bias and active learning bias show no

significant difference between the two ratios. On the other hand, random selection has

increased the number of points predicted to be in class y=1. Filter bias already prefers

points from class y=1 so they do not show any significant difference. Active learning bias

has less effect since it prefers points that are close to the boundary. Random selection

with class-dependent human action probability prefers points from class y=1, however it is

randomly. Therefore, it slightly shifts the boundary to class y=0.
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TABLE 4.19: Results of the Mann-Whitney U test and the t-test comparing boundary
shift for the three forms of iterated algorithmic bias with class-dependent human ac-
tion probability ratio 1:1 and 10:1. The effect size is calculated as (Boundary|ratio=1:1 −
Boundary|ratio=10:1)/standard.dev at time t=200. Both Filter bias and active learning bias
show no significant difference between the two ratios. On the other hand, random selection
decreases the class-1 blind spot size.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 0.7 1.0 0.003

t-test p-value 0.47 1.0 0.004

effect size 0.08 0.0 0.64

TABLE 4.20: Results of the Mann-Whitney U test and the t-test comparing the inequality of
prediction for the three forms of iterated algorithmic bias with class-dependent human action
probability ratio 10:1. The effect size is calculated as (Gini|t=0−Gini|t=200)/standard.dev.
The negative effect size for filter bias shows that it increases the inequality. Both active
learning and random selection decrease the inequality.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 8.2e-14 4.6e-14 1.3e-7

t-test p-value 3.3e-34 1.7e-13 2.9e-19

effect size -1.6 1.31 1.84

RQ 4.3: Does human preference towards to relevant class affect the inequality

or Gini coefficient during iterative learning given a fixed iterated algorithmic

bias mode?

To answer this question, we run experiments and record the Gini coefficient before

and after iterative learning. We first aim to understand how human preference affects the

prediction inequality. We do so by performing the Mann-Whitney test and t-test. Table

4.20 shows that the filter bias significantly increases the inequality. On the other hand,

random selection significantly decrease the inequality as well as active learning. We also

compare the effect across different iterated algorithmic bias modes by performing a Kruskal-

wallis test. The p-value is 3.3e-18 (<0.01), which indicates that they have different effect

on the boundary shift (see Figure 4.11).

It is also interesting to compare the effect on the inequality of prediction with the

class-dependent human action probability ratio set to 10:1 and 1:1. Table 4.21 shows the

results for the inequality of prediction. Both Filter bias and active learning bias show
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Figure 4.11: The box-plots showing the inequality score at the first and last iterations of the
iterated learning for three iterated algorithmic biases with human action probability ratio
10:1. Filter bias significantly increases the Gini coefficient. On the other hand, random
selection significantly decrease the Gini coefficient, as well as the active learning.

TABLE 4.21: Results of the Mann-Whitney U test and the t-test comparing the inequal-
ity for the three forms of iterated algorithmic bias with class-dependent human action
probability ratio 1:1 and 10:1. The effect size is calculated as (Boundary|ratio=1:1 −
Boundary|ratio=10:1)/standard.dev at time t=200. Both Filter bias and active learning
bias show no significant difference between the two ratios. On the other hand, random
selection has decreased the class-1 blind spot size.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 0.47 0.11 1.8e-6

t-test p-value 0.83 0.83 1.6e-8

effect size 0.04 0.05 1.06

no significant difference between the two ratios. On the other hand, random selection has

increased the number of points predicted to be in class y=1. There is no significant difference

for the filter bias mode, since it already prefers points from class y=1. Active learning bias

has less effect since it prefers points that are close to the boundary. Random selection

with class-dependent human action probability prefers points from class y=1, however this

occurs randomly. Therefore, it slightly decreases the inequality.

4.4 Experiments on High Dimensional Synthetic Data

We perform similar experiments on 3D, 5D, and 7D synthetic data using a similar

data generation method. Our experiments produced similar results to the 2D data. We

found that as long as the features are independent from each other, similar results are
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TABLE 4.22: Experimental results with the 3D, 5D, 7D and 10D synthetic data set. The
effect size is calculated by (Measurement|t=0−Measurement|t=200)/std(·). The measure-
ments are the three metrics presented in Section 3.6. We report the paired t-test results.
For filter bias mode (FB), the results are identical to those of the 2D synthetic data across
all three research questions. Active learning bias (AL) generates the same result as for
the 2D synthetic data. Random selection (RM) has no obvious effect, similarly to the 2D
synthetic data experiments.

Bias type
Boundary Shift
(p-value, ES)

Blind spot (p-
value, ES)

Inequality (p-
value, ES)

Statistical test 3D
FB (4.3e-22, 2.9 )

(1.4e-16,
-1.2)

(1.6e-30, -1.5)

AL (0.03, 0.34) (0.32, -0.19) (1.7e-30, 1.9)
RM (1.0, 0.0) (0.74, 0.04) (0.87, 0.01)

Statistical test 5D
FB (1.4e-17, 2.9 ) (2e-4, -0.8) (2.4e-30, -1.2)
AL (0.03, -0.34) (0.32, 0.22) (9.4e-19, 1.67)
RM (0.63, -0.05) (0.3, 0.2) (0.66, -0.04)

Statistical test 7D
FB (5.5e-21, 2.2 ) (1e-7, -0.93) (2.4e-28, -1.2)
AL (0.01, 0.46) (0.05, -0.47) (1.5e-15, 1.56)
RM (0.91, -0.01) (0.09, -0.2) (0.8, -0.03)

Statistical test 10D
FB (8e-15, 1.4 ) (3e-13, -1.4) (1.8e-13, -1.6)
AL (0.68, -0.09) (0.5, 0.15) (1.8e-15, 1.63)
RM (0.17, 0.17) (0.1, -0.3) (0.8, -0.01)

obtained to the 2D case above. One possible reason is that when features are independent,

we can reduce them in a similar way to the 2D synthetic data set, i.e., one set of features

that are highly related to the labels and another set of features that are non-related to the

labels. Another possible reason is that independent features naturally fit the assumption

of the Naive Bayes classifier. Finally, we generated a synthetic data with 10 dimensions,

centered at (-2,0,0,0,0,0,0,0,0,0) and (2,0,0,0,0,0,0,0,0,0) with zero covariance between any

two dimensions. We follow the same experimental procedure as the 2D synthetic data.

Table 4.22 shows that the 3D, 5D, 7D and 10D synthetic data leads to similar results to

the 2D synthetic data set. In order to avoid repetition, we here only report the results that

show how different iterated algorithm bias modes affect the learned model during iterative

learning. To conclude, repeated experiments on additional data with dimensionality ranging

from 2 to 10 led to the same conclusions as the 2D data set.
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4.5 Experiments on the Real-life Data

We follow the same experimental procedure as for the synthetic data set from Section

4.3, but using the MovieLens data (as described in Section 4.2). 200 items are randomly

selected as testing set from both classes (like/dislike) for user 547. The testing set is also

considered as validation set for the blind spot study. After that, 200 more items from

the negative class (dislike) and 300 more items from the positive class (like) are randomly

selected to initialize the first boundary. The reason we chose a different proportion from

each is to be consistent with the proportions in the whole data set. The iterated learning

commences after the initialization and continues for 200 iterations. With the real data, we

aim to investigate how different iterated algorithmic biases affect the learned model. Thus,

the human action probability is set to paction = 1 and the preference to a certain class is

not considered.

Visualizing the boundary in high-dimensional data is difficult. However most classi-

fiers produce connected areas for each group [151]. We therefore can employ the number of

data points which changed their label after applying the new model to intuitively capture

the level of the boundary shift and to understand how the model is affected during the

iterated learning process. By also studying the blind spot evolution, we can get a sense of

the items that have a very low probability to be shown to the user, because they are part

of the blind spot when considering the probability of belonging to class y = 1.

4.5.1 Boundary Shift Study

Following the same procedure as in Section 4.3.2, we run experiments for three

different forms of iterated algorithmic bias and record the number of points which are

predicted to be in class 1 in the first iteration and last iteration. We perform the Mann-

Whitney U statistical test to see whether the different iterated algorithmic biases lead to

different trends of the boundary shift, we also report the t-test results and effect size. Table
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TABLE 4.23: Results of the Mann-Whitney U test and the t-test comparing the boundary
shift for the three forms of iterated algorithmic bias with the Movielens data set. The
positive effect size indicates that filter bias leads to fewer points predicted to be in class
y=1. Random selection and active learning do not have a significant impact.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 7.1e-15 0.002 0.42

t-test p-value 7.6e-25 0.0004 0.84

effect size 1.88 -0.57 -0.04

4.23 shows that there is a significant decrease in the number of points predicted to be in

class y=1 in the testing set for iterated filter bias. On the other hand, there is no significant

difference with active learning bias and random selection. The effect size here is calculated

using (Boundary|t=0−Boundary|t=200)/standard.dev, we will use this setup for the rest of

this section. It is also interesting that three different iterated algorithmic bias modes have

different results of prediction given similar initialization (see Figure 4.12). All these results

are consistent with the results from the synthetic data set.

We conclude that both iterated filter bias and iterated active learning bias have a

significantly effect on the boundary shift, while random selection does not have a significant

effect. This means that the nature of the model, and hence which items will be judged to

be relevant to the user, changes depending on the iterated algorithmic bias, with filtering

bias exerting the biggest influence. This kind of phenomenon was found to hold based on

all the statistical tests performed in this paper for synthetic and real data.

4.5.2 Blind Spot Size Study

In order to test how different iterated algorithmic bias modes affect the blind spot size, we

ran experiments for three different forms of iterated algorithmic bias and recorded the size

of the blind spot in the first iteration and last iteration. We performed the Mann-Whitney

U statistical test and we also report the t-test results and effect size. Table 4.24 shows that

there is a significant increase in the class-1 blind spot sizes in the testing set for iterated

filter bias and active learning bias. On the other hand, there is no significant difference
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Figure 4.12: The box-plots showing the distribution of the number of points that are pre-
dicted to be in class y=1 in the first and last iterations of the iterated learning for three
iterated algorithmic biases with the MovieLens data set. Filter bias significantly decreases
the number of points predicted to be in class y=1. On the other hand, random selection
and Active learning have no such significant effect.

TABLE 4.24: Results of the Mann-Whitney U test and the t-test comparing the size of the
class-1-blind spot for the three forms of iterated algorithmic bias with the Movielens data
set. The negative effect size indicates that filter bias leads to a bigger blind spot. Both
random selection and active learning do not have a significant impact.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 7.0e-15 0.0002 0.15

t-test p-value 4.2e-26 0.0001 0.46

effect size -1.89 0.66 0.16

with random selection (see Figure 4.13). As shown in Figure 4.13, around 150/200 = 75%

of items in the relevant testing set are hidden or in the blind spot after interaction.

It is important to note that this impact is significant enough to result in

hiding even relevant items from the user. A similar impact was found when the initial

labeled (training) set is class imbalanced with more relevant items than non relevant items.

Optional human willingness to label items seems to have a significant impact

on the resulting model and thus on which items are judged to be relevant and

in turn can be discovered by the user.

4.5.3 Inequality Study

In order to test how different iterated algorithmic bias modes affect the inequality of predic-
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Figure 4.13: The box-plots showing the distribution of the size of the class-1 blind spot in
the first and last iterations of the iterated learning for three iterated algorithmic biases with
the MovieLens data set. Filter bias significantly increases the size of the class-1 blind spot.
On the other hand, random selection and Active learning have no such significant effect.

TABLE 4.25: Results of the Mann-Whitney U test and the t-test comparing the inequality of
prediction for the three forms of iterated algorithmic bias with the Movielens data set. The
negative effect size indicates that filter bias leads to high inequality of relevance prediction.
Both random selection and active learning significant decrease on the inequality.

Filter Bias Active Learning Random Selection

Mann-Whitney test p-value 7.7e-15 1.9e-5 0.008

t-test p-value 7.4e-25 1.7e-9 4.4e-5

effect size -1.83 0.95 0.5

tions, we ran experiments for three different forms of iterated algorithmic bias and recorded

the Gini coefficient in the first iteration and last iteration. We performed the Mann-Whitney

U statistical test and we also report the t-test results and effect size. Table 4.25 shows that

filter bias leads to a significant increase in the Gini coefficient, while both active learning

and random selection result in a significant decrease in the Gini coefficient. It is important

to note that both random selection and active learning are used to build an accurate model

in machine learning. Therefore, both bias modes decrease the inequality (see Figure 4.14).

We also ran experiments with other 7 users. They all produced similar results (see

table 4.26).

4.6 Summary and Conclusions

We investigated three forms of iterated algorithmic bias (filter, active learning, and

random baseline) and how they affect the performance of machine learning algorithms by
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Figure 4.14: The box-plots showing the distribution of the Gini coefficient of the prediction
in the first and last iterations of the iterated learning for three iterated algorithmic biases
on the MovieLens data set. Filter bias significantly increases the in equality of prediction.
On the other hand, random selection and Active learning lead to a significantly decrease in
the inequality of prediction.

TABLE 4.26: Top 8 most active users in MovieLens data set and statistical analysis results
with paired t-test. The effect size is calculated as (Measurement|t=0−Measurement|t=200

/standard.dev. Bold means significance, and ES means the effect size. Filter bias has
a consistently significant and sizable effect on the three measurements across all 8 users.
Random selection has less impact on the boundary shift and blind spot. However it sig-
nificantly decreases the inequality. Active learning aims to help learn correct boundary,
therefore it highly depends on the initial data points. Active learning affects points close
to the boundary, thus it has limited effects overall.

Total
movies
rated

Positive
rated

Negative
rated

Bias
type

Boundary Shift
(p-value, ES)

Blind spot (p-
value, ES)

Inequality (p-value,
ES)

User ID=547 2391 1409 982
FB (7.6e-25, 1.88 ) (4.2e-26, -1.89) (7.4e-25, -1.83)
AL (0.0004, -0.57) (0.001, 0.66) (1.7e-9, 0.95)
RM (0.84, -0.04) (0.46, 0.16) (4.4e-5, 0.5)

User ID=564 1868 1115 753
FB (1.0e-14, 1.37) (1.1e-12, -1.45) (1.5e-21, -1.67)
AL (1.7e-9, -0.99) (3e-9, 0.95) (9e-12, 0.92)
RM (0.004, -0.48) (0.008, 0.45) (2.6e-6, 0.73)

User ID=624 1735 1043 692
FB (2.3e-7, 0.8) (2.7e-7, -1.28) (8.2e-26, -1.7)
AL (8.4e-11, -1.28) (7.8e-11, 1.29) (7.5e-17, 1)
RM (2.8e-5, 0.64) (1.6-5, 0.7) (8e-6, 0.64)

User ID=15 1700 857 843
FB (3.4e-18, 1.4) (2.3e-18, -1.5) (2.6e-30, -1.76)
AL (4.3e-8, 0.93) (7.4e-9, 0.9) (0.0003, 0.35)
RM (1.6e-6, 0.73) (2.1e-6, -0.7) (0.16, -0.17)

User ID=73 1610 1016 594
FB (1.8e-8, 1.02) (1.6e-8, -1.0) (7.6e-36, -1.81)
AL (1.7e-12, -1.5) (5.4e-11, 1.46) (9.3e-24, 1.42)
RM (2e-7, -0.9) (5.6e-7, 0.85) (6.4e-7, 0.66)

User ID=452 1340 613 727
FB (0.001, 0.46) (0.0006, -0.7) (1.1e-12, -1.31)
AL (2.8e-8, 1.2) (5.9e-10, -1.24) (0.78, 0.34)
RM (0.0101, 0.5) (0.009, -0.52) (0.7, 0.04)

User ID=468 1291 795 496
FB (5.2e-10, 1.18) (8.8e-12, -1.29) (3.3e-26, -1.74)
AL (1.8e-18, -1.6) (3.1e-18, 1.61) (1.9e-26, 1.67)
RM (5.6e-12, -1.36) (3.2e-13, 1.44) (1.1e-13, 1.15)

User ID=380 1063 620 443
FB (3.2e-11, 1.22) (2.6e-11, -1.26) (2.3e-27, -1.76)
AL (1.36e-13, -1.32) (1.13e-12, 1.28) (4.7e-15, 0.96)
RM (1.3e-9, -0.96) (1.53e-5, 0.89) (0.002, 0.7)

formulating research questions about the impact of each type of bias. Based on statistical

analysis of the results of several controlled experiments using synthetic and real data, we

found that (see the overall synthesis of findings in Table 4.27 and 4.28):

1. The three different forms of iterated algorithmic bias (filter, active learning, and

random selection, used as query mechanisms to show data and request new feed-

71



back/labels from the user), do affect algorithm performance when fixing the

human interaction probability to 1.

2. Different initial class imbalance in the training data used to generate the initial rel-

evance boundary, significantly affect the machine learning algorithm’s results for all

three forms of iterated algorithmic bias, impacting boundary shift, heterogene-

ity of predicted relevance, and hidden relevant items (class 1-blind spot).

3. Iterated filter bias has a more significant effect on the class-1-blind spot size compared

to the other two forms of algorithmic biases. This means that iterated filter

bias, which is prominent in personalized user interfaces, can limit humans’

ability to discover data that is relevant to them.

4. The iterated learning framework is effective for analyzing the impact of iterated algo-

rithmic bias in human-algorithm interaction.

Our findings indicate that the relevance blind spot (items from the testing set whose

predicted relevance probability is less than 0.5) amounted to 4% of all relevant items when

using a content-based filter that predicts relevant items. A similar simulation using a real-

life data set found that the same filter resulted in a blind spot size of 75% of the relevant

testing set. Future work will consider the following three directions: 1) Taking into account

additional parameters and configurations when testing the impact of iterated algorithmic

bias and human interaction on ML models, including: (A) Changing the number of items

recommended in top N relevant item recommendation lists and (B) Applying different types

of AL (we only investigated uncertainty-based AL); 2) Human experiments that study

research questions that are similar to the ones formulated for the simulated experiments; 3)

In our study, we considered three iterated algorithmic biases modes, there are more possible

iterated algorithmic biases modes, such as active-filter bias (Combining active learning and

filter bias, i.e., querying data which are close to the center of each class); 4) Here, we used

two different models to model human action, human reaction is more complicated. Future

work would be to develop more realistic human reaction models.
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TABLE 4.27: Summary of Research Question (RQs) and findings for synthetic data

RQ Sub Questions Main Findings

1

• RQ1.1: Do different forms of iterated al-
gorithmic bias have different effects on
the boundary shift?

• RQ1.2: Do different iterated algorith-
mic bias modes lead to different trends
in the inequality of predicted relevance
throughout the iterative learning?

• RQ1.3: Does the iterated
algorithmic bias affect the
size of the class-1-blind spot?

• Filter bias reduces the # of items predicted as class y=1 and
increases the blind spot size, which indicates it will limit the
users’ ability to discover new items.

• Filter bias increases the inequality of prediction, which leads
to even more inequality.

• Random selection and active learning bias show no/little effect
on the blind spot.

2

• RQ2.1: Does class imbalanced initializa-
tion affect the boundary learned during
iterative learning?

• RQ2.2: Does class imbalanced initializa-
tion affect the blind spot size during it-
erative learning?

• RQ2.3: Does class imbalanced initializa-
tion affect the inequality of predictions
during iterative learning?

• Highly imbalanced class initialization leads to a bigger dif-
ference between the learned boundary and the ground-truth
boundary.

• When the initialization ratio is 10:1 (class 1: class 0), all three
bias forms increase the class-1 blind spot size, indicating that
imbalanced initialization leads to even more limitation for users
to discover new items.

• When the initialization ratio is 1:10 (class 1: class 0), filter bias
results in increasing the blind spot size. Random selection and
active learning bias decrease the blind spot size.

3

• RQ3.1: Does human action affect the
boundary shift during iterative learn-
ing?

• RQ3.2: Does human action affect
the class-1-blind spot size during itera-
tive learning given a fixed iterated algo-
rithmic bias mode?

• RQ3.3: Does class imbal-
anced initialization affect the
relevance prediction inequality (or

Gini coefficient)?

• Human action affects the boundary shift more with iterated
filter bias than with the other two forms of bias.

• For both random selection and active learning bias, the number
of points predicted as relevant converges to the ground truth
boundary when there is a high probability of human action.

• Filter bias tends to diverge from the ground truth boundary
with high human action probability.

• The more humans react to the recommender system, the higher
the impact of each iterated algorithmic bias mode.

4

• RQ4.1: Does human preference to-
wards labeling relevant data affect
the boundary shift during iterative
learning?

• RQ4.2: Does human preference towards
labeling relevant data affect the size of
the blind spot during iterative learning?

• RQ4.3: Does human preference towards
to relevant class affect the inequality or
Gini coefficient during iterative learn-
ing?

• For both filter bias and active learning, the number of points
predicted as class y=1, with and without the class-dependent
human action probability, show no significant difference.

• For both filter bias and active learning, the size of the class-1
blind spot, with and without the class-dependent human action
probability, have no significant difference.

• Random selection decreases the class-1 blind spot size, and
increases the number of points predicted as class y=1, with
the class-dependent human action probability.
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TABLE 4.28: Summary of Research Question (RQs) and findings for real data

Research Question Main Findings

• How do different iterated al-
gorithmic bias modes affect
the boundary shift?

• Both iterated filter bias and iterated active
learning bias have a significantly effect on the
boundary shift, while random selection does not
have a significant effect, indicating that the na-
ture of the model, and hence which items will
be judged to be relevant to the user, changes de-
pending on the iterated algorithmic bias, with
filtering bias exerting the biggest influence.

• How do different iterated al-
gorithmic bias modes affect
the blind spot size?

• There is a significant increase in the class-1
blind spot size in the testing set for iterated fil-
ter bias and active learning bias. On the other
hand, there is no significant difference with ran-
dom selection.

• How do different iterated al-
gorithmic bias modes affect
inequality of prediction?

• Filter bias leads to a significant increase in the
Gini coefficient, while both active learning and
random selection show a significant decrease in
the Gini coefficient.
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CHAPTER 5

DEBIASING COLLABORATIVE FILTERING RECOMMENDER SYSTEMS

Recommender Systems (RSs) are widely used to help online users discover products,

books, news, music, movies, courses, restaurants, etc. Because a traditional recommenda-

tion strategy always shows the most relevant items (thus with highest predicted rating),

traditional RS’s are expected to make popular items become even more popular and non-

popular items become even less popular which in turn further divides the haves (popular)

from the have-nots (unpopular). Therefore, a major problem with RSs is that they may

introduce biases affecting the exposure of items, thus creating a popularity divide of items

during the feedback loop that occurs with users, and this may lead the RS to make in-

creasingly biased recommendations over time. In this chapter, we view the RS environment

as a chain of events that are the result of interactions between users and the RS. Based

on that, we propose several debiasing algorithms during this chain of events, and evaluate

how these algorithms impact the predictive behavior of the RS, as well as trends in the

popularity distribution of items over time. We also propose a novel blind spot awareness

matrix factorization algorithm to debias the RS. Results show that the proposed propensity

matrix factorization achieved a certain level of debiasing of the RS while active learning

combined with the propensity MF achieved a higher debiasing effect on recommendations.

Our proposed blind spot aware matrix factorization also achieved a certain level of debiasing

of the RS.

5.1 Introduction

The goal of a RS is to infer user preferences, given the user’s previous ratings, and

to predict which items the user might like. Modern RSs generally aim to discover a stable
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relationship between users and items. This may lead to a situation in which users only see a

narrow subset of the entire range of available recommendations, a phenomenon known as the

‘filter bubble’ [75]. The relationship between users and items is, however, time dependent.

This is because if the RS predicts that some items may not be of interest to the user, these

items may end up never actually being seen by the user. This presents a significant problem

for RSs: we might know why a user likes an item, but we do not know why an item is not

liked by the user. Is it not liked by a user because the user does not like it, or is it simply

because the user has not seen the item in the RS results? Furthermore, if we assume the

RS will continue to recommend items to users based on biased ratings, and that users will

respond to these recommendations, the RS will slowly learn to return increasingly similar

items in its results. In other words, the RS will begin to systematically limit the users‘

ability to discover more items [152]. In this chapter, we propose to model how iterated

biases evolve from the continuous user-RS feedback loop, and propose to develop a series of

different debiasing strategies.

Unlike the existing work on debiasing, reviewed in Sec 2.6, we aim to propose strate-

gies to reduce the iterated bias that occurs during the interactions between users and the

RS without the introduction of strong assumptions. Moreover, in contrast to the afore-

mentioned research, we propose algorithms that consider the RS to be a chain of events,

and then focus on debiasing the iterated bias introduced by these interactions by using an

estimated propensity score, with and without an active learning strategy. We also employ

the Gini coefficient and the blind spot score to quantify how the interaction affects the

users’ ability to discover new items. Table 5.1 shows the related work and a comparison

with our work. Part of this work is also reported in [153], but only evaluate the methods

on synthetic data.

5.2 Objectives and Contributions

Viewing a RS as a continuous chain of events in which users actively interact with

the output of a RS, we propose three debiasing algorithms for RSs:
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TABLE 5.1: Related work on Debiasing.

Related work Main Goal Bias Models
Proposed

Debiasing
Strategies

Evaluation Met-
rics

Hu et al. 2008,
[120]

Understanding im-
plicit feedback in
RS

N/A N/A MAE and
NDCG

Schnabel et al.
2016, [121]

Debiasing learning
and evaluation in
RS

Exposure
model

Inverse propen-
sity weighting

MSE and
NDCG

Liang et al. 2017,
[122]

Debiasing implicit
feedback in RS

Exposure bias Incorporating
user exposure
model into RS

Recall, NDCG
and MAP

Chaney et al. 2017,
[126]

Understanding
feedback loops in
RS

Homogenization
of user behav-
ior

N/A Homogeneity
score

Sinha et al. 2016,
[129]

Debiasing feedback
loops in RS

Robs =
Rtrue+Rrecom

Deconvolving
feedback impact

ROC

Nasraoui and
Shafto 2016, [77]

Understanding it-
erative algorithmic
biases in machine
learning

Iterated algo-
rithmic bias

Reactive learn-
ing and antidote

Machine learn-
ing performance

Sun et al. 2018,
[152]

Modeling and un-
derstanding bias

Iterated algo-
rithmic bias

N/A Gini coefficient
and blind spot
size

Shafto and Nas-
raoui. 2016, [130]

Modeling and un-
derstanding bias
and its connection
to human behavior

Dynamic
interaction
between ma-
chine learning
systems and
humans

Cognitive mod-
els

Human’s learn-
ing behavior

This Work Understanding and
debiasing iterative
bias in RS

Propensity
model

Inverse propen-
sity weighting,
active learning
and blind spot
aware Matrix
Factorization

MAE, RMSE,
Gini coefficient
and blind spot
score

1) a unified recommendation and active learning strategy (active recommendation)

during the interaction between users and the RS algorithm, with the goal of reducing rec-

ommendation uncertainty, while at the same time ensuring the integrity of the algorithm‘s

performance;

2) an exposure-based collaborative filtering recommendation model that is also com-

bined with an active recommendation to further debias the RS;

3) a blind spot aware MF, which takes into account and counteracts the blind spot

caused during the learning phase of the RS.
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5.3 Propensity and Active Learning

We start by summarizing the notation used in this chapter. All sets and parameters

are defined as follows and are based on similar notation given in [121,122]:

Ru,i: An integer which indicates the rating giving by user u to item i.

Ou,i: A binary value which indicates that user u provided a rating for item i to the system,

[Ou,i = 1]→ [Ru,i is observed].

Pu,i: Propensity: The probability of observing an entry. Pu,i = P (Ou,i = 1).

NU : The total number of users.

Ni: The number of users who rated item i.

5.3.1 Propensity

Observational recommendations contain two sources of information: the items which

the user can see, and the user‘s recorded preference toward those items. Propensity refers

to the probability of observing a rating Ru,i. In a real-world application, what the user sees

is highly subject to selection biases. For example, users rarely rate movies that they dislike

since they may not have seen these movies. Another example would be an advertisement

recommendation system that always shows ads that are predicted to be relevant to the user.

This bias is expected to get stronger as a result of the iterative interaction between users

and the recommendation outputs.

Propensity is well studied in causal inference [154]. Why do we consider recommend-

ing items to users to be a causal inference problem? Suppose, the items are movies and

users are asked to rate movies they have seen. In the prediction stage, the RS is trying

to answer the question: “Will the user like this movie if he or she watches it?”. From

the perspective of causality, this is a similar question about an intervention or treatment:

“What would the rating be if the user is forced to watch the movie?” The item here is the

role of the treatment; and the rating is the role of the response to the treatment [121]. The
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propensity-weighted approaches are different from traditional approaches. A traditional

approach builds a model based on observed ratings, and then uses the model to predict the

ratings of unobserved items. This kind of approach usually incorporates the assumption

that users typically watch and rate movies at random. This assumption does not hold under

the conditions of the iterative user-RS interaction.

Recent research on RSs began to take into account the role of item propensity,

where user exposure to an item in a RS is viewed as analogous to exposing a patient to

a treatment in a medical study [121, 122]. Thus, propensity is also treated as a causal

inference; propensity indicates how probable it is that a new treatment can or will be

exposed to a patient. In both cases, the studies try to infer the causal effect based on

current results (whether it be the effect of a new treatment, or a new item in a RS).

Existing approaches for RSs generally under-weight items that are not rated in the

system. It is, however, difficult to determine whether an item is not rated by a user because

the user does not like the item, or because the user has not seen the item as a result

of the inherent selection bias in the RS [122]. The main idea behind a propensity-based

MF is to under-weight the unrated item for recommendation and up-weight the unpopular

item by bringing into the objective function of the model an Inverse Propensity Score, as

follows [121]:

argmin
V,M

∑
Ou,i=1

||R− V TM ||2

Pu,i
+ λ(||V ||2F + ||M ||2F ) (5.1)

Here Pu,i represents the probability that a user u will see item i, and is also referred to as

propensity score. V and M are the two latent factors in the MF.

Estimating propensity

A simple way of estimating propensity is to use a popularity score [122]. This

assumes that Ou,i follows a Bernoulli distribution, i.e., Ou,i ∼ Bernoulli(ρi). Note that the

propensity score is fixed across users in this case, i.e., Pu,i = ρ̂i. Given a rating matrix,

the popularity of an item is the proportion of items exposed to certain users among all the

users (essentially, the proportion of users who have rated the item relative to all users).
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Another way of estimating propensity is to assume that Ou,i follows a Poisson dis-

tribution [122], or Ou,i ∼ Pois(πTu γi). πu and γi are the two latent factors of the Gamma

prior. Given a ratings matrix, this method assigns a value of 1 to an item that was rated by

a user in the observational matrix O, and 0 if it is not rated. By factoring this observational

matrix, we get the propensity scores of all user and item pairs (see Eq. 5.2)

Pu,i = 1− P (Ou,i = 0|πu, γi) ≈ 1− exp
{
−E[πTu γi]

}
. (5.2)

5.3.2 Active Learning

Active Learning (AL) is a special case of semi-supervised learning in which the system

has the ability to interactively prompt users to label (or rate) items in order to improve the

accuracy of the model [78]. One of the advantages of AL is that the targeted knowledge the

system acquires helps accelerate the speed at which the system learns the model. One way

to implement AL is to actively prompt users to rate items that have been underweighted

by the RS in order to improve the quality of the ratings of this subset of items. In a rating

system with range from Rmin to Rmax , the active learning can be formalized directly as

follows [155]: Select the next item xact that satisfies

xact = argmin
xi

[θ − ŷ|xi]. (5.3)

Here, ŷ is the rating predicted by the RS given an item xi. θ controls the degree of active

learning, ranging from the midrange rating of 0.5(Rmin + Rmax) to the maximum rating

Rmax.

It can be seen that θ = Rmax recovers pure recommendation (select the most relevant

item, hence the item with highest predicted rating), while θ = 0.5(Rmin + Rmax) recovers

pure active learning (select the item with most uncertain relevance to the user based on the

predicted rating, hence an item that is far from both being very relevant (ŷ = Rmax) and

very non-relevant (ŷ = Rmin)). Cognitive experiments have recently shown that an active

recommendation system can cover a wider choice of items, while maintaining the accuracy

of the results [155].
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5.3.3 Proposed Methods to Debias Recommender Systems

We first introduce our interactive recommender system framework, which considers

a RS as a continuous chain of events. First the initial RS suggests items to each user based

on the initial training ratings and it is assumed that the users have 100% agreement with

the recommendation. We then retrieve the true ratings from our masked ratings and add to

the new training ratings. After that, a new recommendation based on new training data will

be issued. This interaction will continue until a maximal number of iterations is reached.

Algorithm 1 shows the details of our interactive recommender system with human in the

loop.

Algorithm 1: Interactive Recommendation System with the Human-
Recommender System Feedback Loop Debiasing Mechanism

Data: Rating matrix R′ui, λ, Learning rate η, MAXinteration, Iterations=0,
Size of selection

Result: MAE, RMSE, Gini Coefficient
The system trains the initial Matrix Factorization model and computes
predictions R̂;

while Iterations ¡ Max Feedback Loop Iterations do
1 for all users u in the system {

1.1. The system selects top-N items to recommend from the predicted
ratings R̂ based on a specialized recommending strategy;

1.2. User u picks the selected top-N items and gives rating Rnewu,i (from
ground-truth complete data) for each item i;
}

2. The system records the popularity Pi = Ni/NU after the new ratings are
taken in.

3. The system records the metrics such as the RMSE and the Gini index of
the popularity given the current rating matrix;

4. The system retrains the model with the new rating matrix using steps
gradient descent updates (Eq. 5.4 or Eq. 5.8 depending on the
recommendation strategy chosen, and recomputes the predictions).

5. Iterations++
end

We propose several recommendation strategies based on common latent factor-based

algorithms to simulate real-life user-recommendation system interaction.

Conventional MF:

This model is trained using conventional MF (same as Eq. 5.1 with Pu,i = 1), and
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the system always selects the top predicted item for each user, and adds it to the next

(new) training set. In other words, there is no active learning.

Conventional MF + Active Learning:

This model is trained using conventional MF (Eq. 5.1 with Pu,i = 1), but the system

selects the active recommendation items with θ = 4.5 for each user in Eq. (5.3).

θ = 4.5 is chosen to be between θ = 0.5(Rmin+Rmax) = 3 (pure AL) and θ = Rmax = 5

(pure recommendation).

Popularity Propensity MF:

This model is trained with propensity MF (Eq. 5.1) [121]. The propensity Pu,i is

estimated based on popularity. The system always selects the top predicted item for

each user, and adds it to the next (new) training set. In other words, there is no

active learning.

Popularity Propensity MF + Active Learning:

This model is trained with propensity MF (Eq. 5.1) [121]. The propensity Pu,i is

estimated using popularity. The system selects the active recommendation items

with θ = 4.5 for each user in Eq. (5.3).

Poisson Propensity MF:

The model is trained with propensity MF (Eq. 5.1). Here the propensity Pu,i is

estimated based on Poisson MF (5.2) [122] on the exposure matrix. The system

always selects the top predicted item for each user, and adds it to the next (new)

training set. In other words, there is no active learning.

Poisson Propensity MF + Active Learning:

The model is trained with propensity MF (Eq. 5.1). Here the propensity Pu,i is

estimated using Poisson MF (Eq. 5.2) [122] on the exposure matrix and the system

selects the active recommendation items using (Eq. 5.3) with θ = 4.5 for each user

(again chosen to be between θ = 0.5(Rmin +Rmax) = 3 (pure AL) and θ = Rmax = 5

(pure recommendation)).
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In this preliminary work, we use both popularity and Poisson Matrix Factorization (PMF)

to estimate the propensity. To minimize the objective function, we use stochastic gradient

descent, which has been used successfully to solve MF with big datasets. For a given training

rating rij , the updates for Vu and Mi can be shown to be:

Vu ← Vu + η(2euiMi − λVu)

Mi ←Mi + η(2euiVu − λMi).

(5.4)

Here eui = (r̂ui−V T
u Mi)

Pu,i
, r̂ui is the predicted rating and η is the learning rate for gradient

descent. With a proper choice of step size, gradient descent converges to a local minimum.

Propensity Pu,i is computed as follows:

Pu,i =


1.0 for Conventional MF

Ni/NU for Popularity Propensity MF

1− P (Ou,i = 0|πu, γi) for Poisson Propensity MF

(5.5)

This means that Pu,i = 1 for the first two (Conventional MF, with or without AL)

recommendation strategies. Pu,i is estimated using popularity for Popularity Propensity MF

(with or without AL) strategies and it is estimated using Eq. 5.2 for Poisson Propensity

MF (with or without AL) strategies.

In addition to the above proposed debiasing strategies above, a seventh algorithm

called Blind Spot Aware Matrix Factorization is introduced. In this chapter, we define

the blind spot size as the number of item with a predicted ratings R̂u,i that is smaller than

a threshold δ , i.e., Du
δ = {i ∈ I | R̂u,i < δ}. Note that because each user has their own

blind spot, we define a threshold for each user. The threshold is used to set a percentile

cut-off for each user, 95% in our experiments. Therefore, We define the blind spot for user

u as

Du
ε = {i ∈ I | R̂u,i < maxu,i(R̂u,i) ∗ ε}. (5.6)

Here ε is a cut-off which controls the threshold.

Our proposed Blind Spot Aware MF tries to limit the blind spot when trying to

optimize the cost function of the conventional matrix factorization. The cost function for
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Figure 5.1: Conventional Matrix Factorization vs. Blind Spot Aware Matrix Factorization.
Figure (A) indicates Conventional Matrix Factorization, in which the algorithm aims to find
items that are close to users through differentiation. The top of Figure (A) indicates how
items are distributed around a user in the latent space under Conventional MF, the bottom
of (A) shows the similarity between the user and all items in latent space. Figure (B) shows
how the proposed Bias-aware Matrix Factorization finds items close to users while keeping
the items that are close to each other in the latent space. The top of Figure (B) indicates
how items are distributed around a user in the latent space , the bottom of (B) shows the
similarity between the user and all items in latent space.

blind spot aware MF is as follows:

J =
∑
u,i∈R

||ru,i − V T
u Mi||2 +

λ

2
(||Vu||2 + ||Mi||2)

+
β

2
||Vu −Mi||2.︸ ︷︷ ︸

Blind Spot Aware Term

(5.7)

To minimize the objective function, we use stochastic gradient descent, which has been

used successfully to solve MF for CF with big datasets. For a given training rating rij , the

updates for Vu and Mi can be shown to be:

Vu ← Vu + η(2euiMi − λVu − β(Vu −Mi))

Mi ←Mi + η(2euiVu − λMi + β(Vu −Mi)).

(5.8)

Here eui = r̂ui − V T
u Mi, r̂ui is the predicted rating, and η is the learning rate for gradient

descent. With a proper choice of step size, gradient descent converges to a local minimum.
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Intuition Behind Blind Spot Aware MF: Conventional Matrix Factorization

aims to predict ratings by matching the existing ratings through some latent factors. The

RS tries to differentiate different items for each user as much as possible. The distance

between a user and all items are very unevenly distributed compared to Blind Sport Aware

Matrix Factorization as shown in Figure 5.1. Therefore, given the same proportional range

of similarity, blind spot aware has more items to explore with high relevant score. For

example, Conventional MF have very limited choices to recommend to users given the

predicted ratings range[0.8*Max, Max]. ‘Max‘ is the maximum of the predicted ratings on

items for a user.

On the other hand, Blind Spot Aware Matrix Factorization tries to match the ex-

isting rating, bringing items close to each other so that each user has a higher chance to

explore more items. For example, the overall blind spot size is decreased (see figure 5.1). As

shown in figure 5.1, conventional MF has a very uneven similarity distribution comparing

with blind spot aware MF. While, Blind Spot Aware MF has rich candidates of items to

choose from. Most importantly, those candidate items are all highly related with the user

in the latent space. In these cases, blind spots are partially related with the novelty and

diversity in a recommender system (see Section 5.4). Novelty aims to recommend items

that are different from previously rated item, while diversity intends to recommend items

that are different from each other in the recommended list [156].

5.4 Experimental Evaluation

5.4.1 Data Sets

5.4.1.1 Synthetic Data

We use item response theory to generate a sparse rating matrix Ru,i using the model

proposed in [157]. Assume au to be the center of user u’s rating scale, and bu to be the

rating sensitivity of user u. Finally let ti be the intrinsic score of item i. We generate a
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user-item rating matrix as follows:

Ru,i = L[au + buti + ηu,i] (5.9)

where L[ω] is the discrete level function, assigning a score in the range 1 to 5: L[ω] =

max(min(round(ω), 5), 1) and ηu,i is a noise parameter. In our experiments, we draw au ∼

N(3.4, 1), bu ∼ N(0.5, 0.5), tu ∼ N(0.1, 1), and ηu,i ∼ εN(0, 1); where N is a standard

normal density, and ε is a noise parameter, we set up ε = 0.5. We generate a rating

matrix R with 500 users and 500 items, therefore we have 250,000 ratings in total. To

check the quality of our synthetic ratings, we simply compare the distribution of ratings

from our synthetic data with the original MovieLens 100k dataset. Figure 5.2 shows the

comparison of those two rating distributions. The Pearson correlation coefficient between

the two distributions is 0.98 [158].

Figure 5.2: Distribution of synthetic ratings and MovieLens 100k rating data. The x-axis

is the rating scale, ranging from 1 to 5. The y-axis is the number of ratings in each scale

normalized by the maximum.

5.4.1.2 Semi-synthetic Data

We also conduct our experiments on a semi-synthetic dataset. The ML100K dataset

provides 100K ratings for 1683 movies by 944 users [159]. To allow a long term user and

machine learning system interaction, we complete these partial ratings using standard ma-

trix factorization. We then adjust those ratings to match a more realistic rating distribution

[p1, p2, p3, p4, p5] for ratings 1 to 5 as given in [160] as follows: we assign the bottom
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p1 fraction of the entries by value in the completed matrix a rating of 1, and the next

p2 fraction of entries by value a rating of 2, and so on. Hyper-parameters (rank d and

L2 regularization λ for the standard Matrix Factorization) were chosen by using an 80-20

train-test split of the 100K ratings, and maximizing the accuracy of the completed matrix

on the test set.

5.4.2 Metrics

In order to assess the accuracy of the prediction of the RS during the interactive

recommendation, we compute the Root Mean Square Error (RMSE). To check the impact

of the debiasing mechanism, we compute the Gini coefficient of the popularity scores of all

items. The Gini coefficient is used to measure the inequality of a distribution [139]. Let Pi

be the popularity of each item after training the model. For a population with n values Pi,

i = 1 to n, that are indexed in non-decreasing order ( P(i) ≤ P(i+1)), the Gini coefficient

can be calculated as follows [139]:

G = (

∑n
i=1(2i− n− 1)P(i)

n
∑n

i=1 P(i)
). (5.10)

The higher the Gini coefficient, the more unequal are the values in the dataset. The Gini

coefficient of the popularity of items shows how the recommendation system’s output af-

fects the exposure distribution of items. Traditional RS’s are expected to make popular

items become even more popular and non-popular items become even less popular because

a traditional recommendation strategy always shows the most relevant items (thus with

highest predicted rating), which further divides the haves (popular) from the have-nots

(unpopular).

We expect to see the debiasing mechanism lead to different trends in comparison with

a traditional recommendation process that shows the top items to users after each iteration

of the model learning process. The Gini coefficient of the popularity of items shows how

the recommendation system’s output affects the exposure distribution of items. Traditional

RS’s are expected to make popular items become more popular and non-popular items
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become even less popular because a traditional recommendation strategy always shows the

most highly predicted items.

Another way to measure the debiasing effectiveness is to check the blind spot size

(see Eq. 5.6). Modern recommendation systems suffer from two important issues: filter

bubbles [75], and blind spots [77, 130, 152] (see Fig. 5.3). If the blind spot size is too big,

users only have limited ability to discover possibly interesting items. However, if the filter

bubble size is too big, users are limited to discover only certain types of items.

Figure 5.3: The blind spot and filter bubble in a recommender system. Here, δb represents

the threshold up to which items that have a lower probability of being seen will not be

seen by users. On the other hand, items with probability of being seen higher than δf will

always be seen by users.

In this work, we check how many times an item falls into the blind spot based on

the predicted ratings across all users who have not rated or seen this item yet. We use

Ru = {i ∈ I|user u has rated item i} as the observed ratings for user u. Therefore

the BL score for an an item i is:

BL(i)
score =

∑
u∈U
|i ∈ Du

ε and i 6∈ Ru|∑
u∈U
|i 6∈ Ru|

(5.11)

The numerator is the total number of users who have not rated item i and have item i in

their blind spot based on the prediction. The denominator is the total number of users who

have not rated item i. For example, if an item falls into the blind spot 100 times based on

Eq. 5.6 across all 400 users who have not rated this item, then the BL score for this item

will be 100/400 = 0.25.
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5.4.3 Method

For each data set, we randomly select a certain proportion of ratings to initialize our

recommender model. We randomly select 25 ratings for each user for the pure synthetic

data. For the semi-synthetic data, we randomly select 50 ratings for each user. After this,

we leave out 20% of the entire rating matrix as testing set. Note that the test set is later

fixed in both cases, and will not be changed. All other ratings are considered as candidate

ratings: they are used to simulate the feedback loop of RS and human interaction, and

will be added based on the selection mechanism of the recommendation strategy in each

iteration/loop. Figure 5.4 shows the approach for splitting our data. We record the RMSE,

MAE, blind spot score and the Gini coefficient of predicted item popularity of each testing

set. Figure 5.4 shows the splitting of our data.

...

...

...

...

Initial train ratings (5%)

Test ratings (20%)

Candidate ratings (75%)

Completed rating matrix

Figure 5.4: The splitting of the completed rating matrix. The completed rating matrix

is split into 3 parts: 1) Initial ratings; 2) Test ratings; and 3) Candidate ratings. The

candidate ratings will be added to the training ratings when queried by the system.

For both data sets, in each simulation of a feedback loop, we use one of the rec-

ommendation strategies listed in Section 5.3.3 to recommend items to each user. After

that, we simulate the users’ response by assuming that they responded to items that are

recommended and provide the true ratings for the top-N ratings (top-N=10). After new

ratings are taken in, we update the recommender system. We then simulate runs of Max

Feedback Loops = 20 iterations in Algorithm 1 where a single iteration (or loop) consists of

the algorithm providing a recommendation, the user labeling the recommendation, and the

algorithm updating its model of the user’s preferences.

For each of the recommendation strategies in section 5.3.3, we set the number of
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items (top-N) selected after each recommendation to 10. For the blind spot aware MF

and conventional MF with and without AL models, we use stochastic gradient descent

to optimize the objective function. For all the Matrix Factorization methods, we set the

dimension of the latent space to 20. For all the four propensity based MF algorithms,

we optimize the objective function following coordinate gradient descent update rules to

learn the model [161]. For all gradient descent optimization updates, we set the number of

learning iterations steps = 200, regularization weight λ = 0.02 and learning rate η = 0.002

for training the matrix factorization model. All the results are from the average of 10

independent runs.

We also report the results for random selection as baseline. This means that the

items are selected randomly by the user to rate after the recommendations are made by

using the Conventional MF model (meaning essentially an open loop).

(a) Training Errors (b) Testing Errors

Figure 5.5: MAE and RMSE for training and testing for different β. The x-axis indicates

different β, and the y-axis is the error. As shown here, a high β comes with a higher training

error. Note that here, we recover pure matrix factorization with Frobenius normalization

when β = 0 (see Eq. 5.7).

For the Blind Spot Aware MF, we need to decide what the weight for the blind spot

aware term should be. We run experiments with different β on the original Movielens 100k

data (before the completion), after randomly splitting the ratings into training (80%) and

testing (20%). Based on Figure 5.5, we set β as 0.2 for the Blind Spot Aware MF, because

the training error and testing error are relatively low with β = 0.2. The same procedure is
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applied for the pure synthetic data, resulting in β = 0.2 as well.

5.4.4 Results for Synthetic Data

RMSE and MAE

Recording the RMSE and MAE helps us understand how the iterative recommender

system is performing. Figure 5.6 shows the RMSE of each recommendation strategy during

the iterative recommender system for the training ratings. The conventional MF and the

conventional MF with AL show similar trends in the RMSE (identical on the plot). However,

the conventional MF with random selection starts with a high RMSE, but this decreases

with each iteration when more ratings are collected. All propensity based MF methods,

with or without AL, show a similar trend for the training RMSE as well as the blind

spot aware MF. At iteration 1, all six algorithms have the same initial training ratings.

The reason why they have large differences on training RMSE lies in the fact that all the

propensity MF strategies do not minimize the RMSE; instead they minimize the primary

loss term consisting of the square error loss between the prediction r̂ui and the true rating

rui, inversely weighted by 1
Pu,i

(see Eq. 5.1). On the other hand, conventional MF directly

minimizes RMSE, i.e. does not weight this error in the primary loss term (which is equivalent

to setting Pu,i = 1). Note that random baseline means that the items are selected randomly

after the recommendations (meaning essentially an open loop). Figure 5.7 shows the MAE

of the training set with iterations.

We also record the RMSE and MAE on the test ratings shown in Figure 5.8 and

Figure 5.9. We can see that the RMSE for the test set increases dramatically in the early

stage for propensity based MFs, but then drops to a low level. On the other hand, random

selection and conventional MF approaches have a decreasing trend in RMSE with iterations,

however with a higher value compared to other algorithms. The blind spot aware MF

algorithm has the lowest testing error compared to other algorithms.
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Figure 5.6: Training RMSE with different debiasing mechanisms for each iteration on pure
synthetic data. The x-axis represents the feedback loop iteration number, and the y-axis
represents the RMSE for the training set. The conventional MF and the conventional MF
with AL show a similar trend during each iteration. All four propensity based MFs also
show a similar trend as well as the blind spot aware MF. Note that random baseline means
that the items are selected randomly after the recommendations (meaning essentially an
open loop).

Figure 5.7: Training MAE with different debiasing mechanisms for each iteration on pure
synthetic data. The x-axis represents the feedback loop iteration number, and the y-axis
represents the MAE for the training set. The training MAE has a trend similar to the
training RMSE trend (see figure 5.6).

Gini Coefficient

As stated in section 5.4, we computed the Gini coefficient of the item popularity

after each feedback loop iteration to assess how different debiasing mechanisms affect the

distribution of popularity. A higher Gini index indicates more heterogeneity of the popu-

larity, essentially meaning a bigger popularity divide between the items, leading to a wider

gap between the haves and the have-nots. Figure 5.10 shows the Gini coefficient distribu-

tion. Conventional MF increases the inequality of the popularity of items, which indicates

that the conventional MF will boost some popular items. On the other hand, the pure

Propensity based MF has a high Gini coefficient at an early stage which then decreases
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Figure 5.8: Testing RMSE with different debiasing mechanisms for each iteration on pure
synthetic data. The x-axis represents the feedback loop iteration number, and the y-axis
represents the RMSE for the testing set. The conventional MF with and without AL show
a similar trend during each iteration, and they are similar to random selection. All four
propensity based MFs also show a similar trend with lower RMSE, as well as the blind spot
aware MF.

Figure 5.9: Testing MAE with different debiasing mechanisms for each iteration on pure
synthetic data. The x-axis represents the feedback loop iteration number, and the y-axis
represents the MAE for the testing set. The testing MAE has a trend similar to the training
RMSE trend (see figure 5.6).

with each feedback loop iteration. Propensity based MF with AL results in a low Gini

coefficient across all feedback loop iterations. Random selection appears to have the lowest

Gini coefficient since all items have the same probability of being explored. Blind Spot

Aware MF has a lower Gini coefficient compared with Conventional MF.

Blind Spot

As stated in section 5.4, we recorded the blind spot score for each item during each

iteration with a cutoff ε = 0.9. Figure 5.11 shows the blind spot score at time t1 and t20 with

all methods. With more ratings, all used methods decreased the blind spot score. However,

the propensity based MF brought all items closer so that the blind spot score was more
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Figure 5.10: Gini coefficient vs. feedback loop iteration on the synthetic data. The Gini co-
efficient increases for the Popularity Propensity MF without AL, but then quickly decreases.
On the other hand, the Gini coefficient score of the Propensity MF with AL continues to
decrease. Note that a higher Gini index indicates more heterogeneity of the popularity,
essentially meaning a bigger popularity divide between the items.

evenly distributed. Within each iteration, new items were added for the conventional MF as

well (see sub-figures (a) and (b) in figure 5.11). This brought a certain amount of diversity to

the item pool, and flattened the blind spot score distribution a little. At iteration t = 20, the

two propensity-based MFs and Blind spot aware MF have significant difference compared

to the conventional MF on the BL score, and the pvalue of Mann-Whitney U test is 7.2e-

10, 6.2e-10 and 2.2e-13 for popularity propensity MF, Poisson propensity MF and Blind

spot aware MF separately. Figure 5.12 shows a more clear comparison between different

algorithms at time t = 20. The conventional MF resulted in a ranking-based blind spot

(items whose predicted ratings are below 90% of the maximum predicted ratings) ranging

between 95% and 99% of all items on average. Both propensity-based MF methods resulted

in blind spots consisting of between 94% and 96% of all items; while the blind spot aware

MF resulted in a ranking-based blind spot with around 90% to 94% of all items.
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(a) BL score for conventional MF with random

selection

(b) BL score for conventional MF

(c) BL score for Blind spot aware MF (d) BL score for popularity propensity MF

(e) BL score for popularity propensity MF

Figure 5.11: Blind spot score vs. iteration on pure synthetic data. The x-axis represents all

the items sorted by the BL score in an ascending order, and the y-axis represents the BL

score (see section 5.4). As shown, all four main algorithms help to flatten the blind spot

score as more ratings are introduced. Both propensity based MFs have a significant effect

on the BL score distribution. On the other hand, the blind spot aware MF also flattens the

BL score. The random selection and the conventional MF flatten the BL score less than

the other three algorithms.

95



Figure 5.12: Blind spot score vs. different algorithms at time t = 20 on pure synthetic data.
The x-axis represents all the items sorted by the BL score, and the y-axis represents the
BL score (see section 5.4).

Varying θ for the active recommendation strategy

In order to check how θ affects the distribution of predictions for the algorithms in

Section 5.3.3, we ran experiments with three conditions: θ = (3.5, 4, 4.5) and compared the

results.

We fixed the recommendation strategy as the conventional matrix factorization and

then we varied θ with an active learning strategy at each iteration (see Section 5.3.2).

Figure 5.13 shows the Gini coefficient of popularity at each iteration. We found that the

conventional matrix factorization technique significantly increased the Gini coefficient and

that there was no significant difference between different θ. However, the active recom-

mendation strategy successfully decreases the Gini coefficient to a level which is similar to

random selection. All the three active recommendation strategies and Blind spot aware MF

have significantly smaller Gini coefficient (pvalue < 0.01). The reason is that the predicted

ratings with conventional MF have high diversity, in the range (3.5, 4.5) compared to the

maximum rating of 5.0.
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Figure 5.13: The x-axis represents the feedback loop iteration number, and the y-axis

represents the Gini coefficient of popularity score at each iteration. As shown, the Gini

coefficient increases for the conventional matrix factorization for all four different θ with the

conventional MF. The blind spot aware MF has a certain level of balancing the popularity

of items during iterative RS.

Figure 5.14: Gini coefficient vs. iteration with different θ when using the popularity propen-

sity MF on pure synthetic data. The x-axis represents the feedback loop iteration number,

and the y-axis represents the Gini coefficient of the popularity score in each iteration. As

shown, the Gini coefficient shows no significant difference with different θ. The blind spot

aware MF has a certain level of balancing the popularity of items.

We also recorded how different θ affect the Gini coefficient of the popularity propen-
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sity MF and the Poisson propensity MF (see figure 5.14 and figure 5.15). Both propensity

based MFs have a small Gini coefficient of popularity of items during each iteration. The

reason that both propensity based MFs are not affected by different θ is that the cost func-

tion takes into account the propensity (or the probability that a user u sees an item i),

which increases the chance of unpopular items to be explored by the recommender system.

Figure 5.15: Gini coefficient vs. iteration with different θ when using the Poisson propensity

MF on pure synthetic data. The x-axis represents the feedback loop iteration number, and

the y-axis represents the Gini coefficient of popularity score at each iteration. As shown,

when we vary θ, the Poisson propensity MF has a similar trend as the popularity propensity

MF (see figure 5.14). Note that a higher Gini index indicates more heterogeneity of the

popularity, essentially meaning a bigger popularity divide between the items.

5.4.5 Results for semi-synthetic Data

In this section, we used a semi-synthetic dataset to demonstrate how different debi-

asing algorithms affect the distribution of popularity of items and the blind spot score for

each iteration. As described in Section 5.4.1, the semi-synthetic dataset is obtained after

completion of the original MovieLens 100k dataset.
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RMSE and MAE

(a) All algorithms comparison

(b) Four propensity based MFs and blind spot aware MF

Figure 5.16: The training MAE with different debiasing mechanisms on semi-synthetic data.

The x-axis represents the feedback loop iteration number, and the y-axis represents the MAE

for the training data. The conventional MF and its combination with active learning have

almost the same training MAE. After 20 iterations, the different algorithms tend to achieve

good training MAE as more ratings become available for collaborative filtering, except the

random selection algorithm. The sub-figure (b) is part of figure (a) for a clear comparison.

The overall MAE for the conventional MF with active learning shows the same trend

as the conventional MF in Figure 5.16. As shown, MAE decreases with iterations which

indicates two main phenomena: 1) the propensity MF has a better performance compared

to the conventional MF; 2) the propensity based MF has a similar effect on the training

MAE across all four strategies; 3) random selection only slightly decreases the training

MAE as each iteration continues; and 4) the blind spot aware MF has the lowest training

error.
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(a) All algorithm comparison

(b) Four propensity based MFs and blind spot aware MF

Figure 5.17: The training RMSE with different debiasing mechanisms on semi-synthetic

data. The x-axis represents the feedback loop iteration number, and the y-axis represents

the RMSE for the training data. The sub-figure (b) is part of figure (a) for a clear compar-

ison. As shown, the training RMSE shows a similar trend as the MAE (see figure 5.16).

As for the training RMSE, the conventional MF and the conventional MF with AL

have similar trends. In contrast, random selection has a higher RMSE which decreases

with each iteration (see figure 5.17). All propensity based MF methods, with or without

AL, have a similar trend for the training RMSE. The blind spot aware MF has the lowest

training error.

We also record RMSE and MAE on the testing ratings as shown in Figure 5.18 and

Figure 5.19. We can see that the RMSE for the test set increases dramatically in the early

stages before the 5th iteration, but then drops to a low level. On the other hand, random

selection and conventional MF approaches have a decreasing trend on RMSE with more

iterations. As shown here, the propensity MF algorithms and the blind spot aware MF

algorithm have a lower testing error compared to other algorithms.
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Figure 5.18: Testing RMSE with different debiasing mechanisms for each iteration on semi-

synthetic data. The x-axis represents the iteration number, and the y-axis represents the

RMSE for the testing set. The conventional MF with and without AL show a similar trend

during each iteration, and are similar to random selection. All four propensity based MFs

also show a similar trend with lower RMSE.

Figure 5.19: Testing MAE with different debiasing mechanisms for each iteration on semi-

synthetic data. The x-axis represents the feedback loop iteration number, and the y-axis

represents the MAE for the testing set. The testing MAE has a trend similar to the training

RMSE trend (see Figure 5.18).

Gini Coefficient

Figure 5.20 shows that the Gini coefficient increases in the early stages for all algo-

rithms. This is partly because the initial rating matrix is randomly selected and because

all items have a similar popularity score, which means that they have a similar probability

of being explored by users.
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We can see from Figure 5.20 that all four propensity based MFs start with an in-

creasing Gini index. The popularity propensity MF and Poisson propensity MF combined

with AL have a lower Gini coefficient during all iterations. Although the blind spot aware

MF increases the Gini coefficient, it is still less than that of the conventional matrix fac-

torization. Random selection intuitively has the lowest Gini coefficient score through all

iterations.

Figure 5.20: Gini coefficient vs. iteration with different debiasing mechanisms on semi-

synthetic data. As shown, the Gini coefficient increases in the early stage for all mechanisms

except random selection. The Gini index of all propensity based methods and their com-

bination with active learning have a smaller Gini coefficient than that of the conventional

MF (pvalue < 0.05). The proposed blind spot aware MF has a certain level of debiasing

compared to conventional MF (pvalue < 0.05).

Varying θ for the active recommendation strategy

In order to check how θ affects the distribution of predictions for the algorithms in

Section 5.3.3, we ran experiments with three conditions: θ = (3.5, 4, 4.5) and compared

the results for the semi-synthetic dataset following the same procedure as in the synthetic

dataset.
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Figure 5.21: Gini coefficient vs. iteration with different θ on conventional matrix factoriza-

tion on semi-synthetic data. As shown, the Gini coefficient increases for the conventional

matrix factorization with different θ. There is no significant difference across all three θ.

We fixed the recommendation strategy as the conventional matrix factorization and

then we varied θ with an active learning strategy at each iteration as explained in Section

5.3.2. Figure 5.21 shows the Gini coefficient of popularity at each iteration. We found that

the conventional matrix factorization technique significantly increased the Gini coefficient

and that there was no significant difference between different θ. All the AL-associated con-

ventional MFs have low Gini coefficient value, similar to the pure synthetic data experiment

results (see Figure 5.14). On the other hand, we found that random selection resulted in

the smallest Gini coefficient.

Figure 5.22 shows how θ affects the Gini coefficient of the popularity with the popu-

larity propensity matrix factorization. Without an active learning strategy, the popularity

propensity MF increases the Gini coefficient dramatically at an early stage. Different θ have

similar effects on the Gini coefficient, and it is generally smaller with lower θ. Our proposed

blind spot aware MF has a higher Gini coefficient compared to the popularity propensity

based MFs with and without AL strategy.
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Figure 5.22: Gini coefficient vs. iteration with different θ on the popularity propensity

matrix factorization on semi-synthetic data. As shown, the Gini coefficient increases for

the popularity propensity matrix factorization. The Gini coefficient with θ = 3.5 has the

smallest Gini coefficient. On the other hand, the blind spot aware MF has a similar Gini

coefficient trend as the popularity propensity MF.

Figure 5.23 shows how θ affects the Gini coefficient of popularity with the Poisson

propensity MF, which has a similar trend as the popularity propensity MF.

Figure 5.23: Gini coefficient vs. iteration with different θ on Poisson propensity matrix

factorization on semi-synthetic data. As shown, the Gini coefficient shows similar trends

with Figure 5.22, which confirms that propensity matrix factorization leads to the low Gini

coefficient.
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Blind spot analysis

As stated in Section 5.4, we also recorded the BL score on our semi-synthetic dataset

with a cutoff ε = 0.9. As shown in figure 5.24, Propensity-based MFs and Blind spot

aware algorithms help to flatten the blind spot score as more ratings are introduced. Both

propensity based MFs have a significant effect on the BL score distribution, even from the

early stage. The conventional MF with random selection has a small effect on the BL score

distribution. Although random selection provides us with a large advantage to discover

more items, it does not show much improvement on the blind spot score here. At iteration

t = 20, the two propensity-based MFs and Blind spot aware MF have significant difference

compared to conventional MF on the BL score, and the pvalue of Mann-Whitney U test is 9e-

10, 8.2e-10 and 2e-15 for popularity propensity MF, Poisson propensity MF and Blind spot

aware MF. Figure 5.25 shows a more clear comparison between different algorithms at time

t = 20. Conventional matrix factorization using 20 latent factors, resulted in a ranking-

based blind spot containing between 95% and 99% of all items. Popularity-based and

Poisson based propensity-based MFs resulted in a ranking-based blind spot with between

96% and 97% if all items; while the blind spot aware MF resulted in a ranking-based blind

spot with between 92% and 96% if all items.
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(a) BL score for conventional MF with random

selection

(b) BL score for conventional MF

(c) BL score for Blind spot aware MF (d) BL score for popularity propensity MF

(e) BL score for popularity propensity MF

Figure 5.24: Blind spot score vs. iteration on semi-synthetic data. The x-axis represents

all the items sorted by the BL score in an ascending order, and the y-axis represents the

blind spot score (see Section 5.4). As shown, the propensity based MFs and blind spot

aware algorithms help to flatten the blind spot score at the early stage. Both propensity

based MFs have a significant effect on the BL score distribution. The conventional MF with

random selection has a small effect on the BL score distribution. The conventional MF has

no significant effect on the BL score.
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Based on the observed trends of the MAE/RMSE, the Gini coefficient, and the

blind spot analysis, we conclude that: 1) the propensity MF achieves a significant level of

debiasing on the recommendations in terms of Gini coefficient (pvalue < 0.05); 2) active

learning combined with propensity MF results in low MAE and a high debiasing effect on

recommendations; 3) conventional matrix factorization increases the bias which eventually

affects the ability to discover new items, and decreases the bias when combined with an

active learning strategy; and 4) the blind spot aware MF result in a certain level of debiasing

RS in terms of the blind spot score and Gini coefficient.

Figure 5.25: Blind spot score vs. different algorithms at time t = 20 with semi-synthetic
data. The x-axis represents all the items sorted by the BL score, and the y-axis represents
the BL score (see section 5.4).

5.5 Summary and Conclusions

Recommender systems introduce bias during the interactive feedback loop with users

over time, which might cause them to make more biased recommendations. In this chapter,

we introduced an interactive framework to simulate the feedback loop that is created by the

chain of events generated when a recommender system interacts with users over time. Based

on this framework, we proposed several debiasing algorithms based on existing techniques to

use during this chain of events. We also proposed a blind spot aware matrix factorization

which takes into account the blind spot score when trying to learn the recommendation

model. Note that in this chapter, we do not focus on improving collaborative filtering

algorithms (Matrix Factorization) for recommender systems by studying user feedback.
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Instead, our goal is to simulate the interaction between users and the recommender system

and to debias the recommender system during the interaction. Our results showed that

the propensity MF achieved a certain level of debiasing of the RS while active learning

combined with the propensity MF achieved a higher debiasing effect on recommendations.

Our proposed blind spot aware matrix factorization also achieved a certain level of debiasing

of the RS. One limitation of this study is that we assume that users totally agree with the

recommendations in each iteration, and provide feedback. In real-life, users might not agree

with recommendations. But we aim to study the effect of interaction itself, thus future study

could introduce more realistic user reactions as we have done for the content-based filtering

in [152], and in chapter 4 (RQ 3 and RQ 4). Another limitation is the lack of applicable

data. As noted by Shafto and Nasraoui in [77,130], most data sets in RS are static, they do

not consider the iterative effect of the interaction between users and RS. Therefore, future

work could perform a user study to collect data considering the iterated interaction effect.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we first investigated three forms of iterated algorithmic bias

(filter, active learning, and a random baseline) and how they affect the performance of

machine learning algorithms by formulating research questions about the impact of each

type of bias. Based on statistical analysis of the results of several controlled experiments

using synthetic and real data, we found that:

1. The three different forms of iterated algorithmic bias (filter, active learning, and

random selection, used as query mechanisms to show data and request new feed-

back/labels from the user), do affect algorithm performance when fixing the

human interaction probability to 1.

2. Different initial class imbalance in the training data used to generate the initial rel-

evance boundary, significantly affect the machine learning algorithm’s results for all

three forms of iterated algorithmic bias, impacting boundary shift, heterogene-

ity of predicted relevance, and hidden relevant items (class 1-blind spot).

3. Iterated filter bias has a more significant effect on the class-1-blind spot size compared

to the other two forms of algorithmic biases. This means that iterated filter

bias, which is prominent in personalized user interfaces, can limit humans’

ability to discover data that is relevant to them.

4. The iterated learning framework is effective for analyzing the impact of iterated algo-

rithmic bias in human-algorithm interaction.

Future work can consider the following three directions: 1) Taking into account additional

parameters and configurations when testing the impact of iterated algorithmic bias and hu-
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man interaction on ML models, including: (A) Changing the number of items recommended

in top N relevant item recommendation lists and (B) Applying different types of AL (we

only investigated uncertainty-based AL); 2) Human experiments that study research ques-

tions that are similar to the ones formulated for the simulated experiments; 3) In our study,

we considered three iterated algorithmic biases modes, there are more possible iterated al-

gorithmic biases modes, such as active-filter bias (Combining active learning and filter bias,

i.e., querying data which are close to the center of each class); 4) In our work, we used two

different models to model human 4action, but human reaction is more complicated. Future

work would be to develop more realistic human reaction models.

Secondly, we investigated one major problem of recommender systems, iterated bias

that builds up during its continuous feedback loop with users over time. We viewed a

RS environment as generating a continuous chain of events as a result of the interactions

between users and the recommender system outputs over time. Based on this model, we

proposed several debiasing algorithms during this chain of events using existing techniques

and evaluated how they impact prediction accuracy as well as the trends of increase or de-

crease in the inequality of the popularity distribution of items over time. We also proposed

a novel blind spot aware matrix factorization to debias the recommender system. Results

showed that the propensity MF achieved a certain level of debiasing of the RS, while active

learning combined with the propensity MF achieved a higher debiasing effect on recommen-

dations. Our proposed blind spot aware matrix factorization also achieved a certain level

of debiasing of the RS.

One limitation of this study is that we assume that users totally agree with the

recommendations in each iteration, and provide feedback. In real-life, users might not

agree with recommendations. Future study could introduce more realistic user reaction

models. Another limitation is the lack of applicable data. Most data sets used in evaluating

RSs are static, they do not consider the iterative effect of the interaction between users and

RS. Therefore, future studies could design user experiments to collect data considering the

iterated interaction effect.
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There is a long tradition in machine learning of algorithms whose performance is

guaranteed in the context of unbiased data. Similarly, there is a long tradition in the

psychology of human learning of treating learning as inference from unbiased data. In-

creasingly, people and algorithms are engaged in interactive processes wherein neither the

humans nor the algorithms receive unbiased data. Our research attempted to better under-

stand how algorithm performance and human feedback or data depend on one another and

how those dependencies affect long run performance. Our ongoing work will pave the road

for a framework in which the study of human-algorithm interaction may progress.
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[22] Marko Balabanović and Yoav Shoham, “Fab: content-based, collaborative recom-
mendation,” Communications of the ACM, vol. 40, no. 3, pp. 66–72, 1997.

[23] Upendra Shardanand and Pattie Maes, “Social information filtering: algorithms for
automating word of mouth,” in Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM Press/Addison-Wesley Publishing Co., 1995, pp.
210–217.

[24] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R
Gordon, and John Riedl, “Grouplens: applying collaborative filtering to usenet news,”
Communications of the ACM, vol. 40, no. 3, pp. 77–87, 1997.

[25] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl, “Item-based collab-
orative filtering recommendation algorithms,” in Proceedings of the 10th international
conference on World Wide Web. ACM, 2001, pp. 285–295.

[26] Greg Linden, Brent Smith, and Jeremy York, “Amazon. com recommendations: Item-
to-item collaborative filtering,” IEEE Internet computing, vol. 7, no. 1, pp. 76–80,
2003.

[27] Thomas Cover and Peter Hart, “Nearest neighbor pattern classification,” IEEE
transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[28] Sahibsingh A Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE Trans-
actions on Systems, Man, and Cybernetics, , no. 4, pp. 325–327, 1976.

[29] Daniel D Lee and H Sebastian Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[30] Yehuda Koren, Robert Bell, and Chris Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, 2009.

[31] Ruslan Salakhutdinov and Andriy Mnih, “Probabilistic matrix factorization.,” in
Nips, 2007, vol. 1, pp. 2–1.

[32] Douglas L Medin and Marguerite M Schaffer, “Context theory of classification learn-
ing.,” Psychological review, vol. 85, no. 3, pp. 207, 1978.

113



[33] Robert M Nosofsky, “Choice, similarity, and the context theory of classification.,”
Journal of Experimental Psychology: Learning, memory, and cognition, vol. 10, no.
1, pp. 104, 1984.

[34] William H Kruskal and W Allen Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American statistical Association, vol. 47, no. 260, pp. 583–
621, 1952.

[35] Thomas L Griffiths and Mark Steyvers, “Finding scientific topics,” Proceedings of the
National academy of Sciences, vol. 101, no. suppl 1, pp. 5228–5235, 2004.

[36] Thomas L Griffiths, Mark Steyvers, and Joshua B Tenenbaum, “Topics in semantic
representation.,” Psychological review, vol. 114, no. 2, pp. 211, 2007.

[37] Beerud Sheth and Pattie Maes, “Evolving agents for personalized information filter-
ing,” in Artificial Intelligence for Applications, 1993. Proceedings., Ninth Conference
on. IEEE, 1993, pp. 345–352.

[38] Uri Hanani, Bracha Shapira, and Peretz Shoval, “Information filtering: Overview of
issues, research and systems,” User modeling and user-adapted interaction, vol. 11,
no. 3, pp. 203–259, 2001.

[39] Joseph John Rocchio, “Relevance feedback in information retrieval,” 1971.

[40] C Buckeley, G Salton, J Allan, and A Stinghal, “Automatic query expansion using
smart,” in Proceedings of the 3rd Text Retrieval Conference, 1994, pp. 69–80.

[41] Daniel Billsus and Michael J Pazzani, “Adaptive news access, the adaptive web:
methods and strategies of web personalization,” 2007.

[42] Olfa Nasraoui, Maha Soliman, Esin Saka, Antonio Badia, and Richard Germain, “A
web usage mining framework for mining evolving user profiles in dynamic web sites,”
IEEE transactions on knowledge and data engineering, vol. 20, no. 2, pp. 202–215,
2008.
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