124 research outputs found

    8 - Agent-Oriented Software Engineering

    Get PDF

    12 - Agent-Oriented Software Engineering

    Get PDF

    Requirements Modeling for Multi-Agent Systems

    Get PDF
    Different approaches for building modern software systems in complex and open environments have been proposed in the last few years. Some efforts try to take advantage of the agent-oriented paradigm to model/engineer complex information systems in terms of independent agents. These agents may collaborate in a computational organization (Multi-Agent Systems, MAS) by playing some specific roles having to interact with others in order to reach a global or individual goal. In addition, due to the complex nature of this type of systems, dealing with the classical functional and structural perspectives of software systems are not enough. The organizational perspective, that describes the context where these agents need to collaborate, and the social behavior perspective, that describes the different "intelligent" manners in which these agents can collaborate, need to be identified and properly specified. Several methodologies have been proposed to drive the development of MAS (e.g., Ingenias, Gaia, Tropos) although most of them mainly focus on the design and implementation phases and do not provide adequate mechanisms for capturing, defining, and specifying software requirements. Poor requirements engineering is recognized as the root of most errors in current software development projects, and as a means for improving the quality of current practices in the development of MAS, the main objective of this work is to propose a requirements modeling process to deal with software requirements covering the functional, structural, organizational, and social behavior perspectives of MAS. The requirements modeling proposed is developed within the model-driven engineering context defining the corresponding metamodel and its graphical syntax. In addition, a MAS requirements modeling process is specified using the Object Management Group's (OMG) Software Process Engineering Metamodel (SPEM). Finally, in order to illustrate the feasibility of our approach, we specified the software requirements of a strategic board game (the Diplomacy game).Rodríguez Viruel, ML. (2011). Requirements Modeling for Multi-Agent Systems. http://hdl.handle.net/10251/11416Archivo delegad

    C11 – Agent-Oriented Software Engineering

    Get PDF

    12 - Agent-Oriented Software Engineering

    Get PDF

    Simulation of Road Traffic Applying Model-Driven Engineering

    Get PDF
    Road traffic is an important phenomenon in modern societies. The study of its different aspects in the multiple scenarios where it happens is relevant for a huge number of problems. At the same time, its scale and complexity make it hard to study. Traffic simulations can alleviate these difficulties, simplifying the scenarios to consider and controlling their variables. However, their development also presents difficulties. The main ones come from the need to integrate the way of working of researchers and developers from multiple fields. Model-Driven Engineering (MDE) addresses these problems using Modelling Languages (MLs) and semi-automatic transformations to organise and describe the development, from requirements to code. This paper presents a domain-specific MDE framework for simulations of road traffic. It comprises an extensible ML, support tools, and development guidelines. The ML adopts an agent-based approach, which is focused on the roles of individuals in road traffic and their decision-making. A case study shows the process to model a traffic theory with the ML, and how to specialise that specification for an existing target platform and its simulations. The results are the basis for comparison with related work

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    Goal-driven agent-oriented software processes

    Get PDF
    The quality of software processes is acknowledged as a critical factor for delivering quality software systems. Any initiative for improving the quality of software processes requires their explicit representation and management. A current representational metaphor for systems is agent orientation, which has become one of the recently recognized engineering paradigms. In this article, we argue for the convenience of representing the software process using an agent-oriented language to model it and a goal-driven procedure to design it. Particularly we propose using the i* framework which is both an agent- and a goal-oriented modeling language. We review the possibilities of i* as a software process modeling language, and we also show how success factors can be made explicit in i* representations of the software processes. Finally, we illustrate the approach with an example based on the development of a set of ergonomic and safety software tools.Peer ReviewedPostprint (published version

    Characterizing and evaluating the quality of software process modeling language: Comparison of ten representative model-based languages

    Get PDF
    Software organizations are very conscious that deployments of well-defined software processes improve software product development and its quality. Over last decade, many Software Process Modeling Languages (SPMLs) have been proposed to describe and manage software processes. However, each one presents advantages and disadvantages. The main challenge for an organization is to choose the best and most suitable SPML to meet its requirements. This paper proposes a Quality Model (QM) which has been defined conforms to QuEF (Quality Evaluation Framework). This QM allows to compare model-based SPMLs and it could be used by organizations to choose the most useful model-based SPML for their particular requirements. This paper also instances our QM to evaluate and compare 10 representative SPMLs of the various alternative approaches (metamodel-level approaches; SPML based on UML and approaches based on standards). Finally, this paper concludes there are many model-based proposals for SPM, but it is very difficult to establish with could be the commitment to follow. Some non-considered aspects until now have been identified (e.g., validation within enterprise environments, friendly support tools, mechanisms to carry out continuous improvement, mechanisms to establish business rules and elements for software process orchestrating).Ministerio de Economía y Competitividad TIN2016-76956-C3-2-R (POLOLAS
    corecore