
Characterizing and evaluating the quality of software process modeling
language: Comparison of ten representative model-based languages

J.A. García-García⁎, J.G. Enríquez, F.J. Domínguez-Mayo

Computer Languages and Systems Department, University of Seville, Escuela Técnica Superior de Ingeniería Informática, Web Engineering and Early Testing
(IWT2) Group, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Keywords:

Quality Evaluation Framework (QuEF)

Quality Model

Software Process Modeling Language
comparative study

A B S T R A C T

Software organizations are very conscious that deployments of well-defined software processes improve software
product development and its quality. Over last decade, many Software Process Modeling Languages (SPMLs)
have been proposed to describe and manage software processes. However, each one presents advantages and
disadvantages. The main challenge for an organization is to choose the best and most suitable SPML to meet its
requirements. This paper proposes a Quality Model (QM) which has been defined conforms to QuEF (Quality
Evaluation Framework). This QM allows to compare model-based SPMLs and it could be used by organizations to
choose the most useful model-based SPML for their particular requirements. This paper also instances our QM to
evaluate and compare 10 representative SPMLs of the various alternative approaches (metamodel-level ap-
proaches; SPML based on UML and approaches based on standards). Finally, this paper concludes there are many
model-based proposals for SPM, but it is very difficult to establish with could be the commitment to follow. Some
non-considered aspects until now have been identified (e.g., validation within enterprise environments, friendly
support tools, mechanisms to carry out continuous improvement, mechanisms to establish business rules and
elements for software process orchestrating).

1. Introduction

Today, software applications affect indirectly or directly to any kind
of company or organization because computer systems support day to
day business activities in diverse scenarios including air traffic control,
automotive mechanical, healthcare processes, industrial or manu-
facturing processes, processes associated with nuclear reactors, and
service processes, among others. The process management of these
scenarios is crucial because it affects many millions of people and many
financial resources. Also, competitiveness and productivity are key
mechanisms to improve the management of any organization. For this
purpose, there are mature management models by which organizations
could implement and maintain their processes achieving an edge over
their competitors using different technologies such as cloud solutions
[1], among others.

In this context, BPM (Business Processes Management) is the term
most used and known around the world to identify management stra-
tegies on business processes. BPM defines methods, techniques and
tools to support the process lifecycle and improve the business man-
agement [2]. Reducing costs and improving the management are goals
of BPM [3,4]. For this purpose, BPM proposes to perform a continuous

improvement lifecycle what may increase and improve return on in-
vestments through reducing production costs [5]. In fact, many in-
stitutions that promote, by means of their standards and guidelines, the
application of BPM as a process-oriented mechanism to improve pro-
ductivity, competitiveness, quality and efficiency at organizations [6].
Many companies follow these advices in all areas of business.

This situation is not different in software organizations. This kind of
organizations knows the importance of deploying well-defined pro-
cesses to improve the software development process throughout its
lifecycle [7]. In this context, one of the most important challenge is to
decide how software processes should be modeled and managed. Soft-
ware process could be defined as an ordered sequence of steps, objects,
human resources, automatic resources (i.e., computer systems) and
constraints, as well as information structures. Its goal is to obtain and
manage software products [8]. This meaning shows the large number of
factors involved in processes.

Over last decades, researchers throughout the world have proposed
different methods and techniques to define software processes what
shows the great interest existing as scientific subject in software en-
gineering. This affirmation is the conclusion of different works such as
the Zamli‘s et al. papers [9,10] and the García-Borgoñón's et al. paper

⁎ Corresponding author.
E-mail address: juliangg@us.es (J.A. García-García).

T

http://www.sciencedirect.com/science/journal/09205489
https://www.elsevier.com/locate/csi
https://doi.org/10.1016/j.csi.2018.11.008
https://doi.org/10.1016/j.csi.2018.11.008
mailto:juliangg@us.es
https://doi.org/10.1016/j.csi.2018.11.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2018.11.008&domain=pdf

2. Related works

Over last years, some research papers have emerged as literature
reviews and surveys in SPMLs [9–11], but we have found too few on
quality models or comparative studies in this area. Below, the most
relevant works are briefly described.

Sutton et al. [13] proposes a simple classification scheme which is
based on process enactment support. This classification only allows
comparing SPML in terms of: non-enactable (i.e., SPMLs only support
process modeling, but not process enactment); simulated (i.e., SPMLs

enable a high-level simulation, but do not provide finegrained control
of the software process); or enactable (i.e., SPMLs permit the process
model to be enacted to control a software process). Authors also com-
pare each proposal in terms of semantic richness, ease of use, me-
chanism of abstraction and composition and graphic representation.

Some years later, in [14], authors compare and evaluate six UML-
based SPMLs taking into account few requirements previously identi-
fied in the literature related to SPML. Authors compare each proposal in
terms of semantic richness, formality and conformity to UML, me-
chanism of composition, executability and tooling support.

Pichler et al. [16] perform an empirical investigation to compare
process modeling languages. In this case, the scope of this publication is
different to the one presented in this work, presenting a comparison
between just two kind of languages: imperative and declarative. Au-
thors have carried out this comparative study in terms of semantic
richness and understanding of process models.

Muehlen et al. [18] presents a representational analysis of four rule
modeling specifications: The Simple Rule Markup Language (SRML),
the Semantic Web Rules Language (SWRL), the Production Rule Re-
presentation (PRR), and the Semantics of Business Vocabulary and
Business Rules (SBVR) specification comparing their Bunge-Wand-
Weber (BWW) representation capabilities. Authors compare each pro-
posal taking into account representation capabilities and conclude that,
no single language is internally complete with respect to the BWW re-
presentation model being better to use a combination of two of them
(SRML and BPMN) for this purpose.

Kopp et al. [19] discuss the core characteristics of graph-based and
block-structured business process modeling languages and compare
them with respect to their join and loop semantics. Authors compare
each proposal in terms of semantic richness. Similarly, Lu et al. [17]
present a comparison of graphical process models modeling and rule-
based SPMLs. Lu et al. also compare each proposal in terms of semantic
richness in the control flow definition of process models.

3. Research question and methods

After presenting the context of this paper and our motivating sce-
nario, we establish our hypothesis and research question in order to
define our proposal rigorously: «Is it possible to useful define a quality
model that allows objectivity evaluating and comparing model-based
SPMLs?».

To answer this question, this paper proposes a solution following
methodological principles, as suggested in [20]. Specifically, this paper
follows the Design Science Research Methodology (DSRM) [21] that
establishes five phases:

Phase 1. Problem identification and motivation. Section 1 de-
scribes the context of this paper and introduces the problem of software
companies to choose the more appropriate SPML to model their pro-
cesses. In [11], Systematic Literature Review (SLR) is carried out by us
to identify SPML proposals that have been suggested in last decades. the
conclusion we reach is a great amount of SPMLs have been proposed
(specifically, authors analyse and categorize 41 SPMLs in [11]) This
makes us reflect on the idea that there is no perfect SPML. Each lan-
guage has strong and weak points depending on the requirements of
each organization at a specific time. In fact, the main challenge for an
organization is to choose the best and most suitable SPML to meet its
requirements. This is an important decision and it should be critical
because once a specific SPML is chosen, a very close dependency is
created. Problems related to needs of migration between process model
notations could append what constitutes a complex and costly task in
itself [11].

Phase 2. Objective of the solution. As mentioned above, the García-
Borgoñón's et al. paper [11] identifies large number of SPMLs. Speci-
fically, these authors study and analyse 41 SPMLs of which, 25 SPMLs
are based on model. In this context, it could be interesting to establish a
characterization mechanism that allows us to evaluate and compare

1 Process model is a formal representation that provides a unified environ-
ment integrates the production and management activities. This integration
controls and improves the information flow by which the management activ-
ities control the production activities [15]. When the management context is
focused on software environment, the concept of "process model" is known as
"software process model".

[11]. Both papers establish their own taxonomy to classify SPML
(Software Process Modeling Languages). Historically, the first genera-
tion relates to those SPML which are Petri nets-based, rule-based or
programming language-based. These focus on process execution and
formality, which make them become complex, inflexible and difficult to
understand. The second generation coincides with the moment when
UML became mature as a standard language in the software industry.
However, authors as García-Borgoñón et al. [11] conclude that to talk
about generations of languages is not particularly appropriate, since
although more second-generation proposals have been launched from
some years ago up to date, there are recent proposals which can be
classified a s fi rst-generation la nguages. Thus, Ga rcía-Borgoñón et al.
propose a taxonomy for SPMLs in three groups [11]. The first group is
named grammar-based languages and includes all SPMLs that focus on
formal languages, mathematical and programming, by means of rules
or restrictions. A second group contains several versions of UML-based
SPMLs, and finally, the last group includes metamodel-based SPMLs or
DSLs. García-Borgoñón et al. also categorize 41 SPMLs within the
groups of their taxonomy [11].

Anyway, each SPML has advantages and disadvantages according to
requirements of each organization at a specific moment. In this context,
the decision of using the most suitable SPML is the main challenge for
any software organization because the dependency created is very
strong. If another modeling language is necessary to use by the com-
pany, this one has to translate their process models1 to the new lan-
guage.

This paper aims to explore in more detail SPML in order to establish
their scope, domain, features or benefits, among other aspects. Besides,
it suggests a characterisation model to compare and evaluate software
SPML (those are based on models) taking into account the defined
scope. For this purpose, this paper uses the methodology defined by the
Quality Evaluation Framework (QuEF) [12], and we propose a quality
model to evaluate and compare model-based SPMLs. This model allows
organization can choose the most suitable SPML for their purposes and
requirements. QuEF also provides mechanisms for improving the
quality model itself. The objective of this paper is twofold; to: (i)
identify measured features for software SPML by means of a quality
model conform to QuEF; and (ii) demonstrate the value QuEF offers to
support the process modeling.

Finally, after this introduction, Section 2 and Section 3 describe,
respectively, some related works and our research questions, which is
followed by the research method that tries to approach it. Section 4
describes briefly the theoretical foundations of QuEF. Then, Section 5
describes each feature of our quality model. Sections 6 and 7 present
the evaluation of our quality model to evaluate model-based SPMLs and
our analysis and discussion, respectively. Finally, Section 8 states
learned lessons as well as ongoing work.

(viii) support tools; and (ix) validation in real environments.
Phase 4. Demonstration. Once defined our quality model in the

previous model, it is necessary and important to develop a supporting
tool to automatically compare and evaluate each model-based SPMLs.
In this sense, we present a supporting Web tool by which, software
organizations can be able to execute our theoretical quality model.

Phase 5. Evaluation. This phase implies the use of our quality
model defined previously on a set of representative model-based SPMLs
(based on metamodels, UML or based on standards). Sections 6 and 7
evaluate these approaches in detail and present an analysis, respec-
tively. This evaluation and analysis process has been methodologically
carried out by three senior researchers (authors of this paper). Each
researcher analyzes individually each model-based SPML and evaluates
each feature of our quality model. However, some doubts may appear
during this evaluation process. For this reason, face-to-face meetings
between researchers have been performed to jointly discuss and agree
on the evaluation final. These meetings also minimize the bias of each
researcher.

4. QuEF: Quality evaluation framework

QuEF is a model-based framework that it allows managing quality
requirements of any kind of entity (products, processes or services,
among others) within any kind of business or theoretical environment
(we manage quality of model-based SPMLs in the context of our paper).
For this purpose, QuEF is aligned with several quality standards. These

are some of them: (i) ISO 9000:2000 [30], ISO 9001:2008 [31], ISO
9004:2000 [32], which lay the foundations to carry out improvements
and organization excellence; (ii) ISO/IEC 9126 [33] and ISO/IEC
25000:2005 (SQuaRE) [34], which provide quality characteristics to
evaluate any kind of entity what lays the foundation for the definition
of the quality metamodel defined by QuEF; (iii) ISO/IEC 20000 [35–39]
and ITIL v3 (Information Technology Infrastructure Library) [40] that
define best practices to improve service quality based on continuous
improvement lifecycles.

Regarding theoretical foundations, QuEF provides model-based
mechanisms to define your own quality model for the domain under
study as well as methods to instantiate and evaluate this quality model.
It is important to mention that these mechanisms are framed into a
continuous improvement lifecycle what allows managing improve-
ments in your quality model. Fig. 1 shows how QuEF is used in practice.
On the one hand, providers are who have expertise and knowledge on
the specific domain. They also define needs to analyze, control, eval-
uate and improve the entities under study. On the other hand, QuEF
considers consumer roles, who instance the quality model and decide
what is the most suitable entity for them according to their needs.

As mentioned above, QuEF provides model-based mechanisms to
define your own quality model and evaluate any kind of entity. These
mechanisms include a metamodel (which is considered the core of the
framework) and a continuous improvement lifecycle (which allows to
apply QuEF in order to achieve quality management becomes strate-
gically active). Both mechanisms are described in detail in [12], but we
are going to briefly present them.

On the one hand, the QuEF metamodel allows defining our quality
model and laying the foundations to specify quality requirements and
evaluate them. This quality model metamodel contains a set of char-
acteristics and its relationships, and represents the core and quality
management revolves around it what allows the model instantiation
can be more flexible and practical.

On the other hand, QuEF defines a continuous improvement life-
cycle based on several stages which allow to methodologically improve
our quality model. Firstly, providers have to determine what is the
strategy to manage the quality on their domain entities. This stage is
known as Quality Model Strategy phase. The second stage is named
Quality Model Design phase and its goal is the definition of the quality
model in terms of all strategic entities under study. This stage is also
performed by provider roles. Once quality model is defined, it is time to
analyse and evaluate each entity according to the quality model and its
features (Quality Model Operation phase). Finally, QuEF also includes
and defines methods to execute changes on the quality model as well as
improve its own lifecycle in a controlled manner. These aspects are
performed in Quality Model Transition phase and Quality Continuous
Improvement phase, respectively.

After briefly introducing QuEF, it might be interesting to indicate
that, a defining comparison criteria is just part of QuEF. This framework
offers techniques, methods and tools to support a quality continuous
improvement of a quality model (in this case, a quality model for
SPMLs). So, QuEF is not just applied to analize and evaluate SPMLs
(Quality Model Operation phase in QuEF) but QuEF is also used to apply a
set of phases (strategy, design, operation, etc.) that assure a quality
continuous improvement of a quality model for SPMLs. It offers a set of
benefits, for instance, try to agree a quality model for SPMLs in order to
be standarized by the community. In addition, the criteria applied to
the quality model might be adapted according the context. So, QuEF
offers you the possibility to modify and weigh these criteria as well as
adjusting them automatically to the context, without needing to redo in
each case. It also allows to play with both quantitative and qualitative
aspects.

5. An approach to characterise the quality of model-based SPML

At present, there are a lot model-based SPML and process notations

2 A business rule is a rule that defines or constrains some aspect of business
and always resolves to either true or false. Also, business rules are intended to
assert business structure or to control or influence the corporate behavior of an
organization (people, processes, software systems, etc.) [41].

model-based SPMLs objectively. This mechanism is important because
preliminary conclusions from [11] confirm t hat m any model-based
SPMLs do not provide mechanisms to support all phases of a typical
process lifecycles which usually comprise, at least, four phases [22,23]:
(i) modeling; (ii) execution and orchestration; (iii) monitoring; and (iv)
continuous improvement.

A s mentioned above, our goal is to define and propose a quality
model by which, software organizations can be able to objectivity
compare and evaluate model-based SPMLs to choose the more appro-
priate SPML to their requirements. We propose a flexible, e asily ex-
tensible, scalable, and practical quality model which is going to allow
objectively measuring how each model-based SPML supports each
feature included in our quality model. For this purpose, we use and
follow QuEF [12] after defining a specific quality model to compare and
evaluate model-based SPMLs. QuEF is a framework to analyze and
evaluate the quality of any kind of entity (e.g., model-based SPMLs
approaches in this paper). In this framework, the evaluation of an entity
is calculated in terms of a set of information needs and quality features.
The first one (information needs) are requirements demanded by final
users and the second one (i.e., quality features) are specific aspects that
the entities provide to their users. In addition, it could be interesting to
indicate that QuEF has been successfully applied in different contexts
and business areas. For example, in Web Engineering [24], Product
Lifecycle Management [25], Enterprise Document Management [26],
among others.

Phase 3. Design. This phase aims to design a novel theoretical
quality model and its associated features to evaluate SPMLs. These
features are proposed and improved taking into account requirements
for model-based SPMLs identified b y s everal r esearch studies
[9,27–29]. These requirements are described in Section 5 in detail, but,
in summary, these ones are nine features: (i) semantic richness and
expressiveness; (ii) understandability; (iii) conformity to standards such
as UML (Unified Modeling Language); (iv) granularity; (v) executability
and orchestrability; (vi) measurability; (vii) business rules2 support;

what reflect that there is not perfect SPML. This statement is a con-
clusion obtained from [11] where authors analyse and categorize 41
SPMLs; each one has strong and weak points because each one was
proposed to support specific requirements of an organization. In any
software organization, the election of the best and most suitable SPML
to meet its requirements is a challenge itself.

This paper tries to improve the decision-making when a software
organization needs to choose the most suitable SPML. For this purpose,
we propose a quality model which focuses on nine specific quality
features (e.g., human understanding, automated execution support as
well as knowledge of real successful applications of each evaluated
proposal, among others).

Before proposing our dimensions, other comparative studies have
considered to establish appropriate criteria. In [9,27–29,42], many
authors have identified requirements related to SPMLs. After taking
into account these references, we have selected most predominant and
common criteria (that is, semantic richness & expressiveness, under-
standability, conformity to standards, granularity, and executability)
and we have included other ones as features to be evaluated (that is,
orchestrability, measurability, business rules support, support tools,
and validation in real environments). Following subsections, we in-
troduce each feature in detail.

5.1. Expressiveness

It is possible to consider different perspectives in order to define
process models [43]: control-flow, data-flow, resource and operation
perspectives. On the one hand, the first one (control-flow perspective)
describes how activities are ordered during the process execution flow.
This ordering is usually built using control elements such as sequence,
choice, parallelism, and synchronization elements, among others. The
second perspective is data flow which represents how each information
object (business documents, workflow variables, etc.) is processed
during the execution of the control flow. On the other hand, the resource
perspective is the third perspective. It allows defining roles and devices
machine who/which perform each activity of the process. Finally, the
atomic actions executed by activities are represented with the operation
perspective.

Workflow language's effectiveness and expressiveness is mainly
provided by the control flow perspective. The data perspective rests on
it, while the organizational and operational perspective are ancillary.
Expressiveness is an objective criterion which establishes how much
modeling constructs are offered by a specific SPML. Given a certain set
of these constructs, it is possible to show that a specific SPML can, or
cannot, be modeled.

In this context, there are many issues related to the expressive
power of process model languages, but our quality model is going to
take into account constructs to model: human and automatic activities,
conditional branches, parallel branches, exception handling, products
and roles.

5.2. Understandability

The understandability of process models is, at present, one chal-
lenge in BPM [44]. This paper considers understandability as the ability
to easily manage, read process flow without additional explanation. It is
possible to establish numerous and intricate dependencies among many
elements within a process model. In this context, it is sometimes com-
plex and hard to explain process models to stakeholders, and to main-
tenance these models over time (e.g., due to unforeseen circumstances
or changing business requirements). In literature, some studies have
been carried out on process model understandability. For instance,
metrics for measuring the understandability process models [45], fea-
tures that favor process models understandable [46] or influence fac-
tors of understanding process models [47], among others.

In this context, our quality model includes this feature to evaluate
how each evaluated SPML allows defining understandable and readable
process models. This evaluation is based on the use of familiar meta-
phors, number of symbols, structures used and unstructured statements.

5.3. Conformity to standards

The standardization of software process descriptions is an important
need because of the proliferation of model-based SPMLs over last dec-
ades. In addition, most of these SPML present its own format, content
and level of prescription because most of them has been proposed for
specific purposes.

For this reason, ISO/IEC TR 24774:2010 [48] standard is defined by
ISO (International Organization for Standardization) to present guide-
lines about the most frequently elements used when any software
process is modeled (e.g., the title, purpose, outcomes, activities, task
and information item, among other aspects) in order to standardize the
definition of process models. Whilst the primary purpose of ISO/IEC TR
24774:2010 is to encourage consistency in standard process reference
models, the guidelines it provides can be applied to any process model
developed for any purpose.

Moreover, over last decade, UML also have emerged as alternative
to define SPML because provides a rich set of notations, diagrams, and
extension mechanisms. In addition, thanks the extension mechanisms of
UML (in form of an MOF [49] metamodel, of a UML-Profile, or simply
reuse UML diagrams for their language), this alternative allows redu-
cing costs of developing a supporting tool and efforts of users when they
use the process language into their favourite UML tool. In this context,
many SPML based on UML have been proposed since several years.

Finally, and as conclusion, our quality model also includes these
features in order to measure if each SPML is defined conforms to these
standards.

5.4. Granularity

Reusing concepts is a psychological mechanism own of humans [50]

Fig. 1. Conceptual scheme of QuEF [13].

Therefore, we have considered to include this feature in our quality

model. After studying this feature per each SPML, it will be possible to
know the support degree of each evaluated SPML.

5.7. Business rules

As mentioned previously in Sections 5.1 and 5.2, a good under-
standing of a domain (e.g., process models) is a prerequisite to effective
communication and design of models which improve human cognition
of the domain represented (i.e., process models defined). However,
process models mainly focus on the modeling of activities within taking
into account aspects very important to support for the remaining stages
of the BPM lifecycle. One of this forgotten aspects is the definition of
business rules when process engineer models his/her processes [59].

In practice, business rules are indispensable in the design and im-
plementation of process models because they could be extracted from
laws, policies, procedures, etc. Business rules could be represented in
different ways: (i) an integrated manner into the model (i.e., using
graphical mechanisms, such as graphical links or text annotations) or in
a separated manner (i.e., using separate documents or rule engines, but
the relations and connections of process models and the rules are not
explicitly represented in the process models [59]).

Therefore, we have considered to include this feature in our quality
model taking into account the statements previously argued. After
studying this feature per each SPML, it will be possible to know the
support degree of the definition of business rules within process models
in an integrated manner.

5.8. Supporting tools

Using theoretical proposals (based on models and metamodels) for
process modeling guarantees uniformity, formalized terminology and
correct definition. Designing and developing friendly software tools
allows ensuring the applicability of this kind of proposals in real con-
texts. In fact, maintenance could become too complex and expensive in
enterprise environments when it is not possible to have a suitable
supporting tool [60]. This statement is especially important when the
theoretical proposal is based on models and paradigms such as MDE
(Model-Driven Engineering) [61]. The application of MDE may become
monotonous and very expensive if there are no software tools that
automate the process.

In this sense, therefore, we have also considered to include this
criterion in our quality model because it could be very important when
any organization has to choose a SPML among different alternatives.

5.9. Validation in real environments

Although it is not frequently a characteristic supported in studies,
there are different studies in the literature [62–64] that demonstrate
that the research literature is full of examples that were never applied in
practise. Even when they tried to be applied to full and complex ex-
ample they were not successful being only useful for academia.
Therefore, we consider to include this criterion in our quality model
because it could be important to show the technical viability of a SPML
when this one is successfully applied in practice. This feature is eval-
uated taking into account public accessible references and papers where
these applications are described.

6. Evaluation of model-based process modeling languages

As justified previously in Section 3, this paper is going to compare a
concrete set of model-based SPMLs (PLM4BS, UML4SPM, UML-EWM,
UPME, Ferreira's approach, SPEM 2.0, Combemale's approach, xSPEM,
eSPEM and MODAL). This set regroups representative initiatives from
industry and academic research groups. In addition, these SPMLs that
have been evaluated in this paper have been selected taking into ac-
count their transcendence and use in the community. These aspects are

that provokes reaction in the brain to specific input patterns, scripts and
other visual models. Many application areas as learning or knowledge
management, among other areas have successfully used these me-
chanisms as method for solving problems.

These psychological mechanisms of humans are also present within
software and technological organizations [51] where the application of
reuse mechanisms are very attractive in design and management tasks
(e.g., code and component reuse, reuse of reference models, design
patterns, reuse of conceptual models, etc.). In fact, it is possible to es-
tablish qualitative improvements in daily work [52]. In this context,
reusing methodological patterns or business process models gain im-
portance because of their higher abstraction. In addition, it allows
improving the decision making and reducing cost in an enterprise [53].

Although there are research studies that evaluate impacts of gran-
ularity on business process understandability and detect limited degree
of granularity [54], we consider very important to include this feature
in our quality model to evaluate how each SPML supports the granu-
larity as understandability mechanism.

5.5. Executability and orchestability

Many organizations have successfully applied BPM to improve their
internal management. However, there are still limitations and diffi-
culties during the execution of processes [15]. For example, this si-
tuation is usual in software organizations because of characteristics of
the software process itself. Some authors have identified the main dif-
ferences between software process and other processes such as in-
dustrial processes [15]. These differences are: (i) they are constantly
evolving, as they usually incorporate new lifecycles and technologies
and they frequently comprise several iterations that produce different
software products versions; (ii) they are complex because they are
strongly influenced b y many u npredictable c ircumstances a nd many
work teams; and (iii) they often rely on communication, coordination
and cooperation of different frameworks and development technologies
as well as on the different roles they play.

In this context, many software organizations usually focus their
efforts only on modeling their processes, but the execution is forgotten
because many activities cannot be easily and effectively automated
[15]. This situation causes each role execute its tasks manually, which
complicates the execution [55] and orchestration [56] of the process.
We have contrasted this statement with many international and Spanish
software companies with which we work on R&D projects.

Therefore, executability and orchestability seem to be critical and
essential features in any proposal to manage processes because com-
panies are being driven by the need to extensively automate their
processes with enterprise management systems and process engines
(known as BPMS, Business Process Management Suite [57]). Co-
ordinating between process’ participants or enforcing artifacts routing,
etc., could be improved if this goal is achieving. For this reason, ex-
ecutability and orchestability are two features included in our quality
model to know how each SPML support them.

5.6. Measurability

Once the process is deployed and is being executed, effectiveness of
the software process can be evaluated in order to know its productivity.
For this purpose, it is necessary to define key performance indicators
(KPIs) as mechanism for performing a continuous improvement life-
cycle. Quality, efficiency, eff ectiveness and per formance lev els are
important aspects to achieve in the process execution [58]. In this
sense, therefore, the model-based SPML should support the definition of
indicators or metrics to measure process elements (the process itself, its
activities, products, etc.). However, it is not only important defining
metrics or indicators, but also the calculation associated with these
metrics or indicators at runtime of the process.

conclusions of the systematic literature review presented in [11]. These
proposals could be considered representative of different kinds of re-
search lines and initiatives [11]: metamodel-level approaches with full
executability support; high-level approaches based on UML diagrams
and an ad-hoc low-level approaches; standard SPMLs and other ap-
proaches based on standards.

Next Fig. 2 summarizes the SPMLs analysed in this paper and
grouped by year. Below, this section is organized according to the
different kinds of initiatives identified previously and next subsections
evaluate each SPML in detail taking account our quality model defined
in Section 5.

6.1. PLM4BS evaluation

PLM4BS (Process Lifecycle Management for Business-Software)
[65,66] defines a theoretical MDE-based framework to apply BPM in
real business environments. Below, PLM4BS is evaluated taking into
account each feature included in our quality model.

Semantic richness and expressiveness. PLM4BS defines a Process
Definition MetaModel (PDMM) that supports three kinds of activities or
actions to develop the process: (i) «OrchestrationActivity», which
means a task carried out by an automatic device; (ii)
«ComplexActivity», which allows including a process within another
process; and (iii) «HumanActivity», which is performed by someone.

Defining the process control flows are supported by PLM4BS with
two mechanisms. Firstly, PLM4BS supports different types of
«ControlElement» to distinguish among diverse kinds of control flow: (i)
«InitialElement» and «FinalElement», which mean entry and exit point
of the process, respectively; (ii) «Conditional», which establishes ex-
clusive branches into process workflow; and (iii) «Fork» or «Join»,
which allows starting and ending parallel branches, respectively.
Secondly, PLM4BS defines the «Link» element to build the process
workflow between any other elements.

Moreover, the exception flow is not supported by PLM4BS yet.
However, the data flow is considered by PLM4BS using the «Product»
element which can be typed as an input, an output or an input/output
product. PLM4BS also allows defining data flows between activities
using «BusinessVar» elements which provide to share data between
activities.

Finally, the PDMM of PLM4BS includes the «Stakeholder» element to
represent human resources that can be either participant or responsible
of a «HumanActivity». These ones differ in that first one could complete
some aspects of the product (which are produced by the activity), but
they cannot complete the activity without being authorized by the re-
sponsible member, who can fulfill the activity in order to continue the

process actions sequence.
Understandability. Authors have designed PLM4BS metamodels

using UML-Profiles what has made it possible to take advantage of all
the semantic and visual richness of artefacts and basis models of UML.
PLM4BS also provides familiar metaphors and 8 symbols.

Conformity to standards. PLM4BS has been defined conforms to
MOF, UML and ISO/IEC 24774:2010. PLM4BS also use OCL (Object
Constraint Language) [67] to include formal semantic constraints
(which guarantee the building of well-defined models) as well as QVT
(Query/View/Transformation) [68] and MOFM2T [69] to define
transformation rules (model-to-model and model-to-text rules, respec-
tively).

Granularity. This feature is supported by PLM4BS with its
«ComplexActivity» element, which is used when it is necessary to in-
clude a process within another one.

Executability & Orchestability. PLM4BS theoretically defines an
execution metamodel (named Process Execution & Orchestration
MetaModel; PEOMM) [66] which is generated from PDMM using QVT
rules. PEOMM describes static information of each concept or attributes
and OCL semantic constraints to ensure that process models are built
well. In addition, PEOMM also describes information at runtime to
define how and when each element of PEOMM can be instantiated. In
this sense, PLM4BS associates a state machine each element to react and
evolve its status at runtime along its own lifecycle. In addition, trans-
formation rules are defined using MOFM2T to generate executable code
(WS-BPEL [70] and BPEL4People [71]) from PEOMM.

Measurability. This feature is partially supported. Users can use the
PDMM of PLM4BS in order define metrics and indicators associated
with their processes [65]. However, PLM4BS does not support the au-
tomatic calculation in runtime of these metrics/indicator yet.

Business rules. PLM4BS also supports the definition of business rules
using special and specific associations between «BusinessVar» elements
(mentioned above). This mechanism also provides indirect data flow
paths when a «ControlElement» (type «Conditional») node is reached
and read. In consequence, the «Conditional» node is the node where
variables are checked to select the next action to be performed. The
checking action is represented by «checkBusinessVar» relationship be-
tween «ControlElement» metaclass and «BusinessVar» metaclass. This
relationship also has «comparison_value» and «logic_operator» proper-
ties to config the business rule. The result is calculated using the
equation below, when the process model can be executable and a
«Conditional» node checks a collection (C) of n variables:

= =

Result C
C initValueVar C logicOperator C comparisonValue

()
{ () () ()}i

n
i i i1

Fig. 2. Summary of SPML analysed in this paper.

where:

• Ci is the ith checked variable.
• Ci(initValueVar) is the initial value of Ci variable.
• Ci (logicOperator) is the selected logic operator to evaluate Ci vari-
able. It can be equal or non-equal.
• Ci (comparisonValue) is the value used to compare the initial value of
Ci variable.

Support tools. PLM4BS is supported by CASE (Computer Aided
Software Engineering) tools named PLM4BS Suite [65]. This suite is
integrated into Enterprise Architect (EA) [72] and it provides a pro-
fessional working space to use UML-Profiles of each metamodel of
PLM4BS, apply transformation rules between models and automatically
verify each OCL constraints in runtime.

Validation in real environments. After finding some references,
some real projects are identified where PLM4BS has been successfully
applied and validated (e.g., healthcare environments [73] and business
consulting environments [74]).

6.2. UML4SPM evaluation

UML4SPM [75,76] is acronym of UML for Software Process Mod-
elling and has been defined as MOF-compliant metamodel extending
UML2.0. Below, UML4SPM is evaluated taking into account each fea-
ture included in our quality model.

Semantic richness and expressiveness. Regarding this feature, we
evaluate aspects like Activities or tasks, control flow, exception flow,
data flow and resources. Firstly, UML4SPM metamodel includes
«SoftwareActivity» concept, which represents an individual and general
task (machine or human). Secondly, UML4SPM also supports the defi-
nition of control flow in process models. As mentioned above,
UML4SPM has been defined by extension of the UML «Activity» meta-
class, which is related to itself to build the control flow of the process.
Therefore, UML4SPM also verifies this feature by extension.

Moreover, the exception flow is supported by UML4SPM with the
«RaiseExceptionAction» and «ExceptionHandler» concepts, which are
provided by UML2.0. UML4SPM uses these concepts with
«SoftwareActivity» in order to redirect the control flow to a predefined
behaviour when an unexpected situation appends during the
«SoftwareActivity» execution. In this situation, the «SoftwareActivity»
is stopped and UML4SPM assigns the appropriate handler in the flow.

Regarding data flow, UML4SPM defines «WorkProduct» concept,
which means data consumed, produced or modified during the software
process. It is also related to resources of the process. In this case,
UML4SPM defines the resources as activity performers and it establishes
two categories: «Tool», which identifies an automatic resource (ma-
chine, code batch, etc.); and «Performer Role», which may be an agent
with specific skills or a team.

Understandability. As mentioned above, UML4SPM reuses some
UML2.0 diagrams and notations. Therefore, UML4SPM takes ad-
vantages of UML regarding the understandability because UML2.0 is
standard, graphical, intuitive, and easy to understand.

Conformity to standards. UML4SPM has been defined as MOF2.0
metamodel extending UML. The UML4SPM metamodel organizes the
elements in the UML4SPM Process Structure UML4SPM Foundation
packages. Primary process elements of UML4SPM and the subset of
UML2.0 concepts extended these process elements are stored in the first
and second package, respectively.

Granularity. Although this aspect is not described in detail in the
reference identified, UML4SPM relates its «Process» concept with itself
what could allow defining any process within another one at several
levels [76].

Executability & Orchestability. This aspect is supported by
UML4SPM with a set of mapping rules to generate WS-BPEL from
UML4SPM models [77].

Measurability. This feature is not supported by UML4SPM yet.
Business rules. This feature is not supported by UML4SPM yet.
Support tools. UML4SPM provides an editor integrated into the

Eclipse environment.3 This prototype also implements each mapping
rule between UML4SPM and WS-BPEL.

Validation in real environments. In [32], authors mention the
elaboration of two case studies to evaluate UML4SPM in the context of
two European research projects (ModelWare and ModelPlex). However,
we do not have been able to find references about these projects in
order to know how UML4SPM was applied. Anyway, it has not been
possible to locate publications on the validation of the proposal in in-
dustrial and real environments.

6.3. UML-EWM evaluation

UML-EWM [78,79] proposes an UML Extended Workflow Meta-
model. Especially, it extends UML Activity Diagram (UML-AD) meta-
model to incorporate the capacity to modelling processes workflows.
However, UML-ADs does not provide elements enough for modeling in
detail software process models. Then, authors extend UML-AD to in-
clude new concepts such as of organizational elements in the process
models. Below, UML-EWM is evaluated taking into account each feature
included in our quality model.

Semantic richness and expressiveness. After studying the UML-
EWM metamodel, this one just includes the «WorkflowActivity» which
represents an elementary activity or task of the process. In addition, it is
possible to find some concepts or metaclasses with which define the
control flow of the process. For example, this metamodel defines con-
ditional branches, but not parallel branches in the control flow. The
exception flow is not supported neither by UML-EWM.

Moreover, the data flow and resources are considered with the
«WorkflowParticipant» and «WorflowRelevantData» metaclass, which
represents the participants and, data that are produced during of the
software process, respectively.

Understandability. UML-EWM presents an extension of UML what
guarantee the understandability of UML-EWM because UML is stan-
dard, graphical, intuitive, and easy to understand. However, UML-EWM
does not include familiar metaphors for non-technical users.

Conformity to standards. As mentioned above, UML-EWM is based
on UML and it extends UM UML-AD metamodel. Therefore, this feature
is supported by UML-EWM.

Granularity. Although this aspect is not described in the cited re-
ference identified, we could consider that this feature is also supported
by UML-EWM because extends UML-AD which allows the composition
of activities by actions. This composition of activities and events could
allow to define a workflow in a granular way.

Executability & Orchestability. In [78], authors mention that UML-
EWM is also based on the Activity Graphs metamodel of WfMC what
allows the automation of process models using UML-EWM. However,
authors do not indicate references and it has not been possible to find
research results about the execution and automation of processes
modelled with UML-EWM.

Measurability. This feature is not supported by UML-EWM yet.
Business rules. This feature is not supported by UML-EWM yet.
Support tools. Authors describes UML-EWM in a theoretical way

and it has not been possible to find references on modeling tools for
UML-EWM.

Validation in real environments. Authors briefly mention in [78] an
academic case study to model and map between SPEM and UML-EWM.
However, we have not found research results that evidence the appli-
cation of UML-EWM within real projects.

3 Manual Editor tool of UML4SPM. Official website. Retrieved January 2018
from, http://pagesperso.lip6.fr/Reda.Bendraou/IMG/pdf/prover_-
user_guide.pdf

Measurability. This feature is not supported by UPME yet.
Business rules. This feature is not supported by UPME yet.
Support tools. Authors mention that there are CASE tools (for in-

stance, Rational Rose and Visual Paradigm) which support the mod-
eling and the kinds of tranformation rules defined by UPME. However,
authors mention that these tools do not support full the UPME's fra-
mework.

Validation in real environments. Authors explain in [80] how
several academic examples are modelled with UPME what demon-
strates that UPME makes process modeling more reusable and easier.
However, it has not been possible to locate publications on the vali-
dation of the proposal in industrial and real environments.

6.5. The Ferreira's approach evaluation

Ferreira et al. proposes an approach for software process modelling
[81] extending UML Component Diagrams (UML-CPD). Authors con-
sider that developing a process model should entail developing phases
of process design and process implementation. Authors use UML-CPD
models to support the design phase and define model-to-text transfor-
mation rules for obtaining executable code which could be deployed

and executed in authors’ engine. Below, the Ferreira's proposal is
evaluated taking into account each feature included in our quality
model.

Semantic richness and expressiveness. Regarding this feature, we
evaluate aspects like workflow, control flow, exception flow, data flow
and resources.

On the one hand, regarding the workflow, the proposal defines
«ModuleLibrary» metaclass that provides a repository of the process
model. This concept aims to support the management of text descrip-
tions of applied methods in software development process. Within the
Ferreira's metamodel, software process concept is represented by the
«ArchitectureProcess» metaclass which is composed of UML
Component. In addition, the UML Component metaclass is extended by
authors to define: (i) «SoftComponent» metaclass, which is used to de-
clare architecture components that do not have a semantic defined (for
example, criteria of quality or satisfaction); and (ii) «HardComponent»,
which has its semantics defined by means of process modules objects.
These process modules represent specific tasks within the workflow.
Moreover, the Ferreira's metamodel described in [81] does not include
supporting for exception flow, data flow or resources modelling.

Understandability. The Ferreira's proposal presents an extension of
UML-CPD what guarantee the understandability of his proposal because
UML is standard, graphical, intuitive, and easy to understand. However,
we can conclude that it is not supported by it, because UML has a
technical notation and the Ferreira's proposal does not include familiar
metaphors for non-technical users.

Conformity to standards. As mentioned above, this SPML is based
on UML and it extends UML-CPD metamodel. Therefore, this feature is
supported by the Ferreira's proposal.

Granularity. Although this aspect is not explicitly described in [81],
we could consider that this feature is also supported by this proposal
because it extends UML-CPD which allows the composition of compo-
nent models. This composition of elements could allow to define a
workflow in a granular way.

Executability & Orchestability. Transformations rules are defined
by authors to generate executable code (conform to Little-JIL [82])
from their process models. Little-JIL is a programming language that
allows coordinating and running tasks among autonomous systems.

Measurability. This feature is not supported by the Ferreira's pro-
posal.

Business rules. This feature is not supported by the Ferreira's pro-
posal.

Support tools. It has not been possible to find a modeling tool to use
the authors’ proposal.

Validation in real environments. Authors describe in [81] how a
small software development process scenario is modelled with their
proposal, but it has not been possible to locate publications on the
validation of the proposal in industrial and real environments.

6.6. SPEM2.0 evaluation

SPEM2.0 [83] is known by proposing a split between usage and
content in software development processes. It also introduces extension
mechanisms, compliance points and concepts to distinguish method
contents from processes. Below, SPEM2.0 is evaluated taking into ac-
count each feature included in our quality model.

Semantic richness and expressiveness. Regarding this feature,
SPEM2.0 includes into its metamodel aspects like activities or tasks,
control flow, exception flow, data flow and resources. Firstly, SPEM2.0
supports «Activity» elements, which mean general work units assign-
able to performers. These performers are represented by role user.
SPEM2.0 also defines other structural elements, such as «Guidance» and
«Process». The first one associates elements of SPEM, to provide more
detailed information to the executors about the associated elements; for
example: Guides, Techniques, Metrics, Checklists, etc.; and the second
one contains a set of activities to achieve a specific goal); among others.

6.4. UPME evaluation

UPME [80] is a UML-based proposal that extends UML Class Dia-
grams (UML-CD), UML-AD, and UML State Diagrams (UML-SD), among
others. UPME establishes a framework comprising three phases for
SPM: (i) metamodels for building the software process domain; (ii)
model instantiation for building the model using IDL (Instantiation
Description Language scripts); and (iii) model compilation for trans-
lating the model into object-oriented code skeletons which allows the
process execution. Below, UPME is evaluated taking into account each
feature included in our quality model.

Semantic richness and expressiveness. Regarding this feature, we
evaluate aspects like Activities or tasks, control flow, exception flow,
data flow and r esources. In this context, t he definition of wo rk and
control flows are partially supported by UPME because authors dele-
gate this feature on the UML-AD metamodel. After studying cited-above
references, defining the exception flow is also not supported by UPME.

Regarding the data flow and resources, UPME is partially supported
this feature is delegated on UML-AD metamodel and its «Artifact» and
«Actor» elements. The first one represents data that are either used or
produced by a process or by a system operation and, the second one
specifies a role (user or other system) that interacts with an activity.

Understandability. Taking into account the definition o f this fea-
ture, we can conclude that it is not supported by UPME. Process models
defined with the UPME metamodel have a graphic representation si-
milar to UML-CD which has a technical notation and does not include
familiar metaphors for non-technical users.

Conformity to standards. As introduced above, UPME extends UML
to model some common basic elements of software process. Especially,
UPME extends UML-CD and UML-SD metamodels. Therefore, this fea-
ture is supported by UML-EWM.

Granularity. It is possible to consider that UPME supports this
characteristic because it is based on UML-AD, which allow granularity
in their models. In addition, UPME metamodel includes the
«SEL_SUB_CLS_EX» metaclass which allows the creation of subactivities
into process models.

Executability & Orchestability. In this sense, authors have devel-
oped IDL which is a script language to describe the instantiation tasks
explicitly [80]. For this purpose, UPME extends UML-CD metamodel to
include special behaviors (related to execution) in elements of UML-AD.
For instance, UPME extends the meaning of the activity concept
(human activity, machine activity, software activity, etc.) with the
«SUB_CLS_EX» metaclass in the UPME metamodel. Once modeled the
process with «SUB_CLS_EX» metaclasses, UPME allows transforming this
one into object-oriented code skeletons.

Business rules. This feature is not supported by SPEM2.0 yet.
Support tools. SPEM2.0 is supported by EA, among others.
Validation in real environments. After finding some references, it is

possible to identify some real projects of various areas where SPEM2.0
has been used, especially in Multi-Agent Systems [84] and Agile Soft-
ware Development [85], among others.

6.7. The Combemale's et al. approach evaluation

Combemale et al. [86] suggest a SPEM1.1-based [87] proposal for
SPM. This proposal arises due to the difficulty of using SPEM1.1, as it is
very general and provides no guidelines on its use. SPEM1.1 semantics
is essentially expressed in a natural language that leads to the con-
struction of inconsistent process models, as it lacks a formal definition
of concepts. Authors define a specialization of the SPEM metamodel
whose purpose is to clearly define concepts and formally express their
semantics with OCL. Below, the Combemale's proposal is evaluated
taking into account each feature included in our quality model.

Semantic richness and expressiveness. Regarding this feature, we
evaluate aspects like activities or tasks, control flow, exception flow,
data flow and resources. The authors’ approach aims to clearly and
formally defines SPEM1.1 concepts and their semantic, but authors do
not add new concepts in their metamodel respect to SPEM1.1.

However, it could be interesting to evaluate semantic richness and
expressiveness on SPEM1.1. Firstly, SPEM1.1 supports «WorkDefinition»
and «Activity» elements, which represent general units of work assign-
able to specific performers represented by role use. An activity also can
be composed of «Steps», which describes an assignable unit of work and
it usually affects one or only a small number of work products. Secondly,
defining the control flow is mainly carried out by SPEM1.1 using control
and object flows. SPEM1.1 also supports proactive controls with the start-
start, finish-start and finish-finish precedence. Moreover, exception flows
are not supported by SPEM1.1. However, the data flow and resources
are considered using «WorkProduct» and «ProcessRole», respectively.

Finally, we are going to consider that the authors’ proposal partially
supports the semantic richness and expressiveness because this proposal
itself does not provide new concepts respect to SPEM1.1 for SPM.

Understandability. This approach does not support this feature
because this proposal itself does not provide familiar metaphors when
its own concepts are instanced, neither any advantage on under-
standability respect to SPEM1.1, which uses UML1.4 diagrams and in-
cludes customized icons.

Conformity to standards. This approach is based on SPEM1.1 which
is a standard itself. SPEM1.1 is defined as MOF1.3-compliant meta-
model and an UML-Profile.

Granularity. It is important to evaluate this feature on SPEM1.1
since this approach is based on this standard. SPEM1.1 provides me-
chanisms for composing and reusing process models thanks to
«ProcessComponent» compositions. However, it is necessary to manu-
ally rename process elements when «ProcessComponents» are com-
bined in order to get one coherent process. This issue is a well-known
issue of SPEM1.1 that the Combemale's approach does not solve.

Executability & Orchestability. This feature is not supported by this
approach.

Measurability. This feature is not supported by this approach.
Business rules. This feature is not supported by this approach.
Support tools. Regarding the tooling support, authors do not pro-

vide any supporting tool to use their proposal in practice.
Validation in real environments. Regarding this feature, we have

not found research results that evidence the application of this ap-
proach within real projects.

6.8. xSPEM evaluation

The xSPEM [88] (eXecutable SPEM) proposal is proposed as exten-
sion of SPEM2.0 to provide executable mechanisms in SPEM2.0. It va-
lidates process model execution using Petri-net. Below, xSPEM is eval-
uated taking into account each feature included in our quality model.

Semantic richness and expressiveness. Regarding this feature, xSPEM
does not introduce new improvements in the semantic richness and expres-
siveness of the SPEM2.0 notation because xSPEM just focuses on defining
executable mechanisms in SPEM2.0. In this context, we are going to consider
that xSPEM partially supports this feature because this proposal itself does not
provide new concepts respect to SPEM2.0 for SPM. This one is the similar
criteria used to previously evaluate the Combemale's approach (Section 6.7).

Understandability. Although xSPEM is based on SPEM2.0, authors
have proposed xSPEM in a theoretical manner and it has not been
possible to find cites where authors explain mechanisms for friendly
defining xSPEM models.

Conformity to standards. The author's proposal is based on
SPEM2.0 (which is a standard itself) and also use OCL to add formal
semantic constraints. Authors also uses ATL,5 Kermeta [89] and xOCL6

4 Rational Portofolio Manager (RPM). Website: https://www.ibm.com/
developerworks/ssa/library/IBM_Rational_Portfolio_Manager.html

5 ATL (ATL Transformation Language) is a transformation language of model
using Eclipse technologies. Website: http://www.eclipse.org/atl/
6 XOCL is a combination of Eclipse Modeling Framework (EMF) [91] and OCL

to define domain specific languages. Website: http://www.montages.com/xocl.
html

Secondly, defining the control flow is mainly carried out by SPEM2.0
using proactive controls with the «WorkSequence» element. The control
flow is also built using precedence between activities (e.g., start-start,
start-finish, finish-start and finish-finish).

Moreover, exception flow i s n ot s upported b y S PEM2.0 yet.
However, the data flow o r p rocessing d ata i s c onsidered using
«WorkProduct» which are in most cases tangible work products con-
sumed, produced, or modified by Tasks. A lso i t i s possible t o define
relationship among work products.

Finally, SPEM2.0 includes «RoleDefinition» and «ToolDefinition» ele-
ments to represent human and machine resources, respectively. The first
one defines a set of related skills of individuals; and the second one de-
scribes the capabilities of automation units (e.g., CASE tools, systems, etc.).

Understandability. SPEM2.0 is designed using UML-Profiles what has
made it possible to take advantage of all the semantic and visual richness
of artefacts and basis models of UML. SPEM2.0 also provides familiar
metaphors to represent each its element (total 26 symbols) [83].

Conformity to standards. SPEM2.0 comes in the form of MOF2.0-
compliant metamodel that reuses UML-Infrastructure and UML-
Diagram Interchange specifications. The standard defines also a UML-
Profile w hich c ontains a U ML s tereotype p er e ach e lement o f the
SPEM2.0 metamodel.

Granularity. SPEM2.0 also allows reusing and extending process models
using its «ActivityUseKind» property (enumeration) of the «Activity» meta-
class. Depending on the value of this property, a SPEM2.0 activity can: (i)
extend an activity from another process; (ii) be extended by another activity;
or (iii) completely replace an activity in another existing process. This would
allow to redefine, reuse, or replace another process models [56].

Executability & Orchestability. At present, SPEM2.0 does not sup-
port execution of models. A nyway, SPEM2.0 suggests two common
mechanisms for that [83]: (i) mapping the processes into Project Plans
and enacting these with project planning and enactment systems such
as IBM Rational Portfolio Manager4; (ii) mapping the process to a
business flow o r e xecution l anguage a nd, t hen e xecuting t his re-
presentation of the processes using a workflow flow engine such as a
BPEL-based workflow engine. Nevertheless, SPEM2.0 supposes that this
task is the tool implementer's responsibility.

Measurability. This feature is supported by SPEM2.0 with the
«Metric» which allows measuring instances of SPEM2.0 elements.

https://www.ibm.com/developerworks/ssa/library/IBM_Rational_Portfolio_Manager.html
https://www.ibm.com/developerworks/ssa/library/IBM_Rational_Portfolio_Manager.html
http://www.eclipse.org/atl/
http://www.montages.com/xocl.html
http://www.montages.com/xocl.html

executability of SPEM2.0 (following the same criterion previously
used).

Executability & Orchestability. As mentioned above, eSPEM is an
extension of SPEM, based on UML and focused on fine-grained behavior
and lifecycle modeling and supports automated enactment of devel-
opment processes. In this sense, authors consider the use of UML state
machines for some elements of SPEM2.0 (e.g., «WorkProduct» and
«TaskDefinition» among others) life-cycle modeling to be a generic,
detailed, and perfectly enactable approach. However, eSPEM does not
provide mechanisms for executing process models.

Measurability. This feature is not directly supported by eSPEM
because it is out of scope.

Business rules. This feature is not supported by eSPEM neither
SPEM2.0 yet.

Support tools. Authors have implemented the eSPEM abstract
syntax using EMF and the eSPEM concrete syntax using the Graphical
Modeling Framework (GMF) [92] as a basic diagram editor.

Validation in real environments. Regarding this feature, we have
not found research results that evidence the application of eSPEM
within real projects.

6.10. MODAL evaluation

MODAL [93,94] (Modal Oriented Development Application Lan-
guage) is based on SPEM2.0 and it focuses on process models execution.
However, despite the complexity of SPEM2.0 is reproduced here,
MODAL aims to clarify the definition of process components to be able
to construct and execute processes on-demand. Below, MODAL is
evaluated taking into account each feature included in our quality
model.

Semantic richness and expressiveness. Regarding this feature, we
could consider that MODAL has the same evaluation than SPEM2.0.
However, we are going to apply the same criteria used to evaluate
previous SPMLs. That is, we are going to consider that MODAL partially
supports the semantic richness and expressiveness because this proposal
itself does not provide new concepts respect to SPEM2.0 for SPM.

Understandability. Although MODAL is based on SPEM2.0, authors
have mainly proposed and described MODAL in a theoretical manner.
In [93], it seems that MODAL models are modeled by UML-CD (using
Eclipse technologies as we mention later) which has a technical nota-
tion and does not include familiar metaphors for non-technical users.

Conformity to standards. The author's proposal is based on
SPEM2.0 (which is a standard itself) and also use OCL to add formal
semantic constraints.

Granularity. Following the same criteria previously used in the
evaluation of other SPMLs in this paper, we consider that MODAL
partially supports this feature because it does not define any additional
improvement with respect to SPEM2.0 in terms of modularity or
granularity.

Executability & Orchestability. In [94], authors improve MODAL to
execute process models. For this purpose, firstly, authors define con-
cepts which allows defining behaviors of activities. These new concepts
can be instanced in Java Cometa Framework [95] using transformation
rules to obtain Cometa executable code from MODAL process model.

Measurability. This feature is not directly supported by MODAL
because it is out of scope.

Business rules. This feature is not supported by MODAL neither
SPEM2.0.

Support tools. At present, authors are still working on generation of
executable process components deployed in a distributed environment
using Eclipse technologies (EMF, Kermeta) in order to design and de-
velop their own tool. It has not been possible to find specific references
about this tool yet. However, it has been possible to find one reference
[94] where authors have designed and developed a process engine
prototype to execute and instance MODAL process models.

Validation in real environments. In [93], authors mention that
7 TINA (TIme petri Net Analyzer) is a academical toolbox for the editing,

execute and analysis of Petri-Nets. Website: projects.laas.fr/tina/

to define the behavior of xSPEM models in an imperative manner.
Granularity. xSPEM does not define any additional improvement

with respect to SPEM2.0 in terms of modularity or granularity. In this
context, we consider it appropriate to evaluate this characteristic par-
tially for xSPEM since xSPEM is focused on the executability of
SPEM2.0 (following the same criterion previously used).

Executability & Orchestability. A s mentioned above, xSPEM ex-
tends SPEM2.0 and it provides concepts related to execution of process
models. For instance, xSPEM stores status of each process element
during runtime. In addition, xSPEM defines two complementary me-
chanisms to execute process model. The first o ne a llows validating
process models with model-checkers based on Petri-nets; and the
second mechanism is the establishment of a mapping into WS-BPEL
from SPEM2.0 models.

Measurability. This feature is not directly supported by xSPEM
because it is out of scope.

Business rules. This feature is not supported by xSPEM neither
SPEM2.0 yet.

Support tools. As mentioned before, authors perform an equivalence
of their xSPEM models in Petri-net models to evaluate and validate
advantages or disadvantages of xSPEM through experiments. These
Petri-nets are executed and simulated within TINA .7 Once xSPEM
process models are validated, this tool allows generating WS-BPEL code
to orchestrate process activities.

Validation in real environments. In [88], authors mention that
xSPEM has been evaluated in several real R&D projects (IST MODEL-
PLEX and TOPCASED projects). However, it has not been possible to
find public references on the validation of the proposal in industrial and
real environments.

6.9. eSPEM evaluation

In [90], authors detect four problems (asynchronous events, in-
stance features, planning support, and conguration support) which
provokes that many software process cannot be modeled with SPEM2.0
[90]. In this context, they address these shortcomings and present
eSPEM [90]: an extension of SPEM for enactable behavior modelling.
This proposal substitutes SPEM2.0 behavior interfacing concepts by
more fine-grained c oncepts b ased o n t he U ML b ehavior modelling
concepts and uses state machines to model process lifecycle. Below,
eSPEM is evaluated taking into account each feature included in our
quality model.

Semantic richness and expressiveness. This SPML does not in-
troduce new improvements in the semantic richness and expressiveness
of the SPEM2.0 notation. Authors just focus on defining enactable be-
havior modelling in SPEM2.0 as we have previously mentioned. In this
context, we are going to consider that eSPEM partially supports this
feature following the similar criteria used to evaluate previous SPML.

Understandability. In this case, eSPEM is designed using UML-
Profiles to represent its metamodels what has made it possible to take
advantage of all the semantic and visual richness of artefacts and basis
models of UML. However, this notation is technical and does not in-
clude familiar metaphors for non-technical users. In addition, it has not
been possible to locate public references and cites in order to evaluate
and test metaphors used in eSPEM [90].

Conformity to standards. The eSPEM metamodel is defined con-
form to MOF and it is also an extension of SPEM2.0 (which is a standard
itself).

Granularity. In this case, eSPEM does not define a ny additional
improvement with respect to SPEM2.0 in terms of modularity or
granularity. In this context, we consider it appropriate to evaluate this
characteristic partially for eSPEM since eSPEM is focused on the

MODAL (extension of SPEM2.0) have been applied in different ex-
periments developing embedded systems. Authors also mention that
MODAL has been used in some European project, but we have not been
able to find evidences that relation this European project with MODAL.

7. Analysis and discussion

This section aims to discuss and analysis advantages and dis-
advantages of each studied SPML. Table 1 summaries the evaluation of
each ones and it describes the scope and degree of the support of each
model-based SPML per feature.

Regarding the degree of support, we evaluate each SPML with re-
spect to quality features with «0», «1» and «2» when a feature is not
supported, is partially supported and is fully supported, respectively.
While being quite partial and subjective, this evaluation makes it easier
for a decider to identify the language answering her expectations.
However, it is important to mention that this paper provides a brief
description of each evaluated SPML. Therefore, the reader can always
consult the original work (using the referenced citations) to obtain
more accurate information. This evaluation in detail is more necessary
when several SPMLs have the same rate for a feature (e.g., «Conformity
to Standard»). Moreover, the final qualification of the «Semantic
Richness and Expressiveness» (macro feature) criterion is obtained after
applying the arithmetic mean on all micro features of this criterion (i.e.,
activities, control flow, exception flow, data flow and resources).

Once applied our quality model on SPMLs that have been described
in previous section, we summarize main obtained conclusions.
Although our model and quality strategy systematically and methodo-
logically allows the comparison of SPMLs, it is important to indicate
that it is not possible to determine the best proposal. This choice de-
pends on requirements and needs of each software organization.

Semantic richness and expressiveness (Fig. 3). In this case, most
features are supported by each SPML as shown Fig. 3. However, ex-
ception handling is a non-supported feature by most proposals under
study. UML4SPM is the only one that supports exception handling.
Table 1 summarizes semantic richness capabilities of each SPML. Ac-
cording to this summary, UML4SPM followed by SPEM2.0, PLM4BS and
UPME are those SPMLs that provide more capabilities regarding the
expressiveness requirement while the Ferreira's proposal is the less
expressive one because it does not provide many mechanisms for se-
mantic richness and expressiveness (i.e., it does not support exception
and data flows, neither resource perspectives.

Understandability (Fig. 4). Most of SPMLs we have considered
(i.e., PLM4BS, UML4SPM, UML-EWM, UPME) are based on UML-AD to
represent process models except in SPEM2.0 and their extensions (i.e.,
MODAL, eSPEM, xSPEM). Although UML could be considered a

FEATURES APPROACHES PLM4BS UML4SPM UML-
EWM

UPME Ferreira SPEM 2.0 Combemale xSPEM eSPEM MODAL

Activities 2 2 2 1 2 2 1 1 1 1
Control flow 2 2 1 1 2 2 1 1 1 1

Semantic richness and
expressiveness

Exception flow 0 2 0 0 0 0 0 0 0 0

Data flow 2 2 2 1 0 2 1 1 1 1
Resources 1 2 2 1 0 2 1 1 1 1
TOTAL 1,4 2 1,4 0,8 0,8 1,6 0,8 0,8 0,8 0,8
Understandability 2 2 0 0 0 2 0 0 0 0
Conformity to standards 2 2 2 2 2 2 2 2 2 2
Granularity 2 2 2 2 2 2 1 1 1 1
Executability & Orchestability 2 2 0 2 2 0 0 2 0 2
Measurability 1 0 0 0 0 1 0 0 0 0
Business rules 2 0 0 0 0 0 0 0 0 0
Support tools 2 2 0 0 0 2 0 1 1 1
Validation in Real
Environments

2 1 0 0 0 2 0 1 0 1

Fig. 3. Summary of the evaluation of «Semantic Richness and Expressiveness»
feature.

Fig. 4. Summary of the evaluation of «Understandability» feature.

Table 1
Summary of the evaluation of model-based approaches.

technical notation, UML provides semantic and visual richness of ar-
tefacts in its basis models. The UPME and Ferreira's proposals respec-
tively use UML-CD and UML-CPD, but they do not define UML-Profiles
to provide familiar metaphors when each concept of these proposal is
instanced. They do not include familiar metaphors for non-technical
users. However, PLM4BS, UML4SPM and SPEM2.0 provide familiar
metaphors to model their concepts. This justifies the rate 2 in Table 1.
Regarding SPEM2.0, this one does not rely on UML-AD for representing
processes, but provides a behavioral diagram based on a set of pro-
prietary notations. Finally, SPMLs based on SPEM we have considered
(i.e., MODAL, eSPEM, xSPEM, and Combemale's approaches) have rate
0 in our evaluation because each one itself does not provide familiar
metaphors when each concept of these proposal is instanced, neither
any advantage on understandability respect to SPEM.

Conformity to standards (Fig. 5). Most of SPMLs we have dis-
cussed previously, define their own set of concepts to model software
processes. Most proposals make their definition based on metamodels
and some ones also define UML-Profiles instead of using UML diagrams.
Anyway, each SPML conforms to UML in one way or another, which
justifies the rate 2 in Table 1. In addition, some proposals also take into
account other standards. For example, PLM4BS has also been defined
conforms ISO/IEC 24774: 2010.

Granularity (Fig. 6). Most of SPMLs we have evaluated provide
mechanisms for defining patterns or business process models and
grouping activities of a process that may be common in a particular
business context. These mechanisms for reusing logical blocks are very
attractive in design and management tasks because of the potential
economic benefits conveyed as time-savings and qualitative improve-
ments. Regarding the remaining SPMLs (i.e., MODAL, eSPEM, xSPEM,
and Combemale's approaches), these ones support partially this feature
because they are based on do SPEM2.0 and do not define any additional
improvement with respect to SPEM2.0 in terms of modularity or
granularity.

Executability & Orchestability (Fig. 7). Regarding executability,
firstly, PLM4BS defines transformation rules (based on MOFM2T) to
obtain executable code (WS-BPEL and BPEL4People). Secondly,
UML4SPM promotes the reuse of existing WS-BPEL process engines, but
it requires a configuration phase. Thirdly, UPME and the Ferreira's
proposal are based on academic script language (IDL and Little-JIL,
respectively).

Moreover, UML-EWM, SPEM2.0, eSPEM and Combemale's propo-
sals do not provide mechanisms for process execution. Regarding
xSPEM and MODAL (SPEM2.0 extensions), firstly, xSPEM proposes two
mechanisms: (i) process models are transformed into Petri-net models,
which are executed and simulated within TINA; and (ii) WS-BPEL code

is generated from process models. Secondly, MODAL includes me-
chanisms to enact process models generating executable code (for Java
Cometa Framework) from MODAL models. Anyway, it might be pos-
sible to consider that only PLM4BS, xSPEM and UML4SPM provide
generalist mechanisms to execute the process since they are based on
WS-BPEL code generation (which is a standard recognized by most
BPMS).

Measurability (Fig. 8). Regarding measurability, only PLM4BS and
SPEM2.0 support this feature, but this support is partial. Although both
SPML support measure definitions, they do not support the automatic
calculation in runtime of these metrics/indicator yet. The rest of eval-
uated SPMLs do not contemplate this feature.

Business rules (Fig. 9). This feature is fully only supported by
PLM4BS using its «BusinessVar» and «checkBusinessVar» concepts. The
latter represents an association class relationship between «Con-
trolElement» metaclass and «BusinessVar» metaclass, but it is necessary
to supervise that the type of the «ControlElement» metaclass is «Con-
ditional» (this constraint is controlled by PLM4BS with OCL). The
«checkBusinessVar» also has several properties to config and build
business rules (see Section 6.1). The rest of evaluated SPMLs do not
contemplate this feature.

Supporting tools (Fig. 10). PLM4BS and SPEM2.0 provide well-
supported tools (both ones are on EA). This justifies the rate 2 in
Table 1. Other SPMLs (i.e., UML4SPM, xSPEM and MODAL approaches)
have their own prototypes, but we have been able to access to the

Fig. 5. Summary of the evaluation of «Conformity to Standards» feature.
Fig. 6. Summary of the evaluation of «Granularity» feature.

Fig. 7. Summary of «Executability & Orchestability» feature.

UML4SPM process engines only. Regarding other SPMLs discussed, it
has not been possible to find supporting tools.

Validation in real environments (Fig. 11). Five of the ten ap-
proaches we discussed (i.e., UML-EWM, UPME, Ferreira's and Combe-
male's et al. approaches, eSPEM) could be considered as theoretical

approaches because it has not been possible to find public references on
the validation of the proposal in industrial and real environments.
PLM4BS and SPEM2.0 are the only SPMLs that provide accessible re-
ferences where their practical application is explained in detail within
different business contexts. For example, PLM4BS has been successfully
applied in healthcare and business consulting environments, whereas
SPEM2.0 is applied in software projects and multi-agent systems,
among others. The rest of proposals (UML4SPM, xSPEM, MODAL) have
been partially evaluated because it has not been possible to contrast
their practical application. In the paper evaluated, authors mention that
their proposals have been validated in different R&D projects, but it has
not been possible to locate paper or references where that application is
described.

8. Conclusions and future works

Over last decades, SPM has been a subject very investigated in
Software Engineering and the problem of describing and using software
processes has been addressed by many research groups around the
world. In fact, different UML-based and model-based proposals have
appeared along the years to model software process.

We provide an overview of model-based SPML and we establishe
their scope, domain, features or benefits, among other aspects. For this
purpose, we use the QuEF framework in order to define a quality model
which allows comparing and evaluating this kind of modeling language.

Our quality model frames a set of features for SPML which have
been used to evaluate and compare some predominant SPML. These
features cover aspects such as semantic richness and expressiveness;
understandability; conformity to standards; granularity; executability
and orchestrability; measurability; business rules support; support
tools; and validation in real environments. This characterization
scheme could help to organizations to choose the approach that best fits
their expectations and requirements. In this context, we highlighted
advantages of each evaluated SPML as well as its drawbacks.

Either way, this paper shows that this line of research is open and
booming because of the number of papers found and state-of-the-art
studies in software process modelling languages. This is one of the
reasons to propose, in this paper, a quality model that allows to ob-
jectively evaluate and compare SPMLs.

After carrying out this comparative study and seeing the results
shown in Table 1, we can conclude that, there are many model-based
proposals for SPM, but it is very difficult to establish with could be the
commitment to follow. SPEM2.0 could be the solution, but its com-
plexity and non-executability do not allow it. We have also identified

Fig. 8. Summary of the evaluation of «Measurability» feature.

Fig. 9. Summary of the evaluation of «Business Rules» feature.

Fig. 10. Summary of the evaluation of «Supporting Tools» feature.

Fig. 11. Summary of the evaluation of «Validation in Real Environments»
feature.

[1] Y.B. Han, J.Y. Sun, G.L Wang, H.F. Li, A cloud-based BPM architecture with user-
end distribution of non-compute-intensive activities and sensitive data, J. Comput.
Sci. Tech. (2010), https://doi.org/10.1007/s11390-010-9396-z.

[2] W.M.P Van-der-AalstMaking Work Flow, On the application of petri nets to business
process management, Application and Theory of Petri Nets, LNCS 2360 (2002), pp.
1–22.

[3] PMI, A Guide to the Project Management Body of Knowledge, (2008) ISBN13: 978-
1933890517.

[4] ISO/IEC 9001:2008, Quality Management Systems, Requirements, International
Organization for Standardization, 2008.

[5] P. Trkman, The critical success factors of business process management, Int. J. Inf.
Manag. 30 (2) (2010) 125–134.

[6] ISO/IEC TR24744:2007, Software and Systems Engineering Lifecycle Management
Guidelines for Process Description, (2007).

[7] A. Fuggetta, Software process: a roadmap, Proceedings of the Conference on the
Future of Software Engineering, 97 2000, pp. 25–34.

[8] J. Lonchamp, A structured conceptual and terminological framework for software
process engineering, Proceedings of 2nd International Conference on the
Continuous Software Process Improvement, 1993, pp. 41–53.

[9] K.Z. Zamli, P.A Lee, Taxonomy of process modeling languages, ACS/IEEE
International Conference on Computer Systems and Applications, 2001, pp.
435–437.

[10] K.Z. Zamli, N.M Isa, A survey and analysis of process modeling languages, Malays.
J. Comput. Sci. 17 (2004) 68–89.

[11] L. García-Borgoñón, M.A. Barcelona, J.A. García-García, M. Alba, M.J. Escalona,
Software process modelling languages: a systematic literature review, Inf. Softw.
Syst. J. (2013), https://doi.org/10.1016/j.infsof.2013.10.001.

[12] F.J. Domínguez-Mayo, M.J. Escalona, M. Mejías, M. Ross, G Staples, A quality
management based on the quality model life cycle, Computer Stand. Interfaces
(2012), https://doi.org/10.1016/j.csi.2012.01.004.

[13] S.M.J. Sutton, L.J. Osterweil, The design of a next-generation process language,
Software Engineering, Lecture Notes in Computer Science, 1301 1997, pp. 142–158.

[14] R. Bendraou, J.M. Jézéquel, M.P. Gervais, X. Blanc, A comparison of six UML based
languages for software process modeling, IEEE Trans. Softw. Eng. 36 (2010)
662–675.

[15] F. Ruiz-González, G. Canfora, Software process: characteristics, technology and
environments, SPT - Softw. Process Technol. 5 (2004) 5–10.

[16] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, H.A. Reijers, Imperative
versus declarative process modeling languages: an empirical investigation,
International Conference on Business Process Management, Springer, Berlin,
Heidelberg, 2011, pp. 383–394.

[17] R. Lu, S Sadiq, A survey of comparative business process modeling approaches,

Business Information Systems, 2007, pp. 82–94.
[18] M. Zur Muehlen, M. Indulska, Modeling languages for business processes and

business rules: a representational analysis, Inf. Syst. 35 (4) (2010) 379–390.
[19] O. Kopp, D. Martin, D. Wutke, F Leymann, On the Choice Between Graph-Based and

Block-Structured Business Process Modeling Languages, (2008).
[20] A.R. Hevner, S.T. March, J. Park, S. Ram, Design science in information systems

research, MIS 28 (1) (2004) 75–105.
[21] K Peffers, T Tuunanen, M Rothenberger, S Chatterjee, A design science research

methodology for information systems research, J. Manag. Inf. Syst. 24 (3) (2007)
45–77.

[22] M. Havey, Essential Business Process Modelling, O'Reilly Media, 2005 ISBN13: 978-
0596008437.

[23] WMP Van-der-Aalst, Business process management: a personal view, Bus. Process
Manag. J. 10 (2) (2004).

[24] F.J. Domínguez-Mayo, M.J. Escalona, M Mejías, QuEF (quality evaluation frame-
work) for model-driven web methodologies, International Conference on Web
Engineering, 2010, pp. 571–575.

[25] J.G. Enríquez, J.M. Sánchez-Begines, F.J. Domínguez-Mayo, J.A. García-García,
M.J Escalona, An approach to characterize and evaluate the quality of product
lifecycle management software systems, Comput. Stand. Interfaces (2018).

[26] J.G. Enríquez, F.J. Domínguez-Mayo, J.A. García-García, M.J. Escalona, M Risoto, a
framework to manage quality of enterprise content management systems, Quality
Control and Assurance-An Ancient Greek Term Re-Mastered, InTech, 2017.

[27] M.L. Jaccheri, M. Baldi, M. Divitini, Evaluating the requirements for software
process modelling languages and systems, Proc. Conf. Process Support for
Distributed Team-Based Software Development, 1999, pp. 570–578.

[28] P. Armenise, S. Bandinelli, C. Ghezzi, A Morzenti, A survey and assessment of
software process representation formalisms, Int'l J. Softw. Eng. Knowl. Eng. 3 (3)
(1993) 401–426 pp.

[29] C. Schlenoff, A. Knutilla, S Ray, Unified Process Specification Language:
Requirements for Modeling Process, Unified Process Specification Language:
Requirements for Modeling Process, 5910 (1996) Interagency Report.

[30] ISO 9000:2000, Quality Management Systems (Fundamentals and Vocabulary),
(2018) http://www.iso.org Retrieved.

[31] ISO 9001:2008, Quality Management, (2018) http://www.iso.org Retrieved.
[32] ISO 9004:2000, Quality Management Systems (Guidelines for Performance

Improvements), (2018) http://www.iso.org Retrieved.
[33] ISO/IEC 9126-1:2001, Software Engineering (Product Quality: Quality Model),

(2018) http://www.iso.org Retrieved.
[34] ISO/IEC 25000:2005, Software Product Quality Properties and Evaluation, SQuaRE.

(2018) http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=35683 Retrieved.

[35] ISO/IEC 20000-1:2011, Information Technology, Service Management: Service
Management System Properties, (2018) http://www.iso.org Retrieved.

[36] ISO/IEC 20000-2:2005, Service Management, (2018) http://www.iso.org
Retrieved.

[37] ISO/IEC TR 20000-3:2009, Service Management, (2018) http://www.iso.org
Retrieved.

[38] ISO/IEC TR 20000-4:2010, Service Management: Process Reference Model, (2018)
http://www.iso.org Retrieved.

[39] ISO/IEC TR 20000-5:2010, Service Management: Exemplar Implementation Plan
for ISO/IEC 20000-1, (2018) http://www.iso.org Retrieved.

[40] ITIL official site. Retrieved January 2018 from, http://www.itil-officialsite.com.
[41] T Morgan, Business Rules and Information Systems: Aligning IT with Business

Goals, Addison-Wesley, 2002 ISBN 0-201-74391-4.
[42] B. Curtis, M.I. Kellner, J. Over, Process Modeling, Commun. ACM 35 (9) (1992)

75–90.
[43] J Krogstie, Perspectives to Process Modeling, in: M. Glykas (Ed.), Business Process

Management. Studies in Computational Intelligence, 2013 https://doi.org/10.
1007/978-3-642-28409-0_1.

[44] La Rosa, Marcello, ter Hofstede, H.M. Arthur, Wohed, Petia, Reijers, A. Hajo,
Mendling, Jan, van der Aalst, M.P. Wil, Managing process model complexity via
concrete syntax modifications, IEEE Trans. Ind. Inf. 7 (2) (2011).

[45] A.A. Abdul, G.K. Tieng Wei, G.M. Muketha, W.P Wen, Complexity metrics for
measuring the understandability and maintainability of business process models
using goal-question-metric, Int. J. Comput. Sci. Netw. Secur. 8 (5) (2008) 219–225.

[46] J. Mendling, H.A. Reijers, J Cardoso, What makes process models understandable?
Proc. of BPM, LNCS, 4714 Springer, 2007, pp. 48–63.

[47] J. Mendling, M. Strembeck, Influence factors of understanding business process
models, Proc. of BIS, LNBIP, 2008, pp. 142–153.

[48] ISO/IEC. ISO/IEC TR 24744:2007, Software and Systems Engineering Lifecycle
Management Guidelines for Process Description, (2007).

[49] OMG, Meta Object Facility (MOF™) Core, (2011) http://www.omg.org/spec/MOF/
Last accessed 11/2017.

[50] B.P. Meier, S. Schnall, N. Schwarz, J.A Bargh, Embodiment in social psychology,
Top. Cogn. Sci. 4 (4) (2012) 705–716.

[51] B. Frakes, Kang Kyo, Software reuse research: status and future, IEEE Trans. Softw.
Eng. 31 (7) (2005) 529–536.

[52] Y. Ye, G Fischer, Supporting reuse by delivering task-relevant and personalized
information, Proceedings of 24th International Conference on Software
Engineering, 2002, pp. 513–523.

[53] O. Holschke, J. Rake, O. Levina, Granularity as a cognitive factor in the effective-
ness of business process model reuse, Business Process Management. BPM, 2009
https://doi.org/10.1007/978-3-642-03848-8_17 2009.

[54] H.A. Reijers, J Mendling, Modularity in process models: review and effects, BPM,
5240 2008, pp. 20–35.

some aspects not considered until now among the most proposals stu-
died, such as validation within enterprise environments, friendly sup-
port tools, mechanisms to carry out continuous improvement, me-
chanisms to establish business rules and elements for software process
orchestrating.

However, it can be interesting to emphasize the fact that few pro-
posals have been applied in real environments. In fact, we have not
been able to find papers where success s tories are described. This si-
tuation occurs in most of the proposals mentioned above, but there are
exceptions such as SPEM2.0, PLM4BS and UML4SPM what allows the
approach between the research world and the business world. This si-
tuation is very important in order to transfer the scientific knowledge
generated in academy to software industry.

A s future work, we will continue studying the main features of
software process to improve our quality model. Also, we will present
new comparative studies to evaluate other possible SPML [96-98]. In
addition, we will take our paper as initial point to study what SPML
could be the best one for a kind of software company (large, small, or
standard-oriented company).

Acknowledgments

This research has been supported by POLOLAS project
(TIN2016-76956-C3-2-R) by the of the Spanish Ministry of
Economy and Competitiveness.

References

https://doi.org/10.1016/j.csi.2018.11.008
https://doi.org/10.1007/s11390-010-9396-z
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0002
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0002
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0002
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0003
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0003
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0004
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0004
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0005
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0005
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0006
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0006
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0007
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0007
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0008
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0008
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0008
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0009
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0009
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0009
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0010
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0010
https://doi.org/10.1016/j.infsof.2013.10.001
https://doi.org/10.1016/j.csi.2012.01.004
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0013
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0013
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0014
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0014
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0014
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0015
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0015
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0016
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0016
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0016
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0016
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0017
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0017
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0018
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0018
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0019
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0019
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0020
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0020
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0021
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0021
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0021
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0022
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0022
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0023
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0023
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0024
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0024
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0024
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0025
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0025
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0025
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0026
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0026
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0026
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0027
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0027
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0027
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0028
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0028
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0028
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0029
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0029
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0029
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35683
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35683
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.itil-officialsite.com
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0040
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0040
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0041
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0041
https://doi.org/10.1007/978-3-642-28409-0_1
https://doi.org/10.1007/978-3-642-28409-0_1
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0043
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0043
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0043
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0044
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0044
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0044
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0045
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0045
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0046
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0046
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0047
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0047
http://www.omg.org/spec/MOF/
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0049
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0049
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0050
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0050
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0051
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0051
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0051
https://doi.org/10.1007/978-3-642-03848-8_17
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0053
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0053

[55] M. Papazoglou, P. Ribbers, E-Business: Organizational and Technical Foundations,
John Wiley & Sons, 2006 EditorISBN-13: 978-0470843765.

[56] G. Pedraza, J.C Estublier, Distributed orchestration versus choreography: the
FOCAS approach. trustworthy software development processes, Lect. Notes
Comput. Sci. 5543 (2009) 75–86 Volume.

[57] A. Meidan, J.A. García-García, M.J. Escalona, I Ramos, A survey on business pro-
cesses management suites, Comput. Stand. Interfaces 51 (2016) 71–86 Volume.

[58] A Kronz, Managing of process key performance indicators as part of the aris
methodology, Corp. Perform. Manag., (2006) 31–44.

[59] W. Wang, M. Indulska, S.W Sadiq, Cognitive efforts in using integrated models of
business processes and rules, 2016, pp. 33–40.

[60] Van Lamsweerde, Axel. Requirements Engineering: From System Goals to UML
Models to Software 10 John Wiley & Sons, Chichester, UK, 2009 Vol.

[61] DC Schmidt, Model-Driven Engineering, IEEE Comput. Comput. Soc. 39 (2) (2006)
25–31 vol.

[62] T.E. Vos, B. Marin, M.J. Escalona, A. Marchetto, A methodological framework for
evaluating software testing techniques and tools, 12th International Conference on
Quality Software, 2012, pp. 230–239.

[63] P. Tomas, M.J. Escalona, M Mejias, Open source tools for measuring the internal
quality of Java software products. A survey, Comput. Stand. Interfaces 36 (1)
(2013) 244–255.

[64] M Lang, An analysis of model-driven web engineering methodologies, Int. J. Innov.
Comput. Inf. Control (2012).

[65] J.A. García‐García, L. García‐Borgoñón, M.J. Escalona, M Mejías, A model‐based
solution for process modeling in practice environments: PLM4BS, J. Softw., (2018),
https://doi.org/10.1002/smr.1982.

[66] J.A. Garcia-Garcia, A. Meidan, A. Vázquez, M Mejias, A model-driven proposal to
execute and Orchestrate processes: PLM4BS. Software process improvement and
capability determination, 17th International Conference, 2017 https://doi.org/10.
1007/978-3-319-67383-7_16.

[67] ISO/IEC 19507:2012. Object Constraint Language (OCL), formal/2012-05-09,
2012.

[68] OMG, Query/View/Transformation. Website: http://www.omg.org/spec/QVT/1.
0/, (2018) Retrieved.

[69] OMG, MOF Model to Text Transformation Language (MOFM2T). Website http://
www.omg.org/spec/MOFM2T/1.0/, (2018) Retrieved.

[70] OASIS, Web Services Business Process Execution Language Version 2.0,
Organization for the Advancement of Structured Information Standards, 2007,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[71] OASIS, WS-BPEL Extension for People (BPEL4People) Specification Version 1.1,
Organization for the Advancement of Structured Information Standards, 2010,
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html.

[72] www.sparxsystems.com.au, (2018) Retrieved.
[73] J.A. Garcia-Garcia, M.J. Escalona, A. Martínez-García, C. Parra, T. Wojdyński,

Clinical process management: a model-driven & tool-based proposal, Information
Systems Development: Transforming Healthcare through Information Systems,
(2015) ISBN: 978-962-442-393-8.

[74] J.A. Garcia-Garcia, J.G. Enriquez, L. Garcia-Borgoñon, C. Arevalo, E. Morillo, A
MDE-based framework to improve the process management: the EMPOWER pro-
ject, IEEE 15th International Conference on Industrial Informatics, 2017, pp.
553–558 ISBN: 978-1-5386-0836-4.

[75] R. Bendraou, G. Marie-Pierre, B. Xavier, UML4SPM: a UML2.0-based metamodel for
software process modelling, International Conference on Model Driven Engineering
Languages and Systems, 2005.

[76] R. Bendraou, G. Marie-Pierre, B. Xavier, UML4SPM: an executable software process
modeling language providing high-level abstractions, Enterprise Distributed Object

Computing Conference. 10th IEEE International. IEEE, 2006.
[77] R. Bendraou, A. Sadovykh, M. Gervais, Software process modeling and execution:

the UML4SPM to WS-BPEL approach, Proceedings of 33rd Conference on Software
Engineering and Advanced Applications, 2007, pp. 314–321.

[78] N. Debnath, D. Riesco, G. Montejano, M.P. Cota, J. Baltasar Garcia, Perez-Schoeld,
D. Romero, M. Uva, Supporting the SPEM with a UML extended workflow meta-
model, IEEE International Conference on Computer Systems and Applications, 2006
2006, pp. 1151–1154.

[79] D. Riesco, M. Uva, E. Acosta, N. Debnath, G. Montejano, Including workflow con-
current modeling in an extension of the uml activity diagram metamodel,
International Conference on Computer Systems and Applications, 2003.

[80] M. Wu, G. Li, J. Ying, H. Yan, A metamodel approach to software process modelling
based on UML extension, IEEE International Conference on Systems, Man and
Cybernetics, 6 2006, pp. 4508–4512.

[81] Ferreira, A.L., Machado, R.J., Paulk, M.C. An approach to software process design
and implementation using transition rules. 37th Software Engineering and
Advanced Applications Conference, pp. 330–333, 2011.

[82] A. Wise, Little-JIL 1.5 Language Report, Department of Computer Science,
University of Massachusetts, Amherst, MA, 2006 UM-CS-2006-51.

[83] OMG, SPEM 2.0, Software & Systems Process Engineering Metamodel Specification,
(2008) http://www.omg.org/spec/SPEM/.

[84] W. Dahhane, J. Berrich, T. Bouchentouf, M Rahmoun, SEMAT Essence's Kernel
applied to O-MaSE, 5th International Conference on Multimedia Computing and
Systems, 2016, pp. 799–804.

[85] JA.H. Alegria, M.C. Bastarrica, A Bergel, Analyzing the Scrum process model with
AVISPA, XXIX International Conference of the, IEEE, 2010, pp. 60–65.

[86] B. Combemale, X. Cregut, A. Caplain, B. Coulette, Towards a rigorous process
modelling with SPEM, 8th International Conference on Enterprise Information
Systems, 2006, pp. 530–533.

[87] OMG. SPEM1.1, Software Process Engineering Metamodel, formal/2002-11-14,
2002.

[88] R. Bendraou, B. Combemale, X. Cregut, M Gervais, Definition of an executable
SPEM 2.0, Software Engineering Conference, APSEC 2007 14th Asia-Pacific, 2009,
pp. 390–397.

[89] Kermeta, Website https://marketplace.eclipse.org/content/kermeta, (2018)
Retrieved.

[90] R. Ellner, S. Al-Hilank, J. Drexler, M. Jung, D. Kips, M Philippsen, Espem a SPEM
extension for enactable behavior modelling, Model. Found. Appl. 6138 (2010)
116–131 vol.

[91] https://www.eclipse.org/modeling/emf/, (2018) Retrieved.
[92] http://www.eclipse.org/modeling/gmp/, (2018) Retrieved.
[93] A. Koudri, J.Modal Champeau, A SPEM extension to improve co-design process

models, Lect. Notes Comput. Sci. 6195 (2010) 248–259 vol.pp..
[94] P.Y. Pillain, J. Champeau, H.N Tran, Towards an enactment mechanism for MODAL

process models, First Workshop on Process-based approaches for Model-Driven
Engineering (PMDE), 2011, p. 33 pp..

[95] OMG, UML Profile for MARTE, Beta 1, (2007) . Technical Report ptc/07-08-04.
[96] E.M. Schön, J. Thomaschewski, M.J. Escalona, Agile requirements engineering: a

systematic literature review, Comput. Stand. Interfaces 49 (2017) 79–91.
[97] F. Golra, F. Dagnat, Component-oriented multi-metamodel process modeling fra-

mework (CoMProM), First Workshop on Process-based approaches for Model-
Driven Engineering (PMDE 2011), 2011, p. 44.

[98] F. Aoussat, M. Oussalah, M.A. Nacer, SPEM extension with software process ar-
chitectural concepts, Proceedings of the International Computer Software and
Applications Conference, Munich, Germany, 2011, pp. 215–223 pp..

http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0054
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0054
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0055
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0055
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0055
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0056
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0056
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0057
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0057
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0058
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0058
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0059
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0059
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0060
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0060
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0501
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0501
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0501
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0061
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0061
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0061
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0062
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0062
https://doi.org/10.1002/smr.1982
https://doi.org/10.1007/978-3-319-67383-7_16
https://doi.org/10.1007/978-3-319-67383-7_16
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://www.sparxsystems.com.au
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0070
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0070
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0070
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0070
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0071
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0071
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0071
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0071
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0072
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0072
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0072
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0073
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0073
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0073
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0074
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0074
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0074
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0075
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0075
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0075
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0075
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0076
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0076
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0076
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0077
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0077
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0077
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0078
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0078
http://www.omg.org/spec/SPEM/
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0080
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0080
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0080
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0081
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0081
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0082
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0082
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0082
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0083
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0083
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0083
https://marketplace.eclipse.org/content/kermeta
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0085
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0085
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0085
https://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmp/
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0088
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0088
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0089
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0089
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0089
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0090
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0092
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0092
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0093
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0093
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0093
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0094
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0094
http://refhub.elsevier.com/S0920-5489(18)30275-7/sbref0094

	Characterizing and evaluating the quality of software process modeling language: Comparison of ten representative model-based languages
	Introduction
	Related works
	Research question and methods
	QuEF: Quality evaluation framework
	An approach to characterise the quality of model-based SPML
	Expressiveness
	Understandability
	Conformity to standards
	Granularity
	Executability and orchestability
	Measurability
	Business rules
	Supporting tools
	Validation in real environments

	Evaluation of model-based process modeling languages
	PLM4BS evaluation
	UML4SPM evaluation
	UML-EWM evaluation
	UPME evaluation
	The Ferreira's approach evaluation
	SPEM2.0 evaluation
	The Combemale's et al. approach evaluation
	xSPEM evaluation
	eSPEM evaluation
	MODAL evaluation

	Analysis and discussion
	Conclusions and future works
	Acknowledgments
	Supplementary materials
	References

