
Agent-Oriented Software Engineering
Autonomous Systems

Sistemi Autonomi

Ambra Molesini Andrea Omicini
{ambra.molesini, andrea.omicini}@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna

Academic Year 2017/2018

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 1 / 295

Outline Part I: General Concepts

Outline of Part I: General Concepts

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models
SPEM
OPF & OPEN

5 Method Engineering
Method Fragment Representation
Method Assembly

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 2 / 295

Outline Part II: Agent Oriented Software Engineering

Outline of Part II: AOSE

6 AOSE

7 Agent Oriented Methodologies
MAS Meta-models
AOSE Methodologies: An Overview
Methodologies Documentation
Methodology Challenges

8 Agent Oriented Situational Method Engineering
Method Fragment Representation
PRoDe: A Process for the Design of Design Processes
Method Fragment Extraction and Repository Creation
Result Evaluation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 3 / 295

Outline Part III: Research Directions & Conclusion

Outline of Part III: Research Directions

9 Research Directions & Vision

10 Conclusions

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 4 / 295

Part I

General Concepts

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 5 / 295

Software Engineering

Next in Line. . .

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models

5 Method Engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 6 / 295

Software Engineering

Software

software is abstract and intangible [Sommerville, 2007]:

it is not constrained by materials, or governed by physical laws, or by
manufacturing process

on the one hand, this simplifies software engineering as there are no
physical limitations on the potential of software

on the other hand, the lack of natural constraints means that
software can easily become extremely complex and hence very difficult
to understand

so, software engineers should

adopt a systematic and organised approach to their work
use appropriate tools and techniques depending on the problem to be
solved, the development constraints and the resources available

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 7 / 295

Software Engineering

Software Engineering

What is software engineering?

Software engineering is an engineering discipline concerned with theories,
methods and tools for professional software development [Sommerville, 2007]

What is the aim of software engineering?

Software engineering is concerned with all aspects of software production
from the early stage of system specification to the system maintenance /
incremental developement after it has gone into use [Sommerville, 2007]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 8 / 295

Software Engineering

Software Engineering: Concerns

there is a need to model and engineer both
the development process

controllable, well documented, and reproducible ways of producing
software

the software

ensuring a given level of quality—e.g., % of errors and performances)
enabling reuse, maintenance, and incremental development

this requires suitable

abstractions
tools

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 9 / 295

Software Engineering

Software Engineering Abstractions

mostly, software deals with abstract entities, having a real-world
counterpart

not necessarily a concrete one
such as numbers, dates, names, persons, documents. . .

in what terms should we model them in software?

data, functions, objects, agents. . .
i.e., what are the abstractions that we could / should use to model
software?

abstractions might depend on the available technologies

we may adopt OO abstractions for OO programming enviroments
but this is not mandatory: we may use OO abstractions just because
they are better, even for COBOL programming enviroments

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 10 / 295

Software Engineering

Tools

notation tools represent the outcomes of the software development

diagrams, equations, figures. . .

formal models prove properties of software prior to the development

lambda-calculus, pi-calculus, Petri nets. . .

CASE tools are based on notations and models to facilitate activities

simulators

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 11 / 295

Software Engineering

Software Engineering & Computer Science

computer science is concerned with theory and
fundamentals—modelling computational systems

software engineering is concerned with the practicalities of developing
and delivering useful software—building computational systems

deep knowledge of computer science is essential for software
engineering in the same way that deep knowledge of physic is
essential for electric engineers

ideally, all of software engineering should be underpinned by theories
of computer science. . . but this is not the case, in practice

software engineers must often use ad hoc approaches to developing
software systems

elegant theories of computer science cannot always be applied to real,
complex problems that require a software solution [Sommerville, 2007]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 12 / 295

Software Engineering

Software Engineering & System Engineering

system engineering is concerned with all aspects of computer-based
systems development including hardware, software and process
engineering

system engineers are involved in system specification, architectural
design, integration and deployment—they are less concerned with the
engineering of the system components

software engineering is part of this process concerned with developing
the software infrastructure, control, applications and databases in the
system [Sommerville, 2007]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 13 / 295

Software Process

Next in Line. . .

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models

5 Method Engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 14 / 295

Software Process

Development Process

Development Process [Cernuzzi et al., 2005]

the development process is an ordered set of steps that involve all the
activities, constraints and resources required to produce a specific
desired output satisfying a set of input requirements

typically, a process is composed by different stages/phases put in
relation with each other

each stage/phase of a process identify a portion of work definition to
be done in the context of the process, the resources to be exploited to
that purpose and the constraints to be obeyed in the execution of the
phase

case by case, the work in a phase can be very small or more
demanding

phases are usually composed by a set of activities that may, in turn,
be conceived in terms of smaller atomic units of work (steps)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 15 / 295

Software Process

Software Process

Software Process [Fuggetta, 2000]

The software development process is the coherent set of policies,
organisational structures, technologies, procedures and deliverables that
are needed to conceive, develop, deploy and maintain a software product

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 16 / 295

Software Process

Software Process: Concepts

The software process exploits a number of contributions and concepts
[Fuggetta, 2000]

software development technology — technological support used in the
process; certainly, to accomplish software development
activities we need tools, infrastructures, and environments

software development methods and techniques — guidelines on how to
use technology and accomplish software development
activities; the methodological support is essential to exploit
technology effectively

organisational behavior — the science of organisations and people

marketing and economy — software development is not a self-contained
endeavour; as any other product, software must address real
customers’ needs in specific market settings

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 17 / 295

Software Process

Software Process: Activities

Generic activities in all software processes are [Sommerville, 2007]:

specification — what the system should do and its development
constraints

development — production of the software system

validation — checking that the software is what the customer wants

evolution — changing the software in response to changing demands

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 18 / 295

Software Process

The Ideal Software Process

The Ideal Software Process?

There is no an ideal process
[Sommerville, 2007]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 19 / 295

Software Process

Many Sorts of Software Processes

different types of systems require different development processes
[Sommerville, 2007]

real time software in aircraft has to be completely specified before
development begins
in e-commerce systems, the specification and the program are usually
developed together

consequently, the generic activities, specified above, may be organised
in different ways, and described at different levels of details for
different types of software

the use of an inappropriate software process may reduce the quality or
the usefulness of the software product to be developed and/or
increased

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 20 / 295

Software Process

Software Process Model

a software process model is a simplified representation of a software
process, presented from a specific perspective [Sommerville, 2007]

a process model prescribes which phases a process should be
organised around, in which order such phases should be executed, and
when interactions and coordination between the work of the different
phases should be occur

in other words, a process model defines a skeleton, a template, around
which to organise and detail an actual process

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 21 / 295

Software Process

Software Process Model: Examples

examples of process models are

workflow model — this shows sequence of activities along with their
inputs, outputs and dependencies

activity model — this represents the process as a set of activities,
each of which carries out some data transformation

role/action model — this depicts the roles of the people involved in
the software process and the activities for which they
are responsible

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 22 / 295

Software Process

Generic Software Process Models

generic process models

waterfall — separate and distinct phases of specification and
development

iterative development — specification, development and validation
are interleaved

component-based software engineering — the system is assembled
from existing components

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 23 / 295

Methodologies

Next in Line. . .

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models

5 Method Engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 24 / 295

Methodologies

Methodologies vs. Methods: General Issue

disagreement exists regarding the relationship between the terms
method and methodology

in common use, methodology is frequently substituted for method;
seldom does the opposite occur

some argue this occurs because methodology sounds more scholarly or
important than method

a footnote to methodology in the 2006 American Heritage Dictionary
notes that

the misuse of methodology obscures an important conceptual
distinction between the tools of scientific investigation (properly
methods) and the principles that determine how such tools are
deployed and interpreted (properly methodologies)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 25 / 295

Methodologies

Methodologies vs. Methods in Software Engineering

in software engineering the discussion continues. . .

some authors argue that a software engineering method is a recipe, a
series of steps, to build software, while a methodology is a codified set
of recommended practices: in this way, a software engineering method
could be part of a methodology
some authors believe that in a methodology there is an overall
philosophical approach to the problem: using these definitions, software
engineering is rich in methods, but has fewer methodologies

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 26 / 295

Methodologies

Method

Method [Cernuzzi et al., 2005]

a method prescribes a way of performing some kind of activity within
a process, in order to properly produce a specific output (i.e., an
artefact or a document) starting from a specific input (again, an
artefact or a document).

any phases of a process, to be successfully applicable, should be
complemented by some methodological guidelines (including the
identification of the techniques and tools to be used, and the
definition of how artifacts have be produced) that could help the
involved stakeholders in accomplishing their work according to some
defined best practices

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 27 / 295

Methodologies

Methodology

Methodology [Ghezzi et al., 2002]

a methodology is a collection of methods covering and connecting
different stages in a process

the purpose of a methodology is to prescribe a certain coherent
approach to solving a problem in the context of a software process by
preselecting and putting in relation a number of methods

a methodology has two important components

one that describe the process elements of the approach
one that focuses on the work products and their documentation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 28 / 295

Methodologies

Methodologies vs. Software Process

based on the above definitions, and comparing software processes and
methodologies, we can find some common elements in their scope
[Cernuzzi et al., 2005]

both are focusing on what we have to do in the different activities
needed to construct a software system
however, while the software development process is more centered on
the global process including all the stages, their order and time
scheduling, the methodology focuses more directly on the specific
techniques to be used and artifacts to be produced

in this sense, we could say that methodologies focus more explicitly
on how to perform the activity or tasks in some specific stages of the
process, while processes may also cover more general management
aspects, e.g., basic questions about who and when, and how much

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 29 / 295

Meta-Models

Next in Line. . .

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models

5 Method Engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 30 / 295

Meta-Models

Meta-models I

Meta-modelling

Meta-modelling is the analysis, construction and development of the
frames, rules, constraints, models and theories applicable and useful for
the modelling in a predefined class of problems

a meta-model enables checking and verifying the completeness and
expressiveness of a methodology by understanding its deep semantics,
as well as the relationships among concepts in different languages or
methods

the process of designing a system consists of instantiating the system
meta-model that the designers have in their mind in order to fulfil the
specific problem requirements [Bernon et al., 2004]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 31 / 295

Meta-Models

Software Design: The Role of System Meta-model

designing a software means instantiating its meta-model

Attribute Operation

Requirement

Class

1

1..n

1

1..n

META-MODEL MODEL

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 32 / 295

Meta-Models

Using Meta-models

meta-models are useful for specifying the concepts, rules and
relationships used to define a family of related methodologies

although it is possible to describe a methodology without an explicit
meta-model, formalising the underpinning ideas of the methodology in
question is valuable when checking its consistency or when planning
extensions or modifications

a good meta-model must address all of the different aspects of
methodologies, i.e. the process to follow and the work products to be
generated

in turn, specifying the work products that must be developed implies
defining the basic modelling building blocks from which they are built

meta-models are often used by methodologists to construct or modify
methodologies

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 33 / 295

Meta-Models

Meta-models & Methodologies

methodologies are used by software development teams to construct
software products in the context of software projects

meta-model, methodology and project constitute, in this approach,
three different areas of expertise that, at the same time, correspond
to three different levels of abstraction and three different sets of
fundamental concepts

as the work performed by the development team at the project level is
constrained and directed by the methodology in use, the work
performed by the methodologist at the methodology level is
constrained and directed by the chosen meta-model

traditionally, these relationships between modelling layers are seen as
instance-of relationships, in which elements in one layer are instances
of some element in the layer above

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 34 / 295

Meta-Models

Meta-model & Processes

the use of meta-models to underpin object-oriented processes was
pioneered in the mid-1990s by the OPEN Consortium
[OPEN Working Group, 1997] leading to the current version of the OPEN
Process Framework (OPF) and to the recent standard “Software
Engineering Metamodel for Development Methodologies” ISO/IEC
24744 1

the Object Management Group (OMG) then issued a request for
proposals for what turned into the SPEM (Software Processing
Engineering Metamodel) [Object Management Group, 2008]

1See http://www.iso.org/iso/catalogue_detail.htm?csnumber=38854
Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 35 / 295

http://www.iso.org/iso/catalogue_detail.htm?csnumber=38854

Meta-Models SPEM

Focus on. . .

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models
SPEM
OPF & OPEN

5 Method Engineering
Method Fragment Representation
Method Assembly

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 36 / 295

Meta-Models SPEM

Software Process Engineering Meta-model (SPEM)

SPEM (Software Process Engineering Meta-model)
[Object Management Group, 2008] is an OMG standard object-oriented
meta-model defined as an UML profile and used to describe a
concrete software development process or a family of related software
development processes

SPEM is based on the idea that a software development process is a
collaboration between active abstract entities called roles which
perform operations called activities on concrete and real entities
called work products

each role interacts or collaborates by exchanging work products and
triggering the execution of activities

the overall goal of a process is to bring a set of work products to a
well-defined state

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 37 / 295

Meta-Models SPEM

SPEM: Level of Abstraction

SPEM

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 38 / 295

Meta-Models SPEM

SPEM: Goals

the goals of SPEM are to

support the representation of one specific development process
support the maintenance of several unrelated processes
provide process engineers with mechanisms to consistently and
effectively manage whole families of related processes promoting
process reusability

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 39 / 295

Meta-Models SPEM

SPEM I

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 40 / 295

Meta-Models SPEM

SPEM II

clear separation between

method contents — introduce the concepts to document and
manage development processes through natural
language description

processes — defines a process model as a breakdown or
decomposition of nested Activities, with the related
Roles and input / output Work Products

capability patterns — reusable best practices for quickly creating new
development processes

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 41 / 295

Meta-Models SPEM

SPEM: Method Content and Process

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 42 / 295

Meta-Models SPEM

Roles, Activities & Work Products

a software development process is seen as a collaboration between
abstract active entities called process roles that perform operations
called activities on concrete, tangible entities called work products

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 43 / 295

Meta-Models SPEM

Roles, Activities & Work Products

a software development process is seen as a collaboration between
abstract active entities called process roles that perform operations
called activities on concrete, tangible entities called work products

An Activity defines basic units of
work within a Process as well

as a Process itself

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 43 / 295

Meta-Models SPEM

Roles, Activities & Work Products

a software development process is seen as a collaboration between
abstract active entities called process roles that perform operations
called activities on concrete, tangible entities called work products

A Role Use represents a
performer of an Activity or a

participant of the Activity

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 43 / 295

Meta-Models SPEM

Roles, Activities & Work Products

a software development process is seen as a collaboration between
abstract active entities called process roles that perform operations
called activities on concrete, tangible entities called work products

A Work Product Use represents
an input and/or output type for

an Activity or represents a
general participant of the

Activity

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 43 / 295

Meta-Models SPEM

SPEM Notation

WorkProduct Definition and Use

Tool Definition
Task Definition and Use

Role Definition and Use

Process Pattern

Process Component
Process

Milestone

Guidance

Composite role and Team
Category

Activity
SymbolStereotype

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 44 / 295

Meta-Models SPEM

SPEM: WorkFlow Diagram

Agent‐Oriented Software Engineering
From OMG SPEM 2.0
Specifications

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 45 / 295

Meta-Models SPEM

SPEM: Activity Details Diagram

Agent‐Oriented Software Engineering

From OMG SPEM 2.0
Specifications

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 46 / 295

Meta-Models SPEM

SPEM: Work Product Dependency Diagram

From OMG SPEM 2.0
Specifications

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 47 / 295

Meta-Models SPEM

SPEM: Process Component Diagram

From OMG SPEM
2.0 Specifications

A Process Component contains
exactly one Process

represented by an Activity,
and defines a set of Work

Product Ports that define the
inputs and outputs for a

Process Component.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 48 / 295

Meta-Models SPEM

SPEM: Class Diagram

From OMG SPEM 2.0 Specifications

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 49 / 295

Meta-Models OPF & OPEN

Focus on. . .

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models
SPEM
OPF & OPEN

5 Method Engineering
Method Fragment Representation
Method Assembly

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 50 / 295

Meta-Models OPF & OPEN

OPEN

Object-oriented Process, Environment, and Notation (OPEN)
[OPEN Working Group, 1997] is a full lifecycle, process-focussed,
methodological approach that was designed for the development of
software intensive applications

OPEN is defined as a process framework, known as the OPF (OPEN
Process Framework)

this is a process meta-model from which can be generated an
organisationally-specific process (instance)

each of these process instances is created by choosing specific
Activities, Tasks and Techniques (three of the major metalevel
classes) and specific configurations

the definition of process include not only descriptions of phases,
activities, tasks, and techniques but issues associated with human
resources, technology, and the life-cycle model to be used

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 51 / 295

Meta-Models OPF & OPEN

Metalevel Classes [Henderson-Sellers, 2003]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 52 / 295

Meta-Models OPF & OPEN

Work Product & Language & Producer

a work product is any significant thing of value (e.g., document,
diagram, model, class, application) that is developed during a project

a language is the medium used to document a work product; use
cases and object models are written using a modelling language such
as the Unified Modeling Language (UML) or the OPEN Modelling
Language (OML)

a producer is anything that produces (i.e., creates, evaluates, iterates,
or maintains), either directly or indirectly, versions of one or more
work products; the OPF distinguishes between those direct producers
(persons as well as roles played by the people and tools that they use)
and indirect producers (teams of people, organisations and
endeavours)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 53 / 295

Meta-Models OPF & OPEN

Work Unit

a work unit is a functionally cohesive operation that is performed by a
producer during an endeavour and that is reified as an object to
provide flexibility during instantiation and tailoring of a process

the OPF provides the following predefined classes of work units:

task — functionally cohesive operation that is performed by
a direct producer. A task results in the creation,
modification, or evaluation of a version of one or more
work products

technique — describes in full detail how a task are to be done
activity — cohesive collection of workflows that produce a

related set of work products; activities in OPEN are
coarse granular descriptions of what needs to be done

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 54 / 295

Meta-Models OPF & OPEN

Stage

a stage is a formally identified and managed duration or a point in
time, and it provides a macro organisation to the work units
the OPF contains the following predefined classes of stage:

cycle — there are several types of cycle e.g. lifecycle
phase — consisting of a sequence of one or more related

builds, releases and deployments
workflow — a sequence of contiguous task performances whereby

producers collaborate to produce a work product
build — a stage describing a chunk of time during which

tasks are undertaken
release — a stage which occurs less frequently than a build; in

it, the contents of a build are released by the
development organisation to another organisation

deployment — occurs when the user not only receives the product
but also, probably experimentally, puts it into service for
on-site evaluation

milestone — is a kind of stage with no duration; it marks an event
occurring

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 55 / 295

Method Engineering

Next in Line. . .

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models

5 Method Engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 56 / 295

Method Engineering

Methodologies

as for software development, individual methodologies are often
created with specific purposes in mind [Henderson-Sellers, 2005]

particular domains
particular segments of the lifecycle

users often make the assumption that a methodology in not in fact
constrained but, rather, is universally applicable

this can easily lead to methodology failure, and to the total rejection
of methodological thinking by software development organisation

the creation of a single universally applicable methodology is an
unattainable goal

we should ask ourselves how could we create a methodological
environment in which the various demands of different software
developers might be satisfied altogether

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 57 / 295

Method Engineering

Method Engineering

Method Engineering [Brinkkemper, 1996]

Method engineering is the engineering discipline to design, construct and
adapt methods, techniques and tools for the development of information
systems

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 58 / 295

Method Engineering

Different Defitinions [Brinkkemper, 1996]

method as an approach to perform a systems development project,
based on a specific way of thinking, consisting of directions and rules,
structured in a systematic way in development activities with
corresponding development products

methodology as the systematic description, explanation and evaluation
of all aspects of methodical information systems development

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 59 / 295

Method Engineering

Method & Methodology

? ?
?

Abstractions?

Methodologies?

all the concepts and ideas used
in the Method Engineering are
also applicable in our definitions
of methodology and method

Method Engineering tries to
model methodological processes
and products by isolating
conceptual method fragments

this fragments act as
methodological “building
blocks”

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 60 / 295

Method Engineering

Method & Methodology

? ?
?

Abstractions?

Methodologies? all the concepts and ideas used
in the Method Engineering are
also applicable in our definitions
of methodology and method

Method Engineering tries to
model methodological processes
and products by isolating
conceptual method fragments

this fragments act as
methodological “building
blocks”

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 60 / 295

Method Engineering

Method Engineering: Motivations

adaptability – to specific
projects, companies, needs &
new development settings

reuse – of best practices,
theories & tools

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 61 / 295

Method Engineering

Method Engineering: Motivations

adaptability – to specific
projects, companies, needs &
new development settings

reuse – of best practices,
theories & tools

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 61 / 295

Method Engineering

Method Engineering: Concerns

similarly as software engineering is concerned with all aspects of
software production, so is method engineering dealing with all
engineering activities related to methods, techniques and tools

the term method engineering is not new but it was already introduced
in mechanical engineering to describe the construction of working
methods in factories

even if the work of Brinkkemper is dated, most of the open research
issues presented was not well addressed yet

meta-modelling techniques
tool interoperability
situational method(ology)
comparative review of method(ologie)s and tools

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 62 / 295

Method Engineering

Meta-Modelling Techniques

the design and evaluation of methods and tools require special
purpose specification techniques, called meta-modelling techniques,
for describing their procedural and representational capabilities.

issues are

what are the proper constructs for meta-modelling?
what perspectives of meta-models should be distinguished?
is there a most optimal technique for meta-modelling, or is the
adequacy of the technique related to the purpose of the investigation?

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 63 / 295

Method Engineering

Tool Interoperability

a lots of tools that only cover part of the development life-cycle exist

so the system development practice is confronted with the proper
integration of the tools at hand, called interoperability of tools.

open problems are related to the overall architecture of the integrated
tools

should this be based on the storage structure (i.e. the repository) in a
data-integration architecture, or on a communication structure
between the functional components in a control-integration
architecture?

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 64 / 295

Method Engineering

Situational Methods & Comparative Review

as all projects are different, they cannot be properly supported by a
standard method(ology) in a textbook or manual

how can proper methodical guidance and corresponding tool support
be provided to system developers?

construction principles for methods and techniques need further
investigation

how can the quality of a method or of a tool be expressed in order to
compare them in a sound, scientifically verifiable way?

quality of methods comprises aspects as completeness, expressiveness,
understandability, effectiveness of resources, and efficiency

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 65 / 295

Method Engineering

Situational Methodologies

a situational method is an information systems development method
tuned to the situation of the project at hand

engineering a situational method requires standardised building blocks
and guidelines, so-called meta-methods, to assemble these building
blocks

critical to the support of engineering situational methods is the
provision of standardised method building blocks that are stored and
retrievable from a so-called method base

furthermore, a configuration process should be set up that guides the
assembly of these building blocks into a situational method

the building blocks, called method fragments, are defined as coherent
pieces of information system development methods

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 66 / 295

Method Engineering

Configuration Process [Brinkkemper, 1996]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 67 / 295

Method Engineering

Situational Method Engineering I

every project is different, so it is essential in the method configuration
process to characterize the project according to a list of contingency
factors

this project characterization is input to the selection process, where
method fragments from the method base are retrieved

experienced method engineers may also work the other way round, i.e.
start with the selection of method fragments and validate this choice
against the project characterization

the unrelated method fragments are then assembled into a situational
method

as the consistency and completeness of the method may require
additional method fragments, the selection and validation processes
could be repeated

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 68 / 295

Method Engineering

Situational Method Engineering II

finally, the situational method is forwarded to the systems developers
in the project

as the project may not be definitely clear at the start, a further
elaboration of the situational method can be performed during the
course of the project

similarly drastic changes in the project require to change the
situational method by the removal of inappropriate fragments
followed by the insertion of suitable ones

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 69 / 295

Method Engineering

Method Fragments

[Brinkkemper et al., 1999] classifies method fragments according to three
different dimensions

perspective — product and process
abstraction level — conceptual and technical
layer of granularity — five different level

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 70 / 295

Method Engineering

Perspective

perspective distinguishes product fragments and process fragments

product fragments — model the structures of the products
(deliverables, diagrams, tables, models) of a systems
development method

process fragments — are models of the development process: process
fragments can be either high-level project strategies,
called method outlines, or more detailed procedures to
support the application of specification techniques

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 71 / 295

Method Engineering

Abstraction Level

abstraction level distinguishes conceptual level and technical level

method fragments on the conceptual level are descriptions of
information systems development methods or part thereof
technical method fragments are implementable specifications of the
operational parts of a method, i.e. the tools

some conceptual fragments are to be supported by tools, and must
therefore be accompanied by corresponding technical fragments

one conceptual method fragment can be related to several external
and technical method fragments

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 72 / 295

Method Engineering

Layer of Granularity

a method fragment can reside on one of five possible granularity
layers

method — addressing the complete method for developing the
information system

stage — addressing a segment of the life-cycle of the
information system

model — addressing a perspective of the information system
diagram — addressing the representation of a view of a Model

layer method fragment
concept — addressing the concepts and associations of the

method fragments on the Diagram layer, as well as the
manipulations defined on them

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 73 / 295

Method Engineering

And Now?

two important questions

how to represent method
fragments?
how to assembly method
fragments?

in order to assemble method
fragments into a meaningful
method, we need a procedure
and representation to model
method fragments and impose
some constraints or rules on
method assembly processes

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 74 / 295

Method Engineering Method Fragment Representation

Focus on. . .

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models
SPEM
OPF & OPEN

5 Method Engineering
Method Fragment Representation
Method Assembly

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 75 / 295

Method Engineering Method Fragment Representation

Method Fragment Representation

in the last decade a lots of work is done in the context of Method
Engineering

however this technique is not entered in the mainstream of the
software engineering

there are no consensus in academia and no industry efforts are done

each research group has created its method fragment representation

here we briefly present the work of Ralyté and Rolland, that has
inspired the work of the FIPA group in the context of AOSE

the OPEN by Brian Henderson-Sellers has already presented in one of
the previous Section

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 76 / 295

Method Engineering Method Fragment Representation

Method Reengineering [Ralyté and Rolland, 2001a]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 77 / 295

Method Engineering Method Fragment Representation

Method Reengineering

in this approach Ralyté and Rolland adopt the notion of method
chunk [Ralyté and Rolland, 2001a]

a method chunk ensures a tight coupling of some process part and its
related product part; it is a coherent module and any method is
viewed as a set of loosely coupled method chunks expressed at
different levels of granularity

the authors present the method meta-model. . .

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 78 / 295

Method Engineering Method Fragment Representation

The Method Meta-model [Ralyté and Rolland, 2001a]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 79 / 295

Method Engineering Method Fragment Representation

Method Meta-model

according to this meta-model a method is also viewed as a method
chunk of the highest level of granularity

the definition of the method chunk is process-driven in the sense that
a chunk is based on the decomposition of the method process model
into reusable guidelines

thus, the core of a method chunk is its guideline to which are
attached the associated product parts needed to perform the process
encapsulated in this guideline

a guideline embodies method knowledge to guide the application
engineer in achieving an intention in a given situation

therefore, the guideline has an interface, which describes the
conditions of its applicability (the situation) and a body providing
guidance to achieve the intention, i.e. to proceed in the construction
of the target product

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 80 / 295

Method Engineering Method Fragment Representation

Guidelines

the body of the guideline details how to apply the chunk to achieve
the intention

the interface of the guideline is also the interface of the corresponding
method chunk

guidelines in different methods have different contents, formality,
granularity, etc.

in order to capture this variety, the authors identify three types of
guidelines: simple, tactical and strategic

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 81 / 295

Method Engineering Method Fragment Representation

Guidelines Types

a simple guideline may have an informal content advising on how to
proceed to handle the situation in a narrative form. It can be more
structured comprising an executable plan of actions leading to some
transformation of the product under construction

a tactical guideline is a complex guideline, which uses a tree structure
to relate its sub-guidelines one with the others

a strategic guideline is a complex guideline called a map which uses a
graph structure to relate its sub-guidelines. Each sub-guideline
belongs to one of the three types of guidelines. A strategic guideline
provides a strategic view of the development process telling which
intention can be achieved following which strategy

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 82 / 295

Method Engineering Method Assembly

Focus on. . .

1 Software Engineering

2 Software Process

3 Methodologies

4 Meta-Models
SPEM
OPF & OPEN

5 Method Engineering
Method Fragment Representation
Method Assembly

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 83 / 295

Method Engineering Method Assembly

Method Assembly

in the last decade a lots of work is done in the context of Method
Assembly

this leads to a proliferation of different techniques for Method
Assembly, and each of them adopts a peculiar representation and
phases

here we briefly show some rules from Brinkkemper, the Method
Assembly techniques by Ralyté and Rolland and the OPEN by Brian
Henderson-Sellers

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 84 / 295

Method Engineering Method Assembly

Brinkkemper’s Rules I

[Brinkkemper et al., 1999] introduce several general rules for the method
assembly

Rule 1 — at least one concept, association or property should be
newly introduced to each method fragment to be assembled,
i.e., a method fragment to be assembled should not be a
subset of another

Rule 2 — we should have at least one concept and/or association
that connects between two method fragments to be
assembled

Rule 3 — if we add new concepts, they should be connectors to
both of the assembled method fragments

Rule 4 — if we add new associations, the two method fragments to
be assembled should participate in them

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 85 / 295

Method Engineering Method Assembly

Brinkkemper’s Rules II

Rule 5 — there are no isolated parts in the resulting method
fragments

Rule 6 — there are no concepts which have the same name and
which have the different occurrences in a method description

Rule 7 — the activity of identifying the added concepts and
associations that are newly introduced for method assembly
should be performed after their associated concepts are
identified

Rule 8 — let A and B be the two method fragments to be
assembled, and C the new method fragment; in C, we should
have at least one product which is the output of A and
which is the input of B, or the other way round

Rule 9 — each product fragment should be produced by a
“corresponding” process fragment

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 86 / 295

Method Engineering Method Assembly

Brinkkemper’s Rules III

Rule 10 — suppose a product fragment has been assembled; the
process fragment that produces this product fragment
consists of the process fragments that produce the
components of the product fragment

Rule 11 — a technical method fragment should supports a
conceptual method fragment

Rule 12 — if an association exists between two product fragments,
there should exist at least one association between their
respective components

Rule 13 — there are no “meaningless” associations in product
fragments, i.e. every association is “meaningful” in the sense
that it can semantically consistently connect to specific
concepts

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 87 / 295

Method Engineering Method Assembly

A Different Approach

Jolita Ralyté and Colette Rolland proposed a different approach for
assembling method chunks

in particular they have individuated two different assembly strategies:

association — the assembly process by association consists in
connecting chunks such that the first one produces a
product which is the source of the second chunk

integration — the assembly process by integration consists in
identifying the common elements in the chunks product
and process models and merging them

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 88 / 295

Method Engineering Method Assembly

Assembly Based Method Engineering [Ralyté and Rolland, 2001a]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 89 / 295

Method Engineering Method Assembly

Assembly Map [Ralyté and Rolland, 2001b]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 90 / 295

Method Engineering Method Assembly

Integration Map [Ralyté and Rolland, 2001b]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 91 / 295

Method Engineering Method Assembly

Association Map [Ralyté and Rolland, 2001b]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 92 / 295

Method Engineering Method Assembly

OPEN Process Framework [Henderson-Sellers, 2003]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 93 / 295

Method Engineering Method Assembly

Usage Guidelines

the core of the Method Assembly in OPF are usage guidelines
covering:

instantiating the class library to produce actual process components
choosing the best process components
tailoring the fine detail inside the chosen process components
extending the existing class library of predefined process components

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 94 / 295

Method Engineering Method Assembly

OPEN Process Framework [OPEN Working Group, 1997]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 95 / 295

Method Engineering Method Assembly

Process Construction Guidelines

a process construction guideline is a usage guideline intended to help
process engineers instantiate the development process framework and
then select the best component instances in order to create the
process itself

specifically, it will provide guidance concerning how to:

select the work products to develop
select the producers (e.g., roles, teams, and tools) to develop these
work products
select the work units to perform
how to allocate tasks and associated techniques to the producers
how to group the tasks into workflows, activities
select stages of development that will provide an overall organization to
these work units

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 96 / 295

Method Engineering Method Assembly

Matrix

OPEN recommends construction of a number of matrices linking, for
example, Activities with Tasks and Tasks with Techniques

the possibility values in these matrices indicate the likelihood of the
effectiveness of each individual pair

these values should be tailored to a specific organization or a specific
project

typically a matrix should have five levels of evaluation: mandatory,
recommended, optional, discouraged, forbidden

however a two levels evaluation matrix (use/do not use) gives good
results

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 97 / 295

Method Engineering Method Assembly

Matrix Example [Henderson-Sellers, 2003]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 98 / 295

Method Engineering Method Assembly

Tailoring Guidelines

once the process framework has been instantiated and placed into
effect, one typically finds that one needs to perform some fine-tuning
by tailoring the instantiated process components as lessons are
learned during development

tailoring guidelines are usage guidelines intended to help process
engineers tailor the instantiated process components

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 99 / 295

Method Engineering Method Assembly

Extension Guidelines

no class library can ever be totally complete

because of the large differences between development projects, new
classes of process components will eventually be needed

also, software engineering is an evolving discipline, and new process
components will need to be added as the field advance

a process framework should therefore come with extension guidelines,
whereby an extension guideline is a usage guideline intended to help
the process engineer extend the existing development process
framework by adding new classes of process components

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 100 / 295

Part II

Agent Oriented Software Engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 101 / 295

AOSE

Next in Line. . .

6 AOSE

7 Agent Oriented Methodologies

8 Agent Oriented Situational Method Engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 102 / 295

AOSE

Why Agent-Oriented Software Engineering?

software engineering is necessary to discipline

software systems and software processes
any approach relies on a set of abstractions and on related
methodologies and tools

agent-based computing introduces novel abstractions and asks for

making the set of abstractions required clear
adapting methodologies and producing new tools

novel, specific agent-oriented software engineering approaches are
needed

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 103 / 295

AOSE

Agents: Weak Viewpoint

an agent is a software component with internal (either reactive or
proactive) threads of execution, and that can be engaged in complex
and stateful interactions protocols

a multi-agent system is a software systems made up of multiple
independent and encapsulated loci of control (i.e., the agents)
interacting with each other in the context of a specific application
viewpoint. . .

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 104 / 295

AOSE

SE Viewpoint on Agent-Oriented Computing

We commit to weak viewpoint because

it focuses on the characteristics of agents that have impact on
software development

concurrency, interaction, multiple loci of control
intelligence can be seen as a peculiar form of control independence;
conversations as a peculiar form of interaction

it is much more general

does not exclude the strong AI viewpoint
several software systems, even if never conceived as agent-based one,
can be indeed characterised in terms of weak multi-agent systems

also,

it is consistent with the A&A viewpoint

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 105 / 295

AOSE

SE Implications of Agent Features I

autonomy

control encapsulation as a dimension of modularity
conceptually simpler to tackle than a single (or multiple
inter-dependent) locus of control

situatedness
clear separation of concerns between

the active computational parts of the system (the agents)
the resources of the environment

sociality

not a single characterising protocol of interaction
interaction as an additional SE dimension

openness

controlling self-interested agents, malicious behaviours, and badly
programmed agents
dynamic re-organisation of software architecture

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 106 / 295

AOSE

SE Implications of Agent Features II

mobility and locality

additional dimension of autonomous behaviour

improve locality in interactions

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 107 / 295

AOSE

MAS Characterisation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 108 / 295

AOSE

Agent-Oriented Abstractions

the development of a multi-agent system should fruitfully exploit
abstractions coherent with the above characterisation

agents — autonomous entities, independent loci of control,
situated in an environment, interacting with each other

environment — the world of resources agents perceive
interaction protocols — as the acts of interactions among agents and

between agents and resources of environment

in addition, there may be the need of abstracting from

the local context where an agent lives (e.g., a sub-organisation of
agents) so as to handle mobility & opennes

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 109 / 295

Agent Oriented Methodologies

Next in Line. . .

6 AOSE

7 Agent Oriented Methodologies

8 Agent Oriented Situational Method Engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 110 / 295

Agent Oriented Methodologies

What is an AO methodology?

AOSE methodologies mainly try to suggest a clean and disciplined
approach to analyse, design and develop multi-agent systems, using
specific methods and techniques

AOSE methodologies, typically start from a meta-model, identifying
the basic abstractions onto be exploited in development

on this base, they exploit and organise these abstractions so as to
define guidelines on how to proceed in the analysis, design, and
development, and on what output to produce at each stage

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 111 / 295

Agent Oriented Methodologies MAS Meta-models

Focus on. . .

6 AOSE

7 Agent Oriented Methodologies
MAS Meta-models
AOSE Methodologies: An Overview
Methodologies Documentation
Methodology Challenges

8 Agent Oriented Situational Method Engineering
Method Fragment Representation
PRoDe: A Process for the Design of Design Processes
Method Fragment Extraction and Repository Creation
Result Evaluation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 112 / 295

Agent Oriented Methodologies MAS Meta-models

MAS Meta-model

MAS meta-models usually include concepts like role, goal, task, plan,
communication

in the agent world the meta-model becomes a critical element when
trying to create a new methodology because in the agent oriented
context, to date, there are not common denominator

each methodology has its own concepts and system structure

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 113 / 295

Agent Oriented Methodologies MAS Meta-models

The Process Description

three are the main elements of a design process

Activity
Process Role
Work Product

AOSE processes are also affected by

MAS Meta-model (MMM) Element

SPEM does not support the MMM Elements

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 114 / 295

Agent Oriented Methodologies MAS Meta-models

Extending SPEM Specifications [Seidita et al., 2009]

MMM is the starting point for the construction of a new design
process

each part (one or more elements) of this meta-model can be
instantiated in one (or more) fragment(s)

each fragment refers to one (or more) MMM element(s)

refers = instantiates/relates/quotes/refines

the MMM element is the constituent part of a Work Product

the MMM is not part of the SPEM meta-model

it is the element which leads us in modifying and extending SPEM
diagram

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 115 / 295

Agent Oriented Methodologies MAS Meta-models

Extending SPEM Specifications [Seidita et al., 2009]

the need for establishing which is the real action a process role
performs on a MMM element when he is carrying out a specific
activity

the set of actions:

define – it is performed when a MMM element is introduced for the
first time and its features are defined in a portion of process (hence in
a fragment)
relate – when a relationship is created (defined) among two or more
MMM elements previously defined in another portion of process
quote – a MMM element or a relationship is quoted in a specific work
product
refine – a MMM element attribute is defined or a value is identified for
it

we also find useful to specify the work product kind by referring to an
explicit set of WP kinds

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 116 / 295

Agent Oriented Methodologies MAS Meta-models

Extending SPEM Specifications [Seidita et al., 2009]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 117 / 295

Agent Oriented Methodologies MAS Meta-models

Proposed Icons

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 118 / 295

Agent Oriented Methodologies MAS Meta-models

The Dependency Diagram

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 119 / 295

Agent Oriented Methodologies MAS Meta-models

Example: PASSI Component Diagram

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 120 / 295

Agent Oriented Methodologies MAS Meta-models

Example: PASSI Process Activity Diagram

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 121 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Focus on. . .

6 AOSE

7 Agent Oriented Methodologies
MAS Meta-models
AOSE Methodologies: An Overview
Methodologies Documentation
Methodology Challenges

8 Agent Oriented Situational Method Engineering
Method Fragment Representation
PRoDe: A Process for the Design of Design Processes
Method Fragment Extraction and Repository Creation
Result Evaluation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 122 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

AOSE Methodologies

here we discuss

ADELFE [Bernon et al., 2005, Capera et al., 2004, Bernon and Capera, 2008]

Gaia [Wooldridge et al., 2000, Zambonelli et al., 2003, Cernuzzi et al., 2010]

PASSI [Cossentino, 2005, Cossentino et al., 2008, Cossentino et al., 2007b]

Tropos [Susi et al., 2005, Bresciani et al., 2004, Hadar et al., 2010]

Prometheus
[Padgham and Winikof, 2003, Padgham and Winikoff, 2005, DeLoach et al., 2009]

SODA [Molesini et al., 2010, Molesini et al., 2008, Molesini et al., 2009]

INGENIAS [Grasia Group, 2009, Pavòn et al., 2005, Garćıa-Magariño et al., 2009]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 123 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Features of ADELFE

ADELFE is dedicated to the design of systems that are complex, open
and not well-specified (Adaptive Multi-Agent Systems)

the primary objective of ADELFE method is to cover all the phases of
a classical software design

RUP has been tailored to take into account specificities coming from
the design of AMAS

ADELFE follows the vocabulary of RUP

only the requirement, analysis and design work definitions require
modifications in order to be adapted to AMAS, other appearing in the
RUP remaining the same

ADELFE is supported by several Tools

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 124 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Adaptive Multi-Agent Systems Theory

the openness and dynamics are source of unexpected events and an
open systems plugged into a dynamic environments has to be able to
adapt to these changes, to self-organise

self-organisation is a means to make the system adapt but also to
overcome complexity

if a system is complex and its algorithm unknown, it is impossible to
code its global function

this function has then to emerge at the macro level (system level)
from the interaction at the micro level (component level)

it is sufficient to build a system whose components have cooperative
attitude to make it realise an expected function

cooperation is the local criterion that enables component to find the
right place within the organisation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 125 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Adaptive Multi-Agent Systems

adaptive Multi-Agent Systems are composed of agents that
permanently try to maintain cooperative interactions with other.

any cooperative agent in AMAS follow a specific lifecycle that
consists in:

the agent gets perceptions from its environment
it autonomously uses them to decide what to do in order to reach its
own goal
it acts to realise the action on which it has previously decided

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 126 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The ADELFE Meta-model

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 127 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The ADELFE Process

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 128 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

ADELFE: Example

!"#"$#%&#'%#("%$)*!&#&)*+%),%&#+%!"#"$#&)*%-*!%.(-#%-$#&)*+%#("%-/"*#%
01+#%2"3,)30%#)%!"-4%.&#(%%

67% ,)44).&*/% #("% 23"8&)1+47% !"+$3&9"!% 23)$"++'% #(3""% #))4+% -3"%
-8-&4-94"5%:&3+#'%#("%;2"*<))4=%/3-2(&$-4%#))4%-44).+%!"+&/*"3+%#)%
3"-4&>"% #("%!&,,"3"*#%?@ABC?@A%!&-/3-0+%-*!%+)0"%8-4&!-#&)*+%
),% #("% +),#.-3"% +2"$&,&$-#&)*% -*!% !"+&/*5% <("*'% #("% -!"D1-$7%
C@CE% #))4% ("42+% !"+&/*"3+% &*% $())+&*/% C@CE% #"$(*)4)/7% #)%
!"+&/*% +7+#"0+5% :&*-447'% #("% &*#"3-$#&8"% #))4% "-+"+% ,)44).&*/% #("%
CFGA:G%23)$"++5%

!" #$%&'##()*+#,*-.%(+%*
;2"*<))4=% &+% -% !"8"4)20"*#% #))4'% .3&##"*% &*% #("% ;<E$3&2#%
4-*/1-/"'%.(&$(%&+%!"+&/*"!%-*!%!&+#3&91#"!%97%<HIJK-4&)+7+'%)*"%
),% #("% CFGA:G% 2-3#*"3+5% ;*% #("%)*"% (-*!'% ;2"*<))4% &+% -%
$)00"3$&-4&>"!%/3-2(&$-4%#))4%4&L"%M-#&)*-4%M)+"%-*!%+122)3#+%#("%
?@A% *)#-#&)*% #)% 0)!"4% -224&$-#&)*+% .(&4"% -++13&*/% #(-#% #("%
23)!1$"!% 0)!"4+% -3"% 8-4&!5% @)3"% +2"$&,&$-447'% &#% ,)$1+"+%)*%
-*-47+&+%-*!%!"+&/*%),%+),#.-3"%.3&##"*%&*%N-8-5%;*%#("%)#("3%(-*!'%
;2"*<))4% "*-94"+% 0"#-J0)!"4&*/% &*%)3!"3% #)% !"+&/*% +2"$&,&$%
$)*,&/13-#&)*+5%

<(&+% 4-##"3% ,"-#13"% (-+% 9""*% 1+"!% #)% "O#"*!%;2"*<))4% ,)3% #-L&*/%
&*#)%-$$)1*#%#("%+2"$&,&$&#&"+%),%-!-2#&8"%014#&J-/"*#%+7+#"0+%-*!%
#(1+% &*$41!&*/% #("0% &*#)% CFGA:G5% <("3",)3"'% #("% C?@A%
)#-#&)'% .(&$(% -44).+% !"+$3&9&*/% C/"*#% I*#"3-$#&)*% P3)#)$)4+%
1+&*/%23)#)$)4%!&-/3-0+'%(-+%9""*%&*#"/3-#"!%#)%;2"*<))45%

:13#("30)3"'% ?@A% (-+% 9""*% 0)!&,&"!% #)% -4+)% "O23"++% #("+"%
+2"$&,&$&#&"+5%<.)%+)41#&)*+%$-*%9"%$)*+&!"3"!%#)%0)!&,7%#("%?@A%
*)#-#&)*Q% 1+&*/% -% ?@A% 23),&4"%)3% -% 0"#-J0)!"4% "O#"*+&)*% RST5%
?+1-447% #(&+% 4-##"3% +)41#&)*% &+% $()+"*%.("*% !)0-&*% $)*$"2#+% -3"%
."44% !",&*"!5% H).-!-7+'% +"8"3-4% !&,,"3"*#% 2)&*#+%),% 8&".% -9)1#%
@CE% "O&+#5% :)3% "O-024"'% &*% CFGA:G'% ."% 1+"%)*"% +2"$&,&$%
$)*$"2#%)*%-!-2#&8"%014#&J-/"*#%+7+#"0+%&*%.(&$(%-/"*#+%(-8"%#)%
+"4,J)3/-*&>"5% 61#% &*% <M;P;E%)3% UCIC'% -/"*#% 3)4"+% -3"% ."44J
L*).*% -*!% #("%)3/-*&>-#&)*% $-*% -% 23&)3&% 9"% /&8"*5% E)'% ?@A%
23),&4"+%(-8"%9""*%$()+"*%#)%"O#"*!%#("%*)#-#&)*5%%

<("*'% &*% CFGA:G'% *&*"% +#"3")#72"+% $-*% 9"% 1+"!% #)% 0)!&,7% #("%
+"0-*#&$+%),%$4-++"+%-*!%,"-#13"+%!"2"*!&*/%)*%#("%+2"$&,&$&#&"+%),%
$))2"3-#&8"% -/"*#+5% I*$41!&*/% #("+"% +#"3")#72"+% &*% ;2"*<))4%
"*-94"+% #("% !"8"4)2"3% #)% !"+&/*% -/"*#+% -*!% &*$)32)3-#"% #("0%
!13&*/% (&+% 0)!"4&*/% -$#&8K% @)3")8"3'% ;2"*<))4% 23)8&!"+%
+"8"3-4%0"$(-*&+0+%#)%/1&!"%!"+&/*"3+%#)%$)33"$#47%&024"0"*#%-*!%
1+"%#("+"%-/"*#+5%

E)0"% $)("3"*$7% 314"+'% -##-$("!% #)% "-$(% +#"3")#72"'% -3"% !",&*"!%
1+&*/% #("%;<E$3&2#% 4-*/1-/"%-*!% -3"% &024"0"*#"!% &*%;2"*<))45%
;<E$3&2#% &+% #("%-$#&)*%4-*/1-/"%),%;2"*<))4%#(-#%$-*%9"%1+"!%#)%
0)!"4%#("%9"(-8&)3%),%-/"*#+V%!"+&/*"3+%(-8"%W1+#%#)%"O23"++%+)0"%
314"+% #(-#%.&44% 9"%23)$"++"!%97% #("%+&014-#&)*% #))4%),%;2"*<))45%
<(&+%"*-94"+%!"+&/*"3+% #)%+&014-#"%-*!%$("$L%#("%9"(-8&)3%),% #("%
-/"*#+% #(-#% -3"% &*8)48"!% &*% -% +7+#"05%@)3")8"3'% #(&+% +&014-#&)*%
$-*% 9"% ("42,14% #)% ,&*!% &,% +)0"% 2)++&94"% $))2"3-#&)*% ,-&413"+% -3"%
0&++&*/5%;2"*<))4% #("*%("42+%!"+&/*"3+% #)% 8-4&!-#"% #("%9"(-8&)3%
),% -/"*#+% -+% ."44% -+% #)% +""% &,% +)0"%)#("3% 2)&*#+% -3"% 8-4&!% X#(&+%
$)33"+2)*!+%#)%#("%-$#&8%YZ%&*%:&/13"%Y[Q%

• I*#"3-$#&)*% 23)#)$)4+Q% &#% &+% 2)++&94"% #)% ,&*!% &,% +)0"% !"-!4)$L+%
$-*% #-L"% 24-$"% .&#(&*% -% 23)#)$)4'%)3% &,% +)0"% 23)#)$)4+% -3"%
1+"4"++%)3% &*$)*+&+#"*#555% <(1+'% #("%9"(-8&)3%),% +"8"3-4% -/"*#+%
$)14!% 9"% W1!/"!% $)*,)30% X)3% *)#[% #)% #("% +"D1"*$"% !&-/3-0+%
!"+$3&9"!%&*%#("%-*-47+&+%.)3L%!",&*&#&)*5%%

• @"#()!+Q% #("&3% 2)++&947% 1+"4"++*"++'% #("&3% "O(-1+#&8"*"++% $-*%
9"%#"+#"!5%%

• <("%/"*"3-4%9"(-8&)3%),%-/"*#+Q%#)%$)*#3)4%&,%#(&+%9"(-8&)3%&+%&*%
-$$)3!-*$"%.&#(%.(-#%.-+%"O2"$#"!5%%

<"+#+% $-*% 9"% 3"-4&>"!% ,&3+#47'% 97% $3"-#&*/% #("% +&014-#&)*%
"*8&3)*0"*#%&*%$)44-9)3-#&)*%!&-/3-0'%-*!%#("*'%97%&024"0"*#&*/'%
.&#(%;<E$3&2#'%+)0"%0"#()!+%!"+&/*"3+%0-7%.-*#%#)%#"+#5%

!"/ 01234352*67899*.38:;8<9*
<("%,&3+#%0)!&,&$-#&)*%-!!"!%#)%;2"*<))4%$)*$"3*+%#("%+#-#&$%8&".%
),% #("% 0)!"4Q% #("% $4-++% !&-/3-05% F&,,"3"*#% CFGA:GJ+2"$&,&$%
9)O"+%-3"%!",&*"!%#)%#-L"%&*#)%-$$)1*#%#("%23"J!",&*"!%+#"3")#72"+%
.&#()1#%!"$3"-+&*/% "3/)*)0&$% -+2"$#+%),% $4-++%!&-/3-0+%9"$-1+"%
),% #("% 4-3/"% *109"3%),% -8-&4-94"% +#"3")#72"+5% <(1+'% ,&"4!+% -*!%
0"#()!+%-3"%-33-*/"!%.&#(&*%9)O"+%&*%#"30+%),%#("&3%+#"3")#72"+5%

G-$(% !!"##$%&'()*%+ ',%-(..% +#"3")#72"!% $4-++% 01+#% &*("3&#% ,3)0%
"&#("3% #("% 23"J!",&*"!% /##$%&'()*%0,%-(% $4-++%)3% -*)#("3%
!!"##$%&'()*%+ ',%-(..% +#"3")#72"!% $4-++5% <("3",)3"'% "-$(% -/"*#%
$4-++%(-+%-#%4"-+#%,)13%0"#()!+%\%31*'%2"3$"&8"'%!"$&!"%-*!%-$#%\%#)%
+&014-#"%&#+%4&,"%$7$4"5%

:&/13"%]% +().+% -*% "O-024"%),% $4-++% !&-/3-0% &*% .(&$(% -/"*#%
$4-++"+% -22"-35% E&*$"% -/"*#% $4-++"+% -3"%)9W"$#% $4-++"+'% -44% #("%
)2"3-#&)*+%)3%-++)$&-#&)*+%)*%)9W"$#%$4-++"+%-3"%2)++&94"%)*%-/"*#%
$4-++"+Q% $)02)+&#&)*'% -//3"/-#&)*'% -*!% ("3&#-/"5% ^"3"'% ,)3% #("%
G<<;% "O-024"'% #("% 1%$&%2%-('()*%0,%-(% $4-++% &+% $)02)+"!%),%
+"8"3-4%3##4)-,0,%-(5%;*%#("%)#("3%(-*!'%5(67%-(8$ -*!%9%'":%&%
-/"*#% $4-++"+% &*("3&#% ,3)0% 1%$&%2%-('()*%0,%-(% $4-++% -*!% #("*%
&*("3&#%&#+%,&"4!+%-*!%0"#()!+5%%

+3:=;5*>"*'?5*8:5@A*B7899*238:;8<*41;*%''#"*'C1*<83@*8:5@A*

B789959D* 9A5;51AEF52* !!"##$%&'()*%+ ',%-(..D* 8;5* 2543@52G*
1%$&%2%-('()*%0,%-(! 8@2* 3##4)-,0,%-("* 1%$&%2%-('()*%0,%-(2* B8@*
;5F;595@A* 53A?5;* 9A=25@A* :;1=F9* H5(67%-(8$* B7899I* 1;*
A58B?5;9* H9%'":%&* B7899I"*1%$&%2%-('()*%',%-(* B7899* 39* B1<F1952*
14* 95J5;87*3##4)-,0,%-(2* C?3B?* A89K* 39* A1* 43@2* A3<5971A* 3@* A?5*
A3<5A8L75"*

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 129 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

ADELFE: Example

!"# $%&'&(&)*+,-.%-/0*
!"# !$%&'%# ()*")"# +,)# !-.&# /# !0)1+# -1232)4# .54)66210#
&710*70)# 89:;# /# 35(<762"<# =!0)1+>-.&?# +5#<54)6# 21+)(7@+251"#
A)+B))1# 70)1+"C# DE)1F556# B7"#)1,71@)4# +5# @51"+(*@+# !GH# /#
!0)1+# G1+)(7@+251# H(5+5@56# /# 4270(7<"I# !GH# 4270(7<"# 7()# 71#
)J+)1"251# +5#)J2"+210# -.&# ")K*)1@)# 4270(7<"# +,7+# 7665B"#
4233)()1+# <)""70)# ")14210# @7(421762+L# =!M$C# DN# 5(# ODN?I# G1#
DE)1F556C#+,)")#4270(7<"#7()#4)"201)4#7"#0)1)(2@#4270(7<"#21#+,)#
")1")# +,7+# +,)L# 45# 15+# *")# 21"+71@)"# 53# @67"")"# A*+# 516L# (56)"# 53#
@67"")"I# F,2"# 15+251# 53# (56)# B7"# 744)4# +5# +,)# DE)1F556# <)+7>
<54)6I#
F5#()"E514#+5#!$%&'%#714#!.!P#+,)5(L#"E)@232@2+2)"C#B)#744)4#
"5<)#")<71+2@"#+5#E(5+5@56#4270(7<"I#'2("+C#7#+(200)(#@5142+251#2"#
"E)@232)4#+5#67*1@,#+,)#E(5+5@56I#G1#+,)#'20*()#QC#+,)#!""#$%&'&(%)#
B2+,# +,)#*+,-".$%&/(012(.'&(%)# (56)# ()@)2R)"# +,)#3""#$%&'&(%)4((%#
)R)1+# 7"# 7# +(200)(# +5# A)021# +,)# 1)05+27+251# B2+,# +,)#
5116,7$%&/(012(.'&(%)I#
.5()5R)(C# !-.&# 15+7+251# ()<721"# 3*SSL# 51# +,)# ODN# 714#DN#
A(71@,)"# @51@)(1210# +,)# 4)@2"251# <7T210# 53# <)""70)# ")14210I#
F,)#@,52@)#53#7++7@,210#71#880,)$)69(::#"+)()5+LE)4#<)+,54#+5#+,)#
154)# =ODN#5(#DN?#7665B"# +5# "E)@23L# +,2"#E521+I#'5(#)J7<E6)C# 21#
+,)#'20*()#QC#+,)#$;<""=>$))$%&#<)+,54#2"#7++7@,)4#+5#+,)#32("+#ODN#
154)U# 2I)IC# 21# +)(<"# 53# +,)# ()"*6+# 53# +,2"# <)+,54C# +,)#
+,-".$%&/(012(.'&(%)# <7L#)2+,)(# ()K)"+# 35(# 2135(<7+251# +5#
()"*<)# 2+"#)JE65(7+251# 53# +,)# +2<)+7A6)# 5(# A)021# +5# 1)05+27+)# 21#
+)(<"#53#+,)#@51"+(721+"#53#+,)#+B5#70)1+"I#
$)"201)("#@71#76"5#)7"26L#7""201#E(5+5@56"#+5#70)1+"#21#DE)1F556I#
D1@)#7#E(5+5@56# 2"# 7++(2A*+)4# +5# 71#70)1+# 35(#7# (56)C# +,)#<)+,54"#
+,7+# 7EE)7(# 21# +,)#E(5+5@56# 35(# +,)# @,5")1# (56)# 7()# 7*+5<7+2@766L#

744)4# +5# +,)# 70)1+# @67""# 7"# 88$%)(.01)$"%::# "+)()5+LE)4# <)+,54"I#
'21766LC#+5#E()E7()#+,)#V'7"+#H(5+5+LE210W#7@+2R2+L#53#+,)#E(5@)""C#
4)"201)("#@71#7*+5<7+2@766L#0)1)(7+)#"+7+)><7@,21)"#/51)#E)(#(56)#
/#3(5<#+,)#E(5+5@56#4270(7<"#+5#"2<*67+)#+,)<#21#DE)1F556I##

1" 2324*2+567289*:;;<*
F,71T"#+5#7@+2R2+L#!99#B,2@,#,7"#A))1#744)4#21#+,)#7176L"2"#B5(T#
4)3212+251C# 4)"201)("# @71# T15B# 23# +,)# 7EE62@7+251# +5# 4)R)65E#
()K*2()"#+5#A)#4)"201)4#*"210#+,)#!.!P#+)@,15650LI##

F,2"#74)K*7@L#2"#"+*42)4#A5+,#7+#+,)#065A76#6)R)6#=+,)#"L"+)<#6)R)6?#
714#7+#+,)#65@76#51)#=+,)#6)R)6#53#+,)#4233)()1+#E7(+"#@5<E5"210#+,)#
"L"+)<C#+,)#70)1+"?I#F5#"+*4L#+,)#74)K*7@L#53#+,)#!.!P#+,)5(L#7+#
+,)#065A76#6)R)6C#)20,+#@(2+)(27#,7R)#A))1#4)321)4X#

9I G"# +,)# 065A76# +7"T# 21@5<E6)+)6L# "E)@232)4Y# G"# 71# 7605(2+,<# 7#
E(25(2#*1T15B1Y#

ZI G3#")R)(76#@5<E51)1+"#7()#()K*2()4#+5#"56R)#+,)#065A76#+7"TC#45#
+,)L#1))4#+5#7@+#21#7#@)(+721#5(4)(Y#

QI G"# +,)# "56*+251# 0)1)(766L# 5A+721)4# AL# ()E)+2+2R)# +)"+"U# 7()#
4233)()1+#7++)<E+"#()K*2()4#A)35()#3214210#7#"56*+251Y#

[I \71#+,)#"L"+)<#)1R2(51<)1+#)R56R)Y#G"#2+#4L17<2@Y#
]I G"# +,)# "L"+)<# 3*1@+251766L# 5(# E,L"2@766L# 42"+(2A*+)4Y# !()#
")R)(76#E,L"2@766L#42"+(2A*+)4#@5<E51)1+"#1))4)4#+5#"56R)#+,)#
065A76#+7"TY#D(#2"#7#@51@)E+*76#42"+(2A*+251#1))4)4Y#

^I $5)"#7#0()7+#1*<A)(#53#@5<E51)1+"#1))4)4Y#
:I G"#+,)#"+*42)4#"L"+)<#151>621)7(Y#
_I '21766LC# 2"# +,)# "L"+)<#)R56*+2517(L# 5(# 5E)1Y# \71# 1)B#
@5<E51)1+"#7EE)7(#5(#42"7EE)7(#4L17<2@766LY#

F,)")#K*)"+251"#7()#7"T)4#+5#4)"201)("#*"210#7#0(7E,2@76#21+)(37@)#
B,2@,# 2"# R2"*762S)4# 21# '20*()# [I# F,)# 4)"201)(# *")"# 7# "624)(# +5#
71"B)(# 7# K*)"+251# 714# +5# 02R)# 7# (7+)# 7<510# +B)1+L# E5""2A262+2)"#
(710210#3(5<#VL)"W#+5#V15WI#`2"#71"B)("#7()#+,)1#7176LS)4#AL#+,)#
"*EE5(+# 4)@2"251# +556# +5# 2135(<# ,2<# 23# *"210# 71# !.!P# +5#
2<E6)<)1+#+,)#"L"+)<#2"#*")3*6I##

=,.>%?* @"* A?%?* ,0* -B* ?C-/D)?* &E* D%&'&(&)* F?'G??B* 'G&*

!""#$%&'&(%);* GH,(H* %?D%?0?B'0* 'G&* I,EE?%?B'* '?-(H?%0"* :H?*
E,%0'*-.?B'*,0*?CD)&%,B.*'H?*',/?'-F)?*'&*E,BI*J-),I*',/?0)&'*-BI*

%&&/"* :H?* 0?(&BI* -.?B'* ,0* -)%?-IK* &((>DK,B.* -* %&&/* -'* -*

D%?(,0?* ',/?0)&'"* :H,0* D%&'&(&)* I,-.%-/* ?CD)-,B0* 'H?*

B?.&',-',&B* F?'G??B* 'H?* 'G&* -.?B'0"* :H,0* B?.&',-',&B* /-K*

%?0>)'* &B* 'H?* E,%0'* -.?B'L0*)?-J,B.* &%* &B* 'H?* E,%0'* -.?B'L0*

F&&M,B."*

=,.>%?*!"*2324*-I?N>-(K*.%-DH,(-)*'&&)*-DD),?I*'&*5::;*

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 130 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Gaia Methodology

it is the most known AOSE methodology

firstly proposed by Jennings and Wooldridge in 1999
extended and modified by Zambonelli in 2000
final Stable Version in 2003 by Zambonelli, Jennings, Wooldridge
many other researchers are working towards further extensions. . .

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 131 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Gaia Methodology

starting from the requirements (what one wants a software system to
do)

Guide developers to a well-defined design for the multi-agent system

model and dealing with the characteristics of complex and open
multi-agent systems

easy to implement

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 132 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Gaia Methodology

exploits organisational abstractions

conceive a multi-agent systems as an organisation of individual, each of
which playing specific roles in that organisation
and interacting accordingly to its role

introduces a clear set of abstractions

roles, organisational rules, organisational structures
useful to understand and model complex and open multi-agent systems

abstract from implementation issues

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 133 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Gaia Meta-model

LivenessProperty SafetyProperty

SafetyRule LivenessRule

OrganizationalStructure

Environment

Action
type

Activity

Resource
name
description

0.. *

1

0.. *

1

*

1

+permitted action*

1

Responsibility

OrganizationalRule

Protocol
name
initiator
partner
inputs
outputs
description

Comm unication

0..*0..*

observes

1

1..*

1

1..*

Organization
control regime
topology

collaborates/interacts

**

0.. *0.. *

observes

Role

1..*1..*

0..* 10..* 1acts on/interacts with

1..*

1

1..*

1
has

0..*

*

0..*

*

observes

*1
+ini tiator/participant

*1

Service
inputs
outputs
pre-conditions
post-conditions

AgentType
collaborates

*

1

+member
*

1

...

1

...

1

plays

1..* 11..* 1

provides

Permission

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 134 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Gaia Process

Analysis Architectural Design Detailed Design

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 135 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Gaia: Example

September 4, 2009 9:33 WSPC/INSTRUCTION FILE CMOZ-JSEKE2008

30 L. Cernuzzi, A. Molesini, A. Omicini and F. Zambonelli

Table 3. The ReviewCatcher functional role schema.

Role Name: ReviewCatcher

Description:

This role is in charge of selecting reviewers and distributing papers among them.

Protocol and Activities:

GetPaper, CheckPaperTopic, CheckRefereeExpertise,
CheckRefereeConstraints, AssignPaperReferee,
ReceiveRefereeRefuse, UpdateDBSubmission, UpdateDBReferee

Permissions:

Reads paper submitted in order to check the topic and authors
referee-data in order to check the expertise and constraint (i.e. the referee

is one of the authors, or belong to the same organization

Changes DB Submission assigning a referee to the paper
DB Referee assigning the paper to the referee incrementing the number

of assigned papers

Responsibilities:

Liveness: ReviewCatcher = (GetPaper.CheckPaperTopic.CheckRefereeExpertise.
CheckRefereeConstraints.AssignPaperReferee.[ReceiveRefereeRefuse] |
UpdateDBSubmission.UpdateDBReferee)n

Safety: ∀ paper: number of referees ≥ n

Referee �= Author

Referee organization �= Author organization

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 136 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Gaia: Example

September 4, 2009 9:33 WSPC/INSTRUCTION FILE CMOZ-JSEKE2008

Adaptable Multi-Agent Systems: The Case of the Gaia Methodology 29

Table 2. The Environment Model for the Review Sub-organization.

Action Environment Abstraction Description

Reads Paper Submitted the Web site receives a paper
Review Submitted the Web site receives a review

Changes DB Submission insert in the data base the paper or the
review received; one per each track

DB Reviewer insert in the data base the personal
data of the reviewer, the topic of expertise and the
maximum number of papers the referee accepted to review

September 4, 2009 9:33 WSPC/INSTRUCTION FILE CMOZ-JSEKE2008

32 L. Cernuzzi, A. Molesini, A. Omicini and F. Zambonelli

Table 5. The ReceivePaperAssignement interaction protocol.

Protocol Name: ReceivePaperAssignement

Initiator: ReviewCatcher Partner: ReviewPartitioner Input: paper submitted

Description: The ReviewPartitioner, having checked the area Output: The paper is
of the paper, assigns the paper to the corresponding ReviewCatcher assigned to a specific area
(the Vice-Chair in charge of that area). and the DB Submission is up-

dated

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 137 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The PASSI Methodology

PASSI (Process for Agent Societies Specification and
Implementation) is a step-by-step requirement-to-code methodology

the methodology integrates design models and concepts from both
Object Oriented Software Engineering and MAS using UML notation

PASSI refers to the most diffuse standards: UML, FIPA, JAVA,
Rational Rose

PASSI is conceived to be supported by PTK (PASSI Tool Kit) an
agent-oriented CASE tool

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 138 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The PASSI Methodology

PASSI process supports:

modelling of requirements is based on use-cases
ontology that as a central role in the social model
multiple perspectives: agents are modelled from the social and internal
point of view, both structurally and dynamically
reuse of existing portions of design code; this is performed through a
pattern-based approach
design of real-time systems
the design process is incremental and iterative

extends UML with the MAS concepts

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 139 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The PASSI Meta-model

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 140 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The PASSI Process
 Technical Report xxxxxx

SPEM 2.0 description of the PASSI process

!

7/29

!
!
!

!"#$%&''($%)*+#,,$-./#+0+-#$
!

!

!
!

Figure 2. The PASSI process phases

!
"#$$%!&'()*+,-!.&/,!012-,-!2332'4,+!&'!2'!&5,325&/,6&'(3,7,'52)!038(,--!78+,)!9-,,!:&4*3,!;<=!!

• $>-5,7!?,@*&3,7,'5-=! %5! (8/,3-! 2))! 51,!012-,-! 3,)25,+! 58!?,@A! B)&(&525&8'C! 2'2)>-&-!
2'+!24,'5-638),-!&+,'5&.&(25&8'

• #4,'5! $8(&,5>=! #))! 51,! 2-0,(5-! 8.! 51,! 24,'5! -8(&,5>! 23,! .2(,+=! 8'58)84>C!
(877*'&(25&8'-C!38),-!+,-(3&05&8'C!%'5,32(5&8'!03858(8)-

• #4,'5!%70),7,'525&8'=!#!/&,D!8'!51,!->-5,7E!-!23(1&5,(5*3,!&'!5,37-!8.!()2--,-!2'+!
7,518+-!58!+,-(3&F,!51,!-53*(5*3,!2'+!51,!F,12/&83!8.!-&'4),!24,'5A

• G8+,=! #!)&F323>! 8.! ()2--! 2'+! 2(5&/&5>! +&24327-!D&51! 2--8(&25,+! 3,*-2F),! (8+,! 2'+!
-8*3(,!(8+,!.83!51,!5234,5!->-5,7A

• H,0)8>7,'5=! I8D! 51,! 24,'5-! 23,! +,0)8>,+! 2'+! D1&(1! (8'-532&'5-! 23,!
+,.&',+6&+,'5&.&,+!.83!51,&3!7&4325&8'!2'+!78F&)&5>A

!
B2(1! 012-,! 038+*(,-! 2! +8(*7,'5! 5125! &-! *-*2))>! (8708-,+! 2443,425&'4! JKL!78+,)-! 2'+!D83M!
038+*(5-! 038+*(,+! +*3&'4! 51,! 3,)25,+! 2(5&/&5&,-A! B2(1! 012-,! &-! (8708-,+! 8.! 8',! 83! 783,! -*FN
012-,-!,2(1!8',!3,-08'-&F),!.83!+,-&4'&'4!83!3,.&'&'4!8',!83!783,!235,.2(5-!5125!23,!0235!8.!51,!
(833,-08'+&'4! 78+,)! 9.83! &'-52'(,! 51,! $>-5,7! ?,@*&3,7,'5-! 78+,)! &'()*+,-! 2'! 24,'5!
&+,'5&.&(25&8'!+&24327!5125!&-!2!M&'+!8.!JKL!*-,!(2-,!+&24327-!F*5!2)-8!-87,!5,O5!+8(*7,'5-!)&M,!2!
4)8--23>!2'+!51,!->-5,7!*-,!-(,'23&8-<A!!
P1,!+,52&)-!8.!,2(1!012-,!D&))!F,!+&-(*--,+!&'!51,!.8))8D&'4!-,(5&8'A!
!

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 141 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

PASSI: Example
 Technical Report xxxxxx

SPEM 2.0 description of the PASSI process

!

19/29

!"#$%&'(#$%)*)+,%)-$&

"#$%#&'(!)%*+!$'!,-.!/$-.!0&$(%$+1!2$/3$(.-!$%.!,-.0!#*!(%*,2!),'/#&*'$4&#&.-!#5$#!6&44!7.!$--&('.0!
#*!$'!$(.'#!865*-.!'$+.!&-!#5.!'$+.!*)!#5.!2$/3$(.9:!
"#.%.*#;2.-! *)! %.4$#&*'-5&2-! 7.#6..'!,-.! /$-.-! *)! 0&)).%.'#! 2$/3$(.-! 8$(.'#-9! $%.! /*'<.%#.0! #*!
=/*++,'&/$#.>!-&'/.!0&)).%.'#!$(.'#-!/$'! &'#.%$/#!*'4;! &'!#5&-!6$;:!?&%./#&*'!*)!#5.!%.4$#&*'-5&2-!
(*.-!)%*+!#5.!&'&#&$#*%!#*!#5.!2$%#&/&2$'#:!!
!
@5.!0&$(%$+!&-!/*+24.#.0!7;!#5.!)*44*6&'(!&')*%+$#&*'A!

!"#$%& .#/+0)1%)-$&&
234$+%)-$,5&6#789&

:1#+),5&6#74)0#;#$%/&

! ! !"#$%&'()*+ ,(-#&+ .,.+ /%.$(0+ 1#20*+
3"#%4,5*+6,7'8'()*+9:+

!
!

6-5#/&'(#$%)*)+,%)-$&

?,%&'(!#5&-!25$-.!$44!#5.!2*--&74.!/*++,'&/$#&*'!2$#5-!7.#6..'!$(.'#-!$%.!%.2%.-.'#.0:!B!2$#5!
0.-/%&7.-!$!-/.'$%&*!*)!&'#.%$/#&'(!$(.'#-!6*%3&'(!#*!$/5&.<.!$!%.C,&%.0!7.5$<&*,%!*)!#5.!-;-#.+:!
D$/5!$(.'#!+$;!7.4*'(!#*!-.<.%$4!-/.'$%&*-1!65&/5!$%.!0%$6'!7;!+.$'-!*)!-.C,.'/.!0&$(%$+-!&'!
65&/5!*7E./#-!$%.!,-.0! #*! %.2%.-.'#! %*4.-! 8/*44./#&*'!*)! #$-3-!2.%)*%+.0!7;!$(.'#! &'!2,%-,&'(!$!
-,7F(*$49:!!!
!

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 142 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

PASSI: Example

 Technical Report xxxxxx

SPEM 2.0 description of the PASSI process
!

20/29

!
!

"#$%!&'#()#*!'+!$,*-./0/&!12!0%/!3,..,4'5(!'53,)*#0',56!

Role Name Agent which plays it Description Responsibilities

!

!"#$%&'()*+*)",*-.%

7$0'8'02!&'#()#*+!#)/!9+/&! 0,! +%,4! 0%/!1/%#8',9)!,3!/#$%!#(/50!-,'50'5(!#00/50',5! '5!4%#0! '0! '+!
$#-#1./! 0,! &,:! ;/.#0',5+%'-+! 1/04//5! #$0'8'0'/+! +'(5'32!*/++#(/+! #5&! $,**95'$#0',5+! 1/04//5!
0#+<+!,3!0%/!+#*/!#(/50:!7!=#+<!+-/$'3'$#0',5!&'#()#*!)/-)/+/50+!0%/!-.#5!,3!0%/!#(/50!1/%#8',):!>0!
+%,4+! 0%/!)/.#0',5+%'-+! #*,5(! 0%/! /?0/)5#.! +0'*9.'!)/$/'8/&! 12! 0%/! #(/50! #5&! '0+! 1/%#8',9)!
@/?-)/++/&!'5!0/)*+!,3!3')/&!0#+<+A:!
!

!
!
!
!

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 143 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Tropos Methodology

Tropos is an agent-oriented software development methodology
founded on two key features

(i) the notions of agent, goal, plan and various other knowledge level
concepts are fundamental primitives used uniformly throughout the
software development process
(ii) a crucial role is assigned to requirements analysis and specification
when the system-to-be analysed with respect to its intended
environment

then the developers can capture and analyse the goals of stakeholders

these goals play a crucial role in defining the requirements for the new
system: prescriptive requirements capture the what and the how for
the system-to-be

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 144 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Tropos Methodology

Tropos adopts Eric Yu’s i* model which offers actors (agents, roles, or
positions), goals, and actor dependencies as primitive concepts for
modelling an application during early requirements analysis

GoalGoal

TaskTask

ResourceResource

SoftgoalSoftgoal

Actor

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 145 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Tropos Meta-model

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 146 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Tropos: Example

© P. Giorgini! 34!

Early requirements!

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 147 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Tropos: Example

© P. Giorgini! 35!

Late requirements!
We introduce the system actor and analyze its dependencies with actors in its
environment identifying system"s functional and non-functional requirements!

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 148 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Tropos: Example

© P. Giorgini! 36!

Late requirements!
The goals decomposition, means-end and contribution analysis are performed
on the system"s goals!

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 149 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Prometheus Methodology

Prometheus is a detailed process for specifying, designing, and
implementing intelligent agent systems

the goal in developing Prometheus is to have a process with defined
deliverables which can be taught to industry practitioners and
undergraduate students who do not have a background in agents and
which they can use to develop intelligent agent systems

Prometheus distinguishes itself from other methodologies by
supporting the development of intelligent agents:

providing start-to-end support,
having evolved out of practical industrial and pedagogical experience,
having been used in both industry and academia, and, above all, in
being detailed and complete

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 150 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Prometheus Methodology

Prometheus is also amenable to tool support and provides scope for
cross checking between designs

the methodology consists of three phases: system specification,
architectural design, and detailed design

although the phases are described in a sequential fashion it is
acknowledged that like most software engineering methodologies,
practice involves revisiting earlier phases as one works out the details

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 151 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The Prometheus Overview

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 152 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Prometheus: Example

202 L. Padgham, J. Thangarajah, and M. Winikoff

Fig. 5. Refined Analysis Overview Diagram

Fig. 6. Scenario example - Paper Review

There is typically substantial iteration between scenario development and goal hi-
erarchy development until the developer feels that the application is sufficiently de-
scribed/defined. At this stage goals are grouped into cohesive units and assigned to
roles which are intended as relatively small and easily specified chunks of agent

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 153 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Prometheus: Example

The Prometheus Design Tool – A Conference Management System Case Study 203

Fig. 7. Goal Overview Diagram

Fig. 8. System Roles Diagram

functionality. The percepts and actions are then also assigned to the roles appropri-
ately to allow the roles to achieve their goals. This is done using the ‘System Roles’
diagram.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 154 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

Prometheus: Example

204 L. Padgham, J. Thangarajah, and M. Winikoff

For example, Figure 8 shows that the ‘Assignment’ role is responsible for the goals to
collect preferences (from the reviewers) and assign papers (to the reviewers). To achieve
these goals the role needs the input (reviewer info) and reviewer preferences (prefs) and
should perform the actions of requesting preferences from reviewers (request prefs) and
giving out the paper assignments (give assignments).

4 Architectural Design

The next stage is the architectural design where we specify the internal composition of
the system. The main tasks here are to decide the agent types (as collections of roles)
and to define the agent conversations (protocols) that will happen in order to realise the
specified goals and scenarios. Decisions regarding grouping of roles into agents are cap-
tured in the ‘Agent-Role Grouping Diagram’. Figure 9 shows the roles of assigning pa-
pers to reviewers (Assignment) and managing the review process (review management)
as being part of a Review manager agent. A number of issues must be considered in
determining how to group roles into agents, including standard software engineering
issues of cohesion and coupling. The relationships of roles to data are also considered
in determining role groupings. The Data Coupling anA. gent Acquaintance diagrams can
assist the designer in visualising these aspects.

Fig. 9. Agent-Role Grouping Diagram

Once decisions have been made about how roles are grouped into agents, informa-
tion can be propagated from the role specifications, to show which percepts and ac-
tions are associated with which agents. This information is automatically generated
into the ‘System Overview Diagram’ which, when completed, provides an overview of
the internal system architecture. What must be done to complete this overview is to de-
fine interactions between the agents (protocols), and to add any shared data. Figure 10
shows the system overview for our conference management system design. Observ-
ing the ‘Papers manager’ agent we can see that it receives papers (percept) from
authors and provides an acknowledgment (action) to them. It interacts with the ‘Se-
lections manager’ agent via the ‘selection decision’ protocol to be able to send authors

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 155 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

SODA: Societies in Open and Distributed Agent spaces

SODA . . .

. . . is an agent-oriented methodology for the
analysis and design of agent-based systems
. . . focuses on inter-agent issues, like the
engineering of societies and environment for
MAS
. . . adopts agents and artifacts – after the
A&A meta-model [Omicini et al., 2006] – as the
main building blocks for MAS development
. . . introduces a simple layering principle in
order to cope with the complexity of system
description
. . . adopts a tabular representation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 156 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

SODA: Overview

Requirements
Analysis Analysis

Architectural
Design

Detailed
Design

References
Tables

Transitions
Tables

Mapping
Tables

Requirements Tables

Domain Tables

Relations Tables

Responsibilities Tables

Dependencies Tables

Topologies Tables

Entities Tables

Interaction Tables

Topological Tables

Agent/Society Design Tables

Environment Design Tables

Analysis

Design

Constraints Tables Interaction Design Tables

Topological Design Tables

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 157 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The SODA Meta-model
SODA 2010/06/25 JUDE(Free Version)

 pkg

Actor Requirement

*1

Relation LegacySystem ExternalEnvironment

* 1

Task

1..*

1

Dependency

**

participates

**

participates

* *

participates

Function

* *
participates

Topology

*

*

participates

*

*

participates

1..*

1

1..*

1

0..*

1

0..*

1

0..*

1

Role

Action

1..*

1

performs

Interaction

Resource

Operation

1..*

1
provides

1..*

1

1

1..*

1..*

1

1

1..*

Space *

*

participates

1..*

1..*

participates
*

1

0..*

connection

1..*

1

1..*

1

Workspace

1..*

1..*

Agent

1

1..*

Artifact

1..*

1

perceives 1..*

1

is allocated

Composition

Society Aggregate

Individual Artifact

Social Artifact

Environmental Artifact

1..*

1

participates

Rule

0..*

1..*

constrains

connection

** participates
* *

participates

1..* 1..*
constrains

1..*1..*

constrains

1..*

1..*
constrains

1

1..*

1

1..*

1

1..*

Use1..*1..* 1..*1..*

Manifest
1..*

1..*1..*

1..*

SpeakTo 1..* 1..*

participates

1..*

1..*

LinkedTo

1..*

1..*

1..*

1..*

participates

Requirements
Analysis

Analysis

Architectural
Design

Detailed
Design

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 158 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The SODA Process

Requirements Analysis

Analysis

Layering

Architectural Design

Layering

Detailed Design

Is the problem well specified?

no

Is the system well specified?

yes

yes no

Are there problems in the system?

yes

no

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 159 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The SODA Layering

In-zoom Out-zoom

Projection

Select Layer

increases detail increases abstraction

new layer?

no

yes

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 160 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

SODA: Example

Requirement Description

ManageStartUp creating call for papers and
defining the rules of the or-
ganisation

ManageSubmission managing user registration
and paper submissions

ManagePartitioning partitioning papers based on
the conference structure

ManageAssignment managing the assignment pro-
cess according to the organi-
sation rules

ManageReview managing the review process
and sending reviews to au-
thors

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 161 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

SODA: Example

Function Description

management user managing user information

management review managing review information

management paper managing paper information

management assignment managing assignment infor-
mation

management partitioning managing partitioning infor-
mation

management process managing start-up informa-
tion

webSite web interface of the confer-
ence

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 162 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

SODA: Example

Rule Description

Deadline-Rule paper can be sent only if cur-
rent time precedes the dead-
line

User-Rule get user is possible if the re-
quested user is the requester

or the requester is the PC-
chair

Author-Rule author can access and modify
only his public paper informa-
tion

Match-Rule papers can be partitioned ac-
cording key words

AutRev-Rule the PC-member cannot be
one of the paper authors

Review-Rule the PC-member cannot
access private information
about his papers

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 163 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The INGENIAS Methodology

the INGENIAS methodology covers the analysis and design of MAS
and it is intended for general use

the methodology is supported by the INGENIAS Development Kit
(IDK), which contains a graphical editor for MAS specifications

besides, the INGENIAS Agent Framework (IAF), integrated in the
IDK, has been proposed for enabling a full model-driven development
and transforming automatically specifications into code in the Java
Agent Development Framework

the software development process proposed by the methodology is
based on RUP [Kruchten, 2003]

the methodology distributes the tasks of analysis and design in three
consecutive phases: Inception, Elaboration and Construction

each phase may have several iterations (where iteration means a
complete cycle of development)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 164 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The INGENIAS Methodology

INGENIAS follows the Model Driven Development(MDD), so it is
based on the definition of a set of meta-models that describe the
elements that form a MAS from several viewpoints

the specification of a MAS is structured in five viewpoints:
1 the definition, control and management of each agent mental state
2 the agent interactions
3 the MAS organisation
4 the environment
5 the tasks and goals assigned to each agent

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 165 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The INGENIAS Meta-model

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 166 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

The INGENIAS Process

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 167 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

INGENIAS: Example

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 168 / 295

Agent Oriented Methodologies AOSE Methodologies: An Overview

INGENIAS: Example

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 169 / 295

Agent Oriented Methodologies Methodologies Documentation

Focus on. . .

6 AOSE

7 Agent Oriented Methodologies
MAS Meta-models
AOSE Methodologies: An Overview
Methodologies Documentation
Methodology Challenges

8 Agent Oriented Situational Method Engineering
Method Fragment Representation
PRoDe: A Process for the Design of Design Processes
Method Fragment Extraction and Repository Creation
Result Evaluation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 170 / 295

Agent Oriented Methodologies Methodologies Documentation

AOSE & Processes

in the software engineering field, there is a common agreement about
the fact that there is not a unique methodology or process, which fits
all the application domains

this means that the methodology or process must be adapted to the
particular characteristics of the domain for which the new software is
developed

there are two major ways for adapting methodologies:

tailoring: particularization or customization of a pre-existing processes
situational Method Engineering (SME): process is assembled from
pre-existent components, called fragments, according to user’s needs
(see next section)

the research on SME has become crucial in AOSE since a variety of
special-purpose agent-oriented methodologies have been defined in
the past years to discipline and support the MAS development

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 171 / 295

Agent Oriented Methodologies Methodologies Documentation

AOSE & Processes

each of the AO methodologies proposed until now presents specific
meta-model, notation, and process

these characteristics

are fundamental for a correct comprehension of a methodology
should be documented in a proper way for supporting the creation of
new ad-hoc AOSE methodologies

sME is strictly related to the documentation of the existing
methodologies

→ the successfully construction of a new process is based on the correct
integration of different fragments that should be well formalised

→ The methodologies’ documentation should be done in a standard way
in order to facilitate

the user’s comprehension
the adoption of automatic tools able to interpret the fragment
documentation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 172 / 295

Agent Oriented Methodologies Methodologies Documentation

Methodologies Documentation

the IEEE FIPA Design Process Documentation and Fragmentation
(DPDF) working group
[IEEE FIPA Design Process Documentation and Fragmentation Working Group (DPDF), 2009]

has recently proposed a template for documenting AO methodologies
this template

has been conceived without considering any particular process or
methodology → all processes can be documented using it
is neutral regarding the MAS meta-model and/or the modelling
notation adopted in describing the process
has a simple structure resembling a tree, so documentation is made in
a natural and progressive way:

addressing in first place the general description and meta-model
definition which constitute the root elements of the process
detailing in a second step the branches which are the phases

is easy to use for a software engineer as it relies on few previous
assumptions
suggests as notation the use of the OMG’s standard SPEM
[Object Management Group, 2008] with few extensions

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 173 / 295

Agent Oriented Methodologies Methodologies Documentation

Template structure

1.Introduction
1.1.The (process name) Process lifecycle
1.2.The (process name) Meta-model
1.2.1. Definition of MAS meta-model elements

1.3. Guidelines and Techniques
2.Phases of the (process name) Process
2.1.(First) Phase
2.1.1.Process roles
2.1.2.Activity Details
2.1.3.Work Products

2.2 (Second) Phase
2.2.1.Process roles
2.2.2.Activity Details
2.2.3.Work Products
. . . (further phases) . . .

3.Work Product Dependencies

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 174 / 295

Agent Oriented Methodologies Methodologies Documentation

Methodologies Documentation: Benefits

the template helps

in easily catching/understanding/studying the methodology: it seems
evident the facility of studying another methodology when the new one
uses an approach we already know
in reusing parts
in identifying similarities and differences in the methodologies

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 175 / 295

Agent Oriented Methodologies Methodologies Documentation

Methodologies Documentation: Examples

Examples

http:

//www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm

http://www.alice.unibo.it/xwiki/bin/view/SODA/Documents

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 176 / 295

http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm
http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm
http://www.alice.unibo.it/xwiki/bin/view/SODA/Documents

Agent Oriented Methodologies Methodology Challenges

Focus on. . .

6 AOSE

7 Agent Oriented Methodologies
MAS Meta-models
AOSE Methodologies: An Overview
Methodologies Documentation
Methodology Challenges

8 Agent Oriented Situational Method Engineering
Method Fragment Representation
PRoDe: A Process for the Design of Design Processes
Method Fragment Extraction and Repository Creation
Result Evaluation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 177 / 295

Agent Oriented Methodologies Methodology Challenges

Methodologies & Technologies

today engineers often work with technologies that do not support the
abstractions used in the design of the systems

this is why the research on methodologies becomes the basic point in
the scientific activity

there is a deep gap between the AOSE approaches and the available
technologies

the proposed AOSE methodologies mostly follow a top-down approach,
where the agent paradigm and the metaphors of the human
organisation have been used to analyse, model and design a system
multi-agent languages and tools mostly follow a bottom-up approach,
evolving out of necessity from existing programming languages and
development environments

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 178 / 295

Agent Oriented Methodologies Methodology Challenges

Informatics Technology Evolution

Programming
Languages

Infrastructures Software
Engineering

New abstractions

Traditional

Agent-paradigm

Software
Engineering

Infrastructures Programming
Languages

Agent abstractions

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 179 / 295

Agent Oriented Methodologies Methodology Challenges

The Gap

the gap between methodologies and infrastructures and languages can
leads to dangerous inconsistencies between the design and the actual
implementation of the system

these are the consequences of the use of concepts and abstractions in
the analysis and design stages which are different from those used to
deploy and implement the system

on one side the agent-based abstractions available in the design phase
suggest high level of expressivity

on the other side the development tools, that are still in the stage of
academic prototypes, do not support these abstractions

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 180 / 295

Agent Oriented Methodologies Methodology Challenges

Challenges

two important challenges that represent the principal objective of the
researchers in the next years [MEnSA Project, 2008]:

identification of the effective abstractions to model complex systems as
multi-agent systems
integration of these abstractions in methodologies that support the
whole software life cycle and fill the conceptual gap between
agent-oriented methodologies and the infrastructures used to
implement agent-based systems

this leads to the fragmentation of the existing AO methodologies in
order to construct new and ad hoc methodologies. . .

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 181 / 295

Agent Oriented Situational Method Engineering

Next in Line. . .

6 AOSE

7 Agent Oriented Methodologies

8 Agent Oriented Situational Method Engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 182 / 295

Agent Oriented Situational Method Engineering

Method Engineering [Cossentino et al., 2014] I

the development of complex software systems using the
agent-oriented approach requires suitable methodologies which
provide explicit support for the key abstractions of the agent
paradigm [Cossentino et al., 2007a]

to date, several methodologies supporting the analysis, design and
implementation of MAS have been proposed in the context of AOSE

although such methodologies have different advantages when applied
to specific problems, it is a fact that a unique methodology cannot be
general enough to be useful for everyone without some level of
customisation.

in fact, agent designers, in solving specific problems in a specific
application context, often prefer to define their own methodology,
specifically tailored to their needs, instead of reusing an existing one.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 183 / 295

Agent Oriented Situational Method Engineering

Method Engineering [Cossentino et al., 2014] II

thus an approach that combines the designer’s need to define his/her
own methodology with the advantages and the experiences coming
from the existing and documented methodologies is highly required

a possible solution to this problem is to adopt the method engineering
paradigm, thus enabling designers of MAS to (re)use parts coming
from different methodologies in order to build up a customised
approach to their own problems.

according to this approach, the “development methodology” is
constructed by assembling pieces of other methodologies (method
fragments) from a repository of methods (method base).

the method base is composed of contributions coming from existing
methodologies and other novel and specifically conceived fragment

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 184 / 295

Agent Oriented Situational Method Engineering

The “Normal” Agent Development Process

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 185 / 295

Agent Oriented Situational Method Engineering

Situational Method Engineering

The Method Engineer
analyses the problem and

the development
context/people to deduce
new methodology features

Method
Engineer

Uses

Design
Methodology

Defines Is adopted by

System
Designer

CAME
ToolsFragments

Repository

Uses

CASE
Tools

Perceives

Problem

Designs Solve

Agents

Instantiate

System
Specifications

Produce

Specify

The CAME tool is
used to instantiate

a methodology
specific tool

The System Designer
using the CASE tool

specifies and
develops the agent

solution

The Method
Engineer uses a CAME tool

to compose the new methodology
by reusing fragments from the

repository

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 186 / 295

Agent Oriented Situational Method Engineering

Agent-Oriented Situational Method Engineering

the development methodology is built by the developer by assembling
pieces of the process (method fragments) from a method base

the method base is composed of contributions coming from existing
methodologies and other novel and specifically conceived fragments

this is the approach used within both the FIPA Technical Committee
Methodology (2003-2005) and the IEEE FIPA Design Process
Documentation and Fragmentation (DPDF) (2009-X)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 187 / 295

Agent Oriented Situational Method Engineering

Adopting Situational Method Engineering

What do we need?

a collection of method fragments
some guidelines about how to assemble fragments
a CAME (Computer Aided Method Engineering) tool
a CAPE (Computer Aided Process Engineering) tool
an evaluation framework (is my new methodology really good?)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 188 / 295

Agent Oriented Situational Method Engineering

CAME Tool

this tool is based on the method meta-model and it is responsible for
method fragment specification, i.e. their product and process parts
definition.

method fragment specification can be done “from scratch”, by
assembly or by modification.

in the first case product and process models of the fragments are
defined by instantiating the method meta-model used by the tool.

in the second case fragments are assembled in order to satisfy some
specific situation.

in the third case fragments are obtained by modification of other
fragments in order to better satisfy the method goal.

depending to the method meta-model, the CAME tool should offer
graphical modelling facilities and special features.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 189 / 295

Agent Oriented Situational Method Engineering

CAPE Tool

CAPE tools that could enable the construction of the new design
process; these tools should be able to support the definition of the
process life-cycle as well as the reuse of fragments from the method
base.

they should enable the adoption of a specific process life-cycle
(waterfall, iterative/incremental, spiral, etc.) and the placing of
different fragments in it.

the CAPE tool should “instantiate” a proper CASE tool (see below)
that is specifically customised to support the designer in working with
the composed methodology.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 190 / 295

Agent Oriented Situational Method Engineering

The New Process Production

Existing
Methodologies

Method
Base

Method
Fragments
Extraction

New
Method

Fragments

CAME tool Specific
Methodology

MAS
Meta-
Model

CASE tool Specific
problem

MAS running
on agent platforms

MAS
ModelDeployment

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

The New Process Production

All methodologies are
expressed in a

standard notation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

The New Process Production

Fragments are identified
and described

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

The New Process Production

New fragments are
defined if necessary

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

The New Process Production

A method fragments
repository is composed

with all existing fragments

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

The New Process Production

The desired
MAS-Meta-Model

is composed according to
problem specific needs

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

The New Process Production

A CAME tool assists in
the selection of fragments

and composition of
design process

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

The New Process Production

A new and problem
specific methodology

is built

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

The New Process Production

A CASE tool is used
to effectively design the

multi-agent system

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

The New Process Production

The multi-agent system
has been coded,

tested and is ready
to be deployed

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 191 / 295

Agent Oriented Situational Method Engineering

So We Need. . .

a specific description of an AOSE fragment

a way for assembly AOSE fragments

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 192 / 295

Agent Oriented Situational Method Engineering Method Fragment Representation

Focus on. . .

6 AOSE

7 Agent Oriented Methodologies
MAS Meta-models
AOSE Methodologies: An Overview
Methodologies Documentation
Methodology Challenges

8 Agent Oriented Situational Method Engineering
Method Fragment Representation
PRoDe: A Process for the Design of Design Processes
Method Fragment Extraction and Repository Creation
Result Evaluation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 193 / 295

Agent Oriented Situational Method Engineering Method Fragment Representation

Method fragment meta-model

the FIPA Methodology Technical Committee in 2003-2005 proposed
the following definition of method fragment [Cossentino et al., 2007a]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 194 / 295

Agent Oriented Situational Method Engineering Method Fragment Representation

What is a Method Fragment

A fragment is a portion of the development process, composed as follows:

a portion of process (what is to be done, in what order), defined with a
SPEM diagram
one or more deliverables (like (A)UML/UML diagrams, text documents
and so on)
some preconditions (they are a kind of constraint because it is not
possible to start the process specified in the fragment without the
required input data or without verifying the required guard condition)
a list of concepts (related to the MAS meta-model) to be defined
(designed) or refined during the specified process fragment
guideline(s) that illustrates how to apply the fragment and best practices
related to that
a glossary of terms used in the fragment (in order to avoid
misunderstandings if the fragment is reused in a context that is different
from the original one)
other information (composition guidelines, platform to be used,
application area and dependency relationships useful to assemble
fragments) complete this definition.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 195 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Focus on. . .

6 AOSE

7 Agent Oriented Methodologies
MAS Meta-models
AOSE Methodologies: An Overview
Methodologies Documentation
Methodology Challenges

8 Agent Oriented Situational Method Engineering
Method Fragment Representation
PRoDe: A Process for the Design of Design Processes
Method Fragment Extraction and Repository Creation
Result Evaluation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 196 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

PRoDe: An Approach for Agent-Oriented Method
Engineering [Seidita et al., 2010]

MMM

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 197 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

PRoDe: Process Representation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 198 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Applying the Proposed Method Fragment Definition

a Method Fragment can be explored from four points of view
[Cossentino et al., 2007a]:

process

the process related aspect of the fragment: workflow, activity and work
product

storing

it concerns with the storage of the fragment in the method base and its
retrieval

reuse

it concerns with the reuse feature of the fragment and lists the
elements helpful in reusing the fragment during the composition of a
new design process

implementation

the implementation of the main elements of the process view

method fragment construction is Work Product oriented, a method
fragment must deliver a product.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 199 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Process View

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 200 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Storing View

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 201 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Reuse View

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 202 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Implementation View

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 203 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

PRoDe: Three Main Areas of Research

MMM

1) A collection of
process fragments

MMM

2) Guidelines for
fragment assembling

MMM

3) A CAPE (Computer
Aided Process Engineering)

tool

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 204 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Fragment Collection in PRoDe

MMM

1) A collection of
process fragments

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 205 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The PRoDE Process Representation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 206 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Guidelines for Fragments Assembling

MMM

2) Guidelines for
fragment assembling

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 207 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Process Analysis and Design in PRoDe

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 208 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Example: PRoDe Analysis

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 209 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Process Analysis and Design in PRoDe

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 210 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Example: Core Meta-model Creation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 211 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Example: ASPECS Core Meta-model

ASPECS is a design process for
building holonic multi-agent
systems recently developed at
UTBM

a detailed description of ASPECS in [Cossentino et al., 2010]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 212 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Process Analysis and Design in PRoDe

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 213 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

What is Prioritisation?

the problem we face is:

what are the first fragments we should introduce in the new process?

??

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 214 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Algorithm

main issues:

we assume each process fragment instantiates, relates, refines or quotes
MAS Meta-Model Elements (MMMEs)
we created an algorithm for assigning a priority to the realisation of
some MMMEs:

elements that are “leaves” of the meta-model graph are realised at first
other elements follow according to the number of their relationships

the output is a priority list of fragments

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 215 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Prioritization Algorithm (1 of 3) [Seidita et al., 2010]

1. Select a metamodel domain (consider the resulting
metamodel as a graph with nodes (MMMEs) and edges
(relationships))

2. Define List elements1 as a list of MMMEs that can be
defined by reusing fragments from the repository, and the
associated priority p: List elements1 (MMME, p), p=1;

3. Define List elements2 as a list of MMMEs that cannot be
defined by reusing fragments from the repository;

4. Define List elements3 as a list of elements that are not
in the core MMM;

5. While the core MMM is not empty
a) Select the leaves Li (i=1,. . . ,n) that: (i) can be

instantiated by fragments of the repository and (ii) have less
relationships with other elements

1. Insert Li (i=1,. . . ,n) in List elements1;
2. Remove elements Li (i=1,. . . ,n) from the core MMM;
3. p = p+1;

6. While the core MMM is not empty
a) Select the leaves Li (i=1,. . . ,m) that can not be instantiated

by fragments of the repository;
1. Insert Li (i=1,. . . ,m) in List elements2;
2. Remove Li (i=1,. . . ,m) from the core MMM;

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 216 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Prioritization Algorithm (2 of 3)

7. For each element E1i of List_elements1 select an
instantiating fragment from the repository (verify
the correspondence among fragment rationale and the
process requirements/strategies)

a) If one fragment corresponds to process requirements and
strategies then:

I. insert the fragment in the new process composition diagram
II. analyze inputs Ii (i=0,. . . ,n) and outputs Oj (j=0,. . .

,m) of the fragment
A. If some Ii or Oj does not belong to the core MMM then add it

to List_elements3; mark the fragment as “To be modified”
B. remove E1i from List elements1;

III.For each element E2i in List_elements2 analyze if there is
a similarity with the elements defined in this fragment

A. if yes delete E2i from List_elements2 and Ii/Oi from
List_elements3

b) else (if no fragment correspond to requirements and
strategies) then

I. remove E1i from List_elements1 and insert it in
List_elements2

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 217 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Prioritization Algorithm (3 of 3)

8. For each E2i (i=0..m) in List_elements2
a) Define a new fragment for instantiating E2i
b) Insert the fragment in the new process composition

diagram
c) Remove E2i from List_elements2

9. For each E3i (i=0..m) in List_elements3
a) Introduce elements E3i (i=0..q) from List_elements3 in

the core MMM

b) Repeat from 2. (consider only the new elements)
10. If the process is not completed (i.e. not all design

activities from requirements elicitation to coding,
testing and deployment have been defined)

a) Repeat from 1.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 218 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Process Analysis and Design in PRoDe

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 219 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Example: First Two Fragments for the ASPECS Process

Not in the core
metamodel

Domain Requirement s
Descript ion

Requirement/
Non Funct. Req.

Actor

Text Scenario

To Be Modified From PASSI Domain
Requirements Description)

2

Capacit y
Ident if icat ion
Reused From CRIO

Capaticy Identification)

1

Role

Interaction

Requirement/
Non Funct. Req.

Capacity

Organization

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 220 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Process Analysis and Design in PRoDe

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 221 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Example: ASPECS Process Component Diagram

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 222 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Process Analysis and Design in PRoDe

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 223 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Meta-model Extension

the Core MAS Meta-model is the starting point for selecting the right
fragments from the repository and for assembling them in the new
process
MAS Meta-model extensions come from:

the need of incorporating MAS Meta-model Elements (MMMEs)
referred in selected fragments
new process requirements
not all design activities from requirements elicitation to coding, testing
and deployment have been defined

three different situations may arise:
different MAS meta-models contribute to the new one with parts that
are totally disjointed
different MAS meta-models contribute to the new one with parts that
overlap and. . .

. . . overlapping elements have the same definitions bounded to
elements with different names or on the contrary
. . . overlapping elements have the same name but different definitions

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 224 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Supporting Tool in PRoDE

MMM

3) A CAPE (Computer
Aided Process Engineering)

tool

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 225 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Metameth

Metameth is an (open-source) agent-oriented tool we built to support
our experiments in methodologies composition and their application
in real projects.

metameth is:

a CAPE tool: since it supports the definition of the design process
life-cycle and the positioning of the different method fragments in the
intended place
a CAME tool: since it allows the definition of different method
fragments
a CASE tool: since it supports a distributed design process, it offers
several (by now UML) graphical editors and an expert system for
verifying the resulting system

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 226 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Metameth Tool Architecture

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 227 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

Supporting Design Activities

the operations that can be supported by a tool during the design
process:

GUI Action – the tool interacts with the user (using a GUI) in order to
support him in some operations
WP Composition – the tool creates/updates a work product on the
basis of the already introduced design information
Rule Check – semantic and syntactic check of the work product
(warning, alerting and suggestions)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 228 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Expert System

Metameth is composed of a society of agents interacting with users:

a controller agent – responsible for the execution of process
a community of Activity agents – interacting with designer
a ProcessModel agent – is responsible of managing the design
information
an editor agent – manages the diagram editor

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 229 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Expert System

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 230 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Rules

the Process Model agent is responsible of the activation of Jess rules

classification according to five categories:

– Validation
– Semantic interpretation

– Auto-composition
– Update
– Import

– Validation
– Semantic interpretation

– Auto-composition
– Update
– Import

Rule Check

WP
Composition

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 231 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Expert System

the Metameth expert system is based on JESS

rules are expressed in first order logic

ontology is designed using Protegè

services offered by the expert system:

syntax checks: it verifies the abidance to modelling language rules
semantic checks: it verifies the abidance to the MAS meta-model (e.g.
a role cannot aggregate another one)
semantic understanding of diagrams: elements of notations are mapped
to their corresponding MAS meta-model element (a use-case is
mapped to a requirement)
automatic composition of diagrams: some diagrams can be partially
composed by accessing information of previous design phases

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 232 / 295

Agent Oriented Situational Method Engineering PRoDe: A Process for the Design of Design Processes

The Metameth GUI

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 233 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

Focus on. . .

6 AOSE

7 Agent Oriented Methodologies
MAS Meta-models
AOSE Methodologies: An Overview
Methodologies Documentation
Methodology Challenges

8 Agent Oriented Situational Method Engineering
Method Fragment Representation
PRoDe: A Process for the Design of Design Processes
Method Fragment Extraction and Repository Creation
Result Evaluation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 234 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

Method Fragment Extraction

the repository is a data base where method fragments are stored in
terms of (usually text) documents

fragments extraction is Work Product- and MMM Element-oriented

a fragment is identified as a portion of process that produces a
significant work product (a diagram or other kind of WP)

fragments can also be composed: Phase fragment, Composed
fragment, Atomic fragment

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 235 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

The Categorisation [Seidita et al., 2006]

the aim is to unify different elements (from different approaches)
under a unique definition

a set of common phases of software engineering design processes
the principal process role performing these phases
a set of work product kind

the repository allows the classification of fragments according to a set
of categories based on the most important meta-model elements

Phase
Process Role
Work Product
MMM Element

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 236 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

The need for a taxonomy

all the processes we studied were created by different research groups
and deal with different design philosophies

differences in names and definitions of the design process elements

sixteen different process roles
seventeen phases
several work products and MAS Meta-model elements

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 237 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

Phases

any kind of design process
can be decomposed in
phases

high level of abstraction
for phases resulting form
the studied processes

some of them are specific
for agent based design
process

requirements

analysis

design

implementation

testing

deployment

coding

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 238 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

Process Roles

identification of an high
level process role for each
phase

detailing process roles
basing on studied
processes

System Analyst

Domain Analyst

User

Agent Analyst

Agent Designer

User Interface Designer

Programmer

Test Designer

Test Developer

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 239 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

Taxonomy: Work product

Work Product
Kind

Graphical Textual

FreeStructuredStructuralBehavioural

CompositeComposite

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 240 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

The Need for a Taxonomy

three kinds of MAS Meta-model elements

problem domain → all aspects of users problem description including
environment representation
agency Domain → agent based concepts useful to define a solution
solution Domain → the structure of the code solution

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 241 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

Repository Content

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 242 / 295

Agent Oriented Situational Method Engineering Method Fragment Extraction and Repository Creation

Method fragment retrieval

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 243 / 295

Agent Oriented Situational Method Engineering Result Evaluation

Focus on. . .

6 AOSE

7 Agent Oriented Methodologies
MAS Meta-models
AOSE Methodologies: An Overview
Methodologies Documentation
Methodology Challenges

8 Agent Oriented Situational Method Engineering
Method Fragment Representation
PRoDe: A Process for the Design of Design Processes
Method Fragment Extraction and Repository Creation
Result Evaluation

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 244 / 295

Agent Oriented Situational Method Engineering Result Evaluation

Results Evaluation: An Open Problem?

MMM

Results Evaluation is crucial
also in process

improvement/reengineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 245 / 295

Agent Oriented Situational Method Engineering Result Evaluation

AO Design Process Evaluation

Q.N. Tran, G. C. Low (2005). Comparison of Ten Agent-Oriented
Methodologies. In Agent-Oriented Methodologies, chapter XII, pp.
341-367. Idea Group.
L. Cernuzzi, G. Rossi (2002). On the evaluation of agent oriented
methodologies. In: Proc. of the OOPSLA 2002 Workshop on
Agent-Oriented Methodologies, pp. 21-30.
Arnon Sturm, Dov Dori, Onn Shehory (2004). A Comparative Evaluation
of Agent-Oriented Methodologies, in Methodologies and Software
Engineering for Agent Systems, Federico Bergenti, Marie-Pierre Gleizes,
Franco Zambonelli (eds.)
Khanh Hoa Dam, Michael Winikoff (2003). Comparing Agent-Oriented
Methodologies. In proc. of the Agent-Oriented Information Systems
Workshop at AAMAS03. Melbourne (AUS).
P. Cuesta, A. Gomez, J. C. Gonzalez, and F. J. Rodriguez (2003). A
Framework for Evaluation of Agent Oriented Methodologies.
CAEPIA’2003
L. Cernuzzi, M. Cossentino, F. Zambonelli (2005). Process Models for
Agent-Based Development. International Journal on Engineering
Applications of Artificial Intelligence (EAAI). Elsevier.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 246 / 295

Agent Oriented Situational Method Engineering Result Evaluation

Details on AO processes evaluation [Numi Tran and Low, 2005]

Structure of the evaluation framework

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 247 / 295

Agent Oriented Situational Method Engineering Result Evaluation

Details on AO Processes Evaluation [Sturm and Shehory, 2004]

evaluation is based on

concepts and properties (autonomy, proactiveness, . . .)
notations and modeling techniques (accessibility, expressiveness)
process (development context, Lifecycle coverage)
pragmatics (required expertise, scalability, . . .)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 248 / 295

Agent Oriented Situational Method Engineering Result Evaluation

Details on AO processes evaluation

from:

Khanh Hoa Dam, Michael Winikoff (2003). Comparing Agent-Oriented
Methodologies. In proc. of the Agent-Oriented Information Systems
Workshop at AAMAS03. Melbourne (AUS).

based on a
questionnaire

reused and
extended in
AL3-AOSE
TFG3
[AgentLink III, 2006]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 249 / 295

Agent Oriented Situational Method Engineering Result Evaluation

Details on AO processes evaluation

the Capability Maturity Model Integration (CMMI)
[Software Engineering Institute (SEI), 2010]

The overall goal of CMMI is to provide a framework that can share
consistent process improvement best practices and approaches, but can
be flexible enough to address the rapidly changing needs of the
community

SCAMPI (Standard CMMI Assessment Method for Process
Improvement)[Software Engineering Institute (SEI), 2006] it is a schema for
process evaluation in five steps: activation, diagnosis, definition, action,
learning.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 250 / 295

Agent Oriented Situational Method Engineering Result Evaluation

Details on AO processes evaluation: CMMI discrete levels

levels are used in CMMI to describe an evolutionary path
recommended for an organisation that wants to improve the processes

the maturity level of an organisation provides a way to predict an
organisation’s performance in a given discipline or set of disciplines

a maturity level is a defined evolutionary plateau for organisational
process improvement

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 251 / 295

Agent Oriented Situational Method Engineering Result Evaluation

Details on AO processes evaluation: CMMI discrete levels

Maturity
Level

Description

1-Initial processes are usually ad hoc and chaotic
2-Managed processes are planned and executed in accordance

with policy
3-Defined processes are well characterized and understood,

and are described in standards, procedures, tools,
and methods

4-
Quantitatively
managed

the organization and projects establish quantitative
objectives for quality and process performance and
use them as criteria in managing processes

5-Optimizing an organization continually improves its processes
based on a quantitative understanding of the
common causes of variation inherent in processes

AOSE processes are (at most) at level 3!!
(only a few of them)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 252 / 295

Agent Oriented Situational Method Engineering Result Evaluation

Open issues

SME is perceived to be a difficult discipline

this is only partially true. All new design processes creator performed
(usually in a disordered way) the steps proposed and studied by SME
agreater diffusion of AO-SME can have positive effects on the
development of new AO design processes (specifically in new areas like
self-org)

major problems with AO-SME

AO processes deals with MAS meta-models and they are an open issue
in the agent community
lack of standards (ISO specification vs FIPA proposal)

lack of standard repository of fragments

lack of stable (commercial quality) CAPE/CAME tools
design process evaluation is still an open issue in both AO and OO
software engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 253 / 295

Part III

Research Directions and Conclusion

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 254 / 295

Research Directions & Vision

Next in Line. . .

9 Research Directions & Vision

10 Conclusions

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 255 / 295

Research Directions & Vision

Mainstream AOSE Researches

methodology

dozens of methodologies proposed so far
mostly “pencil and papers” exercises with no confrontation with real
world problems. . .

meta-methodologies

interesting and worth to be explored, but. . .
these would require much more research coordination and more
feedback from real-world experiences

models & notations

of great help to clarify agent-oriented abstractions
no specific standard still exists

infrastructures

very interesting models but. . .
(the lack of) a pure agent-oriented language slows down the
implementation phase

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 256 / 295

Research Directions & Vision

Is This Enough?

let’s ask ourselves a simple basic question:
what does it mean engineering a MAS?
what is the actual subject of the engineering work?

what is a MAS in a world of:
world-wide social and computational networks
pervasive computing environments
sensor networks and embedded computing

there is not a single answer:
it depends on the observation level

in the physical world and in micro-electronics
[Zambonelli and Omicini, 2004]

micro level of observation: dominated by quantum phenomena (and
and to be studied/engineered accordingly)
macro level of observation: dominated by classical physics
meso level of observation: quantum and classical phenomena both
appears (and have to be taken into account)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 257 / 295

Research Directions & Vision

AOSE Observation Levels

micro scale

small- medium-size MAS
control over each component (limited complexity single stakeholder)
this is the (only) focus of mainstream AOSE

macro scale

very large scale distributed MAS
no control over single components (decentralization, multiple
stakeholders)
the kingdom of “self-organisation” people

meso scale

micro scale components deployed in a macro scale scenario
my own system influences the whole, and is influenced by the whole

quite rarely a fully fledged study can be limited to a single level of
observation

most MAS (even small scale) are open
deployed in some sort of macro scale system
dynamically evolving together with the system

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 258 / 295

Research Directions & Vision

Micro-Level Challenges I

assessing AOSE Advantages

AO has clear advantages: what about AOSE?
methodologies, methodologies, methodologies. . . ;-(

qualitative work

we need to show that AOSE

helps saving money and human resource

leads to higher quality software products

quantitative comparison of AOSE vs. non-AOSE complex software
development

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 259 / 295

Research Directions & Vision

Micro-Level Challenges II

pay attention to the Software Process
most methodologies assume a “waterfall” model

either implicitly or explicitly

with no counterpart in industrial software development

need for:

agile processes

agent-specific flexible processes

cf. Knublauch 2002 “Extreme programming for MAS”, Cossentino
2006: “Agile PASSI”

can meta-models be of help in that direction?

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 260 / 295

Research Directions & Vision

Micro-Level Challenges III

agent-specific notations
AUML is ok to spread acceptance but. . .

is it really suited for MAS?

and for complex systems in general?

even the mainstream SE community doubts about that. . .

do more suitable notations exists?

agent-specific ones to be invented

other non-UML approaches

cf. Sturm et al. 2003: OPM/MAS
AML by Whitestein [Cervenka et al., 2005]

a proposal of unified notation by L. Padgham, M. Winikoff, S. De
Loach, M. Cossentino [Padgham et al., 2009]

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 261 / 295

Research Directions & Vision

Micro-Level Challenges IV

intelligence engineering
selling AI has always been difficult

lack of engineering flavor. . .

agents can help with that

embodied, modular, intelligence

observable rationality

our role should be that of:

exploiting scientific results from the AI-oriented MAS community

turn them into usable engineered products

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 262 / 295

Research Directions & Vision

Macro-Level Challenges I

the macro level deals with complex collective behavior in large scale
MAS

some say this is not AOSE. . .

scientific activity

observing and reproducing biology

but it must become an engineering activity

challenging indeed

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 263 / 295

Research Directions & Vision

Macro-Level Challenges II

universality in MAS
can general laws underlying the behavior of complex MAS be
identified?

as they are starting being identified in the “complex systems” research
community

phase transitions, edges of chaos, etc.

letting us study and engineer complex MAS

abstracting from the specific characteristics of agents (from ants to
rational BDI agents)

abstracting from the specific content of their interactions

cf. Van Parunak 2004: “Universality in MAS”

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 264 / 295

Research Directions & Vision

Macro-Level Challenges III

measuring complex MAS
how can we characterize the behavior of large-scale MAS?

when we cannot characterise the behavior of single components

macro-level measures must be identified

to concisely express properties of a system

cf. Entropy, Macro-properties of complex network, etc

and tools must be provided to actually measure systems

but measuring must be finalised

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 265 / 295

Research Directions & Vision

Macro-Level Challenges IV

controlling complex MAS

given a measurable property of a MAS
software engineers must be able to direct the evolution of a system,
i.e., to tune the value of the measurable property

in a fully decentralised way

and with the possibility of enforcing control over a limited portion of
the MAS

software engineering will become strictly related to control systems
engineering

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 266 / 295

Research Directions & Vision

Macro-Level Challenges V

emergent behaviours, physics, biology, etc

cf. The activity of the “SELF ORGANISATION” Agentlink group

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 267 / 295

Research Directions & Vision

Meso-Level Challenges I

it is a problem of deployment

engineering issues related to deployment of a MAS (typically
engineered at a micro level of observation). . .

. . . into a large scale system (to be studied at a macro-level of
observation)

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 268 / 295

Research Directions & Vision

Meso-Level Challenges II

impact analysis

how will my system behave when it will deployed in an existing open
possibly large scale networked system?

how I will influence the existing system?
micro-scale aspects:

tolerance to unpredictable environmental dynamics on my system

internal handlings

macro-scale aspect:

can my “small” MAS change the overall behavior of the global system?

“butterfly effect”?

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 269 / 295

Research Directions & Vision

Meso-Level Challenges III

identifying the boundaries

how can I clearly identify what is part of my system and what is not?
i should identify

potential inter-agent and environmental interactions

shape the environment (i.e., via agentification)

engineer the interactions across the environment

in sum: engineering the boundaries of the system

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 270 / 295

Research Directions & Vision

Meso-Level Challenges IV

trust

i can (provably) trust a “small” system of rational agents

i can (probabilistically) trust a very large-scale MAS
what I can actually say about the small system deployed in the
large-scale one

how can I measure the “degree of trust”?

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 271 / 295

Research Directions & Vision

Meso-Level Challenges V

infrastructures for Open Systems

are configurable context-dependent coordination infrastructure the
correct answer?
are normative approaches the correct ones?

we know what we gain but we do not know what we lose

cf. Incentives in social and P2P networks

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 272 / 295

Research Directions & Vision

Research directions and visions: conclusions I

there is not a single AOSE

depends on the scale of observation. . .

the micro scale

overwhelmed by research
often neglecting very basic questions. . .

the macro scale

some would say this is not AOSE
but it must become indeed. . .

the meso scale

fascinating. . .
very difficult to be tackled with engineering approaches. . .

what else?

there is so much to engineer around. . .
emotional agents, mixed human-agent organisations, interactions with
the physical world. . .

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 273 / 295

Conclusions

Next in Line. . .

9 Research Directions & Vision

10 Conclusions

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 274 / 295

Conclusions

Reflections

in this lesson we spoke about the Software Engineering and the Agent
Oriented Software Engineering

some reflections are necessary:

what are the aspects related to Engineering?
what are the aspects related to Software Engineering?
what are the aspects related to the paradigms adopted?

before proceeding it is necessary to clarify what is the Engineering in
general

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 275 / 295

Conclusions

What is Engineering?

in general Engineering is the applied science of acquiring and applying
knowledge to design, analysis, and/or construction of works for
practical purposes

the American Engineers’ Council for Professional Development
defines:

Engineering

The creative application of scientific principles to design or develop
structures, machines, apparatus, or manufacturing processes, or works
utilizing them singly or in combination; or to construct or operate the
same with full cognizance of their design; or to forecast their behavior
under specific operating conditions; all as respects an intended function,
economics of operation and safety to life and property

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 276 / 295

Conclusions

Engineers

engineers borrow from physics and mathematics to find suitable
solutions to the problem at hand

they apply the scientific method in deriving their solutions: if multiple
options exist, engineers weigh different design choices on their merits
and choose the solution that best matches the requirements

the crucial and unique task of the engineer is to identify, understand,
and interpret the constraints on a design in order to produce a
successful result

constraints may include available resources, physical, imaginative or
technical limitations, flexibility for future modifications and additions,
and other factors, such as requirements for cost, safety, marketability,
productibility, and serviceability

by understanding the constraints, engineers derive specifications for
the limits within which a viable object or system may be produced
and operated

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 277 / 295

Conclusions

What are the Aspects Related to Engineering?

following a clear and disciplined development process

adopting a design methodology

creating an appropriate (mathematical) model of a problem that
allows to analyse it

testing potential solutions

evaluating the different design choices and choosing the solution that
best meets requirements

using of: prototypes, scale models, simulations, destructive tests,
nondestructive tests, and stress tests

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 278 / 295

Conclusions

What are the Aspects Related to Software Engineering?

customization to the specific kind of product: Software

specific software development processes tied to the software lifecycle
specific methodologies
specific kinds of model tied to the concept of software product
testing potential solutions
using of specific techniques for: prototypes, scale models, simulations,
tests, and stress tests

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 279 / 295

Conclusions

What are the Aspects Related to the paradigm?

the building blocks for creating the models

the level of thinking / abstraction

functions, objects, agents lead to different ways of thinking both the
problems and the solutions

the paradigm adopted leads to different levels of model complexity:
complicated problems are well captured by objects and agents, while
functions could lead to have very very complex models for representing
the problem
in the same way the models of the solution are heavily influenced by
the paradigm

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 280 / 295

References

References I

AgentLink III (2006).
Agent-Oriented Software Engineering Technical Forum Group (AOSE TFG).
http://www.pa.icar.cnr.it/cossentino/al3tf3/.

Artikis, A., Picard, G., and Vercouter, L., editors (2009).
Engineering Societies in the Agents World IX, volume 5485 of Lecture Notes in Computer
Science.
Springer.
9th International Workshop (ESAW’08), 24–26 September 2008, Saint-Étienne, France.
Revised Selected Papers.

Bernon, C., Camps, V., Gleizes, M.-P., and Picard, G. (2005).
Engineering adaptive multi-agent systems: the ADELFE methodology.
In Agent Oriented Methodologies, chapter VII, pages 172–202. Idea Group Publishing.

Bernon, C. and Capera, Davyand Mano, J.-P. (2008).
Engineering self-modeling systems: Application to biology.
In [Artikis et al., 2009], pages 248–263.

9th International Workshop (ESAW’08), 24–26 September 2008, Saint-Étienne, France.
Revised Selected Papers.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 281 / 295

References

References II

Bernon, C., Cossentino, M., Gleizes, M. P., Turci, P., and Zambonelli, F. (2004).
A study of some multi-agent meta-models.
In [Odell et al., 2005], pages 62–77.
5th International Workshop (AOSE 2004), New York, NY, USA, 19 July 2004. Revised
Selected Papers.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A. (2004).
Tropos: An agent-oriented software development methodology.
Autonomous Agent and Multi-Agent Systems, 3:203–236.

Brinkkemper, S. (1996).
Method engineering: engineering of information systems development methods and tools.
Information & Software Technology, 38(4):275–280.

Brinkkemper, S., Saeki, M., and Harmsen, F. (1999).
Meta-modelling based assembly techniques for situational method engineering.
Information Systems, 24(3):209–228.

Capera, D., Picard, G., and Gleizes, M.-P. (2004).
Applying ADELFE methodology to a mechanism design problem.
In 3rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), pages 1508–1509, New York, NY, USA. IEEE CS.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 282 / 295

References

References III

Cernuzzi, L., Cossentino, M., and Zambonelli, F. (2005).
Process models for agent-based development.
Engineering Applications of Artificial Intelligence, 18(2):205–222.

Cernuzzi, L., Molesini, A., Omicini, A., and Zambonelli, F. (2010).
Adaptable multi-agent systems: The case of the Gaia methodology.
International Journal of Software Engineering and Knowledge Engineering.

Cervenka, R., Trencansky, I., Calisti, M., and Greenwood, D. (2005).
AML: Agent modeling language toward industry-grade agent-based modeling.
In [Odell et al., 2005], pages 31–46.
5th International Workshop (AOSE 2004), New York, NY, USA, 19 July 2004. Revised
Selected Papers.

Cossentino, M. (2005).
From requirements to code with the PASSI methodology.
In [Henderson-Sellers and Giorgini, 2005], chapter IV, pages 79–106.

Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., and Russo, W. (2008).
PASSIM: A simulation-based process for the development of multi-agent systems.
International Journal on Agent Oriented Software Engineering, 2(2):132–170.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 283 / 295

References

References IV

Cossentino, M., Gaglio, S., Garro, A., and Seidita, V. (2007a).
Method fragments for agent design methodologies: from standardisation to research.
International Journal of Agent Oriented Software Engineering, 1(1):91–121.

Cossentino, M., Gaglio, S., and Valeria, S. (2007b).
Adapting PASSI to support a goal oriented approach: A situational method engineering
experiment.
In 5th European Workshop on Multi-Agent Systems (EUMAS’07).

Cossentino, M., Gaud, N., Hilaire, V., Galland, S., and Koukam, A. (2010).
ASPECS: An agent-oriented software process for engineering complex systems.
Autonomous Agents and Multi-Agent Systems, 20(2):260–304.

Cossentino, M., Hilaire, V., Molesini, A., and Seidita, V., editors (2014).
Handbook on Agent-Oriented Design Processes.
Springer Berlin Heidelberg.

DeLoach, S. A., Padgham, L., Perini, A., Susi, A., and Thangarajah, J. (2009).
Using three AOSE toolkits to develop a sample design.
International Journal of Agent Oriented Software Engineering, 3(4):416–476.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 284 / 295

References

References V

Fuggetta, A. (2000).
Software process: A roadmap.
In 22nd International Conference on on Software Engineering (ICSE 2000), Future of
Software Engineering Track, pages 25–34, New York, NY, USA. ACM Press.

Garćıa-Magariño, I., Gutiérrez, C., and Fuentes-Fernández, R. (2009).
The INGENIAS development kit: A practical application for crisis-management.
In 10th International Work-conference on Artificial Neuronal Networks (IWANN 2009),
Salamanca, Spain.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2002).
Foundamental of Software Engineering.
Prentice Hall, second edition.

Grasia Group (2009).
INGENIAS meta model.
http://grasia.fdi.ucm.es/main/?q=en/node/135.

Hadar, I., Kuflik, T., Perini, A., Reinhartz-Berger, I., Ricca, F., and Susi, A. (2010).
An empirical study of requirements model understanding: Use case vs. Tropos models.
In 2010 ACM Symposium on Applied Computing (SAC 2010), pages 2324–2329, New
York, NY, USA. ACM.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 285 / 295

http://grasia.fdi.ucm.es/main/?q=en/node/135

References

References VI

Henderson-Sellers, B. (2003).
Method engineering for OO systems development.
Communications of the ACM, 46(10):73–78.

Henderson-Sellers, B. (2005).
Creating a comprensive agent-oriented methodology: Using method engineering and the
OPEN metamodel.
In [Henderson-Sellers and Giorgini, 2005], chapter XIII, pages 236–397.

Henderson-Sellers, B. and Giorgini, P., editors (2005).
Agent Oriented Methodologies.
Idea Group Publishing, Hershey, PA, USA.

IEEE FIPA Design Process Documentation and Fragmentation Working Group (DPDF)
(2009).
Home page.
http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/.

Kruchten, P. (2003).
The Rational Unified Process: An Introduction.
Addison-Wesley Professional, 3rd edition.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 286 / 295

http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/

References

References VII

MEnSA Project (2007–2008).
Methodologies for the engineering of complex software systems: Agent-based approach.
http://www.mensa-project.org/.

Molesini, A., Denti, E., and Omicini, A. (2009).
RBAC-MAS & SODA: Experimenting RBAC in AOSE.
In [Artikis et al., 2009], pages 69–84.

9th International Workshop (ESAW’08), 24–26 September 2008, Saint-Étienne, France.
Revised Selected Papers.

Molesini, A., Denti, E., and Omicini, A. (2010).
Agent-based conference management: A case study in SODA.
International Journal of Agent-Oriented Software Engineering, 4(1):1–31.

Molesini, A., Nardini, E., Denti, E., and Omicini, A. (2008).
Advancing object-oriented standards toward agent-oriented methodologies: SPEM 2.0 on
SODA.
In Baldoni, M., Cossentino, M., De Paoli, F., and Seidita, V., editors, 9th Workshop “From
Objects to Agents” (WOA 2008) – Evolution of Agent Development: Methodologies,
Tools, Platforms and Languages, pages 108–114, Palermo, Italy. Seneca Edizioni.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 287 / 295

References

References VIII

Numi Tran, Q.-N. and Low, G. C. (2005).
Comparison of ten agent-oriented methodologies.
In [Henderson-Sellers and Giorgini, 2005], chapter XII, pages 341–367.

Object Management Group (2008).
Software & Systems Process Engineering Meta-Model Specification 2.0.
http://www.omg.org/spec/SPEM/2.0/PDF.

Odell, J., Giorgini, P., and Müller, J. P., editors (2005).
Agent-Oriented Software Engineering V, volume 3382 of Lecture Notes in Computer
Science.
Springer.
5th International Workshop (AOSE 2004), New York, NY, USA, 19 July 2004. Revised
Selected Papers.

Omicini, A., Ricci, A., and Viroli, M. (2006).
Agens Faber: Toward a theory of artefacts for MAS.
Electronic Notes in Theoretical Computer Sciences, 150(3):21–36.
1st International Workshop “Coordination and Organization” (CoOrg 2005),
COORDINATION 2005, Namur, Belgium, 22 April 2005. Proceedings.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 288 / 295

References

References IX

OPEN Working Group (1997).
OPEN home page.
http://www.open.org.au/.

Padgham, L. and Winikof, M. (2003).
Prometheus: A methodology for developing intelligent agents.
In Giunchiglia, F., Odell, J., and Weiss, G., editors, Agent-Oriented Software Engineering
III, volume 2585 of LNCS, pages 174–185. Springer.
3rd International Workshop (AOSE 2002), Bologna, Italy, 15 July 2002. Revised Papers
and Invited Contributions.

Padgham, L. and Winikoff, M. (2005).
Prometheus: A practical agent oriented methodology.
In [Henderson-Sellers and Giorgini, 2005], chapter V, pages 107–135.

Padgham, L., Winikoff, M., Deloach, S., and Cossentino, M. (2009).
A unified graphical notation for AOSE.
In Luck, M. and Gomez-Sanz, J. J., editors, Agent-Oriented Software Engineering IX,
pages 116–130. Springer.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 289 / 295

http://www.open.org.au/

References

References X

Pavòn, J., Gòmez-Sanz, J. J., and Fuentes, R. (2005).
The INGENIAS methodology and tools.
In [Henderson-Sellers and Giorgini, 2005], chapter IX, pages 236–276.

Ralyté, J. and Rolland, C. (2001a).
An approach for method reengineering.
In Kunii, H. S., Jajodia, S., and Sølvberg, A., editors, Conceptual Modeling – ER 2001,
volume 2224 of Lecture Notes in Computer Science, pages 471–484. Springer.
20th International Conference on Conceptual Modeling, Yokohama, Japan,
27–30 November 2001. Proceedings.

Ralyté, J. and Rolland, C. (2001b).
An assembly process model for method engineering.
In Dittrich, K. R., Geppert, A., and Norrie, M. C., editors, Advanced Information Systems
Engineering, volume 2068 of LNCS, pages 267–283. Springer.
13th International Conference (CAiSE 2001), Interlaken, Switzerland, 4-8 June 2001,
Proceedings.

Seidita, V., Cossentino, M., and Gaglio, S. (2006).
A repository of fragments for agent systems design.
In Workshop “From Objects to Agents” (WOA 2006), pages 130–137.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 290 / 295

References

References XI

Seidita, V., Cossentino, M., and Gaglio, S. (2009).
Using and extending the SPEM specifications to represent agent oriented methodologies.
In Luck, M. and Gomez-Sanz, J. J., editors, Agent-Oriented Software Engineering IX,
pages 46–59. Springer, Berlin, Heidelberg.

Seidita, V., Cossentino, M., Hilaire, V., Gaud, N., Galland, S., Koukam, A., and Gaglio, S.
(2010).
The metamodel: a starting point for design processes construction.
International Journal of Software Engineering and Knowledge Engineering, 20(4):575–608.

Software Engineering Institute (SEI) (2006).
Standard CMMI appraisal method for process improvement (SCAMPI) a, version 1.2:
Method definition document.
Technical report, Carnagie Mellon University.

Software Engineering Institute (SEI) (2010).
Capability maturity model integration (CMMI).
http://www.sei.cmu.edu/cmmi/.

Sommerville, I. (2007).
Software Engineering.
Addison-Wesley, 8th edition.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 291 / 295

References

References XII

Sturm, A. and Shehory, O. (2004).
A comparative evaluation of agent-oriented methodologies.
In Bergenti, F., Gleizes, M.-P., and Zambonelli, F., editors, Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook,
volume 11 of Multiagent Systems, Artificial Societies, and Simulated Organizations,
chapter 7, pages 127–149. Kluwer Academic Publishers.

Susi, A., Perini, A., Mylopoulos, J., and Giorgini, P. (2005).
The Tropos metamodel and its use.
Informatica, 29(4):401–408.

Wooldridge, M., Jennings, N. R., and Kinny, D. (2000).
The Gaia methodology for agent-oriented analysis and design.
Autonomous Agents and Multi-Agent Systems, 3(3):285–312.

Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2003).
Developing multiagent systems: The Gaia methodology.
ACM Transactions on Software Engineering and Methodology (TOSEM), 12(3):317–370.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 292 / 295

References

References XIII

Zambonelli, F. and Omicini, A. (2004).
Challenges and research directions in agent-oriented software engineering.
Autonomous Agents and Multi-Agent Systems, 9(3):253–283.
Special Issue: Challenges for Agent-Based Computing.

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 293 / 295

Agent-Oriented Software Engineering
Autonomous Systems

Sistemi Autonomi

Ambra Molesini Andrea Omicini
{ambra.molesini, andrea.omicini}@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna

Academic Year 2017/2018

Molesini & Omicini (DISI, Univ. Bologna) C11 - AOSE A.Y. 2017/2018 294 / 295

	Software Engineering
	Software Process
	Methodologies
	Meta-Models
	SPEM
	OPF & OPEN

	Method Engineering
	Method Fragment Representation
	Method Assembly

	Agent Oriented Software Engineering
	AOSE
	Agent Oriented Methodologies
	MAS Meta-models
	AOSE Methodologies: An Overview
	Methodologies Documentation
	Methodology Challenges

	Agent Oriented Situational Method Engineering
	Method Fragment Representation
	PRoDe: A Process for the Design of Design Processes
	Method Fragment Extraction and Repository Creation
	Result Evaluation

	Research Directions and Conclusion
	Research Directions & Vision
	Conclusions

