
Goal-Driven Agent-Oriented Software Processes

Carlos Cares
Llenguatges i Sistemes Informatics Dept.

Technical University of Catalonia, Barcelona,
Spain, and Ingeniería de Sistemas Dept.,
University of La Frontera, Temuco, Chile

ccares@lsi.upc.edu

Xavier Franch
Llenguatges i Sistemes Informatics Dept.

Technical University of Catalonia,
Barcelona, Spain

franch@lsi.upc.edu

Enric Mayol
Llenguatges i Sistemes Informatics Dept.

Technical University of Catalonia, Barcelona,
Spain

mayol@lsi.upc.edu

Enrique Alvarez
Ergonomic and Prevention Center (CEP)

 Technical University of Catalonia,
Barcelona, Spain

enrique.alvarez@upc.edu

Abstract

The quality of software processes is acknowledged

as a critical factor for delivering quality software
systems. Any initiative for improving the quality of
software processes requires their explicit
representation and management. A current
representational metaphor for systems is agent
orientation, which has become one of the recently
recognized engineering paradigms. In this article we
argue for the convenience of representing the software
process using an agent-oriented language to model it
and a goal-driven procedure to design it. Particularly
we propose using the i* framework which is both an
agent- and a goal-oriented modeling language. We
review the possibilities of i* as a software process
modeling language, and we also show how success
factors can be made explicit in i* representations of
the software processes. Finally, we illustrate the
approach with an example based on the development
of a set of ergonomic and safety software tools.

1. Introduction

Software Process Improvement (SPI) has always
been a permanent concern in software engineering
research because following an adequate software
process is acknowledged as a critical factor for
delivering quality software systems. The design or re-
design of software processes requires a representational

model of them. Thus many ways to model them have
been proposed: from highly detailed process-oriented
modeling languages [1] to a simple sequence of
activities. A main topic of research on software
processes has focused on detecting and testing the
critical success factors for SPI [2-5].

On the other hand, agent orientation is an emergent
paradigm in software engineering. It has been
recognized as a mainstream research area and there are
many scholars that consider it “the” new paradigm in
software engineering [6-9]. In the last few years,
several agent-oriented software engineering
methodologies have been proposed, such as:
Prometheus, Gaia, Tropos, Roadmap and MaSE among
others. A comparative analysis can be found in [10-12].
In these studies Tropos [13] is frequently considered to
be in the group of the most relevant agent-oriented
software methodologies. i* [14] is the modeling
language of Tropos and throughout its evolution it has
included constructs for the classical concepts of both
goal and agent orientation, namely: goal, actor, agent,
role, task, belief, social dependency and commitment,
among others.

In spite of the existence of these methodologies and
the novelty of the paradigm, in [10] it is showed that all
of these methodologies adjust their process models to
classical software processes such as: waterfall,
evolutionary, spiral and transformational. If we
consider that a software methodology can be
characterized by a modeling language and the software
process [15], this observation leads us to say that the

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/220111846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

new agent-oriented methodologies have made a
significant contribution in their modeling languages but
they have stayed static under the process perspective.

On the other hand, in [16] it is argued that the
existing research suggestions for software process
modeling have not been transferred into industrial use.
As a possible solution, the improvement of software
process representational languages is suggested.

In this paper we present theoretical arguments,
complemented with an example, to support the idea
that an agent-oriented representation of the software
process is relevant and convenient for managing
software development projects. Particularly, we
propose the use of the i* framework to represent the
software process and, therefore, to use it as an
abstraction tool which allows the organization of the
software process. In section 2 we relate the main social
concepts of the i* modeling language with the
suggestions formulated in [16] for the representational
frameworks for the software process. Also in this
section we outline a goal-driven procedure to obtain a
software process design. In section 3 we review the
main critical success factors of SPI and we show how
these factors can be represented using i* constructs.
We remark here that an i* representation is oriented to
accomplish functional and quality goals, and therefore,
i* representations of some of the critical success factors
of SPI give a way of both considering and of reaching
them. Moreover, we show how the main scientific
recommendations in software process modeling can be
considered in a flexible software process design. In
section 4 we illustrate, using a real example, how
organizational and quality software concerns can be
organized and represented as a coordinated set of
organizational and software process goals. Finally we
conclude by drawing together the different analyzed
aspects and summarizing the arguments that support
the convenience of using a goal-driven approach for an
agent-oriented modeling of the software process

2. Software process modeling using i*

The i* framework [14] proposes the use of two
models. The Strategic Dependency (SD) model allows
the representation of organizational actors, their
specializations (role, position and agent) and their
relationships (is-a, is-part-of, covers, plays and
occupies). The actors can have social dependencies
between them that are characterized by a resource, task,
goal and softgoal. A softgoal represents a goal, which
can be partially satisfied, or a goal that requires
additional agreement about how it is satisfied. They
have usually been used for representing non-functional

requirements and quality concerns. The second model
is the Strategic Rationale (SR) model, which explodes
the SD model. The SR represents the internal actors’
tasks, resources and goals and their relationships such
as means-end, contributions and decompositions.
Moreover, many related approaches which create or
modify i* constructs for different objectives have been
proposed, e.g. security concerns, stakeholder
simplifications and types of commitments. These could
be consistently added using the proposal from [17].

The basic idea of using the i* framework as a
software process modeling language was formulated in
1994 as an example of i* constructs [18]. Throughout
the last decade the research community has been
formulating a new set of constructs and uses for i*,
however we do not know of any proposals that give
suggestions or guides to the software process.

Table 1. Process elements and i*
representation

Element i* representation

1. Activity Task

2. Product Resource

3. Role Role

4. Human Agent construct (representing a human
agent)

5. Tool

Resource, which can be a means for
achieving a particular task. Tool
functionalities can also be represented
by tasks.

 6.Evolution
Support

Process evolution can be supported by
re-designing the process model and
justifying it by using organizational goals,
softgoals and beliefs and conceptually
tracing the language modifications [1].

7. Project
Organization
model

Actors’ model representing the structure
of the organization (generally by using
actors and the is_part_of actor
relationships) for departments, sections
and positions.

8. Work
Context

The actor boundaries distinguish the
internal representation from the
contextual one.

9. User-view
The users and their dependencies on
actors should constitute the user-view of
the process model.

10
Cooperation
model

Mainly by using dependencies between
actors (task, resource, goal or softgoal
dependencies)

11.
Versioning
and
transaction

The i* framework does not have specific
mechanisms for versioning, however
these elements seem to be adequate for
tools as e.g. [19].

12.
Quality and
performance
model

The i* framework is especially suitable
for quality concerns. However it requires
additional constructs to represent
deadlines and budgets.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

In order to match the modeling language capabilities
with the requirement for software process
representation, we have studied the summary of the 12
requirements for software process languages stated in
[1]. In table 1 we summarize the match with i*
suggested representations.

Additionally, in [16] another set of suggestions has
been proposed, in order that software process
representations allow: incomplete and informal
specifications; easy adoption; practitioners to
incrementally build their process model, making it
more formal in advanced organizational stages, where
enactment and simulation could take place. To show
how i* can accomplish these general features, we
present some models showing summarized examples
which accomplish the mentioned characteristics. In
figure 1 we illustrate a small model which shows a
general actor, the software team, which has the softgoal
- users’ point of view effectively considered – which
should be fulfilled.

Users’ point of
view effectively

considered

Legend

Actor

Actor’s boundary

Goal

Positive contribution

Softgoal

+

++Initial users’
assessment
obtained

Software
Development

Team

Figure 1. Partial and informal representation

of a software process

In addition we also show the goal - initial users’
assessment obtained - which contributes to accomplish
the above softgoal. In this example we can see how
there is not a specific role or person who is committed
to this goal. Besides, the given softgoal is highly
informal and the model does not represent
complementary ways of contributing to the softgoal. In
this sense we show that the software process model
may be, initially, incomplete and informal.

We analyze the easy adoption feature from a
cognitive perspective more than an organizational
perspective. The organizational perspective is much
more complex (e.g. the factors analyzed in [20, 21]).
We analyze it from the most relevant success factors of
SPI in the section 3. We think that the cognitive
perspective can be analyzed using four factors: the
design metaphor, the abstraction level, the notation and
the formality of the proposal. First, the design
metaphor of the i* framework includes real life
concepts such as: task, resource, actor, goal,
dependency, and so on. Therefore these features imply
that the i* framework would be easier to adopt than

others with no evident match between the reality and
the modeling language. Second, the abstraction level of
i* allows both generic and specific representations and,
moreover, both representations can coexist in the same
diagram (e.g. the agent Carlos in figure 2). Third, the
notation is mainly graphic which facilitates the
interpretation of the diagrams. Although there are
different specifications of the i* framework, we have
proposed a generic metamodel which defines the
concepts and includes the different formalization
approaches [17]. It can be considered a formal
reference of the language in order to avoid potential
ambiguities. These four reasons seem sufficient to
argue that, from a cognitive perspective, i* has relevant
features that may make its adoption easier in a software
development team.

Following the characteristics expressed in [16], the
possibility to make software processes more formal (in
the organizational sense) is also accomplished by the i*
framework. For example in figure 2, a specific
organizational position into the developing team
(quality engineer) is recognised, which covers a
specific role (usability tester) and this role has been
assigned the goal initial users’ assessment obtained. In
this example we have also represented the social (task)
dependency from the generic actor user. Also we have
introduced a means-end relationship, which identifies
the means (in this case a task) which is useful to
accomplish the identified goal.

Usability
tester

LegendActor
Actor’s
boundary

Goal

Means-end

Initial users’
assessment
obtained

covers

User

D D

Users interviewed
in real work
environment

Quality
engineer
Quality
engineer

Role

Position Task

D Dependency

Carlos

occupies

Agent

Actors’
relationships

Figure 2. Organizational representation

With this second example we have shown that some

classical organizational formalism, such as positions,
roles and tasks, can be represented in a specific
software process design and, moreover, the i*
representation can constitute the formalization of the
organizational process itself.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Now we analyze the recommendation from [16]
about the possibility of supporting enactment and
simulation. For this we suggest that a first and initial
organizational step is to apply the goal-verification
process proposed in [22] which is a high level
algorithm and does not require a detailed specification.
However, if the organization reaches an advanced
maturity level, this verification process can evolve to
the temporal logic based analysis proposed in [23],
which allows goal fulfillment simulation.

The final analyzed recommendation from [16] is
about the possibility of building the software process
incrementally. We have already stated that an i*
diagram could be informal and incomplete. However
we think that the procedure for completing and
detailing the diagram should be a goal-driven one and,
this way, to incrementally obtain the software process
representation. We propose the following stages to
obtain the software process design: (1) represent the
high-level organizational goals; (2) represent the high-
level software process goals; (3) identify the needed
roles to achieve the organizational goals and the new
software process goals; (4) link organizational goals
with software process goals identifying synergies (by
contributions and/or goal decompositions); (5) identify
the goal-dependencies between actors (identified roles
and external actors such as stakeholders); (6) design
the positions covering the roles with a balanced
workload; (7) assign agents to identified positions; (8)
identify additional high-level dependencies between
agents (resource and task dependencies); (9) state
internal goal and task decompositions considering the
agent capabilities (software and related professionals);
(10) review the model consistency, acceptance and
social commitment.

This goal-driven procedure is strongly inspired by
goal-oriented requirement engineering [24, 25] and,
moreover, it accomplishes the meta-process phases:
(mp-1) process elicitation and requirement
specification; (mp-2) process analysis; and (mp-3)
process design. These phases for arriving at the process
design have been specified in [1]. Thus we have
formulated a prescriptive method oriented specifically
to designing the software process. Moreover, we have
used the i* constructs giving a strong orientation to i*
software process modeling. In this case our aim was to
propose an additional element to complete the analyzed
recommendations for a software process modeling
framework.

Therefore we think that the revised conditions for a
software process modeling language presented in [16]
and in [1] are well accomplished by the i* framework.

However, it is possible to observe from the above
examples and the suggested procedure that the initial
goal elicitation is not a clear and objective process. On
the other hand there is an additional recommendation in
[16] for including concepts and guidelines on how to
accomplish technological, engineering, organizational
and economic support. In order to find a set of
guidelines for the i* software process modeling we
analyze the SPI success factors

3. Representing SPI’s success factors

In this section we review some suggestions about
SPI critical success factors (CSFs) in order to select the
most relevant ones and show how they can be
represented in i* diagrams.

In table 2 we have summarized the CSFs and some
identified barriers (transformed in a positive way as
CSFs). Together with these CSFs we have added a
column which specifies our proposal for representing
the corresponding factor using i* language elements.
Given that we have reviewed CSFs from various
sources and that there are similar factors with different
names and closely related success factors, we have
unified some of them.

In [26] 6 critical success factors for SPI have been
identified. This research was conducted by literature
research, interviews and questionnaires done in
organizations in Sweden. The identified CSFs were: (1)
process documentation; (2) change management (of the
process documentation); (3) management commitment;
(4) user involvement; (5) process synchronization
(mainly on input-output issues); (6) baselining.
Although we have numbered the factors in order of
importance, it is important to remark that the authors
have acknowledged that this relative importance is hard
to generalize because other research shows different
findings.

In [4] another CSFs research is presented. This
report formulated questions about critical factors for
SPI which were then answered by literature review.
The analyzed studies covered more than 150
companies. In addition this study included its own
empirical research on 20 Australian companies in order
to support the proposal of a SPI implementation
maturity model. Thus 18 CSFs were selected. From
them we have selected the most frequently cited,
namely: senior management commitment (3), training
and mentoring, staff involvement, staff time and
resources, experienced staff (7), creating process action
teams (10), encouraging communication and
collaboration (9), assignment of responsibility of SPI
(10) and clear and relevant SPI goals (1). We believe

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

that creating process action teams and assigning SPI
responsibility are both involved in managing the
improvement process.

In the cited research [4] a set of barriers were also
identified, the most common ones are: lack of resources
(11), organizational politics, SPI getting in the way of
real work, and staff turnover. These last three factors
need some additional analysis before entering putting
or creating the respective item in the table.

First, in organizational sciences, organizational
politics has two main interpretations [27]. One is the
influence that is exercised aside from the work setting
(positive or negative). The second interpretation refers
to behavior that is strategically designed to maximize
self-interest, which could include work activities (e.g.
designing an evaluation system oriented to self-
promotion). However if we examine the questions
addressed in [4], the issues around organizational
politics refer to management and staff support for SPI,
which could be maintained by adequate promotion and
by the culture of the organization. In this sense we have
divided this factor into: management and staff
commitment (3), and change management (2), which
should include goals like adequate change promotion.

Second, to address the SPI factor gets in the way of
real work, we examine the concept work. The implicit
meaning is that producing software is “real work”
while improving the software process does not.
Therefore explicit management and staff commitment
(3) which should include SPI might be enough to
achieve this success factor.

Third, although staff turnover could be caused by
many reasons, we have included them in the factor
adequate staff compensations (12).

In [28] 10 CSFs are analyzed 5 times, from 1998 to
2002, at Samsung Electronics Co., Korea. The factors
were: management commitment and support (3), staff
involvement (3), providing enhanced understanding
(1), tailoring improvement initiatives (13), managing
the improvement process (10), stabilizing the changed
process (2), encouraging communication and
collaboration (9), changing agents and opinion leaders
(8), setting relevant and realistic objectives (10) and
unfreezing the organization (we think that this is
represented by factors 2, 3, 12 and 13). The economic
factor appears in SPI topics as resource dependencies
and management commitment, however this topic
requires additional attention because it is one of the
main factors to simulate in advanced software process
representations and it is related with the budget
planning mentioned in section 2.

Table 2. CSFs summary and i* representation

CSFs of SPI i* representation proposal

1. Process
documentation

Presenting an i* diagram of
the software process with
clear SPI goals

2. Change
management

Creating the goal
Management change
including stabilization and
promotion

3.
Management
and staff
commitment

Creating explicit
dependencies between
management actors, mainly
resource dependencies for
improvement activities.

4. User
involvement

Creating the goal User
involvement achieved

5. Synchronization

Creating (information)
resource dependencies
and using task sequence
constructs

6. Baselining Detailing the goals of each
role

7.
Training and
experienced
staff

Creating training goals and
explicit dependencies
between human resource
department and recruitment
process and the technical
and experience
requirement

8.
Change agents
and opinion
leaders

Creating the goal
Considering opinion
leaders as change
promoters. In [29] it is said
that promoting change
agents is an suitable
choice too.

9.
Communication
and
Collaboration

Creating explicit
information resource
dependencies and cross
communication goals.

10.
Managing the
improvement
process

Creating the goal Software
process improvement
managed and identifying
the component which
allows its fulfillment

11. Resource
availability

Representing resource
dependencies on resource
managers.

12. Adequate staff
compensation

Creating the goal
Personnel preserved by
interesting compensations.

13. Tailoring impro-
ving initiatives

Clearly specifying the
means (tasks and
resources) to accomplish
the suggested
improvement goals.

We think that this proposal of SPI factors with the
corresponding i* representations, constitutes a well-
founded guideline for how to accomplish technological,
engineering and organizational support.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

To sum up, our proposal includes seven high-level
goal identifications, four high-level dependencies, one
general assertion about process documentation and one
characterization of the goal composition and means-
end analysis. We observe that the amount of CSFs
which include goals and goal dependencies gives
additional support to the claim that the resulting agent
representation is obtained by a goal-driven procedure.

4. UPCTools example

UPCTools is a set of ergonomic, hygienist and
ambient safety tools. These software tools have been
developed at the Ergonomics and Prevention Centre
(CEP) at the Technical University of Catalonia. Since
2000, 35 tools have been developed which have used
by more than 1500 registered users. The CEP is an
educational and research unit; furthermore it has
objectives other than producing software.

We have analyzed this case because, from a
superficial view, the CEP followed an ill-formulated
software process, without clear stages or the
specification of intermediate work products. Despite
this the professionals coordinate their work to produce
software together. At the same time the software tools

solve technical problems, and the big user community
has a very good perception of the quality of these tools.
We consider this as a particular case where well
coordinated organizational and software process goals
imply the development of high-quality software tools.
We observe that, in fact, a detailed software process
was never specified; however all the involved
professionals clearly know their own goals and the
dependencies with other members of the team.
Moreover, there is a permanent effort made by the unit
head to relate CEP members’ professional development
and research and educational goals with the particular
software process responsibilities. We also observe how
these goals and social dependencies constitute an
intentional network designed to accomplish the main
organizational goals. In this way we have built our
example following a reverse engineering procedure,
reviewing mainly task, goals and social dependencies.

In figure 3 we have represented the existing design
using the i* framework. We illustrate the model of
actors and the relationships between their main
organizational goals and the contributions of
developing software services for the users’ technical
community.

CEP
Professor

CEP
Professor

High quality research
& educational
activities done

High quality research
& educational
activities done

Full time
CEP Pro-

fessor

Full time
CEP Pro-

fessor

Theoretical and
state of the art

education provided

Theoretical and
state of the art

education provided

Part time
CEP Pro-

fessor

Part time
CEP Pro-

fessor

Students’
industrial skills

developed

Students’
industrial skills

developed

High quality
research done
High quality

research done

Community
contributions

made

Community
contributions

made

Theoretical and
practical

knowledge related

Theoretical and
practical

knowledge related

state of the art
tendencies
considered

state of the art
tendencies
considered

Added-value and state of
art ergonomics and safety

tools conceptualized

Added-value and state of
art ergonomics and safety

tools conceptualized

CEP
Head
CEP
Head

Theoretical and
practical know-

ledge interchange
promoted

Theoretical and
practical know-

ledge interchange
promoted

IT education on
ergonomics and safety

tools included

IT education on
ergonomics and safety

tools included

Technical industrial
support on ergonomics

and safety offered

Technical industrial
support on ergonomics

and safety offered

coversis_a

is_a

covers

is_a

is_a
is_a

Empirical and
field research

done

Empirical and
field research

done

+

+
+

+ + +

+

+

+

+

+

+
+

++

+

+

+

UPCTools
Support
Manager

UPCTools
Support
Manager

UPCTools
Docu-
menter

UPCTools
Docu-
menter

Ergonomic and
safety IT services

supported

Ergonomics and
safety computer

tools specified and
tested

Updated technical
information for
UPCTools kept

+

+

Legend

Actor Actor’s
boundary

Goal

Contribution

Role

Position Softgoal D

Dependency

+ | -

UPCTools
Manager

UPCTools
Expert

Figure 3. Software process intentional network obtained by reverse engineering at CEP

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

For example we highlight the positions of part-time
professors, who are considered experts in the
corresponding technical tools in his/her particular
career, covering topics such as: ergonomic design, fire
risk evaluation, vibration evaluation, among many
others.

On the other hand a full time professor complements
the work with a theoretical review, which is added into
the documentation of the software tools. The tools are
tested in practical educational activities which consist
of generating safety and hygiene reports. At the same
time these educational activities are oriented to
stimulate the students’ practical skills. Therefore the
expert’s work is supported by the theoretical revisions
and practical tools of his/her corresponding teaching
activities.

We have also represented the dependencies that we
have added with the software professionals’ roles and
positions. We have observed how the dependencies
tend to appear in pairs. For example the Software
Developer (for a specific software tool) depends on the
approval of the UPCTools Expert for technical issues,
of the UPCTool Support Manager for user-interface
consistency and of the Software Engineer for
architectural design and consistency, among other
dependencies. But the person responsible for technical
issues is the UPCTools Expert, for architectural design
is the Software Engineer and for user-interface
consistency is the UPCTools Manager. We have
observed these dependencies in the Strategic
Dependency model which we have omitted here.

In this case we can see how a high-level goal
organization implies a successful and long-term
software production process. We also confirm our
initial claim, that the agent-orientation and specifically
the i* framework, is adequate for representing software
processes. Moreover, we think that our theoretical
argument has initial empirical support, because we can
see that a goal-driven software process, an agent-
oriented representation, is suitable for tackling the
problem of representing, designing and improving the
software process.

5. Conclusions

We have proposed a goal-driven process to obtain
agent-oriented representations of the software process.
We have specifically analyzed the representational
power of the i* framework and we have related these
capabilities to specific suggestions for software process
modeling languages. We have presented four
arguments to support our approach: (1) a comparative
match among software process suggestions and i*

representational power, (2) a procedure inspired by
goal-oriented requirement engineering aimed to guide
the software process modeling, (3) an analysis of SPI
factors to guide the initial goals and dependencies
recognition and, finally, (4) a case study which
illustrates both the desirability of a goal-driven
approach and suitability of a agent-oriented
representation of the software process.

This proposal is in line with the direction of our
main research proposal, which is modelling knowledge
reuse at the requirements stage. Therefore our future
work will propose specific models to manage the
requirements activities using the i* framework. Also,
we recognize that additional work should be done
along related lines, such us empirical validation of the
proposal, extra goal identification to improve the
recommendation guidelines, including detailed
economic issues in the representation of the software
process. Also, it seems plausible and necessary to
propose a framework which consistently mixes the
abstraction level of the software process with the
abstraction level of the domain analysis, especially
when the i* framework is used. Another future work
suggestion is to deal with quality and certification
concerns, because a goal-driven design procedure
allows explicit goals from quality standards to be
included.

There is some related work associated to OMG
standards. In [30] and [31] the goal concept has been
incorporated into the metamodel of the software
process (SPEM). However, in both cases the
interpretation is a low-level interpretation of this
concept; it is at the operative level because it is
associated with the workproduct class. Moreover the
goal class is a subclass of the constraint class. In the
case of [31] a person-agent is subclass of agent,
however, following the metamodel, it implies that a
person-agent is a subclass of workproduct.

Therefore, we conclude that our proposal is based
on a more generic abstraction level, where software
process actors (agents) can achieve management goals
for software production and SPI. Therefore its
convenience is not only the suitability of the
representational language, but it is also that the main
proposals for SPI can be represented at this abstraction
level. In addition, we have complemented our approach
with an example, which shows initial evidence that a
well established intentional network constitutes a
relevant topic at the manufacture of quality software
products.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

10. References

[1] R. Conradi and M.L. Jaccheri, "Process Modelling
Languages", J-C. Derniame, B.A. Kaba, and D. Wastell, Eds,
LNCS, Springer-Verlag Berlin, vol. 1500, 1999, pp. 27-52.
[2] S. Acuña et.al., “The Handbook of Software Engineering
& Knowledge Engineering" in The Software Process
Modelling, Evaluation and Improvement, vol. 1 (1): World
Scientific Publishing Co., 2001, pp. 1-35.
[3] T. Dyba, "An Instrument for Measuring the Key Factors
of Success in Software Process Improvement" Empirical
Software Engineering, vol. 5, pp. 357-390, 2000.
[4] M. Niazi, D. Wilson, and D. Zowghi, "A maturity model
for the implementation o software process improvement: an
empirical study" The Journal of Systems and Software, 2003.
[5] D. Stelzer and W. Mellis, "Success Factors of
Organizational Change in Software Process Improvement"
Software Process - Improvement and Practice, vol. 4, 1998
pp. 227-250.
[6] P. Giorgini, "Agent-Oriented Software Engineering
Report on the 4th AOSE Workshop" SIGMOD Record, vol.
32, 2003, pp. 117-118.
[7] N. R. Jennings, "On agent-based software engineering"
Artificial Intelligence, vol. 117, 2000, pp. 277-296.
[8] J. Lind, "Issues in Agent-Oriented Software Engineering"
LNCS, Springer-Verlag, Berlín, vol. 1957, 2001, pp. 45-58.
[9] X. J. Mao and E. Yu, "Organizational and social concepts
in agent oriented software engineering," LNCS, Springer-
Verlag Berlin, vol. 3382, 2005, pp. 1-15.
[10] L. Cernuzzi, M. Cossentino, and F. Zambonelli,
"Process models for agent-based development", Engineering
Applications of Artif. Intell., vol. 18, 2005, pp. 205–222.
[11] K. H. Dam and M. Winikoff, "Comparing agent-
oriented methodologies" LNCS, Springer-Verlag Berlin, vol.
3030, 2003, pp. 78-93.
[12] J. Sudeikat, et. al., "Evaluation of Agent–Oriented
Software Methodologies – Examination of the Gap Between
Modeling and Platform", LNCS, Springer-Verlag Berlin, vol.
3382, 2005, pp. 126-141.
[13] J. Castro, M. Kolp, and J. Mylopoulos, "A
Requirements-Driven Development Methodology" Advanced
Information Systems Engineering: 13th Int. Conf. CAiSE,
Interlaken, Switzerland, 2001, pp. 108-123.
[14] E. Yu, "Modelling Strategic Relationships for Process
Reengineering," in Computer Science, vol. PhD. Toronto:
University of Toronto, 1995.
[15] B. Bauer and J. P. Muller, "Using UML in the context
of agent-oriented software engineering: State of the art",
LNCS, Springer-Verlag, Berlin, vol. 2935, 2004, pp. 1-24.
[16] A. Fuggetta, "Software Process: A Roadmap", Proc. of
the Int. Conf. on Software Engineering, ICSE 2000, Limerick
Ireland, 2000.
[17] C. Ayala, et. al., "A Comparative Analysis of i*-Based
Agent-Oriented Modeling Languages" Proc. of the 17th Int.

Conf. on Software Engineering and Knowledge Engineering
(SEKE), Taipei, Taiwan, 2005, pp. 43-50.
[18] E. Yu and J. Mylopoulos, "Understanding “why” in
software process modelling, analysis, and design", Proc. of
the 16th Int. Conf. on Software Engineering, Sorrento, Italy,
1994, pp. 159-168.
[19] L. Jaccheri, J.-O. Larsen, and R. Conradi, "Software
Process Modeling and Evolution in EPOS", IEEE Trans. on
Software Engineering, vol. 19, 1992, pp. 1145-1156.
[20] R. Agarwal and J. Prasad, "A Field Study of the
Adoption of Software Process Innovations by Information
Systems Professionals", IEEE Trans. on Engineering
Management, vol. 47, 2000, pp. 295-308.
[21] J. Becker, M. Rosemann, and C. v. Uthmann,
"Guidelines of Business Process Modeling" in Business
Process Management: Models Techniques and Empirical
Studies, J. S. W. van der Aalst, A. Oberweis, Eds. Springer-
Verlag, Berlín, 2000, pp. 30-49.
[22] F. Giunchiglia, J. Mylopoulos, and A. Perini, "The
Tropos Software Development Methodology: Processes,
Models and Diagrams", LNCS, Springer-Verlag, Berlín, vol.
2585, 2003, pp. 162-173.
[23] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso,
"Model Checking Early Requirements Specifications in
Tropos" Proc. of the 5th IEEE Int. Symp. on Requirements
Engineering, Toronto, Canada, 2001, pp. 174-181.
[24] A. v. Lamsweerde, "Goal-Oriented Requirements
Engineering: A guided Tour", Proc. of the 5th Int. Symp. on
Requirements Engineering, 2001, pp. 249-261.
[25] J. Mylopoulos, L. Chung, and E. Yu, "From object-
oriented to goal-oriented requirements analysis",
Communications of the ACM, vol. 42, 1999, pp. 31-37.
[26] P. Berander and C. Wohlin, "Identification of Key
Factors in Software Process Management - A Case Study",
Proc. of the Int. Symposium on Empirical Software
Engineering (ISESE'03), Rome, Italy, 2003, pp. 316-325.
[27] R. Cropanzano, J. C. Howes, A. A. Grandey, and P.
Toth, "The relationship of organizational politics and support
to work behaviors, attitudes, and stress", Journal of
Organizational Behaviour, vol. 18, 1997, pp. 159-180.
[28] S.-a. Lee and B. Choi, "Transition Management of
Software Process Improvement" LNCS, Springer-Verlag,
Berlín, vol. 2559, 2002, pp. 19-34.
[29] A. Rainer and T. Hall, "Key success factors for
implementing software process improvement: a maturity-
based analysis", Journal of Systems and Software, vol. 62
(2), 2002, pp. 71-84.
[30] “Software Process Engineering Metamodel
Specification, version 1.1”, Object Management Group, Inc.,
at http://www.omg.org/docs/formal/05-01-06.pdf, Last
accessed March 2006, Feb. 2005.
[31] K. Cooper and L. Chung, “Extending OMG Standards
to Support Modeling Agents, Goals, and Components,
Version 1.0”, CS Dept. U. Texas, Dallas, at
http://www.utdallas.edu/~weiminma/public/folder/ Technical
Report/UTDCS-41-04.pdf, Last accessed March 2006, 2004.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

