1,381 research outputs found

    Automatic Bayesian Density Analysis

    Full text link
    Making sense of a dataset in an automatic and unsupervised fashion is a challenging problem in statistics and AI. Classical approaches for {exploratory data analysis} are usually not flexible enough to deal with the uncertainty inherent to real-world data: they are often restricted to fixed latent interaction models and homogeneous likelihoods; they are sensitive to missing, corrupt and anomalous data; moreover, their expressiveness generally comes at the price of intractable inference. As a result, supervision from statisticians is usually needed to find the right model for the data. However, since domain experts are not necessarily also experts in statistics, we propose Automatic Bayesian Density Analysis (ABDA) to make exploratory data analysis accessible at large. Specifically, ABDA allows for automatic and efficient missing value estimation, statistical data type and likelihood discovery, anomaly detection and dependency structure mining, on top of providing accurate density estimation. Extensive empirical evidence shows that ABDA is a suitable tool for automatic exploratory analysis of mixed continuous and discrete tabular data.Comment: In proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Epitope profiling via mixture modeling of ranked data

    Full text link
    We propose the use of probability models for ranked data as a useful alternative to a quantitative data analysis to investigate the outcome of bioassay experiments, when the preliminary choice of an appropriate normalization method for the raw numerical responses is difficult or subject to criticism. We review standard distance-based and multistage ranking models and in this last context we propose an original generalization of the Plackett-Luce model to account for the order of the ranking elicitation process. The usefulness of the novel model is illustrated with its maximum likelihood estimation for a real data set. Specifically, we address the heterogeneous nature of experimental units via model-based clustering and detail the necessary steps for a successful likelihood maximization through a hybrid version of the Expectation-Maximization algorithm. The performance of the mixture model using the new distribution as mixture components is compared with those relative to alternative mixture models for random rankings. A discussion on the interpretation of the identified clusters and a comparison with more standard quantitative approaches are finally provided.Comment: (revised to properly include references

    An Ordinal Approach to Affective Computing

    Full text link
    Both depression prediction and emotion recognition systems are often based on ordinal ground truth due to subjectively annotated datasets. Yet, both have so far been posed as classification or regression problems. These naive approaches have fundamental issues because they are not focused on ordering, unlike ordinal regression, which is the most appropriate for truly ordinal ground truth. Ordinal regression to date offers comparatively fewer, more limited methods when compared with other branches in machine learning, and its usage has been limited to specific research domains. Accordingly, this thesis presents investigations into ordinal approaches for affective computing by describing a consistent framework to understand all ordinal system designs, proposing ordinal systems for large datasets, and introducing tools and principles to select suitable system designs and evaluation methods. First, three learning approaches are compared using the support vector framework to establish the empirical advantages of ordinal regression, which is lacking from the current literature. Results on depression and emotion corpora indicate that ordinal regression with proper tuning can improve existing depression and emotion systems. Ordinal logistic regression (OLR), which is an extension of logistic regression for ordinal scales, contributes to a number of model structures, from which the best structure must be chosen. Exploiting the newly proposed computationally efficient greedy algorithm for model structure selection (GREP), OLR outperformed or was comparable with state-of-the-art depression systems on two benchmark depression speech datasets. Deep learning has dominated many affective computing fields, and hence ordinal deep learning is an attractive prospect. However, it is under-studied even in the machine learning literature, which motivates an in-depth analysis of appropriate network architectures and loss functions. One of the significant outcomes of this analysis is the introduction of RankCNet, a novel ordinal network which utilises a surrogate loss function of rank correlation. Not only the modelling algorithm but the choice of evaluation measure depends on the nature of the ground truth. Rank correlation measures, which are sensitive to ordering, are more apt for ordinal problems than common classification or regression measures that ignore ordering information. Although rank-based evaluation for ordinal problems is not new, so far in affective computing, ordinality of the ground truth has been widely ignored during evaluation. Hence, a systematic analysis in the affective computing context is presented, to provide clarity and encourage careful choice of evaluation measures. Another contribution is a neural network framework with a novel multi-term loss function to assess the ordinality of ordinally-annotated datasets, which can guide the selection of suitable learning and evaluation methods. Experiments on multiple synthetic and affective speech datasets reveal that the proposed system can offer reliable and meaningful predictions about the ordinality of a given dataset. Overall, the novel contributions and findings presented in this thesis not only improve prediction accuracy but also encourage future research towards ordinal affective computing: a different paradigm, but often the most appropriate

    Detecting Political Framing Shifts and the Adversarial Phrases within\\ Rival Factions and Ranking Temporal Snapshot Contents in Social Media

    Get PDF
    abstract: Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements expressing their opinions on diverse sets of issues, events, complaints, grievances, and goals. Methods for monitoring and summarizing these types of sociopolitical trends, its leaders and followers, messages, and dynamics are needed. In this dissertation, a framework comprising of community and content-based computational methods is presented to provide insights for multilingual and noisy political social media content. First, a model is developed to predict the emergence of viral hashtag breakouts, using network features. Next, another model is developed to detect and compare individual and organizational accounts, by using a set of domain and language-independent features. The third model exposes contentious issues, driving reactionary dynamics between opposing camps. The fourth model develops community detection and visualization methods to reveal underlying dynamics and key messages that drive dynamics. The final model presents a use case methodology for detecting and monitoring foreign influence, wherein a state actor and news media under its control attempt to shift public opinion by framing information to support multiple adversarial narratives that facilitate their goals. In each case, a discussion of novel aspects and contributions of the models is presented, as well as quantitative and qualitative evaluations. An analysis of multiple conflict situations will be conducted, covering areas in the UK, Bangladesh, Libya and the Ukraine where adversarial framing lead to polarization, declines in social cohesion, social unrest, and even civil wars (e.g., Libya and the Ukraine).Dissertation/ThesisDoctoral Dissertation Computer Science 201

    A Survey on Neural Network Interpretability

    Full text link
    Along with the great success of deep neural networks, there is also growing concern about their black-box nature. The interpretability issue affects people's trust on deep learning systems. It is also related to many ethical problems, e.g., algorithmic discrimination. Moreover, interpretability is a desired property for deep networks to become powerful tools in other research fields, e.g., drug discovery and genomics. In this survey, we conduct a comprehensive review of the neural network interpretability research. We first clarify the definition of interpretability as it has been used in many different contexts. Then we elaborate on the importance of interpretability and propose a novel taxonomy organized along three dimensions: type of engagement (passive vs. active interpretation approaches), the type of explanation, and the focus (from local to global interpretability). This taxonomy provides a meaningful 3D view of distribution of papers from the relevant literature as two of the dimensions are not simply categorical but allow ordinal subcategories. Finally, we summarize the existing interpretability evaluation methods and suggest possible research directions inspired by our new taxonomy.Comment: This work has been accepted by IEEE-TETC

    The Catalog Problem:Deep Learning Methods for Transforming Sets into Sequences of Clusters

    Get PDF
    The titular Catalog Problem refers to predicting a varying number of ordered clusters from sets of any cardinality. This task arises in many diverse areas, ranging from medical triage, through multi-channel signal analysis for petroleum exploration to product catalog structure prediction. This thesis focuses on the latter, which exemplifies a number of challenges inherent to ordered clustering. These include learning variable cluster constraints, exhibiting relational reasoning and managing combinatorial complexity. All of which present unique challenges for neural networks, combining elements of set representation, neural clustering and permutation learning.In order to approach the Catalog Problem, a curated dataset of over ten thousand real-world product catalogs consisting of more than one million product offers is provided. Additionally, a library for generating simpler, synthetic catalog structures is presented. These and other datasets form the foundation of the included work, allowing for a quantitative comparison of the proposed methods’ ability to address the underlying challenge. In particular, synthetic datasets enable the assessment of the models’ capacity to learn higher order compositional and structural rules.Two novel neural methods are proposed to tackle the Catalog Problem, a set encoding module designed to enhance the network’s ability to condition the prediction on the entirety of the input set, and a larger architecture for inferring an input- dependent number of diverse, ordered partitional clusters with an added cardinality prediction module. Both result in an improved performance on the presented datasets, with the latter being the only neural method fulfilling all requirements inherent to addressing the Catalog Problem

    Discrete language models for video retrieval

    Get PDF
    Finding relevant video content is important for producers of television news, documentanes and commercials. As digital video collections become more widely available, content-based video retrieval tools will likely grow in importance for an even wider group of users. In this thesis we investigate language modelling approaches, that have been the focus of recent attention within the text information retrieval community, for the video search task. Language models are smoothed discrete generative probability distributions generally of text and provide a neat information retrieval formalism that we believe is equally applicable to traditional visual features as to text. We propose to model colour, edge and texture histogrambased features directly with discrete language models and this approach is compatible with further traditional visual feature representations. We provide a comprehensive and robust empirical study of smoothing methods, hierarchical semantic and physical structures, and fusion methods for this language modelling approach to video retrieval. The advantage of our approach is that it provides a consistent, effective and relatively efficient model for video retrieval
    corecore