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Abstract

The titular Catalog Problem refers to predicting a varying number of ordered clus-

ters from sets of any cardinality. This task arises in many diverse areas, ranging from

medical triage, through multi-channel signal analysis for petroleum exploration to

product catalog structure prediction. This thesis focuses on the latter, which exem-

plifies a number of challenges inherent to ordered clustering. These include learning

variable cluster constraints, exhibiting relational reasoning and managing combinato-

rial complexity. All of which present unique challenges for neural networks, combining

elements of set representation, neural clustering and permutation learning.

In order to approach the Catalog Problem, a curated dataset of over ten thousand

real-world product catalogs consisting of more than one million product offers is

provided. Additionally, a library for generating simpler, synthetic catalog structures

is presented. These and other datasets form the foundation of the included work,

allowing for a quantitative comparison of the proposed methods’ ability to address

the underlying challenge. In particular, synthetic datasets enable the assessment of

the models’ capacity to learn higher order compositional and structural rules.

Two novel neural methods are proposed to tackle the Catalog Problem, a set

encoding module designed to enhance the network’s ability to condition the prediction

on the entirety of the input set, and a larger architecture for inferring an input-

dependent number of diverse, ordered partitional clusters with an added cardinality

prediction module. Both result in an improved performance on the presented datasets,

with the latter being the only neural method fulfilling all requirements inherent to

addressing the Catalog Problem.
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Abstrakt

Det titulære Catalog Problem henviser til at forudsige varierende antal ordnede klyn-

gedannelse fra sæt af enhver kardinalitet. Denne opgave opst̊ar p̊a mange forskellige

omr̊ader, fra behandling af patienter til multikanal signal analyse i petroleum ud-

forskning, til forudsigelse af produkt katalog struktur. Denne tese fokusere p̊a det

sidstnævnte, som er et eksempel p̊a en række udfordringer, der er forbundet med

ordnet klyngedannelse. Disse udfordring omfatter indlæring af varierende klyngebe-

grænsninger, relationel ræsonnementer, og h̊andtering af kombinatorisk kompleksitet.

Alle disse omr̊ader udøgr unikke udfordringer for neurale netværk, der sammensætter

elementer af sætrepresentation, klyngedannelse, og indlæring af ordne.

For at kunne løse Catalog Problemet, et kureret datasæt er vedlagt med over

10.000 produktkataloger der best̊ar af mere end en million produkter. Desuden

præsenteres et library til generering af enklere, syntetiske katalogstrukturer. Disse og

andre datasæt danner grundlaget for det følgende forskning, og giver mulighed for en

kvantitativ sammenligning af de forsl̊aede metoders evne til at løse den underliggende

udfordring. Især gør syntetiske datasæt det muligt at vurdere modelens evne til at

lære højere ordensammensætnings- og strukturelle regler.

Der foresl̊as to nye metoder til at løse Catalog Problemet: et sætkodningsmodul

der er udformet til at forbedre netværkets evne til at hærde forudsigelsen p̊a hele

inputmængden, og en større arkitektur til at udlede en variabel antal forskellige,

delvis ordnede klynger med et ekstra kardinalitetsforudsigelsesmodul. Begge resultere

i en forbedret ydeevne p̊a de presenterede datasæt, idet sidstenævnte er den eneste

neurale metode, der opfylder alle de krav, der er forbundet me Catalog Problemet.
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List of Figures

1.1 Incito. This proprietary rendering service defines the output of the

models. Incito expects an ordered list of sub-lists, each sub-list consist-

ing of product offers (top). Each product offer is represented here in the

Incito input by a descriptive identifier (e.g. broccoli 1). Predicted

nested lists are passed to the Incito service, which renders them into

readable, visually appealing electronic catalog pages (bottom), here in

the form of three consecutive screen captures. Order of sub-lists is

respected, order of elements within a sub-list is ignored in favour of

utilizing all available screen space. Colours and other visual elements

are determined by the Incito service heuristically. . . . . . . . . . . . 7

1.2 Paper Product Catalogs. Examples of real-world catalogs designed

by human experts, taken from the provided PROCAT dataset. Each

row consists of three consecutive pages, each page sequence is selected

from a different product catalog. Such page compositions and their

order within the larger structure of catalogs forms the training data

and supervision target for the presented models. . . . . . . . . . . . . 9

2.1 The Catalog Problem. From left to right: a set of input elements

(X); target partitional clustering of those elements (C = {C1,C2,C3});
and a target ordering over those clusters (y = (C2,C1,C3)), left to

right. The targets presented here were chosen arbitrarily for the pur-

poses of this demonstration, in used datasets they contain learnable

patterns. A candidate model may perform all these tasks using in-

formation about inter-element relations and intra-cluster relations in

order to characterise a cluster, and inter-cluster relations to generate

the final, ordered clustering. Such a method, capable of predicting an

input-dependent number of ordered partitional clusters, constitutes a

Complete Approach to the Catalog Problem. . . . . . . . . . . . . 21
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2.2 Incomplete Approach. In this work, two approaches to the Catalog

Problem are explored. The earlier, simpler approach requires the tar-

get number of sections to be known to the model. This is shown above

as k = 3, represented by the number of vertical section-break tokens

- two in the example, one fewer than the number of sections. These

are included in the input set (left). The incomplete, set-to-sequence

approach also predicts meaningless in-section order as it outputs a per-

mutation of all input set elements (middle). The in-section order is

ignored by the Incito service. From this permutation, the final ordered

clustering is derived (right). . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Travelling Salesman Problem. The TSP bears similarities to the

Catalog Problem. On the left, an example TSP tour in 2D Euclidean is

given, where a full Hamiltonian Cycle must be found - the tour finishes

at its starting point. To the right, an analogous depiction of a single

solution to an example of a Catalog Problem is given. Here, the most

optimal Hamiltonian Path between predicted clusters of elements must

be found to represent their order, not returning to the initial cluster. 28

2.4 Pointer Network. A simplified illustration of pointer-style attention.

Starting at the top-left corner, each element (xi) of the input set (X)

is fed to the encoder, originally in the form of an RNN. This results in

sequential encoder hidden states (e1:4). The decoder network utilizes

pointer attention to output a softmax distribution with dictionary size

equal to the length of the input (bottom-left). The highest attention

value points to the next element to be placed in the output permuta-

tion, which is used to obtain the decoder hidden state and fed to the

model in the next recurrent step until all elements have been placed

within the predicted sequence (top-right). Attention values are repre-

sented through colour opacity. Crossed out squares in the attention

vectors represent a constraint in the form of disallowing repetitions. 41
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2.5 Set-to-sequence Model Overview. Starting on the left with an

embedding of input set elements Xπ ≈ X (1), including a predefined

number k−1 of special section-break tokens (SB), the permutation in-

variant representation of the entire set is obtained through one of the

set encoding methods (2). Then, a loop over the cardinality n = |X|
of the input set begins (3), which utilizes pointer attention over all

elements to successively select the next element to be placed in the

output sequence (4). Depending on the model, the value of the atten-

tion vector can be conditioned purely on the set embedding (as is the

case with RPW) or more commonly includes the per-element repre-

sentations. The final obtained sequence of elements (5) represents the

predicted permutation ŷ (6) of the original input matrix Xπ’s columns. 43

2.6 NCP and CCP. In the top row, an example of how the NCP model

makes a single clustering decision during the network’s forward pass

is shown. NCP makes elementwise predictions. Unassigned elements

are denoted as white circles with black borders. The three panels show

three possible assignments for the current candidate point (in dotted

circle). It can either belong to one of the two already opened clusters

(blue and yellow) or form the beginning of a new, green one (rightmost

panel). In the bottom row, an example of how the CCP model pre-

dicts a single, complete cluster. First, it randomly chooses an anchor

element for the current cluster, marked by the dotted circle and letter

A (leftmost panel). It then assesses the probability of the remaining

unassigned elements (in dotted circles) belonging to the current cluster

(middle). These probabilities can then be sampled from or compared

to a threshold of 0.5 to complete the final, green cluster (right). . . . 47

3.1 Product Offer Tokens. Individual product offers from the PROCAT

dataset correspond to these colour-coded tokens within the synthetic

catalogs. This convention is also upheld in some of the figures referring

to actual, real-world catalogs for the sake of simplicity and consistency.

The customizable configuration file allows for more token types and is

in principle agnostic to the chosen color scheme. . . . . . . . . . . . . 70
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3.2 Synthetic Catalog Rulesets. Interactions between elements of the

input (left) define the compositional and structural rules (middle),

which inform the generation of these synthetic datasets. The actual

input is a multiset of n product offer tokens, the leftmost panel shows

only which types of tokens were present in it. Compositional rules de-

fine valid sections (shown in vertical rows), structural rules define valid

section order, which in the figure is represented only by what section

should be first and last (for simplicity). A successful model should

learn these rules from supervised exposure to the resulting synthetic

datasets, and then be able to order new sets of elements according to

the learned rules. One valid example is given for each input composi-

tion (right, wrapped over 2 lines). . . . . . . . . . . . . . . . . . . . . 72

3.3 Set Interdependence Transformer. A comparison between dif-

ferent NN set encoding methods and SIT. At the top-left, Deep Sets

encodes each element in an identical and independent way through a

fully-connected layer (ϕ), sums these representations and further trans-

forms them through another fully-connected layer ρ. At the top-right,

a single Set Transformer layer (MAB) encodes pairwise relations be-

tween input set elements (mapping from sets to sets, shown for a single

element B → B‘). At the bottom, SIT first obtains a permutation-

invariant representation of the entire set (gray circle with S) through

MAB followed by PMA and then performs the attention transforma-

tion with this set representation treated as another set element. . . . 79

3.4 NOC Clustering Step. A visualization of how NOC predicts a sin-

gle cluster. In the leftmost panel a random anchor element (circled

with dotted line and marked with the letter A) is chosen from the

set of unassigned elements, which are marked as white circles. In the

middle panel, initial predictions regarding the probability of each re-

maining unassigned element belonging to the current, green cluster are

obtained, higher confidence being marked with higher colour intensity.

In the rightmost panel, the remaining candidates are further adjusted

based on a predicted cardinality threshold (tj = 3, anchor element not

being counted), three elements with the highest predicted probability

are assigned to the completed cluster and the other two are returned

to the unassigned set. Contrast with Figure 2.6. . . . . . . . . . . . . 83
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3.5 NOC Architecture. An overview of how NOC completes the clus-

tering of the input set (in two steps, j and j + 1), followed by or-

dering of the predicted clusters (rightmost panel). Starting at the

top of the leftmost panel and moving to the bottom before switching

to the next panel to the right, at clustering step j the representa-

tions of unassigned elements (Uj = e1:6), previously created clusters

(Gj = g1:3) and a randomly selected anchor element (eja) are used to

obtain initial cluster assignments’ probabilities, which represent how

likely each unassigned element is to become part of the current, jth

cluster (ĉ1:6 ≈ pθ(ĉ1:6 = j) = pθ(e1:6 ∈ Ĉj)), with color opacity indi-

cating higher predicted probability. In the middle panel the current

cardinality (tj = 4) is predicted and used to adjust the jth cluster

(Ĉj), which is then transformed via PMAc(SITc(Ĉj)) into its embed-

ded representation gj, which becomes part of the Gj+1 matrix and is

used during the remaining clustering steps. In the rightmost panel,

after k iterations of the NOC1 and NOC2 steps, the predicted clusters

(Ĉ ≈ Gj+1 = Gk) are ordered via NOC3’s Enhanced Pointer attention

(as described in Equations 2.20 - 2.22). . . . . . . . . . . . . . . . . . 85

3.6 NOC Predictions. Examples of catalogs predicted by NOC and

rendered by the Incito service. Each row consists of three sequential

pages (screens), each sequence is from a different predicted catalog to

display a representative variety. . . . . . . . . . . . . . . . . . . . . . 91
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Notes on Notation

Scalars, Vectors, Matrices and Sets

a A scalar (integer or real). Also used to denote a single element of a

set or of an ordered sequence when dimensionality is irrelevant

a A vector

A A matrix

A A set

|A| The cardinality of a set

(0, 1, 2) A sequence containing 0, 1 and 2 in sorted order

{0, 1, 2} A set containing 0, 1 and 2

{0, 1, . . . , n} A set of all integers between 0 and n

πn A permutation of length n

Aπ A matrix whose columns are permuted according to π

Neural Networks

ρ, ϕ Used as shorthand for fully connected neural networks

Xπ An arbitrarily ordered matrix representing the set X that forms the

input to the neural network

ŷ A vector output predicted by the neural network

L(y, ŷ; θ) A loss function parameterized by θ, the weights of a neural network

Other

R The set of real numbers

Z The set of all integers

P(X) The powerset of set X

N The Gaussian distribution
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Abbreviations

ACP Attentive Clustering Process.

CCP Clusterwise Clustering Process.

CoS Compositional Score.

EPC Electronic Product Catalog.

EPN Enhanced Pointer Network.

GNN Graph Neural Network.

HN Hopfield Network.

IC Input Composition.

ISAB Induced Set Attention Block.

LN Layer Normalization.

LSTM Long Short-Term Memory.

MAB Multihead Attention Block.

MLP Multi-layer Perceptron.

NCP Neural Clustering Process.

NN Neural Network.

NOC Neural Ordered Clusters.

PMA Pooling by Multihead Attention.
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PN Pointer Network.

PPC Paper Product Catalog.

S2S Set-to-sequence.

SAB Set Attention Block.

SIT Set Interdependence Transformer.

SME Subject Matter Expert.

ST Set Transformer.

StS Structural Score.

TSP Travelling Salesman Problem.
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Glossary of Terms

Catalog Problem An umbrella term for problems that require taking as input sets

of varying cardinality, and predicting an input-dependent number of ordered,

partitional clusters in accordance with target preference. “Partitional” refers to

the requirement that every cluster contains at least one element and that each

element is assigned to exactly one cluster. An example of such a problem is the

prediction of product catalog structures [1], from which this problem takes its

name. For a visual explanation, the reader is referred to Figure 2.1.

Catalog Structure Either a permutation or an ordered, partitional clustering of the

available elements of the input set, representing a catalog. The former relates to

the Incomplete Approach (set-to-sequence) to the Catalog Problem, the latter

to the harder, Complete Approach (primarily through neural ordered clustering

methods).

Complete Approach One of the two presented approaches to address Catalog Prob-

lem. Unlike the Incomplete Approach, it respects all three aspects of the Cat-

alog Problem, in that it (1) predicts an input-dependent number of ordered,

partitional clusters (2) from sets of any cardinality (3) in a supervised manner.

A Complete Approach does not require the target number of clusters to be

known to the model ahead of time and does not include the prediction of the

in-cluster order of elements.

Electronic Product Catalog A type of Product Catalog, specifically a digital one,

displayed on the screen of an electronic device. These include the Incito cat-

alogs generated by presented models and rendered by the Incito service. The

presented, general neural network methods learn from historic Paper Product

Catalogs how to compose good Electronic Product Catalogs.

Incito A catalog-rendering software service developed by Tjek A/S, capable of tak-

ing a nested list of product offers grouped into ordered sections and rendering

xvii



them into a readable Electronic Product Catalog on most modern devices (PCs,

smartphones, tablets). Described in more detail in Chapter 1.3.2.

Incomplete Approach One of the two presented approaches to address the Catalog

Problem. The Incomplete Approach applies set-to-sequence methods to the

Catalog Problem. It includes predicting a permutation of all elements of the

input set. It does not predict an input-dependent number of sections, instead

requiring this number to be known a priori and fed to the model as special

section-break tokens. Additionally, it involves predicting the in-section order of

elements, which is ignored by the Incito rendering service. These shortcomings

are addressed in the Complete Approach to the Catalog Problem.

Neural Clustering Neural-network-based methods that jointly cluster and learn

representations, identifying clusters directly within the forward pass of the net-

work, in a supervised manner. Whilst neural clustering could encompass other

types of methods, for the purposes of simplicity within this work the term is

used to refer specifically to supervised neural clustering methods that predict

clusters in the forward pass and don’t require a separate process to learn ele-

ment representations. This line of research is also framed as amortized cluster-

ing [20–22], where the term “amortization” referred to the investment of large

computational resources to train a model that is then used for fast posterior

inference [20, 23]. The term covers both element-wise and cluster-wise methods,

as elaborated on in Chapter 2.5.

Paper Product Catalog A type of Product Catalog, specifically a paper-based,

printed catalog, sometimes referred to as a brochure or flyer.

Partitional Clustering Partitional clustering decomposes a set of elements into

a set of disjoint clusters. Given a set of n elements, a partitioning method

constructs k (k ≤ n) partitions of the data, with each partition representing

a cluster. It splits the input set into k clusters by satisfying the following

requirements: (1) each cluster contains at least one element, and (2) each el-

ement belongs to exactly one cluster. Contrast with fuzzy partitioning, where

an element can belong to more than one group.

Product Offers The basic building blocks of a Product Catalog. These consist of

their textual description and heading, often associated with an image and price

tag. In the context of the Catalog Problem, product offers are the elements of

the input set, which then get clustered into “good” sections, where goodness is

xviii



learned from the training data rather than constrained to a metric space. Such

sections need to be ordered into a full Catalog Structure.

Product Catalog Within the context of this work, a product catalog is a read-

able, visual presentation of a set of Product Offers. Individual product offers

are grouped into sections, such as the pages of a printed Paper Product Cat-

alog, which are then ordered into a complete Catalog Structure. Examples of

sequential sections from a sample product catalog can be seen in Figure 1.2.

Sequence-to-sequence A family of problems (and the methods to address them)

that require taking as input a sequence and outputting a sequence, or in other

words a mapping of sequences to sequences. Within the field of neural net-

works, this most commonly involves an encoder-decoder architecture [24, 205].

Contrast with Set-to-sequence.

Set-to-sequence A family of problems (and the methods to address them) that

require taking as input a varying-cardinality set of elements, and outputting

a permutation of these elements. Set-to-sequence (S2S) methods commonly

consist of a set encoder and a permutation learning module, as described in the

first included article in Chapter 4. The Incomplete Approach to the Catalog

Problem is a set-to-sequence method.

Synthetic Catalogs Simplified Catalog Structures consisting of atomic elements

grouped into ordered sections according to flexible, customizable rules of section

composition and catalog structuring. These synthetic catalogs are generated in

an algorithmic as opposed to manual way. They are used as a simplification

of the real-world Paper Product Catalogs included in the provided PROCAT

dataset [1]. Described in more detail in Chapter 3.1.
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Chapter 1

Introduction

This chapter includes an overview of the thesis in its entirety, a clear statement of

the research objectives as well as the project’s scope and industrial background. The

introduction concludes with a list of authored articles with brief initial descriptions,

their publication status at the time of thesis submission and a short summary of main

contributions.

1.1 Thesis Structure

This Industrial PhD thesis consists of a kappa and four research articles. The kappa

is comprised of the following chapters:

• Chapter 1: Introduction

• Chapter 2: Background and Related Work

• Chapter 3: Proposed Methods

After the kappa, each article is included in its entirety, with the addition of a short

prologue. The thesis concludes with a final chapter summarizing the scientific find-

ings, related challenges and proposed directions for future research.

1



1.1.1 What Will You Read?

In the next section I present the research objectives, followed by a section devoted

to the industrial context, where the project’s first key deliverable is discussed. This

deliverable comes in the form of an open-sourced dataset of over 10,000 human-

made product catalogs1, consisting of more than 1.5 million individual product offers

grouped into a quarter million of catalog pages. This data set is referred to as PRO-

CAT. Given this context, an initial summary of included publications, their status

and main contributions follows.

Chapter 2 is devoted to the theoretical background and related lines of research

within neural-networks-based machine learning. A simplified abstraction of the in-

dustrial problem is defined in order to clearly highlight the aspects which this work

addresses. Focus is given to the difficulties of set representation learning, permu-

tation prediction, neural clustering and cluster ordering approaches. Each facet of

the underlying challenge is discussed within the larger context of the scientific state-

of-the-art. Subsequently, in Chapter 3 the proposed contributions are introduced in

more detail, marking the end of the kappa.

With this framing firmly established, the four publications constituting the main

body of the thesis are included in subsequent chapters, each preceded by a short

prologue providing additional, updated context. Chapter 4 opens with a literature

review outlining the neural network approaches to learning set representations and

set-to-sequence mappings. Chapter 5 contains the article introducing the PROCAT

dataset and early benchmarks thereon. The third publication, included in Chapter 6,

expands upon these early benchmarks and proposes the Set Interdependence Trans-

former (SIT), a neural network module designed to more effectively encode higher

order interaction between elements of input sets. This module is then incorporated

into larger set-to-sequence model architectures and tested on both synthetic and real-

1Product catalogs are also sometimes referred to as product catalogues, brochures of flyers.
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world datasets, including a simplified version of PROCAT, which does not require

the prediction of an input-dependent number of product offer clusters.

In Chapter 7 the fourth and final article is included, which tackles the Catalog

Problem by combining set encoding, neural clustering and set-to-sequence permuta-

tion learning. The proposed, combined model architecture, named Neural Ordered

Clusters (or NOC for short) is demonstrated to be capable of learning higher-order

compositional and structural rulesets and exhibits state-of-the-art performance on

a number of datasets, including PROCAT. The thesis concludes in Chapter 8, with

a summary of presented work, related challenges and future research directions.

1.2 Research Objectives and Scope

This work aims to answer two interconnected research questions:

1. How can we use neural networks to predict ordered, partitional clusters from

sets of elements in a supervised manner?

2. How can we apply these methods to the problem of predicting such product

catalog structure from sets of available product offers?

The work focuses primarily on deep learning, neural-network-based methods. The

“catalog structure” mentioned in the second research question is defined in full detail

in Chapter 2. The term refers to either a permuted order of a given set of product of-

fers or its ordered, partitional clustering [2]. When in doubt about the exact meaning

of a term, please refer to the Glossary of Terms (on page xvii). The second research

question translates the general methods, developed through the first research ques-

tion, into the domain of product catalog structure prediction. Emphasis is placed on

being able to handle sets of varying cardinality, both with regards to the initial input

set and when predicting a varying, input-dependent number of partitional clusters,

which are themselves sets.
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1.3 Industrial Context

This section introduces the company which co-funded the PhD project, along with

related business-domain aspects, available data and other industrial considerations of

relevance. Significant attention is given to the PROCAT dataset, which underpins

the majority of presented research and provides the supervision targets.

1.3.1 Tjek A/S

Tjek A/S, previously known in the Scandinavian markets as either eTilbudsavis or

ShopGun, is an e-commerce company that aggregates and presents retail product

offers to consumers. It has over a million active monthly users in the Nordic markets

and is present in 5 other EU states. This presents the company with significant

scale-related automation challenges while attempting to stay true to its core value of

putting people first.

Tjek’s business model allows people to search for available product offers from

any sector and view the corresponding catalogs, composed by the retailers in-house.

There is no additional in-app advertising and all retailers are enabled to have their

content available in the app on equal terms. The business is also environmentally

focused - according to the Danish Ministry of Environment and Food between 2010

and 2016 fewer paper catalogs resulted in the savings of 86,533.3 tons of paper [3].

Given that in that period Tjek’s app has had over 2 million downloads, which is 2
3

of

the overall market presence in Denmark and assuming even the highest standard of

paper recycling, this could amount to a life-cycle carbon footprint reduction of 470

million kg [4], which would in turn make up 2% of Denmark’s initial commitment

to the Kyoto protocol [5]. The presented work can further help foster the transition

from print to digital catalogues, reducing paper waste [6].

The creation of a catalog’s structure in the context of e-commerce product catalogs

is a time- and resource-consuming process, involving marketing and branding experts
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and requiring the retailers to balance inter-department interests, overall sales profits

and end-user preferences. Being able to generate structured catalogs from any subset

of available product offers democratizes the process of browsing for products, poten-

tially enabling people to have access to the product offers because they are relevant

to them and not because they maximize retail sales. This is particularly valuable

to businesses that have products to sell, but cannot invest in the manual design of

readable, visually appealing catalogs. Thus, Tjek A/S has great interest in developing

software capable of democratizing and accelerating the process of creating product

catalogs that provide relevant information in an engaging, sequential reading format

from provided sets of product offers.

1.3.2 Incito

In order to provide this functionality, the Engineering Department of Tjek A/S has

developed a software service named Incito, which defined the input and output of

our neural networks and guided the research in the initial set-to-sequence direction.

Bridging the gap between software-as-a-service (SaaS) and a novel, simpler data-

serialization format designed specifically for product presentation, Incito is capable

of rendering catalog structures on a wide range of devices and screen sizes, including

smartphones, tablets, and desktop computers. This affords it great flexibility over

existing PDF viewers, which constituted the majority of the previous generation of

on-device product catalog viewers in Denmark.

Incito, in its most basic form, takes as input a simple nested list of product offer

identifiers. The top-level list represents the catalog in its entirety as an ordered

sequence of sections. These sections are the Incito equivalent of the pages of paper-

based catalogs. Each section sub-list consists of a number of product offer IDs, linked

to their textual, tabular and visual properties. In its most rudimentary version,

Incito’s internal logic calculates the appropriate in-section placement of product offers

depending on their corresponding images and the amount of screen space available,
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whilst preserving the specified order of sections. Thus, the challenge for this project is

to take a set of product offers, group them into sections and predict the order of these

sections to provide a viewing experience (which is to be learned from the training

data). A visual explanation of Incito’s input and output is given in Figure 1.1.

This simplified abstraction of the underlying industrial challenge is further referred

to as the eponymous Catalog Problem, defined fully in Chapter 2.1. It requires our

models to take as input variable-cardinality sets of elements and output a partitional

clustering of these elements, where each cluster is assigned an order within their final

sequence. The proposed neural methods must be able to learn to predict ordered clus-

ters from available data in a supervised manner. Predominant difficulties inherent to

the Catalog Problem relate to learning permutation invariant representations of sets

that encode higher-order interactions between the sets’ elements, predicting a vary-

ing number of partitional clusters that abide by implicit constraints and managing

combinatorial complexity.

1.3.3 PROCAT

PROCAT is a dataset of product catalogs and the main source of supervised data for

this project [1]. It contains full product catalogs designed by human experts within

internal departments of individual retailers and displayed within Tjek’s apps. This

dataset consists of 11,063 human-designed catalog structures, made up of 1,613,686

product offers with their text features, grouped into a total of 238,256 sections. The

dataset’s diversity stems from the catalogs covering 15 different GPC-GS1 commercial

categories [7] and from their original composition being created by 2398 different

retailers, including cross-border shops that have a significant following in Denmark

and neighboring Scandinavian countries, particularly Sweden and Norway, as well as

Germany. For an overview of the categories, see Table 1.1.

The data was collected within the full 4 year period between 2015 and 2019. The

original structure of each catalog is preserved by retaining information about which
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Figure 1.1: Incito. This proprietary rendering service defines the output of the mod-
els. Incito expects an ordered list of sub-lists, each sub-list consisting of product offers
(top). Each product offer is represented here in the Incito input by a descriptive iden-
tifier (e.g. broccoli 1). Predicted nested lists are passed to the Incito service, which
renders them into readable, visually appealing electronic catalog pages (bottom), here
in the form of three consecutive screen captures. Order of sub-lists is respected, order
of elements within a sub-list is ignored in favour of utilizing all available screen space.
Colours and other visual elements are determined by the Incito service heuristically.
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Category Number of Catalogs Percentage (total)

Food (FBT) 7,456 67.40%

Electronic 5,231 47.28%

Personal Care 5,113 46.22%

Tools 3,311 29.93%

Sports Equipment 2,147 19.41%

Lawn/Garden Supplies 2,039 18.43%

Home Appliances 2,028 18.33%

Baby Care 1,986 17.95%

Household Furniture 1,672 15.11%

Pet Care 1,522 13.76%

Footwear 1,324 11.97%

Toys and Games 1,293 11.69%

Fuels 548 4.95%

Table 1.1: GPC-GS1 commercial categories of the catalogs present in the PROCAT
dataset. The given percentages do not add up to a hundred because most catalogs
fall into multiple GPC categories. The predominant category is FBT, which stands
for food, beverages and tobacco, covering the majority of grocery shopping.

product offers were presented together on which page, what the order of pages was

and through a separate feature referred to as priority class, which represents the

relative size of the corresponding product offer’s image on the page in the original

catalog. A visual representation is given in Figure 1.2. The data was acquired by

Tjek A/S through its proprietary system for extracting product offers from any PDF.

This system reads the feeds and scrapes a list of stores and PDF catalogs associated

with said stores. Afterwards, the operations department performs a human curation

step to make sure the obtained data is correct. The diversity of the dataset is limited

due to the product offer text being in Danish. The intention was to provide a valuable

resource for an underrepresented language.

The dataset consists of instances representing 3 types of entities. The most atomic

entity is a product offer, which represents a specific product with a text heading and

description, which in most cases includes its on-offer price. The individual product
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Figure 1.2: Paper Product Catalogs. Examples of real-world catalogs designed by
human experts, taken from the provided PROCAT dataset. Each row consists of three
consecutive pages, each page sequence is selected from a different product catalog.
Such page compositions and their order within the larger structure of catalogs forms
the training data and supervision target for the presented models.
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offers are then grouped into sections, which represent pages in a paper product catalog

(PPC). Finally, an ordered list of sections comprises a single catalog. The original

set of product offers that comprised such a catalog forms the input from which one

must predict the original catalog’s target structure, as per the Catalog Problem. In

the simpler, incomplete approach to this task the target number of sections is

included in the input as special section-break tokens. The task then takes the form

of permuting the input set into an ordered sequence, with the tokens marking the

start and end of a section. This incomplete approach is therefore a set-to-sequence

approach, which includes prediction of in-section order of product offers that is ignored

by the Incito service. In the complete approach, it requires clustering the input

set of elements into a predicted number of partitional clusters and permuting them

into the target order of sections. The complete approach combines clustering and

permutation learning. Both approaches are explained in detail in Chapter 2.1.

Each product offer instance consists of its unique id, its related section and catalog

ids, a text heading and description in both raw form and as lowercase word tokens

obtained via the NLTK tokenizer [8], the total token count, and finally the full product

offer text as a vector referencing a vocabulary of the most common 300 thousand

word tokens. Additionally, each product offer is categorized into a priority class,

representing how visually prominent it was in the original catalog in terms of relative

image size (on a 1-3 integer scale). However, the prediction of the priority class is not

tackled in this work. For examples of product offers in PROCAT, see Table 1.2.

Each catalog instance consists of its unique id, an ordered list of associated section

ids, and a list of product offer ids that comprise the catalog in question. Additionally,

each catalog instance also includes information in the form of ordered lists of sections,

each containing a list of product offers as vectors, with their corresponding priority

class and the catalog’s length as the total number of product offers within it. Finally,

a matrix of product offer vectors (Xπ ≈ X) is provided for each catalog, along with

the target (y) required to restore the original order and composition of sections.
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section heading description

1 Lamb chops Approx. 400 grams. Marinated chops with mushrooms,
bacon. Best served with cream.

1 Ham roast 700-800 grams. Oriental. Mexico.
1 Melon Organic piel de sapo or cantaloupe melon. Unit price 20.00.

Spain, 1st class.

2 Hair spray ELNETT. Extra strong. Strong hold. 400 ml.
2 Deodorant Spray. Roll-on. 50-150 ml. REXONA

Table 1.2: Five examples of product offers from PROCAT, each with its raw text
features consisting of a heading and description. These examples are translated from
Danish into English. Left column specifies which section each offer was placed on
within a single catalog. In this context a section corresponds to a single page of
a paper product catalog that each offer was placed on.

Every catalog instance consists of both raw data and preprocessed features. The

dataset is not a sample. It contains all catalog instances from the years 2015 - 2019

available for viewing in the Tjek A/S app. No other selection filter was used. The URL

to access the dataset is provided at https://doi.org/10.6084/m9.figshare.14709507.

The data is made publicly available under the Attribution-NonCommercial-ShareAlike

4.0 International license (CC BY-NC-SA 4.0). All explanations on how to read the

dataset, with examples, are provided via jupyter notebooks as part of the code repos-

itory for repeated experiments at https://github.com/mateuszjurewicz/procat.

An important limitation of PROCAT and learning from human-made product cat-

alogs in general is that we only have access to one canonical ordering of the product

offer instances, whereas it is possible that other, equally valid catalogs can be con-

structed from the same input set of product offers. In order to mitigate this a syn-

thetic dataset library is provided, where many valid targets are available for each

input. These synthetic catalogs are introduced in more detail in Chapter 3.1.

1.3.4 Other Industrial Considerations

There are certain aspects of the industrial challenge, stemming from informal domain

expertise, that guided the direction of the presented research. These include a focus on

11

https://doi.org/10.6084/m9.figshare.14709507
https://github.com/mateuszjurewicz/procat


relational reasoning, on handling inputs sets of varying cardinality and on prioritizing

attention-based permutation learning approaches over ranking methods from the field

of information retrieval, among others.

Firstly, the emphasis on relational reasoning stems from interviews with subject

matter experts (SMEs) responsible for designing product catalogs. In these conver-

sations, the SMEs highlighted multiple examples in which the presence or absence

of multiple specific product offers determines the choice of section members and the

order of sections. An illustrative case is given by a catalog that includes a product

offer advertising a prime cut of Venison and another product offer for La Bonne Vie

double-cream Brie cheese. In isolation, these two product offers do not necessarily

make for a complementary pair that would fit on a well-composed section. However,

with the addition of a product offer for a bottle of red wine, such as 2007 Cabernet

Sauvignon, to the original set of available product offers, the triplet forms a popular

French-cuisine-inspired catalog page. Other work in this area supports the assumption

that there are many such pairwise and higher-order interactions, which any proposed

model must be capable of encoding as they determine the target catalog structure [9].

Secondly, there is great variety among the available catalogs in terms of length.

Certain DYI catalogs, often published only once per quarter, consist of almost a thou-

sand individual product offers. By contrast, grocery-based catalogs, which form the

majority of the provided PROCAT dataset, tend to consist of one to two hundred

product offers. There are similar trends within each GS1-GPC category. This neces-

sitates the ability to handle input sets of varying cardinalities.

Thirdly, the intent of the SMEs is to provide an engaging catalog narrative that

inspires the reader to complete a purchase. What this means in practice is that

product offers within a catalog tend not to conform to a section grouping by product

category. A catalog may contain discount product offers on fruits and vegetables,

but these will be spread across multiple, non-consecutive sections. This consideration

puts traditional ranking approaches at a disadvantage, seeing how the proper catalog
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structure is not determined by a single relevance score per product offer. Furthermore,

learn-to-rank applications often require the existence of a query for which such per-

element relevance is calculated, having originated in the field of information retrieval.

Finally, an important difficulty pertinent to the challenge offered by PROCAT

is the existence of a higher number of reasonable substitutes for each product offer

on a given section within the entire input set of initially available products. This

difficulty becomes harder to surmount as the cardinality of the input sets increases

to tens and hundreds. In other words there may exist multiple other equally valid

catalogs that could have been constructed from the same underlying set of product

offers but we only have access to a single target sequence of sections. As an interesting

aside, in practice the composition and structure of catalogs is commonly defined prior

to the exact product images being available.

1.4 Publications and Status

The articles included in this thesis are as follows:

1. Mateusz Jurewicz and Leon Derczynski. “Set-to-sequence methods in machine

learning: a review”. Published in the Journal of Artificial Intelligence Research,

Volume 71: 885-924, JAIR 2021.

2. Mateusz Jurewicz and Leon Derczynski. “PROCAT: Product Catalogue Dataset

for Implicit Clustering, Permutation Learning and Structure Prediction”. Pub-

lished in the Proceedings of the Thirty-Fifth Conference on Neural Information

Processing Systems, Datasets and Benchmarks Track, NeurIPS 2021.

3. Mateusz Jurewicz and Leon Derczynski. “Set Interdependence Transformer:

Set-to-Sequence Neural Networks for Permutation Learning and Structure Pre-

diction”. Published in the Proceedings of the 31st International Joint Confer-

ence on Artificial Intelligence, IJCAI-ECAI 2022.
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4. Mateusz Jurewicz, Graham Taylor and Leon Derczynski. “Clustering and Or-

dering Variable-Sized Sets: The Catalog Problem”. Under review as a conference

paper at the Eleventh International Conference on Learning Representations,

ICLR 2023.

The first published article is a literature review in the field of set-to-sequence deep

learning. It introduces foundational concepts and expounds upon the most prominent

neural network (NN) methods of encoding sets, ranging from the initial Deep Sets

[10], through the still popular Set Transformer [11] to more recent Featurewise Sort

Pooling [12], AttSets [13] and RepSet [14]. Many of these methods form the baselines

for later experimental work included in the thesis. The first publication also provides

an overview of model architectures created to map from sets onto permutations of the

sets’ elements, such as the original Pointer Network [15] and its enhanced adaptation

by some of the same authors [16] which conditions its prediction on a permutation

invariant representation of the input set: the Read-Process-and-Write (RPW). It also

includes a longer discussion of other NN methods for predicting a permutation of set

elements. These include permutation matrices and learn-to-rank approaches.

The second published paper introduces the PROCAT dataset and an initial ap-

proach to the Catalog Problem as a pure set-to-sequence task, without having to

predict an input-dependent number of sections. Instead a varying number of section-

break tokens is provided as part of each input set, the challenge being to place them in

the proper place in the final permutation. Additionally, early benchmark performance

is reported and a library for generating synthetic catalog structures in adherence to

customizable, flexible rulesets is displayed. This synthetic data is used in later work to

provide insights into the compared models’ exhibited capacity to learn compositional

and structural rules that determine the target shape of the synthetic catalogs.

The third published article introduces an enhanced modular method for learning

representations of sets. Named the Set Interdependence Transformer (SIT), it takes
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inspiration from the popular Set Transformer [11] and adds a mechanism for attending

directly to an encoding of the entire set. This modification appears to improve the

full model’s ability to learn structural rules dependent on higher-order interactions

between the set elements. Specifically, the SIT module is used as the set encoding

method and combined with a permutation learning module in the form of an Enhanced

Pointer Network [17]. This joint set-to-sequence model is then tested on a variety of

tasks, ranging from the Travelling Salesman Problem on a 2D Euclidean Plane [18],

through formal grammars and a version of the Van Dyck language [19], to sentence

ordering and the incomplete, set-to-sequence formulation of PROCAT.

The fourth and final paper tackles the more challenging, complete approach to the

PROCAT dataset. This requires the proposed model to be able to predict the target

number of sections into which the available set elements should be split. Therefore,

focus is given to neural clustering methods and the possible ways of adapting them to

output not just a partitional clustering but also the order of predicted clusters. The

paper proposes such an architecture, referred to as Neural Ordered Clusters (NOC)

and enhances it with a mechanism for learning cluster cardinality constraints, which

contributed to achieving good performance on both synthetic datasets and PROCAT.

1.5 Contributions

The main research contributions of this PhD project are as follows:

1. A literature review consolidating the field of modern set-to-sequence ma-

chine learning, providing a comprehensive entry point for computer scientists

interested in this subdomain. The review covers set encoding and permutation

learning methods as well as a qualitative comparison thereof, in order to enable

researchers to be easily guided to the methods best suited to their purpose.

2. A large, curated dataset of real-world product catalogs, consisting of over

1.5 million individual product offers composed into 10,000 catalogs. PROCAT
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is made freely available under a CC BY-NC-SA license, spans 15 GPC-GS1

product categories and to the best of my knowledge remains as the only publicly

available dataset lending itself to the learning of the structure of electronic

product catalogs. It also provides a resource in an underrepresented language.

3. A library for generating simplified, synthetic catalog structures, according

to an adjustable set of rules. This enables procedural generation of datasets sup-

plementing PROCAT, enabling faster training and more fine-grained evaluation

through specific, per-rule, compositional and structural metrics. Additionally,

this addresses the limitation of PROCAT by providing multiple valid catalogs

for the same underlying input. Benchmarks are provided for both datasets.

4. The Set Interdependence Transformer (SIT) - a set encoding neural net-

work module capable of effectively learning higher-order interactions among

elements of sets of varying cardinality. SIT can be easily plugged into a modu-

larized set-to-sequence architecture and its performance is demonstrated in such

a setting on PROCAT and other datasets, both real and synthetic.

5. A complete set-to-sequence model outperforming state-of-the-art methods

on established datasets and within the application domain of catalog structure

prediction on both real-world and synthetic datasets. This model utilizes SIT

as its set encoder and exhibits performance empirically supporting its ability to

learn nth order relational rules within fewer than n layers.

6. The introduction and definition of the Catalog Problem, a novel joint clus-

tering and cluster ordering problem over sets of elements, which is a challenging

variant of the set-to-sequence domain with multiple aspects that are not han-

dled by existing neural methods. This problems is exemplified and tackled on

multiple datasets, through a robust comparison of existing and proposed neu-

ral methods, providing insights into the models’ capacity to learn higher-order
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relational rules of cluster composition and ordered structure.

7. A combined neural network model capable of predicting ordered partitional

clusters from sets of any cardinality, the Neural Ordered Clusters (NOC).

Blending set encoding, neural clustering methods and pointer attention mecha-

nisms, NOC learns to output an input-dependent number of partitional clusters

from variable sets as well as their permutation, in a supervised manner. Ad-

ditionally, it is further enhanced with a module for learning cluster cardinality

constraints, which proved vital to tackling the Catalog Problem.

17



References

[1] M. Jurewicz and L. Derczynski, “PROCAT: Product catalogue dataset for im-
plicit clustering, permutation learning and structure prediction,” in Thirty-fifth
Conference on Neural Information Processing Systems. Datasets and Bench-
marks Track, 2021.

[2] X. Jin and J. Han, “Partitional clustering,” in Encyclopedia of Machine Learn-
ing, C. Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2010, pp. 766–
766, isbn: 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8 631. [Online].
Available: https://doi.org/10.1007/978-0-387-30164-8 631.

[3] Miljøministeriet, Danskernes papirforbug i kraftigt fald, Miljøstyrelsen, Ed.,
Dec. 2018. [Online]. Available: https://mst.dk/service/nyheder/nyhedsarkiv/
2018/sep/danskernes-papirforbrug-i-kraftigt-fald/.

[4] K. Dixon, How much do you save in carbon emissions by being a good energy
customer? GoodEnergy, Ed., Sep. 2020. [Online]. Available: https://www.
goodenergy.co.uk/good-stats-on-carbon-saving/.

[5] UN, “Kyoto protocol,” United Nations Framework Convention on Climate
Change. Available online: http://unfccc. int/kyoto protocol/items/2830.php,
1997.

[6] S. Wirtz-Brückner and E.-M. Jakobs, “Product catalogs in the face of digital-
ization,” in 2018 IEEE International Professional Communication Conference
(ProComm), IEEE, 2018, pp. 98–106.

[7] H. M. Zahera and M. Sherif, “Probert: Product data classification with fine-
tuning bert model.,” in MWPD@ ISWC, 2020.

[8] S. Bird, “NLTK: The natural language toolkit,” in NLTK: The natural lan-
guage toolkit, Jan. 2006. doi: 10.3115/1225403.1225421.

[9] Y. C. Xu, S. Cai, and H.-W. Kim, “Cue consistency and page value percep-
tion: Implications for web-based catalog design,” Information & Management,
vol. 50, no. 1, pp. 33–42, 2013.

[10] M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos, R. Salakhutdinov, and
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Chapter 2

Background and Related Work

This chapter defines the eponymous Catalog Problem and describes in greater detail

what is meant by catalog structure, as referenced in Section 1.2 and the Glossary of

Terms. To facilitate this, the chapter introduces important concepts from the fields of

set encoding, permutation learning and neural clustering. As a consequence, an initial

synopsis of the rationale behind certain choices with regards to the directions of the

scientific investigation is given (and expanded on in Chapter 3). This chapter also

interweaves descriptions of related work, intending to frame the research presented

in the next chapter within the state-of-the-art. Additionally, a wider discussion of

similar challenges and related approaches is provided.

2.1 The Catalog Problem

This Chapter defines the Catalog Problem as an umbrella term for challenges that

require:

1. taking as input varying-cardinality sets,

2. predicting an input-dependent number of ordered, partitional clusters,

3. in accordance with a supervision target.

Many important real-world challenges can be framed in this way, from supply chain

management [25] to prioritization in medical triage [26]. Other areas of application
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Figure 2.1: The Catalog Problem. From left to right: a set of input elements
(X); target partitional clustering of those elements (C = {C1,C2,C3}); and a target
ordering over those clusters (y = (C2,C1,C3)), left to right. The targets presented
here were chosen arbitrarily for the purposes of this demonstration, in used datasets
they contain learnable patterns. A candidate model may perform all these tasks us-
ing information about inter-element relations and intra-cluster relations in order to
characterise a cluster, and inter-cluster relations to generate the final, ordered clus-
tering. Such a method, capable of predicting an input-dependent number of ordered
partitional clusters, constitutes a Complete Approach to the Catalog Problem.

include petroleum exploration [27], business process analytics [28] and the domain

of product catalog structuring [29], which was the focus of presented research and

inspired the name. For a visual introduction, see Figure 2.1.

More formally, in the Catalog Problem the input is an unordered set of unique

elements X = {x1, . . . , xn}, with a varying cardinality n = |X|. The target output is

a sequence of partitional clusters y = (C1, . . . ,Ck), where k determines the number

of clusters, and each cluster is itself a set defined by the elements assigned to it. The

number of elements assigned to a cluster can differ per cluster. All elements must be

assigned to a cluster and an element can only belong to one cluster (hence the use of

the term partitional [2]). Empty clusters are not allowed.

For example, given an input set X = {x1, x2, x3, x4, x5} the target can take the

form of the ordered sequence y = ({x3, x4}, {x1}, {x2, x5}). This example requires

a prediction matching the following target set of clusters: C = {C1,C2,C3}, such

that if C1 = {x1}, C2 = {x3, x4} and C3 = {x2, x5} then y = (C2,C1,C3).

When implemented in code, the clustering target (C) can be represented by a se-
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quence of cluster assignments : (c1, . . . , cn), which are per-element integer identifiers

that denote each element (xi) belonging to one of k clusters via that cluster’s arbi-

trarily assigned identifier between 1 and k (xi ∈ Cj is equivalent to ci = j).

For the example above, the target cluster assignments would be c = (1, 3, 2, 2, 3).

This particular c indicates that the element xi should be assigned to cluster C1, the

element x2 to cluster C3 and so forth. Note that the integers that identify clusters do

not correspond to their target order. This convention becomes useful when discussing

models that first iteratively predict clusters one at a time and then order them all into

the final predicted sequence ŷ. For such a model the predicted cluster Ĉ1 is identified

by the integer identifier 1 to signify that it was the first predicted cluster. The “hat”

sign (ˆ) is used to distinguish between targets (c,C,y) and predictions (ĉ, Ĉ, ŷ).

In a neural network context the problem can be framed as learning a parameterized

function ρθ, whose input is a set of varying cardinality and whose output is a sequence

of k partitional clusters, such that ρθ(X) = ŷ, with k being predicted indirectly. In

practice, the input set is represented as the matrix Xπ ≈ X. The order of this

matrix’s column vectors, each corresponding to a single set element, is represented

by a permutation π.

Neural approaches to the Catalog Problem can predict cluster assignments and

cluster order separately, both in an iterative way. Predicting the cluster assignments

takes the form of assigning a probability of an element xi belonging to a cluster Cj as

pθ(ĉi = j). Given a vector of predicted probabilities for all unassigned elements at the

jth clustering step and a binary target vector obtained from c for the corresponding

elements, with 1s marking that the element at that index should be assigned to the jth

cluster, a cross-entropy loss is calculated between these two probability distributions.

Predicting the order of obtained clusters as a sequence (ŷ) takes the form of pre-

dicting an attention vector over all k clusters in k − 1 iterative steps, where at each

step the highest attention points to the cluster to be placed next in the final predicted

sequence ŷ.
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Predicted cluster assignments (ĉ) and sequence of clusters (ŷ) are derived from

these model outputs. Given these and the targets, the quality of the clustering can

be assessed through the V-measure [30] and of the cluster ordering via Kendall’s Rank

Correlation Coefficient (τ), as well as through certain custom metrics, as described

in more detail in Chapter 3.

Challenges that epitomize the Catalog Problem often require the ability to learn

higher-order interactions between input set elements [31], hence the focus on set en-

coding in Section 2.3. The predicted clusters must be ordered and the permutation

stage must be capable of handling a varying number of input clusters, which them-

selves vary in sizes. In the proposed methods the focus is on pointer-style attention

employed over fixed-length vector representations of predicted partitional clusters to

permute them, in a supervised manner. This and other permutation methods are

outlined in Section 2.4. The capacity to obtain meaningful embeddings of sets is

also vital in the clustering stage, described in Section 2.5, where previously predicted

clusters can influence the subsequent cluster assignments for remaining elements.

The product catalog context in particular requires learning variable cluster-level

constraints, such as maximum cardinality thresholds1, exhibiting relational reasoning

and managing combinatorial complexity (product catalogs consist of hundreds and

sometimes thousands of individual product offers). For the purposes of this work the

product catalog structure, which we are trying to predict, takes the form of individual

product offers (our input set elements) grouped into complementary sections (parti-

tional clusters) ordered into a compelling catalog narrative (permutation of predicted

clusters). However, the initial articles explore a simplified, Incomplete Approach

to the Catalog Problem, requiring only set encoding and permutation learning, as

the number of clusters is known to the model via the total count of special section-

break tokens included in the input set. This is also referred to as the set-to-sequence

1Learned, per-cluster maximum cardinality thresholds help control the number of products pre-
sented per page, which in turn makes for a more evenly distributed catalog.

23



Figure 2.2: Incomplete Approach. In this work, two approaches to the Catalog
Problem are explored. The earlier, simpler approach requires the target number of
sections to be known to the model. This is shown above as k = 3, represented by
the number of vertical section-break tokens - two in the example, one fewer than the
number of sections. These are included in the input set (left). The incomplete, set-
to-sequence approach also predicts meaningless in-section order as it outputs a per-
mutation of all input set elements (middle). The in-section order is ignored by the
Incito service. From this permutation, the final ordered clustering is derived (right).

approach. For a visual explanation of this distinction, see Figure 2.2.

As such, the provided sections outlining related work and important theoretical

concepts begin with the topic of set encoding. As mentioned in Section 1.3.4, con-

versations with SMEs suggested that the composition of the input set of available

product offers, the pairwise and higher-order interactions among its elements, can

drastically influence the target section split. This determined the initial direction

of presented research towards methods capable of taking sets of any cardinality and

encoding them into fixed-length vectors. When combined with permutation learning

methods such as Pointer Networks [15] into full set-to-sequence architectures, these

constitute the incomplete approach to the Catalog Problem. In particular, pointer-

style attention offers one specific advantage over learn-to-rank methods in that it

allows for learning the kind of reading narrative SMEs defined as crucial to an engag-
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ing and inspiring catalog viewing experience, as opposed to sorting products by their

presumed relevance to a specific query.

However, a set-to-sequence approach cannot predict an input-dependent number of

sections purely from the set of product offers (excluding section break tokens) without

significant alterations. Some such modifications are explored in the fourth publication,

in Chapter 7. This pointed the research in the direction of neural clustering methods,

completing the list of the three main topics that are introduced in the following

sections. First, however, I will discuss similar problems, the history of attempts to

address them and briefly mention which related methods are considered out of scope.

2.2 Similar Problems and Related Approaches

The question of automatically generating online catalogs spans many domains, re-

flecting the width of the definition of the term “catalog”. One example comes in the

form of a significant body of research in the area of structuring and online presen-

tation of library catalogs [32–35], where emphasis is placed on information retrieval.

However, this work’s focus lies specifically with electronic product catalogs also known

as EPCs [36–40]. Ever since the advent of the online catalog, there has been signifi-

cant business and scientific interest in understanding what makes for a satisfying user

experience [41–44]. Substitutes of the readable, visual EPC have been developed in

the form of pure-search interfaces [45] and recommendation systems [46]. However,

the direction of this work was determined by the input and output specification of

the Incito service outlined in Section 1.3.2, precluding the use of these alternatives.

As such, one can look to clustering methods with a notion of order, which are closer

to the formulation of the Catalog Problem. Significant research has been devoted to

explicitly preventing the effect of the arbitrary order of set elements in which they

are presented to a clustering algorithm [47–49]. This mirrors the development of

permutation-invariant NN set encoding methods described in Section 2.3. Although

this setting requires supervised learning, one can also look to the more popular, un-
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supervised setting, where clustering approaches with a notion of order range from

hierarchical clustering [50, 51], through ordinal clustering [52] and incremental con-

ceptual clustering [53] to Markov clustering [54] as well as other, more recent methods

[55–57]. Certain unsupervised clustering methods without the ordering element, like

affinity propagation [58, 59], are also capable of outputting an input-dependent num-

ber of partitional clusters.

An alternative to the set and cluster sequence formulation of the addressed cat-

alog prediction challenge would be to represent the output structure in the form of

a graph. There has been significant progress in the field of Graph Neural Networks

(GNNs), capable of mapping graphs in the form of an adjacency matrix and node

features to various target outputs [60–63]. This includes neural methods capable of

encoding graphs in a permutation-invariant way [64]. Unsupervised graph representa-

tion setting has also been explored [64, 65], with applications in link prediction, node

community detection and other areas [66–69]. Of particular interest is the topic of

amortized probabilistic detection of communities in graphs [22], which is a supervised

method taking inspiration from neural clustering models. However, in the Catalog

Problem the input does not have the structure of a graph.

On the other hand, an unexplored but potentially viable alternative would be to

represent the target output (a sequence of partitional clusters) as a graph, with some

nodes representing actual input set elements and perhaps a special, secondary type

of node representing a new cluster to which these elements can be linked, together

forming a complete catalog section. Other possible reformulations could utilize dif-

ferent types of edges to the same end. Similarly the notion of the order of such

node communities could be represented through directed edges. This possibility has

not been granted an in-depth assessment due to time constraints, but existing work

within deep generative NNs could provide the foundation for future research along

these lines [70, 71]. In particular Graph Recurrent Attention Networks could pro-

vide a viable avenue of investigation for predicting ordered communities, given the
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sequential nature in which they predict blocks of nodes and edges [72–74].

Another branch of DL methods that could lend itself to approaching the Catalog

Problem comes in the form of Reinforcement Learning [75–77], or RL for short. Sig-

nificant progress has been made in both value- [78–80] and policy-based methods [81–

83], as well as combinations thereof in the form of the popular actor-critic framework

[84–87]. Reinforcement learning methods have also been used in combination with

permutation learning techniques such as pointer networks, which are discussed in Sec-

tion 2.4. A notable example of this comes in the form of the AlphaStar agent, where

set-to-sequence methods were employed to help the agent manage the structured,

combinatorial action space in conjunction with an auto-regressive policy [88].

The Catalog Problem itself can be seen through the lens of combinatorial opti-

mization problems [89, 90], of which a notable example is the Travelling Salesman

Problem (TSP) in 2D Euclidean [91] (as shown in Figure 2.3). Combinatorial op-

timization challenges can be formalized as a 3-tuple (X, ψ, ω), where X is a set of

instances, from which given an instance xi ∈ X the ψ(xi) is a finite set of feasible

solutions ŷj ∈ Yi and ω(ŷj) is a measure of such solutions, such that ω(ŷj) ∈ R+ and

the goal is to either minimize or maximize the value of ω.

RL solutions have been successfully applied to many combinatorial optimization

problems formalized in this way, including the TSP, which I have also used as a demon-

strative example of an NP-hard [92] challenge in set-to-sequence experiments in the

second publication, in Chapter 6. TSP mirrors one aspect of the Catalog Problem,

in that part of the objective is to find a target order of elements according to some

measure function. In case of the TSP in a 2D Euclidean space these elements are

coordinate points and, in the simplest formulation, the goal is to minimize the length

of the total route travelled between all points. In case of the Catalog Problem the

elements are composed clusters (catalog sections) and the measure function relates

to creating a compelling, well-structured catalog sequence. Thus ω is not directly

available.
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Figure 2.3: Travelling Salesman Problem. The TSP bears similarities to the
Catalog Problem. On the left, an example TSP tour in 2D Euclidean is given, where
a full Hamiltonian Cycle must be found - the tour finishes at its starting point. To the
right, an analogous depiction of a single solution to an example of a Catalog Problem
is given. Here, the most optimal Hamiltonian Path between predicted clusters of
elements must be found to represent their order, not returning to the initial cluster.

An initial example of an RL method outperforming set-to-sequence methods (specif-

ically pointer networks) on the TSP was proposed by Kool et al. (2018). In this

work, an impressive starting point for learning heuristics for combinatorial optimiza-

tion problems defined on graphs has been developed, provided the solutions can be

represented as sequential decisions with corresponding reward signals. Whilst the

framework proposed by Kool et al. is policy-based and utilizes the REINFORCE

algorithm [81], other works approach it from a value-based, Q-learning angle [94].

Specifically, Khalil et al. (2017) use a 1-step Deep Q Network [95] to tackle TSP

based on graph embeddings, with a reward measure providing a learning signal after

each node (as opposed to at the end of the entire tour).

Progress in applying RL to combinatorial optimization problems continues through

many active branches of research [96–99], including further work by Kool et al. (2022)

in the area of the Vehicle Routing Problem2 and its variants [100, 101]. Further

2VRP can itself be seen as a generalization of TSP.
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progress through RL has been achieved in such areas as transportation systems [102],

traffic signal control [103] and robotics [104], among many others. The deciding factor

behind not applying RL methods to the Catalog Problem in the scope of this work

is the lack of a clear, fine-grained reward measure that could provide the learning

signal at each decision step. This relates to the challenge outlined in Section 1.3.4,

devoted to other industrial considerations. Namely, in PROCAT there is only one

canonical order of catalog sections available as the supervision target per example,

despite the possibility of there existing multiple equally valid alternatives. Evaluation

of generated structures is more generally a challenging problem across many domains

[105]. However, RL methods remain an area of interest for potential future work.

Thus, the most pertinent NN approach to the Catalog Problem, satisfying all tech-

nical and industrial considerations, appeared to combine elements of set representa-

tion, permutation learning and neural clustering. Each of these is given separate focus

in the following sections, providing necessary theoretical background and outlining

prominent related methods.

2.3 Set Encoding

For the purposes of this thesis, a set can be intuitively defined as a collection of

distinct elements, without a canonical order between them [106]. The first of three

main aspects of the presented work revolves around learning meaningful, fixed-length

vector representations of sets of varying cardinality. These representations’ meaning-

fulness is defined by how useful they are to solving any number of downstream tasks.

Set-input ML applications tackle regression [10], classification [107], segmentation

[108, 109], meta-learning [110, 111] and even set-to-set tasks within the domain of

recommendation [112], image search [113] and person re-identification [114], among

many others. Unsurprisingly, the encoding of the input set is also vital in both the

incomplete, set-to-sequence and complete, neural ordered clustering approaches to

the Catalog Problem.
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There are several properties that a set encoding method should ideally possess:

1. Firstly, take as input a set of any cardinality and return its fixed-length rep-

resentation. This condition is not met by classical feed-forward neural networks

[115], requiring either a recurrent or attention-based approach.

2. Secondly, we require this encoding to be permutation invariant, in that it

should remain identical under any arbitrary permutation π of the input sets’

elements. This condition is not met by Recurrent Neural Networks (RNNs),

which are inherently sensitive to the order of their input [116].

3. Thirdly, the vector representation of the set should encode relational informa-

tion. An encoding that includes information about higher-order interactions

among set elements is of particular importance to solving the Catalog Problem,

as shown in the third included publication, in Chapter 6.

4. Additionally, one would prefer this encoding method to be computationally

inexpensive, ideally maintaining O(n) time complexity, given that many set-

input ML challenges require taking in sets whose cardinality is in the thousands.

Formally, a set encoding function fse can be specified to handle sets of any cardi-

nality in the following way:

fse : P(X ∈ Rd)→ Y ∈ Re, (2.1)

where P is the powerset of set X of real-valued vectors with d dimensions, mapped

by the set encoding function fse onto an e-dimensional, real valued vector ŷ ∈ Y. An

input set X of d-dimensional elements can be passed to this function in any arbitrary

order π, in accordance with its cardinality n = |X|. In practical terms, this takes the

form of the order of its elements within the matrix Xπ representing the actual set as
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it is fed into a neural network. This set encoding function should return the same

fixed-length vector given the same underlying set regardless of its permutation:

fse(X) = fse(Xπ) = fse({x1, . . . ,xn}) = fse({xπ(1), . . . ,xπ(n)}) = ŷ ∀ π ∈ Πn. (2.2)

Another property of interest to set encoding is permutation equivariance. In tasks

where each set element has an associated target label, such that these individual

labels depend on the entirety of the set, one would expect the predicted labels to

remain the same per element, regardless of how the original input set is permuted.

That property is referred to as permutation equivariance and it occurs often in the

intermediate stages of learning per-element representations of sets, before some form

of a pooling operation is applied, as discussed in the next paragraph outlining related

NN methods.

Now that a better understanding of the desired properties has been established,

I will introduce the progression of neural methods towards achieving them. For

a deeper look into these and other set encoding methods, the reader is referred to the

first included publication, in the form of a journal review in Chapter 4. The model

commonly considered to be the first NN set encoder that achieves three of the four

desired properties (1, 2 and 4) is the aptly named DeepSets by Zaheer et al. (2017).

The permutation invariance is achieved by transforming each set element xi in an

independent and identical way into its embedded representation via a stack of feed-

forward neural networks ϕe(xi), followed by summing these representations together

and further processing them using another stack of fully-connected layers ρs, with

nonlinearities:

DeepSets({x1, . . . , xn}) = ρs

( n∑

i=1

ϕe(xi)

)
. (2.3)
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This method can be applied to sets of any cardinality whilst maintaining O(n)

time complexity. Its main disadvantage stems from its inability to explicitly encode

pairwise and higher-order interactions between set elements, which are lost during

the summation [11]. Additionally, significant doubts have been raised regarding the

limits of the representational power of the DeepSets method [117]. More precisely,

the O(n) computational complexity comes at the cost of the dimensionality of the

latent space having to be at least equal to the cardinality of the input set n to ensure

universal function approximation.

A significant improvement with regards to encoding relational information came in

the form of the Set Transformer, proposed by Lee et al. (2019). The Set Transformer

consists of the expected stacked multi-head self-attention layers as seen in the classic

Transformer [118]. It introduces a permutation equivariant operation, the Multihead

Attention Block (MAB), which performs the self-attention transformations over sets

of any cardinality, enabling it to explicitly encode pairwise and higher order interac-

tions between set elements (depending on the number of stacked MAB layers). It also

proposes a different approach to the set-pooling operation, replacing the summation

seen in DeepSets with Pooling by Multihead Attention (PMA), which performs the

transformer-style attention between the obtained permutation equivariant represen-

tations of elements Eπ ∈ Rn×d and k learned seed vectors as the matrix R ∈ Rk×d,

preserving the relational information. Whilst MAB is usually used to transform a

single set (X ≈ Xπ) to get the embeddings of all its elements (Eπ), it actually takes

two arguments. In most cases these will be two copies of the matrix representing the

same set, but for clarity in the equations below a distinction is made between them

as X1 and X2:

Eπ = MAB(X1,X2) = LN(H + ρs(H)), (2.4)

where H = LN(X1 + MHA(X1,X2,X2)), (2.5)
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where MHA(Q,K,V) = concat(O1, . . . ,Oh), (2.6)

where Oj = ATT(QWQ
j ,KWK

j ,VWV
j ), (2.7)

where ATT(Q,K,V) = softmax(QK⊤)V, (2.8)

where the transformer-style attention transformation (ATT) takes advantage of three

learned weights matrices (WQ
j , WK

j , WV
j ) to cast the matrices X1 = X2 representing

the input set into its query, key and value representations (Q, K, V). This operation

is repeated for each jth head (j ∈ {1, . . . , h}) as part of multi-head intra-set attention

(MHA), as defined by Vaswani et al. (2017), without positional encoding. These oper-

ations are incorporated into the multihead attention block (MAB) with the inclusion

of a row-wise feed-forward neural network (ρs), with layer normalization (LN) after

each block [119], resulting in permutation equivariant3 per-element representations

Eπ. These are then aggregated into a permutation invariant representation s of the

entire set by performing pooling via the PMA:

s = PMA(Eπ) = MAB(R,Eπ), (2.9)

resulting in an encoding of the entire set s ∈ Rk×d. In most applications the chosen

number of learned seed vectors that comprise R is one, hence s becomes a fixed-length

vector representation of the entire set. The combination of a MAB followed by PMA

is referred to as a Set Attention Block (SAB), as shown in Equation 2.10.

SAB(X) = PMA(MAB(Xπ,Xπ)). (2.10)

3For a formal proof, see section 3.1 and supplementary material of Lee et al. (2019).
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Formulated in this way, the Set Transformer satisfies 3 of the 4 desired properties

(1, 2 and 3), with the SAB operations requiring quadratic time O(n2) due to the

self-attention mechanism. However, the authors also propose a way to mitigate this

challenge and achieve all four properties, namely the Induced Set Attention Block.

ISAB requires defining a set of m d-dimensional vectors kin ∈ Rd, referred to as

the inducing points. These vectors are trainable parameters of the ISAB layers,

performing the following sequence of operations:

ISABm(Xπ) = MAB(Xπ,H) ∈ Rn×d, (2.11)

where H = MAB(Kin,Xπ) ∈ Rm×d. (2.12)

As seen above, ISAB first transforms the matrix Kin ∈ Rm×d (containing m induc-

ing point vectors) into an intermediate representation H by attending to the input

set X ≈ Xπ. These transformed inducing points are again attended to by the input

set to produce a permutation equivariant matrix of n vectors. This operation has

been compared to low-rank projection and to autoencoder models. It allows the time

complexity to be reduced to O(nm), with m serving as a hyperparameter balancing

the model’s representational power and training speed.

The Set Transformer’s effectiveness resulted in numerous adaptations and variants,

such as Latent Variable Sequential Set Transformers for multi-agent motion predic-

tion by Girgis et al. (2021), the Point Transformer for semantic scene segmentation

on point clouds with positional encoding by Zhao et al. (2021), and the Set Interde-

pendence Transformer (SIT), introduced in the third included publication in Chapter

6, among others [122–125]. Other notable NN set encoding methods, partially elab-

orated on in the journal review in Chapter 4, include RepSet and its approximate

version ApproxRepSet (which obtain permutation invariance through bipartite graph

matching) by Skianis et al. (2020), AttSets by Yang et al. (2020), and Generalized
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Sliced-Wasserstein Embedding by Naderializadeh et al. (2021). The importance of

enabling neural networks to handle set-structured input data continues to fuel this

active branch of research with more methods being proposed on an ongoing basis.

2.4 Permutation Learning

Once a meaningful, fixed-length encoding of the varying-cardinality input set has been

obtained, one can proceed to condition the predicted output structure on it. In the

incomplete, set-to-sequence approach to the task, this structure takes the form of the

permutation of the input sets’ elements. Whilst this does not constitute a complete

approach to the Catalog Problem, as outlined in Section 2.1, that approach itself also

requires the prediction of a permutation of the obtained clusters. Thus it is reasonable

to discuss permutation learning, set-to-sequence methods before proceeding to the

topic of neural clustering.

The earliest neural set-to-sequence model was proposed by Hopfield and Tank

(1985). It introduced a constrained version of the set-to-sequence challenge, in which

the input set must be of a known, fixed cardinality. However, sets of varying cardinal-

ity require different neural architectures, making it limited in application. Nonethe-

less, Hopfield Networks (HNs) and their adaptations still find active use in research

[128–130], more recently suggesting that the attention mechanism of transformers is

equivalent to the update rule of continuous-state HNs, as seen in the work of Widrich

et al. (2020), in the field of immune repertoire classification.

Although the primary focus of this Section is on pointer-style attention mech-

anisms, one would be amiss if other formulations of the permutation task in NN

settings had not been mentioned. An example comes in the form of ordinal classifica-

tion4. Within neural ordinal classification by Cheng et al. (2008), a fixed number of

ordinal classes is stipulated, each of which receives a predicted score. Given a single

4Ordinal classification is sometimes referred to as ordinal regression [132, 133]. To avoid confu-
sion, the term ordinal classification is used to refer specifically to the described formulation of the
prediction target, which I consider to be more reminiscent of classification tasks.
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example with five input set elements and therefore five corresponding ordinal classes

(as is the case, for example, in the popular sentence ordering dataset ROCStory [135]),

the prediction target would be expressed in the following way:

Y =




1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1




=
[
y1 y2 y3 y4 y5

]
, (2.13)

y1 =
(

1 0 0 0 0
)
, (2.14)

where each column of the example’s corresponding target matrix Y consists of one

of the five column vectors y1:5. The i-th value in each vector yj represents the NN

model’s target confidence (yij) that this vector’s corresponding input set element xj

should be placed in the i-th position or later in the output sequence. The element

that should be last in the output sequence has a target vector yj consisting of all

1s. This formulation requires input sets of fixed cardinality and by default allows for

predictions that are self-contradictory, e.g.:

ŷj =
(

1 0 1 0 1
)
, (2.15)

where the j-th element of the input set is predicted to be simultaneously in the first,

middle and last position of the output sequence (but not the second and penultimate

one). Nonetheless, neural ordinal classification methods continue to receive research

interest in the settings of multi-instance learning [136] and facial age estimation [137],

with various adaptations aimed at helping them preserve the global ordinal relation-

ships between set elements, mitigating the issue exemplified in Equation 2.15. For a

general overview the work of Gutiérrez et al. (2015) is recommended.
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Another formulation of the prediction target comes in the form of permutation

matrices. A permutation matrix is a square, binary matrix M that has exactly one

entry mi
j = 1 in each row i and column j [139]. Every other entry in M is equal to 0.

The dimensions of a permutation matrix are defined by the cardinality of the input

set or the length of the target output sequence5. This matrix is unimodal, in that

each of its rows has a single highest value, and doubly-stochastic, in that it consists

solely of nonnegative numbers, with each row and column adding up to 1.

The key property of interest in permutation matrices is that given an arbitrarily

ordered sequence xπ, representing an inherently unordered set X, we can left-multiply

it by a permutation matrix to obtain a reordered sequence. In the example below,

the arbitrary initial permutation π takes the form of the vector (1, 5, 3, 4, 2), resulting

in the input sequence xπ being equal to (x1, x5, x3, x4, x2). Assuming the goal is to

restore the sorted order (x1, x2, x3, x4, x5), one would wish to predict the following

permutation matrix M, such that:

Mx⊤
π =




1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0







x1

x5

x3

x4

x2




=




x1

x2

x3

x4

x5




(2.16)

To use a permutation matrix as the target output of a NN model that can be

trained through gradient-based optimization, a relaxation of the concept must be

utilized. Barring such relaxation, one is left with the equivalent of a sorting operator,

which is non-differentiable [140]. There are many possible methods of obtaining this

relaxation from the input after it has been transformed by a chosen neural network

architecture, such as adding elementwise Gumbel perturbations [141], applying the

Sinkhorn operator to directly sample matrices near the Birkhoff polytope [142], which

5Which will only differ in the case of permutations with repetition, which are considered out of
scope in the context of the Catalog Problem.
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is the convex hull whose points are doubly-stochastic matrices [143], or through the

application of a softmax operator on a derived matrix of absolute pairwise distances

between the individual input elements [140].

Depending on the specifics of the task at hand, the target matrix can be predicted

in a single pass (if the length of the input and output is a constant, known prior

to inference) or sequentially, row by row [144]. An interesting method employing

permutation matrices has been proposed by Zhang et al. (2018), in which a trainable,

pairwise ordering cost function is used to produce an anti-symmetric matrix C, whose

entry cij represents the cost of placing the i-th element prior to the j-th. This function

is parameterized by a neural network, which is then used to continuously adjust the

learned permutation matrix. Referred to as a Permutation-Optimisation module,

this has been demonstrated to perform well on number sorting, image mosaics re-

assembling and visual question answering, with the limiting feature of entailing cubic

time complexity.

There remain two popular permutation learning NN methods that have received

greater interest in the DL scientific community than the above-mentioned approaches.

The first comes in the form of listwise learn-to-rank approaches [146], wherein a per-

element relevance score is calculated conditioned on a list of available elements and

a query, the final permutation being obtained by sorting elements by their corre-

sponding score. Different queries should result in different permutations of the same

underlying set. The terminology stems from applications in information retrieval,

where the task is to rank the available documents (such as web pages) in order of

relevance for a given query (e.g. a search term). For an overview of neural ranking

methods, one can recommend the work of Mitra et al. (2018).

It isn’t immediately obvious in the case of the Catalog Problem what should con-

stitute the required query. One possible candidate is the permutation invariant rep-

resentation of the entire set, as obtained via methods discussed in Section 2.1 and

possibly learnt in a joint or sequential manner. Intuitively, the relative rank of each
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element in the output sequence should depend on the entire available set. However,

learn-to-rank approaches generally presuppose that two set elements have a canoni-

cal relative order between them, which is known not to be the case in the presented

industrial setting, where it’s the overall catalog narrative that dictates the grouping

and order of elements (with multiple equally valid pairwise orderings, as outlined in

Section 1.3). Listwise ranking NN methods of note include the FATE framework

proposed by Pfannschmidt et al. (2018), the Deep Listwise Context Model (DLCM)

by Ai et al. (2018) which combines two-stage ranking, sequential recurrent NNs and

an attention-based loss function, and SetRank 6 by Pang et al. (2020), which employs

the Set Transformer to obtain element representations that encode cross-document

interactions and return a permutation invariant ranking by sorting the permutation

equivariant relevance scores per each document.

Finally, a highly effective permutation learning NN method comes in the form

of the Pointer Network (PN), originally introduced by Vinyals et al. (2015). PNs

were initially developed to address certain limitations of earlier, sequence-to-sequence

architectures [24], which have proven successful at NLP tasks such as translation

[152] and parsing [153], image captioning [154] and short program evaluation [155].

Namely, PNs do not require the size of the output dictionary to be fixed a priori.

The adjusted attention mechanism employed within PNs opened up the possibility

of using RNN-based NN models on combinatorial optimization problems, such as the

Travelling Salesman Problem, Delaunay triangulations [156] and the computation of

planar convex hulls from finite sets, all of which the PN was tested on in the initial

paper and performed very well.

In order to solve challenges where the dimensions of the output dictionary depend

on the number of elements in the inputs sequence (and eventually the cardinality of

the input set), the Pointer Network used a simplified modification of the attention

6This SetRank method shouldn’t be confused with the Bayesian method for collaborative ranking
from implicit feedback, known under the same name, developed by Wang et al. (2020).
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mechanism introduced by Bahdanau et al. (2014). The PN follows an encoder-decoder

framework [24], both originally in the form of RNNs. At each decoder step j a

content-based attention vector aj ∈ Rn is produced. Each entry aij in aj represents

the conditional probability of its corresponding input element xi being the correct one

to be placed next (in the j-th position) in the predicted sequence. This probability is

conditioned on the entire input sequence x = (x1, . . . , xn) in the form of all encoder

hidden states E = (e1, . . . , en) as well as on the preceding decoder hidden states Dj =

(d1, . . . ,dj), representing the output sequence predicted thus far, in an autoregressive

manner.

Assuming a prediction target in the form of a permutation without repetition, this

target becomes a sequence of non-negative integer indices y = (y1, . . . , yn) ∈ Zn,

representing a valid permutation π, such that a target output yπ = (0, 2, 1) refers to

the reordered sequence x̂π = (x1, x3, x2) for a sample input x = (x1, x2, x3). These

discrete pointers are obtained from the continuous attention vector (aj) at each jth

step via arg max. More formally, the pointer attention mechanism performs the

following series of operations at each decoder step j ∈ {1, . . . , n}:

zij = v⊤ tanh(W1ei + W2dj) for i ∈ (1, . . . , n), (2.17)

aij =
ez

i
j

∑n
k=1 e

zkj
for i ∈ (1, . . . , n), (2.18)

pθ(yj = i | y1, . . . , yj−1,x) = aij for i ∈ (1, . . . , n), (2.19)

where W1, W2 and v are all trainable parameters (θ) of the pointer network, tanh is

the hyperbolic tangent function, dj is the decoder’s hidden state at the j-th output

element, ei is the encoder hidden state corresponding to the i-th input element and

finally the zj = (z1j , . . . , z
n
j ) vector represents an output distribution over the dic-

tionary of input elements. After the application of the softmax nonlinear activation

40



Figure 2.4: Pointer Network. A simplified illustration of pointer-style attention.
Starting at the top-left corner, each element (xi) of the input set (X) is fed to the
encoder, originally in the form of an RNN. This results in sequential encoder hidden
states (e1:4). The decoder network utilizes pointer attention to output a softmax
distribution with dictionary size equal to the length of the input (bottom-left). The
highest attention value points to the next element to be placed in the output per-
mutation, which is used to obtain the decoder hidden state and fed to the model in
the next recurrent step until all elements have been placed within the predicted se-
quence (top-right). Attention values are represented through colour opacity. Crossed
out squares in the attention vectors represent a constraint in the form of disallowing
repetitions.

function it becomes an attention vector aj. The element whose index is pointed to

by the highest value in this attention vector becomes the element placed next in the

output sequence and the loss is calculated from the sequence of predicted, continu-

ous attention vectors. As shown in Equation 2.19, the probability of the ith element

being placed in the jth position is conditioned on the entire available input set and

the output sequence predicted up to the jth step. For a visual explanation, please see

Figure 2.4.

The main limitation of the original Pointer Network stems from the sequential

nature of the encoder, making it sensitive to the arbitrary way in which the input

set’s elements are permuted into the input sequence. The authors of the PN address
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this limitation in a follow-up paper [16], which introduces a method called Read-

Process-and-Write (RPW). RPW obtains a permutation-invariant representation of

the input and conditions its prediction entirely on this representation. For a visual

introduction to pointer-based set-to-sequence architectures, see Figure 2.5.

RPW achieves this permutation invariance through a modified LSTM, in the form

of a process block, which performs a preset number k of computation steps over the

embedded set elements. Each step ti consists of an attention transformation over the

permutation invariant dot product of the the embedded elements and the preceding

hidden state of the process block. At the final step tk the hidden state of the process

block is used to condition the probability of output pointers, in the way described in

the previous paragraph outlining pointer networks. This forms the write block of the

RPW model. RPW was an important step towards effective, permutation invariant

set-to-sequence models, but the bottleneck incurred by a preset number of steps over

the process block’s hidden state resulted in slightly underwhelming performance and

limited ability to generalize to unseen input set cardinalities, as tested on floating-

point number sorting and constituency parsing in the original paper [16] and TSP

and other combinatorial optimization problems in later works [1].

In consequence, a clear direction for successive set-to-sequence methods was to in-

crease the representational capacity of the permutation invariant set representation.

In the ATTOrderNet model developed by Cui et al. (2018) this took the form of

a scaled dot-product self-attention of the Transformer [118] followed by an average

pooling operation to ensure the invariance and a pointer-style attention for the per-

mutation prediction. The first two of these modifications are reminiscent of the Set

Transformer [11] and DeepSets [10] respectively, with the former using transformer-

style self-attention to encode higher order interactions and the latter using a simple

symmetric operator (such as sum or mean) to achieve the desired permutation invari-

ance, as described in Section 2.3.

The ATTOrderNet was successfully applied to sentence and paragraph ordering
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Figure 2.5: Set-to-sequence Model Overview. Starting on the left with an em-
bedding of input set elements Xπ ≈ X (1), including a predefined number k − 1 of
special section-break tokens (SB), the permutation invariant representation of the
entire set is obtained through one of the set encoding methods (2). Then, a loop over
the cardinality n = |X| of the input set begins (3), which utilizes pointer attention
over all elements to successively select the next element to be placed in the output
sequence (4). Depending on the model, the value of the attention vector can be con-
ditioned purely on the set embedding (as is the case with RPW) or more commonly
includes the per-element representations. The final obtained sequence of elements (5)
represents the predicted permutation ŷ (6) of the original input matrix Xπ’s columns.

tasks within the domain of natural language processing [157]. Other variations of

pointer networks have been utilized as parts of larger reinforcement learning mod-

els [88], within coherence modeling [158], text summarization [159] and graph-input

ML [160]. A notable improvement over the canonical formulation of pointer-style

attention as outlined in equations 2.17, 2.18 and 2.19, came in the form of an En-

hanced Pointer Network (EPN), sometimes referred to as a Future-History Pointer

Network, which introduced pairwise ordering predictions to improve both local and

global coherence of the output sequence [17].

The EPN achieves this performance improvement by adding two pairwise ordering

modules. The FUTURE module is trained on predicting the relative orientation of

currently unordered set elements, while the HISTORY module reflects local orien-
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tation between a chosen number (two in the original paper) of previously pointed-to

elements and the candidates at current step, without the influence of the entire left-

hand context in the form of the decoder’s hidden state (di). This left-hand context

is considered to be “noisy” by the authors of the EPN because the order of elements

predicted up to the ith decoder step can contain incorrect placements. Formally, the

conditional probability of a predicted order ŷ is calculated as:

pθ(ŷ | X) =
n∏

i=1

pθ(ŷi | ŷ<i,Xπ), (2.20)

pθ(ŷi | ŷ<i,Xπ) = softmax(v⊤tanh(W1di + W2Mi)), (2.21)

where v, W1 and W2 are model parameters familiar from the classic pointer network

equations (θ denotes the set of all trainable parameters), Xπ is the matrix of arbi-

trarily ordered set elements, and di is the hidden state of the permutation module at

current step i. The first hidden state d0 of this decoder is initialized from the permu-

tation invariant set representation obtained via transformer-style multihead attention

and average pooling. The Mi matrix is what differentiates EPN from PN, providing

additional context consisting of two types of information. The first is global orien-

tation relating all remaining unordered set elements to each other and the second is

local coherence between two previously selected elements and remaining candidates.

This context is obtained through the HISTORY and FUTURE sub-modules from Xπ

at each decoder step, essentially turning the permutation learning objective into a

multi-task challenge. For further details regarding these two sub-modules, the reader

is referred to Appendix A.2 of the fourth included article in Chapter 7.

During training of an EPN, given a batch B of m examples of the form (X,y), the

loss function given in Equation 2.22 is minimized, where λ is a hyperparameter that

balances the first term of the loss with LFH , a cross-entropy loss calculated from the

pairwise predictions made by these FUTURE and HISTORY sub-modules:
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L(y; θ) = − 1

m

∑

(X, y) ∈ B

(log pθ(y | Xπ) + λ LFH). (2.22)

For a visual explanation of the EPN, the reader is referred to Figure 2 from the

original paper by Yin et al. (2020) or Figure 2 from the third included article in

Chapter 6.

Despite all of these modifications resulting in greater representational power of

the permutation invariant set encoding and increased performance in terms of the

accuracy of the predicted permutation via pointer attention, the above-mentioned

set-to-sequence models are incapable of predicting ordered clusters directly, with-

out further alterations. In the incomplete approach to the Catalog Problem this

limitation is circumvented by providing the model with a known number of special

section-break tokens, that can be placed in the predicted sequence at various inter-

vals, representing the end of a catalog section. In addition to requiring knowledge

of the optimal number of clusters (and therefore sections) to predict ahead of time,

this also forces the models to predict noisy, meaningless in-section order of input set

elements7. In order to mitigate these limitations, two modifications of EPN-based

set-to-sequence models are proposed, each with its own advantages and disadvan-

tages, explained in more detail in the Appendix of the fourth included publication

in Chapter 7. Nonetheless, the approach most closely addressing the requirements

of the Catalog Problem necessitated the inclusion of neural clustering frameworks,

capable of predicting an input-dependent, varying number of clusters from sets of any

cardinality, as introduced in the next section.

7The in-section order is considered to be noise because the Incito service disregards it in order
to be able to render the predicted catalog on any device, as described in Chapter 1.3.2.
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2.5 Neural Clustering

Recent years have seen a growing interest in the development of NN-based clustering

methods for complex data [161–165]. Commonly, the focus of such frameworks is

placed on learning representations of the input set’s elements that then lend them-

selves to some formulation of the clustering task via another NN, the embedding and

cluster assignments being trained in an alternating fashion, with a shown tendency

to overfit smaller datasets [166]. Another NN approach to clustering takes the form

of first learning a similarity metric that predicts whether a pair of set elements be-

long to the same class and then training a NN to output assignments aligned with

this similarity metric, as seen in the work of Hsu et al. (2018) in the form of Con-

strained Clustering Networks [167, 168] and Attention Based Clustering by Coward et

al. (2020). Alternatively, Centroid Networks learn an element embedding that is then

used for clustering purposes via a proposed Sinkhorn K-means algorithm [170]. The

aforementioned methods employ NNs as parts of larger frameworks, but a separate

line of research within the supervised setting (closer to this context) has developed

methods for identifiying clusters directly within the forward pass of the network.

This line of research is often referred to as amortized clustering [20–22]. Within it,

the term “amortization” referred to the investment of large computational resources to

train a model that is then utilized for fast posterior inference [20, 23]. For the purposes

of this thesis, this branch will be further referred to as neural clustering, denoting

NN methods that are capable of jointly clustering and learning representations in a

supervised manner. Under this definition, the foundational neural clustering method

took the form of the Neural Clustering Process (NCP) proposed by Pakman et al.

(2020). NCP is an elementwise method, iterating over every element of the input set,

which can be of varying cardinality, and either assigning the current element to one

of the previously opened clusters or a new one. In the latter case, the current element

becomes the only member of a newly opened cluster, which can then be considered
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as another candidate cluster for all remaining, unassigned set elements until there are

none left. For a visual introduction to the ways in which the elementwise NCP and

subsequent clusterwise CCP algorithms make cluster assignments, see Figure 2.6.

Figure 2.6: NCP and CCP. In the top row, an example of how the NCP model
makes a single clustering decision during the network’s forward pass is shown. NCP
makes elementwise predictions. Unassigned elements are denoted as white circles with
black borders. The three panels show three possible assignments for the current can-
didate point (in dotted circle). It can either belong to one of the two already opened
clusters (blue and yellow) or form the beginning of a new, green one (rightmost panel).
In the bottom row, an example of how the CCP model predicts a single, complete
cluster. First, it randomly chooses an anchor element for the current cluster, marked
by the dotted circle and letter A (leftmost panel). It then assesses the probability of
the remaining unassigned elements (in dotted circles) belonging to the current cluster
(middle). These probabilities can then be sampled from or compared to a threshold
of 0.5 to complete the final, green cluster (right).
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NCP consists of a number of constituent functions that take as input either individ-

ual elements of the set xi ∈ X (where |X| = n) or transformations of subsets thereof,

and ultimately output n per-element cluster labels ĉi ∈ {1, . . . , k} for an a priori un-

known number k of eventually predicted clusters. As an elementwise method, n total

steps are performed through these functions, at each ith iteration, with j currently

opened candidate clusters:

1. h(xi) - resulting in a learned representation of each element xi as already as-

signed to a cluster, together forming their joint representation Hπ. These per-

element representations are summed to obtain a vector representation of each

cluster Ĉj ≈ gj, from the elements that were assigned to it (Equation 2.23).

2. q(gj) - resulting in a fixed-length vector representation of all j current clus-

ters ({Ĉ1, . . . , Ĉj} ≈ {g1, . . . ,gj}) jointly as qi at the ith elementwise iteration

(Equation 2.24).

3. u(xi) - resulting in a vector representation of all currently unassigned elements

jointly, as ui (Equation 2.25).

4. f(qp
i ,ui) - resulting in the final, per-element probability of belonging to each

of the j possible candidate clusters, from which cluster assignments ĉ1:n are

derived. Within the NCP algorithm the currently considered ith element’s rep-

resentation is added to each pth candidate cluster’s representation gp, result-

ing in j separate joint representations of all candidate clusters qp
i (for each

p ∈ {1, . . . , j}), and the output of f() is treated as the probability of the

currently considered ith element being assigned to each potential pth cluster

(Equation 2.26).

Each of these four functions is parameterized by an MLP neural network and de-

signed to adhere to three important permutation symmetries. Firstly, the invariance

with regards to the order of elements within each predicted cluster:
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gj =
∑

i:ĉi=j

h(xi) h : Rdx → Rdh . (2.23)

Each of the j currently opened clusters’ elements are encoded and added in this way,

achieving permutation invariance through summation. Secondly, the clustering ought

to be invariant to the order of predicted cluster labels, which in NCP is also achieved

through adding the per-cluster representations gj after they have been transformed

by q():

qi =

j∑

l=1

q(gl) q : Rdh → Rdq . (2.24)

Thirdly, the cluster labels should be invariant to the permutations of unassigned

data points, which is captured in the following way:

ui =
n∑

m=i+1

u(xm) u : Rdx → Rdu . (2.25)

Thus, qi and ui become fixed-length, permutation invariant vector representations

of all the assigned and unassigned set elements for any value of n and i. Finally,

the predicted per-element cluster assignments ĉi are obtained from predicted per-

candidate-cluster assignment probabilities pθ(ĉi = j), where the probability of the ith

element’s cluster assignment being equal to j is equivalent to the probability of the

ith element being assigned to the jth predicted cluster: pθ(xi ∈ Ĉj) = pθ(ĉi = j).

These probabilities are obtained from the output of the f() function:

pθ(ĉi = j | c1:i−1,X) =
ef(q

j
i ,ui)

∑j
p=1 e

f(qp
i ,ui)

, (2.26)

where c1:i−1 refers to the true cluster assignments of preceding elements (when teacher-

forced during training [171]), which are replaced by predicted cluster assignments
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ĉ1:i−1 outside of training. The authors of NCP refer to this as a variable-input soft-

max formulation, the real-valued function f() returning a predicted cluster assign-

ment probability for the current element xi with regards to any number j of current

candidate clusters (including the possibility of xi becoming the first element of its own,

new cluster). The computational cost of NCP as outlined above would be O(nk) for

a direct implementation, but through parallelization of the cluster aggregation and

label prediction steps it is reduced to n network forward passes. NCP has been suc-

cessfully applied to clustering mixtures of 2D Gaussians, MNIST classification and

Neural Spike Sorting.

As discussed in Section 2.3, due to the size of the input sets in many areas of

application, improving the time complexity to reach O(k) is vital. The authors of

NCP propose such a variant, called the Clusterwise Clustering Process (CCP). In the

CCP approach, k iterations are performed over the given set of elements. At each

iteration j ∈ {1, . . . , k}, a uniformly sampled anchor element xaj is first selected from

the set of available, unassigned elements. Then, a per-available-element probability of

belonging to this anchored cluster is obtained, conditioned on the anchoring element,

all unassigned points and previously predicted clusters, as well as an additional vector

zj. This vector represents the features of the jth cluster to which new elements (other

than the current anchor xaj) are to be assigned at the jth step of CCP. It is sampled

from a Gaussian latent variable in the following way:

pθ(zj | xaj ,uj,qj) = N (zk | µ(xaj ,uj,qj), σ(xaj ,uj,qj)), (2.27)

where µ and σ are MLPs which take as input the jth anchor element (xaj), the repre-

sentations of all currently unassigned points (uj) and all previously predicted clusters

(qj) and output the means and standard deviations for each dimension of the zj

vector. This is trained as a conditional variational autoencoder (VAE) as formulated

by Sohn et al. (2015) [172], parameterized by fully connected neural networks with
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sigmoid activation functions as the nonlinearity. The final, per-unassigned-element

probability of belonging to the jth cluster in CCP becomes:

pθ(ĉi = j | Ĉ1:j−1,X) = f(xi, xaj , zk,uj,qj), (2.28)

where Ĉ1:j−1 are the clusters predicted during all iterative clustering steps before the

current jth step, xi is each element currently unassigned to a cluster and CCP’s f()

is again an MLP neural network with sigmoid activation. The output of f() is a

vector of assignment predictions for each of the unassigned elements, which are used

to determine which of these elements should belong to the current jth cluster, either

through a 0.5 threshold value or by treating these predictions as probabilities and

sampling from them.

A significant improvement over these two neural clustering methods was achieved

through the application of the representationally powerful set encoding methods in-

troduced in Section 2.3, particularly the Set Transformer [21, 22]. Whereas both

NCP and CCP use simple summation to aggregate the sets of all unassigned ele-

ments, all already clustered elements and finally each predicted cluster individually

into fixed-length vector representations, a natural progression would be to apply set

encoders capable of retaining the relational information lost in the summation. In

the aptly named Attentive Clustering Process8 proposed by Wang et al. (2020) stacks

of multihead attention blocks (MABs) followed by pooling by multihead attention

(PMA) are used to this effect in lieu of the fully-connected NN layers parameterizing

the aforementioned four functions in NCP and CCP, reminiscent instead of the Deep

Sets method. More specifically, the induced self-attention blocks (ISABs, as out-

lined in Equation 2.10) were employed to avoid the O(n2) time complexity of stacked

MABs. The inclusion of seed vectors reduces it to O(nds), where ds is the chosen

dimensionality of the seed matrix. The constituent functions of ACP thus become:

8The “Amortized Probabilistic Detection of Communities in Graphs” paper [22] introducing the
ACP method has undergone significant changes, some versions referring to ACP as CCP-Attn.
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Hπ = h(X) = ISABh(Xπ) h : Rn×dx → Rn×dh , (2.29)

qj =

j∑

1

q(Hj) =

j∑

1

PMAq(ISABq(Hj)) q : Rn×dh → Rdq , (2.30)

uj = PMAu(ISABu(Xu
j )) u : Rn×dx → Rdu , (2.31)

where Xu
j refers to the unassigned elements at the jth clustering step and Hj refers

to the representations of elements that belonged to the jth cluster, obtained via

the h() function. These attention-based neural clustering methods showed superior

performance on graph-structured inputs, such as the SNAP datasets [173], which

contain networks of connections between consumer products. Therein, ACP was

applied to the task of graph community detection, proving more effective than NCP

and CCP at identifying sub-graphs composed of non-overlapping communities. This

has been attributed to its ability to model higher-order interactions both within and

between clusters [174]. However, there is one key quality relating to the Catalog

Problem that the initial experiments suggest neither NCP, CCP nor ACP possesses

(as shown in the fourth included article in Chapter 7). Namely, the ability to learn

per-cluster cardinality constraints, which proved crucial for predicting varied, target-

adherent catalog sections.

While there is a growing body of research investigating NN-based constrained clus-

tering, its main focus until recently appears to be on pairwise, together/apart con-

straints, where two specific elements must or cannot be part of the same predicted

cluster, as seen in the work of Fogel et al. (2019) and others [168, 176–179]. The work

of Zhang et al. (2021) extended the semi-supervised, constrained clustering setting to

triplet must-link/cannot-link relations, instance difficulty constraints and global size

constraints. That last one is of particular interest to this setting, enabling their pro-

posed Deep Constrained Clustering (DCC) model to achieve good performance on the
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REUTERS-10K classification dataset [181] and circumvent known negative effects of

introducing constraints into clustering methods, which can sometimes result in worse

performance than the unconstrained alternatives [182]. Specifically, DCC can learn

these and other types of constraints through the introduction of additional, differ-

entiable loss functions that are then combined with the main clustering loss. The

authors propose a global cardinality constraint loss, which assumes that each cluster

should be approximately the same size. However, the Catalog Problem requires the

prediction of clusters of varying cardinalities, dependent on the composition of each

section itself as well as on all available elements in the input set. This requirement is

further explored in the fourth included article in Chapter 7, where inspiration is taken

from this loss-based approach to constrained NN-based clustering and a cluster-level

cardinality prediction mechanism is implemented.

This concludes the chapter devoted to the theoretical introduction of relevant top-

ics and notable related methods. It begun with a clear definition of the proposed

Catalog Problem through its three core properties - varying-cardinality input, vary-

ing number of ordered, partitional clusters as output and the presence of supervision.

Additionally, the incomplete and complete approaches to this task were outlined, the

former requiring the number of target clusters to be known to the model ahead of

time. In Section 2.2 a deeper look into the concept of a catalog was followed by a brief

discussion of related approaches and alternative methods, most notably reinforcement

learning and graph neural networks. The three subsequent sections were each devoted

to one of the three main branches of NN methods that later became or inspired the

constituent parts of proposed architectures capable of addressing the Catalog Prob-

lem in full. These included set encoding, permutation learning and supervised neural

clustering.

In the next chapter, time is devoted to the proposed methods and tools, beginning

with a customizable, synthetic catalog generation library for measuring the ability of

models to learn compositional and structural rules dependent on nth order interactions
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among the elements of the input set. Afterwards, the focus is moved to the proposed

Set Interdependence Transformer (SIT) - a set encoding module designed to more

efficiently capture interactions within the entirety of the input set and finally to

the introduction of Neural Ordering Clusters (NOC), a fully differentiable NN-based

model architecture capable of predicting diverse partitional clusters from sets of any

cardinality and ordering them according to the target preference in a supervised

manner.
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Chapter 3

Proposed Methods

This Chapter outlines a number of select contributions introduced in the included ar-

ticles. It begins by providing more detail regarding the synthetic catalogs concept and

corresponding library for procedurally generating1 simplified, catalog-like structures.

These synthetic catalogs follow customizable rules regarding the composition of their

sections and the order in which these sections are presented in what SMEs refer to as

a narrative structure. These rules depend entirely on the content of the input, which

is made up of atomic product offer tokens. The nth order interactions between these

atomic tokens define what makes a valid section and a valid order of sections for a

given input. The synthetic catalog datasets provide a way to empirically measure

the models’ ability to learn such interactions, which was suspected, based on discus-

sions with SMEs, to be a vital ability when tackling real catalogs from the PROCAT

dataset, as outlined in Chapter 1.3.3. Having established the synthetic catalogs, this

chapter describes the proposed set encoder method, the Set Interdependence Trans-

former (SIT), which uses simple matrix augmentation to enhance the models’ ability

to condition the predicted catalogs on the properties of the entire input set. SIT is

then used as one module of a composite set-to-sequence architecture and tested on

the synthetic catalogs and a number of other datasets. However, this method still

requires the target number of sections to be known a priori. Therefore, the final

1The term “procedural generation“ refers here to algorithmic as opposed to manual creation of
data [183].
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proposed model, the Neural Ordered Clusters (NOC) described in detail in Section

3.3, combines set encoding, neural clustering and pointer attention into a complete

approach towards tackling the Catalog Problem.

3.1 Synthetic Catalogs

In the early stages of this project, a number of meetings were held with SMEs respon-

sible for various aspects of the decision-making process behind the actual, human-

arranged electronic and paper product catalogs. These conversations revealed that

both the composition of individual sections (or pages) and the order in which those

sections are placed within the catalog heavily depend on higher-order interactions

between the product offers present in the input set. For a practical example, the

reader is referred to Chapter 1.3.4.

Knowing that learning compositional and structural rules dependent on nth or-

der interactions among input set elements would be crucial to solving the Catalog

Problem on real-world datasets, it was decided to develop a library for generating

simplified, synthetic catalogs. These synthetic catalogs were designed to be procedu-

rally generated in adherence with rulesets expressed through an easily customizable

configuration file. This library was also required to contain functions capable of tak-

ing a set of predicted synthetic catalogs and return detailed metrics regarding model

performance, through which one could determine a specific model’s demonstrated

capability to construct synthetic catalogs that adhere to subsets of the chosen rules.

This allows one to separately inspect a model’s capacity to learn compositional or

structural rules of the chosen nth degree.

The intention was for those synthetically generated catalogs to resemble real cat-

alogs from the PROCAT datasets in key aspects and thus help guide the research

towards model architectures that would eventually be able to perform well on PRO-

CAT itself, whilst allowing for quicker training and more fine-grained performance

measures. The early, initial version of the synthetic catalog library was therefore in-
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troduced in the same paper as the PROCAT dataset [1], included in full in Chapter 5.

It was further improved into the format presented here over consecutive publications.

3.1.1 Tokens, Rulesets and Metrics

First, the most atomic constituent part of the proposed synthetic catalog is described.

In real-world product catalogs the smallest part is a product offer, consisting of its

textual description and corresponding image2. In the proposed synthetic simplifi-

cation, individual product offers are represented by atomic tokens (color-coded for

easy visual recognition). For example, these can include red, blue, yellow, green,

purple and other tokens, as shown below in Figure 3.1. The input of the model in

the synthetic catalog datasets consists of a multiset of n such tokens, allowing for the

repetition of elements.

Figure 3.1: Product Offer Tokens. Individual product offers from the PROCAT
dataset correspond to these colour-coded tokens within the synthetic catalogs. This
convention is also upheld in some of the figures referring to actual, real-world catalogs
for the sake of simplicity and consistency. The customizable configuration file allows
for more token types and is in principle agnostic to the chosen color scheme.

The presence of certain combinations of these color-coded tokens in the input

defines which ruleset should be applied to compose valid sections and order these

sections into a complete synthetic catalog. Two main types of rules are proposed:

1. Compositional rules, which specify what makes a valid section

2. Structural rules, which determine what makes a valid order of sections, i.e.

structure of the catalog

2Rather surprisingly, in practice the actual product image is added after the catalog structure
has been decided based on product availability and sales projections.
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Compositional rules can be thought of as relating to intra-cluster patterns, whereas

structural rules encode inter-cluster interactions. Compositional rules can specify

what types of tokens can be combined together to form a valid section, what is the

maximum cardinality of a given type of section, what proportion of different types of

tokens is allowed and more. Structural rules, in turn, can define what kind of sections

should open a catalog, what types of sections must precede or follow one another and

what section should be the last in a given catalog. Below, some specific examples of

compositional rules are provided:

• “If the input contains only red, blue and yellow tokens, a section containing red

and yellow tokens in 1:1 ratio is a valid section”

• “If the input contains only red, blue, yellow and green tokens, a section contain-

ing red and green tokens must not exceed a cardinality of 4”

• “If the input contains red, blue, yellow and green tokens, a section containing

red and yellow tokens is not a valid section”

For comparison, these are examples of possible structural rules:

• “If the input contains only red, blue and yellow tokens, a catalog must start with

an all-red section”

• “If the input contains only red, blue and yellow tokens, a catalog must end on

an all-blue section”

• “If the input contains only red, blue, yellow, green and purple tokens, a catalog

must end on an all-purple section immediately following an all-blue section”

A set of such rules that are applicable given a specific composition of the provided

input tokens is referred to as a ruleset. For a visual explanation, see Figure 3.2. Each

rule can depend on nth order interactions. A ruleset that encompasses compositional
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Figure 3.2: Synthetic Catalog Rulesets. Interactions between elements of the
input (left) define the compositional and structural rules (middle), which inform the
generation of these synthetic datasets. The actual input is a multiset of n product
offer tokens, the leftmost panel shows only which types of tokens were present in it.
Compositional rules define valid sections (shown in vertical rows), structural rules
define valid section order, which in the figure is represented only by what section
should be first and last (for simplicity). A successful model should learn these rules
from supervised exposure to the resulting synthetic datasets, and then be able to
order new sets of elements according to the learned rules. One valid example is given
for each input composition (right, wrapped over 2 lines).

and structural rules for an input consisting only of any number of red, yellow and blue

tokens would thus require the learning of a 3rd order interaction. Another, different

3rd order ruleset would define a valid catalog composed from an input consisting only

of red, yellow and green tokens. 4th order interaction rules would have to be learned to

construct valid synthetic catalogs from a multiset of only red, yellow, blue and green

tokens and so on. The rules that were applicable for a specific subset of tokens may

become entirely incorrect with the addition, subtraction or substitution of a single

element into the composition of the new input.
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The library for procedurally generating synthetic catalogs was originally designed

with a set-to-sequence approach in mind, which does not account for a varying number

of sections. Thus, the actual input to the model would include a special “section

break” token, repeated k−1 times3, determining that the target catalog must consist of

k sections (with k varying between examples). The set-to-sequence model constructs

an ordered list from all input elements, representing the end of a section through

the section break tokens. Any tokens placed between a pair of section break tokens

are taken to form a single section. As such, set-to-sequence models also predict

meaningless in-section order of elements, which would be ignored by the Incito service

and is arbitrary within PROCAT, making the loss signal more noisy. Regardless, the

library for generating these synthetic catalogs is agnostic to the type of model used

to approach the underlying learning task, the section break tokens being added or

removed during pre- and post-processing.

Having established an understanding of what elements the synthetic catalogs con-

sist of, what kind of rules their composition and structure must follow and what deter-

mines which ruleset is applicable, the next paragraphs describe the kinds of insights

this library might allow one to gain. The specific metrics explained in this section

are repeatedly used in the experiments reported in the third and fourth included

publications in Chapters 6 and 7. Overall, two main metrics are taken advantage of:

1. Compositional Score (CoS)

2. Structural Score (StS)

The CoS refers to the percentage of predicted sections that would be considered

valid under the relevant ruleset. The StS refers to the percentage of predicted cata-

logs in which the order of sections followed the relevant structural ruleset. Both of

these scores can be further broken down into separate metric per order of interaction

3k − 1 section break tokens result in k sections because by adopted convention the last section
in a catalog does not need to be followed by a section break token to be considered closed.
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required to be learned (by default n ∈ {2, 3, 4, 5}), selected subsets thereof or even,

on the most fine-grained level, per specific rule.

Generally, performance is also measured and reported through V-measure [30] and

Kendall’s Rank Correlation Coefficient (τ). V-measure is an external entropy-based

cluster evaluation measure that outputs a single score in range over [0, 1], 1 signifying

a perfect match with ground truth, lending itself well to this supervised setting.

Similarly Kendall’s τ is a statistic used to measure ordinal association, returning

a single score within [−1, 1]. It allows for the measurement of the correspondence

between two permutations of the same set of elements, higher value indicating strong

agreement. However, the Compositional and Structural Scores enable one to gain a

deeper, more fine-grained insight into the actual performance of the tested models.

There are a couple of important properties and limitations that should be men-

tioned at this point. Good performance with regards to the Structural Score requires

the prediction of at least some valid sections. For example, a structural rule requiring

that the predicted catalog is opened with an all-red section cannot be adhered to if

no all-red section has been composed in the set of predicted clusters. Whilst it is

possible to output some invalid sections and still obtain a perfect structural score,

these two metrics are not independent. In practice, it has been observed that during

training models tend to first obtain a high score on the compositional scale, with the

structural performance improving later on. It should also be noted that validating a

model through these metrics during the very early stages of training can be noisy. It

can take some time before fully valid sections emerge. This is particularly evident in

certain set-to-sequence variants that don’t preclude the prediction of empty sections

(by placing three section break tokens one after another). Nonetheless, the per-rule

insights have proven themselves useful when implementing the model architectures

described in later sections.
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3.1.2 Customizable Configuration

In order to make it easy to adjust the default rulesets from which datasets of synthetic

catalogs can be procedurally generated, a simple configuration format is provided. It

takes the form of a corresponding json file, snippets of which are shown below to

illustrate key points. Firstly, the valid tokens for all included rulesets are specified:

1 "tokens": {

2 "T_000": ["gray", 0],

3 "T_001": ["red", 1],

4 "T_002": ["yellow", 2],

5 "T_003": ["blue", 3],

6 "T_004": ["green", 4],

7 "T_005": ["purple", 5]

8 }

Each token is given an identifier (e.g. T 001 for a red token), a short name referring

to its colour and an ordered index. These are the basic atomic building blocks of

the synthetic catalogs that one wants generated. Tokens can be removed or added.

Secondly, the list of all possible valid sections is specified. For a simplified example:

1 "sections": {

2 "SEC_001_4": ["T_001", "T_001", "T_001", "T_001"],

3 "SEC_001_5": ["T_001", "T_001", "T_001", "T_001", "T_001"],

4 "SEC_002_4": ["T_002", "T_002", "T_002", "T_002"],

5 "SEC_002_5": ["T_002", "T_002", "T_002", "T_002", "T_002"],

6 "SEC_003_4": ["T_003", "T_003", "T_003", "T_003"],

7 "SEC_003_5": ["T_003", "T_003", "T_003", "T_003", "T_003"],

8 "SEC_004_4": ["T_004", "T_004", "T_004", "T_004"],

9 "SEC_004_5": ["T_004", "T_004", "T_004", "T_004", "T_004"],

10 "SEC_005_4": ["T_005", "T_005", "T_005", "T_005"],

11 "SEC_005_5": ["T_005", "T_005", "T_005", "T_005", "T_005"],

12 "SEC_001_002_4": ["T_001", "T_001", "T_002", "T_002"],

13 "SEC_001_004_4": ["T_001", "T_001", "T_004", "T_004"],

14 }

Each section is given an identifier (e.g. SEC 001 4, where the last digit refers, by

convention, to the cardinality) and a list of token identifiers that defines the section’s

composition. For example, section SEC 001 004 4 consists of both red (T 001) and

green (T 004) tokens at a 1:1 ratio, with a total cardinality of 4. The definitions of

sections correspond to determining the compositional rules that are combined into

larger rulesets connected to specific input compositions (ICs).
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Finally, the token and section information is utilized to define both the compo-

sitional and structural rulesets per possible input composition. For example, in the

simplest case of a 3rd order ruleset which should be applied when the input contains

only red, yellow and blue tokens, one could define it as follows:

1 "IC_001": {

2 "token_set": ["T_001", "T_002", "T_003"],

3 "valid_sections": [

4 "SEC_001_4", "SEC_001_5", "SEC_001_6",

5 "SEC_002_4", "SEC_002_5", "SEC_002_6",

6 "SEC_003_4", "SEC_003_5", "SEC_003_6",

7 "SEC_001_002_4", "SEC_001_002_6"

8 ],

9 "valid_order": {

10 "1": [

11 "SEC_001_4", "SEC_001_5", "SEC_001_6"],

12 "2": [

13 "SEC_002_4", "SEC_002_5", "SEC_002_6",

14 "SEC_001_002_4", "SEC_001_002_6"],

15 "3": [

16 "SEC_003_4", "SEC_003_5", "SEC_003_6"]}

This input composition is given an identifier (IC 001) and three properties:

1. A list of token identifiers that defines the input composition (token set).

2. A valid sections list, which defines which sections can be predicted from the

corresponding input.

3. A valid order dictionary, which defines the structure of the catalog.

The valid order dictionary’s keys are used to define the target order of sections.

In the given example the catalog must start with an all-red section (represented by a

list of section identifiers), followed by any of the other available sections, and end on

an all-blue section. Other, more complex structural rules can also be defined through

this format for higher order interactions in the input compositions made up of more

types of atomic elements.

To summarize, a library for procedurally generating datasets of synthetic catalog-

like structures from easily customizable configuration has been developed. This con-

figuration consists of higher-order relational rules that define the composition and
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structure of these synthetic catalogs. The intention is for this to reflect the kinds of

patterns that are present in real-world product catalogs from the PROCAT dataset,

based on discussions with SMEs responsible for the design of said catalogs.

The concept and implementation of synthetic catalog generation enables one to gain

more fine-grained insights into model performance. It can quickly be seen whether

a model performs better with regards to predicting valid sections (or clusters) via

the compositional score or with regards to properly ordering sections into a reading

narrative via the structural score. Additionally, one can check how a given model

performs in relation to a specific order of interaction or even particular rule. The

library is also agnostic to the model architecture and approach to the underlying

Catalog Problem.

This library also address a limitation of the PROCAT dataset, namely the fact

that in PROCAT one only ever has access to one target catalog for a particular input

set of product offers. This is a challenge because the same input set could in principle

be composed into multiple equally valid catalogs. Synthetic catalogs allow for the

generation of multiple valid examples from the exact same underlying input, paving

the way for a potential generative approach, as mentioned in the future work ideas

in the fourth included article in Chapter 7.

3.2 Set Interdependence Transformer

Having obtained both the curated PROCAT dataset of actual, real-world catalogs

designed by human experts and a simpler, synthetic dataset of catalog-like structures,

it is time to move on to the particular proposed methods of improving performance

and extending the capabilities of neural networks in relation to the Catalog Problem.

Bearing in mind how the more and more powerful set encoding methods described

in Chapter 2.3 were used to improve the performance of both permutation learning

and neural clustering architectures, introduced in Chapters 2.4 and 2.5, a natural

next step was to consider further possible enhancements in the area of learning set
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representations.

Given the success of Transformer models in general [118, 184, 185], and of the Set

Transformer (ST) in particular [11, 186, 187] within set-input ML, focus was initially

drawn to the ST architecture. The ST improves over initial neural set encoding

method, Deep Sets [10], which loses the information regarding element interactions

in the sum-pooling, and over the simple Relational Networks proposed by Santoro

et al. (2017), which pool over pairwise interactions among set elements. Specifically,

ST uses the self-attention transformations of SAB, described in Equation 2.10, to

explicitly encode pairwise interactions between set elements in each block (or layer),

which can then be stacked to encode higher order interactions [11].

Seeing how human experts appear to consider the interactions among the entirety

of the input set of product offers when designing the catalogs from the PROCAT

dataset, this would potentially require one to stack n SAB layers to give a model the

capacity to learn all relational rules that guide the creation of a catalog consisting of

n product offers. This did not appear feasible, guiding the work towards proposing

an adjustment to the ST method that would be specifically tailored to these aspects

of the Catalog Problem. The core underlying idea was to take advantage of the

attention-based set-pooling operations such as PMA, described in Equation 2.9, to

obtain a representation of the set in its entirety and then treat it as another element

of the initial input set in each layer, through simple matrix augmentation. This set

encoder is further referred to as the Set Interdependence Transformer (or SIT for

short). An introductory visual explanation4 can be found in Figure 3.3.

3.2.1 SIT Encoder

The first necessary step is to take a set of elements, embed them and obtain a per-

mutation invariant representation of this set in its entirety. In the included article

in Chapter 6 a single layer of MAB is used (as outlined in Equation 2.4), which ob-

4The figure takes inspiration from the excellent graphics by Wagstaff et al. (2022), which depict
various set encoders through the lens of Janossy Pooling [190].
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Figure 3.3: Set Interdependence Transformer. A comparison between different
NN set encoding methods and SIT. At the top-left, Deep Sets encodes each element
in an identical and independent way through a fully-connected layer (ϕ), sums these
representations and further transforms them through another fully-connected layer
ρ. At the top-right, a single Set Transformer layer (MAB) encodes pairwise relations
between input set elements (mapping from sets to sets, shown for a single element B→
B‘). At the bottom, SIT first obtains a permutation-invariant representation of the
entire set (gray circle with S) through MAB followed by PMA and then performs the
attention transformation with this set representation treated as another set element.
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tains the first embedded representations of all set elements (Eπ
1 ), followed by Pooling

by Multihead Attention (or PMA, as described in Equation 2.9) to obtain the ini-

tial vector representation of the entire set (s1). However, in principle many other

discussed methods of embedding set elements and transforming them into a permu-

tation invariant representation of the set could be used. In a SIT Encoder, unless

specified otherwise, MAB is first used to obtain the matrix of embedded elements

(MAB(Xπ) = Eπ
1 ) followed by PMA to obtain the permutation invariant representa-

tion of the set (PMA(Eπ
1 ) = s1).

This initial set encoding step differs from the SIT layers to follow. Specifically, in

the subsequent layers of SIT transformations a simple concatenation of the represen-

tation of the set in its entirety with the matrix of embedded elements is performed:

Sπ
1 = (Eπ

1 | s1), (3.1)

where | is used to denote matrix augmentation (as per convention), i.e. appending

the column vector s1 to the matrix Eπ
1 . This is followed by familiar transformer-style

attention in the form of:

SITi(S
π
i−1) = softmax(

(Sπ
i−1W

Q
i ) (Sπ

i−1W
K
i )⊤√

ds
) Sπ

i−1W
V
i , (3.2)

where ds is a scaling factor equal to the length of the permutation invariant vector

representing the entire set and the WQ, WK , WV matrices are learned parameters.

This operation can be repeated over any number of attention heads. Its output is a

permutation equivariant matrix Sπ
i :

SITi(si−1,E
π
i−1) = Sπ

i = (Eπ
i | si), (3.3)

from which one can obtain the separate set and element representations required by

(for example) a Pointer Network by reversing the augmentation and retrieving the
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transformed si vector by its index, as has been done in the third included article in

Chapter 6, or by adding a final layer of Pooling by Multihead Attention to obtain just

the permutation invariant representation of the entire set, as has been done in the

fourth included article in Chapter 7. Note that the required permutation invariance

of si is maintained during the permutation equivariant SITi transformations, as per

the formal proof, in Section 3.1 and supplementary material of Lee et al. (2019).

In principle, these properties allow the Set Interdependence Transformer to relate

individual element representations to the input set in its entirety, in each of the

stacked SIT layers.

This simple variant of the Set Transformer became the set encoder of choice in later

experiments. It was utilized as the set encoder module of a larger set-to-sequence

architecture in the third included article in Chapter 6 and for obtaining both the rep-

resentations of elements belonging to individual clusters and the representations of

all clusters jointly within the Neural Ordered Clusters model described in Section 3.3

and introduced in the fourth included article in Chapter 7. As part of a larger archi-

tecture, SIT appears to offer better performance on the incomplete, set-to-sequence

approach to the Catalog Problem on both PROCAT and synthetic catalogs, as well

as a number of other datasets [29]. Although it marked progress within the presented

research, the set-to-sequence model of which SIT was the set encoder did not consti-

tute a complete approach to the Catalog Problem. Whilst a small ablation study to

investigate SIT’s empirical ability to learn higher order interactions in fewer layers

than a ST (via the synthetic catalog library) is provided, further experiments repro-

ducing these results on other datasets5 as well as firm theoretical grounding for this

speculated ability are a subject of potential future work.

5 Especially popular datasets that particularly lend themselves to measuring relational reasoning,
such as the humbly named Sort-of-CLEVR proposed by Santoro et al. (2017) or the adjusted Kinetics
dataset for action recognition by Kay et al. (2017) as used in related work [31, 192].
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3.3 Neural Ordered Clusters

In order to propose a method constituting a complete approach to the Catalog Prob-

lem, in a way that is most aligned with its characteristics, one needs to develop a

model capable of predicting an input-dependent number of sections as clusters of

product offers without inherent intra-cluster order. The incomplete, set-to-sequence

approach, while it does properly predict inter-cluster order, also infers the order of

elements within a predefined number of sections6. Both of these limitations can be

addressed within the supervised setting through a combination of neural clustering,

as described in Chapter 2.5, and pointer attention, as elaborated on in Chapter 2.4.

In the proposed Neural Ordered Clusters (NOC) a modified version of the Atten-

tive Clustering Process (ACP, as outlined in Equations 2.29 – 2.31) is employed and

combined with an Enhanced Pointer Network (EPN, described in Equations 2.20 –

2.22) and further augmented with a cluster cardinality prediction mechanism. The

decision to add this third element stemmed from observed difficulties encountered by

NPC, CCP and ACP-based architectures in learning to adhere to maximum cardi-

nality constraints present in the synthetic catalogs datasets described in Section 3.1.

Each of the three modular parts of the NOC architecture results in a separate loss

factor, the model being trained on the combined, weighted loss with teacher forcing

[171].

3.3.1 NOC Architecture

NOC is a clusterwise method capable of taking sets of varying cardinality, predicting

an input-dependent number of diverse, partitional clusters and ordering these clus-

ters. First, an introductory overview of the flow of information within NOC is given,

followed by a closer look at each of its three main modules. For an initial visual ex-

6It is possible to modify originally set-to-sequence architectures to enable them to predict an
input-dependent number of clusters. Two such variants are proposed in the fourth included article,
in Chapter 7, where they are referred to as S2S-B and S2S-C.
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Figure 3.4: NOC Clustering Step. A visualization of how NOC predicts a single
cluster. In the leftmost panel a random anchor element (circled with dotted line
and marked with the letter A) is chosen from the set of unassigned elements, which
are marked as white circles. In the middle panel, initial predictions regarding the
probability of each remaining unassigned element belonging to the current, green
cluster are obtained, higher confidence being marked with higher colour intensity.
In the rightmost panel, the remaining candidates are further adjusted based on a
predicted cardinality threshold (tj = 3, anchor element not being counted), three
elements with the highest predicted probability are assigned to the completed cluster
and the other two are returned to the unassigned set. Contrast with Figure 2.6.

planation, the reader is referred to Figure 3.4. Much in line with the process familiar

from preceding neural clustering methods, the NOC algorithm begins by selecting a

random anchor element from the provided input set of unassigned elements. Based

on the representation of this anchor, the remaining available elements and (in follow-

ing iterations) the already predicted clusters, it obtains a vector zj ∈ Rdz sampled

from a Gaussian latent variable, which encapsulates the properties of the current jth

cluster (containing the anchor), which remains to be completed in the course of the

jth forward pass, as described in Equation 2.27.

It then calculates the probability of each unassigned element belonging to the jth

cluster, as shown in Equation 2.28. The per-element probabilities are used to obtain
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initial cluster assignments through a threshold value of 0.5. These assignments are

further adjusted through the cardinality prediction module, which outputs a maxi-

mum cardinality threshold (tj). This possibly curtails the initial element selection,

again conditioned on the anchor, available elements and previously predicted clus-

ters. Per-element probabilities are sorted and up to tj elements with the highest

corresponding probability become the final members of the jth cluster.

This process is repeated until there are no remaining, unassigned elements, one

cluster being formed at each forward pass through these first two stages of NOC. The

obtained k clusters (Ĉ = {Ĉ1, . . . , Ĉk}) are transformed through stacked SIT layers

and PMA into fixed-length, per-cluster vector representations (Gk = (g1, . . . ,gk)) as

well as a representation of the entire set of predicted clusters jointly (qk, obtained

from Gk). The latter forms the first hidden state (hd
0) of the EPN, which predicts an

attention distribution over all predicted clusters iteratively, in each of k−1 iterations

(last remaining cluster becomes the last one in the sequence). At each iterative step,

the cluster with the highest corresponding attention value is selected as next in the

output sequence of clusters. In this way the prediction of the order of elements within

clusters is avoided and the model is able to obtain an input-dependent number of

clusters with varying cardinalities. A more detailed overview of the NOC architecture

is provided in Figure 3.5, with every step of the model’s forward pass being described

in the paragraphs that follow.

NOC’s input takes the form of a set of per-element vector representations forming

an arbitrarily ordered matrix Eπ ≈ X. By convention, the subset of these elements

that are yet to be assigned to a cluster at the jth clustering iteration of NOC is denoted

as the matrix Uj. The first stage of the NOC algorithm, further referred to as NOC1,

constitutes the initial selection of elements to be assigned to the current cluster (Cj)

at clustering step j. For every cluster to be predicted, a random anchor element (eaj )

is sampled uniformly, a fixed-length vector representation of all currently unassigned

elements (uj) is obtained from the embedded representation of all unassigned elements
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Figure 3.5: NOC Architecture. An overview of how NOC completes the clustering
of the input set (in two steps, j and j + 1), followed by ordering of the predicted
clusters (rightmost panel). Starting at the top of the leftmost panel and moving
to the bottom before switching to the next panel to the right, at clustering step j
the representations of unassigned elements (Uj = e1:6), previously created clusters
(Gj = g1:3) and a randomly selected anchor element (eja) are used to obtain initial
cluster assignments’ probabilities, which represent how likely each unassigned element
is to become part of the current, jth cluster (ĉ1:6 ≈ pθ(ĉ1:6 = j) = pθ(e1:6 ∈ Ĉj)), with
color opacity indicating higher predicted probability. In the middle panel the current
cardinality (tj = 4) is predicted and used to adjust the jth cluster (Ĉj), which is

then transformed via PMAc(SITc(Ĉj)) into its embedded representation gj, which
becomes part of the Gj+1 matrix and is used during the remaining clustering steps.
In the rightmost panel, after k iterations of the NOC1 and NOC2 steps, the predicted
clusters (Ĉ ≈ Gj+1 = Gk) are ordered via NOC3’s Enhanced Pointer attention (as
described in Equations 2.20 - 2.22).
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individually (Uj) through a dedicated stack of SIT layers:

uj = PMAa(SITa(Uj)), (3.4)

and then the fixed-length vector representation of all preceding clusters jointly (qj)

is obtained from the representation of previously predicted clusters individually (Gj

referring to {Ĉ1, . . . , Ĉj−1} ≈ (g1, . . . ,gj−1)) in the corresponding way:

qj = PMAb(SITb(Gj)). (3.5)

Then, the zj vector is sampled from a Gaussian latent variable of predicted means

and standard deviations as a representation of the jth cluster, conditioned on the

anchor element, the remaining unassigned elements and the previously assigned ele-

ments. This function is trained as a conditional variational autoencoder [172]:

pθ(zj | Xj) = N (zj | µ(eaj ,uj,qj), σ(eaj ,uj,qj)) (3.6)

where Xj is used as a shorthand for the state of the input set X at step j, referring

to which elements have been assigned to which clusters, µ and σ are MLPs which

take as input the jth anchor element (eaj ), the representations of all currently unas-

signed points (uj) and all previously predicted clusters (qj) and output the means and

standard deviations for each dimension of the zj vector. Finally the model predicts

the per-unassigned-element (ei) cluster assignment probabilities for the jth cluster

(pθ(ĉi = j)). This is done through a fully connected network ϕ1, with sigmoid activa-

tion, which takes as input the concatenated vector representations of each unassigned

element, the anchor, the sampled vector representing the properties of the jth cluster

(zj), as well as the unassigned elements (uj) and preceding clusters (qj) jointly:

NOC1(ei,Xj) = pθ(ĉi = j | Xj) = sigmoid(concat(ϕ1(ei, e
j
a, zj,uj,qj))). (3.7)
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The second stage, further referred to as NOC2 makes an adjustment to the initial

cluster assignments obtained through NOC1. It is depicted in the upper half of the

middle panel in Figure 3.5. Each clustering step j (leftmost and middle panel) consists

of a single NOC1 pass followed by a single NOC2 pass, at the end of which a complete

jth cluster has been predicted and the set of remaining, unassigned elements can be

updated. NOC2 is comprised of a fully-connected neural network ϕ2, which predicts a

max cardinality threshold (tj) for the jth cluster, based on a single concatenated vector

of the representation of the anchor element (eja), the unassigned elements jointly (uj)

and the previously predicted clusters (qj):

tj = NOC2(Ĉj,Xj) = ϕ2(concat(eja,uj,qj)), (3.8)

Ĉj =

{
Ĉj, if |Ĉj| ≤ tj

Ĉj
1:tj
, otherwise

, (3.9)

where the model either adjusts the composition of Ĉj if its cardinality exceeds the

predicted threshold, or keeps the cluster as is. The adjustment is performed by

maintaining up to tj elements selected by NOC1 with the highest cluster assignment

probabilities as members of the jth cluster and returning the remainder to the set

of unassigned elements. The jth cluster’s fixed-length vector representation (gj) is

obtained through a dedicated stack of SIT layers from the representations of the

elements assigned to this cluster (Ĉj ≈ Ĉj = {em, . . .} such that ĉm = j):

gj = PMAc(SITc(Ĉj)). (3.10)

Finally, after k iterations of repeated NOC1 and NOC2 steps, k partitional clusters

(Ĉ1, . . . , Ĉk) have been obtained from the input set. Each of these clusters has a cardi-

nality between 1 and n. Their fixed-length vector representations (Gk = (g1, . . . ,gk))
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obtained during NOC1 and NOC2 form the input expected by set-to-sequence meth-

ods, which can then be used to output these clusters’ predicted order.

Thus, in the third and final stage of NOC3 an Enhanced Pointer Network, or

EPN [17], is employed to perform k − 1 iterations over the predicted clusters (third

panel in Figure 3.5). The initial hidden state (hd
0) of the EPN is initialized as the

permutation invariant representation of all predicted clusters (Gk ≈ Ĉ), obtained via

SIT and PMA:

hd
0 = PMAd(SITd(Gk)) (3.11)

At each iteration step m ∈ (1, . . . , k − 1) the EPN predicts an attention vector

am over all remaining, unordered clusters, the highest attention value pointing to the

cluster to be placed at the mth position in the sequence of ordered clusters. Once

only one cluster remains to be ordered, it is placed at the end of that sequence (hence

k − 1):

am = softmax(v⊤tanh(W1Mm + W2h
d
m)) (3.12)

where hd
m = LSTM(hd

m−1,gm−1), (3.13)

where gm−1 refers to the representation of the cluster placed in the previous, m− 1th

position in the iteratively predicted output sequence of ordered clusters. This largely

resembles a Pointer Network (see Equations 2.17 - 2.19), with the exception of matrix

Mm specific to the EPN, as outlined in Equations 2.20 - 2.22. The Mm matrix

provides additional context consisting of two kinds of information. The first is global

orientation relating all remaining unordered clusters to one another. The second is

local coherence between previously selected clusters and remaining candidates. This

contextual information is obtained via HISTORY and FUTURE sub-modules from
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the original matrix of all cluster representations (Gk ≈ Ĉ). These two sub-modules

output pairwise ordering predictions in relation to each candidate cluster, which are

then concatenated to form Mm. For further implementation details regarding these

two sub-modules the reader is referred to Appendix A.2 of the fourth included article

or to the original paper by Yin et al. (2020). Together, these three elements of NOC

allow for the prediction of an input-dependent number k of partitional clusters with

varying cardinalities. The full NOC algorithm, additional notes on the objective

function and training process are provided in the appendix of the fourth included

article, in Chapter 7, for further clarity.

3.3.2 Performance and Limitations

The NOC approach has been tested on a number of datasets that epitomize the Cata-

log Problem. These include a toy task of ordering 2D Mixtures of Gaussians based on

their centroid’s distance from the origin point, the procedurally generated synthetic

catalogs, introduced in Chapter 3.1, and the main PROCAT dataset, described in

Section 1.3.3. The detailed results are presented in the Experiments section of the

fourth included article, in Chapter 7. Therein, NOC is compared with two separate

groups of baselines:

1. Neural clustering methods with an added set-to-sequence module

2. Proposed variants of the set-to-sequence architecture

The set-to-sequence (S2S) module added to existing neural clustering methods

takes the predicted clusters and outputs their order via attention-based pointing (an

EPN, for a direct comparison with NOC). These methods include the pointwise Neural

Clustering Process (NCP), the Clusterwise Clustering Process (CCP) and the Atten-

tive Clustering Process (ACP) developed by Pakman et al. (2020) and Wang et al.

(2020). The proposed variants include modifications to the pointer mechanism (S2S-

C) and a slight reformulation of the task (S2S-B). The former enables the prediction
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of ordered clusters (as opposed to ordered elements), the latter only the prediction

of a number of clusters that isn’t known a priori (whilst still predicting in-cluster

order). The specifics of both S2S-B and S2S-C are presented in the Appendix of the

included article introducing NOC.

The first group of baselines appears ineffective at learning cluster-level cardinality

constraints. NOC offers an improvement in this area through its cardinality prediction

module (NOC2). NOC also outperforms pure S2S methods in terms of both the

quality of the clustering and the accuracy of the predicted cluster permutation. S2S

methods, in turn, tended to outperform NCP, CCP and ACP at the ordering task,

as evidenced by, among others, the structural score (StS) of the predicted synthetic

catalogs. The application of NOC to the core PROCAT dataset resulted in best

performance to-date, as showcased via Kendall’s τ and V-measure. Examples of the

rendered Incito catalogs obtained from PROCAT examples clustered and ordered by

the NOC model are shown in Figure 3.6.

NOC respects all characteristics of the Catalog Problem, is capable of predicting

a partitional clustering of sets of varying cardinalities, obtains diverse clusters that

respect cluster-level cardinality constraints, displays a degree of relational reasoning,

and orders the resultant clusters (or sections) into complete catalogs, respecting struc-

tural rules present in the supervision target. It is a predictive solution to the Catalog

Problem, trained to yield a single “ground truth” PROCAT catalog given a set of

products. Its main limitation is that it doesn’t adhere to a fully generative formula-

tion of the problem, which would respect that there exists a number of valid solutions

for both the clustering and the ordering, as discussed in Chapter 1.3.4. This forms

one of the potential areas of future work outlined in the conclusion of this thesis.

In summary, in Chapter 3 an overview of a number of the research contributions

and proposed methods has been provided. All of these build on the foundation formed

by the curated dataset of real-world product catalogs, named PROCAT, introduced

as an early deliverable in Chapter 1.3.3. First of the discussed methods was a library
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Figure 3.6: NOC Predictions. Examples of catalogs predicted by NOC and ren-
dered by the Incito service. Each row consists of three sequential pages (screens),
each sequence is from a different predicted catalog to display a representative variety.
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for generating simplified, catalog-like structures from colour-coded atomic elements.

Initially introduced along with the PROCAT dataset in the second included arti-

cle in Chapter 5, these synthetic catalogs address some of the limitations inherent

to PROCAT. Namely, they facilitate faster model training, contain multiple valid

targets per identical input and include customizable, in-depth metrics that can af-

ford the researcher greater insight into model performance. This took the form of

a compositional score (CoS), which relates to the tested model’s ability to compose

valid sections, and a structural score (StS), which measures the model’s ability to

order sections into a valid catalog. The generation process of these synthetic catalogs

can be adjusted through a flexible, easy-to-customize configuration that encodes the

underlying compositional and structural rules. This opens the possibility of experi-

menting with rules not included by default and enables the researchers to separate

these rulesets by the order of interaction required to be learned to abide by them.

Additionally, a set encoder method by the name of the Sit Interdependence Trans-

former was proposed and tested as one module in larger set-to-sequence architectures

as an example of an incomplete approach to the Catalog Problem. SIT is a simple

modification of the Set Transformer, with the addition of treating the permutation

invariant representation of the set, obtained in the first layer through pooling by mul-

tihead attention, as another set element in subsequent layers. This was done in an

effort to enable the learning of higher order interactions among all n elements of the

input set in fewer than n layers and appears to result in improved performance in the

experiments outlined in the third included article in Chapter 6.

Finally, the main model architecture designed as an example of a complete ap-

proach to the Catalog Problem was presented. This took the form of Neural Or-

dered Clusters, a method combining elements of set encoding, supervised clustering

and pointer-style attention, with an added per-cluster cardinality prediction element.

NOC is presented in more depth in the fourth included article in Chapter 7.
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Chapter 4

Article 1

Article details:

1. “Set-to-Sequence Methods in Machine Learning: a Review”

Mateusz Jurewicz and Leon Derczynski

Journal of Artificial Intelligence Research (JAIR), volume 71: 885-924, 2021.

Context. At the time of writing the first published article there appeared to

be no single point of entry for researchers interested in machine learning methods

that take as input sets of elements and return a sequence, let alone such neural-

network-based methods in particular. Although the term “set-to-sequence” would

appear sporadically in papers that build on earlier sequence-to-sequence models (often

referred to as seq2seq), there was a lack of a clear and consistent definition. Within

the context of this thesis, the article is a wider and more detailed look at set encoding

and permutation learning methods, a more focused and ultimately relevant selection

of which was introduced in Chapter 2.

Contributions. The article provides a comprehensive entry point with respect to

set-to-sequence methods in machine learning. It defines the field, contrasts it with

a number of related areas and presents important foundational concepts. It also

firmly grounds the field in multiple examples of practical application and provides a

qualitative comparison of the described set encoding methods. Every included model

is presented in significant detail, with a discussion of its limitations and notes on
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proven areas of use. Best effort is made to compare the models’ performance on

reported datasets, where applicable.

Recent developments. As the article with the least recent publication date,

several set encoding and permutation learning methods have been proposed since.

Within learning representations of sets of any cardinality many adaptations of the

included Set Transformer have been proposed. These include the Latent Variable

Sequential Set Transformer [120] in the area of multi-agent motion prediction, the

Point Transformer [121] within semantic scene segmentation on point clouds with

positional encoding and the Perceiver proposed by Jaegle et al. [206], with a proven

record of scaling to inputs with cardinality of a hundred thousand. Additionally,

optimal transport kernel embedding or OTKE [207] has been proposed to mitigate

the computational cost of set transformers, with some approaches deriving it through

Expectation-Maximization [208]. Additionally, as referred to in Chapter 2, reinforce-

ment learning methods have since been successfully applied to combinatorial opti-

mization problems such as learning a permutation of a set of elements, as seen in the

work of Wu et al. (2021) and Kool et al. (2022). These could constitute a separate

but important update to the article section regarding ordering methods and different

formalizations of the set-to-sequence task’s target output.

4.1 Set-to-Sequence Methods in Machine

Learning: a Review

In this section, the first published article is included in unchanged form, starting on

the next page for ease of reading.
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Abstract
Machine learning on sets towards sequential output is an important and ubiquitous task, with

applications ranging from language modelling and meta-learning to multi-agent strategy games and
power grid optimization. Combining elements of representation learning and structured prediction,
its two primary challenges include obtaining a meaningful, permutation invariant set representation
and subsequently utilizing this representation to output a complex target permutation. This paper
provides a comprehensive introduction to the field as well as an overview of important machine
learning methods tackling both of these key challenges, with a detailed qualitative comparison of
selected model architectures.

1. Introduction

We begin by providing a definition of the set-to-sequence field and outline its importance in various
areas of application.

1.1 What is Set-to-Sequence?

Set-to-sequence encompasses a group of problems where input takes the form of unordered collections
of elements and the output is an ordered sequence. These challenges can be approached as a
machine learning problem, where models learn arbitrary functions for performing the set-to-sequence
mapping.

Set-to-sequence covers combinatorial optimization and structure prediction problems where ex-
haustive search is often not tractable. Machine learning (ML) approaches to set-to-sequence combine
set-encoding techniques with permutation learning and have found an exceptionally wide range of
practical applications.

Many of the successful deep learning approaches take advantage of the structure in their input
data. However, sets do not posses the kind of internal structure that images and natural language
sentences do. In set-to-sequence our input data does not have an inherent order and therefore
our models must take into consideration the permutation invariance of sets. Obtaining meaningful
permutation invariant representations is an important challenge for machine learning models in order
to ensure that the same set will not result in two different outputs, due to the arbitrary initial order
in which its elements were presented to the model.

1.2 Why Does Set-to-Sequence Matter?

Machine learning set-to-sequence methods can approximate solutions to computationally intractable
problems in many areas. They have been applied to learning competitive solvers for the NP-Hard
Travelling Salesman Problem (Vinyals et al., 2015); tackling prominent NLP challenges such as
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sentence ordering (Wang & Wan, 2019) and text summarization (Sun et al., 2019); and in multi-
agent reinforcement learning (Sunehag et al., 2018). A notable example is the agent employed by
the AlphaStar model, which defeated a grandmaster level player in the strategy game of Starcraft
II (Vinyals et al., 2019).

Set-to-sequence ML models also play an important role in data-intensive 3D point cloud process-
ing (Qi et al., 2017) and meta-learning (Huang et al., 2018b). Set-input and set-ordering problems
themselves are prominent in a wide array of applications ranging from power grid optimization (Cui
et al., 2019), where solving them led to power usage savings of up to 30%, through anomaly detection
(Jung et al., 2015) to measurements of contaminated galaxy clusters (Ntampaka et al., 2016).

This review contributes to the field in two primary ways:

1. By providing a single point of entry for researchers interested in the set-to-sequence field and
for applied practitioners solving set-input ordering challenges.

2. By comparing all the discussed methods via a number of aspects relevant for both academic
and applied work and presenting this comparison in the form of easy-to-read tables, which will
help guide the reader towards the most applicable method for their specific area of interest.

The remainder of this paper is structured in the following way: firstly, we introduce the reader
to the necessary background concepts and related work in section 2, including specific notes on
the adopted notation. Secondly, an overview of set encoding methods is given in section 3, with
comparison tables and details of the underlying mathematical transformations. Thirdly, section 4
contains a survey of popular ordering methods, which use the encoded set representation to output a
complex permutation. The lists provided in sections 3 and 4 are not exhaustive and focus primarily
on deep learning approaches. Finally, a discussion of current limitations and directions for further
research is given in section 5, followed by a short conclusive summary in section 6.

2. Background

In this section the reader is introduced to the key concepts related to machine learning on sets and
permutation learning, with minor notes on notation throughout the rest of the paper. Additionally,
a comprehensive overview of related work from other fields of machine learning is given, including
natural language processing, information retrieval and set segmentation.

2.1 Important Concepts

For the purposes of this review a set can be intuitively defined as a collection of distinct elements,
without a canonical order between them (Halmos, 2017). An important property of sets is that they
can have a varying number of elements, also referred to as their cardinality. Whilst the intuitive
definition of a set is susceptible to known paradoxes (Rang & Thomas, 1981), the machine learning
methods discussed here do not require an in-depth understanding of the proper definition from
axiomatic set theory. Interested readers can find further information pertaining to it in other referred
publications (Takeuti & Zaring, 2013).

As per the axiom of extensionality, sets are defined only by their elements (Hayden et al., 1968).
In practice this means that given, for example a set A = {x, y, z} and set B = {z, y, x} we know
that A = B. The order in which the elements are presented in roster notation does not matter.
From now on, when we refer to a set, we specifically limit our considerations to finite sets only.

Set-to-sequence ML methods are distinctly different from earlier, encoder-decoder sequence-to-
sequence model architectures (Sutskever et al., 2014). The difference stems from having to handle
set-input data. This imposes two requirements on set-to-sequence ML methods that are not met by
most neural network models:
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1. Permutation Invariance

The output of the model must be the same under every possible permutation of the elements
from the input set.

2. Varying Input Length

The same model must be able to process input sets of different lengths.

If these criteria are not met, the ML model by definition treats its input as a sequence, not a set.
Fully feed-forward methods fail to meet both criteria and the recurrent neural networks (RNNs),
which form the foundation of most sequence-to-sequence autoencoders, are sensitive to alterations of
the order of their input (Vinyals et al., 2016). To truly treat input data as an inherently unordered set
we must be certain that permuting the input will not result in a different encoded set representation
(Zaheer et al., 2017). Additionally, depending on the presence and type of a downstream task that
uses this representation, we are interested in whether the final output is also permutation invariant,
which is not necessarily the case with all reordering methods.

More formally, a function f : P(X) → Y is permutation invariant regarding the order of the
elements of its input set if for every permutation π the following property holds: f({x1, . . . , xn}) =
f({xπ(1), . . . , xπ(n)}). A related property of functions on sets, which has been formally investigated
by Zaheer et al. (2017), is permutation equivariance. In tasks where each set element has an
associated target label, such that these individual labels depend on the entirety of the set, we would
ideally want our predicted labels to remain the same per element, regardless of how the original
input set is permuted. That property is permutation equivariance.

At this point it is important to distinguish between two types of set-to-sequence challenges. In
the first type the output is a reordering of the input elements, with the possibility of repeating
an element multiple times in the output sequence or skipping it entirely. Such permutations with
potential repetition and exclusion are further denoted as complex permutations. We can refer to the
type of problems involving various kinds of permutations of the input elements as self-referential
set-to-sequence challenges.

The self-referential set-to-sequence domain includes classic combinatorial optimization problems
and forms the majority of this review. There are many different ways to frame this task and formalize
the resulting output, which are discussed in section 4. They include primarily pointer-based attention
(4.2), the generation of permutation matrices (4.3) and ranking scores (4.4).

Figure 1: Set-to-Sequence Tasks by Referentiality

In the second type of set-to-sequence challenges, the task is to generate output that is sequential
in nature, but is not defined as a permutation of the original input elements. We denote this as
non-referential set-to-sequence. It encompasses for example summarization of a set of documents.
Here, the input is indeed a set, with unique elements that do not have a canonical ordering to them.
The output is a sequence of natural language tokens in the form of a human-readable summary,
without referring directly to the elements of the input set. This area is only partially covered by
this review.
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For a simple visual explanation highlighting the difference between self-referential (top) and non-
referential (bottom) set-to-sequence tasks, see Figure 1. In both cases the input is a set of 3 disks of
varying shades of blue. In a self-referential setting the target might be a permutation from lightest
to darkest. In a non-referential setting the target may be a sequence of word tokens describing the
input set.

Specifically, all descriptions of set-input encoding methods are shared between the two types of
set-to-sequence problems and therefore will be of value to readers interested in either. However, for
considerations related to sequence prediction in general, areas of interest include recurrent neural
network encoder-decoder models (Sutskever et al., 2014), reinforcement learning actor-critic methods
(Bahdanau et al., 2017) and fully-connected transformer architectures as investigated by Vaswani
et al. (2017), Devlin et al. (2019) and Brown et al. (2020).

In summary, the former type of set-to-sequence ML architectures, which this review focuses on,
tackle two primary challenges:

1. Handling varying-length set-input data in a way that ensures permutation invariance

2. Handling outputs as complex permutations or reorderings of the original input

The first challenge, once solved, allows us to use machine learning methods to perform set-
input regression, classification, recommendation (Vartak & Thiagarajan, 2017), as well as clustering
problems and more (Edwards & Storkey, 2017).

Depending on the specific task at hand, the permutation invariant representation of the input
set may also be required to encode higher order interactions between the input set elements, as
seen in the work of Lee et al. (2019) and Zhang et al. (2020), which is a separate but important
consideration in the area of encoding sets.

The second challenge of permutation learning is made simpler by solving the first one, but has
also been successfully tackled without addressing it (Vinyals et al., 2015). It focuses on learning the
proper order of arbitrary input elements. As a result, the model learns to predict the best structure
of the output sequence composition.

2.2 Difficulty of Learning to Reorder

Permutation learning is an inherently difficult challenge. Even a relatively simple application of
set-to-sequence methods to the Travelling Salesman Problem (TSP) in a two dimensional Euclidean
space involves tackling an NP-Hard problem (Vinyals et al., 2015).

Whilst highly successful, polynomial time algorithms for obtaining good approximate solutions
to this task do exist, such as the ones proposed by Arora (1996) and Karlin et al. (2020), it is also
valuable to investigate the capacity of current machine learning techniques to learn them iteratively.

In the two dimensional Euclidean version of the TSP our input is a set of point coordinates and
our desired output is a permutation of these points in a way that results in the shortest distance
travelled between them. Additionally, we must not skip nor revisit any of the points. For a visual
example, see Figure 2.

This challenge is difficult because the number of possible permutations increases factorially in the
cardinality of the input set. It is a self-referential set-to-sequence problem due to its input having no
inherent order and the desired output being a permutation of the input elements. Given the same
set of points as input, we expect the output to be the same tour, regardless of the order in which
they are originally presented.

Further difficulties arise when we consider how to formalize the resulting reordering. One possible
method involves the use of the aforementioned permutation matrices, which are discrete and therefore
do not lend themselves to direct use of gradient-based backpropagation without a relaxation of
the concept (Emami & Ranka, 2018). This and other formulations of representing a reordering
(mentioned below) are discussed in more detail in section 4.
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Figure 2: Travelling Salesman Problem

An example of a TSP input is given as a set of points in a 2D Euclidean space (top left) and an arbitrarily
ordered array (bottom left). Individual dots represent x, y coordinates. As output, we see the shortest path
between points (top right) and an array representing their target order (bottom right).

Such difficulties have motivated researchers to instead investigate differentiable, attention-based
methods that involve pointing to the elements of the original set to define their permuted order.
This approach often involves potentially computationally expensive beam search during inference.

Finally, if we forego the requirement of handling varying-length inputs, we can look to traditional
learn-to-rank approaches for inspiration. In such frameworks the reordering is formulated as the
assignment of a relevance score to each element, followed by sorting the elements according to that
score, in monotonic order. However, sorting is a piecewise linear function, which therefore may
contain many kinks where it is not differentiable. As a result, differentiable proxies to the sorting
operator have been developed, but they did not achieve the expected O(n log n) time complexity
until a method consisting of a projection onto a permutahedron was proposed by Blondel et al.
(2020).

Alternatively, in learn-to-rank, our model may be trained to return ranks, i.e. positions of the
input elements in the target (properly ordered) sequence. These ranks are piecewise constant func-
tions, with derivatives that are either null or undefined, preventing gradient-based learning. However,
significant progress has been made towards directly approximating ranking metrics (Roĺınek et al.,
2020) and constructing differentiable sorting and ranking operators (Blondel et al., 2020). Addition-
ally, Engilberge et al. (2019) propose a deep neural net which can act as a differentiable proxy for
ranking, allowing the use of traditionally non-differentiable metrics such as Spearman’s rank-order
correlation (Spearman, 1904) as loss functions.

2.3 ML on Sets and Combinatorial Optimization

Set-to-sequence combines techniques from the field of machine learning on sets and combinatorial
optimization. The former covers research areas related to both set-input and set-output problems,
of which set-to-sequence is only concerned with the first kind. The latter consists of finding an
optimal object from a finite set of objects and is strongly related to many forms of ordering tasks.
The canonical example is the aforementioned TSP, which in itself has a long history of attempts
at solving it through the most popular machine learning methods of the time, for example Smith
(1999), Pihera and Musliu (2014), Ishaya et al. (2019) and Bengio et al. (2020).

Combinatorial optimization as such is of vital importance to modern industry applications. Con-
sider the archetypal Vehicle Routing Problem (VRP), which poses the task of finding an optimal set
of routes for a fleet of vehicles aiming to deliver goods to a given set of locations. The quality of
the solution is determined by the global transportation cost. In the simplest variant of VRP, this is
dependent on the sum of the lengths of tours for all vehicles. This effectively requires an ordering
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of the locations into optimal trips, per each vehicle. Given the scale of modern logistical challenges
and the environmental impact of freight, it is understandable that there have been many attempts
to apply recent machine learning developments to such problems (Ibrahim, R, & Ishaya, 2019).

Current state-of-the-art combinatorial optimization algorithms often rely on handcrafted and
hard-to-maintain heuristics for making decisions that are otherwise computationally infeasible or
not well defined mathematically, for example Bello et al. (2016). It is a natural area of application
for machine learning research and has been approached through the use of graph-based methods
(Dai et al., 2017), reinforcement learning (Nazari et al., 2018) and attention mechanisms (Kool
et al., 2019). For a comprehensive survey of the wider intersection of combinatorial optimization
and machine learning, see Bengio et al. (2020).

2.4 Notation

The paper follows the notational conventions that are most common in literature. Scalar values are
marked with lower case italics xi, vectors with lower case bold typeface x, matrices with capital case
italics X. These matrices may be used to represent sets, in which case they are presented through
roster notation with curly brackets, for example X = {x1, . . . ,xn}.

However, sets may also consist of scalar elements, in which case a capital letter is still used
to represent them: A = {ai, . . . , an}. Given the importance of differentiating between unordered
sets and ordered sequences, the latter are represented through angled brackets x = 〈x1, . . . , xn〉 for
additional clarity. When indicating the index of an element within a vector, whose symbol already
contains a subscript (e.g. vj) the index of the scalar element is given in the superscript (vij).

Individual permutations are marked as π, such that an example πi = 〈3, 2, 1〉, consisting of integer
indices referring to the original sequence x = 〈x1, x2, x3〉, would result in the reordered sequence
xπ = 〈x3, x2, x1〉. In some cases, if the order of elements in the original sequence is nontrivial, a
permutation π can also be given in two-line notation making both xπ and the integer indices explicit:

π =

(
x3 x2 x1

3 2 1

)
(1)

2.5 Connections with Other ML Fields

In this section, a brief overview of other related topics from different fields of machine learning
research is given. The aim is to point the reader who may only be tangentially concerned with
set-to-sequence tasks to the appropriate area within their main field of interest. A reader with a
decided focus on set-to-sequence is encouraged to continue reading section 3 directly.

2.5.1 Natural Language Processing (NLP)

There is a number of cases from the field of Natural Language Processing (NLP) that require tackling
similar challenges to the ones faced by set-to-sequence methods. The popular sequence-to-sequence,
encoder-decoder framework proposed by Sutskever et al. (2014) can itself, in principle, be applied
to set-to-sequence problems, but does not perform well in practice. An example of such a case is
the work on word ordering tasks, also known as linearizations, towards syntactically plausible word
representations (Nishida & Nakayama, 2017).

The authors use sentences of ordered words to train the network to output a binary permutation
matrix. When the original input, in the form of randomly ordered words from the target sentence,
gets matrix-multiplied by this permutation matrix, the proper order is recovered. The network,
referred to by the authors as the Word Ordering Network (WON), is an example of one way to
formalize an ordering task. It can be seen as a simplification of the Pointer Network encoding method
(Vinyals et al., 2015), discussed in more depth in a later section, whilst more closely resembling
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the classic sequence-to-sequence models in the decoder (where it sequentially outputs rows of the
permutation matrix).

Another example of an NLP task where permuting plays a key role is sentence ordering and order
discrimination. The goal is to take a set of sentences and order them back into the original paragraph.
Historically, this area of research has been dominated by hierarchical RNN-based approaches, which
make use of LSTMs or GRUs in an auto-encoder framework (Logeswaran et al., 2018). First, a
recurrent network is used to obtain the embedding of each sentence and then another to obtain the
context representation of the entire paragraph.

More recent developments have seen the use of attention mechanisms to make it easier for this
embedding to encode vital information regardless of the distance between information-carrying ele-
ments, as per the vanishing gradient problem. An example of this can be found in the ATTOrderNet
architecture (Cui et al., 2018) and more recently in the Set Transformer (Lee et al., 2019), discussed
in detail in section 3.5.

An example of an NLP set-to-sequence challenge where the output is not a permutation is the
task of summarizing multiple documents into a single sequence of text as seen in the works of Ma
et al. (2016) and Mani et al. (2018).

2.5.2 Ranking, Information Retrieval and Content Ordering

Another related, but succinctly distinct field comes in the form of ranking problems, information
retrieval and content ordering. These encompass a family of challenges where there exists an optimal
hierarchical order to the input elements, such that given two elements there is always a proper way
in which they should be placed in relation to one another, which does not change depending on the
other input-set elements.

More specifically, in the context of ranking for search, if we enter the query ‘cats‘, the returned
image of a cat should always rank higher than an image of a ‘dog‘, regardless of what the other
returned images may contain. This assumption is not always true in complex set-to-sequence prob-
lems, where any new element of the input-set can change what the proper relative order or structure
of the already available elements’ sequence should be.

Traditionally, learn-to-rank problems have been tackled in a pairwise manner (Cohen et al.,
1998), later approaches have applied neural methods on a list-based formulation of this problem
(Cao et al., 2007). Ranking has also found application in content selection (Puduppully et al., 2019)
and been employed as a useful auxiliary objective in a multitask setting for regression problems (Liu
et al., 2019). A detailed look at listwise ranking approaches to ordering and structure prediction
can be found in section 4.4.

2.5.3 Set Regression, Classification and Segmentation

A more closely related area of work stems from set-input problems that have an output that is
not a sequence. These include set regression, classification and segmentation challenges, among
others. Effectively, this research field requires solving a near identical challenge to the first of two
primary set-to-sequence challenges outlined at the beginning of this section, in that obtaining a
proper encoding of the input set is vital.

Examples of such methods include PointNets for 3-dimensional point cloud classification and
segmentation (Qi et al., 2017), which builds on previous work by Vinyals et al. (2016) in a specific
geometric setting requiring both rotation and translation invariance (see section 3.6.3). Another
example comes in the form of techniques for labelling objects based on a set of images from multiple
viewpoints such as security cameras (Zhao et al., 2019a) and even fully convolutional models for set
segmentation (Oliveira et al., 2020).

Methods that obtain the input set representation in a way that is interesting to set-to-sequence
problems are included in the main section of this review and given appropriate focus, regardless of
whether their original application was in sequence-output challenges.

103



Jurewicz & Derczynski

2.5.4 Set-Output Tasks, Including Set-to-Set

Conversely, a large field of work revolves around methods that learn to generate or predict a set as
their output. Sets are the natural representation for many kinds of output data in machine learning
tasks. These include a set of objects present in an image in an object detection setting (Zhao et al.,
2019b), a group of points in a point cloud (Achlioptas et al., 2018) and a selection of nodes in a
molecular graph for the problem of molecule generation (De Cao & Kipf, 2018).

The main challenge of set-output methods mirrors the primary challenge of representing sets in a
permutation invariant way in set-input problems. If the order in which the model outputs elements
does not matter, there are n! equivalent, correct outputs that the model has to learn to consider
equally good.

For example, imagine a simple task where the model must learn to take as input a set of integers
and return the set of all primes present in the input. Specifically, given the input A = {1, 2, 3, 4, 5}
the correct output should take the form of the set B = {2, 3, 5}. However, given that ML model
implementations operate on ordered, multidimensional arrays, the model must learn to treat all of
these possible output sequences as equally correct: 〈2, 3, 5〉, 〈2, 5, 3〉, 〈3, 2, 5〉, 〈3, 5, 2〉, 〈5, 2, 3〉, 〈5, 3, 2〉.

Failure to properly account for this property of output sets leads to discontinuities that are
difficult for most modern neural architectures to learn, even on seemingly trivial synthetic datasets
(Zhang et al., 2020). An example that illustrates this comes in the form of an autoencoder trained
to embed and then reconstruct input consisting of a set of n 2-dimensional points forming a regular
polygon.

Every example in this dataset is a rotation of the same polygon around the origin. The disconti-
nuity arises from this rotation, which forces a switch with regards to which element of the input set
the model’s output neurons will be responsible for decoding. This is referred to as the responsibility
problem. Proper handling of the set structure in the output requires the application of permuta-
tion invariant and permutation equivariant operations, much like in set-input problems, where the
responsibility problem is not present.

Notable recent methods in the field of set prediction include the Deep Set Prediction Network
(DSPN) by Zhang et al. (2019), which consists of a deep learning vector-to-set model that enables
permutation invariance, and the Transformer Set Prediction Network (TSPN) by Kosiorek et al.
(2020), that additionally takes advantage of the multiheaded self-attention introduced by Vaswani
et al. (2017). The TSPN addresses the limitations of the DSPN related to set-cardinality learning.
Additionally, an iterative attention mechanism referred to as Slot Attention has been proposed by
Locatello et al. (2020), which decomposes input features into a set of representations, lending itself
to set prediction tasks.

A sub-field of interest within set prediction is referred to as set-to-set, where both the input and
output are structured as a set. Such tasks include recommendation (Sarwar et al., 2001), image
search (Wang et al., 2014) and person re-identification (Zheng et al., 2015). Set-to-set challenges
require both permutation invariance in the parts of the model that encode the input set and a proper
cross-similarity function for the output sets (Saito et al., 2019), circumnavigating the responsibility
problem.

2.5.5 Ensuring Other Types of Invariance

Finally, it may be of value to mention methods that obtain types of invariance other than under
permutation. These methods stem from areas of application where the model’s final prediction
should not be dependent on such predefined transformations. Examples include translational and
rotational (also known as viewpoint) invariance, common in computer vision problems, addressed
in the works of Ling et al. (2016) and Marcos (2016). Taking as illustrative case the task of object
detection, to ensure the former quality the model needs to recognize the same object regardless of
its position within the input image. To ensure the latter, given three dimensional images of a scene,
the model must correctly identify an object regardless of the angle from which it is being perceived.
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An important traditional approach to learning models that are invariant to certain transfor-
mation is data augmentation, as seen in Taylor and Nitschke (2018) and Hernández-Garćıa et al.
(2019). Here, the underlying idea is that the model will be able to learn to become invariant to the
chosen transformations once we augment our data with instructive examples that have been appro-
priately translated, rotated, partially obscured, blurred, illuminated, resized or had other applicable
transformation applied to them, often in combination. More recent approaches that aim to safe-
guard machine learning models against relying on unintended aspects of data through adversarial
strategies have also been proposed (Jaiswal et al., 2018). In order to apply the data augmentation
approach to the set-to-sequence domain, we would increase our training set up to n! times, providing
the model with every possible permutation of each example set.

To prevent the costs associated with a larger training set, machine learning methods commonly
employ various pooling operators after the stacked, equivariant feature extraction layers to obtain
the desired invariance. However, in the case of translation invariance through pooled convolutional
operations, the assumption that this completely prevents the model from exploiting the absolute
location of an object in an image has been challenged (Kayhan & Gemert, 2020).

3. Set Encoding Methods

In this section, a qualitative comparison of different set encoding ML methods is provided, followed
by detailed subsections devoted to the individual model architectures.

3.1 Method Comparison

This section introduces the reader to each of the relevant set-encoding methods in turn. These are
also sometimes referred to in literature as set-pooling methods (Lee et al., 2019). Additionally, a
number of comparison tables provides a summary overview: 3.1, 3.1.1.

It is important to note that some of the methods discussed in this section were designed specif-
ically to handle set-to-sequence problems. As such, they contain both a set encoding module and
a permutation outputting mechanism. Since it is not always immediately obvious how to combine
a method that handles set encoding with a method that is designed to output a reordering, we
compare various aspects of these methods in multiple places.

The models are compared with regards to the following aspects:

1. Permutation Invariance: whether the model obtains a permutation invariant representation
of the input set. The same set must result in the same embedded representation, regardless of
how the actual input array was permuted.

This feature does not guarantee that the final output of the model will be the same for differently
ordered sequences obtained from a single set, as that may depend on the ordering method applied
to the obtained permutation invariant set embedding, in order to output a sequence. This stems
from the fact that these methods may require the reintroduction of the information relating to the
order of the original input array and refer to it directly when outputting a permutation - particularly
pointer-based attention. For more information on this, see section 4.

2. Multiset Input: whether the model can distinguish between a given input set and certain
examples of its corresponding multisets, with repeated elements.

For example, the average() pooling operator will not be able to distinguish between a set X =
{1, 2, 3} and a multiset X ′ = {1, 1, 2, 2, 3, 3}. The max() operator will similarly fail in the case of
X ′′ = {1, 1, 2, 3}.

3. Complexity: how the model’s computational complexity relates to the cardinality n of the
input set, and possibly other hyperparameters specific to a given architecture.
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4. Applications: selected prominent domains which the model has been successfully applied to.
Further examples can be found in the later sections devoted to each model.

Additionally, the most prominent architectures can be split into RNN-based methods, namely
the Pointer Network and Read-Process-and-Write model, and the more recent fully connected ones,
primarily the foundational DeepSets method and the Set Transformer.

Alternatively, an interesting way to distinguish between them would be to consider methods that
depend on a variation of the attention mechanism introduced by Bahdanau et al. (2015), such as
the Pointer Network and the Set Transformer, and others that do not utilize it.

Model Perm. Invariance Multiset Complexity

Pointer Network (2015) No No1 O(n2)
Read-Process-and-Write (2016) Yes Yes O(n2)
PointNet (2017) Yes No2 O(n)
DeepSets (2017) Yes Yes3 O(n)
Janossy Pooling (2019) Yes Yes O(n!)
Set Transformer (2019) Yes Yes O(n2)
AttSets (2020) Yes Yes O(n)

FSPooling (2020) Yes Yes O(n log2n)
RepSet (2020) Yes Yes O(mn+ n2 log n)

Table 1: Comparison of set encoding methods, part 1

3.1.1 Notes on Complexity

The complexity of the Read-Process-and-Write method is additionally impacted by the number t
of steps in the Process block that computes the permutation invariant embedding of the input set.
t is constant, but an interesting area of further research would be to learn it adaptively, similar to
the method described by Graves (2016). The complexity of PointNet becomes O(n2) for 2D images
and O(n3) for voxels, due to the convolutional operations. The authors of Janossy Pooling propose
3 methods of balancing tractability and the model’s representational power, as outlined in section:
3.6.2

Regarding the Set Transformer, the use of l stacked SAB layers results in quadratic complexity
of O(n2l), use of a stack of l proposed ISAB layers with m inducing points results in complexity
of O(nlm). Similarly to the PointNet architecture, the complexity of AttSets grows depending on
the dimensionality of the input, due to the use of convolutional layers in the encoder. However,
the authors also provide a novel training paradigm, called FASet, and benchmark its mean time
consumption for a single object against a selection of simple pooling methods, with favourable
performance.

Regarding the RepSet method, m is the chosen number of hidden sets for the bipartite matching
algorithm, represented by the columns of a trainable matrix. For more information on this and a
proposed, more tractable relaxation, see section 3.6.5.

1. The Pointer Network does not treat its input properly as a set, therefore it cannot be said to properly handle
multiset input either, but it will distinguish between input vectors with repeated elements.

2. Due to experimental results on the selected tasks, the authors of PointNet settle on max() as their recommended
pooling operator, which does not distinguish between certain multiset variants. However, they report robust
measurements of the performance of other pooling methods which can easily be included in the final model
architecture and provide comparable results.

3. Depends on the pooling operator used after the stacked fully-connected layers, of which the authors of DeepSets
primarily focus on sum(), which does distinguish between sets and multisets. However, max(), which does not
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Model Applications

Pointer Network (2015) combinatorial, multi-agent
Read-Process-and-Write (2016) combinatorial, sorting
PointNet (2017) 3D shape classification and segmentation
DeepSets (2017) set expansion, anomaly detection
Janossy Pooling (2019) arithmetic, graph classification
Set Transformer (2019) amortized clustering, anomaly detection
AttSets (2020) 3D shape reconstruction
FSPooling (2020) set and graph classification
RepSet (2020) text and graph classification

Table 2: Comparison of set encoding methods, part 2

3.1.2 Notes on Dataset Performance

The listed set encoding methods can be applied to a wide spectrum of tasks. As a result, their
performance has been tested on a variety of datasets, often in subtly different settings, which prevents
direct comparison. In lieu of a table presenting their performance on a selected subset of such
datasets, we provide a short discussion of the experimental results that do lend themselves to being
compared. A more comprehensive experimental analysis in this area is a possible direction for future
work.

Both Pointer Networks and the Read-Process-and-Write (RPW) method have been tested on the
simple task of sorting a set of five floating point numbers between 0 and 1 (Vinyals et al., 2016). The
Pointer Network achieved an accuracy of 0.90 compared to 0.94 reached by the RPW. Additionally,
the RPW method appeared to be better at handling larger sets of floats. Both DeepSets and
Janossy Pooling (Murphy et al., 2019) have been tested on simple arithmetic tasks such as sum-
of-digits prediction, with each method reaching an accuracy of 1.0, albeit tested on input sets of
different cardinalities. The Set Transformer has instead been tested on maximum value regression.

The Set Transformer, DeepSets and Janossy Pooling have also all been tested in terms of per-
formance on unique count tasks. However, in the case of the Set Transformer experiments were
performed on sets of handwritten characters from the Omniglot dataset (Lake et al., 2019), in the
case of DeepSets on the MNIST8m hand-written digits (Loosli et al., 2007) and in the case of Janossy
Pooling on simple integer sets.

The most commonly shared experimental task in the papers introducing and consequently uti-
lizing the listed methods was point cloud classification. Particularly the ModelNet40 dataset (Wu
et al., 2015) has been used to test four of the mentioned models. Whilst AttSets (Yang et al., 2020)
employs it to formulate a multi-view reconstruction task, the other three methods are tested on the
core classification task with PointNet reaching an accuracy of 0.892 (Qi et al., 2017), DeepSets 0.900
(Zaheer et al., 2017) and the Set Transformer 0.904 (Lee et al., 2019). However, the specific methods
used to produce the point clouds from the provided mesh representation of objects showcased certain
differences, further highlighting the need for a systematic, uniform comparison.

Both the Set Transformer and DeepSets methods have been tested on the task of set anomaly
detection, specifically by way of the CelebA dataset (Liu et al., 2015). However, the DeepSets model
was tested in terms of accuracy (0.75) and the Set Transformer in terms of the area under receiver
operating characteristic curve and area under precision-recall curve, preventing direct comparison.

is also proposed as a problem-dependent variation. The formal proof extending DeepSets to multiset inputs was
given by Xu et al. (2019).
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The FSPool technique’s performance has been compared to the Janossy Pooling method through
a visual question answering task, employing the CLEVR (Johnson et al., 2017) dataset. The accuracy
of the latter was reported as 0.97 ± 0.54, and of the former as 0.9927 ± 0.18 (Zhang et al., 2020).

Another useful task for the purposes of performance comparison is document classification, where
given a document, the input to the model is the set of embeddings of its terms. DeepSets, Set
Transformer and RepSet have been directly compared through their performance in this regard
on 8 separate datasets (Skianis et al., 2020), with the Set Transformer consistently outperforming
DeepSets, and RepSet outperforming both of the aforementioned methods.

Finally, the performance of DeepSets, Set Transformer and RepSet has been compared on the
task of graph classification through the 5 datasets proposed by Kersting et al. (2016). The classi-
fication accuracy of DeepSets on the MUTAG dataset was 0.862, Set Transformer’s was 0.877 and
RepSet’s 0.886. However, on the arguably more difficult IMDB MULTI dataset the Set Transformer
outperformed RepSet, reaching an accuracy of 0.502, compared to 0.499. For a full overview, see
the paper by Skianis et al. (2020).

Further details regarding the performance and limitations of presented methods are available in
the sections devoted to them individually (below).

3.2 Pointer Networks

The Pointer Network (Vinyals et al., 2015) is an encoder-decoder neural network architecture includ-
ing a modified attention mechanism, which allows it to learn a target reordering of input elements. It
is the first deep learning method capable of taking sets as input and learning a desired permutation,
resulting in complex output sequences.

Pointer Networks were originally designed to tackle combinatorial optimization problems with
varying input sizes, which was their main advantage over previous sequence-to-sequence methods. A
Pointer Network can be trained on inputs of varying length and has been demonstrated to generalize
reasonably well to unseen lengths (Vinyals et al., 2015).

Additionally, Pointer Networks included a modification of the content-based attention mechanism
introduced by Bahdanau et al. (2015) which made it possible to treat the output of the model as
pointers to elements of the input sequence. This attention-based pointing is one of the most popular
methods for giving models the ability to output a permutation of the original input, regardless of
the way they encode the original set. Due to its importance as a purely element-ordering technique,
it is separately described in further detail in section 4.2.

3.2.1 Pointer Networks Limitations

An important characteristic of Pointer Networks is that they do not strictly treat the input as a set,
instead processing it solely through sequential recurrent neural networks. As a partial consequence
they do not obtain a permutation invariant representation of the encoded set. This results in a
situation where the same set can be represented as two differently ordered input arrays, leading to
the model predicting two different outputs for it. Thus returning the optimal order is not guaranteed.

Another important limitation is that nothing is explicitly preventing the model from outputting
an invalid reordering of the input set or sequence. This becomes apparent during early training,
when the model points to the same elements of the input at various indices of the output sequence.
However, this can be mitigated by the addition of a beam search mechanism to the decoder during
inference or by progressive masking. In the latter case, the entry in the attention vector referring
to an element that had already been pointed to is preset to an infinitely negative value at each
successive iteration, preventing it from being pointed to again, at the cost of certain inductive bias
being introduced into the model.
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3.2.2 Pointer Networks Details

The Pointer Network consists of a recurrent neural network (RNN) encoder and an RNN decoder
with a modified attention mechanism. The model obtains a content-based attention vector aj ∈ Rn
at each decoder step j. This vector represents the conditional probability of each input element xi
being the correct one to be pointed to at this step, conditioned on all previous steps as well as the
entire input sequence x = 〈xi, . . . , xn〉, in the form of all encoder hidden states E = 〈e1, . . . , en〉
obtained when the encoder block iterates over the input array.

For simplicity, we will assume that each element xi must be pointed to exactly once, meaning
that the output sequence of nonnegative integer pointers y = 〈yi, . . . , yn〉 ∈ Zn represents a valid
permutation π, such that a sample target output yπ = 〈0, 2, 1〉 would represent the reordered
sequence xπ = 〈x1, x2, x3〉 for the sample input x = 〈x1, x3, x2〉. This will mean that when iterating
over both encoder states ei and decoder states dj, we will always be in range 1 to n. The input
sequence x can itself consist of multidimensional elements, or such embeddings of each xi can be
obtained prior to the pointer network module through a chosen embedding layer.

The attention mechanism in the decoder block is as follows:

zij = vTtanh(W1ei +W2dj) for i ∈ (1, . . . , n) (2)

aj = softmax(zj) for j ∈ (1, . . . , n) (3)

P (yi|y1, . . . , yi−1,x) = aj for j ∈ (1, . . . , n) (4)

Where dj is the decoder’s hidden state at the j-th output element, ei is the encoder hidden state
at the i-th input element, W1, W2 and v are trainable tensors. The zj vector is of the same length as
the input x and represents an output distribution over the dictionary of input elements. After the
application of the softmax nonlinear activation function, turning it into aj, it becomes an attention
vector. For a visual explanation, see Figure 3.

3.2.3 Pointer Networks Applications

The primary application of Pointer Networks are tasks where the target output is a reordering of
the elements of the initial input. This reordering is based on pointers to indices of the original input
sequence. Examples of such problems in currently active research areas include element sorting,
coherence modeling (Logeswaran et al., 2018), word ordering (Cui et al., 2018) and sentence ordering
(Wang & Wan, 2019), as well as summarization (Sun et al., 2019) and ranking in information
extraction (Bello et al., 2018).

In the original paper, the Pointer Network models have been tested on challenging combinato-
rial optimization problems such as finding planar convex hulls, computing Delaunay triangulations
and the Travelling Salesman Problem. Experiments have shown that even with computationally
intractable, NP-Hard problems such as TSP, this model architecture was able to learn competitive
approximate solutions, limited by the scale of the problem, with n <= 50 for the TSP.

Pointer Networks also found usage within the AlphaStar reinforcement learning model which
defeated a grandmaster level player in the competitive real-time strategy game of Starcraft II (Vinyals
et al., 2019). They were employed to help the agent manage the structured, combinatorial action
space in conjunction with an auto-regressive policy.

3.3 Read-Process-and-Write Model

The Read-Process-and-Write (RPW) model is a neural network architecture consisting of three
distinct blocks and aiming to obtain a permutation invariant representation of the input set, whilst
learning a function mapping it to arbitrary target outputs (Vinyals et al., 2016).
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Figure 3: Pointer Network

In Figure 3, an encoding RNN sequentially processes each element of the input array (blue dots), encoding
it into a hidden state sen (dark gray), which is fed to the pointing decoder RNN (light gray). At every step,
the second network produces a vector that represents a content-based pointer attention over the encoded
inputs.

RPW satisfies the key property of obtaining a permutation invariant representation of its input
through a variation of the attention mechanism. It can be seen as a special case of a Neural Turing
Machine (Graves et al., 2014) or a Memory Network (Weston et al., 2015) in that it is a recurrent
neural network model that creates a memory representation of each element in the input sequence
and accesses it via an attention mechanism.

In the original RPW paper its authors also demonstrated that the order in which elements
are organized as input has a significant impact on the learning performance of earlier sequence-to-
sequence architectures. This is an important observation given the fact that the recurrent neural
networks employed in them are, in theory, universal approximators (Schafer, 2007).

3.3.1 RPW Limitations

Whilst the RPW model constitutes a significant improvement in the way machine learning methods
handle input sets, it suffers from the same limitation as Pointer Networks in terms of ordering their
elements into the output sequence. Namely, it is not strictly prevented from pointing to the same
element of the input set multiple times in the output, effectively returning either an invalid sequence
or an incomplete reordering. This is a particularly important limitation in relation to handling
multisets (also known as msets or bags), where the same element can occur multiple times in the
input. However, it can be mitigated through beam search or progressive masking as described in
the Pointer Network section. It also suffers from a significant decrease in performance as the size of
the input set increases.

3.3.2 RPW Details

The RPW architecture consists of three distinct blocks:

110



Set-to-Sequence Methods in Machine Learning

1. Read Block - which embeds every element of the input set using the same neural network for
each xi ∈ X.

2. Process Block - which consists of a recurrent neural network that evolves its hidden state using a
modified content-based attention mechanism to obtain a permutation invariant representation
of the input over a separately predefined number of steps t.

3. Write Block - which takes the form of a Pointer Network in the set-to-sequence tasks but can
also be another recurrent neural network decoder for tasks where the output elements come
from a fixed dictionary.

The Process Block evolves the permutation invariant representation of the input set by repeating
the following steps t times:

qt = LSTM(q∗t−1) (5)

zit = f(mi,qt) (6)

ait =
exp(zit)∑
j exp(zjt )

(7)

rt =
∑

i

ait mi (8)

q∗t = 〈qt, rt〉 (9)

where i is the index over all embedded elements of the memory vector mi obtained by the Read
Block, qt is effectively a query vector allowing us to read the permutation invariant representation
rt from the memories using an attention mechanism and f() is any differentiable operation that
takes two vectors and returns a scalar, most commonly the dot product f(a,b) = a ·b =

∑n
i=1 aibi.

An important implementation nuance is related to the third step, where the attention vector at

is obtained via a softmax operation. Depending on weights initialization, that step can result in the
undefined operation of dividing infinity by infinity. This can be prevented by bounding the value
range of the zt vector by the use of the tanh function (Logeswaran et al., 2018).

The LSTM() is a recurrent neural network that takes no inputs, only evolving the hidden state
qt. The final set encoding q∗t , is obtained by concatenating the previous hidden state qt and the
permutation invariant representation rt. q∗t becomes the hidden state input during the next iteration
t of the Process Block.

3.3.3 RPW Applications

The RPW architecture has been applied to both continuous and discrete inputs. In the former
case, the input can be a set of floating point numbers or a high-dimensional embedding of the
entities of interest. In the latter, it can be dictionary entries. Considerations related to the specific
structure of those input elements are out of scope for this paper as they pertain to the wider topic
of representation learning.

This model architecture has also been used in few-shot object recognition (Xu et al., 2017), graph
classification (Ying et al., 2018) and one-shot learning in the context of drug discovery (Altae-Tran
et al., 2017). The original paper tests it on the problem of sorting a varying-size set of floating point
numbers between 0 and 1. It achieves accuracy of 94% on sets of 5 elements, performance dropping
significantly for larger ones (50% for 10 elements, 10% for 15).

This key property of obtaining a permutation invariant representation was further formalized in
the DeepSets paper, presented in the following section.
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3.4 DeepSets

The DeepSets framework (Zaheer et al., 2017) provides a robust mathematical analysis for designing
permutation invariant and permutation equivariant deep learning models. Both of these concepts
are explained in section 2.1. Where the Vinyals et al. (2016) paper focused on the former in the
setting of a specific practical application, the authors of DeepSets provide a generic framework for
the proper handling of set-inputs for both supervised and unsupervised learning.

The primary contribution of the DeepSets method lies in tackling the first part of the more general
set-to-sequence challenge, which is to implement arbitrary set functions that result in permutation
invariant representations. We have already described one example of an operation that ensured this
in the RPW model’s Process Block, namely a variation of the content-based attention mechanism
consisting of a modified recurrent neural network. DeepSets propose a simpler, sum-based method
to achieve this.

The DeepSets framework offers a simplified procedure by relying on summation of all element
representations prior to further nonlinear transformations, which then transform these summed
representations into the desired output (e.g. a class probability distribution or a single number for
set regression). Later reimplementations of the DeepSets architecture experiment with replacing the
sum operation with other permutation invariant alternatives such as taking the mean or maximum,
with comparable results (Lee et al., 2019).

Additionally, the DeepSets analysis expands upon the set-input challenge by allowing for permu-
tation equivariance, where the order of the output elements mirrors the order of the input sequence.
This can be achieved, in one case, by adding a diagonal symmetry and diagonal identity constraint
to the weights matrix of a fully-connected neural network layer, prior to the nonlinearity. However,
set-to-sequence methods do not make extensive use of permutation equivariance therefore these are
not detailed here. For more information, see the original paper.

3.4.1 Deep Sets Details

The proposed permutation invariant function for inference over sets takes the following general form:

1. Each element xi in the input set is transformed independently into an embedded representation
φ(xi), possibly through multiple layers of a feed-forward neural network.

2. The representations φ(xi) are summed together and the result is further processed using an-
other network ρ consisting of any number of fully-connected layers with nonlinearities.

Both φ and ρ can be replaced by universal approximators, which can be learned to approximate
arbitrary polynomials. In cases where additional information q is available, it can be used to obtain
the conditional mapping φ(xi|q). The key to permutation invariance in this framework is simply
summation of the obtained per-element representations.

DeepSets({x1, . . . , xn}) = ρ(sum({φ(x1), . . . , φ(xn)})) (10)

3.4.2 Deep Sets Limitations

This approach is much simpler to implement, compared to the RNN-based Pointer Networks and
the RPW model. However, it generally prevents the model from learning pair-wise and higher order
interactions between the elements of the set, which are lost during the summation. Additionally,
significant doubts have been raised by Wagstaff et al. (2019) relating to the limits of the represen-
tational power of the DeepSets method. More precisely, the O(n) computational complexity comes
at the cost of the dimensionality of the latent space having to be at least equal to the cardinality of
the input set n to ensure universal function approximation.
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Figure 4: DeepSets

Every element of the two identical, shuffled sets of blue dots (leftmost) is embedded in an independent and
identical way by the φ layer, resulting in a permutation equivariant transformation. These are then summed
(Σ) into a permutation invariant representation and further transformed by the ρ layer.

3.4.3 Deep Sets Applications

The DeepSets framework has been applied to point cloud classification (Qi et al., 2017), generaliza-
tion tasks in reinforcement learning (Karch et al., 2020), outlier detection and anomaly classification
(Oladosu et al., 2020) among others.

3.5 Set Transformer

One of the most elaborate methods designed for set-input problems is the Set Transformer (Lee
et al., 2019). This method can be seen as an extension of the popular feed-forward, attention-based
Transformer (Vaswani et al., 2017) to the domain of machine learning on sets.

The Set Transformer consists of the expected stacked multi-head self-attention layers for both
the internal encoder and decoder as seen in the classic Transformer. One aspect that separates
it from the previously described set-to-sequence methods is that instead of using a fixed pooling
operation such as summing or taking the average to ensure permutation invariance, it employs a
parameterized pooling function that is learned and therefore much more adaptive to the particular
task at hand. This is further referred to as Pooling by Multihead Attention (PMA) and explained in
more detail later in this section.

The Set Transformer is specifically designed to model higher-order interactions among elements
and their subsets within the input set, whilst satisfying the permutation invariance and variable
input size requirements common to set-to-sequence problems. Its key novel contribution is that it
concurrently encodes the entire input set through a sequence of permutation equivariant Set Atten-
tion Blocks (SABs). By comparison, the previously discussed DeepSets method obtained element
features independently of other input set elements. This modification allows the Set Transformer
to explicitly learn pairwise and even more complex interactions between set elements during the
encoding step, dependent on the number of stacked SAB layers.

3.5.1 Set Transformer Limitations

However, the Set Transformer also introduces certain costs. The SAB, a proposed variation on the
multihead attention block employed in the classic Transformer, which enables the Set Transformer to
encode higher-order interactions between set elements, has the limiting quality of requiring quadratic
time complexity O(n2) relative to the cardinality of the input set n.
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The authors of the method address this limitation by proposing an Induced Set Attention Block
(ISAB). It takes advantage of a vector of inducing points, which is of predetermined size and is used
to obtain a hidden representation of the input set by attending to it. This is in effect a low-rank
projection that might be familiar to readers who have experience with autoencoder models. The
technique reduces the required computation time to a linear O(mn), where m is the chosen number
of inducing points and n is the set cardinality, at the cost of reduced performance and an additional
hyperparameter to be tuned.

3.5.2 Set Transformer Details

What follows is a more detailed inspection of the SAB, ISAB and PMA methods, which assumes
some familiarity with the multihead attention mechanism proposed by (Vaswani et al., 2017) as per
the Transformer architecture. However, to establish full clarity, we will formally define both the
basic Transformer attention and its multihead variant first.

Assume we have a set of n elements as our input, each with dimensions de. First, we obtain three
new vectors per each element by multiplying it with three matrices, whose weights are learned during
the training step. These transformed input representations are further referred to as n query vectors
Q ∈ Rn×dq , key vectors (K ∈ Rn×dk) and value vectors (V ∈ Rn×dv ). These are then mapped to
the desired attention outputs, applying an activation function such as softmax in the following way:

TransformerAttention(Q,K, V ) = softmax(QK>)V (11)

The original implementation includes a scaling factor, which has been omitted from the above
equation for the sake of simplicity. The pairwise dot product of the query Q and key K vectors
measures how related each pair is. The final output is a weighted sum of V .

The multihead attention mechanism extends this further by projecting each query, key and value
onto h separate vectors via sets of the three parameter matrices WQ

i ,W
K
i ,W

V
i , one per each of the

h heads. Then, the TransformerAttention() function is applied to each of these h vectors to obtain
each head’s preliminary output Oi:

Oi = TransformerAttention(QWQ
i ,KW

K
i , V W

V
i ) (12)

Finally, these outputs {Oi}hi=1 are concatenated and then linearly transformed:

MultiheadAttention(Q,K, V ) = concatenate(O1, . . . , Oh)W 0 (13)

Now we can begin to move on to the Set Attention Block (SAB). It is designed to take a set and
perform a slightly modified self-attention operation between its individual elements, which results
in an output set of the same size. It will be useful to first define a Multihead Attention Block
(MAB), which is an intermediate building block in both SAB and its less computationally intensive
alternative - ISAB. MAB takes as input two matrices of the same dimensions: A,B ∈ Rn×d and
first obtains a hidden representation Z using a layer normalization operation as defined by Ba et al.
(2016):

Z = LayerNormalization(A+ MultiheadAttention(A,B,B)) (14)

Then, it processes each element in each row of Z in an independent, identical way, in the same
manner we have seen as part of the DeepSets method, prior to the summation. This can be done
via a row-wise feed forward layer φ():

MAB(A,B) = LayerNormalization(Z + φ(Z)) (15)

However, in our set-to-sequence setting we do not have two separate matrices of sets A and B
that we wish to encode into some joint representation. Therefore the actual SAB() is defined on a
single matrix of an input set X ∈ Rn×d:
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SAB(X) = MAB(X,X) (16)

If we stack l SAB layers in our set encoder, which we are able to do since both the input and
output of the Set Attention Block is a set of the same size, the model’s computational complexity in
the cardinality of this set is O(n2l) ≈ O(n2). At the cost of quadratic computation time, stacking
2 SAB layers enables the model to encode pairwise interactions between elements. Stacking more
such layers makes explicitly encoding higher-order interactions possible, which is a crucial novel
contribution for tasks where such interactions define the target output.

The authors of the Set Transformer method address the computational cost of SAB by proposing
a less expensive variation of it, called the Induced Set Attention Block. In ISAB, an additional array
of inducing points I ∈ Rm×d is included. This vector is of predefined dimension m, resulting in a
computational complexity O(mn) or O(lmn), if stacked ISAB layers are applied. The calculations
within ISAB are defined as follows:

ISABm(X) = MAB(X,MAB(I,X)) (17)

The learned values of the inducing points I are expected to encode large-scale aspects of the
input set as meaningful features for the ultimate task. Similar to SAB, the output of ISAB is a set
of the same size as the input set, which is why we still need a pooling operation to be applied to it
at this point.

The final aspect of the Set Transformer that distinguishes it from the earlier set-encoding methods
is the Pooling by Multihead Attention (PMA) stage. Unlike a simple sum, mean or max, the
PMA pooling function has learnable parameters, which allows it to increase or decrease the relative
importance given to the encoding of individual encoded elements of the output of the SAB and ISAB
blocks. Usage of PMA requires specifying the number k of seed vectors S ∈ Rk×d. Assuming we
have already obtained the encoded set features E ∈ Rn×d via stacked SAB or ISAB layers:

PMAk(E) = MAB(S, φ(E)) (18)

In most cases a single (k = 1) seed vector is used, resulting in a single pooled set encoding, but
certain clustering tasks may require multiple related outputs, justifying the use of a larger k.

3.5.3 Set Transformer Applications

The overall Set Transformer architecture can, in principle, be applied to any set-input problem (and
therefore any set-to-sequence task). It will perform particularly well in problems where pairwise
and higher-order interactions between the input set’s elements are important to the task at hand.
The authors of the original paper demonstrate the model’s usefulness within such areas on the
challenge of counting unique characters in a set of input images, amortized clustering with mixture
of Gaussians, point cloud classification and set anomaly detection.

It has since been applied to set-of-sets embedding problems (Meng et al., 2019) and transfer
learning in dialogue systems (Wolf et al., 2019).

3.6 Other Set-Input Methods

Below is a list of other set encoding methods that do not necessarily lend themselves directly to
set-to-sequence problems, but may be of interest to the reader. The specifics of using the learned,
permutation invariant set representation to produce a sequence of set elements are discussed at the
beginning of the next chapter, specifically in subsection 4.1.
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3.6.1 Featurewise Sort Pooling

This method, also known by its abbreviation as FSPool (Zhang et al., 2020), came from the field of
set prediction, in relation to a problem where both the input and output can be conceived of as sets.
The authors expand upon one of the naive approaches to encoding sets in a permutation invariant
way. Namely, the technique of simply sorting all the elements of the input set by the values of their
single chosen feature, as seen in previous work by Zhang et al. (2018).

In set-output problems this approach results in discontinuities in the optimisation whenever
two elements swap positions after the sort. This is referred to in set prediction challenges as the
responsibility problem (Zhang et al., 2020). To avoid this difficulty, the authors have developed a
novel pooling method which sorts each feature across the elements of the input set and then performs
a weighted sum.

This allows the model to remember the permutation applied through the featurewise sorting and
apply its inverse in the decoder. This process restores the original, arbitrary order of the input
elements making the encoding a permutation equivariant operation, preventing the discontinuity in
the outputs of the model.

3.6.2 Janossy Pooling

Another interesting approach to set-encoding through the use of simpler pooling operators was
proposed by Murphy et al. (2019). In the titular Janossy Pooling, the symmetric (permutation in-
variant) encoding function is expressed as the average of a mixture of permutation sensitive functions
applied to all reorderings of the original input.

This approach immediately raises the question of tractability. Generating all permutations of a
set results in n! intermediate inputs, all of which would then require the application of the chosen
permutation sensitive function. To mitigate this, the authors propose a number of strategies, among
them the use of a smaller number of selected canonical orderings that are presumed to carry relevant
information for the specific task at hand, such as simple sorting, betweenness centrality and others
(Niepert et al., 2016).

As an alternative to canonical orderings, the authors also propose a method related to a model’s
ability to explicitly learn pairwise and higher-order interactions between the elements of the input
set. This method is referred to as k-ary dependencies. It consists of projecting the input to a length
k sequence, for example by only keeping the first k elements, limiting the number of permutations
that need to be averaged to k!, which can be tractable for a small enough k. The number k becomes a
hyperparameter capable of balancing tractability with the model’s ability to learn k-ary interactions
in the input. Finally, the authors also experiment with permutation sampling as the third method
of reducing the computational complexity of Janossy Pooling, as proposed by Moore and Neville
(2017) and Hamilton et al. (2017) in relation to machine learning on graphs.

3.6.3 PointNet

Not to be confused with the Pointer Network described in section 3.2, PointNet is a set-encoding
method designed to handle 3D point clouds proposed by Qi et al. (2017). The geometric setting of
the problem tackled by the authors of this model shares many similarities with the set-to-sequence
domain. These include the lack of order in the input, requiring the use of symmetric, permutation
invariant encoding functions, and the importance of interactions between individual input elements
or, specifically in this case, points. An additional requirement for this setting is invariance under
certain geometric transformations of the entire point cloud. For example, if we are tasked with
classifying 3D objects represented by a point cloud, we want to correctly classify a chair regardless
of its rotation and translation.

In practice, PointNet first obtains an embedding of each of the input points through stacked,
fully-connected layers in the form of a multilayer perceptron, such that each element is identically
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and independently transformed. This permutation equivariant representation is then pooled via
the max() operator (per dimension) and further transformed through an additional fully-connected
layer. This is in effect a slight variation of the procedure proposed by Zaheer et al. (2017) and
discussed in section 3.4. Other pooling operations, including an attention-based sum inspired by the
RPW model (Vinyals et al., 2016), are also experimented with in the original paper..

Finally, the obtained point cloud encoding is concatenated with the embedding of each point,
reminiscent of the approach seen in listwise ranking, described in section 4.4. This combination of
local and global features is shown to be crucial for point segmentation tasks. The authors also provide
proof that their network is a universal approximator for continuous set functions and demonstrate
its robustness to small perturbations of the input set.

3.6.4 AttSets

The AttSets model, proposed by Yang et al. (2020), uses weighted attention to obtain a permutation
invariant representation of the input set. It was originally applied to a multi-view 3D reconstruction
task, where a set of images of the same object from different angles is used to estimate its true three
dimensional shape.

AttSets improves the performance of previous, simpler pooling functions used for 3D object
recognition. These include both first-order operators such as max(), average() and sum(), which
do not have any trainable parameters, as well as higher-order statistical functions such as bilinear
pooling (Lin et al., 2018), log-covariance pooling (Ionescu et al., 2015) and harmonized bilinear
pooling (Yu et al., 2018), which have only few.

In order to achieve this, each element of the set is individually and independently transformed via
a learned attention function, which can take the form of a fully connected layer or a multidimensional
convolutional layer, depending on the form of the input. The output of this function is normalized
via softmax() and then used as an attention mask over the original input elements. This allows the
model to learn to pay a varying degree of attention to individual dimensions of the input elements’
representations. To obtain the final, fixed-length set encoding, the original input elements are
multiplied by the attention mask and summed together.

3.6.5 RepSet

An interesting set-encoding method, referred to as RepSet, has been proposed by Skianis et al.
(2020). The RepSet model consists of stacked feed-forward, fully connected layers, reminiscent
of the DeepSets method (Zaheer et al., 2017), followed by a custom permutation invariant layer
replacing the sum() operator. This layer is inspired by concepts from the field of bipartite graph
matching and has allowed the model to show promising performance on text and graph classification
tasks.

The permutation invariance is achieved through a configurable number of hidden sets (potentially
of different cardinalities), whose elements correspond to columns of trainable weight matrices. These
are then compared with the elements of the actual input set to create matrices that are fed to a
bipartite matching algorithm, specifically the Hungarian Algorithm (Grinman, 2015). The resulting
values can be further transformed through standard neural network layers for set classification and
regression purposes.

A significant issue with this approach is the computational complexity O(mn+n2 log n), where
n is the cardinality of the input set and m is the chosen number of hidden sets. This characteristic,
limiting the usefulness of the method regarding larger sets, stems from the bipartite matching algo-
rithm needed to obtain the final set encoding. The authors of the method address this by proposing
a relaxation of RepSet, referred to as ApproxRepSet (Skianis et al., 2020), which removes one of the
constraints on the range of values taken by the elements of the hidden sets.
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4. Ordering Methods

This section focuses on the second of the two primary challenges inherent to set-to-sequence tasks,
which is outputting a permutation. Assuming we are able to obtain a meaningful representation
of an input set of any length, how do we use that representation to produce a reordering of the
input’s original elements? This is a constraint that is easy to satisfy when designing traditional
combinatorial optimization algorithms, yet in deep learning it requires relatively complex model
architectures (Bengio et al., 2020).

Three particular branches of ordering methods have emerged as most prominent in deep learning:

1. Attention-based Pointing

In which a vector of attention weights over all elements of the input set is generated iteratively
at every index of the output sequence. The highest attention value points to the element that
should be placed in the current position within the sequence.

2. Permutation Matrices

Where a square, binary, doubly-stochastic matrix or a relaxation thereof is generated for each
input set. The index of the highest value in each row identifies the element that should take
the position at the same index as the number of the row. The input can be left-multiplied by
this matrix to obtain the final reordering.

3. Listwise Ranking

In ranking methods the target order is represented through the assignment of a score to each
element of the input set, which enables the final permutation to be obtained through sorting.
Listwise ranking takes into consideration the relative scores of all other set elements when
computing the score for a particular one.

Each of these three basic frameworks is described in the following sections, with references to
specific methods that expand upon them, where relevant. First, however, we must discuss how
best to utilize the permutation invariant set representation, obtained via the set encoding methods
discussed in section 3, to output the target sequence.

4.1 From Set Representation to a Sequence

As stated previously, deep learning models do not directly take unordered sets as input. Instead
they transform ordered arrays representing one (usually arbitrary) of n! permutations of a given
set’s elements. Therefore, an inductive bias is introduced into the model’s internal architecture to
first obtain a permutation invariant representation of the underlying input set, which by definition
will be the same regardless of which arbitrary permutation the model happened to receive.

However, when our prediction target is the optimal order of a given set’s elements and we are
directly feeding our model an array in some arbitrary order, then our target output sequence must
refer to this initial, random order when predicting the preferred one. In effect, in the case of simple
permuted sequences without repetition and exclusion, we are seeking a permutation equivariant
function that outputs ranks, conditioned on a permutation invariant representation of the entire set.
In the case of complex permutations, we also expect the same sequence to be predicted based on
the same input set.

Regardless, the output sequence has to refer to the arbitrary order in which the input set elements
are presented to it. In essence, whilst we assume there is one optimal order of a given set’s elements,
there are n! target permutations relative to the n! arbitrary ones that form the actual input of the
model, per input set. This is because each target permutation reorders an arbitrary one that the
model receives as actual input, each representing the same, singular optimal order of the underlying
set’s elements.
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The remaining question is how to utilize the fixed-length, permutation invariant set represen-
tation when outputting the sequence representing a permutation of the arbitrarily ordered input’s
elements. There are two dominant approaches, namely summation and concatenation of the rep-
resentation of the entire set with the learned representations of each element. In this way, every
transformation of individual set elements has the chance to take into consideration the entire avail-
able set, as previously seen in the PointNet model by Qi et al. (2017).

Considerations regarding which of those two methods is preferable relate to the larger field
of representation learning, with ample examples both on the side of summation (Szegedy et al.,
2016) and concatenation (Noreen et al., 2020). These include the ResNet architecture by He et al.
(2016), with addition used in the eponymous residual connections, and the DenseNet model and its
descendants, employing concatenation (Huang et al., 2018a), within the field of computer vision.

An alternative approach, applicable to RNN-based ordering methods, would be to utilize the
set representation in the hidden state of the recurrent network. Similarly, attention-based methods
could use the set representation to influence which elements the model focuses on. Finally, in ranking
approaches the set representation can rather elegantly be used in place of the query (see section 4.4
for more details). Investigation of the efficacy of these methods is a possible direction for future
research, as outlined in section 5.6.

4.2 Attention-Based Pointing

The term attention covers a wide spectrum of methods within the field of machine learning. First
introduced as part of an encoder-decoder model applied to a sequence-to-sequence translation task
by Bahdanau et al. (2015), it has since been utilized in a number of other domains, including
computer vision (Xu et al., 2015), graph-based problems (Veličković et al., 2018), reinforcement
learning (Iqbal & Sha, 2019) and many more. For a comprehensive overview, see Chaudhari et al.
(2019).

In structured output tasks that are inherent to the set-to-sequence domain, the key idea is to
induce a vector of attention weights over the entire input, allowing for the selection of elements
by their position, conditioned on the learned representation of the entire input and the sequentially
predicted outputs. An example of such a setting from the field of natural language processing (NLP)
is linearization, which involves solving a problem that will be familiar to most readers who have tried
to learn a new language. Namely, given a randomly shuffled set of words, we are tasked with ordering
them into a properly structured sentence. A survey of these and other attention-based methods in
NLP can be found in the work of Hu (2019).

In effect, the model can learn to identify the current most pertinent position in the input through
the attention weights, which we then interpret as pointers to the next preferred element for the
output sequence. It may be worth mentioning that valid concerns have been raised as to the overall
interpretability of attention weights in text classification and question answering tasks by Jain and
Wallace (2019). However, in attention-based pointing these weights have a direct impact on the
predicted permutation, leaving little room for interpretational ambiguity.

4.2.1 Details of Attention-Based Pointing

Attention-based pointing is an adaptation of content-based attention (Graves et al., 2014) to an
ordering challenge. The model learns a distribution over all input elements at each position of the
output sequence. This should not be confused with self-attention, also known as intra-attention
(Cheng et al., 2016), where the target sequence is always the same as the input. In self-attention,
the parameterized attention function learns to relate different positions of the input sequence to
each other. In attention-based pointing the attention function learns to relate the elements of the
input with the current positions of the output.

Assume we have a randomly ordered input sequence of varying length n, consisting of d-dimensional
elements: X = 〈x1, . . . ,xn〉 such that X ∈ Rn×d, which we want to order according to some pref-
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erence. This sequence is an n-tuple, representing a single permutation of the corresponding set
X ′ = {x1, . . . ,xn}, which we cannot represent directly as a single vector, due to the fact that
vectors posses inherent order whereas sets do not.

Our target output is a sequence of integer pointers Y = 〈y1, . . . , yn : yi ∈ Z+〉,, satisfying the
conditions: ∀i, j : yi 6= yj and ∀i, 1 ≤ yi ≤ n, signifying that no element from the input can take
multiple positions in the output sequence and every element must be assigned a position in the final
reordering. Our objective is to define a differentiable function f : X → Y that meets these criteria,
with some parameters θ, lending itself to gradient-based training.

The simplest effective formulation of such an attention-based ordering function requires the
following learnable parameters: two square weights matrices W1,W2 ∈ Rd×d as well as a single
vector v ∈ Rd×1. Additionally, given the sequential nature in which the ordering is generated, we
also have access to a decoder state st at each step t, for which we calculate the attention-based
probability distribution over input elements. The array of encoded set elements X is processed in
the following way:

zit = xiW1 + stW2 for i ∈ (1, . . . , n) (19)

ait =
exp

(
vTσ

(
zit
))

∑n
j exp

(
vTσ

(
zjt

)) for i ∈ (1, . . . , n) (20)

yt = argmax(at) for t ∈ (1, . . . , n) (21)

where σ is a nonlinear activation function, commonly the hyperbolic tangent (Logeswaran et al.,
2018). The vector zt = 〈zit, . . . , znt 〉 is a representation of all input elements, adjusted by the
representation of the generated output sequence at step t, through additive attention (Bahdanau
et al., 2015). Finally, yt is an integer pointer to the element of X which received the highest attention
value within the attention vector at = 〈ait, . . . , ain〉 at the current step t of the sequentially predicted
output sequence.

Most methods obtain the embedding of the entire input X through more complex encoding
methods, such as stacked bidirectional LSTMs, as seen in the work of Vinyals et al. (2015) and
Vinyals et al. (2016). This representation retains the information about the original arbitrary
order of the elements and should be dependent on the entire set. In the above example, the length
t of the output sequence of pointers Y is the same as the cardinality of X ′, which is the case
in many combinatorial optimization problems. However, in some structured prediction tasks the
optimal length of the output is also subject to the learning process, allowing for pointing to the
same element xi multiple times or not at all, as is the case in catalog design (Carlson-Skalak et al.,
1998).

It should be noted that in the above formulation nothing is explicitly preventing the model
from pointing to the same element xi at multiple positions of the output sequence. In practice the
iterative learning process can largely prevent this from occurring, given appropriate training data.
One method to explicitly prohibit repetition is progressive masking, as described in section 3.2.1.

In practice, beam search is commonly used during inference to increase the probability that the
most optimal sequence is predicted, as evidenced in the work of Bahdanau et al. (2017) and Kool
et al. (2019). Beam search employs a heuristic search algorithm to expand a limited number of most
promising vertices of the graph defined by the attention vectors over a predefined number of output
steps. It tracks a small number of potential partial solutions, at the controlled cost of memory and
computation. However, the exact reason why a small beam number results in qualitatively better
predictions has recently been called into question (Meister et al., 2020). For a more detailed overview
in the context of sequence prediction, see Wiseman and Rush (2016).
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4.2.2 Methods Using Attention-Based Pointing

Many neural network model architectures across distant fields of application include variations on
the basic attention-based pointing mechanism. These include specifically set-to-sequence methods,
such as the Pointer Networks discussed in section 3.2.2 and the RPW model detailed in section 3.3.2,
as well as elements of complex models in reinforcement learning applied to competitive real-time
strategy challenges (Vinyals et al., 2019).

Additionally, attention-based pointing found usage in identifying entailment between documents
(Rocktäschel et al., 2016), abstractive text summarization (See et al., 2017), rare and out-of-
vocabulary word prediction (Merity et al., 2016) as well as describing multimedia content (Cho
et al., 2015). An interesting augmentation of attention-based pointing has been experimented with
in the context of generating structured queries (in SQL) from natural language sequences (Zhong
et al., 2018). However, the improvement stems from augmenting the input with SQL keywords to
limit the output space, not from an essential adjustment to the underlying attention-based pointing
mechanism.

An application of attention-based pointing to generate solutions to another classic combinatorial
optimization challenge, the Vehicle Routing Problem, was proposed by Kool et al. (2019). The
resulting architecture is an encoder-decoder Graph Attention Network (Veličković et al., 2018),
employing multiheaded attention in the encoder and node masking in the decoder, which uses the
embeddings of all the nodes and the entire graph at each step t to point to the next node to be
visited. Unlike the previously discussed methods, this model is trained using a gradient estimator
from the field of reinforcement learning, first proposed by Williams (1992).

4.3 Permutation Matrices

A permutation matrix is a square, binary matrix P having exactly one entry pij = 1 in each row i
and each column j (Stuart & Weaver, 1991). All other entries are equal to 0. P ’s dimensions are
defined by the length of the desired output sequence, most commonly equal to the length of the
input. A permutation matrix is unimodal in that each of its rows has a unique, highest value. It is
also doubly-stochastic, since it consists entirely of nonnegative numbers, with each row and column
summing to 1.

The key property of a permutation matrix is that given an arbitrarily ordered sequence, we can
left-multiply it by a permutation matrix to obtain a reordered sequence. For example, given an
arbitrarily shuffled input sequence x = 〈x1, x5, x3, x4, x2〉, which we want to permute in such a way
as to restore the i−indexed ascending order to obtain xπ = 〈x1, x2, x3, x4, x5〉, we can predict the
permutation matrix visualized below. Our target is the permutation π, given in two-line notation:

π =

(
x1 x5 x3 x4 x2

1 5 3 4 2

)
(22)

We can apply this permutation to the transposed input x> via left-multiplication by the target
permutation matrix P :

xπ = Px> =




1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0







x1

x5

x3

x4

x2




=




x1

x2

x3

x4

x5




(23)

This gives us a way to represent the target permutation in the form of a matrix of numbers
between 0 and 1, marking an important step towards enabling the application of machine learning
methods.
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4.3.1 Making Permutation Matrices Learnable

In order to use a permutation matrix as the target output of a machine learning model that can
be trained through some form of gradient-based iterative optimization, we must introduce certain
relaxations of the concept. Otherwise, we are left with the equivalent of a sorting operator which is
non-differentiable (Grover et al., 2019).

Traditionally, sorting operations result in either a permutation π = 〈1, 5, 3, 4, 2〉 (from the previ-
ous example) or a vector of reordered elements xπ = 〈x1, x2, x3, x4, x5〉. Much like the permutation
matrix, the former is non-differentiable with respect to the input due to being integer-valued and
the latter due to being piecewise linear (Cuturi et al., 2019).

The most direct way to obtain a differentiable relaxation P ′ of the permutation matrix P is to
map the input x to a continuous codomain, as opposed to the original discrete one. Thus, we need
a relaxation such that P ′ ∈ Rn×n, lending itself to gradient-based optimization. Additionally, an
efficient projection from the continuous codomain back to the discrete one must exist to allow for
the use of loss functions and evaluation metrics. This can be achieved by applying the argmax()
function per row of P ′ to find the position in which the unique 1 would have been located in the
actual permutation matrix P .

The resulting relaxation must retain the property of row-stochasticity, such that:

∀i, j ∈ {1, . . . , n} : p′ij ≥ 0 (24)

∀i ∈ {1, . . . , n} :

n∑

j=1

p′ij = 1 (25)

and of unimodality, such that a vector y is both obtainable from the relaxation matrix P ′ through
row-wise argmax() and a valid permutation of the input:

∀i ∈ {1, . . . , n} : yi = argmax(p′i) (26)

There are many possible methods of obtaining this relaxation from the input after it has been
transformed by a chosen neural network architecture, such as adding elementwise Gumbel per-
turbations (Mena et al., 2018), applying the Sinkhorn operator to directly sample matrices near
the Birkhoff polytope (Linderman et al., 2018), which is the convex hull whose points are doubly-
stochastic matrices (Emami & Ranka, 2018), or through the application of a softmax() operator on
a derived matrix of absolute pairwise distances between the individual input elements (Grover et al.,
2019).

Depending on the specifics of the task at hand, the target matrix can be predicted in a single pass
(if the length of the input and output is a constant, known prior to inference) or sequentially, row by
row (Nishida & Nakayama, 2017). An interesting method employing permutation matrices has been
proposed by Zhang et al. (2019), in which a trainable, pairwise ordering cost function is used to
produce an anti-symmetric matrix C, whose entry cij represents the cost of placing the i-th element
before the j-th. This function is represented as a neural network, which is then used to continuously
adjust the learned permutation matrix. This is referred to as a Permutation-Optimisation module,
and has been demonstrated to perform well on number sorting, re-assembling image mosaics and
visual question answering, with one limiting feature of entailing cubic time complexity.

4.4 Listwise Ranking

Ranking methods determine the predicted order of elements by assigning a score to each element
and then sorting them according to these scores. In listwise ranking, a score is calculated based on a
list of available elements and a query, for which a specific order is to be predicted. The terminology
stems from applications in information retrieval, where the task is to rank the available documents
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(such as web pages) in order of relevance for a given query (e.g. a search term). For an overview of
neural ranking methods, see Mitra et al. (2018).

Listwise ranking is distinguished from point- and pair-wise ranking. Pointwise methods reduce
the ranking problem to regression, in that the relevance score for an element is obtained only from
its own representation and the query. Pairwise approaches reduce it to binary classification (Lei
et al., 2017). Given a query and a pair of elements, they predict which element is the more relevant
of the two. In listwise ranking, the prediction is performed on a list of objects.

Application of listwise ranking methods to set-to-sequence problems requires certain adjustments.
Most importantly, in such ordering and structure prediction challenges we are not given a specific
query, for which an ordering is to be generated. However, we are able to obtain a permutation
invariant set representation through the set encoding methods detailed in section 3. We can use
this learned embedding to fill the role that a query performs in traditional learn-to-rank methods.
Intuitively, the relative rank of each element in the output sequence should depend on the entire
available set.

This marks an important departure from the assumption that two elements have a canonical
relative order, which should remain unchanged regardless of what other elements are present in the
input set. In practice, higher-order interactions between available elements can entirely change the
target sequence. In order to learn such properties, a ranking method can utilize the permutation
invariant set representation as the query and predict the relevance scores of all available elements
in one go, in the listwise manner described in the following subsection.

4.4.1 Details of Listwise Ranking

In order to illustrate the basic underlying mechanisms in listwise ranking methods, this subsection
investigates the first method that formulated order prediction on a list of objects, namely the ListNet
model, proposed by (Cao et al., 2007). From this point on, whenever we refer to a query, we are
referring to the permutation invariant representation of the entire set obtained via the previously
outlined set encoding methods. This representation can be learned in parallel with the weights of
the ranking the model.

Once more, assume we are given an arbitrarily ordered input sequence X = 〈x1, . . . ,xn〉 such
that X ∈ Rn×d. This sequence is one of n! possible permutations of the corresponding set X ′ =
{x1, . . . ,xn}. The objective is to transform the given X vector into the best possible permutation
of X ′, according to some preference. This target permutation is π = 〈π(1), . . . , π(n)〉, such that π(i)
is the object at position i in the permutation. The set of all possible permutations of length n is
denoted as Ωn. The target permutation π is represented by a vector of scores yπ = 〈yπ(i), . . . , yπ(n)〉,
where yπ(i) is the predicted relevance score for the element xi. All elements of the original input X
get assigned a score by the learned neural network, in a listwise manner.

A naive approach would be to try to obtain the probability Py(π) of each of the n! possible
permutations from Ωn, given a set of scores y:

Py(π) =

n∏

i=1

φ(yπ(i))∑n
k=i φ(yπ(k))

(27)

where φ() is any increasing and strictly positive function applied to the scores and yπ(i) is the
relevance score of element i in the vector yπ corresponding to some permutation π (Cao et al., 2007).

However, this is a computationally inefficient approach, therefore we instead calculate the top one
probability for each element xi. This probability is equal to the sum of the permutation probabilities
of every permutation where the i-th element was ranked first. For the exact proof of this equivalence,
see the appendix in Cao et al. (2007). The crucial observation is that we do not need to calculate
all the permutation probabilities to obtain the correct top one probability Ptop(xi) of each element,
given a list of scores yπ:
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Ptop (xi) =
exp

(
yπ(i)

)
∑n
k=1 exp

(
yπ(k)

) (28)

In effect, the probability distribution over permutations is obtained by applying the softmax()
function to the predicted relevance scores. Since this is a supervised learning framework, our model
has access to the ground truth distribution for each example list. This allows for the use of loss
functions that compare two distributions, such as the Kullback-Leibler (KL) divergence, also referred
to as relative entropy (Liu & Shum, 2003).

In order to obtain the vector of relevance scores yπ, the query vector q ∈ Rm is concatenated with
a fixed-length, learned embedding of each element of the input set xi, resulting in the final input
I ∈ Rn×(m+d), per single example list. In the original ListNet model, this input is transformed
through stacked, fully-connected layers, of which the last one has a single unit outputting the
relevance score per element.

As such, this transforms each concatenation of the query and the embedded element in an
independent and identical manner. This is practical for ranking tasks, where two items always have
the same relative target order, given a query. However, in more complex structure prediction tasks,
common in set-to-sequence challenges, relying entirely on the set encoding q and the listwise loss
to identify interactions between set elements limits the ability to approximate complex functions,
in which higher-order interactions between elements have an impact on the final order (Lan et al.,
2009). This limitations of ListNet is partially addressed by later methods, discussed in section 4.4.2.

Additionally, a limitation of the ranking approach is that by representing the target output
sequence through relevance scores per input element, we cannot learn to output sequences of any
length other than n. This also precludes the use of listwise ranking in challenges where the output
sequence is of the same length as the number of input elements n, but repetition and exclusion of
elements is required. For a more detailed look into the underlying theoretical aspects of listwise
ranking, see Xia et al. (2008).

4.4.2 Methods Using Listwise Ranking

Multiple listwise ranking methods in machine learning have been developed since the original List-
Net model. A notable framework that addresses the challenge of learning pairwise interactions
between elements came in the form of BoltzRank, in which the rank probabilities are sampled from
a Boltzmann distribution, employing an energy function that depends on a score influenced by both
individual and pairwise potentials (Volkovs & Zemel, 2009).

Another approach of interest is the FATE framework proposed by Pfannschmidt et al. (2018).
The authors identify the problem of predicting a relevance score for an element and the query with
only the loss function carrying the signal regarding the context of other available elements. In order
to address this, they effectively employ a permutation invariant set-encoder (Zaheer et al., 2017),
whose output is concatenated to the learned representation of each element, in a variation of the
basic method described in section 4.4.1.

Ai et al. (2018) propose a complex architecture combining two-stage ranking, sequential recurrent
neural networks and an attention-based loss function. The proposed Deep Listwise Context Model
(DLCM) sequentially encodes the most relevant results using the corresponding feature vectors,
trains an additional, local context model and employs it to re-rank the best k results.

Finally, Pang et al. (2020) employ the Set Transformer to obtain element representations that
encode cross-document interactions and return a permutation invariant ranking by sorting the per-
mutation equivariant relevance scores per each document.
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5. Discussion

In this section, the key challenges and contexts of application for set-to-sequence deep learning
methods are discussed. Additionally, separate sections are devoted to the progress in set encoding
and permutation learning, along with current limitations and proposed directions for future research.

5.1 Key Challenges

Core challenges of set-to-sequence include representing sets of varying sizes in a permutation in-
variant way, encoding pairwise and higher-order interactions between set elements and keeping the
computational complexity moderate in the cardinality of the input set. This last requirement stems
from the fact that in many important set-to-sequence problems the size of the input set can be
quite large, particularly in computer vision point-cloud based tasks (Ge et al., 2018). This has been
addressed by various proposed set-encoding or set-pooling methods discussed in section 3, such as
RNN-based Pointer Networks (Vinyals et al., 2015) and Read-Process-and-Write models (Vinyals
et al., 2016) as well as through fully connected methods such as DeepSets (Zaheer et al., 2017) and
the Set Transformer (Lee et al., 2019), among others.

Another set of key challenges in set-to-sequence stems from the many possible ways of formal-
izing the process of outputting a permutation sequence. Potential methods include learn-to-rank
approaches, permutation matrices and attention-based methods discussed in section 4. Additionally,
it is not always trivial to combine the output of the specific set-encoding technique with the expected
input of these permutation methods in a way that results in good model performance. Finally, we
expect not just the set-encoding module but the entire set-to-sequence model to be permutation
invariant and always give the optimal output regardless of how the array representing the set is
reordered at input.

5.2 Contexts of Application

There are many contexts where the input data does not have an inherent ordering and the number of
input elements varies (i.e. set-input problems) and possibly even more where the input elements are
not unique, instead repeating a meaningful number of times, in which case the task presents an mset-
or multiset-input problem. Additionally, the set elements may be allowed to reoccur multiple times
in the predicted sequence or be excluded from it entirely, forming a complex permutation. These
elements can be both continuous (e.g. word embeddings) or discrete (coming from an index-based
dictionary). An example of such a problem with a strong industrial application is the question of
how to order available product offers into a displayable catalogue that will keep the reader engaged
and eventually inspire them to make a relevant purchase (Liao & Chen, 2004).

Similar challenges are faced by the experts who order news articles into a coherent publication,
book authors composing chapters into a novel and by engineers tackling the challenge of catalog
design, in which a configuration is created by assembling off-the-shelf components into a functional
system (Carlson-Skalak et al., 1998). Set-to-sequence methods can also benefit architects in their
search for the best configurations of the design space, taking into consideration structural efficiency,
daylight availability and other aspects of building performance (Brown & Mueller, 2017). Whenever
the elements come from a pre-existing set and the output is structured as a complex permutation,
we are facing a set-to-sequence challenge.

5.3 Progress in Set Encoding

As machine learning methods become more and more widely used, the range of input and output
data structures that these methods are applied to becomes larger. Mirroring the development and
consecutive growth in popularity of methods created specifically to handle certain types of input
data, such as convolutional neural networks for images and recurrent models for sequences, one of the
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most significant developments in set-to-sequence has been the work towards obtaining permutation
invariant representations of sets of varying lengths.

Particularly, this representation can now be obtained in a way that is capable of explicitly
encoding not just pairwise but also higher-order interactions between input elements. Intuitively
these improvements mirror the way we as humans process input sets, in that we group the elements
into meaningful collections, allowing for enough flexibility that this grouping may change entirely
upon the introduction of a new element.

5.4 Progress in Permutation Learning

Comparative progress has been made regarding the ways in which we formalize the permutation tasks
at hand. Given that the simplest form of permutation (reordering) is sorting, the early methods
formalized this challenge as a ranking problem, with pointwise, pairwise and eventually listwise loss
being used to train the model. These methods suffer from the assumption that any two elements
have a canonical pairwise ranking, regardless of the features of the other elements in the input set.

Another alternative emerged in the form of self-attention applied in such a way as to output
softmaxed pointers to the elements of the input set at each step in the output sequence, with
the additional use of beam search during inference (Vinyals et al., 2015). The third dominant
formalization comes in the form of learning to output a permutation matrix. This allows for the
original input to then be matrix-multiplied by the row-stochastic permutation matrix, resulting in
the desired reordering (Nishida & Nakayama, 2017), (Emami & Ranka, 2018). It is a sign of the
complexity of the field that no clear preferred formalization of its core challenge has emerged, with
ranking (for example) still finding useful application in active research (Kumar et al., 2020).

5.5 Limitations

A crucial limitation of many of the cutting edge set-to-sequence models, such as the Set Trans-
former (Lee et al., 2019) and the permutation mechanism in Pointer Networks, is their reliance on
self-attention. Whilst Transformer-based methods that rely solely on multiheaded self-attention have
seen remarkable success, even in applications beyond a fixed-length context (Dai et al., 2019), their
ability to process hierarchical structure has hard limits. Specifically, purely self-attention architec-
tures are entirely dependent on the number of multi-attention heads and layers growing alongside the
size of the input to retain the ability to model recursion, finite-state languages and other hierarchical
aspects of our data (Hahn, 2020).

In order to overcome this limitation, efforts have been made to combine the benefits of sequential
computation, inherent to recurrent neural networks, with the advantages of parallel computation
and the global receptive field of the Transformer. This method is referred to as the Universal
Transformer (Dehghani et al., 2019). In addition, it also includes the Adaptive Computation Time
mechanism proposed by Graves (2016), which enables the model to dynamically learn how many
computational steps to perform per the features of the input sequence. However, these advances
have not yet been translated to the domain of set-input challenges.

5.6 Directions for Further Research

There are many possible directions for further investigations, pertaining to both the area of encoding
sets and proposing novel permutation learning methods. As hinted in section 4.1, the question of how
best to utilize the fixed length set representation within the internals of the ordering module remains
open. However, we believe the areas of learning complex permutations (5.6.1) and differentiable loss
functions (5.6.2) deserve separate attention, given in the following subsections.
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5.6.1 Complex Permutations

An important and natural extension of the research within set-to-sequence is to apply it to challenges
where the output sequence allows for repetition and exclusion of input set elements, thus going be-
yond traditional permutation learning (Diallo et al., 2020). As such, these complex permutations
present an additional challenge of dynamically predicting the optimal sequence length without sac-
rificing the second of the two aforementioned prerequisites for ML methods on sets, namely the
requirement that the same model must be able to process finite input sets of any cardinality. It is
not immediately clear how to achieve both properties, with multiple promising approaches gaining
prominence, ranging from the addition of a confidence loss for long time-series prediction (Harmon
& Klabjan, 2019), to the aforementioned adaptive computation time (Wu et al., 2020). For an
overview of dynamic neural network methods in general, see Han et al. (2021).

Important tasks involving a complex target permutation include predicting a configuration rep-
resenting the assembly of off-the-shelf components into a functional system (Carlson-Skalak et al.,
1998) and the composition of product offers into rendered catalogues (Liao & Chen, 2004). Ad-
ditionally, an interesting area for further research would be to extend these complex permutation
sequences to grids and lattices, as suggested by Zhang et al. (2019), or even to graphs, expanding
on the work of Serviansky et al. (2020).

5.6.2 Differentiable Loss Functions

Another important area for further work is centered around the problem of framing the set-to-
sequence challenges in such a way as to enable the use of differentiable loss functions. A naive but
often practically effective approach is to frame the problem as categorization and use a cross-entropy
loss, as discussed in Engilberge et al. (2019). However, it precludes meaningful distinction between
pointing to an incorrect element that is very similar to the correct one and pointing to an entirely
different incorrect element.

Alternatively, if a ranking framework is applied, where a score is generated for each element and
subsequently used to sort all elements into a new permutation, we gain access to well documented
listwise losses, such as the ones successfully employed in the ListNet or ListMLE (Kumar et al., 2020)
frameworks. Many metrics that would lend themselves to ordering challenges do not have defined
derivatives for their entire domain. The development and testing of their smooth approximations is
of great potential value, as seen in the works of Roĺınek et al. (2020) and Blondel et al. (2020).

6. Conclusion

Set-to-sequence is currently established as a family of methods with an exceptionally wide range of
applications. At its essence, it is a combination of three areas seeing a lot of attention within the
machine learning and deep learning research communities, namely set-input problems, combinatorial
optimization and structured prediction. As such, a number of methods that can further our under-
standing of this field originates from other areas of interest, sometimes without seeing immediate
application to set-to-sequence challenges. Progress owes to advances in model architectures, parallel
computing, hyperparameter optimization as well as the overall growing interest in applying machine
learning solutions to a wider and wider gamut of industrial challenges.

We have presented an overview of set-to-sequence methods from the fields of machine learning
and deep learning. The initial sections of this paper introduced the reader to the key concepts in
relation to machine learning on sets, most notably the properties of permutation invariance, per-
mutation equivariance and the requirement of handling inputs of varying lengths. In relation to
this, in section 3, the reader is introduced to a number of selected set-encoding model architectures,
including a significantly detailed look at their underlying mathematical transformations. To facili-
tate comprehensive understanding, we compared these and other related methods through several
summary tables presented in section 3.1.
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Additionally, a survey of potential ordering methods has been provided in section 4. This in-
cluded the three primary ways of formalizing the output permutation in the set-to-sequence setting,
namely listwise ranking, relaxations of permutation matrices and attention-based pointing. Once a
permutation invariant set representation is obtained through one of the aforementioned set-encoding
models, the ordering methods’ calculations can be conditioned on this embedding to output a se-
quence of elements from the original input set, in one fully trainable deep learning framework.
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Roĺınek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., & Martius, G. (2020). Optimizing
rank-based metrics with blackbox differentiation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7620–7630.

Saito, Y., Nakamura, T., Hachiya, H., & Fukumizu, K. (2019). Deep set-to-set matching and learning.
ArXiv, abs/1910.09972.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recom-
mendation algorithms. In Proceedings of the 10th International Conference on World Wide
Web, WWW ’01, p. 285–295, New York, NY, USA. Association for Computing Machinery.

Schafer (2007). Recurrent neural networks are universal approximators. International Journal of
Neural Systems, Vol. 17, No. 4 (2007) 253–263, World Scientific Publishing Company Int.,
17 (4), 253–263.

See, A., Liu, P., & Manning, C. (2017). Get to the point: Summarization with pointer-generator
networks. In Association for Computational Linguistics.

Serviansky, H., Segol, N., Shlomi, J., Cranmer, K., Gross, E., Maron, H., & Lipman, Y. (2020).
Set2graph: Learning graphs from sets. Preprint arXiv:2002.08772, ArXiv.

133



Jurewicz & Derczynski

Skianis, K., Nikolentzos, G., Limnios, S., & Vazirgiannis, M. (2020). Rep the Set: Neural Networks
for Learning Set Representations. AISTATS, 1 (23rd).

Smith, K. A. (1999). Neural networks for combinatorial optimization: A review of more than a
decade of research. INFORMS Journal on Computing, 11 (1), 15–34.

Spearman, C. (1904). The proof and measurement of association between two things.. In American
Journal of Psychology.

Stuart, J. L., & Weaver, J. R. (1991). Matrices that commute with a permutation matrix. Linear
Algebra and its Applications, 150, 255 – 265.

Sun, Z., Tang, J., Du, P., Deng, Z. H., & Nie, J. Y. (2019). DivGraphPointer: A graph pointer network
for extracting diverse keyphrases. In SIGIR 2019 - Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 755–764.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M., Lanctot, M.,
Sonnerat, N., Leibo, J. Z., Tuyls, K., & Graepel, T. (2018). Value-decomposition networks for
cooperative multi-agent learning based on team reward. Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS, 3, 2085–2087.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems, 4 (January), 3104–3112.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2818–2826.

Takeuti, G., & Zaring, W. M. (2013). Axiomatic set theory, Vol. 8. Springer Science & Business
Media.

Taylor, L., & Nitschke, G. (2018). Improving deep learning with generic data augmentation. In 2018
IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1542–1547.

Vartak, M., & Thiagarajan, A. (2017). A Meta-Learning Perspective on Cold-Start Recommenda-
tions for Items Manasi. 31st Conference on Neural Information Processing Systems (NIPS
2017), 29 (3), 171–180.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,  L., & Polo-
sukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing
Systems, 2017-Decem(Nips), 5999–6009.
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Chapter 5

Article 2

Article details:

2. “PROCAT: Product Catalogue Dataset for Implicit Clustering,

Permutation Learning and Structure Prediction”

Mateusz Jurewicz and Leon Derczynski

Proceedings of the Thirty-fifth Conference on Neural Information Processing

Systems, Datasets and Benchmarks Track, NeurIPS 2021.

Context. At the time of writing the second published article there appeared to be

no product catalog dataset that would lend itself to the kind of structure prediction

tasks inherent to the Catalog Problem. As such, a natural step was to curate such

a dataset, further enriched with an early version of the synthetic catalog library

outlined in Chapter 3.1. Therefore, the intention was twofold. The hope was to

both popularize the specific, e-commerce application and provide early benchmarks

for future models capable of addressing the underlying Catalog Problem.

Contributions. Within the second included article, the PROCAT dataset of over

10,000 human-designed product catalogs is introduced. Comprised of more than 1.5

million individual product offers, which are grouped into almost a quarter of a million

complementary sections, PROCAT provides the supervision data needed for training

subsequent neural models. Additionally, it forms an NLP corpus for an underrep-

resented language (Danish). The provided catalog examples are given in both raw
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and highly preprocessed form, allowing the researchers to quickly begin testing their

own methods of approaching the Catalog Problem. Furthermore, the article reports

early benchmarks of performance on the provided datasets, quantitatively comparing

the results of earlier set encoding methods combined with permutation learning mod-

ules into complete set-to-sequence architectures via two rank correlation coefficients,

Kendall’s τ and Spearman’s ρ, as well as an early version of the compositional and

structural metrics outlined in Chapter 3.1.1.

Recent developments. To my knowledge, no new dataset lending itself to a

supervised approach to the Catalog Problem has been made publicly available since

the publication of the included article. Whilst there exist machine learning datasets

with the field of e-commerce that contain some information pertaining to product cat-

alogs, such as Fashion-mnist introduced by Xiao et al. (2017) and the review-centric

dataset used by Haque et al. (2018), PROCAT remains the only dataset containing

product catalog information needed for the prediction of a catalog’s composition and

structure.

5.1 PROCAT: Product Catalogue Dataset for

Implicit Clustering, Permutation Learning

and Structure Prediction

In this section, the second published article is included in unchanged form, starting

on the next page for ease of reading.
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Abstract

In this dataset paper we introduce PROCAT, a novel e-commerce dataset containing
expertly designed product catalogues consisting of individual product offers
grouped into complementary sections. We aim to address the scarcity of existing
datasets in the area of set-to-sequence machine learning tasks, which involve
complex structure prediction. The task’s difficulty is further compounded by the
need to place into sequences rare and previously-unseen instances, as well as by
variable sequence lengths and substructures, in the form of diversely composed
catalogues. PROCAT provides catalogue data consisting of over 1.5 million set
items across a 4-year period, in both raw text form and with pre-processed features
containing information about relative visual placement. In addition to this ready-to-
use dataset, we include baseline experimental results on a proposed benchmark task
from a number of joint set encoding and permutation learning model architectures.

1 Introduction

Intelligent product presentation systems and catalogue structure prediction are important areas of
research, with clear practical applications [de Melo et al., 2019] and a substantial impact on the
environment [Liu et al., 2020]. With the ultimate goal being the reduction of paper waste stemming
from print catalogues, in this paper we present a dataset of over 10,000 catalogues consisting of more
than 1.5 million individual product offers. This dataset lends itself to machine learning research in
the area of set-to-sequence structure prediction, clustering and permutation learning.

Whilst there are many e-commerce product datasets containing information about individual product
offers for the purposes of recommendation [Fu et al., 2020] and categorization [Lin et al., 2019],
there is a scarcity of publicly-available, easily accessible and reliably maintained product datasets for
catalogue structure prediction and permutation learning. Providing such a dataset can help foster the
transition from print to digital catalogues [Wirtz-Brückner and Jakobs, 2018].

This task is challenging for machine learning methods due to the necessity of learning to obtain useful
representations of rare and unseen instances of product offers, the variable offer and catalogue
lengths, as well as the implicit clustering task necessary for predicting the split of offers into a
varying number of clusters (sections) to output the final catalogue structure.

With this work, we aim to address this domain lacuna in three ways. First, we provide a large dataset
of product catalogues designed by marketing experts. These are structured, and the task over them
is to predict a catalogue structure given a set of product offers (the set items). This structure takes
the form of grouping product offers into complementary sections and ordering or permuting the

∗Affiliated with the Tjek A/S Machine Learning Department (København, 1408), contact via mj@tjek.com.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.
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sections into a compelling catalogue narrative [Szilas et al., 2020], a currently qualitative aspect of
human-performed task.

Second, we perform a series of experiments on this dataset, obtain initial benchmarks of performance
and propose a number of combined set-to-sequence model architectures. These architectures, along
with all model parameters, are also made publicly available, along with a repository containing all
code necessary for repeated experiments.

Third, we supplement the real-world catalogue data with a code library for generating simplified,
automatically-synthesized product catalogues that adhere to flexible, adjustable structural and dis-
tributional rules. These synthetic catalogues can then be used to train set-to-sequence structure
prediction models analogous to the ones we benchmark on the main dataset. Additionally, the library
allows for detailed functional metrics on the performance of these models, grouped into specific
aspects of the chosen structural rules. This allows for greater insight into what kinds of structures
different types of models are effective at learning and full control over the task’s difficulty.

Figure 1: Diagram visualizing the core set-to-sequence structure prediction task through permutation
learning with implicit clustering and set representation learning.

The remainder of this paper is structured in the following way: in section 2 we elaborate on prior work,
existing datasets and relevant structure prediction methods in more detail. In section 3 we introduce
the specifics of the main dataset contribution, including data collection, composition, pre-processing,
distribution and ethical considerations. For further details regarding the dataset see the datasheets for
datasets checklist in the supplementary materials. In subsection 3.4, we outline the synthetic dataset
generation library and its related functional testing capacities. We then move on to section 4, where
the experimental setup and initial benchmark results are presented. Finally, sections 5 and 6 discuss
the limitations of our work and conclusions respectively, with minor notes on the potential for future
work.

1.1 Our contributions

• PROCAT dataset of over 10,000 human-designed product catalogues consisting of more
than 1.5 million individual product offers, across 15 GPC commercial product categories.

• Library for generating simplified, synthetic catalogues according to chosen structural rules
and measuring related model performance through functional tests, with full control over
the task’s difficulty.

• Benchmark evaluation tasks and baseline results for 4 proposed deep learning models
utilizing both datasets.

The links to all mentioned resources including the PROCAT dataset, the code repository for repeated
experiments and the best performing model weights are provided in the supplementary materials. A
direct link to the dataset is also provided here for convenience: https://doi.org/10.6084/m9.
figshare.14709507.

2 Prior work

Research interest into the process of digitizing paper product catalogues into internet-based electronic
product catalogues (IEPCs / EPCs) has a long history [Palmer, 1997, Stanoevska-Slabeva and Schmid,
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2000, Guo, 2009, de Melo et al., 2019]. There are ample machine learning datasets consisting
of individual products [Xiao et al., 2017] or product reviews [Haque et al., 2018], but excluding
information about the structure of a readable catalogue composed from such offers. To the authors’
knowledge, no publicly available dataset containing both the features of individual product offers and
the order and grouping in which they were presented as a product catalogue exists.

In order to empower more businesses to present their available products in a visually pleasing digital
form and move away from wasteful paper-based solutions, an automatic method for turning a set of
offers into a structured presentation needs to be obtained [Guo, 2009]. We propose a set-to-sequence
formulation of this task, enabling machine learning models to learn the optimal structure of a viewable
product catalogue from historic examples.

With that framing of the task in mind, a very brief overview of existing set-to-sequence, permutation
learning model architectures and datasets is given below.

2.1 Set-to-sequence methods

Machine learning set-to-sequence methods can approximate solutions to computationally expensive
combinatorial problems in many areas. They have been applied to learning competitive solvers for
the NP-Hard Travelling Salesman Problem [Vinyals et al., 2015]; tackling prominent NLP challenges
such as sentence ordering [Wang and Wan, 2019] and text summarization [Sun et al., 2019]; and
in multi-agent reinforcement learning [Sunehag et al., 2018]. A notable example is the agent
employed by the AlphaStar model, which defeated a grandmaster level player in the strategy game of
Starcraft II, where set-to-sequence methods were used to manage the structured, combinatorial action
space [Vinyals et al., 2019]. For a survey of set-to-sequence in machine learning, see Jurewicz and
Derczynski [2021].

These model architectures often obtain a meaningful, permutation-invariant representation of the
entire available set of entities [Zaheer et al., 2017], either through adjusted recurrent neural net-
works [Vinyals et al., 2016] or transformer-based methods [Lee et al., 2019]. This is then followed
by a permutation learning module whose output is conditioned on the above-mentioned representa-
tion. Such modules can take many forms, ranging from listwise ranking [Ai et al., 2018], through
permutation matrix prediction [Zhang et al., 2019] to attention-based pointing [Yin et al., 2020].

2.2 Set-to-sequence datasets

In lieu of domain-specific datasets for product catalogue structure prediction through set-to-sequence
permutation learning, we can look to other areas of machine learning research where predicting a
permutation is the goal. These include sentence ordering [Cui et al., 2018], where any source of
consecutive natural language sentences can be used, such as the NIPS abstract, AAN abstract, NSF
abstract datasets [Logeswaran et al., 2018]. However, this formulation precludes the model from
learning an implicit clustering.

Furthermore, sequential natural language tasks such as sentence continuation are fundamentally
different from catalogue structure prediction because word tokens come from a predefined vocabulary,
whereas new offers may have never been seen before by our models, presenting a further challenge.

Alternatively, one can look to learn-to-rank datasets from the domain of information retrieval,
such as Istella LETOR1 or MSLR30K2, as used for permutation learning by Pang et al. [2020].
However, learn-to-rank frameworks presuppose an existence of a query for which a relevance rating
is assigned to each document, which are then sorted according to this rating. It is unclear what
could constitute the query in the context of product catalogue structure prediction. The permutation
invariant representation of the entire set of available offers is a possible candidate, requiring further
research, as mentioned in the conclusion section (6).

Finally, there exist ways to obtain visual permutation datasets consisting of image mosaics, where the
task is to reorder the puzzle pieces back into the original image. Santa Cruz et al. [2018] obtain these
mosaics from the Public Figures and OSR scene datasets [Parikh et al., 2012]. This resembles the
product catalogue prediction task in terms of permuting previously unseen atomic instances (image
fragments), but lacks the element of implicit clustering into meaningful, complementary sections.

1http://blog.istella.it/istella-learning-to-rank-dataset/
2http://research.microsoft.com/en-us/projects/mslr/

141



Table 1: Sample PROCAT offers with raw text features

section header description priority

1 Lamb chops Approx. 400 grams. Marinated chops with mushrooms, bacon.
Best served with cream.

A

1 Ham roast 700-800 grams. Oriental. Mexico. B
1 Melon Organic piel de sapo or cantaloupe melon. Unit price 20.00.

Spain, 1st class.
C

2 Hair spray ELNETT. Extra strong. Strong hold. 400 ml. A
2 Deodorants Spray. Roll-on. 50-150 ml. REXONA B

3 PROCAT

In order to mitigate the lack of product catalogue datasets, with the prediction target being a complex
permutation requiring implicit clustering, we propose a new dataset further referred to as PROCAT.

This dataset consists of 11,063 human-designed catalogue structures, made up of 1,613,686 product
offers with their text features, grouped into a total of 238,256 sections. The dataset’s diversity
stems from the catalogues covering 15 different GPC-GS1 commercial categories and from their
original composition being created by 2398 different retailers, including cross-border shops that have
a significant following in Denmark and neighboring Scandinavian countries, particularly Sweden and
Norway, as well as Germany. For more details, see the supplementary materials.

What follows is a more in-depth look into the collection and content of this data. For an introductory
excerpt demonstrating sample offers from the same catalogue through raw text features, section
assignment and priority class, see table 1.

Additionally, we briefly introduce a supplementary library for generating simpler, synthetic structures
meant to resemble product catalogues in section 3.4.

3.1 Data collection

The data was acquired through a combination of feed readers and custom scraping scripts developed
by Tjek A/S, a Danish e-commerce company. The scripts read the feeds and scrape a list of stores
and PDF catalogs associated with said stores. Afterwards, a human curation step is performed by the
operations department to make sure the obtained data is correct.

The data was collected within the full 4 year period between 2015 and 2019. The original structure of
each catalogue is preserved through retaining information about which offers were presented together
on which section (page), what the order of sections was and through a separate feature referred to as
priority class, which represents the relative size of the corresponding offer’s image on the page in the
original catalogue. A visual representation is given in figure 2.

Figure 2: Product offers grouped into 3 consecutive sections extracted from a single catalogue.

3.2 Catalogue data

The dataset consists of instances representing 3 types of entities. The most atomic entity is an offer,
which represents a specific product with a text heading and description, which often includes its
on-offer price. Individual product offers are then grouped into sections, which represent pages in
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a physical catalogue brochure. Finally, an ordered list of sections comprise a single catalogue, for
which a prediction about its optimal structure is made. This takes the form of permuting the input set
of offers into an ordered list, with section breaks marking the start and end of a section.

Each offer instance consists of its unique id, its related section and catalogue ids, a text heading and
description in both raw form and as lowercase word tokens obtained via the nltk tokenizer [Bird,
2006], the total token count, and finally the full offer text as a vector referencing a vocabulary of the
most common 300 thousand word tokens. Additionally, each offer is categorized into a priority class,
representing how visually prominent it was in the original catalogue in terms of relative image size
(on a 1-3 integer scale).

Each catalogue instance consists of its unique id, an ordered list of associated section ids, and an
ordered list of offer ids that comprise the catalogue in question, including section break markers.
Additionally, each catalogue instance also includes information in the form of ordered lists of sections,
each containing a list of offers as vectors, with their corresponding priority class and the catalogue’s
length as the total number of offers within it. Finally, a randomly shuffled x of offer vectors (with
section breaks) is provided for each catalogue, along with the target y representing the permutation
required to restore the original order.

Every catalogue instance consists of both raw data and pre-processed features. The dataset is not
a sample, it contains all catalogue instances from the years 2015 - 2019 available for viewing in
the Tjek A/S app. No other selection filter was used. For a more detailed look at the structure and
format of the files comprising the dataset, please see the code repository linked in the supplementary
materials.

3.3 Sustainability

The dataset is made publicly available under the CC BY-NC-SA license. It is hosted by figshare, an
open access repository where researchers can preserve and share their research outputs, supported by
Digital Science & Research Solutions Ltd. The platform was chosen due its prominence, provision
of a persistent identifier and rich metadata for discoverability. The dataset will be continuously
maintained by the authors of this paper, who can be contacted via the emails provided in the contact
information above the abstract.

If labeling errors are found, they will be corrected. The dataset may be expanded with further
instances, depending on the academic interest. All previous versions of the dataset will continue to be
available. Others are encouraged to extend the dataset and can choose to do so either in cooperation
with the authors or individually, in accordance with the chosen license.

3.4 Synthetic data and functional testing

In order to experimentally demonstrate the initial viability of model architectures on the type of
structure prediction task presented by the product catalogues, we also propose a library for generating
simpler, synthetic catalogue datasets. Additionally, we enable researchers to use this library to
easily specify hand-picked distributional, structural and clustering rules that determine what kinds
of synthetic catalogues are generated. Finally, we provide tooling for obtaining detailed metrics
regarding the models’ performance per specified rule.

The synthetic datasets also allow for predicting multiple valid catalogue structures from the same
underlying input set, which addresses an important limitation of the main dataset, where only one
target permutation is available.

The main difference between the real and synthetic datasets is that the basic building block of a
catalogue in the latter case takes the form of a vocabulary-based token representing a single product
offer. This circumvents some of the difficulty related to representation learning in a few and zero shot
setting inherent to the main PROCAT dataset. It becomes natural to think of each offer as representing
a member of a wider, colour-coded class, such as green for vegetables, red for meats and so forth.
For a visual example see figure 3.

The chosen clustering and structural rules can include pairwise and higher-order interactions between
offer types. For example, the presence of both a green and purple offer type in the initial available set
can result in a rule which forces the catalogue to be opened with an all-purple section and closed with
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Figure 3: Three synthetic catalogue sequences, consisting of instances of 5 colour-coded offer types,
separated into sections and ordered according to chosen distributional, clustering and structural rules.
a mixed red and yellow section. The presence of all three primary colours can make a mixed purple
and blue section invalid, forcing these offers to be split between two separate sections and so forth.

The ability to obtain structure prediction accuracy metrics per rule enables us to, for example,
experimentally test the ability of models such as the Set Transformer [Lee et al., 2019] to encode
such higher order interactions in various controlled settings.

4 Benchmark task and results

The data provided in PROCAT can motivate a number of benchmarking tasks related to representation
learning, clustering, catalogue completion and structure prediction. We focus on a permutation
learning approach to predicting the proper structure of a product catalogue, with implicit clustering
of the provided set of offers into varying-length sections.

4.1 Baseline methods

Three baseline model architectures are tested, both on a set of synthetically generated catalogue
structures and on the main PROCAT dataset.

Each method consists of a set encoding module and an attention-based pointing mechanism [Vinyals
et al., 2015, Yin et al., 2020] for outputting the predicted permutation. The encoding module first
obtains an embedding of individual offers through a recurrent neural network consisting of gated
recurrent units [Chung et al., 2014] and then uses one of the three included methods of deriving the
embedded representation of the entire set, which is permutation-invariant in 3 of the 4 cases.

The single exception to permutation invariance is a pure Pointer Network (1), which encodes the set
sequentially through a stack of bidirectional LSTMs [Hochreiter and Schmidhuber, 1997, Schuster
and Paliwal, 1997]. The remaining 3 methods are the Read-Process-Write model (2) [Vinyals et al.,
2016], the Deep Sets encoder (3) [Zaheer et al., 2017] and the Set Transformer (4) [Lee et al., 2019].

Figure 4: The input and output of the tested models, after the offer text embedding step.

In effect the random, shuffled order in which the available set of offers is originally presented to
the model does not influence the representation of the set in methods 2, 3 and 4. The output of the
attention-based pointing module is conditioned on this set representation through concatenating it
with the embedding of each individual offer constituting the set. All models are implemented in
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Table 2: Rank correlation coefficients for PROCAT

PROCAT Synthetic (n = 20)

Model Spearman ρ Kendall τ Spearman ρ Kendall τ

Random Baseline 0.004 -0.01 0.09 -0.07

Pointer Network (2015) 0.26 0.13 0.49 0.37
Read-Process-Write (2016) 0.30 0.18 0.52 0.41
DeepSets (2017) 0.35 0.22 0.55 0.44
Set Transformer (2019) 0.44 0.30 0.61 0.49

PyTorch following code written by their respective authors (where provided), and made publicly
available on GitHub.

For a visual explanation of the input and output of the permutation-learning modules of the neural
networks, see figure 4. The input to the compared models is always a list of raw-text documents
representing offer instances, in a randomly permuted order that needs to be reverted to the target one.

4.2 Experimental setup and results

We perform experiments on an 80-20 training-validation split of the PROCAT dataset. Every model’s
weights are adjusted based on a cross entropy loss applied to the pointer attention vector over all set
input elements at each step of the output sequence [Yin et al., 2020]. We use two rank correlation
coefficients as our metrics, namely Spearman’s rho (sρ):

sρ(y, ŷ) = 1− 6
∑n
i=1 yi − ŷi

n(n2 − 1)
(1)

where y is the target permutation in the form of integer ranks per element and ŷ is the prediction; and
Kendall’s tau (kτ ), which is calculated based on the number of concordant pairs between the target
and predicted rank assignments [Shieh, 1998]. Additionally, we provide an aggregated percentage
based correctness metric tracking how many elements per example input set were placed correctly.

Training on PROCAT is performed for 300 epochs with batch size of 64 using the Adam stochastic
optimizer [Kingma and Ba, 2015] with a learning rate 10−4 and momentum 0.9. Each catalogue
consists of n = 200 offers. Training on the synthetic dataset of 50,000 catalogue sequences of n = 20
elements is performed for 400 epochs with the same batch size and optimization hyperparameters,
training on the synthetic dataset with sequences of n ∈ {15, 10} is performed for 600 epochs, in
an effort to show the feasibility of achieving better performance through the proposed, scaled-up
set-to-sequence model architectures.

Every PROCAT model had a total of approximately 1 million trainable parameters, every model
tested on the synthetic dataset had approximately 900 thousand. For details on the dimensions of
layers, see the provided repository with code for repeated experiments.

An important implementation nuance comes in the form of progressive masking preventing the models
from repeatedly pointing to the same element, which forces the output to be a valid permutation. It is
also important to note that we do not currently directly measure the quality of clusters (sections) in
PROCAT, and that whilst the target number of clusters varies per catalogue instance, that number is
known to the model through the total count of section break tokens in the input set.

4.2.1 PROCAT results

Tables 2 and 3 present results for each of the 4 tested models and a baseline which always outputs valid
but random permutations of the original input set. The final values of the Spearman’s ρ and Kendall’s
τ rank correlation coefficients are given for both the PROCAT dataset, with average cardinality of the
input set (and therefore the length of the predicted permutation sequence) n = 200, and a sample of
synthetic catalogue structures with n ∈ {20, 15, 10}. Metrics are averaged over 5 full training runs.

Overall, the models that obtain a permutation invariant representation of the set consistently perform
better on the PROCAT dataset than a pure Pointer Network, which encodes the set sequentially
through stacked RNNs. Furthermore, the top performing method has a built in mechanism for
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Table 3: Rank correlation coefficients for synthetic datasets

Synthetic (n = 15) Synthetic (n = 10)

Model Spearman ρ Kendall τ Spearman ρ Kendall τ

Random Baseline -0.026 -0.019 0.051 0.023

Pointer Network (2015) 0.67 0.54 0.73 0.61
Read-Process-Write (2016) 0.77 0.60 0.83 0.71
DeepSets (2017) 0.84 0.72 0.92 0.80
Set Transformer (2019) 0.96 0.85 0.98 0.93

encoding pairwise and higher-order interactions between set elements through transformer-style
attention. Domain expertise suggests that interplay between individual product offers is indeed crucial
when designing a product catalogue [Xu et al., 2013].

In figure 5 an analogous comparison of the average percentage of correctly predicted ranks per input
set is given. Overall, the initial results are relatively low (under 7% for the Set Transformer), which
illustrates the difficulty of the underlying task. Specifically, being able to predict a good section
consisting of complementary offers but placing this section later in the output catalogue than in the
original one would here be reflected with a 0% score regarding those elements. However, performance
of the attention-based set encoder is more consistent, as indicated by narrower error bars.

Development of a more sensitive evaluation metric is both a direction for future work and the
motivation behind the creation of the synthetic datasets, allowing for full control of the task’s
difficulty and more detailed insights into model performance.

Figure 5: Comparison of the average percentage of correctly predicted ranks per input set element in
the PROCAT dataset for the 4 main models and a random baseline, with error bars over 5 runs.

The fact that models which can explicitly encode higher-order interactions perform better suggests
a range of future approaches. These could include: using the provided priority class information
that encodes visual offer placement information; applying learn-to-rank frameworks with the set
representation as the query for which offer relevance is determined; and exploring the possibility of
predicting catalogues as directed graphs, particularly ones consisting of disjoint cliques guaranteeing
a valid clustering [Serviansky et al., 2020].

4.2.2 Functional results on synthetic data

The results for synthetic datasets consisting of 50,000 simplified catalogue structures of lengths
ni ∈ {20, 15, 10}, generated following the challenging default set of clustering and structural rules,
are given in the right half of table 2 as well as in tables 3 and 4. All results are averaged over 5 full
training and testing runs.

The results for functional tests for reporting model performance per rule and type of rule in table 4
are of particular interest. These have been aggregated into the clustering score, which is the average
percentage of valid sections per catalogue (based on default section rules), the structural score,
which is the average percentage of predicted catalogues following the structural (section order) rules
that do not depend on pairwise or higher order interactions between input set elements, and finally
structural2+, which relates to structural rules that do.
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Table 4: Functional tests

Synthetic (n = 20) Synthetic (n = 15)

Model Clustering Structural Structural 2+ Clustering Structural Structural 2+

Random Baseline 0.08 0.03 0.01 0.09 0.03 0.02

Pointer Network (2015) 0.39 0.21 0.13 0.61 0.53 0.29
Read-Process-Write (2016) 0.40 0.25 0.13 0.64 0.45 0.34
DeepSets (2017) 0.43 0.35 0.16 0.75 0.61 0.37
Set Transformer (2019) 0.63 0.57 0.32 0.89 0.88 0.75

Overall, in terms of the clustering score, i.e. whether the section composition in predicted catalogues
followed the rules from the synthetically generated ones, the difference in performance between
methods that obtain a permutation invariant representation of the input set and those that do not was
less pronounced than in terms of the two structural scores. It is unclear as to why this occurs, as both
section composition and section order are defined by the composition of the input set.

Nonetheless, the model capable of explicitly encoding pairwise and higher order interactions between
input set elements (4) outperforms the rest in terms of the structural2+ score, predicting catalogues
abiding by such structural rules in 32% of cases for n = 20 and 75% of cases for n = 15, showcasing
a significant impact of set cardinality and sequence length on model performance.

4.3 Computational resources

The experiments were performed on cloud-based GPU instances provisioned from the Paperspace
computing platform, with NVIDIA Quadro P6000 graphics cards (24 GB) and 8 CPU cores. Fol-
lowing the carbon emission calculator developed by Lacoste et al. [2019], we estimate the total CO2

emissions for all performed experiments at 32.4 kg, and the cost of training the best performing
model at 1.08 kg (over 10 hours).

Whilst the Paperspace cloud platform does not provide specific information about how much of its
infrastructure’s energy consumption it offsets, it is worth noting that one of the goals of solving
the set-to-sequence catalog prediction task is to reduce paper waste by making physical catalogues
obsolete. Thus it is hard to calculate the final impact on CO2 emissions [Pivnenko et al., 2015].

4.4 Ethical considerations and societal impact

Given the e-commerce context of the main presented dataset, we must highlight the wider problem
of endless scroll user interfaces in product presentation apps and social media [Lupinacci Amaral,
2020].

Whilst the PROCAT dataset is only tailored to predicting finite-length sequences from sets, we cannot
rule out the possibility of extending set-to-sequence models to non-finite sets. It is also in principle
possible to retrain the discussed models with additional inputs in the form of e.g. embedded personal
preferences, making the predicted catalogs tailored to specific individuals, which has been linked to
mental health issues related to smartphone addiction [Noë et al., 2019].

In an effort to mitigate this risk, we did not include any user interaction information; doing so could
indicate the performance of individual catalogues in terms of user engagement. This information was
excluded despite it being likely to signal optimal catalogue structures, as indicated by case studies in
the field of ML classification [Ferrari et al., 2020] and clinical decision support [Chen et al., 2020].
As a consequence, the dataset contains no personal information and is GDPR-compliant.

We do not see any clear way for it to exacerbate bias against people of a certain gender, race, sexuality,
or who have other protected characteristics. However, it may not be without merit to consider bias
that may have been inherent to the marketing decisions made by people who have designed the
catalogues contained in the dataset, such as the pink tax [Stevens and Shanahan, 2017].

5 Limitations

The PROCAT dataset consists of text in Danish, which has only six million users. However, this can
also be seen as a benefit in terms of providing domain-specific, publicly available resources for a
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non-privileged language [Kirkedal et al., 2019]. The catalogue ordering problem is independent of
language, so we consider this limitation to be of low impact.

An important limitation of PROCAT and learning from human-made product catalogues in general, is
that we only have access to one canonical ordering of the offer instances, whereas it is not impossible
that other, equally valid catalogues can be constructed from the same input set of offers. In order to
mitigate this, we provide the synthetic dataset library, where many valid permutations are available
for each input set, increasing the signal to noise ratio.

The benchmark methods provided with PROCAT take a single-step approach. It is not currently clear
whether a single step approach to predicting the product catalogue structure in a set-to-sequence
formulation is the most viable. Other, multi-stage approaches might circumvent the problem of
handling the padding used in the presented version of PROCAT, increasing the signal-to-noise ratio
in the dataset. It is possible to use the currently provided raw data for other formulations of the
underlying task.

6 Conclusion

We have highlighted the need for and provided a publicly available, easily accessible and reliably
maintained product catalogue dataset. The value of the dataset stems from the difficulty of the
structure prediction task, which involves representation learning, implicit clustering and permutation
learning challenge. This motivates experiments with models capable of predicting complex structures
as presented in sections 2.1 and 4.1.

We address the need for such a data source by curating PROCAT – a dataset of over 10,000 expert-
designed product catalogues consisting of more than 1.5 million individual product offers, grouped
into complementary sections. Additionally, due to the complexity of the underlying data, we also
provide a library for generating simplified synthetic catalogues according to chosen clustering and
structural rules. The performance of the proposed models is then measured per rule, allowing for a
more fine-grained look into what our models have actually learned, through functional tests.

Benchmarks indicate that the PROCAT structure prediction task is considerably difficult. Attention-
based models capable of explicitly encoding pairwise and higher order interactions between set
elements outperform other set encoders and pure permutation learning models. We believe there are
other interesting tasks and methods PROCAT may inspire, though an in-depth exploration is beyond
the scope of this dataset paper.

We intend to improve and expand both the PROCAT dataset and the synthetic data generation library
in order to facilitate the development of practical solutions in intelligent, privacy-centric product
presentation systems.
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A Appendix

The appendix includes supplementary information including links to the dataset and the code reposi-
tory for repeated experiments in subsection A.1, as well as the detailed dataset documentation and
intended uses in the form of a datasheets for datasets available in subsection A.3.

A.1 Supplementary information and links

The URL to access the dataset is provided below:

https://doi.org/10.6084/m9.figshare.14709507

The obtained persistent dereferencable identifier (DOI minted by the data repository) is therefore:
10.6084/m9.figshare.14709507.

Authors bear all responsibility in case of violation of rights. The data is made publicly available
under the Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0).
The dataset should not be used for commercial purposes.

Hosting is performed by FigShare, the authors are responsible for maintaining the dataset.

All explanations on how to read the dataset, with examples, is provided via jupyter notebooks as part
of the code repository for repeated experiments:

https://github.com/mateuszjurewicz/procat

Additionally, the best performing model is made available with the DOI 10.5281/zenodo.4896303 at
this hosting address:

https://zenodo.org/record/4896303#.YLnxgZMzbOQ

The dataset is intended to be publicly available forever, hence it was uploaded to the FigShare data
repository, which also handles its discoverability through structured metadata. For more information,
see:

https://knowledge.figshare.com/publisher/fair-figshare

A.2 Further notes on dataset diversity

The diversity of the dataset is limited due to the offer text being in Danish. Our intention was to
provide a valuable resource for an underrepresented language. One important aspect of the dataset is

∗Affiliated with the Tjek A/S Machine Learning Department (København, 1408), contact via mj@tjek.com.

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.
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Table 1: Global Product Classification of PROCAT Catalogues

Category Number of Catalogues %

Food (FBT) 7,456 67.40%
Electronic 5,231 47.28%
Personal Care 5,113 46.22%
Tools 3,311 29.93%
Sports Equipment 2,147 19.41%
Lawn/Garden Supplies 2,039 18.43%
Home Appliances 2,028 18.33%
Baby Care 1,986 17.95%
Household Furniture 1,672 15.11%
Pet Care 1,522 13.76%
Footwear 1,324 11.97%
Toys and Games 1,293 11.69%
Fuels 548 4.95%

that the catalogues come from a wide variety of providers, including cross-border shops that have a
significant following in neighboring Scandinavian countries, particularly Sweden and Norway, as
well as Germany.

We also provide an overview of commercial categories that the catalogues belong to, following the
Global Product Classification (GPC-GS1), with multiple categories per catalogue, in table 1.

Finally, the number of individual retailers that the catalogues belonged to is approximately 2,400 and
the total number of unique users who have viewed the catalogues within the app is approximately 2.5
million. Our hope is to represent a broad array of product categories and providers.

A.3 Datasheets for Datasets

The following includes answers to all the questions from the suggested datasheets for datasets
framework.

1. Motivation
(a) For what purpose was the dataset created?

The dataset in its current form was created with the purpose of helping solve an
industrial challenge of optimal catalogue structure prediction.

(b) Who created the dataset (e.g., which team, research group) and on behalf of
which entity (e.g., company, institution, organization)?
Original raw data collection was performed as part of the day-to-day operations of
the company Tjek A/S, which aggregates product catalogues for viewing in a digital
format. The curation and preprocessing was performed by the authors of this paper.

(c) Who funded the creation of the dataset?
The research is funded through an Innovation Fund Denmark research grant that Tjek
A/S is a beneficiary of (grant number 9065-00017B).

2. Composition
(a) What do the instances that comprise the dataset represent (e.g., documents, pho-

tos, people, countries)?
The instances represent 3 types of entities. The most atomic entity is an offer, which
represents a specific product with a text heading and description, which often includes
its on-offer price. Individual product offers are then grouped into sections, which
represent pages in a physical catalogue brochure. Finally, an ordered list of sections
comprise a single catalogue, for which a prediction about its optimal structure is made.
This takes the form of permuting the input set of offers into an ordered list, with section
breaks marking the start and end of a section.

(b) How many instances are there in total (of each type, if appropriate)?
The dataset consists of just over 10 thousand catalogs (11063), almost a quarter of a
million sections (238256) and over 1.5 million offers (1613686). These are further
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grouped into a suggested 80/20 train and test split, with 8850 catalogs in the train set
and 2212 in the test set.

(c) Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set?
The dataset is not a sample, it contains all catalogue instances from the years 2015 -
2019 available for viewing in the Tjek A/S app. No other selection filter was used.

(d) What data does each instance consist of?
Each instance consists of both raw data and pre-processed features.
Each offer instance consists of its unique id, its related section and catalogue ids, a text
heading and description in both raw form and as word tokens using the nltk tokenizer,
the total token count, and finally the full offer text as a vector referencing a vocabulary
of 300 thousand word tokens. Additionally, each offer is categorized into a priority
class, representing how visually prominent it was in the original catalogue in terms of
relative image size (on a 1-3 integer scale).
Each catalogue instance consists of its unique id, an ordered list of associated section ids,
and an ordered list of offer ids that comprise the catalogue in question, including section
break markers. Additionally, each catalogue instance also includes information in the
form of ordered lists of offers as vectors, grouped into sections, their corresponding
priority class and the catalogue’s total number of offers. Finally a shuffled x of offer
vectors (with section breaks) is provided for each catalogue, along with the target y
representing the permutation required to restore the original order.

(e) Is there a label or target associated with each instance?
Yes, each catalogue instance is pre-processed into a shuffled x of offer vectors and
section break markers, along with the target y representing the permutation required to
restore the human-designed structure of the original catalogue.

(f) Is any information missing from individual instances?
No data is missing.

(g) Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)?
Yes, every offer instance is tied to its section and catalogue via their ids in the appropri-
ate columns of the provided comma-separated files.

(h) Are there recommended data splits (e.g., training, development/validation, test-
ing)?
Yes, the entire catalogue set is grouped into a suggested 80/20 train and test split, with
8850 catalogs in the train set and 2212 in the test set. Catalogues were assigned to each
group randomly. A validation set can be extracted from the train set based on each
researcher’s individual preference.

(i) Are there any errors, sources of noise, or redundancies in the dataset?
There are no known errors, sources of noise or redundancies in the dataset, however
there is a possibility of some degree of overlap between individual offers in terms of
the underlying product.

(j) Is the dataset self-contained, or does it link to or otherwise rely on external re-
sources (e.g., websites, tweets, other datasets)?
The dataset is self-contained.

(k) Does the dataset contain data that might be considered confidential (e.g., data
that is protected by legal privilege or by doctor patient confidentiality, data that
includes the content of individuals’ non-public communications)?
The dataset does not contain data that might be considered confidential.

(l) Does the dataset contain data that, if viewed directly, might be offensive, insult-
ing, threatening, or might otherwise cause anxiety?
The dataset does not contain data that the authors would consider offensive, insulting,
threatening or causing anxiety.

(m) Does the dataset relate to people?
The dataset does not relate to people (thus skipping the remainder of this section’s
questions).

3. Collection Process
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(a) How was the data associated with each instance acquired?
The data was acquired through a combination of feed readers and custom scraping
scripts developed by Tjek A/S. For further details, see the answer to the next question.

(b) What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?
The scripts read the feeds and scrape a list of stores and PDF catalogs associated with
said stores. This provides the basic tooling and processing of the data and communicates
this to the company’s core API, running the scrapers on a defined schedule as well
as on-demand. Following that, a human curation step is performed by the operations
department to make sure the obtained data is correct. The data is directly observable.

(c) If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
The dataset is not a sample.

(d) Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdwork-
ers paid)?
The data collection process was done as part of the day-to-day operations of Tjek A/S,
by properly compensated full-time employees.

(e) Over what timeframe was the data collected?
The data was collected within the full 4 year period between 2015 and 2019.

(f) Were any ethical review processes conducted (e.g., by an institutional review
board)?
No.

(g) Does the dataset relate to people?
No, thus skipping the remainder of the questions in this section.

4. Preprocessing / cleaning / labeling
(a) Was any preprocessing/cleaning/labeling of the data done (e.g., discretization

or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)?
Yes, the raw text features of each offer instance were tokenized using the nltk tokenizer,
a vocabulary of word tokens was limited to 300 thousand words and used to obtain
offer vectors. Each offer instance was truncated or padded to 30 word tokens, with
over 75% of offers consisting of fewer than 24 tokens. Each catalogue instance was
truncated or padded to 200 offer instances, with over 75% of catalogues consisting of
fewer than 163 offers.
Additionally, to obtain the prominence class per offer per section, signifying the relative
size of the offer’s image on the page, a proprietary algorithm was used.

(b) Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)?
Yes, raw data is also provided.

(c) Is the software used to preprocess/clean/label the instances available?
Yes, the nltk library is available under the Apache License 2.0.

5. Uses
(a) Has the dataset been used for any tasks already?

The dataset is actively being used to help predict the optimal structure of product
catalogues given a provided set of offers, based on their textual description and to
recommend complementary offers. It has not been used in prior research.

(b) Is there a repository that links to any or all papers or systems that use the
dataset?
The repository containing the scripts for repeated experiments will include links to any
and all papers using this dataset. For more information, see the appendix subsection
A.1.

(c) What (other) tasks could the dataset be used for?
The dataset can be used for representation learning through the co-occurrence of
offers within the same section, leading to a complementariness-based recommendation

155



system. It can also be used for learning to cluster a set of offers into a variable number
of sections, which is an implicit step in the main task of predicting the entire structure
of a catalogue through permutation learning (as it includes the section break markers).

(d) Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses?
It is important to remember that the provided catalogues represent the Danish market
between 2015-2019, and thus might not represent patterns that will hold in other
societies. This, however, has no bearing on demonstrating a machine learning model’s
ability to learn structure through joint clustering and permutation learning, which is the
intended use of the dataset.

(e) Are there tasks for which the dataset should not be used?
The dataset is not meant to be used as a representation of the market for any form of
trend prediction.

6. Distribution

(a) Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created?
The dataset will be made publicly available under the chosen license to any and all
parties. For more information see the appendix subsection A.1.

(b) How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
Does the dataset have a digital object identifier (DOI)?
The dataset is distributed through a dataset hosting service and has a DOI, for details
see the appendix subsection A.1.

(c) When will the dataset be distributed?
The dataset will be distributed by the time of the paper’s submission.

(d) Will the dataset be distributed under a copyright or other intellectual property
(IP) license, and/or under applicable terms of use (ToU)?
The dataset will be distributed under the Attribution-NonCommercial-ShareAlike
4.0 International license (CC BY-NC-SA 4.0). The dataset should not be used for
commercial purposes.

(e) Have any third parties imposed IP-based or other restrictions on the data associ-
ated with the instances?
No.

(f) Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances?
No.

7. Maintenance

(a) Who is supporting/hosting/maintaining the dataset?
The dataset is hosted by figshare, an open access repository where researchers can
preserve and share their research outputs, including figures, datasets, images and videos.
It is supported by Digital Science & Research Solutions Ltd.
It is maintained by the authors of this paper.

(b) How can the owner/curator/manager of the dataset be contacted (e.g., email ad-
dress)?
Via the emails provided in the contact information above the abstract, repeated here for
convenience: maju@itu.dk; leod@itu.dk.

(c) Is there an erratum?
There is currently no erratum, it will be added to both the main sharing link and the
github repository containing the code for repeated experiments should the need to
create an erratum occur.

(d) Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)?
If labeling errors are found, they will be corrected. The dataset may be expanded with
further instances, depending on the academic interest and number of downloads.
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(e) If the dataset relates to people, are there applicable limits on the retention of
the data associated with the instances (e.g., were individuals in question told that
their data would be retained for a fixed period of time and then deleted)?
The dataset does not relate to people.

(f) Will older versions of the dataset continue to be supported/hosted/maintained?
Yes, all previous versions of the dataset will continue to be available.

(g) If others want to extend/augment/build on/contribute to the dataset, is there a
mechanism for them to do so?
Others are encouraged to extend the dataset and can choose to either do so in coop-
eration with the authors of this paper after contacting them via the provided email
addresses or individually in accordance with the chosen license.
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Chapter 6

Article 3

Article details:

3. “Set Interdependence Transformer: Set-to-Sequence Neural

Networks for Permutation Learning and Structure Prediction”

Mateusz Jurewicz and Leon Derczynski

Proceedings of the 31st International Joint Conference on Artificial Intelligence,

IJCAI-ECAI 2022.

Context. The third published article focuses on experimental work on a number

of set-to-sequence tasks. The intent behind it was to highlight the importance and

ubiquity of tasks where input takes the form of a varying-cardinality set of elements

and the output is some form of order among those elements. Whilst the work does not

constitute a complete approach to the Catalog Problem, it did underline the impact of

set encoding methods - of which the titular Set Interdependence Transformer (SIT) is

an example. As one module of a larger proposed set-to-sequence architecture, SIT’s

performance also helped showcase the importance of being able to learn relational

rules dependent on pairwise and higher-order interactions.

Contributions. Within this IJCAI-ECAI publication, a slight adjustment to

the popular Set Transformer model is proposed, which is empirically shown to lend

itself well to tasks requiring the learning of interactions between input set elements

(as introduced in Chapter 3.2). The developed Set Interdependence Transformer is
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then included as the set encoding module within larger set-to-sequence architectures

and their performance is tested on a variety of challenges, ranging from the TSP,

through simple formal grammars to a sentence ordering dataset, synthetic catalogs

and PROCAT. Additionally, a minor ablation study is provided to test whether a

smaller number of SIT layers can outperform other set encoding methods paired

with the same permutation learning module, when tasked with predicting synthetic

catalogs dependent on interactions of an order higher than the number of those layers.

Recent Developments. Given the small amount of time that has passed since

this article was published, there isn’t a large number of new and relevant research that

builds on or provides a new perspective regarding the work presented below. However,

an interesting, GNN-based approach to encoding the relations among partial-view

point clouds in the context of multi-object manipulation for robotic arms has been

proposed by Huang et al. (2022), with the goal of empowering the robot to interact

with multiple objects at the same time. Whilst the application of their Relational

Dynamics GNN (RD-GNN) also shows good empirical results, similarly attributed

by the authors to the relational inductive bias of their network and latent space

dynamics, a theoretical investigation of the underlying reason for this performance

improvement was also left for future work.

6.1 Set Interdependence Transformer:

Set-to-Sequence Neural Networks for

Permutation Learning and Structure

Prediction

In this section, the third published article is included in unchanged form, starting on

the next page for ease of reading.
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Set Interdependence Transformer: Set-to-Sequence Neural Networks
for Permutation Learning and Structure Prediction

Mateusz Jurewicz1,2 and Leon Derczynski1
1 IT University of Copenhagen

2 Tjek A/S
{maju, leod}@itu.dk

Abstract
The task of learning to map an input set onto a
permuted sequence of its elements is challenging
for neural networks. Set-to-sequence problems
occur in natural language processing, computer
vision and structure prediction, where interactions
between elements of large sets define the optimal
output. Models must exhibit relational reasoning,
handle varying cardinalities and manage combina-
torial complexity. Previous attention-based meth-
ods require n layers of their set transformations to
explicitly represent n-th order relations. Our aim is
to enhance their ability to efficiently model higher-
order interactions through an additional interdepen-
dence component. We propose a novel neural set
encoding method called the Set Interdependence
Transformer1, capable of relating the set’s permuta-
tion invariant representation to its elements within
sets of any cardinality. We combine it with a per-
mutation learning module into a complete, 3-part
set-to-sequence model and demonstrate its state-of-
the-art performance on a number of tasks. These
range from combinatorial optimization problems,
through permutation learning challenges on both
synthetic and established NLP datasets for sentence
ordering, to a novel domain of product catalog
structure prediction. Additionally, the network’s
ability to generalize to unseen sequence lengths is
investigated and a comparative empirical analysis
of the existing methods’ ability to learn higher-
order interactions is provided.

1 Introduction
There is a wide range of challenges where the objective is to
find an optimal mapping from an unordered collection of ob-
jects to a permutation. This group of set-to-sequence tasks
covers combinatorial optimization and structure prediction
problems where exhaustive search is often not tractable, lend-
ing itself to neural network (NN) approaches.

Set-to-sequence challenges arise in many areas of applica-
tion. Examples include natural language processing, in the

1Paper accepted for publication in the IJCAI-22 proceedings

Figure 1: In a set-to-sequence task the initial set (X ) is passed to a
set encoder, which obtains per-element representations (Eπ) and a
permutation invariant representation (s) of the entire set. A permu-
tation decoder uses them to order the elements into a sequence (ŷ).

form of sentence and paragraph ordering [Wang and Wan,
2019; Pandey and Chowdary, 2020], text comprehension
[Li and Gao, 2020] and discourse coherence maximization
[Farag, 2021]; computer vision for relative attribute learn-
ing [Santa Cruz and Fernando, 2017] and rigid point cloud
registration [Yew and Lee, 2020]; reinforcement learning for
managing the combinatorial action space of an agent [Vinyals
et al., 2019]. For an overview, see Jurewicz and Derczynski
(2021b). We adapt our method to a novel application domain
in the form of predicting the structure of digital catalogs.

Set-to-sequence models can be thought of as consisting of
two distinct parts (see figure 1). Firstly, the set encoder ob-
tains representations of both the elements of a set individually
and of the set in its entirety. Secondly, a permutation learning
module uses these two representations to predict a reordered
sequence. Each stage presents unique challenges. Set-input
methods are required to handle inputs of any dimensional-
ity due to the examples being sets of varying cardinalities
[Lee and Lee, 2019]. Additionally, the learned representa-
tion of a given set of cardinality n must be identical for all
n! possible permutations of the vector that represents it. This
permutation invariance can be achieved through a variety of
symmetric functions, from simple summation [Zaheer et al.,
2017], through self-attention [Lee and Lee, 2019] to the out-
put of a bipartite matching algorithm [Skianis and Konstanti-
nos, 2020]. Solving challenging set-to-sequence problems re-
quires a degree of relational reasoning, thus these functions
benefit from being capable of encoding higher-order interac-
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tions between set elements [Huang et al., 2020].
Predicting a permutation is also a challenge by itself. One

of the main difficulties in dealing with combinatorial objects
is that the number of possible output sequences increases fac-
torially in the cardinality of the set. Additionally, the space of
all possible permutations is not smooth, preventing direct use
of gradient-based methods without a relaxation of the concept
[Diallo et al., 2020]. Finally, when the target is a complex
structure represented by a permutation, it can be difficult to
obtain evaluation and loss functions that are only sensitive to
meaningful alterations of this structure.

To address these challenges, we propose a novel set en-
coding method which, unlike its predecessors, jointly learns
the permutation invariant representation of the entire set and
the permutation equivariant representations of individual set
elements. Whilst methods that rely entirely on a pooled repre-
sentation of the set have been applied to set-to-sequence prob-
lems [Vinyals et al., 2016], their performance drops sharply
as the cardinality of the input set increases, compared to
methods that obtain both types of representations [Wang and
Wan, 2019; Yin et al., 2020]. To our knowledge, no other
NN set encoding method learns the representations of set ele-
ments and the entire set jointly through an adjusted attention
mechanism. Instead, they obtain the permutation equivariant
representations of elements and then pool them through var-
ious symmetric operations to derive the encoding of the set
proper. In this paper, we show empirically that transforming
them jointly is advantageous for the purposes of permutation
learning and structure prediction.

We propose a complete, 3-part neural network architecture
designed for performing the set-to-sequence mapping on in-
puts of any cardinality, consisting of an initial set encoder, an
interdependence encoder and a permutation module. We then
showcase its usefulness on a number of challenges, ranging
from toy problems such as the Travelling Salesman Problem,
through learning context-free and context-sensitive grammars
to robust tasks such as sentence ordering and the novel task
of catalog structure prediction. We also demonstrate our
model’s ability to generalize to unseen lengths and empiri-
cally prove its ability to learn higher-order interaction rules
on a number of easily customized, synthetic structure datasets
and via corresponding evaluation functions. All code, hyper-
parameters and datasets required for repeated experiments are
provided in the supplement.

Our main contributions are summarized as follows:

• A novel, fully differentiable set encoding method de-
signed specifically for permutation learning and struc-
ture prediction challenges, capable of learning higher-
order interactions within sets of any cardinality in a sin-
gle layer of the proposed transformations.

• A complete set-to-sequence model outperforming state-
of-the-art methods on established datasets and within the
novel application domain of catalog structure prediction.

• An expanded library for generating synthetic set-to-
sequence structure datasets. In addition, we provide
easy-to-use tools for obtaining detailed performance re-
ports through customizable metrics, which allow re-
searchers to measure and empirically confirm a model’s

relational reasoning capabilities.

2 Model
The goal is to transform an input set of any cardinality into
the permuted sequence of its elements. To do this, the pro-
posed set-to-sequence model consists of three core compo-
nents: (i) a basic set encoder, (ii) a novel interdependence
encoder and (iii) a permutation decoder. The initial encoder
uses a learned pooling function to obtain (a) the permutation
equivariant representations of individual set elements, and
subsequently (b) the permutation invariant representation of
the entire set. These two representations are then transformed
together in the interdependence encoder, such that higher or-
der interactions between both individual set elements and the
set in its entirety can be learned in a single step. Finally, the
permutation decoder sequentially selects the elements to form
the output sequence by using these two representation via an
enhanced pointer attention mechanism. An overview of our
complete interdependence architecture is shown in Figure 2.

From a formal standpoint, the model is given a set X of
any cardinality n, consisting of individual set elements repre-
sented by fixed-length vectors xi of dimensionality d, in the
form of a matrix Xπ arbitrarily ordered according to some
permutation π:

X = {x1, . . . ,xn} ∼ Xπ ∈ R n×d (1)

The task is then to sequentially select individual set ele-
mentsX in the target order, represented by a vector of indices
y ∈ N1×n referencing the original placement of set elements
in the Xπ matrix. This process continues until there are no
remaining candidate elements.

2.1 Basic Set Encoder
The initial encoder necessarily consists of learned function
fe for transforming set elements in a permutation equivariant
way, and learned function fs for pooling those element rep-
resentations (Eπ) into a permutation invariant embedding of
the entire set (s), such that:

fe(Xπ) = (eπ(1), . . . , eπ(n)) = Eπ (2)

∀π ∈ Π ((fs ◦ fe)(Xπ) = s) (3)

In our proposed model this basic set encoder takes the form
of a simplified Set Transformer [Lee and Lee, 2019], which
we chose for its ability to explicitly represent inter-item inter-
actions. We denote initial transformer-style attention toward
permutation equivariant element representations Eπ as:

Att(Q,K,V) = softmax(
QK⊤
√
dk

)V (4)

where Q, K, V are the projected query, key and value ma-
trices obtained from Xπ via weight matrices WQ, WK and
WV ;

√
dk is the standard transformer normalizing factor.

This operation is repeated in a multi-head fashion for each
of the m heads, whose outputs are concatenated and further
transformed via learned weight matrix WO, without posi-
tional encoding or dropout:

161



Figure 2: Three stages of the proposed set-to-sequence model. The Initial Set Encoder (left) obtains a permutation equivariant element
representation (Eπ) through transformer-style attention. It then learns the permutation invariant encoding (s) of the entire set via Pooling
by Multihead Attention. The Set Interdependence Transformer (middle) augments the per-element matrix with the set encoding into Sπ and
performs further self-attention transformations, allowing for higher order interactions being modelled between set-elements and the set in its
entirety. Finally, a Permutation Decoder (right) is used to sequentially select the next element in the output sequence until there are none left.

Hi = Att(XπW
Q
i ,XπW

K
i ,XπW

V
i ) (5)

Eπ = Concat(H1, . . . ,Hm)WO (6)

To obtain a permutation invariant representation (s) of the
set we apply simplified Pooling by Multihead Attention [Lee
and Lee, 2019], which performs an attention transformation
between a learned seed vector k ∈ R1×d as the query and Eπ

as the key and value for each of the m heads:

sj = Att(kjW
Q
j ,EπW

K
j ,EπW

V
j ) (7)

PMA(k,Eπ) = Concat(s1, . . . , sm)WO
s = s (8)

2.2 Set Interdependence Transformer
At this stage, we could rely on the transformations that lead
to Eπ to encode the dependencies between elements of X .
However, a single layer of such transformations can only ex-
plicitly capture pairwise relations, as it computes attention
between pairs of elements [Lee and Lee, 2019]. Thus it would
require up to n stacks to explicitly encode higher-order in-
teractions among an entire set of cardinality n. Our pro-
posed set encoder allows efficient capture of dependencies
between set elements and the set in its entirety through ad-
justed transformer-style attention. We refer to it as the Set
Interdependence Transformer, or SIT.

The SIT performs attention-based transformations between
both individual set elements and the permutation-invariant
representation of the set itself in the form of an augmented
matrix Sπ . The initial permutation invariant representation of
the entire set s is treated as an element of a new set:

Si
π = (Eπ| s) (9)

SITi(s,Eπ) = σ(
(Si

πW
Q
i ) (Si

πW
K
i )⊤√

ds
)Si

πW
V
i (10)

SITi(s,Eπ) = S′
π = (E′

π| s′) (11)
where ds is a scaling factor equal to the length of the permu-
tation invariant vector representing the entire set, σ is a soft-
max non-linear function and W matrices are learned param-
eters. The above operation can be repeated over any number
of heads as described under the inital basic encoder (subsec-
tion 2.1).

This method enables encoding of dependencies between
individual set elements and the set in its entirety. Even a
single SIT layer is capable of modelling higher-order inter-
actions. This is beneficial for tasks over large sets, such as
point cloud challenges, where the cardinality is prohibitively
high for pairwise transformations.

To obtain the separate set and set-element representations
required by a permutation module, we reverse the augmenta-
tion and retrieve the transformed s′ vector by its index. Note
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that the required permutation invariance of s′ is maintained
during the permutation equivariant SITi transformations.

2.3 Permutation Decoder
Finally, we use the E′

π and s′ representations in a permutation
decoder employing enhanced pointer-style attention [Yin et
al., 2020]. This takes the form of an LSTM-based pointer net-
work with two additional mechanisms for pairwise ordering
predictions towards improved global and local coherence of
the output sequence. Formally, we calculate the conditional
probability of a predicted order ŷ as:

pθ(ŷ | X ) =

n∏

i=1

pθ(ŷi | ŷ<i,E
′
π, s

′) (12)

pθ(ŷi | ŷ<i,X ) = softmax(v⊤tanh(W1h
d
i + W2Mi)) (13)

hd
i = LSTM(hd

i−1, e
′
i−1) , hd

0 = s′ (14)
where v, W1 and W2 are model parameters, n is the set’s
cardinality, tanh is the hyperbolic tangent nonlinearity, e′i−1
is the embedding of the set element selected at previous step
i− 1 and hd

i is the hidden state of the permutation module at
current step i. The first hidden state hd

0 is initialized from the
permutation invariant set representation s′. The Mi matrix
provides additional context consisting of two types of infor-
mation. The first is global orientation relating all remaining
unordered set elements to each other and the second is local
coherence between previously selected elements and remain-
ing candidates. This context is obtained through ”history”
and ”future” sub-modules from E′

π . The sub-modules make
pairwise ordering predictions in relation to each candidate el-
ement, which are then concatenated to form Mi. For specific
implementation details, see Yin et al. (2020).

During training, given a batch B of n examples of the form
(Xi,yi), we minimize the loss function:

L(θ) = − 1

n

∑

(X , y)∈B
(log pθ(y|X ) + λ Ls) (15)

where θ is the set of all model parameters and λ = 0.1 is a hy-
perparameter that balances the first term of the loss with Ls,
a cross-entropy loss of the future and history sub-modules.

3 Experiments
All datasets, hyperparameters and code are freely available
and described in detail in the linked supplementary material.
The provided code includes any and all data pre-processing
and generation steps, where applicable. Full requirements are
explicitly listed. Best performance is reported in bold, second
best is underlined. Reported results are averaged over 3 full
training runs, standard deviation is reported after the ± sign.

3.1 Setup
We compare all models on the planar symmetric Travel-
ling Salesman Problem (TSP) [Vinyals et al., 2015] and 3
types of context-free and context-sensitive grammars, as well
as the ROCStory sentence ordering dataset [Mostafazadeh

and Chambers, 2016] and the PROCAT product catalog
dataset [Jurewicz and Derczynski, 2021a], following pro-
vided train, test and validation splits. Additionally, we ex-
pand upon the synthetic structure dataset from PROCAT and
report performance per n-th order rule of interaction required.

We use Kendall’s Rank Correlation Coefficient (τ ) and Per-
fect Match Ratio (PMR) as primary metrics, scaled by a factor
of a hundred for readability, following convention [Wang and
Wan, 2019; Yin et al., 2020; Pandey and Chowdary, 2020].
For TSP we report average tour length (shorter is better) and
in both grammars and synthetic structure experiments the per-
centage of valid predictions per ruleset. For the representa-
tions of natural language entities in ROCStory and PROCAT
we use the concatenated and averaged output of the last 4 lay-
ers of the cased large version of BERT [Devlin et al., 2019],
frozen during training to isolate the effect of different set en-
coding methods on the permutation task performance. The
models’ exact layer dimensions are given in the supplement,
with the number of learnable parameters of each model vary-
ing by less than 5% per task. The proposed model consisted
of 3-5 layers of SIT transformations over 4 attention heads,
with the hidden size of 256. The AdamW [Loshchilov and
Hutter, 2017] optimizer was used with weight decay coef-
ficient 1e-2, learning rate (α) 1e-4, dropout rate of 0.1 and
batch size 32, for 50 epochs. All experiments were performed
on cloud-based GPU instances, with NVIDIA Quadro P6000
graphics cards (24 GB) and 8 CPU cores.

3.2 Baselines
Our proposed model is compared with state-of-the-art set en-
coders combined with the same permutation component:

• DeepSets: Zaheer et al. [2017] encodes set elements
independently and identically via a fully connected layer
and then sums them.

• Set Transformer: Lee et al. [2019] uses transformer-
style attention in a learned pooling by multihead atten-
tion function.

• AttSets: Yang et al. [2020] uses convolutional weighted
attention and sum pooling.

• RepSet: Skianis et al. [2020] obtains permutation in-
variance through bipartite graph matching.

and with several complete set-to-sequence models:

• Pointer Network: Vinyals et al. [2015] consists of an
RNN set encoder and basic pointer-style attention with-
out pairwise predictions.

• Read-Process-Write: Vinyals et al. [2016] obtains
permutation invariance via an adjusted LSTM network,
which performs a number of passes over the input set.

• ATTOrderNet: Vinyals et al. [2018] combines
transformer-style attention for set encoding with layer
normalization, average pooling and a basic pointer-style
permutation module.

• Enhanced PtrNet: Yin et al. [2020] introduces the
global and local context sub-modules, adding pairwise
judgments to the permutation mechanism.
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ROCStory PROCAT Synthetic |y| = 30

Method PMR Kendall’s τ PMR Kendall’s τ PMR Kendall’s τ

DeepSets (2017) 33.81 ± 4.55 62.41 ± 4.2 15.21 ± 2.69 35.15 ± 3.8 25.61 ± 1.90 40.94 ± 2.7
Set Transformer (2019) 41.94 ± 1.29 73.15 ± 1.9 21.03 ± 0.98 42.74 ± 2.6 30.23 ± 1.86 44.71 ± 2.9
AttSets (2020) 42.51 ± 1.45 74.81 ± 2.3 19.24 ± 1.30 38.44 ± 1.7 31.48 ± 2.04 46.20 ± 3.2
RepSet (2020) 42.47 ± 1.61 73.39 ± 1.7 22.72 ± 1.19 41.30 ± 2.5 34.84 ± 1.99 47.95 ± 3.4

PointerNet (2015) 28.73 ± 3.91 59.72 ± 6.2 02.90 ± 1.17 16.85 ± 3.4 17.33 ± 3.41 32.66 ± 3.1
Read-Process-Write (2016) 20.38 ± 7.22 51.78 ± 8.5 03.54 ± 1.06 21.11 ± 2.9 21.40 ± 2.07 36.28 ± 4.3
ATTOrderNet (2018) 41.14 ± 2.10 73.02 ± 2.0 17.33 ± 2.31 37.47 ± 3.2 28.02 ± 2.40 42.67 ± 3.4
Enhanced PointerNet+ (2020) 44.32 ± 1.25 76.43 ± 1.3 22.09 ± 1.57 42.53 ± 1.9 34.34 ± 1.39 48.14 ± 2.9

Set Interdep. Transformer 47.00 ± 0.89 79.86 ± 0.9 25.61 ± 1.81 46.41 ± 1.3 37.16 ± 1.01 52.03 ± 2.2

Table 1: Precise Match Ratio (PMR) and Kendall’s Rank Correlation Coefficient (τ ) results for ROCStory, PROCAT and the Synthetic task.

TSP cardinality

Method n = 10 n = 15* n = 20*

Held–Karp 2.97 3.87 4.42
Random 4.48 7.32 8.96

DeepSets 3.27 ± 0.12 4.37 ± 0.19 5.12 ± 0.14
SetTrans 3.00 ± 0.02 3.99 ± 0.05 4.55 ± 0.08
AttSets 3.06 ± 0.06 4.02 ± 0.13 4.64 ± 0.19
RepSet 3.03 ± 0.05 4.13 ± 0.04 4.59 ± 0.11

PtrNet 3.18 ± 0.26 4.85 ± 0.69 5.83 ± 0.85
RPW 3.67 ± 0.10 4.92 ± 0.04 4.82 ± 0.11
ATTOrdNet 3.10 ± 0.06 4.53 ± 0.15 5.63 ± 0.39
PtrNet+ 3.01 ± 0.04 3.92 ± 0.06 4.52 ± 0.09

SIT 2.98 ± 0.01 3.90 ± 0.03 4.46 ± 0.06

Table 2: Performance on the TSP in terms of average tour length.

3.3 Core Results
As shown in Table 2, our proposed model outperforms base-
lines on the TSP by predicting shorter average paths and with
smaller standard deviation. The improvement is more pro-
nounced as input set cardinalities increasingly differ from
those seen during training, unseen-cardinality sets being
marked with an asterisk. Specifically, the proposed model
predicts paths that are shorter than the second-best by 0.02
and 0.06 when n = 15 and n = 20 respectively, exhibiting
increased ability to generalize to unseen path node counts,
even for sets of twice the cardinality.

Overall results on ROCStory and PROCAT are shown in
Table 1. Our proposed model, SIT, outperforms the state-of-
the-art on both datasets. PMR scores are increased by 2.68
and 2.89, and τ by 3.43 and 3.67, over second-best perfor-
mances on the ROCStory and PROCAT datasets respectively.

We also compare all methods on synthetically-generated
structures of length 30, following the default n-th order rule-
sets. Compared to the best benchmark, our method offers an
improvement of 2.32 (PMR) and 1.89 (τ ). Table 3 presents
the average percentage of predicted sequences that adhered
to the rules underlying two context sensitive and one context

free grammar, in the form of the Dyck language [Yu et al.,
2019] consisting of n ∈ [2, 100] pairs of {} and (). The sim-
plest grammar (anbncn, n sampled uniformly from [1..100])
was able to be fully learned by most models using the en-
hanced pointer network as their permutation module, our pro-
posed method among them. With regards to the more chal-
lenging anbkcnk context-sensitive grammar (n and k sampled
uniformly from [1..25]) our method outperformed the second
best by 1.24 % and by 1.56 % in the case of the Dyck lan-
guage. Performance in terms of learning higher-order inter-
action rulesets is discussed in Section 3.4.

The main improvement of the proposed model architecture
stems from the ability to relate the input elements to the set in
its entirety, supplementing its capacity to encode higher-order
interactions in the set representation, from which the first hid-
den state of the permutation decoder is initialized. Compared
with the baseline set encoders and full set-to-sequence mod-
els, the combination of the SIT set encoder and the enhanced
pointer network consistently outperforms on a plethora of
tasks where the target permutation depends on the input set’s
composition. Additionally, in order to explicitly confirm the
proposed model’s ability to learn higher-than-pairwise inter-
actions between set elements in a single layer of SIT trans-
formation, we designed a comparative experiment on the ex-
panded synthetic structure prediction task. Results are pre-
sented in Table 4 and discussed in the next section.

3.4 Relational Reasoning Study
To empirically compare a model’s capacity to learn n-th or-
der interactions between set elements, we expanded the syn-
thetic structure library provided by Jurewicz and Derczynski
(2021a). This task requires ordering a set of tokens into a
target structure, defined by customizable rulesets which de-
pend on n-th order relations between input set elements. Each
benchmark model consisted of 5 stacked layers of its respec-
tive attention transformations (except the Set Transformer,
which was tested with both 4 and 5 layers). The hypothesis is
that even with learning only pairwise interactions per-layer,
benchmark models should be able to learn the highest-order
ruleset (5th). By comparison, the tested versions of our pro-
posed set-to-sequence model had 2, 3 and 4 attention-based
encoding layers, requiring them to learn higher-order inter-
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Formal Grammars

Method anbncn anbkcnk Dyck

DeepSets 97.17 ± 2.9 94.52 ± 2.4 79.84 ± 2.3
SetTrans 100.0 ± 0.0 96.62 ± 0.8 92.16 ± 1.5
AttSets 98.24 ± 1.3 96.12 ± 1.1 92.31 ± 1.2
RepSet 100.0 ± 0.0 97.64 ± 0.9 93.22 ± 1.4

PtrNet 79.31 ± 5.3 75.85 ± 4.7 58.85 ± 6.7
RPW 86.41 ± 1.5 81.74 ± 1.2 61.13 ± 5.3
ATTOrdNet 97.75 ± 1.1 94.17 ± 1.0 84.31 ± 3.8
PtrNet+ 100.0 ± 0.0 96.82 ± 0.7 93.51 ± 1.2

SIT 100.0 ± 0.0 98.88 ± 0.6 95.07 ± 1.0

Table 3: Results for 2 context-sensitive and 1 context-free grammar
(the Dyck language). Scores are between 0-100, reflecting what pro-
portion of predicted sequences was grammatical.

n-th Order Relation Ruleset

Method n = 3 n = 4 n = 5

DeepSets 53.37 ± 6.1 40.12 ± 4.0 21.13 ± 0.2
SetTrans (4) 92.41 ± 1.6 92.90 ± 1.4 91.74 ± 1.7
SetTrans (5) 94.66 ± 1.9 93.38 ± 1.3 92.93 ± 1.5
AttSets 93.84 ± 2.8 92.93 ± 1.1 86.44 ± 1.3
RepSet 91.29 ± 3.4 90.84 ± 2.4 89.73 ± 2.9

PtrNet 41.26 ± 5.3 31.96 ± 4.8 15.23 ± 4.2
RPW 45.11 ± 2.0 36.31 ± 1.6 16.12 ± 2.5
ATTOrdNet 82.31 ± 4.4 67.07 ± 2.0 0.12 ± 1.4
PtrNet+ 89.58 ± 3.9 87.22 ± 3.2 86.94 ± 2.8

SIT (2 layers) 93.83 ± 3.6 89.01 ± 2.6 86.79 ± 1.9
SIT (3 layers) 98.73 ± 0.8 93.44 ± 2.3 92.72 ± 1.8
SIT (4 layers) 98.48 ± 1.2 97.52 ± 0.9 96.10 ± 1.6

Table 4: Synthetic structure prediction scores per ruleset type, split
by order of interaction required. On a scale of 0-100, reflecting the
proportion of valid predicted structures with regards to each ruleset.

actions in a single SIT layer. Further details are given in the
supplementary material.

As shown in Table 4, the 3-layer version of the proposed
model has the highest score on the 3rd-order ruleset by a mar-
gin of 4.07. However, even the 2-layer model outperforms
all but two benchmark methods, each consisting of 5 stacked
layers. On the 4th-order ruleset the best result is obtained
through the proposed model’s 4-layer version; second-best
performance is attained by the 3-layer model, showing its
ability to learn higher-than-pairwise interactions in a single
SIT layer. Similarly, on the 5th-order ruleset (n = 5 in the
table) the 4-layer model outperforms the best benchmark by
3.07 percentage points, with a 5-layer Set Transformer fol-
lowed by the same permutation component as our proposed
set-to-sequence model achieving second best performance.
As an ablation study, we include results for a 4-layer Set
Transformer, the only difference between it and our 4-layer
set-to-sequence model being the SIT matrix augmentation.
Its presence accounts for a 4.36 performance increase.

4 Related Work
The earliest neural set-to-sequence model was proposed by
Hopfield and Tank (1985). It introduced a constrained ver-
sion of the set-to-sequence problem, in which the input set
must be of a fixed cardinality. However, sets of varying cardi-
nality require different neural architectures, making it limited
in application. Kernels between sets have also been proposed
to allow kernel methods, such as Support Vector Machines, to
tackle set-input problems [Lyu, 2005]. These require a two-
step approach where representation learning is separate.

Set-input NN methods, such as DeepSets [Zaheer et al.,
2017], obtain a permutation equivariant representation of the
input set by encoding each element in an identical and inde-
pendent way and summing them into a permutation invari-
ant representation. The main limitation is an inability to ex-
plicitly model higher order interactions, which are lost during
pooling. This is addressed by the Set Transformer [Lee and
Lee, 2019], using self-attention; the AttSets [Yang and Wang,
2020], though weighted pooling with learned, feature-specific
weights; and RepSet [Skianis and Konstantinos, 2020], by
solving a series of network flow problems.

Complete set-to-sequence NN models include the Pointer
Network [Vinyals et al., 2015], later improved by its authors
to obtain a permutation invariant representation of the set
[Vinyals et al., 2016], ATTOrderNet [Cui et al., 2018] and
the Enhanced Pointer Network, which requires the model to
continuously make pairwise order predictions, resulting in in-
creased sequence coherence [Yin et al., 2020]. There also ex-
ists a plethora of other NN order prediction methods, ranging
from listwise ranking approaches [Ai et al., 2018] in the field
of information retrieval (which, however, presume an exis-
tence of a query for which the relevant order is predicted), to
permutation matrix approaches [Zhang et al., 2019], which
do not handle sets of varying cardinalities. Finally, reinforce-
ment learning has also been applied to combinatorial opti-
mization problems in conjunction with pointer-based atten-
tion [Kool et al., 2018]. However, many interesting tasks,
such as sentence ordering and complex structure prediction,
do not provide the kind of fine-grained signal ideally required
by these methods.

5 Conclusion
In this paper, we propose a novel set encoding method for per-
mutation learning and structure prediction. The Set Interde-
pendence Transformer (SIT) is capable of effectively learning
higher-order interactions between input set elements, which
is crucial for tasks requiring a degree of relational reasoning
over large sets of varying cardinality. Our method can take
input sets of any size and generalizes well to unseen lengths
of the target output sequence. It is easily modularized and can
be combined with an attention-based permutation decoder to
form a complete set-to-sequence model. Experiments show
that this architecture achieves state-of-the-art results on com-
binatorial optimization challenges, on NLP tasks such as sen-
tence ordering, and in the novel domain of complex structure
prediction in the context of product catalogs.
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1 Introduction
This document constitutes the first of the two main supple-
mentary sources for the paper. It contains complete informa-
tion regarding each of the presented experimental results as
well as a more detailed description of the synthetic structures
dataset and its corresponding evaluation functions.

The other source of information is the code base enabling
other researchers to reproduce the results. The code also con-
tains full configuration files specifying the entirety of model
architectures, layer dimensions and training hyperparameters.
Full requirements regarding utilized libraries are provided to
make it easier to recreate the original software environment.
Hardware information can be found in the main paper. The
reported Perfect Match Ratio (PMR) and Kendall’s Rank Cor-
relation Coefficient (τ ) are scaled by a factor of a 100 for
increased readability, following convention from Cui et al.
(2018) and Yin et al. (2020).

2 Experiments
2.1 Travelling Salesman Problem
TSP is an NP-hard problem, which arises in many areas of
theoretical computer science. Solutions to this problem com-
prise algorithms that find usage in DNA sequencing and mi-
crochip design [Vinyals et al., 2015]. In this specific set-
ting, the task is to take as input a set of n 2-dimensional
points X ∼ X ∈ Rn×2, represented by their coordinates
on a Euclidean plane, and output their predicted permutation
y′
π ∈ Nn such that the lines drawn between these points in

the predicted order form the shortest possible circuit, exem-
plified by the target permutation yπ . Point coordinates are
sampled uniformly from the range of [0, 1].

The proposed set-to-sequence model is compared with
a number of joint set encoding and permutation learning
methods, random solutions that consist of valid paths with-
out repetitions and with the paths obtained via the Bell-
man–Held–Karp algorithm [Hansen and Krarup, 1974] as the
target on which the models were trained. Three datasets were
generated, each with a different cardinality n ∈ (10, 15, 20)
of the input sets of points. Models were only trained on the
dataset consisting of sets of 10 elements, but their perfor-
mance was also tested on the other cardinalities to gauge the
ability to generalize to unseen lengths. The n = 10 train-
ing dataset consisted of 20K examples, the validation set of

TSP cardinality

Method n = 10 n = 15* n = 20*

Held–Karp 2.97 3.87 4.42
Random 4.48 7.32 8.96

DeepSets 3.27 ± 0.12 4.37 ± 0.19 5.12 ± 0.14
SetTrans 3.00 ± 0.02 3.99 ± 0.05 4.55 ± 0.08
AttSets 3.06 ± 0.06 4.02 ± 0.13 4.64 ± 0.19
RepSet 3.03 ± 0.05 4.13 ± 0.04 4.59 ± 0.11

PtrNet 3.18 ± 0.26 4.85 ± 0.69 5.83 ± 0.85
RPW 3.67 ± 0.10 4.92 ± 0.04 4.82 ± 0.11
ATTOrdNet 3.10 ± 0.06 4.53 ± 0.15 5.63 ± 0.39
PtrNet+ 3.01 ± 0.04 3.92 ± 0.06 4.52 ± 0.09

Ours 2.98 ± 0.01 3.90 ± 0.03 4.46 ± 0.06

Table 1: Performance on the TSP in terms of average tour length.

5K and each test set, for all 3 cardinalities, consisted of 3K
examples.

Each tested model had approximately 5 million train-
able parameters, corresponding dimensions of hidden layer
weights and number of layers. For specific details we refer
the reader to the provided code and configuration files. The
proposed model consisted of 3 layers of SIT transformations
over 4 attention heads. The AdamW [Loshchilov and Hut-
ter, 2017] optimizer was used in all cases, with weight decay
coefficient 1e-2, learning rate (α) 1e-4, dropout rate of 0.1
and batch size 32, for 50 epochs. The reported results are
averaged over full training runs with reported standard devi-
ation. In the case of TSP the only metric used is the average
predicted tour length over the entire test set for each cardinal-
ity. As shown in table 1, our proposed model outperforms the
baselines by predicting shorter average paths with lower stan-
dard deviation, the difference becoming more pronounced the
more the input set cardinality differed from the ones seen dur-
ing training. Specifically, the proposed model predicts paths
that are shorter by 0.02 and 0.06 when n = 15 and n = 20
respectively, exhibiting increased ability to generalize to un-
seen lengths.

2.2 ROCStory
ROCStory is a popular sentence ordering dataset consisting
of 98,162 common-sense stories with 50 words per story
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ROCStory PROCAT Synthetic |y| = 30

Method PMR Kendall’s τ PMR Kendall’s τ PMR Kendall’s τ

DeepSets (2017) 33.81 ± 4.55 62.41 ± 4.2 15.21 ± 2.69 35.15 ± 3.8 25.61 ± 1.90 40.94 ± 2.7
Set Transformer (2019) 41.94 ± 1.29 73.15 ± 1.9 21.03 ± 0.98 42.74 ± 2.6 30.23 ± 1.86 44.71 ± 2.9
AttSets (2020) 42.51 ± 1.45 74.81 ± 2.3 19.24 ± 1.30 38.44 ± 1.7 31.48 ± 2.04 46.20 ± 3.2
RepSet (2020) 42.47 ± 1.61 73.39 ± 1.7 22.72 ± 1.19 41.30 ± 2.5 34.84 ± 1.99 47.95 ± 3.4

PointerNet (2015) 28.73 ± 3.91 59.72 ± 6.2 02.90 ± 1.17 16.85 ± 3.4 17.33 ± 3.41 32.66 ± 3.1
Read-Process-Write (2016) 20.38 ± 7.22 51.78 ± 8.5 03.54 ± 1.06 21.11 ± 2.9 21.40 ± 2.07 36.28 ± 4.3
ATTOrderNet (2018) 41.14 ± 2.10 73.02 ± 2.0 17.33 ± 2.31 37.47 ± 3.2 28.02 ± 2.40 42.67 ± 3.4
Enhanced PointerNet+ (2020) 44.32 ± 1.25 76.43 ± 1.3 22.09 ± 1.57 42.53 ± 1.9 34.34 ± 1.39 48.14 ± 2.9

Ours (2021) 47.00 ± 0.89 79.86 ± 0.9 25.61 ± 1.81 46.41 ± 1.3 37.16 ± 1.01 52.03 ± 2.2

Table 2: Precise Match Ratio (PMR) and Kendall’s Rank Correlation Coefficient (τ ) results for ROCStory, PROCAT and the Synthetic task.

on average [Mostafazadeh and Chambers, 2016], publicly
available at the following link: https://cs.rochester.edu/nlp/
rocstories.

Each story contains exactly 5 sentences. Following com-
mon practice established by Wang and Wan (2019) and Yin et
al. (2020), the provided dataset split is used to get the train-
ing, testing and validation datasets of 78K, 9.8K and 9.8K
stories per set. The input is a set of five sentences in random
order π, in English, with the canonical order y provided as the
learning target. In our experiment, we use the concatenated
and averaged output of the last 4 layers of the cased large
version of BERT [Devlin et al., 2019] to obtain fixed-length
vector representations of each sentence. The language model
is frozen during training to isolate the effect of different set
encoding methods on the permutation task performance.

Each tested model had approximately 7 million train-
able parameters, corresponding dimensions of hidden layer
weights and number of layers. For specific details we re-
fer the reader to the provided code and configuration files.
The proposed model consisted of 5 layers of SIT transfor-
mations over 4 attention heads. The AdamW [Loshchilov
and Hutter, 2017] optimizer was used, with weight decay
coefficient 1e-2, learning rate (α) 1e-4, dropout rate of 0.1
and batch size 32, for 50 epochs. The reported results
are averaged over 3 full training runs with reported stan-
dard deviation. The performance is reported in terms of
the Perfect Match Ratio and the Kendall’s τ Rank Corre-
lation Coefficient, both of which are frequently used met-
rics for the sentence ordering challenge [Cui et al., 2018;
Wang and Wan, 2019; Yin et al., 2020]. The overall results
on the two main ROCStory and PROCAT datasets are shown
in table 2. Our proposed model outperforms the state-of-the-
art on both datasets. The PMR scores are increased by 2.68
and 2.89 and the τ by 3.43 and 3.67 over second best perfor-
mances on the ROCStory and PROCAT datasets respectively.

2.3 PROCAT
PROCAT is a product catalog structure dataset consisting of
over 1.5 million product offers composed into over 10,000
human-designed catalogs. It contains relative visual promi-
nence information and the exact split of offers into comple-
mentary sections, which are then ordered into a full catalog

[Jurewicz and Derczynski, 2021]. It is publicly available
at the following link: https://doi.org/10.6084/m9.figshare.
14709507.

Much like ROCStory, it lends itself to set-to-sequence
challenges. A permutation learning objective is formed by
the original order of offers and sections within a catalog.
Each section can consist of a variable number of offers and
each catalog of a variable number of sections, thus requir-
ing greater flexibility than ROCStory. The input is formed by
the text features of individual offers and their random order
(along with section break markers) in the matrix representing
the input set. The target is their actual order in the origi-
nal catalog, in the proper section split defined by the section
break markers. In our experiment, we used the concatenated
and averaged output of the last 4 layers of the cased large ver-
sion of BERT [Devlin et al., 2019], publicly available under
this link, to obtain fixed-length vector representations of each
offer. The language model is frozen during training to isolate
the effect of different set encoding methods on the permu-
tation task performance. The split into training and test sets
follows the one provided by the authors of the dataset (80/20).

Each tested model had approximately 7 million train-
able parameters, corresponding dimensions of hidden layer
weights and number of layers. For specific details we refer
the reader to the provided code and configuration files. The
proposed model consisted of 5 layers of SIT transformations
over 4 attention heads. The AdamW [Loshchilov and Hutter,
2017] optimizer was used, with weight decay coefficient 1e-
2, learning rate (α) 1e-4, dropout rate of 0.1 and batch size
32, for 50 epochs. The reported results are averaged over
3 full training runs with reported standard deviation. The
performance is reported in terms of the Perfect Match Ra-
tio and the Kendall’s τ Rank Correlation Coefficient, both
of which are frequently used metrics for permutation learn-
ing challenges [Cui et al., 2018; Wang and Wan, 2019;
Yin et al., 2020]. The overall results are shown jointly in
table 2. The proposed model outperforms the state-of-the-art
on the PROCAT dataset. The PMR score is increased by 2.89
and the τ by 3.67 over second-best tested performance.
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2.4 Formal Grammars
Formal grammars are a well-studied concept from the field of
formal language theory, lending itself to the set-to-sequence
framing as a machine learning task [Nakamura and Imada,
2011]. A grammar describes how to form strings from a lan-
guage’s alphabet that are valid according to this language’s
syntax. In our experiments we tackle two context-sensitive
and one context-free grammar, as originally categorized by
Chomsky (1956). The task is to take a set of terminal symbols
that can be composed into a grammatical string, or in other
words ordered into their original index sequence y which was
shuffled to obtain the randomly ordered input set matrix Xπ .

We generate data from the first grammar, anbncn, by sam-
pling n uniformly from [1,100]. For the second grammar,
anbkcnk, both n and k are sampled uniformly from [1,25],
with the maximum sequence length being 675. For the Van
Dyck we only form sequences consisting of 4 terminal sym-
bols:’{’, ’}’, ’(’ and ’)’, of random length sampled uniformly
from [4,50]. The Van Dyck language requires that each pair
of parenthesis and square brackets is properly closed. Each
training set consisted of 5K randomly shuffled arrays repre-
senting Xπ , each test and validation set consisted of 1K ex-
amples.

Each tested model had approximately 5 million train-
able parameters, corresponding dimensions of hidden layer
weights and number of layers. For specific details we re-
fer the reader to the provided code and configuration files.
The progressive masking is removed from the permutation
modules for this task. The proposed model consisted of 3
layers of SIT transformations over 4 attention heads. The
AdamW [Loshchilov and Hutter, 2017] optimizer was used,
with weight decay coefficient 1e-2, learning rate (α) 1e-4,
dropout rate of 0.1 and batch size 32, for 50 epochs. The
reported results are averaged over 3 full training runs with
reported standard deviation. The performance is reported in
terms of the percentage of predicted grammatical sequences.

In table 3 we present the average percentage of predicted
sequences that adhered to the rules underlying two context
sensitive grammars and one context free grammar, in the form
of the Van Dyck language. The simplest grammar (anbncn)
was able to be fully learned by most models utilizing the en-
hanced pointer network as their permutation module, our pro-
posed method among them. With regards to the more chal-
lenging anbkcnk context-sensitive grammar our method out-
performed the second best by 1.24 percentage points and by
1.56 in the case of the Van Dyck language.

2.5 Synthetic Structures
The synthetic structure datasets are generated via an ex-
panded version of the library provided by Jurewicz and Der-
czynski (2021), which is publicly available under the follow-
ing link: https://github.com/mateuszjurewicz/procat.

Each 1-dimensional structure is generated through a set of
customizable rulesets, which define how the atomic tokens
that comprise each structure can be ordered. In the reported
experiments we generate structures consisting of 30 instances
of the 5 atomic token types, represented by five colours: blue,
yellow, red, green and purple. And additional token type rep-
resents section breaks.

Grammars % valid

Method anbncn anbkcnk Van Dyck

DeepSets 97.17 ± 2.9 94.52 ± 2.4 79.84 ± 2.3
SetTrans 100.0 ± 0.0 96.62 ± 0.8 92.16 ± 1.5
AttSets 98.24 ± 1.3 96.12 ± 1.1 92.31 ± 1.2
RepSet 100.0 ± 0.0 97.64 ± 0.9 93.22 ± 1.4

PtrNet 79.31 ± 5.3 75.85 ± 4.7 58.85 ± 6.7
RPW 86.41 ± 1.5 81.74 ± 1.2 61.13 ± 5.3
ATTOrdNet 97.75 ± 1.1 94.17 ± 1.0 84.31 ± 3.8
PtrNet+ 100.0 ± 0.0 96.82 ± 0.7 93.51 ± 1.2

Ours 100.0 ± 0.0 98.88 ± 0.6 95.07 ± 1.0

Table 3: Results for 2 context-sensitive and 1 context-free grammar,
the Van Dyck language, consisting of {} and () pairs. On a scale of
0-100, reflecting the proportion of predicted grammatical sequences.

n-th Order Relation Ruleset

Method n = 3 n = 4 n = 5

DeepSets 53.37 ± 6.1 40.12 ± 4.0 21.13 ± 0.2
SetTrans (4) 92.41 ± 1.6 92.90 ± 1.4 91.74 ± 1.7
SetTrans (5) 94.66 ± 1.9 93.38 ± 1.3 92.93 ± 1.5
AttSets 93.84 ± 2.8 92.93 ± 1.1 86.44 ± 1.3
RepSet 91.29 ± 3.4 90.84 ± 2.4 89.73 ± 2.9

PtrNet 41.26 ± 5.3 31.96 ± 4.8 15.23 ± 4.2
RPW 45.11 ± 2.0 36.31 ± 1.6 16.12 ± 2.5
ATTOrdNet 82.31 ± 4.4 67.07 ± 2.0 0.12 ± 1.4
PtrNet+ 89.58 ± 3.9 87.22 ± 3.2 86.94 ± 2.8

Ours (2 layers) 93.83 ± 3.6 89.01 ± 2.6 86.79 ± 1.9
Ours (3 layers) 98.73 ± 0.8 93.44 ± 2.3 92.72 ± 1.8
Ours (4 layers) 98.48 ± 1.2 97.52 ± 0.9 96.10 ± 1.6

Table 4: Synthetic structure prediction scores per ruleset type, split
by order of interaction required. On a scale of 0-100, reflecting the
proportion of valid predicted structures with regards to each ruleset.

Rulesets define the valid composition of sections and their
order. An example of a valid section composition might be
one that consists only of 3 blue, yellow or red tokens. An
example of a valid section order might be always starting the
sequential structure with an all-red section or always ending
it with an all-blue one. These are intended to represent a more
abstract simplification of the rules that govern actual product
catalog structures.

Which ruleset should be applied when predicting a syn-
thetic structure depends on higher order relational interac-
tions between the elements of the input set of tokens. A pair-
wise interaction rule would trigger if the input set contains
a blue and a yellow token. A third-order interaction rule, by
comparison, would have to depend on the presence or absence
of 3 atomic token types and so forth. A real life example of
a 3rd order interaction between product offers comes in the
form of an input set including beef and French cheese offers.
With just the pairwise interaction between the two, they don’t
necessarily form a good pairing to go together in the same
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Figure 1: Synthetic structures and n-th order interaction rulesets. Rulesets (left) represent higher-order interactions that determine the validity
of an output structure. Which ruleset is applicable is dependent on the input set composition (middle). For example, if a red, yellow and
blue token are present in the input set, the valid output structure (right) has to start with an all-red section, end on an all-blue section and can
only combine red and yellow tokens together in a 50/50 split. Inclusion of a 4th special token (second row) introduces a 4th-order interaction
which changes the underlying ruleset and, in consequence, the target output structure.

section in a complementary way. However, if an offer for red
wine is also present in the input set, the 3rd order interaction
between these three products ties them together into a popular
catalog section.

Given a predicted structure, based on a specific input set,
we can easily check whether it is valid in relation to the ap-
propriate ruleset. Thus we can report what percentage of
predicted structures were valid as per rulesets requiring the
model to learn n-th order interactions. This allows us to ap-
proximate a model’s relational reasoning capability. For a
visual explanation see figure 1.

Reported results are split between tables 2 and 4. In the
former, we compare the PMR and τ on a synthetically gen-
erated structures dataset of length 30, following the default
rulesets, where our model outperformed the best benchmarks
by 2.32 and 1.89 respectively. In all reported cases the train-
ing dataset consists of 10K examples generated via the default
rulesets including 3rd, 4th and 5th order interactions, and the
test dataset consists of 5K examples.

The results presented in table 4 require further explana-
tion. In order to assess the proposed model’s ability to learn
n-th order relational rules without performing n pairwise at-
tention operations through a stack of n attention layers, we
construct versions of our set-to-sequence model with < n set
encoding layers. Specifically, the tested versions of the pro-
posed architecture consist of a single permutation equivariant,

transformer-style layer for obtaining element representations
followed by m SIT layers. Here, m ∈ (1, . . . , n − 2) so that
the proposed models always consists of at least one less layers
(m+1) than the number (n) required assuming only pairwise
interactions per layer.

For specific dimensions of hidden layers we refer the
reader to the provided code and configuration files. The pro-
posed models consisted of m layers of SIT transformations
over 4 attention heads. The AdamW [Loshchilov and Hutter,
2017] optimizer was used, with weight decay coefficient 1e-
2, learning rate (α) 1e-4, dropout rate of 0.1 and batch size
32, for 50 epochs. The reported results are averaged over 3
full training runs with reported standard deviation.

Table 4 shows the percentage of predicted synthetic struc-
tures that were valid under the relevant ruleset. Each column
refers to rulesets depending on n-th order relational interac-
tions, where n ∈ (3, 4, 5). The baselines in this case are
specifically versions of the original models consisting of ex-
actly 5 layers (with one exception) responsible for pairwise
attention transformations. These are contrasted with three
versions of the proposed model, with 1, 2 or 3 layers of the
proposed SIT set encoder, plus 1 layer of the initial permu-
tation equivariant attention, for a total of 2, 3 and 4 layers
(see bottom rows of table 4). Thus the proposed models are
always at a disadvantage in terms of the number of stacked at-
tention operations, requiring the SIT encoder to learn higher
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than pairwise interactions.
As seen in table 4, the 3-layer version of the proposed

model has the highest score on the 3rd order ruleset by a
margin of 4.07 compared to the best benchmark. However,
even the 2-layer version outperforms all but two benchmark
methods, each consisting of 5 stacked layers. On the 4th or-
der ruleset the best result is obtained through the proposed
model’s 4-layer version, but the second best performance is
attained by the 3-layer version, showcasing its ability to learn
higher-than-pairwise interactions in a single SIT layer. Simi-
larly on the 5th order ruleset (n = 5 in the table) the 4-layer
version outperforms the best benchmark by 3.07 percentage
points, with a 5-layer Set Transformer followed by the same
permutation module as our proposed set-to-sequence model
achieving second best performance. As an ablation study, we
additionally include results for a 4-layer version of the Set
Transformer (4), where the only difference between our 4-
layer set-to-sequence model is the removal of the SIT matrix
augmentation. Its presence accounts for a 4.36 performance
increase.
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Chapter 7

Article 4

Article details:

4. “Clustering and Ordering Variable-Sized Sets: The Catalog Problem”

Mateusz Jurewicz and Leon Derczynski

Under review as a conference paper in the Proceedings of the 11th International

Conference on Learning Representations, ICLR 2023.

Context. At the time of writing of the fourth article, significant progress was

becoming apparent in the field of supervised neural clustering. Models such as Deep

Amortized Clustering [21], Neural Clustering Process [20] and the Attentive Cluster-

ing Process [22] were being applied to synthetic tasks, such as clustering mixtures

of 2D Gaussians, and real-world challenges like graph community detection. This

aligned very well with the remaining aspects of the Catalog Problem that were chal-

lenging to accurately address with set-to-sequence methods and their modifications,

two of which are proposed and tested in this article. Namely, these aspects revolved

around avoiding the prediction of in-section order and gaining the ability to output

a varying, input-dependent number of clusters. Both of these were addressed by

the aforementioned clustering methods, which appeared to lack only the ability to

order clusters, present in set-to-sequence methods. A natural step was to combine

and further improve upon them, based on their limitations that became apparent in

experiments, particularly in relation to learning cluster-level cardinality constraints.

172



Contributions. This paper proposed the full Neural Ordered Clusters (NOC)

neural architecture, capable of taking input sets of varying cardinality and predicting

an input-dependent, ordered, partitional clustering in a supervised manner. NOC

combines powerful neural clustering techniques, further enhanced through the addi-

tion of the Set Interdependence Transformer. SIT is utilized to obtain fixed-length

vector representations of the input set, each individual cluster and all predicted clus-

ters at various stages of the NOC architecture, such that they encode higher-order

interactions. An additional step is added to the clustering stage, where a cardinality

threshold of the current cluster is predicted and used to adjust the initial cluster

assignments, enabling NOC to predict clusters that abide by the compositional rules

explicitly present in the synthetic catalogs and implicitly in the PROCAT dataset.

The article also introduces and defines the Catalog Problem and tests NOC’s perfor-

mance on datasets that exemplify it, showing improved performance in comparison

to a wide array of baselines.

Recent Developments. Given that the article is still under review at the time

of writing, there has not been ample time for new methods to emerge. However,

between the submission of this article and the submission of this thesis an interesting

model has been proposed by Liu et al. (2022). Introduced under the name of Deep

amortized Relational Model (DaRM), this technique uses a generative process to

exploit both pairwise and higher-order interactions between input elements in both

inter-group (structural) and intra-group (compositional) relations. Involving both

GNNs and generation of cluster prototypes (through selection of pioneer nodes), this

technique represents the cutting edge in community detection and resembles certain

aspects of NOC. DaRM’s inherently hierarchical nature could possibly lend itself to

being extended to challenges like the Catalog Problem in future work.

7.1 Clustering and Ordering Variable-Sized Sets:

The Catalog Problem
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CLUSTERING AND ORDERING VARIABLE-SIZED SETS:
THE CATALOG PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Prediction of a varying number of ordered clusters from sets of any cardinality
is a challenging task for neural networks, combining elements of set representa-
tion, clustering and learning to order. This task arises in many diverse areas, rang-
ing from medical triage and early discharge, through machine part management
and multi-channel signal analysis for petroleum exploration to product catalog
structure prediction. This paper focuses on the latter, which exemplifies a number
of challenges inherent to adaptive ordered clustering, referred to further as the
eponymous Catalog Problem. These include learning variable cluster constraints,
exhibiting relational reasoning and managing combinatorial complexity. Despite
progress in both neural clustering and set-to-sequence methods, no joint, fully
differentiable model exists to-date. We develop such a modular architecture,
referred to further as Neural Ordered Clusters (NOC), enhance it with a specific
mechanism for learning cluster-level cardinality constraints, and provide a robust
comparison of its performance in relation to alternative models. We test our
method on three datasets, including synthetic catalog structures and PROCAT,
a dataset of real-world catalogs consisting of over 1.5 M products, achieving
state-of-the-art results on a new, more challenging formulation of the underlying
problem, which has not been addressed before. Additionally, we examine the
network’s ability to learn higher-order interactions and investigate its capacity to
learn both compositional and structural rulesets.

1 INTRODUCTION

The ability to group members of a set and order these groups is key to many important real-world
decision-making processes. It finds applications ranging from supply chain management (Wenzel
et al., 2019) to prioritization in medical triage (Miles et al., 2020; Buchard et al., 2020). Other appli-
cation domains include petroleum exploration (Rabiller et al., 2010), business process analytics (Le
et al., 2014), parallelization and machine part management (Bakkelund, 2022) and product catalog
structuring (Jurewicz & Derczynski, 2022), where the goal is to take a set of products and work out
how to group them together and order these groups to form a coherent product catalog. We term this
problem of simultaneously grouping and ordering a set of items the Catalog Problem.

This paper defines the Catalog Problem and presents an investigation into neural network approaches
to it. To this end we introduce a fully-differentiable, deep learning (DL) model architecture that
addresses the Catalog Problem. In it, sets of items are clustered into groups, and an ordering between
groups is established. All of this is achieved in a supervised manner. While clustering methods are
often unsupervised (Aljalbout et al., 2018; Ronen et al., 2022), the meaningful ordering of clusters
often requires more knowledge than is available from the instance representation alone.

Similarly, learning to order is often framed as a supervised learning task (Vinyals et al., 2015; Yin
et al., 2020; Shi, 2022). Referred to further as set-to-sequence (S2S), this area and its corresponding
methods inspire the cluster-ordering aspect of our proposed Neural Ordered Clusters (NOC) model.
Both neural clustering and set-to-sequence models have limitations. Element-wise neural clustering
methods require O(n) passes over the input set of cardinality n1. Cluster-wise and attention-based

1O(n) can be prohibitive with large input sets (n >= 1000), which is often the case in many interesting
set-input problems such as 3D point cloud tasks (Qi et al., 2017; Ge et al., 2018; Zhao et al., 2021).
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Figure 1: The Catalog Problem. From left to right: a set of input elements (X); partitional clustering
of those elements (C = {C1,C2,C3}); and a target ordering over those clusters (y = (C2,C1,C3)),
left to right. A candidate model has to perform all these tasks using information about inter-element
relations and intra-cluster relations in order to characterise a cluster, and inter-cluster relations to
generate the final, ordered clustering.

models are more computationally efficient, but exhibit a limited ability to learn cluster cardinality
constraints (Pakman et al., 2020), integral to both the prototypical Catalog Problem and its practical
instantiations. Set-to-sequence methods, on the other hand, are effective at learning constraints (Zhu
et al., 2021) and generalizing to unseen distributions (Wen, 2022). However, they are limited by their
inability to predict an input-dependent number k of clusters without major adjustments (Fernández-
González, 2022), two of which are proposed in Section 5.1. Nonetheless, these S2S variants suffer
from noisy in-cluster order and cascading first-choice costs (Gan et al., 2020; Vial et al., 2022).

To address these challenges, we implement a unified clustering and cluster ordering method. NOC
is capable of predicting ordered, partitional cluster assignments for elements of sets of varying car-
dinality. It infers a flexible, input-dependent number of diverse clusters, maintains O(k) complexity
and utilizes a jointly learned representation of set elements to find the target cluster order. Unlike ex-
isting neural clustering methods, it exhibits the ability to learn cluster cardinality constraints through
supervision. To our knowledge, no other neural-based method exists to address such challenges in
an end-to-end, jointly trainable way, instead performing clustering and ordering as two separate
tasks, sometimes with the separate addition of a representation learning step (Aljalbout et al., 2018).
All code, hyper-parameters and datasets required for reproducing our results are made available and
detailed via the appendix. To summarize, our contributions are as follows:

• Firstly, we introduce the Catalog Problem, a novel joint clustering and cluster ordering
problem over sets of elements, which is a challenging variant of the set-to-sequence domain
with multiple aspects that are not handled by existing neural methods. We exemplify and
tackle this problem on three datasets, including a real-world dataset of over 1.5 M products
grouped and ordered into product catalogs by human experts.

• Secondly, we propose a novel, fully differentiable, joint neural clustering and cluster or-
dering model, Neural Ordered Clusters (NOC), capable of predicting an adaptive, input-
dependent number of ordered, partitional clusters from sets of varying cardinality.

• Thirdly, we provide a robust comparison of existing and proposed neural methods on the
Catalog Problem using synthetic & real-world datasets, providing insights into the models’
capacity to learn higher-order relational rules of cluster composition and ordered structure.

2 THE CATALOG PROBLEM

Many problems require predicting an adaptive, input-dependent number of partitional clusters from
sets of varying cardinality and consequently ordering these clusters according to a target preference.
These include but are not limited to vitally important challenges related to triage-like tasks in the
medical, military and crisis relief contexts (Kennedy et al., 1996), which are only beginning to be
tackled via machine learning methods in a supervised or semi-supervised settings (Buchard et al.,
2020). We refer to such challenges through the umbrella term of the titular Catalog Problem.
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Multiple datasets from various areas of application either lend themselves directly to this formulation
or can be adjusted to it, such as the PROCAT dataset which contains a supervision target in the form
of the human-designed structure of product catalogs (Jurewicz & Derczynski, 2021) or the MIMIC-
III dataset of electronic health records (Johnson et al., 2016). Other curated datasets exist in the field
of large-scale image preference grouping (Chang et al., 2016), mortality risk ranking (Kwon et al.,
2018) and early warning systems for influenza (Espino et al., 2003), with further supervised datasets
being potentially obtainable in such areas as grouping and ordering sets of tasks for parallel runs on
a finite number of processors (Bakkelund, 2022), placement in physical design of integrated circuits
(Lin et al., 2018) and graph clustering (Tian et al., 2014).

in the Catalog Problem the input is an unordered set of unique elements X = {x1, . . . , xn}, with a
varying cardinality n = |X|. The target output is a sequence of clusters y = (C1, . . . ,Ck), where
k is an input-dependent number of clusters and each cluster is defined by the elements assigned to
it, whose number can differ per cluster. For example, given an input set X = {x1, x2, x3, x4, x5}
the target can take the form of the sequence y = ({x3, x4}, {x1}, {x2, x5}). This example thus
requires the prediction of the following set of clusters: C = {C1,C2,C3}, such that if C1 = {x1},
C2 = {x3, x4} and C3 = {x2, x5} then y = (C2,C1,C3). All elements must be assigned to a
cluster, an element can only belong to one cluster and empty clusters are not allowed.

The problem requires learning a parameterized function ρθ, capable of taking the input set, finding
the optimal number of clusters to partition it into (k from the supervision target), assigning each
element to one of k clusters and ordering these clusters. Thus ρθ(X) = ŷ, with k being predicted
indirectly. The optimal assignments and order of clusters is known from examples in the datasets.
This is a general problem that, as is shown by experiments later in this paper, is non-trivial. For
a visual explanation, see Figure 1. Although the Catalog Problem is so named because it models
the task of creating a catalog of items, e.g. products, no specific application is prescribed; the
problem only defines input and output types and a relation between these two. The difficulty lies
in learning the relationships between both input elements and groups thereof. This difficulty can be
compounded by the uniqueness of input elements, making learning representations difficult, due to
the scarcity of distributional information.

2.1 RELATED WORK

There have been many machine learning (ML) approaches to clustering with some notion of order,
albeit often aimed at preventing the impact of this order on the clusters (Fisher et al., 1992). In the
more common, unsupervised setting these range from hierarchical clustering (Johnson, 1967; Chu,
1974), through ordinal clustering (Janowitz, 1978) and incremental conceptual clustering (Fisher,
1987) to Markov clustering (Van Dongen, 2000) and other, more recent methods (Ankerst et al.,
1999; Turowski et al., 2020). Certain unsupervised clustering methods without the ordering element,
like affinity propagation (Frey & Dueck, 2007; Vlasblom & Wodak, 2009), are also capable of
outputting an adaptive, input-dependent number of partitional clusters.

Closer to the supervised setting of interest, there have been attempts to leverage instance labels to
augment k-means (Ergun et al., 2022), improve the interpretability thereof (Peng et al., 2022) and
to cluster labelled data to facilitate permutation learning (Lee & Kim, 2020). Similarly, contrastive
clustering utilizes soft labels to maximize the similarities of positive pairs while minimizing those of
negative ones (Li et al., 2021), in an approach reminiscent of the pairwise order prediction modules
that resulted in increased performance on strictly set-to-sequence tasks (Yin et al., 2020). However,
these supervised clustering methods do not yield an ordering of clusters.

3 BACKGROUND

We identify three classes of neural approaches to solving aspects of the Catalog Problem: set rep-
resentation; neural clustering; and ordering through pointer attention. Firstly, learning permutation
invariant set representations that can encode higher-order interactions is vital, due to the complex
relational factors among set elements that determine the target output. Deep learning advances in
set representation focus primarily on being able to effectively learn such relations, starting with
Deep Sets (Zaheer et al., 2017), through the Set Transformer (Lee et al., 2019) to modifications
thereof (Girgis et al., 2021; Jurewicz & Derczynski, 2022). These methods can be used for both
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encoding elements and representing clusters. In the Set Transformer, given an unordered set (X), we
obtain the representations of set elements (Eπ) and subsequently the entire input set (s) via:

Eπ = MAB(X,X) = LN(H + ϕ(H)), where H = LN(X + MHA(Xq,Xk,Xv)), (1)

s = PMA(Eπ) = MAB(r,Eπ), (2)

Here, multihead, intra-set attention (denoted as MHA) is performed by casting the input set
X to query, key, and value matrices Xq,Xk,Xv according to an arbitrary permutation π, and
adding a residual connection as defined by Vaswani et al. (2017), without positional encoding.
This operation is incorporated into a multihead self-attention block (MAB) by the inclusion of a
row-wise feed-forward neural network (NN) ϕ, with layer normalization (LN) after each block
(Ba et al., 2016), resulting in a permutation equivariant2 matrix of per-element representations
(Eπ). These are then aggregated into a permutation invariant representation of the entire set (s) by
performing pooling by multihead attention (PMA) between the per-element representations and a
learned seed vector r. These operations are used extensively in our method for encoding both the
initial input set and the predicted clusters.

Secondly, supervised neural clustering obtains per-element cluster assignments (ĉi) through a num-
ber of modular functions parameterized by NNs. These networks leverage set representation meth-
ods to encode the set of currently available, unassigned elements (Uj), each previously completed
cluster (gj) and consequently all clustered elements jointly (Gj), at each step j. This is paired
with an algorithm for selecting the next j-th cluster (if clusterwise) or element (if pointwise) to be
considered until nothing remains to be assigned.

In the O(k) clusterwise formulation each cluster assignment is the output of another NN (ρ), in the
form of the probability of each unassigned, encoded element (xi) belonging to the current jth cluster
(pθ(ĉi = j)), conditioned on these representations and trained in a teacher-forced manner, with loss
calculated only for the elements belonging to the current cluster. In the attention-based, clusterwise
framework of the Attentive Clustering Process (Pakman et al., 2020) a random anchor element (xa)
is obtained at each step j, along with a vector (zj) sampled from a Gaussian latent variable, which
represents the features of the jth cluster and is trained as a conditional variational autoencoder (Sohn
et al., 2015).

p(zj | Xj) = N (zj | µ(xa,Uj ,Gj), σ(xa,Uj ,Gj)), (3)

where Xj is used as a shorthand for the state of the input set X at step j, referring to which elements
have been assigned to which clusters, µ and σ are MLPs which take as input the jth anchor element
(xa), the representations of all currently unassigned points (Uj) and all previously predicted clusters
(Gj) and output the means and standard deviations for each dimension of the zj vector, on which
the final, per-element assignment probabilities are conditioned for the current j-th cluster:

pθ,i(ĉi = j | Xj) = sigmoid(ρ(xi,xa, zj ,Uj ,Gj)). (4)

Thirdly, pointer attention can be used to select a single element from a set of any cardinality n,
common in set-to-sequence NNs. At each step m ∈ {1, . . . , k} it outputs an attention vector (am)
over all obtained clusters C. As the clusters are selected sequentially, this represents their predicted
order, with highest attention value pointing to the index of the m-th cluster in that order:

am = softmax(v⊤ tanh(W1C + W2h
d
m)), (5)

where v, W1 and W2 are model parameters, tanh is the hyperbolic tangent nonlinearity, and hd
m

is customarily the hidden state of the pointer network at current selection step m. The first hidden
state hd

0 can be initialized from the permutation invariant set representation s. In our context, this in
principle enables us to sequentially select predicted clusters according to their learned target order.

2For a formal proof, see Section 3.1 and supplementary material of Lee et al. (2019).
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Figure 2: NOC. Starting at the top of the leftmost panel, at clustering step j the representations
of unassigned elements (Uj), previously created clusters (Gj) and a random anchor element (eja)
are used to make initial cluster assignments (ĉ1−6). In the middle panel the current cardinality
(tj) is predicted and used to adjust the jth cluster, which is then transformed via SITc(Ĉj) into
its embedded representation gj , which becomes part of the Gj+1 matrix and is used during the
remaining clustering steps. In the rightmost panel, after k iterations of the NOC1 and NOC2 steps,
the predicted clusters are ordered via NOC3’s Enhanced Pointer attention (A.2).

4 THE NEURAL ORDERED CLUSTERS MODEL

Existing methods do not, to the best of our knowledge, directly address the catalog problem of joint
clustering and cluster ordering. To this end, we investigate a set of novel and adapted methods to
apply to this problem. This section introduces the proposed Neural Ordered Clusters (NOC) model.
NOC consists of three modular parts, each with a corresponding loss factor. These components take
the form of partitional neural clustering, per-cluster cardinality prediction, and cluster ordering via
pointer attention. The learned representations of elements and the set in its entirety are transformed
by each of these modules and continuously adjusted during training in a fully differentiable way.
For an overview of the NOC architecture, we refer the reader to Figure 2.

The first step is to obtain a partitional clustering (NOC1). We propose to achieve this through an
adjusted neural clustering module, building on the process described in equations 3 and 4. First, we
utilize the Set Interdependence Transformer, or SIT (Jurewicz & Derczynski, 2022), to obtain both
the representations of the individual elements (Eπ) and the permutation-invariant representation of
the entire set (s). SIT consists of a stack of transformer attention layers described in equations 1 and
2, except that the second layer’s input takes the form of an augmented matrix, in which the vector
representation of the set is concatenated to Eπ as if it was an additional set element ei. This is
intended to enable learning of higher-order interactions in fewer layers. At each cluster prediction
step j the representations of unassigned elements (uj) and all previously completed clusters (qj) are
obtained through a stack of SIT and PMA transformations and used to make cluster assignments ĉi
per unassigned element (ei):
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NOC1(ei,Xj) = pθ(ĉi = j | Xj) = sigmoid(concat(ϕ1(ei, e
j
a, zj ,uj ,qj))). (6)

The second step (NOC2) is to adjust the cluster assignments via the predicted cardinality tj of
the j-th cluster. At each step a function, parameterized by a fully-connected neural network ϕ2, is
used to predict the cardinality of the current cluster as a regression task. The obtained cardinality,
conditioned on the available elements and previously predicted clusters, is used as a threshold for
the maximum number of elements to assign to current cluster. If the number of elements assigned
by NOC1 to Ĉj exceeds this threshold, the elements with lower values of the predicted probabilities
pθ(ĉ1 = j) = pθ(e1 ∈ Ĉj) ≈ ĉi of the ith element belonging to jth cluster are excluded from it:

tj = NOC2(Ĉj ,Xj) = ϕ2(concat(eja,uj , qj)), (7)

Ĉj =

{
Ĉj , if |Ĉj | ≤ tj
Ĉj

1:tj
, otherwise

, (8)

Steps one and two are repeated until we have obtained k partitional clusters (Ĉ1, . . . Ĉk) with indi-
vidual cardinalities. Set-to-sequence methods expect fixed-length vector representations, therefore
SIT and PMA are used to pool each predicted cluster (PMAc(SITc(Ĉj)) = gj). In the third and
final stage of NOC3 an Enhanced Pointer Network (Yin et al., 2020) is used to output an attention
vector am at each step m ∈ {1, . . . , k}. The highest attention value points to the cluster to be placed
at m-th position in the output sequence of ordered clusters:

am = softmax(v⊤tanh(W1Mm + W2h
d
m)) ; hd

m = LSTM(hd
m−1, gm−1). (9)

This largely resembles the process outlined in Equation 5, with the exception of matrix Mm, specific
to the Enhanced Pointer Network, explained in more detail in appendix A.2. Together, these three
elements of NOC allow for the prediction of an input-dependent number k of partitional clusters
with varying, learned cardinalities. This learning is achieved through a weighted sum of the loss
factors from each of the three stages of NOC, with teacher-forcing (Williams & Zipser, 1989). The
full algorithm is provided in Appendix A.1.

5 EXPERIMENTS

The Catalog Problem presents an interesting type signature, where while the input — as in S2S — is
an unordered set, the output is a more complex structure that is the result of clustering and ordering.
In this section we examine multiple approaches to the Catalog Problem, including baseline methods
adapted to this output structure as well the NOC model, evaluating over both synthetic and real-
world datasets. All datasets, hyperparameters and code are freely available and described in detail
in Appendix A.5. The provided code includes all data pre-processing and generation steps.

The models’ exact layer dimensions are given in Appendix A.5, with the number of learnable pa-
rameters of each model varying by less than 5% per task. The AdamW (Loshchilov & Hutter, 2017)
optimizer was used with weight decay coefficient 1e-3, learning rate (α) 1e-4, dropout rate of 0.05
and batch size 64, for 50–100 epochs. Experiments were performed on cloud-based GPU instances,
with NVIDIA Quadro P6000 graphics cards (24 GB) and 8 CPU cores. To represent natural lan-
guage entities in Section 5.4 we use the concatenated and averaged output of the last 4 layers of
the cased, large version of BERT (Devlin et al., 2019), frozen during training to isolate the effect of
compared clustering and permutation methods on the final performance.

The best performance is reported in bold and second best is underlined. Reported results are aver-
aged over three full training runs, standard deviation is reported after the ± sign. We use V-Measure
(Rosenberg & Hirschberg, 2007) and Kendall’s Rank Correlation Coefficient (τ ) as the primary clus-
tering and permutation metrics respectively, scaled by a factor of a hundred for readability, following
convention (Wang & Wan, 2019; Pandey & Chowdary, 2020).
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Table 1: Clustering and permutation results on all three datasets

2D Gaussians Procedural Catalogs PROCAT

Method V-Measure Kendall’s τ V-Measure Kendall’s τ V-Measure Kendall’s τ

NCP + S2S 91.52 ± 3.30 75.31 ± 4.5 63.12 ± 4.12 74.82 ± 5.1 25.42 ± 5.14 21.94 ± 4.3
CCP + S2S 93.94 ± 2.13 83.88 ± 4.2 79.41 ± 3.76 81.10 ± 3.9 37.41 ± 3.10 25.24 ± 4.0
ACP + S2S 96.63 ± 1.82 90.13 ± 3.7 87.66 ± 3.91 85.73 ± 3.2 41.38 ± 3.88 31.73 ± 3.1

S2S-B 89.37 ± 4.21 95.89 ± 2.3 78.39 ± 1.64 92.13 ± 2.0 39.01 ± 3.35 44.39 ± 3.7
S2S-C 92.45 ± 2.01 93.41 ± 2.1 75.83 ± 4.91 91.55 ± 3.3 36.71 ± 4.26 40.22 ± 4.2

NOC 97.81 ± 0.92 98.40 ± 0.5 96.13 ± 1.28 95.84 ± 0.9 52.84 ± 3.15 56.67 ± 2.8

5.1 BASELINES

We present two groups of baselines for addressing the Catalog Problem. i) Neural clustering meth-
ods with an added set-to-sequence module: the module takes the predicted clusters and outputs
their order via attention-based pointing. These methods include the pointwise Neural Clustering
Process (NCP), the Clusterwise Clustering Process (CCP) and the Attentive Clustering Process
(ACP) developed by Pakman et al. (2020) and Wang et al. (2021). ii) Proposed variants of the
set-to-sequence architecture: these S2S variants enhance the pointer mechanism with the notion
of predicting ordered clusters, as opposed to ordered elements. The first variant, called S2S-B (for
“break”), adds a secondary decision of whether or not to start a new cluster in parallel to the selec-
tion of the set element to be placed next in the predicted sequence. The second variant, called S2S-C
(for “clusterwise”), uses a threshold mechanism to select multiple elements forming a single cluster
at each step. For details, see Appendix A.4.

5.2 ORDERED MIXTURES OF GAUSSIANS

This dataset consists of 2D coordinates for a number of points, generated from a mixture of a finite
number of Gaussian distributions. The points should be clustered and the clusters ordered by dis-
tance from origin (as they are in the supervision target). Following convention from probabilistic
models for clustering (McLachlan & Basford, 1988), we introduce a random variable ci signifying
the cluster to which each data point xi is assigned. The generation process creates a random number
of clusters k, each with their own parameter vector µj controlling the distribution of the j-th cluster.
For comparison with prior work (Pakman et al., 2020), we use a Chinese Restaurant Process with a
single modification — the addition of a target order of the clusters, based on the Euclidean distance
of their centroids from the origin point. An example of the joint prediction of per-element cluster
assignments and predicted cluster order can be seen in Figure 3. The predicted order is denoted
through colour gradient, with a bright red to deep blue and violet scale. In the figure, three sepa-
rate predictions are displayed, one from the ACP model, one from a modification of set-to-sequence
methods in the form of S2S-B and finally one from the proposed NOC model.

Figure 3: Example of predicted ordered clusters. Target (supervision) shows clusters and their order
through colour, red being closest to the origin point (marked with a gray ×), dark blue and violet
being furthest. Heat map (leftmost) indicates distance for individual points. The ACP prediction
exhibits good clustering, but errs in the ordering (mistaken red and orange clusters). S2S-B exhibits
good ordering, but incorrect clustering in the bottom-left quarter. NOC (ours) is closest to the target.
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Figure 4: Procedurally generated synthetic catalogs. Interactions between elements of the input
(left) define the compositional and structural rules (middle), which inform the generation of these
synthetic datasets. The actual input is a multiset of n offer tokens, the leftmost panel shows only
which types of tokens were present in it. Compositional rules define valid sections, structural rules
define valid section order, which in the figure is represented only by what section should be first and
last. A successful model should learn these rules from supervised exposure to the resulting synthetic
datasets, and then be able to order new sets of elements according to the learned rules. One valid
example is given for each input (right, wrapped over 2 lines). See the second paragraph of Section
5.3 for a written description of the compositional and structural ruleset portrayed in the top row.

As shown in the rightmost column of Table 1, NOC outperforms other methods on both the cluster-
ing task, according to V-Measure, and the cluster ordering task, measured with Kendall’s τ . Specif-
ically it improves by +1.18 points over the second-best clustering method (ACP) and +2.51 over the
second-best set-to-sequence method (S2S-B). Its performance appears relatively consistent, showing
a smaller standard deviation over three full training runs.

5.3 PROCEDURALLY GENERATED CATALOGS

The second experiment uses synthetic catalogs. These catalogs consist of varying-length sequences
of clusters of elements, with repetition. Elements are colour-coded. These catalogs form the su-
pervised training targets yi, with the unordered multiset of available atomic elements forming the
inputs Xi. The correct composition of individual sections and the structure of the overall catalog, in
the form of the order of its sections, depends on n-th order interactions between the input elements.

For procedural generation, these interactions are formalized as compositional (intra-cluster) and
structural (inter-cluster) rules. A simplified example of a compositional rule would be: “if the input
set contains only red, blue and yellow elements, a section containing red and yellow elements in 1:1
ratio is a valid section”. An example of a structural rule could specify that (given the same input)
the catalog has to begin with an all-red section or end on an all-blue one (top row of Figure 4).
Compositional rules also include upper cardinality constraints for valid sections. We use the tool
provided by Jurewicz & Derczynski (2022) to generate catalogs.

As shown in Table 2, neural clustering methods appear to be better at composing valid catalog sec-
tions but struggle with ordering sections into valid catalogs. This is indicated through two metrics –
a compositional score, which is the percentage of predicted sections that were valid in accordance
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with the applicable n-th order ruleset, and a structural score, which is the percentage of valid pre-
dicted catalog structures (i.e. section ordering). By contrast, the adapted S2S models outperform
neural clustering methods at correctly ordering sections, as measured via the structural score. NOC
outperforms both methods on each of the two scores. This improvement is also reflected on the same
test set in the more general but related V-Measure and Kendall’s τ , shown in Table 1, where NOC
surpasses the next-best models by +8.47 and +3.71 percentage points.

Among the sections predicted by neural clustering methods (NCP, CCP, ACP), the predominant error
(present in 74% of invalid sections) stemmed from incorrect cardinality, even though the models
correctly predict the composition (15%) and ratio (11%) of elements to include. This error occurs
despite the presence of mechanisms that could, in principle, allow for the learning of max-cardinality
constraints: NCP constructs clusters element-by-element, further transforming the candidate cluster
at each element’s addition; CCP and ACP obtain a representation of the current candidate cluster
before assigning candidate elements.

NOC overcomes this limitation through the addition of a cluster-level cardinality prediction mecha-
nism and corresponding loss. It outperforms the second best method on the section composition task
by +11.96, +13.01 and +15.65 percentage points with regards to the 3rd, 4th and 5th order relational
ruleset respectively. It also performs better with regards to the structural score, offering a smaller
but consistent improvement over the S2S-C and S2S-B methods by +4.54, +3.59 and +3.61 points,
with respect to increasing n-th order rulesets.

Table 2: Results over procedurally generated catalogs, by n-th order relational ruleset

Compositional score Structural score

Method n = 3 n = 4 n = 5 n = 3 n = 4 n = 5

NCP + S2S 64.13 ± 3.9 55.81 ± 4.6 51.82 ± 5.2 56.49 ± 4.0 51.87 ± 5.1 49.70 ± 6.8
CCP + S2S 75.40 ± 3.2 71.49 ± 4.3 65.11 ± 4.5 70.21 ± 3.5 68.39 ± 4.7 66.55 ± 5.4
ACP + S2S 87.05 ± 1.7 81.33 ± 1.9 76.83 ± 2.2 81.09 ± 2.2 76.34 ± 3.4 73.86 ± 3.8

S2S-B 84.99 ± 0.5 82.90 ± 0.7 74.82 ± 0.6 92.33 ± 1.5 89.83 ± 2.1 87.31 ± 2.0
S2S-C 82.03 ± 1.8 78.74 ± 2.1 72.13 ± 2.4 92.49 ± 1.6 87.41 ± 2.2 85.05 ± 2.3

NOC 99.01 ± 0.3 95.91 ± 0.4 92.48 ± 0.4 97.03 ± 0.9 93.42 ± 1.0 90.92 ± 1.2

5.4 PROCAT

The final experiment was performed on the PROCAT dataset (Jurewicz & Derczynski, 2021), using
its provided training and testing split. All models were trained on approximately 9K product catalogs
and tested on a separate set of 2K catalogs. Unlike the benchmarks provided with the PROCAT
dataset, this formulation of the task mirrors the Catalog Problem exactly, with no information about
the target number of sections (clusters) being available to the models. Individual elements were
transformed into vector representations via a pre-trained, frozen language model as described at the
beginning of Section 5, removing its effect on the variation in performance on the downstream task.
Figure 5 displays a sample catalog predicted by NOC from a PROCAT input set of product offers.

As the two rightmost columns of Table 1 show, the PROCAT structure prediction task is more diffi-
cult than the previous tasks. The best results in terms of both the clustering quality (via V-Measure)
and section order (measured indirectly via Kendall’s τ with regards to element order) are approxi-
mately 40% below the corresponding scores on the procedural task in its default configuration. One
possible explanation stems from the existence of a higher number of reasonable substitutions for
each element in any given section from the entire input set of initially available products. While also
present in the procedural catalogs, this challenge becomes harder to overcome as the cardinality of
the input increases from tens in the procedural case to hundreds in PROCAT.

NOC outperforms both neural clustering methods and the adjusted set-to-sequence models. While
the overall pattern of neural clustering methods outperforming S2S-B and S2S-C in V-Measure
is upheld, it is less pronounced (+2.37 points between ACP and S2S-B on PROCAT compared to
+9.27 and +4.18 on the procedural and 2D Gaussian task respectively). The adjusted set-to-sequence
models continue to outperform NCP, CCP and ACP on the ordering aspect of the task, with a margin
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Figure 5: PROCAT. An example of three sequential sections predicted by the NOC as part of a larger
catalog, from an input set of products from the PROCAT dataset. The prediction groups elements
into complementary sections (the three pages shown above) and orders them into a rendered catalog.

of +12.66 points. NOC yields the best performance in terms of both partitional clustering and
ordering, exceeding the relevant second-best methods by +11.46% and +12.28% respectively.

6 CONCLUSION

The posited Catalog Problem consists of learning to group elements and to order the groups. It
poses a more difficult challenge than its individual components. Our work defined benchmark tasks
representing this problem and presented approaches for them, including both adjusted baselines and
a candidate approach, Neural Ordered Clusters (NOC). Existing neural clustering methods appear
ineffective at learning cluster-level cardinality constraints. Our method offers an improvement in this
area through its cardinality-prediction module. NOC outperforms adjusted S2S methods in terms of
both clustering quality and accuracy of the predicted cluster order, indicating that structuring models
to address adaptive ordered clustering leads to improved performance over standard S2S prediction.

Nevertheless, the complexity and fluidity of intra- and inter-cluster relations result in the Catalog
Problem remaining significantly more challenging than S2S processing. We considered a predictive
solution to the catalog problem, where we trained the model to yield a single “ground truth” human-
generated catalog given a set of products. Future work could consider a fully generative formulation
of the problem that respects an unlimited number of valid solutions for both clustering and ordering.
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ETHICS STATEMENT

Given the e-commerce context of the third presented dataset, we must highlight the wider problem
of endless scroll user interfaces in product presentation apps and social media (Lupinacci Amaral,
2020). Although the PROCAT dataset is tailored to the prediction of cluster sequences of finite
lengths, we cannot rule out the possibility of extending the proposed adaptive clustering and cluster
ordering models to non-finite sets. It is also in principle possible to retrain the proposed models
with additional inputs such as embedded personal preferences, making the predicted catalogs tai-
lored to specific individuals, which has previously been linked to mental health issues in relation to
smartphone addiction (Noë et al., 2019).

As with many machine learning systems, the results are not perfect, and sub-optimal predictions
from NOC could silently disadvantage an end-user; for example a business may produce catalogs
that don’t make it easier for the reader to discover relevant, cost-saving offers, or an individual may
receive an inaccurate medical analysis (in the case of the hypothesized medical triage use case).

Applying this tool may impact the employment of people performing creative catalog-related tasks,
and further, might not even do the task as well as them. Product catalog design is considered some-
thing of an art among its practitioners, and there may be deep interactions not clearly evinced in
training data that are lost by transiting the ownership of the catalog construction task from human
subject matter experts to a machine learning model. Attempting to completely replace a human at
this task may lead to both unsatisfactory and marginalizing results Birhane (2021).

We do not see any direct way for the presented methods to exacerbate bias against people of a certain
gender, race, sexuality, or who have other protected characteristics. However, bias inherent to the
marketing decisions made by people who have designed the catalogues contained in the PROCAT
dataset, will be propagated by models trained on it. Negative biases in this particular scenario
include as the pink tax (Stevens & Shanahan, 2017). In general, learning from socially-biased data
and making predictions based on it will propagate those biases Buolamwini (2017); Raji (2020).

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility all code and datasets needed for repeated experiments have been
made freely available, as described in detail in Appendix A.5 as part of the provided supplementary
materials. The anonymized code repository includes a comprehensive readme.md file describing the
necessary steps to set up the execution environment, download, generate and preprocess the datasets
and run each of the experiments discussed in Section 5. The exact hyperparameters per experiment
are stated both in the Appendix (A.5.1, A.5.2, A.5.3) and in the provided configuration files in the
linked code repository. Additionally, a detailed description of the NOC algorithm is provided (1) to
ensure that the method can be reimplemented, if necessary.
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A APPENDIX

A.1 NOC ALGORITHM

In this section of the appendix we outline the progression over all three stages of the proposed Neural
Ordered Clusters method. Steps 1-23 jointly describe the processing within NOC1 and NOC2 (steps
12-16 specifically for the latter), as presented in Section 4. The third module, NOC3 is shown in
steps 24-30. We begin with an unordered set X ∈ Rd (of any cardinality), and assume that it has at
least two elements, which can then potentially belong to separate clusters. This set is represented
as a matrix of d-dimensional elements, ordered according to some arbitrary permutation π into
Xπ . The initial, intermediate output comes in the form of individual clusters of elements at each
j-th iteration, which ultimately form the set of all predicted clusters (Ĉ = {Ĉ1, . . . , Ĉk}). Each
candidate cluster goes through a final cardinality prediction step, resulting in the threshold value of
tj , through which some elements may be excluded from their original cluster. Finally, an Enhanced
Pointer Network (EPN) performs k − 1 iterations, selecting a single cluster to be placed next in the
final output sequence ŷ by the index of the highest value in the predicted attention vector am.

Algorithm 1 Neural Ordered Clusters

Require: |X| = n ≥ 2 ▷ At least two elements, otherwise single cluster
1: Eπ ← SIT(Xπ ∼ X), j ← 1
2: r ← n− 1 ▷ Track number of unassigned elements
3: eja ← Eπ ▷ Randomly chosen anchor for initial cluster
4: Uj ← SIT(E \{eaj }) ▷ Initialize unassigned representations
5: uj ← PMA(Uj) ▷ Vector representation of all unassigned elements
6: qj ← ∅ ▷ No previous clusters
7: while r > 1 do
8: zj ← N (zj | µ(eaj ,uj , qj), σ(eaj ,uj , qj))
9: for i← 1 . . . r do

10: ĉi ← ϕ1(ei, e
j
a, zj ,uj , qj) ▷ j-th cluster assignments per element

11: end for
12: Ĉj ← Eπ

i:ĉi=j ▷ Cluster j from assignments (sorted)
13: tj ← ϕ2(eja,uj , qj) ▷ Predict cluster cardinality
14: if |Ĉj | ≤ tj then
15: Ĉj ← Ĉj

16: else
17: Ĉj ← Ĉ1:tj ▷ Adjust j-th cluster’s cardinality
18: end if
19: j ← j + 1
20: eja ← Eπ ▷ Randomly chosen anchor for next cluster
21: Uj ← (Uj−1 \ Ĉj) ▷ Update unassigned representations
22: gj−1 ← PMA(SIT(Ĉj−1)) ▷ Vector representation of previous cluster Ĉj−1

23: qj ← Ĉ ≈ {g1, . . . , gj−1} ▷ Update preceding clusters’ representations
24: r ← r − |Ĉj−1| − 1 ▷ Adjust number of unassigned elements
25: end while
26: hd

1 ← PMA(SIT(Gj ≈ Ĉ)) ▷ First hidden state from all clusters
27: ŷ = (∅1, . . . ,∅j) ▷ Final prediction placeholder
28: for m← 1 . . . k − 1 do
29: am,hd

m+1 ← EPN(Gj ,h
d
m) ▷ Enhanced pointer attention over k predicted clusters

30: l← arg max(am)

31: ŷm = Ĉl ▷ Next cluster by highest attention index
32: end for

A.2 ENHANCED POINTER NETWORK

In all reported experiments we use the same set-to-sequence module, the Enhanced Pointer Network
Yin et al. (2020), which is a pointer-attention based method inspired by the popular Pointer Network
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Vinyals et al. (2015). It offers a performance improvement by leveraging two additional mecha-
nisms for pairwise ordering predictions towards improved global and local coherence of the output
sequence. Formally, the conditional probability of a predicted order ŷ is calculated as:

pθ(ŷ | C) =

k∏

j=1

pθ(ŷj | ŷ<j ,Gk, sc) ; sc = PMA(SIT(Gk)) (10)

pθ(ŷj | ŷ<j ,C) = softmax(v⊤tanh(W1h
d
j + W2Mj)) (11)

hd
j = LSTM(hd

j−1, gj−1) , hd
0 = sc (12)

where v, W1 and W2 are model parameters, k is the total number of clusters, tanh is the hyperbolic
tangent nonlinearity, gj−1 is the fixed-length embedding of the cluster selected at the preceding
step j − 1 and hd

j is the hidden state of the permutation module at current step i. The first hidden
state hd

0 is initialized from the permutation invariant set representation of all previously predicted
clusters sc, obtained via SIT and PMA. The Mj matrix provides additional context consisting of
2 kinds of information. The first is global orientation relating all remaining unordered clusters to
one another. The second is local coherence between previously selected clusters and remaining
candidates. This contextual information is obtained via HISTORY and FUTURE sub-modules from
the original matrix of all cluster representations (Gk ≈ C), which form the elements to be ordered.
These two sub-modules output pairwise ordering predictions in relation to each candidate cluster,
which are then combined to form Mj . For exact implementation details, we refer the reader to Yin
et al. (2020), but also provide more detail regarding these two sub-modules below.

The FUTURE sub-module calculates the probability of every currently (at jth decoder step) un-
ordered element xu appearing before and after every other unordered element xu′, denoted here as
pθ(before, after | xu, xu′), which is represented by a softmaxed vector consisting of two elements
(pu,u′ ∈ R2) obtained in the following way:

zu,u′ = ReLU(Wc × ReLU(Waeu + Wbeu′)), (13)

pu,u′ = softmax(Wd × zu,u′), (14)

where× denotes matrix multiplication, ReLU() is the rectified linear unit nonlinear activation func-
tion, eu and eu′ are the embedded representations of the unordered element xu and xu′ respectively
(obtained by the encoder). Bias terms have been omitted for readability. All pairs of unordered
elements are processed in this way and then transformed into a single vector mf,u, per unordered
element:

mf,u =
1

|Xu|

( ∑

xu′∈Xu

[zu,u′ | pu,u′]

)
, (15)

where Xu denotes the set of unordered elements except xu and [zu,u′ | pu,u′] is a concatenation
of the two listed vectors. This enables the model to exploit global relative orientation of other
unordered elements when considering xu.

The HISTORY sub-module performs analogous transformations for each unordered element xu,
but this time with regards to two previously ordered elements xj−1 and xj−2 (placed in the output
sequence at the j − 1th and j − 2th index during preceding decoder steps). For xj−1 this takes the
form of:

zu,j−1 = ReLU(Wc × ReLU(Waeu + Wbej−1)), (16)

pu,j−1 = softmax(Wd × zu,j−1). (17)
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The zu,j−1 and pu,j−2 vectors are obtained analogously, but through different learned W∗ weight
matrices (which the authors of the method justify by the fact that they refer to a relative distance
of two places, instead of a single one). These are then used to obtain the mh1 and mh2 vectors by
concatenating the corresponding z and p vectors, which are taken to encode left-side, local coher-
ence (local referring to the fact that it’s just two elements to the left of the current candidate that are
being considered, as opposed to the entire left-side context encoded in the decoder’s hidden state
hd
j ). Finally, the mf,u vector (obtained by the FUTURE sub-module) and the mh1 and mh2 vec-

tors (obtained by the HISTORY module) are concatenated into the mu vector, which encodes both
relative orientations of other unordered elements with respect to xu and measures local coherence
between two previously ordered elements and xu. Such mu vectors are obtained for all unordered
elements at each jth decoder step and packed into the Mj matrix.

A.3 NOC TRAINING

NOC is trained in a teacher-forced way through a combined, weighted loss. The first loss factor
comes from NOC1 and is equivalent to the clustering loss of CCP (Pakman et al., 2020). At every
jth clustering step NOC1 outputs a vector of cluster assignment probabilities for all unassigned set
elements (oj = (o1j , . . . , o

m
j ), where m is the number of remaining elements, which have not been

assigned to any of the preceding clusters):

oij = NOC1(ei,Xj) = pθ(xi ∈ Ĉj) = pθ(ĉi = j), (18)

where Xj represents the input set X at the jth clustering step with regards to which elements have
been assigned to which clusters, ei is the embedded representation of the element xi and θ represents
all trainable model parameters. As per Equation 6, the oj vector is obtained using the sigmoid
activation function, making each oij be a real number within the [0, 1] range, which are treated as
probabilities. During training the labelled examples are used to optimize an evidence lower bound
(ELBO) thereof, by minimizing the expected KL divergence as described in the appendix of the
paper introducing CCP (Pakman et al., 2020).

The second loss factor comes from NOC2, which predicts a cardinality threshold for each jth cluster
as a positive integer (tj ∈ Z+). This is compared to the target cardinality of the current cluster |Cj |
(identified by the anchor element’s cluster assignment) to obtain the mean squared error (Wallach &
Goffinet, 1989). The third loss factor comes from NOC3 and is equivalent to the Enhanced Pointer
Network’s loss. Given a batch B of m examples of the form (X,y):

L(y; θ) = − 1

m

∑

(X, y) ∈ B
(log pθ(y | Xπ) + λ LFH), (19)

where θ is the set of all model parameters and λ is a hyperparameter that balances the first term
of the loss with LFH , a cross-entropy loss calculated from the pairwise predictions made by these
FUTURE and HISTORY sub-modules (as outlined in Appendix A.2). For a visual explanation, the
reader is referred to Figure 2 from the original paper by Yin et al. (2020). These three loss factors
are weighted and the combined loss is minimized using the stochastic Adam optimizer (Kingma &
Ba, 2015).

A.4 SET-TO-SEQUENCE BASELINES

In this subsection, a more detailed description of the proposed S2S variants is given. The S2S-B
variant utilizes pointer attention to select individual remaining set elements at each step, following
the convention of Pointer Networks Vinyals et al. (2015) and their enhancements (Yin et al., 2020).
What distinguishes S2S-B from these models is an added prediction target which requires making
n − 1 binary decisions, where n is the cardinality of the input set. At each step of the predicted
permutation sequence, S2S-B indicates whether the currently selected element should be the last
one of the current, open cluster. If so, this would indicate a ”break” in the sequence, reminiscent of
a page break in a product catalog. Once the last available element is reached, any remaining opened
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clusters are closed by default, hence n − 1. All previously pointed-to elements since the last break
are considered members of the current open cluster.

The S2S-B model is thus capable of predicting a clustering where each element is assigned its own
cluster and one where all elements belong to a single cluster. It is guaranteed to assign a cluster to
every single element and can handle varying cardinality input sets, like all pointer networks. The
first difficulty faced due to this particular modification stems from highly skewed class distribution.
Namely, we never complete (or break) a cluster after each element. This is mitigated via a class-
weighted binary cross-entropy loss function:

LBCE-w(θ) = − 1

m

m∑

i=1

(wb × ym × log(ŷm) + (1− ym)× log(1− ŷm) (20)

Where m is the number of training examples, wb is the adjusted weight for the positive class, and
yi and ŷi are the target and prediction respectably. This loss factor is then scaled and added to the
negative loss likelihood loss used to train the pointer selection mechanism. The main disadvantage
of this model is that it predicts meaningless in-cluster order, making the loss signal noisy. The order
of elements within each cluster is meaningless within the confines of the presented Catalog Problem.

To mitigate this disadvantage, a second variant was developed. Referred to as S2S-C (for ”cluster-
wise”), this model predicts the entire next cluster of elements at each step, instead of pointing to a
single next element in the output sequence. Instead of performing n transformation steps in a loop
over the entire input set, it outputs an attention vector over all available elements until there are none
left. Thus it is also bound between assigning all elements to a single cluster or every element to its
own cluster, much like S2S-B, guaranteeing cluster assignment for each element of the input set.

In order to predict clusters of adaptive, input-dependent cardinality, the formula for obtaining the
pointer-attention vector over available elements had to be adjusted. The softmax operator was
replaced with the sigmoid function (σ) and a threshold (ta) of 0.5 was adopted. At each step
j ∈ {1, 2 . . . , n} every element with a corresponding attention value (aji ) above the threshold is
thus assigned to the next cluster:

ai = σ(v⊤tanh(W2Eπ + W1h
d
i )) (21)

ŷji =

{
0, if aji < ta
1, otherwise

(22)

During training, the S2S-C model was teacher-forced (Williams & Zipser, 1989) to prevent the
cascading impact of incorrect initial cluster assignment on subsequent computation steps, which is a
known challenge in certain areas of machine learning, such as the multi-armed bandit problem (Gan
et al., 2020). This is not a departure from the other tested models (with the exception of S2S-B), as
all neural clustering baselines are also teacher-forced during training, as per author implementations
of the papers that originally introduced them.

A.5 CODE, DATASETS AND PARAMETERS

The code required for all three of the main experiments can be found in a fully anonymized reposi-
tory under the following link:

https://github.com/anonymous-paper-submissions/
neural-ordered-clusters

Follow the instructions provided in the readme.md document to set up the necessary environment
locally, via the requirements.txt file listing all necessary packages and their versions.

In the following sections we describe each dataset in more detail, including how to download or
generate it. All datasets are freely available under publicly accessible links. Additionally, each
section contains the specific hyperparameters used for repeated experiments as well as the exact
number of layers and parameters per tested NOC model.
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A.5.1 ORDERED MIXTURES OF 2D GAUSSIANS

Data. The dataset for predicting ordered clusters of 2D Gaussians (based on their distance from the
origin point) is synthetically generated when running the experiment via the linked run gauss2D.py
file. The full, default configuration is given in the parser arguments (nothing should require ad-
justment to run the equivalent experiment). This includes a default seed, which should help ensure
repeatability. In the provided experiments we generate 30K batches of 64 examples each, for a total
of just under 2 million individual training examples for a full run. Each example is a set of 5 to
100 individual points characterized by their coordinates, generated through the Chinese Restaurant
Process with dispersion parameter α set to 0.7 for all experiments. Unlike the batch generation pro-
cess used by Pakman et al. (2020), we generate batches with diverse number of clusters and cluster
cardinalities in each example.

Hyperparameters. The training regimen includes a learning rate adjustment from 1e-4 to 5e-5 at
the 15K-th batch and 1e-5 at the 20K-th batch. The AdamW (Loshchilov & Hutter, 2017) optimizer
was used with a weight decay coefficient of 1e-3. Additionally, the default weights per loss factor
are provided. The main clustering loss factor λc is equal to 1.0, the cluster ordering loss factor is
set to λo = 4.0 and the cardinality prediction loss factor λk = 3e-3. A 100 inferences samples is
generated by default during validation, final metrics being calculated for the clustering prediction
with the highest probability.

Model parameters. The NOC model with reported performance had over 12mil trainable param-
eters. The element and individual cluster encoding functions, each consisting of three stacked SIT
layers followed by a PMA layer, had the input and hidden dimensions of 128. The function pooling
all clusters consisted of two stacked SIT layers followed by a PMA layer, also with 128 dimensions.
The NOC1 clustering module consistently uses a Parametric Rectified Linear Unit (PReLU) as the
nonlinearity He et al. (2015).

A.5.2 PROCEDURALLY GENERATED CATALOGS

Data. The dataset for predicting the cluster composition (sections of offer tokens) and structure
(order of these sections) of synthetic catalogs is automatically generated when running the linked
run synthetic.py experiment script with default parser arguments. This script loads the provided
configuration file synthetic rulesets.json which specifies all compositional and structural rulesets to
which the generated synthetic catalogs will adhere. In all reported experiments we refer to this
default set of rulesets, but encourage researchers to treat it as an easy-to-edit, flexible configuration
that can be adjusted for other exploratory experiments.

For the experiments, we generate 300K synthetic catalogs for the training set and 75K for the vali-
dation and test sets (split into 15 data-loaders). Each example consists of 35-50 offer tokens, each
batch consists of 64 examples with varied number of clusters and cluster cardinalities in each batch.
The NOC model is trained over 250K batch iterations, the equivalent of 50 epochs.

Hyperparameters. The procedurally generated catalog training regimen includes a learning rate
adjustment from 1e-4 to 5e-5 at the 100K-th batch iteration and 1e-5 at the 200K-th. The
AdamW (Loshchilov & Hutter, 2017) optimizer was used with a weight decay coefficient of 1e-
3. Additionally, the default weights per loss factor are provided. The main clustering loss factor
λc is equal to 1.0, the cluster ordering loss factor is set to λo = 15.0 and the cardinality prediction
loss factor λk = 0.1. A hundred inferences samples is generated by default during validation, final
metrics being calculated for the clustering prediction with the highest probability.

Model parameters. The NOC model with reported performance had over 18mil trainable param-
eters. The element and individual cluster encoding functions, each consisting of four stacked SIT
layers followed by a PMA layer, had the input and hidden dimensions of 128. The function pooling
all clusters consisted of three stacked SIT layers followed by a PMA layer, also with 128 dimen-
sions. The NOC1 clustering module consistently uses a Parametric Rectified Linear Unit (PReLU)
as the nonlinearity He et al. (2015).

A.5.3 PROCAT

Data. The PROCAT dataset is freely available under the following link:
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https://figshare.com/articles/dataset/PROCAT_Product_Catalogue_
Dataset_for_Implicit_Clustering_Permutation_Learning_and_
Structure_Prediction/14709507

We follow the provided train - test split of 8K - 2K catalogs and all pre-processing steps from the
original paper (Jurewicz & Derczynski, 2021). The provided section break tokens are removed in
the pre-processing to enable the prediction of input-dependent number of sections. Elements are by
default truncated to 512 dictionary tokens for the language-specific BERT model, available in the
linked hugging face repository and the suggested max-offer threshold of 200 per catalog is followed.
Batches of 64 catalogs are used. The proposed NOC model is trained for 12.5K batch-iterations, the
equivalent of 100 epochs.

Hyperparameters. The PROCAT training regimen includes a learning rate adjustment from 1e-4 to
5e-5 at the 5K-th batch iteration and 1e-5 at the 10K-th. The AdamW (Loshchilov & Hutter, 2017)
optimizer was used with a weight decay coefficient of 1e-3. Additionally, the default weights per
loss factor are provided. The main clustering loss factor λc is equal to 1.0, the cluster ordering loss
factor is set to λo = 10.0 and the cardinality prediction loss factor λk = 0.5. A hundred inferences
samples is generated by default during validation, final metrics being calculated for the clustering
prediction with the highest probability.

Model parameters. The NOC model with reported performance had 23mil trainable parameters
(not including the BERT model, which was frozen during training). The element and individual
cluster encoding functions, each consisting of five stacked SIT layers followed by a PMA layer, had
the input and hidden dimensions of 128. The function pooling all clusters consisted of four stacked
SIT layers followed by a PMA layer, also with 128 dimensions. The NOC1 clustering module
consistently uses a Parametric Rectified Linear Unit (PReLU) as the nonlinearity (He et al., 2015).
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Chapter 8

Conclusion

This final chapter provides a brief summary and discussion of the main aspects of the

presented research, followed by an outline of potential future work and applications

to related challenges.

8.1 Summary and Discussion

This thesis began with a closer look at the industrial context of the included research.

This was centered around two specific research questions, one theoretical, the other

applied. Namely, the questions of how neural networks can be utilized to predict

ordered, partitional clusters from sets of elements and how such methods can be ap-

plied to the problem of predicting product catalog structure from sets of available

product offers. Catalog structure was defined as either a permutation or an ordered,

partitional clustering of the available set elements. This, in turn, led to the formula-

tion of the titular Catalog Problem as an umbrella term for challenges that require

taking as input sets of varying cardinality and predicting an input-dependent number

of ordered, partitional clusters in accordance with target preference.

The majority of the considerations related to the second research question stem

from either the specifics of the Incito service, which defined the proposed models’

output format, or from the reality of existing product catalogs, as evidenced by PRO-

CAT. This curated dataset formed one of the larger initial deliverables of this project.

195



Incito requires a nested list of product offer ids, which it then renders into an elec-

tronic product catalog, taking into consideration the available screen size, relevant

product images, length of associated text and other factors. This defined the input

as varying-cardinality sets of product offers, whose features consist primarily of their

textual descriptions. The target output, in turn, became an ordered sequence of sub-

sets of product offers, representing the final catalog structure. The in-section order

of product offers is disregarded by the Incito rendering service due to the scarcity

of available screen space, thus there is no requirement to predict it. Examples of

catalogs predicted by the proposed model and subsequently rendered by the Incito

service are given in Figure 3.6.

Such and other examples of sets of product offers and their target structure are

taken from the provided PROCAT dataset. Consisting of over ten thousand individual

catalogs designed by human experts, this data forms a consistent mainstay of the

experiments presented in included publications. Comprised of over one and a half

million product offers composed into almost a quarter of a million of complementary

sections, PROCAT is a substantial and diverse source of information. Spanning 15

GPC-GS1 commercial categories of products, it also provides a large corpus in an

underrepresented language (Danish). To the best of my knowledge PROCAT remains

the sole dataset enabling the prediction of the structure of electronic product catalogs.

Key aspects of the underlying challenge offered by the PROCAT dataset include

the varied number of product offers per catalog and the complex relational nature

of interactions between them, which according to subject matter experts defines the

composition of sections and their final ordering. Additionally, substantial difficulty

stems from having to provide not just a reasonable grouping or a prioritized list

of products by their relevance, but an engaging catalog narrative. This manifests

through seemingly interchangeable product offers appearing spread across multiple

pages, at different places within the catalog structure. It also hints at the problem

of there being many equally valid possible structures that could be predicted from
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the same input set. Unfortunately, within PROCAT there is only one given target

per set of product offers, defining a single way in which that corresponding catalog’s

content could be structured.

With these considerations in mind, two approaches to tackling the Catalog Problem

were applied. The first, incomplete approach was simpler and did not address every

aspect of the Catalog Problem. It is also referred to as the set-to-sequence approach,

in relation to a larger field of research and corresponding family of methods, where the

goal is to take a set of varying cardinality and predict a permutation of its elements.

As such, this approach does not predict an input-dependent number of partitional

clusters. Instead, it requires one to provide this number a priori and predicts in-

section order through selecting special section-break tokens at various places in the

output sequence.

The second, complete approach to the Catalog Problem described within this work

came in the form of supervised neural ordered clustering. It combines elements of each

of the three families of neural methods that were presented in Chapter 2. Namely,

it utilizes set encoding methods to obtain meaningful, fixed-length representations of

the input set. Subsequently, it uses supervised neural clustering techniques to obtain

a partitional clustering of the set elements, conditioned on this embedding. Finally,

this approach employs set-to-sequence, pointer attention methods to predict an order

over the clusters. In principle, this respects every aspect of the Catalog Problem.

The core of the presented contributions revolves around finding ways to enhance

various aspects of these two approaches. The simpler, set-to-sequence approach in-

spired a literature review outlining different set encoding and permutation learning

methods in the field of neural networks, as included in Chapter 4. The hope is that

this publication provided a comprehensive entry point to researchers interested in

this and related challenges, guiding them towards the methods that are best suited

to their context of application.

On top of the curated dataset of real-world product catalogs, a library for generat-
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ing simpler, synthetic catalogs has been provided. Both of these are introduced in the

second included article, in Chapter 5. The procedurally generated catalogs received

separate attention within this work in Chapter 3.1. Together, these datasets - one

real, one synthetic - presented the scientific community with data, evaluation metrics

and initial benchmarks for a practical approach to the Catalog Problem. In particu-

lar, the flexible, easily customizable configuration schema that guides the generation

of the aforementioned synthetic catalogs opens the door for an empirical evaluation of

a given model’s capacity to learn the kinds of higher-order relational rules that guided

the design of catalogs from PROCAT. Furthermore, one can gain insight into model

performance separately in terms of section composition and catalog structure predic-

tion or even on a per-rule basis. Additionally, synthetic catalogs address the problem

of there being only one canonical structure available per a catalog’s constituent prod-

uct offer set, as one can generate a large number of equally valid synthetic catalogs

from the same underlying input in the form of n atomic product offer tokens.

Another contribution came in the form of the Set Interdependence Transformer

(SIT), a proposed set encoding method designed to enhance the original Set Trans-

former’s [11] ability to encode interactions between elements and the set in its entirety.

This variant was inspired by the conversations with SMEs in relation to what actually

determines the composition and order of sections in real-world product catalogs. The

experts pointed in the direction of pairwise and higher-order interactions among the

entirety of the available set. SIT appears to make learning of these interactions more

effective by treating the entire set as its own element and performing transformer-style

attention operations [118] over all such elements, via a chosen number of layers.

This modification appears to enable SIT to learn structural and compositional rules

dependent on nth order interactions among set elements in fewer than n layers, as

evidenced by the performance of set-to-sequence models that employ it as their set

encoding module, on a wide array of tasks. Presented in Chapter 6, these included

the Travelling Salesman Problem [193], Formal Grammars [194] and the Dyck Lan-
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guage [19], the sentence ordering dataset ROCStory [135] as well as the synthetic

catalogs and PROCAT. In almost all cases SIT resulted in an increase in perfor-

mance, suggesting its applicability to tasks where interactions among a large number

of set elements play a pivotal role. However, these are purely empirical results and

both their reproduction and a firm theoretical grounding of why this occurs remain

as subjects for future work, as discussed in the next section.

The final contribution of the presented work came in the form of the Neural Ordered

Clusters (NOC) model. Markedly the first neural architecture capable of addressing

the Catalog Problem in all its aspects, NOC can take a set of any cardinality and

predict an unknown number of ordered, partitional clusters, without in-section order.

NOC utilizes SIT as its set encoder to obtain both the fixed-length vector representa-

tion of the initial input set, of each predicted cluster and of all the predicted clusters

in their entirety (which are themselves sets of varying cardinalities). It expanded

upon existing neural clustering methods by adding a per-cluster cardinality predic-

tion mechanism, which is used to adjust the initial cluster assignments. The last stage

of NOC involves set-to-sequence techniques to predict a permutation of the predicted

clusters, specifically through the application of an Enhanced Pointer Network (EPN)

[17].

Altogether, these elements allowed the NOC algorithm to achieve top performance

on the task of ordering Mixtures of 2D Gaussians by their distance from the origin

point, the synthetic catalogs and PROCAT, as presented in the final article included

in Chapter 7. To my knowledge NOC is the only method capable of tackling the Cat-

alog Problem without alterations. It outperforms both preceding neural clustering

architectures combined with permutation-learning modules and two proposed mod-

ifications to set-to-sequence models that are capable of predicting and ordering an

input-dependent number of partitional clusters. Thus, a trained NOC model can be

used to take sets of product offers from a given PROCAT catalog and then have its

prediction fed to the Incito service to generate full catalogs that render well on any
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device, as shown in Figure 3.6. However, NOC is not a fully generative model, instead

predicting a single ordered clustering per input set.

8.2 Future Work

There is a number of directions that would be interesting to explore in the course of

future research. First significant direction could take the form of exploring alternative

formulations and approaches to the Catalog Problem itself. Two such alternatives

were briefly mentioned in Chapter 2. One of them would see the output of the

proposed models take the form of a graph. This could be either a mixed graph [195]

or a directed one, where unidirectional edges define the order of catalog sections and

bidirectional edges connect elements belonging to the same section, page, cluster or

community. This direction was left largely unexplored due to time constraints but

there is a significant and active branch of research in the area of deep generative

NNs which could provide the foundation for future work along these lines [70, 71].

Particularly the Graph Recurrent Attention Networks (GRANs) would appear to

constitute an avenue of investigation into prediction of ordered communities, due to

the sequential way in which they predict blocks of nodes and edges, as seen in the

works of Liao et al. (2019), Shah and Koltun (2020) and Jin et al. (2020). For a

recent overview with a particular focus on generative models for the related topic of

molecular discovery, the work of Bilodeau et al. (2022) can be recommended.

Another alternative approach to the Catalog Problem comes in the form of Rein-

forcement Learning. RL has been successfully applied to a large number of combina-

torial optimization problems [96–99], including the aforementioned Vehicle Routing

Problem [100], which is a generalization of the Travelling Salesman Problem, which

was used in the presented experimental work. This progress has been extended to

real-world applications in such fields as transportation systems [102], traffic signal

control [103] and robotics [104], further suggesting its applicability to the industrial

challenge of predicting engaging product catalogs. However, RL methods generally
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benefit from a clear, fine-grained reward function that would provide a learning signal

at each time step and the PROCAT dataset does not appear to provide such a mea-

sure. This difficulty is related to the previously mentioned, hypothesized existence

of multiple equally valid, alternative ways to compose and structure the same set of

product offers into a catalog. Nonetheless, other developments in the field appear

to alleviate this problem. For example, the Exploratory Combinatorial Optimization

DQN (ECO-DQN) [197] proposed by Barrett et al. suggests that the agent should

seek to continuously improve the solution by learning to explore at test time, which

resulted in greater ability to generalize to unseen graph sizes and structures. This and

other RL methods could potentially be used to learn from actual user interactions

within the Tjek app and continuously adjust the initially predicted catalog structure.

Even more aligned with the original area of application is the Learn2Assemble RL

model proposed by Funk et al. (2022) which learns to assemble entire 3D structures

through a combination of multi-head attention graph representation, Q-learning and

Monte Carlo Tree Search. Nonetheless, the scale of the problem that Learn2Assemble

was tested on does not match the scale of the PROCAT dataset (up to 22 blocks com-

pared to hundreds of product offers in a single catalog).

A different direction of future efforts could come in the form of improving on

existing work. Starting with the provided library for generating synthetic catalogs,

it could be further expanded to include other types of compositional and structural

rules. These could include sections consisting of three or more types of atomic product

offers in more complicated ratios or multiple valid structural orders of sections per

input set composition. It could also be beneficial to investigate other ways of ensuring

that only nth order interactions are required to be learned to predict catalogs that

are valid according to a specific rule. Existing datasets in the relational reasoning

space, such as Sort-of-CLEVR [188], adjusted Kinetics [191] and datasets of simulated

physical mass-spring systems constructed via the MuJoCo physics engine [199] clearly

distinguish between relational and non-relational patterns, but are less clear when it
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comes to the degree or order of the relational rule that needs to be learned. For

example the Sort-of-CLEVR visual question answering dataset presents pictures of

up to six elements, but having to answer a question about which element is farthest

from another might only require knowledge of five pairwise relations.

Furthermore, research efforts could be devoted to improving upon the two presented

neural architectures. The Set Interdependence Transformer could benefit from a firm

theoretical analysis of its ability to encode higher-order interactions and the Neural

Ordered Clusters could be reformulated as a fully generative model in accordance

with the nature of the PROCAT dataset, as discussed in Chapter 3.3.2. Set-to-

sequence models sometimes use beam search to obtain multiple predictions per input

set, which I have abstained from due to the work of Meister et al. (2020) which

showed that exact maximum a posteriori decoding of NLP generators frequently leads

to low-quality results. Nonetheless, in principle nothing prevents the application of

a fully generative approach in the cluster ordering stage and such a model’s ability

to suggest multiple, perhaps equally probable catalog alternatives could be useful for

A/B testing in the downstream application. This could be further combined with the

learning signal from direct user interactions, as hinted at earlier in this Chapter.

Finally, the presented work could be extended to other, related challenges or com-

bined with novel ML techniques to provide a better experience to the end user. The

generated catalogs could be tailored to the specific user’s preferences in a private

yet personalized way through federated learning [201]. A real-world challenge with

business applications that can be structured in a way reminiscent of the Catalog

Problem is the selection of news and other types of articles for digital media outlets.

Similarly, certain recent developments in the area of using ML to construct curricu-

lums for students suggest that this can be approached through grouping topics that

need to be learned together, but in any order, possibly tailored to the individual

student, and then ordering these groups to enable hierarchical learning [202, 203].

Furthermore, deep learning methods are being applied to medical triage datasets in
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a semi-supervised manner [204]. I believe the applicability of presented methods to

these and other emerging areas speaks to the usefulness of NN-based, supervised

ordered clustering with regards to new and exciting challenges.
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