370 research outputs found

    A Systematic Survey on Deep Generative Models for Graph Generation

    Full text link
    Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to its wide range of applications, generative models for graphs have a rich history, which, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for the graph generation. Firstly, the formal definition of deep generative models for the graph generation as well as preliminary knowledge is provided. Secondly, two taxonomies of deep generative models for unconditional, and conditional graph generation respectively are proposed; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted

    Neural Dynamics under Active Inference: Plausibility and Efficiency of Information Processing

    Get PDF
    Active inference is a normative framework for explaining behaviour under the free energy principle—a theory of self-organisation originating in neuroscience. It specifies neuronal dynamics for state-estimation in terms of a descent on (variational) free energy—a measure of the fit between an internal (generative) model and sensory observations. The free energy gradient is a prediction error—plausibly encoded in the average membrane potentials of neuronal populations. Conversely, the expected probability of a state can be expressed in terms of neuronal firing rates. We show that this is consistent with current models of neuronal dynamics and establish face validity by synthesising plausible electrophysiological responses. We then show that these neuronal dynamics approximate natural gradient descent, a well-known optimisation algorithm from information geometry that follows the steepest descent of the objective in information space. We compare the information length of belief updating in both schemes, a measure of the distance travelled in information space that has a direct interpretation in terms of metabolic cost. We show that neural dynamics under active inference are metabolically efficient and suggest that neural representations in biological agents may evolve by approximating steepest descent in information space towards the point of optimal inference

    Preventing Catastrophic Cyber–Physical Attacks on the Global Maritime Transportation System:A Case Study of Hybrid Maritime Security in the Straits of Malacca and Singapore

    Get PDF
    This paper examines hybrid threats to maritime transportation systems and their governance responses; focusing on the congested Straits of Malacca and Singapore (SOMS) as an illustrative case study. The methodology combines secondary sources with primary data from 42 expert interviews, a 28 respondent survey, and two maritime security roundtables. Key findings were that ships’ critical systems are increasingly interconnected, yet aging IT infrastructure and minimal cybersecurity awareness among crews heighten risks. Meanwhile, regional terrorist groups have previously targeted shipping and shown considerable skill in exploiting online tools, aligning with broader calls for jihadist violence. Furthermore, opportunistic piracy persists in the SOMS with the potential to disrupt shipping. Experts confirmed that maritime cybersecurity lags behind other critical infrastructure sectors and needs updated governance. Initial International Maritime Organization (IMO) guidelines lack specificity but revisions and updated IMO guidance are in process, while Port state implementation of maritime cybersecurity standards varies. Crucially, information sharing remains inadequate, even as recorded attacks increase. Findings underscore that although major hybrid incidents have not occurred, simulations and threat actors’ capabilities demonstrate potential for catastrophic collisions or cascading disruption in congested waterways. Mitigating factors like redundancy and crew training are deficient currently. Some alignment between SOMS states on maritime security cooperation exists, but not on cyber threats specifically. Key recommendations include an anonymous cyber attack reporting system, reinforced training and shipboard systems, and consolidated regional frameworks. Until these priorities are addressed, the analysis concludes that hybrid vulnerabilities in this vital global chokepoint remain a serious concern

    Few-Shot Physically-Aware Articulated Mesh Generation via Hierarchical Deformation

    Full text link
    We study the problem of few-shot physically-aware articulated mesh generation. By observing an articulated object dataset containing only a few examples, we wish to learn a model that can generate diverse meshes with high visual fidelity and physical validity. Previous mesh generative models either have difficulties in depicting a diverse data space from only a few examples or fail to ensure physical validity of their samples. Regarding the above challenges, we propose two key innovations, including 1) a hierarchical mesh deformation-based generative model based upon the divide-and-conquer philosophy to alleviate the few-shot challenge by borrowing transferrable deformation patterns from large scale rigid meshes and 2) a physics-aware deformation correction scheme to encourage physically plausible generations. We conduct extensive experiments on 6 articulated categories to demonstrate the superiority of our method in generating articulated meshes with better diversity, higher visual fidelity, and better physical validity over previous methods in the few-shot setting. Further, we validate solid contributions of our two innovations in the ablation study. Project page with code is available at https://meowuu7.github.io/few-arti-obj-gen.Comment: ICCV 2023. Project Page: https://meowuu7.github.io/few-arti-obj-ge

    MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper

    Get PDF

    On looking into words (and beyond): Structures, Relations, Analyses

    Get PDF
    On Looking into Words is a wide-ranging volume spanning current research into word structure and morphology, with a focus on historical linguistics and linguistic theory. The papers are offered as a tribute to Stephen R. Anderson, the Dorothy R. Diebold Professor of Linguistics at Yale, who is retiring at the end of the 2016-2017 academic year. The contributors are friends, colleagues, and former students of Professor Anderson, all important contributors to linguistics in their own right. As is typical for such volumes, the contributions span a variety of topics relating to the interests of the honorand. In this case, the central contributions that Anderson has made to so many areas of linguistics and cognitive science, drawing on synchronic and diachronic phenomena in diverse linguistic systems, are represented through the papers in the volume. The 26 papers that constitute this volume are unified by their discussion of the interplay between synchrony and diachrony, theory and empirical results, and the role of diachronic evidence in understanding the nature of language. Central concerns of the volume include morphological gaps, learnability, increases and declines in productivity, and the interaction of different components of the grammar. The papers deal with a range of linked synchronic and diachronic topics in phonology, morphology, and syntax (in particular, cliticization), and their implications for linguistic theory

    On looking into words (and beyond): Structures, Relations, Analyses

    Get PDF
    On Looking into Words is a wide-ranging volume spanning current research into word structure and morphology, with a focus on historical linguistics and linguistic theory. The papers are offered as a tribute to Stephen R. Anderson, the Dorothy R. Diebold Professor of Linguistics at Yale, who is retiring at the end of the 2016-2017 academic year. The contributors are friends, colleagues, and former students of Professor Anderson, all important contributors to linguistics in their own right. As is typical for such volumes, the contributions span a variety of topics relating to the interests of the honorand. In this case, the central contributions that Anderson has made to so many areas of linguistics and cognitive science, drawing on synchronic and diachronic phenomena in diverse linguistic systems, are represented through the papers in the volume. The 26 papers that constitute this volume are unified by their discussion of the interplay between synchrony and diachrony, theory and empirical results, and the role of diachronic evidence in understanding the nature of language. Central concerns of the volume include morphological gaps, learnability, increases and declines in productivity, and the interaction of different components of the grammar. The papers deal with a range of linked synchronic and diachronic topics in phonology, morphology, and syntax (in particular, cliticization), and their implications for linguistic theory
    • …
    corecore