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Abstract: Active inference is a normative framework for explaining behaviour under the free energy
principle—a theory of self-organisation originating in neuroscience. It specifies neuronal dynamics
for state-estimation in terms of a descent on (variational) free energy—a measure of the fit between
an internal (generative) model and sensory observations. The free energy gradient is a prediction
error—plausibly encoded in the average membrane potentials of neuronal populations. Conversely,
the expected probability of a state can be expressed in terms of neuronal firing rates. We show that this
is consistent with current models of neuronal dynamics and establish face validity by synthesising
plausible electrophysiological responses. We then show that these neuronal dynamics approximate
natural gradient descent, a well-known optimisation algorithm from information geometry that
follows the steepest descent of the objective in information space. We compare the information length
of belief updating in both schemes, a measure of the distance travelled in information space that has a
direct interpretation in terms of metabolic cost. We show that neural dynamics under active inference
are metabolically efficient and suggest that neural representations in biological agents may evolve by
approximating steepest descent in information space towards the point of optimal inference.

Keywords: active inference; free energy principle; process theory; natural gradient descent; informa-
tion geometry; variational Bayesian inference; Bayesian brain; self-organisation; metabolic efficiency;
Fisher information length

1. Introduction

Active inference is a normative framework for explaining behaviour under the free
energy principle, a theory of self-organisation originating in neuroscience [1–4] that charac-
terises certain systems at steady-state as having the appearance of sentience [5,6]. Active
inference describes agents’ behaviour as following the equations of motion of the free
energy principle so as to remain at steady-state, interpreted as the agent’s goal [7].

Active inference describes organisms as inference engines. This assumes that organ-
isms embody a generative model of their environment. The model encodes how the states
external to the agent influence the agent’s sensations. Organisms infer their surrounding
environment from sensory data by inverting the generative model through minimisation
of variational free energy. This corresponds to performing approximate Bayesian inference
(also known as variational Bayes) [2,3,8–11], a standard method in machine learning, or
minimising the discrepancy between predictions and sensations [1,12]. Active inference
unifies many existing theories of brain function [13,14], such as, for example, optimal con-
trol [15–18], the Bayesian brain hypothesis [19–21] and predictive coding [19,22–24]. It has
been used to simulate a wide range of behaviours in neuropsychology, machine learning
and robotics. These include planning and navigation [25–31], exploration [32–36], learning

Entropy 2021, 23, 454. https://doi.org/10.3390/e23040454 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-0126-4588
https://orcid.org/0000-0001-5108-5743
https://orcid.org/0000-0001-7984-8909
https://doi.org/10.3390/e23040454
https://doi.org/10.3390/e23040454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23040454
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23040454?type=check_update&version=1


Entropy 2021, 23, 454 2 of 20

of self and others [37,38], concept learning [39–41], playing games [42–44], adapting to
changing environments [45–47], active vision [48–51] and psychiatric illness [42,52–55].
Active inference agents show competitive or state-of-the-art performance in a wide variety
of simulated environments [34,46,47,56].

The last decade has seen the development of a theory of how the brain might imple-
ment active inference consistently in neurobiology [1,7,49,57,58]. A number of predictions
of this theory have been empirically validated, including the role of dopamine in decision-
making [59,60] and free energy minimisation in exploration and choice behaviour [61,62].
This paper characterises the neural dynamics of this process theory from two complemen-
tary standpoints: (1) consistency with empirically driven models of neural population
dynamics, and (2) the metabolic and computational efficiency of such dynamics.

Efficiency is an important aspect of neural processing in biological organisms [63–68]
and an obvious desideratum for artificial agents. Efficiency of neural processing in biologi-
cal agents is best seen in the efficient coding hypothesis by Horace Barlow [69–71], which
has received much empirical support [65,66,72–77] (see, in particular, [64] for energetic effi-
ciency) and has been a successful driver in computational neural modelling [75,78–80]. In
brief, any process theory of brain function should exhibit reasonably efficient neural processing.

Active inference formalises perception as inferring the state of the world given sensory
data through minimisation of variational free energy. This amounts to constantly optimising
Bayesian beliefs about states of the outside world in relation to sensations. By beliefs, we
mean probability distributions over states of the environment. These distributions score
the extent to which an agent trusts that the environment is, or not, in this or another state.
From an information theoretic viewpoint, a change of beliefs is a computation or a change
in information encoded by the agent.

This belief updating has an associated energetic cost. Landauer famously observed
that a change in information entails heat generation [81,82]. It follows that the energetics
needed for a change in beliefs may be quantified by the change in information encoded
by the agent over time (as the organism has to alter, e.g., synaptic weights, or restore
transmembrane potentials) mathematically scored by the length of the path travelled by the
agent’s beliefs in information space. There is a direct correspondence between the (Fisher)
information length of a path and the energy consumed by travelling along that path [83,84].
To ensure metabolic and computational efficiency, an efficient belief updating algorithm
should reach the free energy minimum (i.e., the point of optimal inference) via the shortest
possible path on average. Furthermore, since an agent does not know the free energy
minimum in advance, she must find it using only local information about the free energy
landscape. This is a non-trivial problem. Understanding how biological agents solve it
might not only improve our understanding of the brain, but also yield useful insights into
mathematical optimisation and machine learning.

In the first part of this work, we show that the dynamics prescribed by active inference
for state-estimation are consistent with current models of neural population dynamics. We
then show that these dynamics approximate natural gradient descent on free energy, a well-
known optimisation algorithm from information geometry that follows the steepest descent
of the objective in information space [85]. This leads to short paths for belief updates as
the free energy encountered in discrete state-estimation is convex (see Appendix A). These
results show that active inference prescribes efficient and biologically plausible neural
dynamics for state-estimation and suggest that neural representations may be collectively
following the steepest descent in information space towards the point of optimal inference.

2. The Softmax Activation Function in Neural Population Dynamics

This section rehearses a basic yet fundamental feature of mean-field formulations of
neural dynamics; namely, the average firing rate of a neural population follows a sigmoid
function of the average membrane potential. It follows that, when considering multiple
competing neural populations, relative firing rates can be expressed as a softmax function
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of average transmembrane potentials, as the softmax generalises the sigmoid in attributing
probabilities to multivariate (resp. binary) inputs.

The sigmoid relationship between membrane potential and firing rate was originally
derived by Wilson and Cowan [86], who showed that any unimodal distribution of thresh-
olds within a neural population, whose individual neurons are modelled as a Heaviside
response unit, results in a sigmoid activation function at the population level. This is
because the population’s activation function equals a smoothing (i.e., a convolution) of the
Heaviside function with the distribution of thresholds.

The assumption that the sigmoid arises from the distribution of thresholds in a neural
population remained unchallenged for many years. However, the dispersion of neuronal
thresholds is, quantitatively, much less important than the variance of neuronal membrane
potential within populations [87]. Marreiros and colleagues showed that the sigmoid acti-
vation function can be more plausibly motivated by considering the variance of neuronal
potentials within a population [88], which is generally modelled by a Gaussian distribution
under the Laplace assumption in mean-field treatments of neural population dynamics [89].
Briefly, with a low variance on neuronal states, the sigmoid function that is obtained—as
a convolution of the Heaviside function—has a steep slope, which means that the neural
population, as a whole, fires selectively with respect to the mean membrane potential, and
vice-versa. This important fact, which was verified experimentally using dynamic causal
modelling [88,90], means that the variance of membrane potentials implicitly encodes the
(inverse) precision of the information encoded within the population.

Currently, the sigmoid activation function is the most commonly used function to
relate average transmembrane potential to average firing rate in mean-field formulations
of neural population dynamics [91,92] and deep neural networks [93,94].

It follows that when considering multiple competing neural populations, the softmax
of their average membrane potentials may be used to express their relative firing rates. This
can be seen from the fact that the softmax function generalizes the sigmoid in attributing
probabilities in multivariate (resp. bivariate) classification tasks (p. 198) [93]. We refer to
Section 5.2, Chapters 3 and 6 in [95–97] for mathematical derivations of this generalisation.

3. Neural Dynamics of Perceptual Inference

Active inference formalises perception as inferring the state of the world given sensory
data through the minimisation of variational free energy [7]. For state estimation on discrete
state-space generative models (e.g., partially observable Markov decision processes [98]),
the free energy gradient corresponds to a generalised a prediction error [7]. This means
that to infer the states of their environment, biological agents reduce the discrepancy
between their predictions of the environment and their observations, or maximise the
mutual information between them [63].

Variational free energy is a function of approximate posterior beliefs Q,
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While P is the generative model: a probability distribution over hidden states (s) and
observations (o) that encodes the causal relationships between them. Only past and present
observations are directly accessible; hidden states can only be inferred. This means that
the free energy depends on the sequence of available stimuli and is updated whenever a
new observation is sampled. The symbol EQ means the expectation (i.e., the average) of
its argument under the subscripted distribution. DKL is known as the Kullback–Leibler
divergence or relative entropy [99–101] and is used as a non-negative measure of the
discrepancy between two probability distributions. Note that this is not a measure of
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distance, as it is asymmetric. The second line here shows that minimising free energy
amounts to approximating the posterior over hidden states, which are generally intractable
to compute directly, with the approximate posterior. Exact Bayesian inference requires
the approximate and true posterior to be exactly the same, at which point free energy
becomes negative log model evidence (a.k.a., marginal likelihood). This explains why
the (negative) free energy is sometimes referred to as an evidence lower bound (ELBO)
in machine learning [93]. The final line shows a decomposition of the free energy into
accuracy and complexity, underlying the need to find the most accurate and minimally
complex explanation for sensory observations (c.f., Horace Barlow’s principle of minimum
redundancy [69]).

When a biological organism represents some of its environment in terms of a finite
number of possible states (e.g., the locations in space encoded by place cells), we can specify
its belief by updating about the current state in peristimulus time. Discrete state-estimation
is given as a (softmax) function of accumulated negative free energy gradients [57].

.
v = −∇sF
s = σ(v)

In this equation, σ is a softmax function and s represents the agent’s beliefs about
states. (These are the parameters of a categorical distribution Q over states). Explicitly,
s is a vector whose i-th component is the agent’s confidence (expressed as a probability)
that is in the i-th state. The softmax function is the natural choice to map from free energy
gradients to beliefs as the former turns out to be a logarithm [7] and the components of the
latter must sum to one.

Just as neuronal dynamics involve translation from post-synaptic potentials to firing
rates, these dynamics involve translating from a vector of real numbers (v), to a vector
where components are bounded between zero and one (s). As such, we can interpret v as
the voltage potential of neuronal populations, and s as representing their firing rates (since
these are upper bounded thanks to neuronal refractory periods). Note the softmax function
here plays the same role as in mean-field formulations; it translates average potentials to
firing rates. On the one hand, this view is consistent with models of neuronal population
dynamics. On the other hand, it confers post-hoc face validity, as it enables the synthesis of
plausible local field potentials (see Figure 1) and a wide range of other electrophysiological
responses, including repetition suppression, mismatch negativity, violation responses,
place-cell activity, phase precession, theta-gamma coupling, and more [57].

The idea that state-estimation is expressed in terms of firing rates is well-established
when the state-space constitutes an internal representation of space. This is the raison
d’être of the study of place cells [102], grid cells [103] and head-direction cells [104,105],
where the states inferred are physical locations in space. Primary afferent neurons in
cats have also been shown to encode kinematic states of the hind limb [106–108]. Most
notably, the seminal work of Hubel and Wiesel [109] showed the existence of neurons
encoding orientation of visual stimuli. In short, the very existence of receptive fields in
neuroscience speaks to a carving of the world into discrete states under an implicit discrete
state generative model. While many of these studies focus on single neuron recordings,
the arguments presented above are equally valid and generalise the case of “populations”
comprising a single neuron.

In summary, the neuronal dynamics associated with state-estimation in active infer-
ence are consistent with mean-field models of neural population dynamics. This view is
strengthened a posteriori, as this allows one to generate a wide range of plausible electro-
physiological responses. Yet, further validation remains to be carried out by testing these
electrophysiological responses empirically. We will return to this in the discussion.
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Figure 1. Active inference for state estimation (discrete state-space). Panel (a) summarises the problem of finding the
minimum of a function (e.g., the free energy). One possibility would be taking the shortest path, which involves climbing
up a hill; however, in the nescience of the minimum, a viable strategy consists of myopically taking the direction of steepest
descent. In panel (b), we depict an example of a trajectory of an agent’s beliefs during the process of perception, which
consists of updating beliefs about the states of the external world to reach the point of optimal inference (i.e., free energy
minimum). In this example, the state-space comprises only three states (e.g., three different locations in a room). As they
are probabilities over states, the components of s are non-negative and sum to one; hence, the agent’s beliefs naturally
live on a triangle in three-dimensional space. Mathematically, this object is called a (two-dimensional) simplex. This
constitutes the belief space, or information space, on which the free energy is defined. Technically, this object is a smooth
statistical manifold, which corresponds to the set of parameters of a categorical distribution. To optimise metabolic and
computational efficiency, agents must update their beliefs to reach the free energy minimum via the shortest possible path
on this manifold. In panel (c), we exhibit simulated local field potentials that arise by interpreting the rate of change of v in
terms of depolarisations, over a sequence of eight observations (e.g., saccadic eye-movements). As the rate of change is
given by the free energy gradients, the decay of these local field potentials to zero coincides with the reaching of the free
energy minimum (at which the gradient is zero by definition). Each colour expresses the mean voltage potential of a neural
population, which encodes beliefs about one hidden state. These were obtained during the first eight trials of the T-Maze
numerical simulation described in Section 6.1.1. Local field potentials accompanying the rule learning simulation—and for
subsequent trials of the T-Maze task—can be found in [39,57], respectively. For more details on the generation of simulated
electrophysiological responses, see [57].

4. A Primer on Information Geometry and Natural Gradient Descent

To assess the computational and metabolic efficiency of a belief trajectory, it becomes
necessary to formalise the idea of “belief space”. These are well-studied structures in the
field of information geometry [110–112], called statistical manifolds. In our case, these are
(smooth) manifolds, where each point corresponds to a parameterisation of the probability
distribution in consideration (see Figure 2). One is then licensed to talk about a change in
beliefs as a trajectory on a statistical manifold.
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Figure 2. Statistical manifolds and information length. Panels (a,b) illustrate the statistical manifolds
associated with two well-known probability distributions: the normal distribution and the categorical
distribution, respectively. The statistical manifold associated with a probability distribution is the
set of all possible parameters that it can take. For the univariate normal distribution, parameterised
with mean µ and positive standard deviation ς, the associated statistical manifold is the upper half
plane (panel a). For the categorical distribution, in the case of three possible states, the statistical
manifold is the 2-dimensional simplex (panel b). More generally, in the case of n possible states, the
statistical manifold of the categorical distribution is the set of all vectors with positive components
that sum to one, i.e., the (n − 1)-dimensional simplex. This is a higher-dimensional version of the
triangle or the tetrahedron. In panels (c,d) we illustrate why the Euclidean distance is ill-suited to
measure the information distance between probability distributions. To show this, we selected four
distributions that correspond to points on the statistical manifold of the normal distribution. One can
see that the Euclidean distance between the modes of the red and the blue distributions is the same
as that from the orange and the green; however, the difference in information of each respective pair
is quite different. In panel (c), the two distributions correspond to two drastically different beliefs,
since there is such little overlap; on the contrary, the beliefs in panel (d) are much more similar. This
calls for a different notion of distance that measures the difference in (Fisher) information between
distributions, namely, the information length.

Smooth statistical manifolds are naturally equipped with a different notion of distance,
even though they may be subsets of Euclidean space. This is because the Euclidean distance
measures the physical distance between points, while the information length measures
distance in terms of the (accumulated) change in (Fisher) information (see Figure 2) along
a path. The canonical choice of information length on a statistical manifold is associated
with the Fisher information metric tensor g [113–115]. Technically, a metric tensor is a
smoothly varying choice of symmetric, positive definite matrices at each point of the
manifold. This enables computation of the length of paths as well as the distance between
points, by measuring the length of the shortest path (see Appendix B). Mathematically,
the Fisher information metric can be defined the Hessian of the KL divergence between
two infinitesimally close distributions (see Appendix B). This means that the information
length of a trajectory on a statistical manifold is given by accruing infinitesimally small
changes in the KL divergence along it.
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Amari’s natural gradient descent [85,116] is a well-known optimisation algorithm for
finding the minimum of functions defined on statistical manifolds such as the variational
free energy. It consists of preconditioning the standard gradient descent update rule with
the inverse of the Fisher information metric tensor:

.
s = −∇sF → .

s = −g−1(s)∇sF

Preconditioning by the inverse of g means that the natural gradient privileges direc-
tions of low information length. One can see this, since the directions of greatest (resp.
smallest) information length are the eigenvectors of the highest (resp. lowest) eigenvalues
of g.

In fact, Amari proved that the natural gradient follows the direction of steepest
descent of the objective function in information space [85]. Technically, the natural gradient
generalises gradient descent to functions defined on statistical manifolds. As the free
energy for discrete state-estimation is convex (see Appendix A), this means that natural
gradient descent will always converge to the free energy minimum via a short path.

To summarise, agents’ beliefs naturally evolve on a statistical manifold towards the
point of optimal inference. These manifolds are equipped with a different notion of distance,
namely, the information length. In the case of discrete state-estimation, beliefs evolve on
the simplex towards the free energy minimum. Reaching the minimum with a short path
translates into higher computational and metabolic efficiency. One scheme that achieves
short paths for finding the minimum of the free energy is the natural gradient. In the next
section, we will show that the neuronal dynamics entailed by active inference approximate
natural gradient descent.

5. Active Inference Approximates Natural Gradient Descent

Discretising the (neuronal) dynamics prescribed by active inference and natural gradi-
ent descent give us the following state-estimation belief updates, respectively:

s(t+1) ← σ
(

ln s(t) − ε ∇s(t)F
)

s(t+1) ←
s(t) − ε g−1(s(t))∇s(t)F

∼

In these equations, the logarithm is taken component-wise; ε is the step-size used in
the discretisation and ~ denotes normalisation by the sum of the components to ensure
that s(t+1) lies on the simplex. (Natural gradient descent dynamics do not necessarily
remain on the statistical manifold. This problem has been the object of numerous works
that supplemented the natural gradient update with a projection step [117–121]. Here,
we choose the simplest projection step to ensure that the result remains on the simplex:
normalising with the sum of the components.)

These dynamics are approximately the same. We can equate them under a first order
Taylor approximation of the exponential inside the softmax function:

s(t+1) ← σ
(

ln s(t) − ε ∇s(t)F
)

=
exp

[
ln s(t)−ε ∇

s(t)
F
]

∼

=
s(t)�exp

[
−ε ∇

s(t)
F
]

∼

'
s(t)�

[→
1−ε ∇

s(t)
F
]

∼

=
s(t)−ε s(t)�∇

s(t)
F

∼

=
s(t)−ε g−1(s(t))∇

s(t)
F

∼
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The symbol � denotes the Hadamard product (elementwise multiplication). The last
line follows since, on the simplex, the inverse of the Fisher information metric tensor is
simply a diagonal matrix whose diagonal is s (see Appendix C).

Although these dynamics are approximately the same, this does not guarantee that the
paths taken in the limit of infinitesimally small time steps (which correspond to continuous-
time dynamics in physical and biological systems) will be the same. One can see this
algebraically, since the number of time steps needed to reach the free energy minimum
increases as the step-size decreases; thus, the difference between paths, which equals the
sum of the differences at each timestep, is not guaranteed to converge to zero. Hence,
it is necessary to verify that this approximation holds well in practice by analysing the
discrepancy between paths using numerical simulations.

6. Numerical Simulations

In this section, we use numerical simulations of decision-making tasks under uncer-
tainty to assess to what extent the inferential dynamics of active inference match the natural
gradient descent on free energy. Our simulations compared the information length of the
belief trajectories taken by both schemes, which reflects their computational and metabolic
efficiency.

6.1. Methodology

We simulate two sequential decision-making tasks under uncertainty—a simple two-
step maze task and a more complex abstract rule learning task. These tasks involve an
agent equipped with a generative model (in our case, a partially observed Markov decision
process [98]) and a repeated sequence of the following steps [7]:

1. Observation: The agent receives an observation;
2. Perceptual inference: The agent infers hidden states from observations by minimiz-

ing free energy;
3. Planning as inference: The agent evaluates courses of action by evaluating their

expected free energy, an objective which favours exploitative (goal-seeking) and
explorative (ambiguity resolving) behaviour [7,33];

4. Decision-making: The agent executes the action with the lowest expected free energy.
5. Learning: The agent learns the generative model by accumulating data on hidden

state transitions and on the likelihood mapping between states and outcomes.

6.1.1. Overview of Tasks

The first paradigm simulates a rat in a T-Maze (see Figure 3). The T-Maze has a reward
which is placed either in the right or left upper arm (in red). The bottom arm contains a
cue that specifies the location of the reward. The rat’s initial location is the middle of the
T-Maze. The initial conditions are specified such that the rat believes that it will claim the
reward and avoid the unbaited upper arm. In the first three trials, the reward’s location is
random. The optimal strategy then consists of collecting the cue (exploration) and using
this information to collect the reward (exploitation). To achieve this, the rat must infer its
location and the configuration of the maze, in addition to the route it will take. In addition,
the agent has to learn that the cue provides reliable information that enables it to infer
the reward’s location. After the first three trials, the reward’s location remains constant
across trials. As there is no residual uncertainty to resolve by checking the cue, the optimal
strategy then consists of directly collecting the reward. To do this, the agent has to learn
the reward’s location.

The second paradigm is a simulation of abstract rule learning. In each trial, the agent
is presented with a sequence of stimuli and has to guess the next in the sequence, upon
which it receives positive or negative feedback. The stimuli are generated according to
a rule unknown to the agent, so that there is always one unique correct answer. The
goal of the agent is to provide correct answers while avoiding incorrect ones. To achieve
its goal, the agent has to learn the rule generating the stimuli. In the first trials—and
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in the absence of knowledge—the agent guesses the missing stimulus. After each trial,
the agent updates its prior beliefs based on past observations. After several trials, the
agent has learned the contingencies of the task, whence it is able to predict the missing
stimulus correctly and reliably. A complete specification of the generative model for this
rule learning task may be found in [39]. The important consideration for our purposes
is that this simulation is a more complex version of the T-Maze task, in the sense that it
uses the same belief updating scheme and generative model. The key difference is that
the generative model contains many more states: sixteen control states, 144 hidden states
and 48 possible observations [39], Figure 3. This means that the simplex on which the free
energy is defined has 143 dimensions.
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Figure 3. Generative model and T-Maze task. This figure describes the generative model used in the simulations and
the specificities of the T-Maze task. The generative model is a partially observed Markov decision process (POMDP), a
canonical model for sequential decision-making tasks under uncertainty. On the left-hand-side, the generative model is
expressed as a factor graph [122]: the circles represent random variables while the squares represent factors. The shaded
variables are observations, which the agent samples in discrete time. The unshaded variables are random variables that
are inferred by the agent. These are either hidden states (s) or policies (π, i.e., action sequences), which need to be inferred
from observations. The factors encode the relationships between the variables that they link. For example, D is a vector
of non-negative components that sum to one that expresses the prior belief of being in this or another hidden state; B is a
stochastic matrix that encodes the transition probabilities between hidden states given actions; similarly, A is a matrix that
gives the probability of observations given states. See [7] for more details. Importantly, the factors can themselves be learned
over time. On the right-hand side, we further unpack the generative model of the T-Maze task. The task is as pictured in the
upper-right corner. The rat’s initial location is the centre of the T-Maze. At each time-step, the rat can choose between four
control states (i.e., actions) that lead the rat to move to one of the four maze locations (middle, top-left, top-right or bottom).
There are four hidden states that correspond to the location of the rat in the T-Maze and another two that correspond to
the location of the reward (right arm or left arm), which leads to eight hidden states in total, meaning that the associated
simplex on which the free energy is defined is seven-dimensional. There are seven possible observations that correspond
to being in the middle of the T-Maze, in each one of the upper arms with (in red) or without the reward (in grey), and to
collecting the cue, which reveals the location of the reward. The agent has a preference for each of these observations: the
agent wants to claim the reward and avoid the unbaited arm. The agent is neutral w.r.t. all other observations. See [57] for
more details of this paradigm.
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6.1.2. Two Schemes

We simulate each task with two different schemes: a standard active inference scheme,
and a modified active inference scheme that differs only in that it performs perceptual
inference using natural gradient descent. More explicitly, these agents, respectively, infer
hidden states from observations in peristimulus time using the learning rule

s(t+1) ← σ
(

ln s(t) − ε ∇s(t)F
)

s(t+1) ←
s(t) − ε g−1(s(t))∇s(t)F

∼ ,

with a common step size of ε = 0.25. Note that this optimization procedure is repeated
at each step of the decision-making task, as a new observation updates the free energy
landscape. Note also that the free energy changes in between trials due to the fact that the
generative model is learned over time. The explicit form of the free energy for a partially
observed Markov decision process is given in Appendix A.

All other aspects of belief updating (planning as inference, decision-making and
learning) were conserved across schemes, following [7,39,57] and their publicly available
software implementation (see Software note).

6.1.3. Measuring Information Length

We simulate both tasks with 128 agents of each scheme and for 24 trials. For each agent,
we measure the information length of perceptual inference by accumulating the information
distance (Appendix E) between consecutive updates of the learning rule s(t+1), s(t).

dg(s(t+1), s(t)) = 2‖
√

s(t+1) −
√

s(t)‖

6.2. Results

We plot the results of our numerical experiments in Figure 4.
We observe that, in the T-Maze task, standard active inference performs better than

the active inference scheme modified with natural gradient descent. However, the opposite
is true in the abstract rule learning task. Overall, the differences in information length
between the two schemes are small compared to the overall information length of belief
trajectories (less than 4% deviation on average in both tasks). This suggests that the
difference between the two schemes is small.

The paradigm-specific difference in performance is due to differences in the generative
model and the corresponding free energy landscapes. This means that it should be possible
to find other paradigms where either active inference or the natural gradient performs
better. Yet, any discrete state-estimation task will exhibit a quantitatively similar, convex-
free energy landscape (Appendix A), which implies that the inference problem will be
mathematically analogous. Therefore, we expect small performance differences between
the two schemes for related sequential decision-making tasks (with an associated partially
observed Markov decision process).

To summarise, our results suggest that state-estimation in active inference is a good
approximation to natural gradient descent on free energy. Natural gradient descent follows
the steepest descent (as defined in information space) on a convex free energy landscape
(see Appendix A). This means that neural dynamics under active inference take short paths
to the free energy minimum, which are computationally and metabolically efficient.
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Figure 4. Information length of perceptual inference in active inference and natural gradient. The upper-half of the figure
plots the results of the numerical experiments with T-Maze task, while the lower half the abstract rule learning task. In Panel
(a), the histograms show the information length of perceptual inference in active inference (in red) and natural gradient
(in blue). Specifically, this is (mean = 7075, median = 2.9776) for active inference, and (mean = 2.7793, median = 3.1163)
for the natural gradient; in the rule learning task, the information lengths are (mean = 14.3573, median = 16.2099) for
active inference and (mean = 13.8588, median = 16.1058) for the natural gradient. Information trajectories are longer in the
abstract rule learning task, due to its increased complexity. In other words, the greater number of hidden states—in the
generative model—mandate more belief updating. This means the model used for this high-dimensional task entails greater
complexity in the technical sense: as belief updating moves posterior beliefs further from their priors. (Parenthetically,
this means that the agents took much longer to update their beliefs). The reasons for systematic variation in information
length across trials within tasks is that (1) the task configuration varied from trial to trial and (2) the generative models
were themselves learned over trials. The sudden increase in information length in the T-Maze task at the ninth trial occurs
when agents learn that the reward’s location is constant. As the reward’s location is unambiguous, belief trajectories are
longer as beliefs about context move from the middle of the simplex to the vertex representing the reward’s location at each
step of the paradigm. This means that we can improve the biological plausibility of the implementation by starting each
belief update at the previous free energy minimum instead of an agnostic location in the middle of the simplex. This would
avoid beliefs travelling to the same vertex multiple times in the same trial and hence would make belief trajectories shorter
once the reward location is learned. This consideration does not affect our characterisation, which simply compares the
information length given consistent starting and end points. As the context could be deduced only at the last step of the task,
a similar sudden change in information length did not occur in the abstract rule learning task. However, the slight increase
in information length across trials occurs for the same reason: learning the generative model made inferences increasingly
precise. In Panel (b), the violin plots illustrate the difference in information length by subtracting the information length of
the natural gradient from the information length of active inference. In the T-Maze paradigm, active inference mostly takes
shorter paths, which is why the violin plot’s values are mostly negative (mean= −0.0718, median= −0.1146). However, we
obtain the opposite pattern in the abstract rule learning task (mean = 0.4985, median= 0.5401). Panel (c) shows an example
of the belief trajectory taken during state estimation in the abstract rule learning task. This was possible to include as the
generative model includes a hidden state dimension with three possible alternatives [39], enabling a two-dimensional
representation of the associated simplex. The red trajectory corresponds to active inference, the blue is natural gradient
descent, and the orange is the shortest path to the free energy minimum (i.e., the geodesic, see Appendix D). This example
is not representative of the average and was chosen for purely illustrative purposes as the trajectories are very distinct,
lengthy and do not coincide with the geodesic. The fact that both schemes were significantly suboptimal in this example
was unsurprising as beliefs evolve to the free energy minimum using only local information about the free energy landscape.
Note that this suboptimality occurred only in a small minority of the trials considered here.

7. Discussion

In the first part of this paper, we showed that neural dynamics for discrete state-
estimation under active inference are consistent with mean-field models’ neural population
dynamics. This construct validity is further supported by the wide range of plausible
electrophysiological responses that can be synthesised with active inference [57]. Yet,
to fully endorse this view, the electrophysiological responses simulated during state-
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estimation need empirical validation. To do this, one would have to specify the generative
model that a biological agent employs to represent a particular environment. This may be
identified by comparing alternative hypothetical generative models with empirical choice
behaviour and computing the relative evidence for each model (e.g., [123]). Once the
appropriate generative model is found, one would need to compare the evidence for a few
possible practical implementations of active inference, which come from various possible
approximations to the free energy [27,124,125], each of which yields different belief updates
and simulated electrophysiological responses. Note that, of possible approximations of
the free energy, the marginal approximation which was used in our simulations currently
stands as the most biologically plausible [124]. Finally, one would be able to assess the
explanatory power of active inference in relation to empirical measurements and compare
it with other process theories.

In the second part of this paper, we showed that the neuronal process theory associated
with active inference approximates natural gradient descent for discrete state-estimation.
(Note that this work does not treat continuous state-estimation, e.g., inferring the tempera-
ture in a room, which needs to be investigated separately). Given that the natural gradient
follows the direction of steepest descent of the free energy in information space [85] and
that the free energy landscape at hand is convex (see Appendix A), this ensures that agent’s
beliefs reach the point of optimal inference via short trajectories in information space. This
means that active inference entails neuronal dynamics that are both computationally and
energetically efficient, an important feature of any reasonable process theory of the brain.

In the case of simulated (i.e., discretised) belief dynamics, active inference and natural
gradient perform similarly on average. Performance is scored by the information length
accrued during belief updating, which measures efficiency. In some cases, however, the
belief trajectories taken by both schemes were significantly longer than the shortest path to
the point of optimal inference. This is unsurprising since agents’ beliefs move myopically
to the free energy minimum. In short, our analysis suggests that biological agents can
perform natural gradient descent in a biologically plausible manner. From an engineering
perspective, this means that we can relate variational message passing and belief propaga-
tion, two inferential algorithms based on free energy minimisation [124,126,127], with the
natural gradient.

A general point is that the tools furnished by information geometry are ideally suited
to characterise and visualise inference in biological organisms as well as scoring its effi-
ciency. This paves the way for further applications of information geometry to analyse
information processing in biological systems.

8. Conclusions

In the first part, we showed how a generic account of brain function provided by
active inference is consistent with the more biophysically detailed and empirically driven
mean-field models of neural population dynamics.

We then demonstrated that state estimation under active inference approximates natu-
ral gradient descent on free energy. This suggests that the beliefs about states of the world
of biological agents evolve approximately according to a steepest descent on free energy.
Since the free energy landscape for discrete state-estimation is convex, the trajectories
taken to the point of optimal inference are short, which incurs minimal computational and
metabolic cost. This demonstrates the efficiency of neural dynamics under active inference,
an important feature of the brain as we know it. Further testing of active inference as a
process theory of brain function should focus on extending the empirical evaluation of
simulated neurophysiological responses.
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Software Note: The belief updating process described in this article can be implemented us-
ing the routine spm_MDP_VB_X.m available as Matlab code in the SPM academic software
http://www.fil.ion.ucl.ac.uk/spm/ (accessed on 9 April 2021). The active inference simulations
described in Figures 1 and 3 can be reproduced via a graphical user interface by typing DEM
(DEM_demo_MDP_X.m for the T-Maze task, rule_learning.m for the abstract rule learning task).
The natural gradient and information length simulations can be reproduced with code available at
https://github.com/lancelotdacosta/Neural-Dynamics-AI (accessed on 9 April 2021).

Appendix A. Convexity of the Free Energy

This Appendix shows the convexity of the free energy employed in discrete state-
estimation. On discrete state-space generative models (e.g., partially observable Markov
decision processes), the free energy optimised during state-estimation can be expressed
as [7]:

F(sπ1, . . . , sπT) =
T

∑
τ=1

sπτ · ln sπτ −
t

∑
τ=1

oτ · ln(A) sπτ − sπ1 · ln D−
T

∑
τ=2

sπτ · ln(Bπτ−1) sπτ−1

In this context, the neuronal dynamics described in the paper are:

.
v (sπ1, . . . , sπT) = −∇sπτ F(sπ1, . . . , sπT)
sπτ = σ(v)

Here, τ corresponds to time (which is discretised), sπτ corresponds to the beliefs
about states at timepoint τ, conditioned upon the fact that the agent is pursuing a certain
sequence of actions π. The particular meaning of the other variables is not important for our
purposes; the only important consideration is that Bπτ−1 are matrices, whose components
are strictly contained between zero and one, and logarithms are taken component-wise.

Recall that a sum of convex functions is convex. Furthermore,

• x 7→ x ln x is convex in the interval [0, 1], which implies that
T
∑

τ=1
sπτ · ln sπτ is convex.

• −
t

∑
τ=1

oτ · ln(A) sπτ − sπ1 · ln D is a linear function, hence it is convex.

• − ln(Bπτ−1) only has positive components, hence −
T
∑

τ=2
sπτ · ln(Bπτ−1) sπτ−1 is a posi-

tive linear combination of polynomials of degree two, which is convex.

This implies that the free energy is convex.

Appendix B. Fisher Information Metric Tensor, Information Length and
Information Distance

The Fisher information metric tensor is the canonical mathematical object that the
enables computation of (a certain kind of) information distance on a statistical manifold.
Technically, a metric tensor is a choice of symmetric, positive definite matrix at each point,
that varies smoothly on the statistical manifold. This is equivalent to specifying an inner
product at each point of the manifold and doing so smoothly.

Let p(x|s) be a probability distribution parameterised by s. The set of all possible
choices of s is the statistical manifold associated with p, which we will denote by M. This is
(in the case of classical probability distributions, which includes the scope of this paper)
a smooth manifold, where each point corresponds to a certain parameterisation of the

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
https://github.com/lancelotdacosta/Neural-Dynamics-AI
https://github.com/lancelotdacosta/Neural-Dynamics-AI
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probability distribution, i.e., a (smooth) statistical manifold. We can then define the Fisher
information metric tensor as

g(s) = ∇2
θ DKL[p(x|s)‖p(x|θ)]

∣∣∣
θ=s

.

This is an n-by-n matrix where n is the dimensionality of s and θ. There exist other
equivalent definitions [107,108].

This is beneficial, because a choice of an inner product at each point on the manifold
makes it possible to compute the length of tangent vectors. Let v be such a tangent vector
at a point s, then its norm is given by

‖v‖g :=
√

vTg(s)v

This means that we can also compute the length of smooth curves. Let γ : [0, 1] ⊂ R→ M
be such a curve. Its information length is given by

`g(γ) :=
∫ 1

0

√
.
γ(t)Tg(γ(t))

.
γ(t) dt,

where
.
γ := dγ

dt .
We can trivially extend this definition to compute the information distance between

points, say s and s′. This is simply the information length of the shortest curve connecting
the two points

dg(s, s
′
) = inf

γ : [0, 1]→ M
γ(0) = s, γ(1) = s

′

`(γ).

where, inf denotes the infimum of the quantity subject to the constraints in the subscript.
Let us take a step back to see why these definitions are sensible.

Statistical manifolds are generally curved; therefore, it is only possible to compute
distances locally, by deforming the small region of consideration into a portion of Euclidean
space. This is impractical and does not solve the problem of computing distances over
larger scales. Even if one did so, one would recover a deformed version of the Euclidean
distance, which would, generally speaking, not measure distance in terms of information.
The raison d’être of the metric tensor is to allow the computation of distances on the
manifold in a consistent way, and, in our case, consistently with the difference in Shannon
information.

If one replaced g in the definitions above by the identity matrix (i.e., the metric tensor
that is used implicitly in Euclidean space), one recovers the classical notion of length of
a vector (i.e., the square root of the inner product), the classical notion of the length of a
curve, namely

`(γ) :=
∫ 1

0
‖ .

γ(t)‖ dt.

The distance between two points is a little trickier as it involves proving that the short-
est path between two points is the straight line when the metric tensor is the identity. This
involves solving the geodesic equation (see Appendix D) for this metric tensor. Once this is
done, inserting a straight line in the above equation returns the usual Euclidean distance.

Appendix C. Fisher Information Metric Tensor on the Simplex

Suppose there are n + 1 states S = {s0, . . . , sn}. Then, a categorical distribution
p(x|s) over those states is defined as p(si|s) := si . The statistical manifold of all possible
parameters is the interior of the n-dimensional simplex, which is defined as

∆n := {s = (s0, . . . , sn) ∈ Rn+1 | si > 0, ∑
i

si = 1}
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The Fisher information metric tensor can be defined as

g(s) = ∇2
θ DKL[p(x|s)‖p(x|θ)]

∣∣∣
θ=s

.

The KL-divergence between two categorical distributions is given by

DKL[p(x|s)‖p(x|θ)] = ∑
x∈S

p(x|s) log p(x|s)
p(x|θ)

=
n
∑

i=0
p(si|s) log p(si |s)

p(si |θ)

=
n
∑

i=0
si log si

θi

We can take second derivatives

∂

∂θj

∂

∂θk

(
n

∑
i=0

si log
si
θi

)
= δjk

sk

θ2
k

.

where δjk is the Kronecker delta. Finally,

g(s) =

s−1
0 0 · · · 0

0 s−1
1

. . .
...

...
. . . . . . 0

0 · · · 0 s−1
n

.

Technical remark: since the statistical manifold of interest is n-dimensional, it is best
to view this metric tensor as being defined on an n + 1 dimensional neighbourhood of the
simplex, e.g., the positive orthant of Rn+1.

Appendix D. Geodesics on the Simplex

The aim of this section is to find the expression of the shortest path (in information
length) between two points on the simplex.

As shown in Appendix C, the metric tensor is given by

g(s) =

s−1
0 0 · · · 0

0 s−1
1

. . .
...

...
. . . . . . 0

0 · · · 0 s−1
n

.

Let s(0), s(1) be two points on the simplex. From standard differential geometry, the
shortest path γ between two points satisfies the geodesic equation:

..
γk +

n

∑
i,j=0

Γk
ij(γ)

.
γi

.
γj ≡ 0.

where Γk
ij are the Christoffel symbols of the Levi-Civita connection. These are real valued

functions defined with respect to the metric:

Γk
ij :=

1
2

n

∑
r=0

gkr
(

∂jgri + ∂igrj − ∂rgij

)
.
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In this expression, gkr is the (k, r) entry of the inverse metric tensor g−1 and ∂j is a
shorthand for ∂

∂sj
. In our case the only non-zero Christoffel symbols are given by

Γi
ii(s) = −

1
2si

.

This means that each component of the geodesic must satisfy the equation

2γi
..
γi −

.
γi

2 ≡ 0.

By inspection, one can see that the differential equation admits a polynomial solution
of degree two. Solving with the boundary conditions γ(0) = s(0), γ(1) = s(1) and discard-
ing those solutions that leave the positive orthant of Rn+1 (c.f., last remark Appendix C)
yields the expression of the geodesic:

γ(t) =
(
(1− t)

√
s(0) + t

√
s(1)
)2

.

Appendix E. Information Distance on the Simplex

The distance between two points on a statistical manifold is given by the information
length of the shortest path (i.e., the geodesic) between the two. Given two points s(0), s(1)

on the simplex, we have seen in Appendix D that the geodesic between these points is

γ(t) =
(
(1− t)

√
s(0) + t

√
s(1)
)2

Furthermore, from Appendix B, we have seen that the information distance between
two points is the information length of the geodesic between them

dg(s(0), s(1)) = `g(γ) =
∫ 1

0

√
.
γ(t)Tg(γ(t))

.
γ(t) dt

Lastly, from Appendix C, the Fisher information metric tensor on the simplex is

g(s) =

s−1
0 0 · · · 0

0 s−1
1

. . .
...

...
. . . . . . 0

0 · · · 0 s−1
n

Therefore, expanding the expression inside the information distance

.
γ(t)Tg(γ(t))

.
γ(t) =

n

∑
i=0

.
γi(t)

2

γi(t)

it is possible to show that
.
γi(t)

2

γi(t)
is constant for each i. One can do this by taking the

derivative with respect to t and noting that the result vanishes. This means that one can
remove the integral and find a concise expression for the information distance:

dg(s(0), s(1)) =
√

.
γ(0)Tg(γ(0))

.
γ(0)

=

√
n
∑

i=0

.
γi(0)

2

γi(0)

=

√
4

n
∑

i=0

(√
s(1)i −

√
s(0)i

)2

= 2‖
√

s(1) −
√

s(0)‖
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This expression is compelling, since it relates the information distance on the simplex
to the Euclidean distance on the n-dimensional sphere.
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27. Schwöbel, S.; Kiebel, S.; Marković, D. Active Inference, Belief Propagation, and the Bethe Approximation. Neural Comput. 2018,

30, 2530–2567. [CrossRef] [PubMed]
28. Matsumoto, T.; Tani, J. Goal-Directed Planning for Habituated Agents by Active Inference Using a Variational Recurrent Neural

Network. Entropy 2020, 22, 564. [CrossRef]
29. Çatal, O.; Verbelen, T.; Nauta, J.; Boom, C.D.; Dhoedt, B. Learning Perception and Planning With Deep Active Inference. In

Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 3952–3956. [CrossRef]

30. Çatal, O.; Wauthier, S.; Verbelen, T.; De Boom, C.; Dhoedt, B. Deep Active Inference for Autonomous Robot Navigation.
arXiv:200303220. 2020. Available online: http://arxiv.org/abs/2003.03220 (accessed on 22 May 2020).

http://doi.org/10.1016/j.jmp.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/28298703
http://doi.org/10.1016/j.tics.2009.04.005
http://www.ncbi.nlm.nih.gov/pubmed/19559644
http://doi.org/10.1016/j.jphysparis.2006.10.001
http://www.ncbi.nlm.nih.gov/pubmed/17097864
http://doi.org/10.1098/rsif.2013.0475
http://www.ncbi.nlm.nih.gov/pubmed/23825119
http://arxiv.org/abs/1906.10184
http://arxiv.org/abs/1906.10184
http://doi.org/10.1098/rsta.2019.0159
http://doi.org/10.1016/j.jmp.2020.102447
http://doi.org/10.1098/rstb.2005.1622
http://www.ncbi.nlm.nih.gov/pubmed/15937014
http://doi.org/10.1007/978-94-011-5014-9_5.s
http://doi.org/10.1561/2200000001
http://doi.org/10.1016/j.jmp.2017.09.004
http://doi.org/10.1038/nrn2787
http://doi.org/10.1007/s11229-018-01932-w
http://doi.org/10.1007/s10994-012-5278-7
http://arxiv.org/abs/2009.08111
http://arxiv.org/abs/2006.12964
http://arxiv.org/abs/2010.00262
http://doi.org/10.1016/j.conb.2017.08.010
http://www.ncbi.nlm.nih.gov/pubmed/28942084
http://doi.org/10.1016/j.tins.2004.10.007
http://arxiv.org/abs/1604.00289
http://doi.org/10.1038/4580
http://doi.org/10.1016/j.neuron.2012.10.038
http://www.ncbi.nlm.nih.gov/pubmed/23177956
http://doi.org/10.1098/rstb.2008.0300
http://doi.org/10.1007/s00422-018-0753-2
http://www.ncbi.nlm.nih.gov/pubmed/29572721
http://doi.org/10.3389/fpsyg.2012.00478
http://doi.org/10.1162/neco_a_01108
http://www.ncbi.nlm.nih.gov/pubmed/29949461
http://doi.org/10.3390/e22050564
http://doi.org/10.1109/ICASSP40776.2020.9054364
http://arxiv.org/abs/2003.03220


Entropy 2021, 23, 454 18 of 20

31. Sancaktar, C.; van Gerven, M.; Lanillos, P. End-to-End Pixel-Based Deep Active Inference for Body Perception and Ac-
tion. arXiv:200105847 [cs, q-bio]. 2020 [cited 18 Sep 2020]. Available online: http://arxiv.org/abs/2001.05847 (accessed
on 18 September 2020).

32. Tschantz, A.; Seth, A.K.; Buckley, C.L. Learning action-oriented models through active inference. PLoS Comput. Biol. 2020,
16, e1007805. [CrossRef] [PubMed]

33. Schwartenbeck, P.; Passecker, J.; Hauser, T.U.; Fitzgerald, T.H.; Kronbichler, M.; Friston, K.J. Computational mechanisms of
curiosity and goal-directed exploration. eLife 2019, 8, 45. [CrossRef]

34. Tschantz, A.; Millidge, B.; Seth, A.K.; Buckley, C.L. Reinforcement Learning through Active Inference. ICLR. 2020. Available
online: http://arxiv.org/abs/2002.12636 (accessed on 9 April 2021).
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