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Abstract— Machine Learning in coalition settings requires
combining insights available from data assets and knowledge
repositories distributed across multiple coalition partners. In
tactical environments, this requires sharing the assets, knowl-
edge and models in a bandwidth-constrained environment,
while staying in conformance with the privacy, security and
other applicable policies for each coalition member. Federated
Machine Learning provides an approach for such sharing. In
its simplest version, federated machine learning could exchange
training data available among the different coalition members,
with each partner deciding which part of the training data
from other partners to accept based on the quality and value
of the offered data. In a more sophisticated version, coalition
partners may exchange models learnt locally, which need to be
transformed, accepted in entirety or in part based on the quality
and value offered by each model, and fused together into an in-
tegrated model. In this paper, we examine the challenges present
in creating federated learning solutions in coalition settings, and
present the different flavors of federated learning that we have
created as part of our research in the DAIS ITA. The challenges
addressed include dealing with varying quality of data and
models, determining the value offered by the data/model of
each coalition partner, addressing the heterogeneity in data
representation, labeling and AI model architecture selected by
different coalition members, and handling the varying levels of
trust present among members of the coalition. We also identify
some open problems that remain to be addressed to create a
viable solution for federated learning in coalition environments.

I. INTRODUCTION

Artificial Intelligence and specifically Machine Learning
based approaches can enhance the military-technical advan-
tage of United States and its allies in many aspects of
their joint coalition operations. However, the application
of Artificial Intelligence/Machine Learning (AI/ML) must
overcome significant technical challenges, especially when
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used at the tactical edge for coalition operations such as
the operations described in [1]. In this paper, we look at
the challenges involved in the application of AI/ML in the
context of coalition operations, and discuss advances in
federated learning which allow us to apply these techniques
to coalition operations.

We begin this paper with a brief overview of AI/ML
in a generic context, followed by an overview of coalition
operations and the two primary types of machine learn-
ing scenarios that emerge within coalition operations. Then
we consider the challenges involved in each of these two
scenarios, and show how generating policies addresses the
challenges inherent in both of those scenarios.

II. A BRIEF OVERVIEW OF AI/ML

The goal of applying AI/ML in coalition operations is the
improvement of specific tasks that arise in the context of
coalition operations. This requires a systematic approach to
assess what coalition tasks are appropriate to be AI-enabled,
the level of autonomy that is desired, and how AI/ML can
overcome resource constraints (such as: low bandwidths;
low CPU power; or running on batteries) and environmental
uncertainties in the deployed environment (such as: weather
conditions; adversarial actions; or civilian life).

As described in [2], the process for creating, deploying and
using AI/ML can be viewed as occurring in three phases:
Learning, Inferring and Acting. The process and its key
design inputs are described below and shown in Figure 1.

Learn Phase. In the Learn phase, one or more models are
created or adapted to convert inputs into outputs as required
by the AI enabled task. This phase uses training data to
create a model, and in addition to collecting and curating
the data, may include performance evaluation, validation of
model accuracy, creating auxiliary explainability approaches
for the model, and incremental adaptation of the model as
more training data are obtained.

Infer Phase: In the Infer phase, the model or models
created in the learn phase are used in a pipeline of activities

ar
X

iv
:1

91
0.

06
79

9v
1 

 [
cs

.L
G

] 
 1

4 
O

ct
 2

01
9



Fig. 1. The Learn-Infer-Act Cycle

on input data to produce an output required by the coalition
task.

Act Phase: In the Act phase, outputs of Infer phase are
used to take an action or feed a decision. The type of
action/decision can be varied, and may involve input from
humans/warfighters and other machines.

The three phases usually happen in a cycle, since the
results of an action can be used to improve the model in
an iterative manner.

There are many types of model architectures, training
algorithms and distribution architectures for learning and
inference that we will not describe in this paper, but refer
the reader to [2] for a more detailed treatment of the issues
involved in multi-domain and coalition operations.

In coalition contexts, different partners of the coalitions
may choose to cooperate and collaborate at different phases
of the three-phase cycle.

Federation during Learn Phase: The coalition partners
may decide to collaborate during the learning phase in order
to create a joint model that all the partners could share. This
federation is the main focus of this paper, and is described
in more detail in the subsequent sections.

Federation during Infer Phase: The coalition partners
may share the inferences they reach using their individual
models. The models used could be different or the same
depending on whether the partners elected to coordinate
during the learn phase. Even if the partners use the same
model, they may reach different outputs during the infer
phase if they have different inputs, or view the same input
with different modalities.

Federation during Act Phase: The coalition partners may
decide to coordinate their actions to be performed based on
their individual or federated inference. Coordination of the
action, and informing other partners of actions they may take
can improve the effectiveness of the coalition task.

III. COALITION LEARNING SCENARIOS

In military coalitions where partners are collaborating and
coordinating to create a common model, they may perform
this collaboration in one of two modes: data sharing mode;
and model sharing mode.

Data Sharing Mode: In the data sharing mode shown in
Fig. 2, each coalition partner has a set of training data that
they may have obtained from their individual surveillance or
other data collection operations. The partners are willing to
share the training data with each other so that they can build a
better model. One or more of the partners who have adequate
computing resources to train an AI model would receive
the data from all of the other partners, and create a model
from the consolidated data. The data may be sent using data
summarization techniques like coresets [3] or sketches [4].

Fig. 2. The Data Sharing Mode for Federated Learning

Such a mode for federation during the learning phase is
shown in Figure 2 where three coalition partners, Kish, UK
and U.S. are using the computational power available to the
U.S. to create a common model.

Model Sharing Mode: In the model sharing mode shown
in Fig. 3, the coalition partners do not share the training
data with each other. Instead, they each train their models
on the local data they have, and exchange models with each
other. This mode is useful when the training data sets are
too large, or the training data sets can not be exchanged for
any reason, e.g. they may reveal sensitive details about the
attributes of the equipment used to collect the data. Model
sharing may use approaches for fusion of models [5] which
can be optimized for performance [6].

Fig. 3. The Model Sharing Mode for Federated Learning

Such a mode for federation during the learning phase is
shown in Figure 3 where three coalition partners, Kish, UK
and U.S. are using a fusion server hosted in the U.S. to
create a common model. The advantage of such sharing is the
ability to capture different patterns available in the training
data present in different coalition members.



IV. CHALLENGES IN FEDERATED LEARNING

Several technical challenges need to be overcome in order
for coalition partners to share their data or model during the
learning phase of federated learning. In order to deal with
them in a consistent manner, giving the wide diversity of AI
models and their applicability domains, we can divide any AI
enabled task into the four categories shown in Table I based
on the input and output used by the task. A more detailed
justification of this categorization is found in [7].

TABLE I
CATEGORIES OF AI TASKS

Category Input Output
I Features Known
II Raw Known
III Features Unknown
IV Raw Unknown

Based on the above categories and the two modes for
coalition federated learning, we can identify the following
challenges that need to be overcome for both modes of
operation:
Varying Data Quality: For training data that consists of raw
input (categories II and IV in Table I), the input modality
could vary from site to site. For example, a coalition partner
may be storing their input from surveillance cameras in a
low-resolution format, while another may be storing the input
in a high-resolution format. Combining models or data based
on different modalities may be problematic, but important.
Linguistic and Lexicon Mismatch: For training data that
consists of known output (categories I and II in Table I),
the labels that are assigned to the outputs at different sites
may differ; similarly, training data that consists of features
(categories I and III in Table I), the names of the features that
are used at different sites could also be different. This is due
to the varying terminologies used at different locations, thus
resulting in ambiguous and conflicting labeling conventions.

For the model sharing mode, we have the following
additional challenges:
Incomplete Knowledge: Data at each site may only contain
a fragment of the whole data landscape. Thus, there could be
a missing feature problem, i.e., for training data that consists
of features (categories I and III in Table I), some features may
only be present at some of the sites. Moreover, for training
data that consists of known output (categories I and II in
Table I), some of the labels may be missing at some of the
sites. We refer to this as missing classes problem and this
can have a significant impact on the accuracy of federated
learning [8]. Finally, there may be situations in which some
values are missing from the underlying schema, e.g., training
data that consists of featured input (categories I and III in
Table I), if missing values are found across sites it must be
ensured that these are resolved in the same way at each site.
Skewed Data: For training data that consists of known
output (categories I and II in Table I), the distribution of
classes in some sites may be entirely different from the
distribution of the classes in other sites. For training data

that consists of features (categories I and III in Table I), the
data collected at different sites may correspond to different
regions of the feature space. Extrapolating across different
regions of applicability can cause mistakes in the estimation
of the AI model [9]. Different sites may also have collected
different volumes of training data, which may make some
trained models to be better than others.
Synchronization: Depending on the level of coordination
among different sites, they may be able to conduct their
training in synchronized manner with each other. In other
cases, such synchronization may not be possible and fed-
eration may need to happen in an asynchronous manner.
Asynchronous operation may particularly be required in
cases where one site has more/less processing power or
capability than another site to avoid one partner unduly
having to wait for the other to complete each round of
training.

The basic approach we use to solve the challenges in fed-
erated learning is to have a mechanism which can generate
policies that address the challenges in federation of both
training data and models, both provided by different coalition
partners. In the next section, we describe such an approach.

V. GENERATIVE POLICIES

In this section, we discuss the architecture for generating
policies. In the rest of the paper, we describe the type of
policies that need to be generated, and the template such
policies need to follow.

In order to generate their own policies, the different ser-
vices in the system, e.g. the different components responsible
for training models, sharing data, or for evaluating the quality
metrics of a data or model, need to generate their own
policies. They generate the policies in order to meet the
objectives that are provided to them by humans as guidance.

Fig. 4. Policy Generation Architecture for Services and Devices

In the overall approach, shown in Figure 4, the human
guidance usually consists of two pieces of information, a
definition of context and a policy generator. The policy
generator may be either an Answer Set Grammar [10], [11],
or a template to generate policies, or any other mechanism to
create the policies. The context would usually consist of an
interaction graph that defines which types of other services
or devices a specific device/service could expect to see in the
environment, and the attributes one would expect of each of
those types of systems.



The policy generator specifies a policy generation lan-
guage that is defined over the attributes of the de-
vices/services found in the environment.

Fig. 5. Policy Generation Architecture for Services and Devices

The action of devices is shown in Figure 5. When the
device or service receives human guidance, it looks for
situations where the context changes, and a new policy needs
to be generated. A typical instance for security management
will be when the set of devices and services in the system
change, e.g. a device/service enters or leaves the system,
or changes its role within the system. In those cases, the
device/service uses the generator to find the right policies.

Specifically in the case of federation during the learning
phase, context may change when new data or a new model
is obtained from a coalition partner, a new coalition partner
joins the ecosystem, or a new auxiliary service that can
perform tasks like assessing the quality of the offered data
or offered model is obtained. In situations where the context
change is beyond those previously seen in any of the training
samples then new representative training data may need to
be acquired such that a revised generative policy model may
be learned.

Given the challenges that need to be overcome for fed-
erated learning, it is worthwhile discussing the benefits and
trade-offs at a higher level of abstraction. In the next section,
we make those observations.

VI. OBSERVATIONS ON FEDERATED LEARNING

A key benefit of federation in the learning phase is that
it increases the amount of training data available to create a
model, and a drawback is that coalition partners may not be
trusted to have data that is maintained with sufficient quality,
or may not have sufficient value.

A. Training Data Size

One of the obvious benefits of federation is that it results
in a model that is trained using a larger corpus of training
data. Therefore, an important aspect of federation during the
learning stage is whether it results in an improvement in
the quality of the model that will be created by sharing the
content. At the same time, accepting the training data from a
partner who may be collecting data using different modalities
may increase additional noise in the domain and we must be
protected against the adversarial introduction of poor quality
training data.

An examination of the training data that would be required
for a machine learning problem was done in [12] in the

context of learning a mapping from a set of D elements to
a set of R elements, with ν denoting the noise parameter
- probability of observing a non-existing mapping. The
AI learning process was mapped to the coupon collector’s
problem and it was shown that the precision p of an AI
model with a training data of size Q can be approximated
as:

p = 1− C0e
−2Q(1−ν),

where C0 is a constant depending on the domain of AI
model. Similarly, the recall ε, of the AI model would be
bounded by:

ε <= 1− C1e
−Q(1−ν).

Obtaining the training data from other partners results in an
increase in the size Q, which should improve both precision
and recall. At the same time, it may also potentially increase
the noise in the training data, which would have an adverse
impact on precision and recall.

The effective increase in the size of the training data set
due to obtaining data sets from other partners would depend
on the overlap between the data points collected by different
coalition partners. Suppose there are N partners, the ith of
which has collected a data set of size Qi, and the noise
parameter in the collection process of the ith partner is
νi. Suppose the resulting training data set after removing
duplicates is of size kiQi (i.e. ki times the data set of the
ith partner, where ki is a number between 1 and

∑
j Qj/Qi,

depending on the duplication among the different data sets.
The noise parameter for the resulting data set would be at
most νagg =

∑
j νj .Qj/kiQi. The net resulting precision and

accuracy bounds of the overall data set can be estimated from
the formula given above.

As long as ki(1 − νagg) > (1 − νi), the performance
metric of the ith coalition partner will better by accepting
the training data from the other partners.

An alternative way is to consider the new training data set
after sharing to be Qn with a noise rate of νn, and the original
data set to be of size Qo with a noise rate of νo. The partner
is better off with sharing data if Qn(1− νn) > Qo(1− νo),
which is equivalent to

Qn −Qo > Qn.νn −Qo.νo,

Since the difference marks the amount of new data that is
free of noise, it is better for coalition partners to exchange
data as long as they are getting new noise-free data points.
Note that since the bounds [12] assumed that the noise rate
is small, this observation is valid as long as the partners have
data with small amount of noise.

The effective increase in the training data set due to shar-
ing of data or the model would depend on the independence
among the training data that is collected. If the different data
sets are collected completely independently, the training data
size would be summed up as more data is obtained. However,
if the same good data points are being collected, then we may
not get a benefit from exchange of data, if the new points
are all noisy.



B. Quality and Value of Information

The concerns with noise present in partner data, and the
concept of independence of data sets can be viewed as
rudimentary estimates of the quality and value of information
(VoI) present at different coalition partners. In a high level
sense, quality of information (QoI) refers to the intrinsic
attributes of a piece of data (e.g. how much error or noise the
data has) while value of information measures the usefulness
of a piece of information that is offered by by coalition
partner for a specific purpose, e.g. in improving the precision
or recall of an AI model using that additional piece of
information.

In a more general view of quality and value of information,
we can assume that there is a ground truth in an environment
under consideration which is collected into a training data set
by each of the partners. This training data set is converted
to a model by the training process. The ground truth and
the collected training data set can be viewed as representing
points in an information space (IS). The model represents an
output or a decision, which can be viewed as belonging to
a decision space.

We assume that a distance metric ∆ is defined over the
information space, so that ∆(f,g) measures the distance be-
tween any two elements of the information space. Similarly, a
distance metric δ is defined in the decision space to measure
the distance between two decisions.

The analysis task (model training in this case) is a mapping
from the information space to the decision space. Denoting
the decision corresponding to an existing information I as
a(I), the VoI for a new information J for an analysis task
denoted as A which is already using a given information I,
would be given by

VoI(J | I,A)=δ(a(J+I),a(I))

Note that VoI depends both upon the analysis task, as well
as the available information that is used for analysis.

Given any piece of training data set I (I ∈ IS), which is
supposed to be representing a ground truth G (G ∈ IS), the
QoI of I is given by

QoI(I) = ∆(I ,G)

where ∆ measures the distance between two points in the
information space.

In contrast to VoI, measures of QoI are dependent only on
the attributes of the collected data and the properties of the
collection process, and independent of the analysis task or
the amount of current information available to the system.

The concepts of QoI and VoI of training data sets and
models provide us a way to deal with the various challenges
associated with accepting data from coalition partners. A
partner accepts the data or model offered by a partner only
if the offered data/model has a high quality of information
and a high value of information. In other cases, the model is
rejected. Policies determining the QoI and VoI thresholds can
be defined and used to influence the operation of federated
learning in both modes.

Given these observations, in the next two sections, we
envision a data curator based on the generative policy model
described in Section V.

VII. FEDERATED LEARNING IN DATA SHARING MODE

As mentioned above, understanding the quality and value
of data offered by different coalition partners provides a way
to determine whether or not to access the data to build a
common model. One approach to create an improved model
is to have a data curator system that would be able to examine
these attributes as training data is received from the different
partners, and then to generate policies which are able to reject
data that does not offer a good quality or a good value.

The data curation system can be viewed logically as a data
aggregator and filter that takes the training data provided by
all of the coalition partners, and combines them into a single
training data set.

Such a system to create a data curator that can generate its
own policies is described in [13] and [14]. The data curator
relies on a series of helper services to determine whether or
not to accept any data that is offered by the partner. These
helper services include services that can convert formats of
data into various modes, and determine the QoI and VoI of an
offered training data set. The QoI is obtained by examining
different attributes, such as the consistency of the offered
data against the data that is already present at the curator
and accepted as safe, the balance or imbalance in the classes
available from different training data that would be received,
and increase in the size of independent data sample points.

Let us examine the approaches by which this data curator
would deal with the different challenges of federation that
were identified in Section IV
Varying Data Quality: The difference in data quality among
different sites can reflect itself as a difference in formats, a
difference in resolution of the input, or a difference in the
level of trust that may exist in accepting data from the remote
partner.

In order to address the format mismatch issues, the data
curator would need to determine whether the format of the
data provided by the coalition partner can be translated
to the local format that is used by the training algorithm.
The curator does this task by generating format translation
policies, which automatically convert any data received from
a partner into a canonical format. These policies take the
format of:

if (source-name == XXX) and (source-format = YYY)
then invoke helper-service ZZZ.

In this particular case, any data in format YYY coming
from the coalition partner XXX is first converted into the
canonical format by calling the helper service ZZZ.

Another type of acceptance policy needs to be generated
which takes the format of:

if (source-name == XYZ) and (label == L1) then
accept/reject data.

Alternatively, if trustworthiness values have been assigned
to each of the coalition partners, the following policies need



Fig. 6. Ensemble Approach for Federation

to be generated.
if (source trustworthiness > threshold) and

(label == L1) then accept/reject data.

When data is being analyzed for QoI and VoI, acceptance
policies of the following format need to be generated.

if (data QoI > threshold) and (data VoI >
threshold) then accept/reject data.

Linguistic and Lexicon Mismatch: In order to deal with
differently named labels and features, the data curator needs
to generate the relabeling policies that would convert all
the incoming labels provided by the coalition partner into
a single canonical set of labels. In order to do so, the data
curator needs to generate data relabeling policies, which will
take the format:
if (source-name == XXX) and (feature-name = YYY)

then change label to ZZZ.
if (source-name == XXX) and (field-name = YYY) and

(label-name = ZZZ) then change label to QQQ.

Because of the fact that data is being collected in a single
location, many of the other issues, such as skew in data,
missing labels etc. are resolved just because they are being
done at a central site.

The algorithms and system which can generate the policies
of the type described above automatically are described
in [13] and [14].

VIII. FEDERATED LEARNING IN MODEL SHARING MODE

In model sharing mode, different models are received from
other coalition partners, and they are combined together in
order to make a composite model. In addition to the task
of converting models to a canonical format by generating
policies for format conversion, and quality based acceptance
of models, we need to consider how to address the chal-
lenges arising out of incomplete knowledge, skewed classes,
size differences and synchronization. The typical federation
algorithm for combining models in the current state of the
art requires iterative averaging of the weights of models
conforming to the same architecture [15], [16]. However,
this iterative addition requires operation in a synchronized
manner, and a common model architecture.

In order to address synchronization issues, different flavors
of federation can be used. We have proposed two different
flavors for model fusion algorithms [8], the first one is used
when different sites can coordinate their training processes,

Fig. 7. Inference using Ensemble

TABLE II
REGIONS AND APPLICABLE TASKS

Region Applicable Federation
Models Approach

A 1 only Use 1 only
B 2 only Use 2 only
C 3 only Use 3 only
D 1 and 2 only Federate 1 & 2
E 1, 2 and 3 Federate 1, 2 & 3

and the second one is used when the different sites need
to conduct their training processes in an unsynchronized
manner. In the former, the different sites perform averaging
of a common architecture after training on mini-batches. In
the latter, the different sites perform model training over
all of their data, and averaging the model weights after
the model has been fully trained in a round-robin fashion.
The round-robin approach converges after some number of
rounds are completed.

In order to address the challenges associated with skewed
classes and skewed features, we have proposed two ap-
proaches. The first approach [8] is to consider the exchange
of a small number of samples to counter the skewness of
classes. The second approach [9] examines the properties of
the data that is used for training at each site, and determines
what the applicability boundaries for the use of the model at
each site is. Model fusion is done only for those regions of
data where the training data at each of the sites is applicable.
The net result is an ensemble of models along with a set of
criteria to check which of the many models to use for a given
piece of inference.

The second approach is illustrated visually in Figure. 6.
In the figure, three models, each provided by a different
coalition partner are shown when plotted in the space of
two features. These features could be the two principal
components of a multi-variate data matrix determined using
principal component analysis [17]. In the space defined by
the two axes shown in the figure, we can identify the regions
shown as show in Table II.

The ensemble approach would create 5 models, the origi-
nal 3 models provided by the individual coalition partners, a
fourth model obtained by federating models 1 and 2, and a
fifth model used by federating all three models together. This
ensemble is front-ended by a policy-based model selector,
which is driven by policies which select the right model



depending on where the input is in the desired feature space.
The structure of the ensemble would be as shown in Figure 7.
The federation process would determine the policies for the
policy based selector which will be used to choose among
the different federated models.

The generic format of this policy would be:

if (component1 ≤ threshold1) and (component1 ≥
threshold2) and (component2 ≤ threshold3) and

(component2 ≥ threshold4) then use model model-no.

In this particular case, the policies will be generated so as
to correspond to the region boundaries defined in Table II

The benefit of the second approach is that it can be
used in conditions where coalition partners are unable to
exchange any amount of data. However, it can only be used
when regions of applicability of training data can be clearly
identified, e.g. when the AI tasks belongs to Category I or
III as defined in Table 1. The benefit of the first approach of
data exchange is that it is applicable to all four categories of
AI tasks as defined in Table I.

A simple illustration of the effectiveness of the two
approaches in improving the quality of federated learning
in presence of skewed data is shown in Figures 8 and 9.

Fig. 8. Ground Truth and Individual Site Observations

Figure 8 shows the characteristic curve (i.e. the ground
truth) which needs to be determined for a specific data set,
e.g. modeling an electronic component whose attributes like
voltage and current are measured independently at three dif-
ferent locations. The three locations examine the component
in different conditions, which results in the three different
relations being learnt by each of the sites, if they do not share
their information. None of the three relationships captures the
ground truth completely.

Figure 9 shows the model that is returned when fusion
of model parameters is done in a naive manner without
taking into account the applicability of the models. The
performance of both approaches, by considering the bounds
and by exchanging a portion of the information to extend
the region of applicability, is shown in this figure. While the
naive model does not provide a good approximation to the
ground truth shown in Figure 8, the two approaches perform
a reasonably good approximation of the same.

Fig. 9. Performance of Federation Approaches

A. System Implementation

All of the components described above in this section can
be implemented together into an integrated system that can
provide a single model fusion service for several partners.
From an overall system architecture perspective, this can
be viewed as a training service which is implemented by
all the coalition partners, and of a fusion service which is
implemented by the partner training a model. The training
service and the fusion service implement a set of services
which perform partial training of the model, followed by a
fusion of the same (See Figure 10). The training service

Fig. 10. The set of services implementing Model Fusion

provides only two service calls, one to configure it, and the
other to start the training process at each of the clients. These
commands can be invoked manually, or in some cases by
the fusion server. The fusion server provides a richer set
of commands which are invoked by the different training
services.

When the training service is invoked via the configuration
command, it analyzes the statistics of the locally available
training data. It collects the description of the training data
that it has available locally. It then invokes the statistics
reporting service at the fusion site.

As a result of this invocation, the fusion server will
create a set of control and configuration parameters for
the fusion AI training session for all the coalition partners
in the session. These include configuration for obtaining
the policies generated to convert formats, and configuration
parameters for facilitating a data exchange, and parameters
needed for the fusion process. The fusion service sends



this control and configuration information to the requesting
training services.

On receipt of the control information, each training ser-
vice contacts the fusion service to get a set of policies.
The fusion server compares the data it has locally with
the provided statistics, and uses it to generate a set of
policies for transformation of data at the training service.
The goal of these generated policies is to get data from each
of the different training services into a common schema.
The policies that will be sent to the training service will
include instructions for changing the type of raw data (e.g.
convert .jpg images into .png, or convert .avi sound files into
.wav files etc.), relabeling the features to a common set of
names, and relabeling the output label values into a different
common set. The algorithms for generating these policies
are described in more detail in [13]. Upon receipt of the
policies, the training service uses the policies to convert the
local training data into the common format for fusion. The
previously received control information instructs the training
server about the operations it should conduct before starting
the fusion, e.g. in some types of fusion processes it may
need to send a small sample of its data set or a generator for
representative synthetic data. The control information may
also contain information about batch-sizes and number of
iterations the training service may need in order to conduct
a successful model training exercise. With the receipt of
the control parameters, the training service goes through the
training stage, working with the fusion service in the fusion
stage. Once the training has been completed, the fusion
server may validate the model and compute its performance
metrics. This may also include synchronizing with different
training services.

IX. CONCLUSIONS

We have presented a summary of an approach for federated
learning among different partners in a coalition during the
model training stage of an AI/ML enabled task. We have
shown two different modes in which coalition partners can
coordinate in this phase, either by sharing training data or by
sharing models. We have looked at the different issues that
may arise in both modes, and have shown how generative
policies can be used to address those issues.

In continuing research, we will extend the approach of
federation and coordination among coalition partners to the
other two stages of AI-enabled tasks, effectively enabling
federated inference and federated action within a coalition,
and examine approaches to maximize the overall effective-
ness of an AI-enabled task. There are other issues that are
also subjects of ongoing exploration, such as approaches to
transform AI models of different architectures into a canoni-
cal model. Furthermore, we are also exploring algorithms for
policy-based model ensemble when AI tasks are uncertain.
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