100 research outputs found

    Prediction of reader estimates of mammographic density using convolutional neural networks.

    Get PDF
    Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.Mammographic density is an important risk factor for breast cancer. In recent research, percentage density assessed visually using visual analogue scales (VAS) showed stronger risk prediction than existing automated density measures, suggesting readers may recognize relevant image features not yet captured by hand-crafted algorithms. With deep learning, it may be possible to encapsulate this knowledge in an automatic method. We have built convolutional neural networks (CNN) to predict density VAS scores from full-field digital mammograms. The CNNs are trained using whole-image mammograms, each labeled with the average VAS score of two independent readers. Each CNN learns a mapping between mammographic appearance and VAS score so that at test time, they can predict VAS score for an unseen image. Networks were trained using 67,520 mammographic images from 16,968 women and for model selection we used a dataset of 73,128 images. Two case-control sets of contralateral mammograms of screen detected cancers and prior images of women with cancers detected subsequently, matched to controls on age, menopausal status, parity, HRT and BMI, were used for evaluating performance on breast cancer prediction. In the case-control sets, odd ratios of cancer in the highest versus lowest quintile of percentage density were 2.49 (95% CI: 1.59 to 3.96) for screen-detected cancers and 4.16 (2.53 to 6.82) for priors, with matched concordance indices of 0.587 (0.542 to 0.627) and 0.616 (0.578 to 0.655), respectively. There was no significant difference between reader VAS and predicted VAS for the prior test set (likelihood ratio chi square, p = 0.134 ). Our fully automated method shows promising results for cancer risk prediction and is comparable with human performance.This paper presents independent research funded by NIHR under its Programme Grants for Applied Research programme (reference number RP-PG-0707-10031: “Improvement in risk prediction, early detection and prevention of breast cancer”) with additional funding from the Prevent Breast Cancer Appeal and supported by the NIHR Manchester Biomedical Research Centre Award No. IS-BRC-1215-20007

    Artificial intelligence in mammographic phenotyping of breast cancer risk: A narrative review

    Get PDF
    BACKGROUND: Improved breast cancer risk assessment models are needed to enable personalized screening strategies that achieve better harm-to-benefit ratio based on earlier detection and better breast cancer outcomes than existing screening guidelines. Computational mammographic phenotypes have demonstrated a promising role in breast cancer risk prediction. With the recent exponential growth of computational efficiency, the artificial intelligence (AI) revolution, driven by the introduction of deep learning, has expanded the utility of imaging in predictive models. Consequently, AI-based imaging-derived data has led to some of the most promising tools for precision breast cancer screening. MAIN BODY: This review aims to synthesize the current state-of-the-art applications of AI in mammographic phenotyping of breast cancer risk. We discuss the fundamentals of AI and explore the computing advancements that have made AI-based image analysis essential in refining breast cancer risk assessment. Specifically, we discuss the use of data derived from digital mammography as well as digital breast tomosynthesis. Different aspects of breast cancer risk assessment are targeted including (a) robust and reproducible evaluations of breast density, a well-established breast cancer risk factor, (b) assessment of a woman\u27s inherent breast cancer risk, and (c) identification of women who are likely to be diagnosed with breast cancers after a negative or routine screen due to masking or the rapid and aggressive growth of a tumor. Lastly, we discuss AI challenges unique to the computational analysis of mammographic imaging as well as future directions for this promising research field. CONCLUSIONS: We provide a useful reference for AI researchers investigating image-based breast cancer risk assessment while indicating key priorities and challenges that, if properly addressed, could accelerate the implementation of AI-assisted risk stratification to future refine and individualize breast cancer screening strategies

    The effect of variable labels on deep learning models trained to predict breast density

    Full text link
    Purpose: High breast density is associated with reduced efficacy of mammographic screening and increased risk of developing breast cancer. Accurate and reliable automated density estimates can be used for direct risk prediction and passing density related information to further predictive models. Expert reader assessments of density show a strong relationship to cancer risk but also inter-reader variation. The effect of label variability on model performance is important when considering how to utilise automated methods for both research and clinical purposes. Methods: We utilise subsets of images with density labels to train a deep transfer learning model which is used to assess how label variability affects the mapping from representation to prediction. We then create two end-to-end deep learning models which allow us to investigate the effect of label variability on the model representation formed. Results: We show that the trained mappings from representations to labels are altered considerably by the variability of reader scores. Training on labels with distribution variation removed causes the Spearman rank correlation coefficients to rise from 0.751±0.0020.751\pm0.002 to either 0.815±0.0060.815\pm0.006 when averaging across readers or 0.844±0.0020.844\pm0.002 when averaging across images. However, when we train different models to investigate the representation effect we see little difference, with Spearman rank correlation coefficients of 0.846±0.0060.846\pm0.006 and 0.850±0.0060.850\pm0.006 showing no statistically significant difference in the quality of the model representation with regard to density prediction. Conclusions: We show that the mapping between representation and mammographic density prediction is significantly affected by label variability. However, the effect of the label variability on the model representation is limited

    Radiomics in photon-counting dedicated breast CT: potential of texture analysis for breast density classification

    Full text link
    BACKGROUND We investigated whether features derived from texture analysis (TA) can distinguish breast density (BD) in spiral photon-counting breast computed tomography (PC-BCT). METHODS In this retrospective single-centre study, we analysed 10,000 images from 400 PC-BCT examinations of 200 patients. Images were categorised into four-level density scale (a-d) using Breast Imaging Reporting and Data System (BI-RADS)-like criteria. After manual definition of representative regions of interest, 19 texture features (TFs) were calculated to analyse the voxel grey-level distribution in the included image area. ANOVA, cluster analysis, and multinomial logistic regression statistics were used. A human readout then was performed on a subset of 60 images to evaluate the reliability of the proposed feature set. RESULTS Of the 19 TFs, 4 first-order features and 7 second-order features showed significant correlation with BD and were selected for further analysis. Multinomial logistic regression revealed an overall accuracy of 80% for BD assessment. The majority of TFs systematically increased or decreased with BD. Skewness (rho -0.81), as a first-order feature, and grey-level nonuniformity (GLN, -0.59), as a second-order feature, showed the strongest correlation with BD, independently of other TFs. Mean skewness and GLN decreased linearly from density a to d. Run-length nonuniformity (RLN), as a second-order feature, showed moderate correlation with BD, but resulted in redundant being correlated with GLN. All other TFs showed only weak correlation with BD (range -0.49 to 0.49, p < 0.001) and were neglected. CONCLUSION TA of PC-BCT images might be a useful approach to assess BD and may serve as an observer-independent tool
    corecore