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Abstract

Breast cancer is one of the leading causes of death in women, responsible for over 508,000 deaths
in 2011 alone. Early identification of the disease drastically increases odds of survival and screen-
ing tests through mammography are a crucial part of this process. Computer-aided detection and
diagnosis (CAD) systems can help medical professionals analyze these screenings, increasing their
accuracy and speed, allowing for more cases of the disease to be caught early.

Recent efforts in applying deep learning techniques to lesion classification and detection in
mammographic images have been extremely successful, obtaining state-of-the-art results in this
problem, often without the need for the domain-specific feature engineering of more traditional
approaches.

However, these algorithms could be improved with larger amounts of labeled data which, for
the case of mammograms, are not publicly available. In addition, public datasets are of varying
quality and often captured with methods and equipment, making the transfer of machine learning
models between them difficult.

The other big challenge in this task is its inherent imbalance; both in the distribution of positive
and negative cases and in the disproportionately large effect of a few pixels in the overall classi-
fication. Positive examples are rare and can only be discriminated by the presence of small ab-
normalities in very high-resolution images. Models must then be both efficient enough to quickly
process large images and sensitive enough to pick up on the minute details that completely inform
the desired classification.

In addition, an exam can be composed of multiple images of the patient’s breasts, which are
deformed in unique and complex ways by the mammogram capture process. Experts’ diagnoses
of these exams take into account all of the views, often relating matching areas in the tissue in
terms of symmetries or asymmetries. Computerized methods, on the other hand, have historically
struggled with fusing the various views to produce unified predictions, particularly in the task of
lesion detection.

We propose a one-shot, multi-task, multi-input unified model for detection of lesions and
mammogram malignancy classification in one or all four views of a typical mammogram exam
and validate it using the INbreast dataset. We propose two methods of relating images from the
same exam: through explicit mammogram alignment, and through the merging of features in the
model’s architecture. Finally, we introduce a novel loss function for use in cluster detection and
employ it to detecting clusters of microcalcifications.
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Chapter 1

Introduction

Breast cancer is one of the leading causes of death among women. The American Cancer Society

estimated that, in the US, 30% of all new cancer cases in women are of breast cancer, and that 14%

of all cancer-related deaths were caused by the disease [110]. These accounted for 252,710 cases

and 40,610 deaths in 2017 alone. Early detection is essential in increasing the odds of survival

of patients [59]. Often, this means identifying the presence of the disease before it displays any

symptoms in a process known as screening. One of the main tools available to medical profes-

sionals is the mammography (MG) screening. Mammography consists in capturing X-ray images

of the patient’s breasts, as depicted in Figure 1.1, so as to identify any abnormalities indicative of

breast cancer, manifesting as bright regions in the image. These abnormalities include microcalci-

fications, masses, bilateral asymmetries and architectural distortions and can be classified as either

malignant or benign. It is estimated that these tests have a sensitivity of between 85 and 90% [10],

but performance can be improved by increasing the number of readers, up to a total of 10 [11, 65].

Class. Description
0 Incomplete
1 Negative
2 Benign findings
3 Probably benign
4 Suspicious abnormality
5 Highly suspicious of malignancy
6 Known biopsy with proven malignancy

Table 1.1: BI-RADS Mammographic Assessment Categories [74]

Mammographic images can be taken from multiple views, but the most common are the cran-

iocaudal (CC) and mediolateral oblique (MLO) views. Radiologists make use of both of these

views, as well as comparisons between breasts and even with previous mammograms, if available,

to make a decision. The result of the screening process is a breast-level Breast Imaging Reporting
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Introduction

Figure 1.1: Mammography capture process [3]

Class. Description
1 Breast is almost entirely fat
2 Breast has scattered areas of fibroglandular density
3 Breast tissue is heterogeneously dense
4 Breast tissue is extremely dense
Table 1.2: BI-RADS breast density categories [74]

and Data System (BI-RADS) classification, which indicates the level of confidence of the radiol-

ogist of the presence of benign or malignant lesions. Suspicious findings require the use of more

conclusive, albeit invasive, tests like biopsies. Table 1.1 describes the meaning of each level of

this classification system. Another useful factor is the density of the breast, for which BI-RADS

defines 4 levels, as described in table 1.2.

The process of manually analyzing these images, however, is long, tedious and error-prone,

especially when radiologists face large workloads. To alleviate this problem, various Computer

Assisted Diagnosis (CADx) systems have been developed. They aim to assist professionals with

an automatic analysis of the patient’s data to form a second opinion. In breast cancer screening,

CAD has been found to improve the performance of individual radiologists to that of double

screenings [19]. By decreasing the number of false-positives, more patients can be spared the

associated psychological and emotional distress, and by decreasing false-negatives the likelihood

of the disease spreading unnoticed decreases as well. There is, therefore, a significant effort in

both academia and the industry to develop ever more accurate CAD systems.

In recent years, the advent of Deep Learning techniques has revolutionized various fields in

Computer Vision, obtaining state-of-the-art results in various difficult tasks such as object recog-

nition, detection, and segmentation by replacing the manual feature engineering common in tra-
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Figure 1.2: Views of a typical mammography exam

ditional machine learning methods with learned hierarchical representations. This often translates

to better results with less domain knowledge built-in compared to other methods.

The interest in applying these techniques in CAD applications has grown accordingly, hoping

to achieve the same level of success. Medical images, however, present a series of different chal-

lenges compared to natural ones. The most salient are: class imbalance, lack of public datasets and

a disproportionate size of images compared to the size of the regions of interest. In mammography

in, particular, the fact that a single image may not be enough to detect asymmetries and to monitor

the evolution of abnormalities has been a significant obstacle that CAD systems have only recently

shown some modest success.

The goal of this work is to develop and apply techniques that allow these models to output

clinically relevant information, such as locations and types of lesions, as well as overall classifica-

(a) Birads 2 (b) Birads 3 (c) Birads 4 (d) Birads 5 (e) Birads 6

Figure 1.3: Examples of masses for each of the Birads classifications.
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tions of each of the patient’s breasts by taking into account and relating together all the views in a

typical mammographic exam.
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Chapter 2

State of the art

2.1 Introduction

This chapter describes the most influential works in Deep Learning and its applications to mam-

mography.

2.2 Deep Learning

The history of Deep Learning begins in 1943 with the introduction of the McCulloch Pitts Neuron

by McCulloch and Pitts [84]. This model restricted inputs and outputs to be binary and the weights

given to the inputs to be positive integers. This reduced expressive power, combined with its

inability to learn, limited its applicability.

In 1958, Rosenblatt [99] proposed the Perceptron, capable of automatically learning a mapping

from real-valued inputs to a binary output. However, due to its single layer, the Perceptron could

only learn affine functions, which famously excludes the XOR operation, a non-linear function. In

their book Perceptrons, Minsky and Papert [86] proved this property and speculated that networks

composed of Perceptrons would be similarly limited. These criticisms are often considered to

have contributed to the period of reduced funding and interest in Artificial Intelligence research

that followed, and the move from connectionist to symbolic approaches.

Perhaps the most influential work in Deep Learning came in 1988 when Rumelhart et al. [101]

showed how to train Multi-Layer Perceptrons (MLP) via the Backpropagation (BP) algorithm.

This algorithm describes how to compute the derivatives of a loss function with respect to each

of the weights of the network. These derivatives are then used to minimize a loss function by

iteratively updating the values of the weights. This method is general enough that all modern Deep

Learning applications still use it as a learning mechanism, despite featuring sometimes widely

different architectures from the original paper.

5
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Inspired by the visual cortex of mammals [52], Fukushima [33] proposed the Neocognitron

in 1980, the first Convolutional Neural Network (CNN), a specialization of neural networks to

spatial data such as images. This specialization manifested in the form of weight sharing, as the

same small set of weights is applied to the image by a convolution operation, and through the use

of downsampling layers, that reduce the size of activations. Unlike modern CNNs however, the

Neocognitron was not trained with BP.

In 1989, LeCun et al. [72] used BP to train CNNs for the first time. Applied to the problem

of Optical Character Recognition (OCR) of handwritten digits, the authors reported significantly

increased performance compared to both hand-crafted weights and fully connected networks.

LeCun et al. [73] introduced the MNIST dataset, still widely used in Machine Learning re-

search today. This dataset is split into a training and a test set of 60,000 and 10,000 images of

isolated handwritten digits respectively. The authors showed that CNNs outperformed other pat-

tern recognition models known at the time and that they were commercially viable, using the

architecture depicted in Figure 2.1, now known as LeNet.

Figure 2.1: LeNet architecture [73]

Despite this, it was clear that Neural Network research was severely limited by the extremely

long time models took to train. Their parallel nature meant that researchers could take advantage

of the massively parallel capabilities of GPUs, which were entering the mass market in the early to

mid-2000’s. Steinkraus et al. [113] were the first to implement arbitrary two layer fully-connected

networks on GPUs in 2005. In 2006, Chellapilla et al. [15] implemented CNNs on GPUs for

the first time by unrolling convolution operations into matrix products and applied them to the

problem of document processing. Cireşan et al. [20] used a GPU implementation to break records

for the NORB, MNIST and CIFAR10 datasets for the first time. All authors reported significant

speedups, up to 60 times.

Another limitation to research was the insufficient amount of available data. This motivated

Jia Deng et al. [61] to introduce ImageNet, perhaps the most popular dataset in computer vision

literature. It currently contains over 15 million images, each classified into one of thousands of

classes. From 2010 to 2017, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

evaluated methods and algorithms for object detection and classification tasks submitted by com-

peting teams on a subset of 1.2 million images of ImageNet split into 1000 classes. The massive

amount of quality labeled data in this dataset was instrumental in many of the recent successes

achieved in Deep Learning since it was made available. In fact, many models used in computer

6
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vision applications today are first trained with this dataset and then fine-tuned to their specific

task. Many architectures were either created with the intent of winning this competition or were

inspired by the ones that did.

The first influential work using ImageNet came in 2012, when Krizhevsky et al. [71] won

ILSVRC-2012 with a CNN architecture now known as AlexNet (Figure 2.2), trained on two GPUs

using the CUDA parallel computing platform [90]. They achieved a top-5 error rate of 15.3%,

down from the 26% of the winning entry of the previous year, a 38.5% reduction in error rate and

more than 10.8% ahead of the second place model [102]. The use of the ReLU activation function

and the multi-GPU configuration allowed them to train the network faster, whereas dropout and

data augmentation increased the ability of the network to generalize to new examples. Dropout is

the process of randomly setting values in the activation of a layer to zero, thereby reducing neuron

co-adaptation in the same layer [112]. Data augmentation refers to random transformations applied

to images at training time. These transformations include random flipping, rotations, translations

and scaling and have the effect of regularizing the networks by increasing the number of training

examples [120]. Both these methods are a crucial part of the training process in modern models.

More specialized forms of data augmentation are still an active area of research [76]. This record-

breaking victory showed the effectiveness of CNNs in large-scale visual recognition tasks and

is widely credited as a major contribution to the recent growth in interest and funding in Deep

Learning research and applications.

Figure 2.2: AlexNet architecture [71]

The following year, the winner of ILSVRC-2013, with a top 5 error rate of 14.8%, was only

a slight modification of the AlexNet architecture known as ZFNet by Zeiler and Fergus [127]. In

their paper, however, the authors proposed novel methods of visualizing the network’s activations

and provided key insights into its learned representations. These insights influenced the design of

ZFNet, as well as many of the architectures that followed.

ILSVRC-2014 was marked by a significant increase in the depth of competing entries. VG-

GNet, by Shin et al. [109], was remarkably simple compared to other existing architectures, as

it was composed exclusively of 3× 3 convolutions and 2× 2 max pooling with a stride of 2. It

was also much deeper than previous architectures, up to 19 layers against the previous winner’s

8, which showed the importance of the number of layers to classification performance. Despite

not winning the prestigious competition, it is still widely used, due to its simplicity and capacity,

7
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particularly in the task of artistic style transfer [62], and is implemented in most Deep Learning

frameworks.

The winner in 2014 was GoogLeNet, by Szegedy et al. [117] with a top 5 error rate of 6.67%.

In contrast with VGGNet, GoogLeNet had a much more complicated architecture. The most

distinguishing feature was the use of the Inception module (Figure 2.3), which had the goal of

processing feature maps at multiple scales efficiently. Besides its record-breaking performance, it

was also the first successful model to feature parallel paths as well as multiple classification heads,

design principles that would greatly influence future architectures. This architecture would go on

to see various improvements in the form of the Inception family of networks (Ioffe and Szegedy

[57], Szegedy et al. [119, 118], Chollet [17]).

Figure 2.3: Inception Module, Szegedy et al. [117]

By this time, one of the main barriers to the use of more powerful models was the problem of

internal covariate shift [108]. This is the problem of shifting distributions of the inputs to layers

throughout training. Weight initialization schemes were known to decrease its effects by making

layer inputs unlikely to saturate neurons while also not exclusively falling into the linear compo-

nent of the activation function, throughout all the layers of the network [38, 42]. However, the

distributions of these layer inputs could still shift during training. To solve this, Ioffe and Szegedy

[57] proposed the Batch Normalization method. It consists of subtracting the featurewise mean

and dividing by the featurewise standard deviation of the mini-batch, at the input of each layer,

thereby normalizing it. Then two more learnable parameters, γ and β are multiplied and added to

the result, allowing the network to learn to reconstruct the original input if that is more advanta-

geous. This process allows the network to more easily control the distribution of layer inputs and

therefore train faster. The performance benefits of Batch Normalization are so ubiquitous that it is

now a standard part of most architectures.

Another limiting factor associated with training very deep models is the vanishing or exploding

gradient problem [48, 47]. It refers to the fact gradient values tend to either increase or decrease

exponentially in deeper layers of networks. Although techniques had already been developed for

its mitigation, such as the use of multiple heads in GoogLeNet [117], the most successful one was

the residual block (Figure 2.4), proposed by He et al. [43]. It aims to reduce the effects of the

8
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phenomenon by providing parallel paths, allowing the network to "skip" entire groups of layers.

The input of a residual block is added to the output of its last layer, so the layers in between only

have to learn the residual of the function represented by the whole block, that is, the difference

between the output and the input values. Should the identity function be more advantageous

than a group of convolutions, the block can easily learn to map its inputs to zeros. The authors

proposed the ResNet family of architectures, composed of multiple such blocks, the deepest of

which, ResNet-152, won the ILSVRC-2015 classification challenge. It had a top-5 error of 3.57%,

and it was the first time a computer model beat human performance in this task (around 5.1% top

5 error rate [64]). Thanks to the use of these skip connections as well as the Batch Normalization

technique, they were able to train a network with 152 layers, significantly more than the winner

of the previous year, GoogLeNet, which only had 22. Residual Blocks have since then been used

to improve several different visual recognition models [118, 17], but the applicability of the idea

goes beyond image data [111].

Figure 2.4: Residual block He et al. [43]

After an uneventful ILSVRC-2016, the winner of the final edition of the challenge, ILSVRC-

2017 was the SENet family of architectures by Hu et al. [50], with a top 5 error rate of 2.251%.

They proposed the "Squeeze-and-Excitation" blocks, which take into account channel dependen-

cies by reweighing feature channels based on global feature information. They use global average

pooling to compute feature-wise statistics. These are fed into an MLP ending with a sigmoid

activation function, which outputs a vector of weights that are multiplied with each channel of

features, allowing the network to dynamically focus on certain features.

The applicability of these trained models is not restricted to classifying natural images. The

features learned in this problem can often be reused for related problems, in a process known as

transfer learning [126]. This has a regularizing effect on the network, reducing the effective num-

ber of samples needed for a good model. Intuitively, this makes sense as many tasks, especially in

vision, require solving similar subtasks, such as recognizing colors, edges, shapes, and textures.

Besides improvements in accuracy; speed and memory footprints are also important factors for

many Deep Learning applications, such as in robotics and mobile computing settings. Some archi-

tectures that seek to optimize these metrics are SqueezeNet [56], MobileNet [49] and ShuffleNet

[120].

The architectures mentioned so far have focused on the problem of classification. A related
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problem and no less challenging is that of object detection (Figure 2.5). It is an extension of clas-

sification, in that there may be any number of objects in the image and the goal is to classify and

localize each one, usually in terms of bounding boxes. The closeness of these two problems is ev-

idenced by the fact that many of the methods used for object detection use architectures originally

developed for classification and often even parameters learned from classification datasets.

Figure 2.5: Examples of object detection [97]

The first successful application of CNNs to object detection, Overfeat, was proposed by Ser-

manet et al. [106]. Their method involved applying the CNN in a sliding window over the image,

at various scales. At each application, the CNN is tasked with predicting both the class of any

objects in the window, as well as the offset between their bounding box and the window. The final

predictions are made by accumulating the intermediate ones.

In R-CNN [37] (Figure 2.6), object candidates are first extracted using a region proposal

method, such as Selective Search [122], then features are computed using a CNN and finally

an SVM is trained to classify the objects. This method has two major disadvantages: (1) it is hard

to train, as it is composed of several different components, each of which must be tuned separately,

and (2) it is slow, due to the multiple applications of the CNN structure, one for each region.

Figure 2.6: R-CNN methodology [37]

Its second iteration, Fast R-CNN [36], applied the CNN to the whole image only once to

obtain a single feature map. Features for each region proposed by Selective Search are then ex-

tracted by a novel Region of Interest Pooling layer. Finally, the regions are classified with fully

10
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connected layers, rather then SVM. Despite significant speedups and an increased performance

over its predecessor, Selective Search was still a limiting factor.

Faster R-CNN [97] again improved on its previous version by replacing selective search with

a region proposal network that shares features with the detection network. As its name implies, it

was faster than both its previous iterations and achieved state of the art results in object detection.

Its final form, Mask-RCNN [44], extended Faster R-CNN by adding instance segmentation

to the output of the network. It achieved state of the art results in various tasks, including object

detection.

Despite their success, Overfeat, R-CNN, and its variants were unsuitable for real-time object

detection applications, reaching a maximum of 5 frames per second. Approaches based on one-

stage detection try to accelerate the process by predicting both class and bounding boxes in one

pass through a CNN. One-stage detectors include YOLO [96], YOLO 9000 [95], SSD [80], DSSD

[32], RetinaNet [79]. The latter represents the current state-of-the-art of object detection, both

in speed and accuracy, mostly due to its novel Focal loss, which aims to give more importance

to difficult examples. YOLO 9000 is also noteworthy for its use of hierarchical information for

bridging the gap between multiple datasets, as some include narrower classes than others. In doing

so they are able to detect more than 9000 classes.

In 2014, Goodfellow et al. [39] proposed Generative Adversarial Networks (GANs), shown in

Figure 2.7. These were composed of two separate networks: a generator, and a discriminator, that

learn in a competitive setting. The generator is tasked with generating realistic images, whereas

the discriminator must distinguish between the generated images and real ones. Through training,

each network gets progressively better at their respective functions. The generator network can

then be used to sample images similar to the original dataset. GANs are now a popular research

topic and numerous improvements and variations have since been proposed (e.g. [9, 40]).

Figure 2.7: Generative Adversarial Networks [35]

Inspired by this work, Ganin et al. [34] proposed Domain-Adversarial Training (Figure 2.8).

This technique replaces the competition between generator and discriminator networks with com-

petition between a feature extractor network and a label predictor network, which cooperate to
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successfully classify samples, while competing against a domain classifier network, which tries to

identify the domain of the sample from the features produced by the feature extractor. This forces

the feature extractor to learn features that are invariant to the source domain.

Figure 2.8: Domain-Adversarial Networks, Ganin et al. [34]

2.3 Deep Learning in Mammography

Like all tasks in Computer Vision, research in machine learning applied to mammography images

is only made possible with the existence of extensive datasets that accurately reflect the setting

in which they will be applied. Despite the prevalence of private datasets in the medical imaging

literature in general, there are a few publicly available mammography datasets.

The Mammographic Image Analysis Society Digital Mammogram Database (MIAS) [114]

was the first public mammographic dataset. It contains 322 MLO images, from 161 cases with

BI-RADS and density classifications. Abnormalities are classified with respect to their type and

level of malignancy. However, their position is only indicated by the coordinates of its center and

its approximate radius in pixels. In addition, the images have been resized to 1024 × 1024 pixels,

reducing the amount of detail they contain.

The Digital Database for Screening Mammography (DDSM) [45] is the most commonly used

dataset in the literature and it consists of 2620 cases with a total of 10,480 images. Abnormalities

are annotated with their type and malignancy, BI-RADS and subtlety classifications, as well as

a boundary delineation at the pixel-level. DDSM-BCRP is a subset of DDSM with 89 cases for

training and 90 for testing, all of them with at least one mass or one microcalcification. The

Curated Breast Imaging Subset of DDSM (CBIS-DDSM) [75] is an updated version of DDSM,

with ambiguous or personally identifiable cases removed, updated annotations, suggested training

and test splits, and converted to DICOM and CSV formats.

The INbreast dataset [88] consists of 410 Full-Field Digital Mammogram (FFDM) images

from 115 cases obtained from the Breast Centre in Centro Hospitalar São João. Abnormalities are

annotated with their respective type and pixel-level boundaries in the image. Each image is also

categorized according to its ACR and BI-RADS classifications.

The Breast Cancer Digital Repository (BCDR) [81] includes 3703 CC and MLO images from

1010 cases with both pixel-level annotations of images and image-level BI-RADS classifications.

12
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Numerous techniques applying Deep Learning to mammography images have been proposed.

The first application of CNNs to mammographic images was proposed by Sahiner et al. [103] with

the goal of classifying patches of images according to the presence of masses, a very common

task in the literature. Huynh et al. [54] and Lévy and Jain [77] fine-tuned CNNs pre-trained on

ImageNet to improve performance in this task, whereas Kooi et al. [70] used a CNN pre-trained

on a similar mammography task as a feature extractor.

The inclusion of hand-crafted features is also reported to yield better results. Arevalo et al.

[8], [7] proposed adding these features to the input of the network, whereas Dhungel et al. [25]

proposed first training a CNN on a regression task of learning to estimate hand-crafted features,

before fine-tuning on the full classification of patches into one of benign or malignant. The authors

tested the system on the INbreast dataset and obtained an AUC of 0.91 using a Random Forest

trained on the CNN’s features.

Kooi et al. [69] showed that a CNN could obtain similar performance to professional radiolo-

gists at patch level classification. Yi et al. [125] used CNNs to classify masses and used techniques

similar to DeepDream to visualize the characteristics in the image that triggered its prediction.

They observed that the resulting images amplified well-known features of the corresponding le-

sions, such as spiculation in malignant masses.

Patch level training is also commonly used as a first step towards an image-level model. Lotter

et al. [82] and Shen [107] first train a CNN on patch classification before applying it in a sliding

window fashion to classify whole images from DDSM and INbreast.

Castro [14] proposed using rotated filters to reduce the number of parameters of the network

and rank learning, by pairing samples and learning the differences between them, which increases

the effective number of training samples on the CBIS-DDSM dataset. Qiu et al. [94] attempt to

predict the risk of future cancer development in negative examples.

One of the more challenging aspects of applying deep models to this problem is taking into

account multiple views and the patients’ history of exams. Carneiro et al. [13] proposed an end-to-

end method to classify the patient’s risk of developing cancer, based on two different views of the

same breast and the associated segmentation maps using a model pre-trained on ImageNet. They

used the DDSM and INbreast datasets. Kooi and Karssemeijer [68] took into account symmetrical

and temporal differences between different views and different exams. Salehinejad et al. [104]

also included information from radiologists’ reports in natural language format.

Another obstacle is that often, not all the data is labeled or only labeled at the image level.

Sun et al. [115] proposed a semi-supervised learning algorithm to take advantage of additional,

unlabeled data and trained it on a private dataset. Hwang and Kim [55] and Zhu et al. [128] use

weakly supervised learning to detect masses training only on image level annotations. In detection,

the most common approaches are cascade based, where possible regions are progressively rejected

by discriminator models, [23, 83, 87], or R-CNN variants Kisilev et al. [67], Ribli et al. [98],

Akselrod-Ballin et al. [6]

Another important aspect for diagnosis is the segmentation of the lesions, as their shape is

highly discriminative. Cardoso et al. [12] compared the performance of graph-based models using
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hand-crafted features and deep learning models [24] for the task of mass segmentation when tested

on a different dataset from the one it was trained on. They showed that, in addition to better

performance when training and test data came from the same dataset, the deep models suffered less

performance degradation when they originated from different datasets. Zhu et al. [129] proposed

using adversarial networks as a regularization method for mass segmentation.

Despite their prevalence in the literature of mammogram analysis, there are other tasks of

interest besides lesion detection and classification, CNNs have been used to classify the density

of the breast [31, 30, 63, 5], for whole breast segmentation [26], and even to detect cardiovascular

disease [124].

2.4 Conclusion

It is clear that the history of deep learning is one of revisiting old ideas with new modifications.

The architectures used today in many successful applications are, on the surface, very similar to the

ones that emerged in the 80’s. Numerous algorithmic and technological improvements, combined

with vast datasets allowed for deep learning models to shine in a wide variety of tasks and types

of data, with relatively few alterations or domain-specific knowledge.

In mammogram analysis, deep learning provides the possibility of replacing the complex

multi-stage models that represented the previous state-of-the-art with simpler ones that can be

trained in an end-to-end fashion and, in many cases, with better performance. The high preva-

lence of private datasets in the literature makes it difficult to compare the various models that have

been proposed directly. Some recent efforts in creating and curating high-quality public datasets

[88, 75] may change this in the future. In addition, although some work has been done in merging

data from multiple images from the same patient, fully fusing all views of an exam remains an

open problem, especially in detection tasks.
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Chapter 3

Convolutional Neural Networks

In an increasingly connected world with ever cheaper storage devices, there is demand for compu-

tational methods capable of efficiently analyzing the vast amounts of data that can be collected. In

machine learning, insight is drawn from previously gathered data, known as training data, that are

then generalized to new unseen circumstances. By automating knowledge extraction, new prob-

lems can be solved with less domain specific knowledge and their solutions deployed on a larger

scale than what would otherwise be possible.

3.1 Linear Models

3.1.1 Regression

Perhaps the simplest example of a machine learning technique is line fitting or regression. Given

N labeled observations {xi,yi}N
i=1, xi ∈ Rd1 ,yi ∈ Rd2 , the task is to find the line that best fits

the set of points. We assume the one-dimensional case, d1 = d2 = 1, for illustrative purposes.

Finding this line involves finding the parameters in the expression that define the line, ŷ = a ·x+b,

that optimize some criteria. We assume that the observations have an error term, ε inherent to

their measurement that is independent between the observations and Gaussian in its distribution,

ε ∼ N(0,σ2). The line can then be written in the form ŷ = a · x+ ε and has a distribution given

by p(y|a,b) = N(a · x+ b,σ2). Because all points are independent from each other, their joint

distribution can be expressed as the product of the marginal distributions,

p(yyy|a,b) = p(y1,y2, ...,yn|a,b) =
n

∏
i=1

p(yi|a,b) =
n

∏
i=1

N(a · xi +b,σ2)

This function is known as the likelihood function of a and b, denoted as L(a,b). By maximiz-

ing the likelihood function we can obtain a point estimate, that is, a single value, aML and bML,

that best fit the observations under the assumptions we have made. These are known as Maximum
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Figure 3.1: Line fitting

Likelihood Estimates (MLE). We instead minimize the negative of the log of this function as it

preserves extrema and simplifies the calculations in this case:

argmax
a,b

L(a,b) = argmin
a,b
−log L(a,b)

= argmin
a,b
−log

(
n

∏
i=1

N(ŷi, σ
2)

)

= argmin
a,b

n

∑
i=1
−log

(
N(ŷi, σ

2)
)

= argmin
a,b

n

∑
i=1
−log

(
1√

2πσ2
e−

(yi−ŷi)
2

2σ2

)
= argmin

a,b

n

∑
i=1
−log

(
1√

2πσ2

)
+

n

∑
i=1
−log

(
e−

(yi−ŷi)
2

2σ2

)
= argmin

a,b

n

∑
i=1

(yi− ŷi)
2

2σ2

= argmin
a,b

1
2n

n

∑
i=1

(yi− ŷi)
2

(3.1)

The function that is to be minimized is called the loss or cost function. This particular loss

function is called the Mean Squared Error (MSE) loss function.

Although we can solve this particular expression in closed form, we can also opt for numeric

optimization using gradient descent. In gradient descent (3.2), an initial point in the parameter

space is iteratively improved using gradient information at that point. In its simplest form, the

parameters θ , are updated by adding the gradients of the function, multiplied by a hyper-parameter,

the learning rate, η .

θ
(t+1) = θ

(t)−η ·∇L(θ (t)) (3.2)

Given that the loss function is convex, it is guaranteed that this process will converge to the

global optimum, the parameters defining the line that best fits the data. This method can also be

extended to arbitrarily many inputs, outputs, and their associated parameters.
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Figure 3.2: Gradient descent along a non-convex function surface, Huang et al. [51].

3.1.2 Classification

Another common task in machine learning is classification or logistic regression. In binary clas-

sification the goal is to classify a data point into one of 2 classes, positive or negative, given N

labeled observations {xi,yi}N
i=1,xi ∈Rd ,yi ∈ {0,1}. The posterior probability for the positive class

can be written as:

p(y = 1|x) = p(x|y = 1)p(y = 1)
p(x|y = 1)p(y = 1)+ p(x|y = 0)p(y = 0)

=

p(x|y=1)p(y=1)
p(x|y=1)p(y=1)

p(x|y=1)p(y=1)+p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1+ p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1+ e−log p(x|y=1)p(y=1)
p(x|y=0)p(y=0)

=
1

1+ e−a

, σ(a)

(3.3)

Where:

a = log
p(x|y = 1)p(y = 1)
p(x|y = 0)p(y = 0)

(3.4)

And σ(a) is the logistic sigmoid function. Its properties are further detailed in section 3.2.2.

We then assume that the data points, within their own class, are distributed normally, that is,
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P(X |Y = 1)∼ N(µ1,Σ) and P(X |Y = 0)∼ N(µ0,Σ).

a = log
p(x|y = 1)p(y = 1)
p(x|y = 0)p(y = 0)

= log p(x|y = 1)− log p(x|y = 0)+ log
p(y = 1)
p(y = 0)

=−1
2
(
log|Σ|+ klog(2π)+(x−µ1)

T
Σ
−1(x−µ1)

)
+

1
2
(
log|Σ|+ klog(2π)+(x−µ0)

T
Σ
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)
+ log
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2
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T
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+
1
2
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(3.5)

Where w = Σ−1(µ1−µ0) and w0 =
1
2 µT

0 Σ−1µ0− 1
2 µT

1 Σ−1µ1+ log p(y=1)
p(y=0) . It follows that p(y =

1|x) = σ(wT x+w0) and that p(y = 0|x) = 1−σ(wT x+w0).
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y is assumed to follow a Bernoulli distribution. Let θ denote the probability that yi is positive.

The probability density function of y can be written as:

p(yi|θ) =

θ , if yi = 1

1−θ , if yi = 0
(3.6)

Or, alternatively:

p(yi|θ) = p(yi = 1)yi p(yi = 0)1−yi = θ
yi(1−θ)1−yi (3.7)

Because the points are independent and identically distributed (i.i.d.), their joint probability

function can expressed as the product of the marginals:

p(yyy|θ) =
N

∏
i=0

p(yi|θ) =
N

∏
i=0

θ
yi(1−θ)1−yi (3.8)

p(yyy|xxx) =
N

∏
i=0

p(yi|xi) =
N

∏
i=0

p(yi = 1|xi)
yi p(yi = 0|xi)

1−yi (3.9)

Again, we wish to maximize the likelihood of the labels, given the data points.

max p(yyy|xxx) = minL(w,w0)

= min−logp(yyy|xxx)

= min−log
N

∏
i=0

p(yi = 1|xi)
yi p(yi = 0|xi)

1−yi

= min−
N

∑
i=0

yi logp(yi = 1|xi)+(1− yi)logp(yi = 0|xi)

= min−
N

∑
i=0

yi log σ(wT xi +w0)+(1− yi) log σ(wT xi +w0)

(3.10)

This loss function is known as binary cross entropy. By finding the parameters wML and

w0ML that minimize it, we can model the distribution p(y|x) as σ(wT x+w0). This allows for the

probability of a data point belonging to each of the classes to be computed. Unlike regression,

however, the problem is not in general convex, in cases where points are not linearly separable,

making a closed form solution impossible.

This technique can easily be extend to multiple classes. The logistic sigmoid function is re-

placed by the softmax function:

so f tmax(a) j =
ea j

∑
C
j′ e j′

(3.11)
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Figure 3.3: Logistic regression

And the loss function becomes the cross entropy function:

L(w,w0) =−
N

∑
i=0

C

∑
j=0

1(yi = j) log
(
so f tmax(wT xi +w0) j

)
(3.12)

Where 1(x = y), the indicator function, is defined as:

1(x = y) =

1, if x = y

0, otherwise
(3.13)

3.2 Multi Layer Perceptron

More complex relationships can be expressed by stacking multiple linear functions as layers, in-

terspersed with non-linear functions, known as activation functions. The output from each layer is

fed into the input of the next, after which the activation function is applied. This type of model is

called a Multi Layer Perceptron (MLP) and its layers are called dense or fully connected layers.

For a model with L layers, the output is given by:

a(0)i = xi

z(l)i =W (l)a(l)i +b(l)

a(l+1)
i = f (z(l)i )

ŷi = a(L)i

(3.14)

Where the matrix of weights W (l), and the vector of biases b(l) extend the first and zero order

coefficients in the line equation to multiple dimensions and the al
i , are the activation values at layer

l for point i. The dimensions of al can vary from layer to layer and are referred to as the number of

neurons of that layer. In real implementations, the output of a layer can be computed for an entire

batch in parallel by making use of matrix multiplication.

20



Convolutional Neural Networks

3.2.1 Backpropagation Algorithm

Unlike the linear model, optimization of an MLP cannot be solved in closed form, necessitating

the use of gradient information. In addition, its arbitrary number of layers also precludes a closed

form expression for computing gradients in the general case due to its complexity. Its cascade

nature, however, allows for an efficient recursive algorithm that computes gradients from later

layers to earlier ones, known as the Backpropagation Algorithm (BP).

In BP, gradients are propagated backwards through successive applications of the chain rule:

[ f (g(x))]′ = f ′(g(x))g′(x) (3.15)

The goal is to compute the gradient of the loss with respect to each of the parameters, W (l) and

b(l):

∂L
∂W (l)

=
n

∑
i

∂L

∂ z(l)i

∂ z(l)i

∂W (l)

=
n

∑
i

∂L

∂ z(l)i

∂

∂W (l)

(
W (l)a(l)i +b(l)

)
=

n

∑
i

∂L

∂ z(l)i

a(l)Ti

(3.16)

∂L
∂b(l)

=
n

∑
i

∂L

∂ z(l)i

∂ z(l)i

∂b(l)

=
n

∑
i

∂L

∂ z(l)i

∂

∂b(l)

(
W (l)a(l)i +b(l)

)
=

n

∑
i

∂L

∂ z(l)i

(3.17)

Where ∂L
∂ z(l)i

can be computed as follows:

∂L

∂ z(l)i

=
∂L

∂a(l+1)
i

∂a(l+1)
i

∂ z(l)i

=
∂L

∂a(l+1)
i

∂

∂ z(l)i

f (z(l)i )

=
∂L

∂a(l+1)
i

f ′(z(l)i )

(3.18)
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Where ∂L
∂a(l)i

can be computed recursively as follows:

∂L

∂a(l)i

=
∂L

∂a(l+1)
i

∂a(l+1)
i

∂a(l)i

=
∂L

∂a(l+1)
i

∂a(l+1)
i

∂ z(l)i

∂ z(l)i

∂a(l)i

=
∂L

∂a(l+1)
i

∂

∂ z(l)i

f (z(l)i )
∂

∂a(l)i

(
W (l)a(l)i +b(l)

)
=

∂L

∂a(l+1)
i

f ′(z(l)i )W (l)T

(3.19)

Starting with the gradients of the last layer:

∂L

∂a(L)i

=
∂L
∂ ŷi

= L′(ŷi) (3.20)

The backpropagation algorithm can be summed up as follows: an input is first fed through

the network, from the first layers to the later ones using equations 3.14, then the error function is

computed taking into account the predicted value, the output of the last layer, and the expected

value or ground truth. Finally, derivatives of the loss function are computed, using with equations

3.16, 3.17, 3.18, 3.19, from the later layers to the initial ones. Like the feedforward step, gradients

of layers can be computed efficiently for an entire batch of inputs by multiplying the transpose

of the weight matrix. To apply this algorithm, both the activation functions and the loss function

must be differentiable with respect to their inputs and the expressions of the derivatives known.

3.2.2 Activation Functions

The exact form of the activation function can vary from model to model, and even within the same

model. Historically, the most used activation functions in early models were the sigmoid and tanh

functions. Although mathematically similar, the tanh is typically better for learning due to its

output being centered at 0, but both suffer from a saturation problem, as the gradients go to zero

with a high absolute value, stopping the learning process altogether.

More recently, many activation functions have been proposed to deal with these issues. The

simplest and most popular of these is the Rectified Linear Unit (ReLU), which sets the output to

zero if it is negative and keeps it otherwise and thus has the advantages of both being faster to

compute and not saturating at high values. Its gradients can still go to zero if all its inputs are

negative. ReLUs that always receive negative inputs and so always output 0 are called dead Re-

LUs. Leaky ReLUs solve this problem by instead multiplying negative values by a small constant.

Other variants replace the constant with learnable parameters or randomize its value. Though less
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common in feed forward models, the sigmoid and tanh functions are still the standard in recurrent

models due to their finite ranges. These functions are defined in table 3.2.2.

Sigmoid f (x) = σ(x) = 1
1+e−x

Tanh f (x) = tanh(x) = ex−e−x

ex+e−x

ReLU f (x) =

{
x, if x > 0
0, otherwise

Leaky ReLU f (x) =

{
x, if x > 0
α · x, otherwise

Table 3.1: Common activation functions

3.2.3 Optimization

Although gradient descent performs well with simple loss surfaces and small datasets, it struggles

when the loss function is non-convex as it can converge to a local minimum. In addition, comput-

ing the derivatives of the loss function for each data point at each iteration is slow and inefficient.

In stochastic gradient descent (3.21), each update is instead calculated based on the gradient of a

single data point. The noisier gradients can help to avoid local minima at the cost of more frequent

updates to the weights and more variance in the performance of the model. Mini-batch gradient

descent (3.22) finds a middle ground between the two approaches by using only a small subset of

the dataset, called the mini-batch, in each update. Using mini-batches, the gradients for all the ex-

amples in the batch can be computed in parallel and then be used to update the weights, resulting

in less noisy gradient signals and more efficient processing.

θ
(t+1) = θ

(t)−η ·∇L(θ (t); ŷi,yi) (3.21)

θ
(t+1) = θ

(t)−η · 1
n

i+n

∑
k=i

∇L(θ (t); ŷk,yk) (3.22)
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Gradient descent with momentum seeks to improve convergence by adding an additional

hyper-parameter, momentum, α . By reducing the effects of repeated oscillations in the direc-

tions of the gradient while accelerating consistent ones, it functions analogously to the momentum

of a moving object. The model can then learn faster while also having a higher chance of escaping

local minima. The update rules are the following:

v(t+1) = α · v(t)−η∇L(θ (t))

θ
(t+1) = θ

(t)+ v(t+1)
(3.23)

With Nesterov momentum [116], gradients are instead computed in a lookahead fashion using

the current "velocity" values. This correction allows for the optimization process to better adapt

to the topology of the error function. It uses the following update rules:

v(t+1) = α · v(t)−η∇L(θ (t)+α · v(t))

θ
(t+1) = θ

(t)+ v(t+1)
(3.24)

One of the most popular optimizer is Adam [66], which stands for adaptive moments. Adam

includes both first and second moment information to adapt the learning rate of each parameter.

It does so by keeping an exponential moving average of these moments. Because it starts with

estimates of these moments initialized at zero, they are biased towards this value, especially in the

initial steps. To counteract this, Adam includes bias correcting updates for these estimates. The

update rules are the following:

g(t+1) = ∇L(θ (t))

m(t+1) = β1mt +(1−β1)g(t+1)

v(t+1) = β2vt +(1−β2)g(t+1)2

m̂(t+1) =
m(t+1)

1−β1

v̂(t+1) =
v(t+1)

1−β2

θ
(t+1) = θ

(t)−η
m̂(t+1)

√
v̂(t+1)+ ε

(3.25)

Where mt and vt are the first and second moments and m̂t and v̂t their bias corrected counter-

parts. ε is a small constant added for numerical stability. β1 and β2 are the exponential decay rates

for the first and second-moment estimates, with a typical value of 0.9 and 0.999 respectively.

Other methods for numerical optimization that rely on higher order derivatives, such as New-

ton’s method, Levenberg–Marquardt and Broyden–Fletcher–Goldfarb–Shanno algorithms, despite
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often converging in fewer iterations in many conditions, are not typically used in Deep Learning

contexts, due to the increasing complexity of computing second these derivatives.

3.2.4 Initialization

Another important aspect in the optimization process is weight initialization. Different properties

of the derivatives of the activation functions at various values of its inputs can affect the ability

of the model to learn. Tanh and sigmoid functions, for example, saturate at very high or low

values in its inputs, setting its gradients to zero. In addition, weights with very high or very

low absolute values may increase or decrease the values of the activations from one layer to the

next, which can lead to vanishing or exploding gradients. As such, it is critical that weights

are initialized in such a way as to keep inputs to layers in a range that allows for the model to

converge. Initialization schemes aim to keep the values of the inputs to the activation function

close to their optimal range, typically around zero, throughout all the layers of the network. Most

do this by manipulating the distribution from which the weights are generated. The two most

common initialization schemes are Xavier initialization [38] and He initialization [42]. Xavier

initialization uses a normal distribution with mean zero and variance:

Var(W ) =
1

nin
(3.26)

Where nin is the dimensionality of the input of the layer. This maintains the same approximate

variance in the input and outputs of the layer both in the forward and backward passes, improving

gradient flow. Whereas Xavier initialization is applicable for linear layers, or layers with activa-

tion functions which closely approximate linear ones, such as the sigmoid or tanh near zero, He

initialization applies to layers with ReLU activation functions. The variance is instead computed

with the expression:

Var(W ) =
2

nin
(3.27)

3.3 Convolutional Neural Networks

Figure 3.4: Convolutional Neural Network, LeCun et al. [73].

Certain types of data, such as images, have an inherent grid-like structure which an MLP cannot

exploit, as they assign an entirely separate set of weights to each pixel. Convolutional layers,
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unlike fully connected layers, exploit the spatial characteristics of their inputs by applying filters

of weights to them, in a sliding window fashion, such that a set of weights is always multiplied

in the same relative position everywhere in the input. Models containing these layers are called

Convolutional Neural Networks (CNNs). In reality, this operation is usually implemented as a

matrix multiplication, which is highly efficient on modern massively parallel hardware such as

GPUs. Despite their name, they are not computed with the convolution operator used in signal

processing, but with the closely related cross-correlation operator, defined by:

F ? I(x,y) =
FH

∑
j=−FH

FW

∑
i=−FW

F(i, j) · I(x+ i,y+ j) (3.28)

Where F is the weight filter, I is the input, and FH and FW are the height and width of the filter.

The weight sharing inherent to the convolution allows the layer to reuse knowledge extracted

from any position in the input to any other position, which regularizes the network, greatly reduc-

ing the number of training examples needed and increasing its ability to generalize. It also gives

it a degree of translation equivariance. This means that the translated output of a layer is roughly

the same as the output of the layer when its input is translated by the same amount.

(a) (b)

Figure 3.5: Comparison of independent weights in an MLP (left) and weight sharing in a 1D CNN
with a filter size of 3×3 and stride 1×1 (right)

Convolutional layers can be constructed to operate on data with any number of dimensions,

from 1D layers used in sound processing, 2D layers used in image analysis and 3D layers use

in voxel-based tasks. We focus on 2D convolutional layers due to their effectiveness in image

processing.

At each layer, the input to a 2D convolutional layer is a tensor of shape Hin ×Win ×Din,

its height, width and depth. Depth translate to the input’s number of channels. In traditional

images, the channels refer to the red, green and blue channels. In deeper layers, the number of

channels is usually much higher and reflects the number of shape or semantic features the layer

that generated it was able to capture. Each layer is composed of Dout filters of weights, each of

size FH ×FW ×Din and a vector of Dout biases. To apply the layer to the input, each weight filter

is multiplied element-wise with an equally sized section of the input, the associated bias is added

and then the activation function is applied. This process is repeated over all parts of the input in a
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sliding window fashion, skipping S positions between applications, the stride number. Each filter

produces a 2D feature map representing the activations of the filters at each position in the input.

These maps are concatenated along the channel axis to form a tensor of shape Hout ×Wout ×Dout :

Wout =
Win−FW +2P

S
+1

Hout =
Hin−FH +2P

S
+1

(3.29)

Where P is the padding amount, the number of pixels added to each dimension before applying

the filters. Padding is often used to maintain the spatial dimensions equal throughout multiple

layers. Even with the same spatial size, the number of activations that affect other later activations

grows further downstream they are, when the filter size is higher than 1. The number of upstream

neurons that a neuron is affected by is called its receptive field. A higher receptive field means that

a neuron has access to a greater amount of surrounding context, which is essential for high-level

semantic features.

Figure 3.6: Convolutional layer with a 4×4 input, 3×3 filter size and stride of 1, Dumoulin and
Visin [27]

Another typical operation of CNNs is pooling. In pooling, the goal is to reduce the spatial di-

mensions of an activation map by replacing groups of values with the result of a reduce operation,

such as max or average. Pooling layers are defined by size, stride and, padding, but lack a depth

parameter. The output of a pooling layer has size Hout ×Wout ×Din. The most common type of

pooling layer is the max pooling layer, depicted in Figure 3.7. By returning only the maximum

of the activations in each FH ×FW , the max pooling layer gives a CNN a degree of translation

invariance, as small translations in the input may fall in the same area of the max pooling layer,

yielding the same output. This is particularly useful in classification, as the highest activations of

features are usually the most distinctive and therefore discriminatory. Pooling layers also increase

the receptive fields of neurons downstream, without the need for larger filters in those layers.
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Figure 3.7: Example of application of a max pooling layer with filter size and stride of 2×2.

In global pooling, the reduce function is instead applied to the entire input, for each channel. It

is equivalent to using a pooling layer with a filter size equal to the input size. Global pooling layers

have the advantage of producing outputs with constant spatial dimensions, of size 1×1×Din. A

global max pooling layer is depicted in Figure 3.8.

Figure 3.8: Example of application of a global max pooling layer.

Typical CNNs, such as the ones used for image classification, consist of sequences of multiple

convolutional layers followed by pooling layers, until the last pooling layer, which is connected to

an MLP that produces the final classification. By using a global pooling layer as the last spatial

layer, these CNNs can use MLPs to classify variable size images.

In semantic segmentation, the model is tasked with classifying each individual pixel. These

typically use fully convolutional networks that transform input images into lower resolution se-

mantic spaces before predicting the higher resolution classification mask. To perform this upsam-

pling in a learnable way, these architectures make use of transposed convolutional layers, so called

because they can be implemented using the transpose of the matrix that would be used in a normal

convolutional layer. Instead of multiplying the weight filters with same sized sections of the input,

transposed convolutions instead multiply a single value of the input with the weights and add that

to an accumulator matrix.
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Figure 3.9: Transposed convolutional layer with 2× 2 input, 3× 3 filter size and stride of 1,
Dumoulin and Visin [27]

Some architectures instead upsample the feature map using a conventional image resizing

method, such as nearest neighbor or linear interpolation, before feeding the upsampled map to a

conventional layer, which is tasked with performing the learned part of the operation. This can

avoid some of the artifacts that can originate from adding multiple activations to the same positions

in some configurations of transposed convolutional layers.

A third option for upsampling feature maps is unpooling. Unpooling aims to reverse the

operation performed by pooling layers. However, because this operation is not reversible, the

result is always lossy. Max unpooling layers use the indices of the maxima captured in their

corresponding max pooling layer to project the feature map to a higher size, maintaining the

locations of the maxima while setting all other values to zero. This operation is depicted in Figure

3.10. One example of its application is in the SegNet architecture 3.11.

Figure 3.10: Max pooling layer followed by its associated unpooling layer.

Figure 3.11: SegNet architecture, a fully convolutional network for semantic segmentation, Du-
moulin and Visin [27]

.

In object detection, both regression and classification are combined into a single task. Object

detection models are trained to predict bounding boxes for objects, as well as their associated class.
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In one-shot detection architectures, images are split into a n×m grid. For each section in the grid,

anchors are created at s different scales and r different ratios for a total of n×m× s× r anchors.

The ground truth annotations and anchors with the highest overlap are matched and their offsets

computed. Offsets are the differences in center coordinates, width, and height. These anchors

are depicted in Figure 3.12. A fully convolutional network is tasked with predicting offsets and

classification scores for each of the anchors, for a total of n×m× s× r× (4+ c) outputs, where c

is the number of classes. A regression loss is used for the offsets and a classification loss for the

classes. In architectures such as the Feature Pyramid Network [78], or RetinaNet Lin et al. [79],

the grid is created at multiple scales, allowing the network to detect objects with a wider range of

sizes.

Figure 3.12: Anchors in a one-shot detection architecture, Liu et al. [80].

Figure 3.13: RetinaNet architecture, Lin et al. [79].
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Chapter 4

Methodology

This chapter details the methodology employed to build and train a model capable of detecting

and diagnosing anomalies in mammograms.

4.1 Data

The dataset chosen was INbreast [88]. It consists of 410 Full-Field Digital Mammogram FFDM

images of both craniocaudal (CC) and mediolateral oblique (MLO) views, from 115 cases ob-

tained from the Breast Centre in Centro Hospitalar São João. Regions of interest (ROIs), such as

microcalcifications, masses, spiculated regions, distortions, and asymmetries are annotated with

pixel-level boundaries. There are also image-level annotations of ACR and BI-RADS classifi-

cations. The exams were split into training and validation set at the patient level, with 80% of

patients used for training and 20% reserved for validation.

4.2 Architecture

The model used in this work builds on the RetinaNet architecture [79] and extends it by adding

additional outputs relevant to mammogram analysis and by taking into account multiple inputs,

consisting of each of the 4 images that are part of an exam. The model is made fully modular and

so each of these components can be added or removed independently. By predicting all outputs

in a single pass, the entire model can be trained in a fully end-to-end process, simplifying the

learning process.

4.2.1 Single Image Architecture

As in RetinaNet, the backbone of the model is a ResNet [43] submodel, which receives the input

image. As in Lin et al. [78], we extract the features output by the last block of each stage in the

network (Figure 4.2). Each stage is defined by the blocks producing feature maps with the same
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Figure 4.1: The full object detection model proposed by Lin et al. [78], showing inputs (blue),
bottom-up feature pyramid (red) and the top-down feature pyramid (green)

spatial dimensions. These activations form the feature pyramid for the bottom-up pathway. These

are then used to build a second feature pyramid in a top-down pathway as depicted in Figure 4.3.

Figure 4.3: Feature pyramid of the model.

As in Lin et al. [78], a fully convolutional object detection submodel is fed the features of each

level of the top-down pyramid and is tasked with predicting bounding boxes, through regression,

and associated classes of objects contained in the image at the corresponding image scale. By

predicting at multiple feature scales, the model can efficiently detect objects of different sizes.

In mammogram analysis, both large masses and small microcalcifications are of clinical inter-

est. However, their large differences in relative size would require a model based on the RetinaNet

architecture to predict significantly higher resolution outputs, with a corresponding increase in

training and inference times. We instead add a second detection model tasked with predicting

bounding boxes for clusters of microcalcifications at the same resolution. Due to the ambiguous
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Figure 4.2: Backbone of the model.

nature of microcalcification clusters, we introduce a novel loss function that is tailored to be less

sensitive to the particular grouping the detection model chooses. This is detailed in 4.3. The

detection outputs of the model are depicted in Figure 4.4.

Figure 4.4: Detection outputs of the model.

Two alternative methods of microcalcification detection are explored: segmentation and re-

gression. In segmentation, the network is tasked with predicting which pixels belong to either a

single microcalcification or a cluster of microcalcifications. In regression, the network is tasked

with predicting a continuous map roughly corresponding to the proximity to nearby microcalcifi-

cations. These outputs are depicted in Figure 4.5.

Figure 4.5: Segmentation and regression outputs of the model.

A classification submodel (Figure 4.6) is tasked with classifying the mammogram into one of

negative, benign or malignant based on the last feature map of the bottom-up feature pyramid and
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Figure 4.7: Proposed extensions to the RetinaNet architecture

each of the outputs from the other models. By using a learnable submodel, rather than a fixed

function based on the other outputs, the network can still learn from mammograms that only have

associated ground-truth classifications and no anomaly annotations. These extensions are depicted

in Figure 4.7.

Figure 4.6: Classification head of the model.

Using a multi-task model allows not only for the network to share features between the various

tasks but also to learn in a fully supervised way from datasets that contain only subsets of the data

necessary for all the tasks. Some datasets in mammography, for example, only contain image-

level annotations of the patient’s cancer classification. In a multi-task setting, the network can be

trained with these images by updating the weights only from the gradients of the classification loss

and the features learned in this mode may also improve the performance of the network in its other

tasks, as they are highly related in this problem.

4.2.2 Multiple Image Architecture

A single image, however, is often insufficient to accurately detect anomalies in the tissue. Dur-

ing the decision process, radiologists make use of multiple views, usually MLO and CC, of both

breasts simultaneously. In addition to potentially revealing anomalies not visible in one view,

asymmetries between the breasts can also be indicative of malignancy, whereas as an apparent
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Figure 4.8: Generalization of the proposed architecture to multiple images

anomaly that is present in both breasts is less likely to be malignant. CAD systems have histor-

ically had difficulty taking into account this link between images due to complex deformations

breast tissue undergoes in the mammogram capture process.

We propose fusing information from multiple images both explicitly and implicitly. Right and

left images of the same view are fused explicitly through image registration or alignment, a process

detailed in Section 4.4. The two aligned images are stacked along the channel axis, resulting in a

spatially aligned image with one channel corresponding to the right image and one corresponding

to the left image, which is then fed to the backbone network. This allows the network to directly

relate co-located features from one breast to the other.

The views are fused implicitly by merging high-level features extracted from each of the im-

ages. First, bottom-up and top-down feature pyramids are generated from each of the input images.

Then, for each of the images, a new feature pyramid is obtained by stacking, at each level of the

pyramid, the features corresponding to each image. These stacked feature pyramids will, at each

level, contain first the features corresponding to that image, then the features corresponding to the

image from the other view, followed by the features corresponding to the image corresponding to

the same view and opposite laterality, and ending with the features from the image corresponding

to the other view and opposite laterality. These feature pyramids are then reduced feature-wise

using a feature-reducing submodel. Output submodels are then fed the reduced feature maps to

produce final outputs for each of the 4 images. This process is depicted in Figure 4.8.
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Figure 4.9: Generalization of the classification submodel to multiple images

Because the set of images consists of two pairs corresponding to the two views of the patient’s

breasts, only two classification outputs are required. The last feature maps from the bottom-

up feature pyramid of each image are fused and fed into a global pooling layer, along with the

outputs corresponding to the same image to form that image’s feature vector. Feature vectors from

all images are then appended. The vectors corresponding to the first breast are placed at the start

of the resulting vector. This vector is fed to MLP which is tasked with predicting the classification

for that breast. Finally, the process is repeated for the second breast. This submodule is depicted

in Figure 4.9.

4.3 Cluster Loss

Traditional losses used in object detection tasks seek for the network to output a specific prediction,

that is identical to the ground truth. Clusters of objects, however, are inherently ambiguous in their

composition; multiple assignments of a set of points to clusters may be equally valid. To capture

this ambiguity, we propose a new loss function that does not penalize predictions that differ from

the ground truth as long as the prediction covers the same areas as the ground truth annotations

by computing a continuous approximating of an Intersection over Union (IOU) function. A set of

bounding boxes B with elements Bi = (x(1)i ,y(1)i ,x(2)i ,y(2)i ) is interpreted as a mixture of continuous

two-dimensional uniform distributions, represented by the probability density function pB(x,y).

pB(x,y) =
N

∑
i

πi ·U(ai,bi),
N

∑
i

πi = 1 (4.1)
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Where:

ai = (x(1)i ,y(1)i ), bi = (x(2)i ,y(2)i ) (4.2)

This mixture is then approximated by a mixture of two-dimensional Gaussians, where each

Gaussian approximates one of the uniform distributions by minimizing the KL divergence. The

values for µ and σ in the one-dimensional case can be derived as follows:

min
µ,σ

KL(U(a,b) || N(µ,σ)) = min
µ,σ

∫
∞

−∞

U(a,b) · log
(

U(a,b)
N(µ,σ)

)
dx

= min
µ,σ

∫ b

a

1
b−a

· log

 √
2πσ2

(b−a)e
(x−µ)2

2σ2

dx

= min
µ,σ

∫ b

a

1
b−a

·
(

1
2

log(2πσ
2)− log(b−a)− (x−µ)2

2σ2

)
dx

= min
µ,σ

1
2

log(2πσ
2)− log(b−a)− a2 +b2 +ab−3aµ−3bµ +3µ2

6σ2

= min
µ,σ

1
2

log(2πσ
2)− a2 +b2 +ab−3aµ−3bµ +3µ2

6σ2

(4.3)

∂

∂ µ
KL(U(a,b) || N(µ,σ)) = 0

⇒ 3a+3b+6µ

6σ2 = 0

⇒ µ =
a+b

2

(4.4)

∂

∂σ
KL(U(a,b) || N(µ,σ)) = 0

⇒ a2 +b2 +a(b−3µ)−3bµ +3(µ2 +σ2)

3σ3 = 0

⇒ σ
2 =

(b−a)2

12

(4.5)

The two-dimensional case follows simply from these equations.

The loss function is then defined as the Jensen–Shannon divergence between the two Gaussian

mixture models, where:

DJS(P,Q) =
KL(P||Q)+KL(Q||P)

2
(4.6)

Because computing the KL divergence between arbitrary Gaussian mixture models is in-

tractable, a variational upper bound is computed instead. We use the method proposed by Durrieu
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et al. [28]. Let f and g denote the probability density functions for each of the mixture models and

fa, πa, gb and ωb their a-th and b-th Gaussians and their associated weights:

f = ∑
a

πa fa

g = ∑
b

ωbgb

They then introduce variational parameters φb|a and ψa|b such that:

∀b,a : φb|a > 0, ∑
b

φb|a = πa =⇒∑
a,b

φb|a fa = f

∀a,b : ψa|b > 0, ∑
a

ψa|b = ωb =⇒∑
a,b

ψa|b gb = g

KL( f ||g) =
∫

f log
(

f
g

)
dx

=−
∫

f log
(

g
f

)
dx

=−
∫

f log
(

∑a,b ψa|b gb

f

)
dx

=−
∫

f log

(
∑
a,b

ψa|b gb

φb|a fa

φb|a fa

f

)
dx

≤−
∫

f ∑
a,b

φb|a fa

f
log
(

ψa|b gb

φb|a fa

)
dx

=−
∫

∑
a,b

φb|a fa

(
log
(

ψa|b

φb|a

)
+ log

(
gb

fa

))
dx

=−
∫

∑
a,b

φb|a fa log
(

ψa|b

φb|a

)
dx−∑

a,b
φb|a

∫
fa log

(
gb

fa

)
dx

=
∫

∑
a,b

φb|a fa log
(

φb|a

ψa|b

)
dx+∑

a,b
φb|a

∫
fa log

(
fa

gb

)
dx

= KL(φ ||ψ)+∑
a,b

φb|a KL( fa||gb)

def
= KLφ ,ψ( f ||g)

(4.7)

Where KLφ ,ψ( f ||g) is the variational upper bound to the target value, KL( f ||g). KL( fa||gb) is

the KL divergence between two Gaussians, which can be written in closed form with the following
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expression:

KL(N(µ1,Σ1)||N(µ2,Σ2)) =
1
2

(
log
|Σ2|
|Σ2|
−d + tr(Σ−1

2 Σ1)+(µ2−µ1)
T

Σ
−1
2 (µ2−µ1)

)
(4.8)

The values φ̂ and ψ̂ that minimize the upper bound KLφ ,ψ( f ||g) are then computed. Starting

with initial values φb|a = ψa|b = πaωb, the values are optimized using the following update rules,

derived from equation 4.7:

ψa|b =
ωbφb|a

∑a′ φb|a′
(4.9)

φb|a =
πaψa|b eKL( fa||gb)

∑b′ ψa|b′ eKL( fa||gb′ )
(4.10)

By minimizing the upper bound given by KLφ ,ψ( f ||g), the target value, KL( f ||g) is also min-

imized. The variational upper bound KLφ ,ψ( f ||g) is fully differentiable with respect to its inputs,

the parameters of both Gaussian mixture models, which are fully differentiable with respect to the

parameters of the uniform mixture models, which are, in turn, fully differentiable with respect to

the parameters of the bounding boxes output by the model, this function can, therefore, be used as

a loss function to train a model.

At inference time the parameters of the uniform distributions - and therefore of the bounding

boxes - can then be retrieved from the Gaussian mixture model as follows:

ai = µi−
√

3σ , bi = µi +
√

3σ (4.11)

4.4 Preprocessing and Data Augmentation

To help the convolutional model analyze matching regions in the breast, we align the two images

corresponding to the same view of the two breasts, right and left. To align the mammograms we

first find the contour of the breast. After thresholding the image, the breast is assumed to be the

largest contiguous area. This simple approach to segmenting the breast works well in the INbreast

dataset as its images have a relatively high contrast between background and foreground. In less

ideal datasets, such as DDSM, a more robust method would be required. The curve farthest away

from the center is considered to be the contour of the breast.

Most images contain extra tissue above or below the breast which may not be present in the

other corresponding image and so can be removed. To do this, the magnitudes of the second

derivatives of the curve of the contour of the breast are computed. If this value exceeds a preset

threshold, the sections of the curve above or below the point are removed.
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We then predict the position of the nipple, the primary reference point to compare the images.

In this work, the nipple is assumed to be the point along the contour of the breast that is farthest

away from the base of the breast, the edge of the image where the torso would be located.

We then choose n equidistant points along the base edge and n points along the contour, where

half the points are located above the nipple in the contour and half are located below the nipple,

with the points in each set being equidistant. Then the positions of each pair of points from the

contour and base sets are linearly interpolated to form m−2 new points for a total of n×m points.

These points are assumed to correspond to similar positions in their respective images and so

function as control points in piece-wise linear interpolation between the two images.

The area containing the breast is cropped from the image to maximize the relative area of

tissue in the image. This process is depicted in Figure 4.10.

The main limitations of this method lie in the detection and processing of the nipple. Some

image pairs contain nipples in only one of the images. In these cases, the nipple is matched with

very structurally different tissue, resulting in noticeable visual artifacts. Even in cases where both

nipples are matched successfully, slight differences in the exact points of the nipple which are

matched still sometimes result in some distortion.

Lesion annotations from the dataset are converted to both bounding boxes, by taking the max-

ima and minima of the points of each lesion, and masks. For very small lesions, like microcal-

cifications, bounding boxes are instead computed after a clustering step. Clustering is performed

using the DBSCAN algorithm [22] with hand-picked values. The bounding box ground truth

annotations used in training, therefore, represent both large masses and clusters of small micro-

calcifications. Multiple masks are computed for each image, unchanged masks, dilated or blurred

masks and cluster masks, reflecting different types of annotation that might be fed to the models.

Unchanged masks reflect precise annotations for both masses and microcalcifications. Dilated or

blurred masks allow for the masks to be downscaled more aggressively while being more lenient

with precise segmentations. Cluster masks reflect the clusters of microcalcifications computed

with DBSCAN. Clusters are drawn using an ellipse that approximates its dimensions. These masks

also aim to not excessively punish inexact segmentations.

To help regularize the network, images are augmented with random rotations, translations,

scalings, shearing, and flipping. An affine matrix is constructed with random values for these

operations. Then the matrix is applied to the image, as well as to its bounding boxes and masks.

In multiple image mode, the same transformation is applied to each image for consistency.

4.5 Implementation

Deep Learning frameworks significantly speed up research and applications by providing com-

monly used components, such as automatic differentiation. The main frameworks in use today

are:

• Tensorflow [4]
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(a) Left mammogram (b) Right mammogram

(c) Grid for left mammogram (d) Grid for right mammogram

(e) Aligned left mammogram (f) Aligned right mammogram

(g) Cropped aligned left mamo-
gram

(h) Cropped aligned right
mamogram

Figure 4.10: Mammogram preprocessing pipeline
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• PyTorch [91]

• Chainer [121]

• Caffe [60]

• CNTK [105]

• MXNet [16]

• Torch [21]

• Deeplearning4j [1]

• DyNet [89]

In this work, we chose to use the Python programming language [100] for its variety of pack-

ages useful for Deep Learning and data analysis with Keras [18] for its high level APIs allowing for

rapid development and integration with other frameworks. OpenCV [58, 2] was used for image

processing, Pandas [85] for reading .csv and .xls files, Matplotlib [53] for plotting, Scikit-learn

[92] for validation splitting and various metrics, Numpy [123] for numerical computation and

IPython [93] as a development environment. The base detection architecture was based on the

open-source implementation by Github user fizyr [29].

4.6 Metrics

The primary metric used in detection is the Average Precision (AP) which corresponds to the area

under the corrected curve formed by plotting the Precision and the Recall at each possible detection

threshold value, the confidence beyond which a detection is considered to be valid [41]. Detections

are considered correct if their Intersection over Union value with a ground truth annotation is above

the minimum threshold. An example of such the Precision-Recall curve is depicted in Figure 4.12.

Precision =
#TruePositives

#TruePositives+#FalsePositives

Recall =
#TruePositives

#TruePositives+#FalseNegatives
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Figure 4.11: Precision-Recall curve (purple), for sequence of correct (green) and incorrect (red)
detections. Corrected curve in red. Henderson and Ferrari [46].

Another common metric in breast cancer detection is the Free Receiver Operating Character-

istic (FROC) curve, which plots the number of False Positives per Image (FPI) against the True

Positive Rate (TPR).

In classification, the Area Under the Receiver Operating Characteristic (AUROC) is used to

measure the performance of models. It corresponds to the area under the Receiver Operating

Characteristic (ROC) curve, formed by plotting the True Positive Rate (TPR), or Recall, and the

False Positive Rate (FPR) at each threshold value. An example of such a curve is depicted in

Figure 4.12.

FalsePositiveRate =
#FalsePositives

#FalsePositives+#TrueNegatives

TruePositiveRate = Recall =
#TruePositives

#TruePositives+#FalseNegatives

Figure 4.12: ROC curve

43



Methodology

The quality of a segmentation is often measured using the Dice coefficient, calculated with the

following expression:

Dice =
2#TruePositives

2#TruePositives+#FalsePositives+#FalseNegatives

4.6.1 Training and Results

The networks were trained with the Adam optimizer with a learning rate of 1×10−4 and a dropout

rate of 0.35. The learning rate was halved when the validation loss failed to decrease for 50 epochs.

The best result obtained was an AP of 0.62 at an IOU threshold of 0.5 and score threshold of 0.05,

in single class lesion detection in single task, single image mode, with a training time of 1̃3 hours

on a Nvidia Tesla K80 GPU. The cluster loss proved too computationally expensive to train a

model.

To validate the alignment and multi-image architectures, an experiment was carried out to

compare their performance in single task 1 class mass detection. Here, the images were down-

scaled further to 300×400 to speed up training time, at the cost of performance. The results are

presented in Table 4.1.

Model Average Precision

Non-aligned single image 0.45

Aligned single image 0.51

Non-aligned multi-image 0.35

Aligned multi-image 0.35
Table 4.1: View fusion experiment results.

As expected, the results show that the additional context of the aligned mammograms helped

the network to more accurately detect masses in the single image case. In the multiple image case,

we speculate that this additional context is redundant due as the network already has access to all

the images. We speculate that the reduced performance of the multi-image model compared to

the single-image model is due to the additional complexity of merging and reducing the feature

pyramids. This issue could be improved with alternate merging methods, such as not reducing

the feature pyramids, longer training times, or pre-training the non-reducing layers on the single-

image task.
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Chapter 5

Conclusions and Future Work

This work described some of the first steps towards creating a system capable of detecting and

classifying abnormalities in mammographic images, as well as their overall malignancy classifi-

cation. We described a novel architecture based on existing object detection models to meet some

of the many challenges inherent to mammographic images. To the task of detecting masses, we

add the tasks of detecting clusters of microcalcifications and the classification of the mammogram

into one of negative, benign or malignant. With the goal of detecting clusters while taking into

account their inherent ambiguity, we introduce a novel loss function that approximates the IOU of

predictions and ground truth annotations by casting them as mixtures of Gaussians and computing

their KL divergence. We then extend this methodology by integrating all four views of an exam in

a single, end-to-end differential model. The feature pyramid extraction component of the single-

image model is fed each image and the resulting features are appended in cyclical order, level by

level, before passing through a feature reducing model. This results in a feature pyramid for each

input image, each containing information from the other views as well. The predictor part of the

single image model is then applied to each pyramid. By sharing weights between models applied

to each of the images, the network is forced to reuse features from all views, which are visually

similar. Explicit view fusion is also performed by aligning collateral mammograms, with the goal

of improving detection performance. Experiments show the promise of these methods, but further

tests are required to fully validate their effectiveness and compare them to the state of the art.

Although our techniques take into account all four views of a typical mammographic exam,

some exams or datasets may contain more or fewer images. In some cases, the patient has had a

mastectomy or one or more images are unavailable or were uncaptured. In others, extra images

may have been captured in the same or different views. Frequently, multiple exams of the same

patient are recorded over time, which radiologists compare in their decision-making process. Fu-

ture work might include extending the proposed architecture by applying convolutional recurrent

networks to construct feature pyramids from a variable number of inputs.

Another challenge in deploying a deep learning based solution on a large scale would be
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dealing with differences in images that originate from the variety of equipment that might be used

to capture them. In addition to allowing the models to have better performance when trained

on multiple different datasets, it could also significantly increase its ability to generalize to new,

unseen conditions or equipment, for which less training data would then be required. The proposed

architecture might be extended by adding Domain-Adversarial Networks, which would encourage

the model to produce features which are indistinguishable between data sources.
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