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ABSTRACT

Background: Mammographic density is an important risk factor for breast cancer. Recent research demon-
strated that percentage density assessed visually using Visual Analogue Scales (VAS) showed stronger risk pre-
diction than existing automated density measures, suggesting readers may recognise relevant image features not
yet captured by automated methods.
Method: We have built convolutional neural networks (CNN) to predict VAS scores from full-field digital mam-
mograms. The CNNs are trained using whole-image mammograms, each labelled with the average VAS score of
two independent readers. They learn a mapping between mammographic appearance and VAS score so that at
test time, they can predict VAS score for an unseen image. Networks were trained using 67520 mammographic
images from 16968 women, and tested on a large dataset of 73128 images and case-control sets of contralateral
mammograms of screen detected cancers and prior images of women with cancers detected subsequently, matched
to controls on age, menopausal status, parity, HRT and BMI.
Results: Pearson’s correlation coefficient between readers’ and predicted VAS in the large dataset was 0.79 per
mammogram and 0.83 per woman (averaging over all views). In the case-control sets, odds ratios of cancer in
the highest vs lowest quintile of percentage density were 3.07 (95%CI: 1.97 - 4.77) for the screen detected cancers
and 3.52 (2.22 - 5.58) for the priors, with matched concordance indices of 0.59 (0.55 - 0.64) and 0.61 (0.58 - 0.65)
respectively.
Conclusion: Our fully automated method demonstrated encouraging results which compare well with existing
methods, including VAS.
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1. INTRODUCTION

Mammographic density is one of the most important independent risk factors for breast cancer and is defined as
the relative proportion of dense to fatty tissue in the breast as visualised in mammograms. Women with dense
breasts have a 4-6 fold increased risk of breast cancer compared to women with fatty breasts.1 Additionally,
dense breasts may mask possible cancers, reducing readers’ sensitivity.2 A number of area and volumetric
based methods exist to measure mammographic density (MD). These include visual area-based methods, for
example BI-RADS breast composition categories,3 Boyd categories,4 the Visual Analogue Scale (VAS),5 semi-
automated thresholding (Cumulus).6 The automated Densitas software7 operates in an area-based fashion on
processed “for presentation” full field digital mammograms [FFDM] whilst methods including Volpara8 and
Quantra9 use the raw “for processing” mammogram to estimate volumes of dense fibroglandular and fatty tissue
in the breast. Density measures may be expressed in absolute terms (area or volume of dense tissue) or more
commonly as a percentage expressing the relative proportion of dense tissue in the breast. Recent studies have
investigated density-breast cancer associations and found differences depending on the density method used.10,11

Furthermore, it has been shown that measures of density can improve the accuracy of cancer risk prediction
models.12

Subjective assessment of percentage density recorded on Visual Analogue Scales (VAS) has a strong relationship
with breast cancer risk. In a recent case-control study.13 with three matched controls for each cancer (366
detected in the contra-lateral breast at screening on entry to the study and 338 detected subsequently), the odds
ratio for screen detected cancers in the contra-lateral breast in the highest compared to the lowest quintile of
percentage VAS was 4.37 (95% CI: 2.72 - 7.03) compared 2.42 (95% CI: 1.56 - 3.78) and 2.17 (95% CI: 1.413.33)
for Volpara and Densitas percent density respectively. Similar results were found for subsequent cancers, with
odds ratios of 4.48 (95%CI:2.79 - 7.18) for VAS, 2.87 (95%CI:1.77-4.64) for Volpara and 2.34 (95% CI: 1.50 - 3.68)
for Densitas. This suggests that expert readers may recognise important features present in the mammographic
images of high risk women which existing automated methods may miss. In part this may be due to their
assessment of patterns of density as well as quantity of dense tissue; there is already evidence in the same case-
control setting that explicit quantification of density patterns adds independent information to percent density
for risk prediction.14

Most conventional machine learning algorithms require hand-crafted descriptive features and prior knowledge of
the data. Conversely, deep learning techniques extract and learn relevant features directly from the data, without
prior knowledge.15 Convolutional neural networks (CNN) have been successfully used for a wide range of imaging
tasks including image classification,16 object detection, and semantic segmentation.17 In mammography, deep
learning has been used for breast segmentation,18 breast lesion detection19 and breast mass segmentation.20

Moreover, deep learning has been employed for differentiation between benign and malignant masses21 and to
discriminate between masses and microcalcifications.19 A method that consists of a cascade of deep learning
and random forest classifiers has been used for detecting mases in mammograms.22 Unlabelled deep learning
has been used for breast density segmentation and risk scoring.23,24 Petersen et al.23 were amongst the first
to propose autoencoders as a method for breast density estimation, using a multiscale denoising autoencoder
to learn an image representation to train a machine learning model to estimate breast density. Kallenberg et
al.24 proposed a variant of the autoencoder that learns a sparse overcomplete representation of the features. A
recent study employed deep learning to classify breast density BI-RADS categories and to differentiate between
“scattered density” and “heterogeneously dense” breasts, showing promising results.25

In this paper, we trained two deep neural networks to learn features associated with breast cancer with an aim to
create an automated method with the potential to match human performance on breast cancer risk assessment.
Our approach is to train a CNN to predict mammographic density VAS scores with the final goal of assessing
breast cancer risk.

2. DATA

We used data from the Predicting Risk Of Cancer At Screening (PROCAS) study.26 57,905 women were recruited
to PROCAS between October 2009 and March 2015, with full-field digital mammograms available for 44,505.
VAS scores were produced as described in Section 3.1. Data from women who had cancer prior to entering the



PROCAS study were excluded from this study, as were those women with additional views, to avoid ambiguity.
PROCAS mammograms were in three different formats as shown in Table 1. Due to memory limitations, those
with format C were excluded. The total number of exclusions for all criteria (n=21299) are shown in Table 2
leaving a total of 36606 women and 145820 mammographic images for analysis.

Table 1: Mammographic image formats in PROCAS

Format Dimensions (pixels) Pixel Size (µm)

A 1914x2294 94.1
B 2394x3062 94.1
C 4095x5625 54.0

Table 2: Exclusion table. a

Exclusion Reason Number of Women Excluded

additional views 2384
mammographic image size 6513

prior cancer 1068
FFDM unavailable 13400

aSome exclusions fall into more than one category

2.1 Training data

The training set was built by randomly selecting 50% of the eligible women from PROCAS. All women that
were part of the two case control test sets described in Section 2.2 were further excluded from the training set to
ensure no overlap between training and test sets. The training set consisted of 67520 images from 16968 women
(132 cancers and 16836 non-cancers).

2.2 Test data

We evaluated our method using three datasets: the PROCAS 50%, screen-detected cancers (SDC) and the Priors
datasets. The SDC and Priors datasets are the same as the case-control studies used by Astley et al.10

PROCAS dataset 50%

The PROCAS 50% test set consisted of data from the remaining 50% of women (73128 images from 18360
women, 393 cancers and 17967 non-cancers) that were not used in the test set. We used all four mammographic
views and analysed the data both per mammogram and per woman.

SDC dataset

The SDC dataset was a subset of PROCAS with mammographic images from 1646 women (366 cancers and 1098
non-cancers). All cancers were detected at the screen on entry to PROCAS. Mammographic density was assessed
in the contralateral breast of women with cancer and in the same breast for the matched controls. Each case was
matched to three controls based on age (+/-12 months), BMI category (missing, <24.9, 25.0-29.9, 30+ [kg/m2]),
hormone replacement therapy (HRT) use (current vs never/ever) and menopausal status (premenopausal, peri-
menopausal or postmenopausal). Controls had a cancer-free (normal) mammogram at entry to PROCAS, but
also had a subsequent cancer-free (normal) mammogram.



Priors dataset

The Priors dataset consisted of a case-control set of 338 cancers and 1014 controls also from the PROCAS study.
All cases in this dataset were cancer-free on entry to PROCAS but diagnosed subsequently. We analysed the
mammographic images of these women on entry to PROCAS. Controls had a cancer-free (normal) mammogram
at entry to PROCAS, but also had a subsequent cancer-free (normal) mammogram. In this analysis we used
data from all four mammographic views. Similarly to the SDC dataset, cases were matched to three controls
based on age, BMI category, HRT, menopausal status and also year of mammogram.

3. MATERIALS AND METHODS

3.1 Visual assessment of density

In the Predicting Risk of Cancer At Screening (PROCAS) study, mammograms had their density assessed by
two of nineteen independent readers (radiologists, advanced practitioner radiographers and breast physicians).
The Visual Analogue Scale (VAS) used was a 10cm line marked at the ends with 0% and 100%. Each reader
marked their assessment of breast density on one scale for each mammographic view. Readers were assigned
on a pragmatic basis. The VAS score for each mammographic image was computed as the average of the two
readers’ scores. The VAS score per woman was averaged across all four mammographic images and across the
two readers.

3.2 Deep learning model

We propose an automated method for assessing breast cancer risk based on whole-image full- field digital mam-
mograms (FFDM) using readers’ VAS scores as a measure of breast density. As a first step, we built a deep
CNN that takes whole-image mammograms as input and predicts a single number between 0 and 100. This
number corresponds to the VAS score (percentage density). One of the main characteristics of CNNs is that
features are learned from the training data without human input and are directly optimised for the task at hand.
Features (often referred to as filters) are small patches which are convolved with the input image and create
activation maps that show how the input responds to the filters. The values of the features are automatically
adjusted to optimise an objective function, in this case the minimisation of the squared difference between pre-
dicted and reader VAS scores. Our implementation uses the TensorFlow library.27 Our network consists of 6
groups of 2 convolutional layers and a max pooling layer. Figure 1 shows a conceptual representation of the
network, the complete architecture is shown in Figure 2. We use the ReLU28 activation function and apply batch
normalisation29 before ReLU.

3.3 Pre-processing

All mammographic images had the same spatial resolution. In order to have a single mammogram size, we
padded format A mammograms with zeros on the bottom and right edges to match the resolution of format B
mammograms. Right breast mammograms were flipped horizontally before padding. Further, all mammograms
were cropped to 2394x2995 and scaled to 512x640 pixels using bicubic interpolation. Images were downscaled
due to limited memory demands. The upper bound of the pixel values was set to 75% of the pixel value range,
to reduce the difference between background and breast pixel intensity. Finally, we inverted the pixel intensities
and applied histogram equalisation (256 bins).30 All pixel values were normalised in the range [0,1] before images
were fed into the network.

3.4 Training the CNN

We trained two separate network architectures shown in Figure 2. The first was trained on cranio-caudal (CC)
images and the second on medio-lateral oblique (MLO) images. The network takes as input pre-processed
mammographic images (512x640 pixels) and outputs a single value which represents a VAS score. The CNN
learns a mapping between the input mammographic image and the output VAS score. A validation set consisting
of 5% of the training set was used for parameter selection and to avoid over-fitting. We used the Adam optimiser31

with an initial learning rate of 5e-06. Training mini-batches were balanced to have an equal number of input
images for each VAS score decile. The cost function was a weighted mean squared error; each weight being



Figure 1: Conceptual diagram of our VAS-score predicting convolutional neural network.

Figure 2: Network architecture and characteristics of each layer. The number of feature maps and the kernel
size of each convolutional layer are shown as: feature maps@kernel size. The fully connected layers are marked
with FC followed by the number of neurons in the layer.

inversely proportional with the inter-reader difference so that examples where both readers agree give a larger
contribution to the loss function. We trained for 150,000 iterations and selected the model that performed best
on the validation set. For the fully connected layers we used a dropout rate of 0.5 at training time.

3.5 Predicting density score

At test time, the network predicted a single VAS score for each mammogram. A small proportion of images
(approximately 1%) produced a negative VAS score and were set to zero. The VAS-score for a woman was
computed by averaging scores across all mammograms available (both breasts and both views).

3.6 Analysis

We calculated two types of VAS scores: VAS score per image and VAS score per woman (i.e. an average of
all VAS scores for all views for each woman). We evaluated our network’s performance on three tasks. The
first task was predicting VAS score for previously unseen mammographic images. We computed predicted VAS
scores per image and per woman on the PROCAS 50%. The Pearson correlation coefficient between predicted
and readers’ VAS scores was calculated. Bland-Altman plots32 were used to evaluate the agreement between
readers’ and predicted VAS scores and to identify any systematic bias in the predicted VAS score. We computed
the reproducibility coefficient (RPC) which quantifies the agreement between readers and predicted VAS. 95%
of predicted VAS scores are expected to be within one RPC from median after adjusting for the systematic bias.



Secondly, we assessed the capacity of our network to predict case-control status for screen detected cancers
(SDC) and priors using the datasets as described in Section 2.2. The relationship between VAS and case-control
status was analysed using conditional logistic regression with density measures modelled as quintiles based on
the density distributions of controls. The difference in the likelihood-ratio chi-square between models in the
subset of women who had both reader and predicted VAS scores was compared. The matched concordance (mC)
index,33 which provides a statistic similar to the area under the receiving operator characteristic curve (AUC)
for matched case-control studies, with empirical bootstrap confidence intervals33 was calculated to compare the
discrimination performance of the models. All p values were two-sided.

4. RESULTS

Figure 3 shows predicted VAS plotted against readers’ VAS scores for PROCAS 50%. Figure 3a shows the
VAS scores for mammographic images, whilst Figure 3b shows VAS scores computed per woman. The Pearson
correlation coefficient was 0.79 per mammogram and 0.83 per woman.

(a) per mammogram (b) per woman

Figure 3: Predicted VAS score plotted against the average VAS score of 2 readers a) per mammographic image
and b) per woman

Figure 4 shows Bland-Altman plots for predicted and readers’ VAS scores for PROCAS 50%. A reproducibility
coefficient (RPC) of 19 was obtained for VAS scores per mammographic image with a systematic bias of -2.0.
For VAS scores per woman the RPC was 16 and there was a systematic bias of -1.7 in predicted VAS.

Figure 5 illustrates the odds of developing breast cancer for women in all quintiles of predicted VAS scores
compared to women in the lowest quintile for a) Screen detected dataset and b) Priors dataset.

Table 3 shows the odds of developing breast cancer for women in the highest quintile of VAS scores compared to
women in the lowest quintile. Predicted and readers’ VAS were both significantly associated with breast cancer
for SDC and priors, however the odds ratio associated with readers’ VAS was higher than that for predicted
VAS. For the SDC dataset, the odds ratio for women in the highest quintile compared to women in the lowest
quintile of predicted VAS scores was 3.07 (95% CI: 1.97 - 4.77). In the Priors dataset the OR for predicted VAS
was 3.52 (95% CI: 2.22 - 5.58). Readers’ VAS was a significantly better predictor than the predicted VAS for
both case-control datasets (likelihood ratio chi-square, p=0.007 for SDC and p=0.029 for the Priors dataset).



(a) per mammogram (b) per woman

Figure 4: Bland-Altman plot of predicted and readers’ VAS score. The horizontal axis shows the average between
readers’ and predicted VAS scores; the vertical axis shows the difference between predicted and readers’ VAS
scores. Solid line represents median, dashed lines show the 95% confidence limits.

(a) Screen detected cancers dataset (b) Priors dataset

Figure 5: Risk of developing breast cancer odds ratio with 95% CI of predicted VAS for a) the screen detected
cancers dataset and b) the priors dataset.

Table 3: Odds ratio (95% CI) for highest quintile compared to lowest quintile of VAS scores

Dataset Readers’ VAS Predicted VAS

SDC test set 4.63 (2.82 - 7.60) 3.07 (1.97 - 4.77)
Prior test set 4.41 (2.76 - 7.06) 3.52 (2.22 - 5.58)

Table 4 shows the matched concordance index obtained for both case-control datasets. The matched concordance
index for reader VAS was higher (0.65, 95% CI: 0.61 - 0.68 for SDC and 0.64, 95% CI: 0.60 - 0.68 for Priors)
compared to predicted VAS (0.59, 95% CI: 0.55 - 0.64 for SDC and 0.61, 95% CI: 0.58 - 0.65 for Priors) showing
better discrimination between cases and controls for reader VAS.



Table 4: Matched concordance index for predicted and readers’ VAS scores for both case-control datasets

Dataset Readers’ matched C-index Predicted matched C-index

SDC dataset 0.65 (0.61 - 0.68) 0.59 (0.55 - 0.64)
Priors dataset 0.64 (0.60 - 0.68) 0.61 (0.58 - 0.65)

5. DISCUSSION

In this paper we have presented a deep learning method to predict VAS scores for breast density assessment.
Subjective assessment of breast density has been shown to be a stronger predictor of breast cancer than other
automated and semi-automated methods.10 Our method is the first automated method to attempt to reproduce
readers’ VAS scores as an assessment of breast cancer risk; it gives promising preliminary results. We used a large
dataset with 145,820 mammographic full-field digital mammograms from 36,606 women and tested our network
on 3 datasets. We showed that our CNN is capable of predicting a VAS score that reflects readers’ VAS which
is the first step towards building a method for cancer risk prediction. Results showed a substantial agreement
between readers’ VAS scores and predicted VAS scores (Pearson correlation = 0.83 for VAS per woman and 0.79
for VAS per mammographic image). The mean difference (systematic bias) between the reader and predicted
VAS was small, however the 95% limits of agreement showed considerable variation, which has been found to
be a problem in the visual assessment of breast density both within and between readers (Sergeant et al.34).
Despite this VAS has been found to be a significant predictor of breast cancer. Consequently we investigated
our method’s capacity to predict breast cancer in the datasets previously used by Astley et al.10 Our method
performed well, both in predicting breast cancer in women with SDC cancer using the contra-lateral breast, and
in predicting the future development of the disease, however the ORs for predicted VAS were lower than those
for readers’ VAS. Despite this, our method tended to show a stronger association with breast cancer risk than
percent density estimates in both SDC and priors for automated methods (Volpara, Quantra and Densitas) as
reported by Astley et al.

Our method’s strengths include the fact that it requires no human input and the pre-processing step is minimal.
This would make it a pragmatic solution for population-based stratified screening. To further improve our
method, we plan to remove the downscaling step in the pre-processing phase. We expect that inclusion of fine-
scale structures would improve risk estimation, since they are visible to human readers. Moreover, we intend to
test our method using processed “for presentation” mammographic images to determine whether similar results
could be obtained without the need for storing raw “for processing” images. This would facilitate routine density
assessment in screening programmes.
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