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Abstract.
Background: Mammographic density is an important risk factor for breast cancer. In recent research, percentage den-
sity assessed visually using Visual Analogue Scales (VAS) showed stronger risk prediction than existing automated
density measures, suggesting readers may recognise relevant image features not yet captured by hand-crafted algo-
rithms. With deep learning, it may be possible to encapsulate this knowledge in an automatic method.
Method: We have built convolutional neural networks (CNN) to predict density VAS scores from full-field digital
mammograms. The CNNs are trained using whole-image mammograms, each labelled with the average VAS score of
two independent readers. Each CNN learns a mapping between mammographic appearance and VAS score so that at
test time, they can predict VAS score for an unseen image. Networks were trained using 67520 mammographic images
from 16968 women and for model selection we used a dataset of 73128 images. Two case-control sets of contralateral
mammograms of screen detected cancers and prior images of women with cancers detected subsequently, matched
to controls on age, menopausal status, parity, HRT and BMI, were used for evaluating performance on breast cancer
prediction.
Results: In the case-control sets, odds ratios of cancer in the highest vs lowest quintile of percentage density were
2.49 (95 %CI: 1.59 - 3.96) for screen detected cancers and 4.16 (2.53 - 6.82) for priors, with matched concordance
indices of 0.587 (0.542 - 0.627) and 0.616 (0.578 - 0.655) respectively. There was no significant difference between
reader VAS and predicted VAS for the prior test set (likelihood ratio chi square, p=0.134).
Conclusion: Our fully automated method shows promising results for cancer risk prediction and is comparable with
human performance.
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1 Introduction

Mammographic density is one of the most important independent risk factors for breast cancer and

can be defined as the relative proportion of radio-dense fibroglandular tissue to radio-lucent fatty

tissue in the breast, as visualised in mammograms. Women with dense breasts have a 4-6 fold

increased risk of breast cancer compared to women with fatty breasts,1 and breast density has been

shown to improve the accuracy of current risk prediction models.2 The reliable identification of

women at increased risk of developing breast cancer paves the way for the selective implemen-

tation of risk-reducing interventions.3 Additionally, dense tissue may mask cancers, reducing the

sensitivity of mammography,4 and breast cancer mortality can be reduced if women at high risk

are identified early and treated adequately.5 There is international interest in personalizing breast

screening so that women with dense breasts are screened more regularly or with alternative or sup-

plemental modalities.6

A number of methods have been used to measure mammographic density (MD). These in-

clude visual area-based methods, for example BI-RADS breast composition categories,7 Boyd cat-

egories,8 percent density recorded on Visual Analogue Scales (VAS)9 and semi-automated thresh-

olding (Cumulus).10 The automated Densitas software11 operates in an area-based fashion on

processed (for presentation) full field digital mammograms (FFDM), whilst methods including

Volpara12 and Quantra13 use raw (for processing) mammograms to estimate volumes of dense fi-

broglandular and fatty tissue in the breast. Density measures may be expressed in absolute terms

(area or volume of dense tissue) or more commonly as a percentage expressing the relative pro-

portion of dense tissue in the breast. Recent studies have investigated the relationship between
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breast density and the risk of breast cancer and found differences depending on the density method

used.14, 15

Subjective assessment of percentage density recorded on VAS has a strong relationship with

breast cancer risk.16 In a recent case-control study14 with three matched controls for each can-

cer (366 detected in the contralateral breast at screening on entry to the study and 338 detected

subsequently), the odds ratio for screen detected cancers in the contralateral breast in the highest

compared to the lowest quintile of percentage density using VAS was 4.37 (95% CI: 2.72 - 7.03)

compared to 2.42 (95% CI: 1.56 - 3.78) and 2.17 (95% CI: 1.41 - 3.33) for Volpara and Densitas

percent density respectively. Similar results were found for subsequent cancers, with odds ratios of

4.48 (95% CI: 2.79 - 7.18) for VAS, 2.87 (95% CI: 1.77 - 4.64) for Volpara and 2.34 (95% CI: 1.50

- 3.68) for Densitas. This suggests that expert readers might recognise important features present

in the mammographic images of high-risk women which existing automated methods may miss. In

part this may be due to their assessment of patterns of density as well as quantity of dense tissue;

there is already evidence in the same case-control setting that explicit quantification of density

patterns adds independent information to percent density for risk prediction.17 However, visual

assessment of density is time consuming and significant reader variability has been observed.18, 19

There have been numerous attempts to automate density assessment using computer vision al-

gorithms20–22 that require hand-crafted descriptive features and prior knowledge of the data. Con-

versely, deep learning techniques extract and learn relevant features directly from the data, without

prior knowledge.23 Convolutional neural networks (CNN) have been successfully used for a wide

range of imaging tasks including image classification,24 object detection and semantic segmenta-
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tion,25 and organ classification in medical images.26 In mammography, deep learning has been used

for breast segmentation,27 breast lesion detection,28 breast mass detection29, 30 and breast mass seg-

mentation.30 Various deep learning approaches have been proposed for other breast cancer related

tasks such as differentiation between benign and malignant masses31 and discrimination between

masses and microcalcifications.32

Deep learning methods for estimating mammographic density have gained increased attention

in recent years, however the number of published studies is low. Petersen et al33 were amongst

the first to propose unsupervised deep learning, using a multiscale denoising autoencoder to learn

an image representation to train a machine learning model to estimate breast density. Following

Petersen’s study, Kallenberg et al.34 proposed a variant of the autoencoder that learns a sparse

overcomplete representation of the features, achieving an ROC AUC of 0.61 for breast cancer

risk prediction. A more recent study employed supervised deep learning to classify breast density

into BI-RADS categories and to differentiate between scattered density and heterogeneously dense

breasts, showing promising results.35 As VAS has been shown to be a better predictor of cancer

than other automated methods, we developed a method of breast density estimation by predicting

VAS scores using a supervised deep learning approach that learns features associated with breast

cancer. The aim of this study is to create an automated method with the potential to match human

performance on breast cancer risk assessment. Our model predicts mammographic density VAS

scores with the final goal of assessing breast cancer risk.
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2 Data

We used data from the Predicting Risk Of Cancer At Screening (PROCAS) study.36 57,902 women

were recruited to PROCAS between October 2009 and March 2015, with full-field digital mam-

mograms available for 44,505. Density was assessed by expert readers using VAS as described

in Section 3.1. Data from women who had cancer prior to entering the PROCAS study were ex-

cluded from the current study, as were data from those women with additional mammographic

views. PROCAS mammograms were in three different formats as shown in Table 1. Due to com-

putational memory limitations, those with format C were excluded. The number of exclusions for

all criteria (n=21299) are shown in Table 2 leaving data from 36606 women and 145820 mammo-

graphic images for analysis.

Table 1: Mammographic image formats in PROCAS

Format Dimensions (pixels) Pixel Size (µm)
A 2294×1914 94.1

B 3062×2394 94.1

C 5625×4095 54.0

Table 2: Exclusion table. a

Reason for exclusion Number Excluded
Additional mammographic views 2384

Format C mammographic image size 6513

Previous diagnosis of cancer 1068

No FFDM 13400

aSome exclusions fall into more than one category
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2.1 Training data

The training set was built by randomly selecting 50% of the data which met the inclusion and ex-

clusion criteria. Data from all women that were included in the two case control test sets described

in Section 2.3 were further removed from the training set to ensure no overlap between training

and test sets. The training set consisted of 67520 images from 16968 women (132 cancers and

16836 non-cancers). A validation set comprising approximately 5% of the training set was used

for parameter selection and to avoid over-fitting.

2.2 Model selection data

The model selection set consisted of data from the remaining 50% of women (73128 images from

18360 women, 393 cancers and 17967 non-cancers) that were not included in the training set. We

used all four mammographic views and analysed data on a per mammogram and per woman basis

(see Section 3.6). To ensure no overlap between model selection and test sets, all data included in

the SDC and prior test sets were removed from the Model Selection set. The purpose of this set is

to select the best model configuration in terms of VAS score prediction.

2.3 Test data

We evaluated our method using two datasets: the Screen-Detected Cancers (SDC) and prior datasets.

The SDC and prior datasets are the same as those used by Astley et al.14 In both test datasets

control/non-cancer data was from women who had both a cancer-free (normal) mammogram at

entry to PROCAS, and a subsequent cancer-free (normal) mammogram. Cancers were either de-

tected at entry to PROCAS, as interval cancers or at subsequent screens.
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SDC dataset

The SDC dataset was a subset of PROCAS with mammographic images from 1646 women (366

cancers and 1098 non-cancers). All cancers were detected during screening on entry to PROCAS.

Mammographic density was assessed in the contralateral breast of women with cancer and in the

same breast for the matched controls. Each case was matched to three controls based on age

(+/-12 months), BMI category (missing, <24.9, 25.0-29.9, 30+ kg/m2), hormone replacement

therapy (HRT) use (current vs never/ever) and menopausal status (premenopausal, perimenopausal

or postmenopausal).

Prior dataset

The prior dataset consisted of 338 cancers and 1014 controls also from the PROCAS study. All

cases in this dataset were cancer-free on entry to PROCAS but diagnosed subsequently. The me-

dian time to diagnosis of cancer was 36 months (25th percentile: 32 months, 75th percentile: 39

months). We analysed the mammographic images of these women on entry to PROCAS, using all

four mammographic views. Similarly to the SDC dataset, cases were matched to three controls

based on age, BMI category, HRT, menopausal status and year of mammogram.

3 METHOD

3.1 Visual assessment of density

In the PROCAS study, mammograms had their density assessed by two of nineteen independent

readers (radiologists, advanced practitioner radiographers and breast physicians). The VAS used

was a 10 cm line marked at the ends with 0% and 100%. Each reader marked their assessment of

breast density on one scale for each mammographic view. Mammograms were assigned to readers

7



on a pragmatic basis. The VAS score for each mammographic image was computed as the average

of the two reader scores. The VAS score per woman was averaged across all four mammographic

images and across the two readers.

3.2 Deep learning model

We propose an automated method for assessing breast cancer risk based on whole-image full-field

digital mammograms using reader VAS scores as a measure of breast density. As a first step, we

built a deep CNN that takes whole-image mammograms as input and predicts a single number

between 0 and 100. This number corresponds to the VAS score (percentage density). One of the

main characteristics of CNNs is that features are learned from the training data without human

input and are directly optimised for the prediction task. Features (often referred to as filters) are

small patches which are convolved with the input image and create activation maps that show how

the input responds to the filters. The values of the features are automatically adjusted to optimise

an objective function; in this case, the minimisation of the squared difference between predicted

and reader VAS scores. Our implementation uses the TensorFlow library.37 Our network consists

of 6 groups of 2 convolutional layers and a max pooling layer. Our architecture is VGG-like,

although there are some differences regarding the depth of the network and the number of feature

maps which were imposed by memory constraints. Fig. 1 shows a conceptual representation of

the network, the complete architecture is shown in Fig. 2. We use a non-saturating non-linear

activation function ReLU38 after each convolutional layer and apply batch normalization39 before

ReLU.
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Fig 1: Conceptual diagram of our convolutional neural network for predicting VAS score.

3.3 Pre-processing

All mammographic images had the same spatial resolution. In order to have a single mammogram

size, we padded format A mammograms with zeros on the bottom and right edges to match the

image size of format B mammograms. Right breast mammograms were flipped horizontally before

padding. Further, all mammograms were cropped to 2394x2995 and down-scaled using bicubic

interpolation. Images were down-scaled due to memory limitations. We used two down-scaling

factors to produce images of low and high resolution: 512x640 and 1024x1280 respectively. The

upper bound of the pixel values was set to 75% of the pixel value range, to reduce the difference

between background and breast pixel intensity. Finally, we inverted the pixel intensities and applied

histogram equalisation (256 bins).40 All pixel values were normalised in the range 0-1 before

images were fed into the network. Table 3 shows the two input image formats used for training

and their pixel size after down-scaling original images. No data augmentation techniques were

applied to our dataset.
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Fig 2: Network architecture and characteristics of each layer. The number of feature maps and
the kernel size of each convolutional layer are shown as: feature maps@kernel size. The fully
connected layers are marked with FC followed by the number of neurons in the layer for the low-
resolution input and the number of neurons for the high-resolution input in parenthesis.

Table 3: Input image format used for training and pixel size after down-scaling original images

Format Dimensions (pixels) Pixel Size (µm)
Low resolution 640×512 20.12
High resolution 1240×1024 40.24
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3.4 Training

We trained two independent networks, one for cranio-caudal (CC) images and one for medio-

lateral oblique (MLO) images, using the architecture shown in Fig. 2. Each network takes pre-

processed mammographic images as input and outputs a single value which represents a VAS score.

We trained separate models for the two input size images. The CNN learns a mapping between

the input mammographic image and the output VAS score. We used the Adam optimizer41 with

different values of initial learning rate: 5× 10−6, 1× 10−6, 5× 10−7 and 1× 10−7; we selected the

models which performed best on the validation set. VAS scores do not have a uniform distribution

across the population in PROCAS. The distribution is negatively skewed, over half of images have

scores below 30% and only a fifth of images have scores above 50%, as shown in Fig. 3. Over-

exposing our model to low VAS scores could skew the predicted values towards small VAS scores.

To avoid this, we built balanced mini-batches by oversampling examples with high VAS scores.

In the balanced mini-batch there is one example for each VAS value range of 20: 1 to 20, 21 to

40, etc. To assess the impact of the sampling strategy, we also trained the networks with randomly

sampled mini-batches.

Fig 3: Distribution of VAS scores per image in PROCAS. The distribution is strongly skewed
towards smaller values.
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We trained the CNNs for 300,000 mini-batch iterations. Mini-batches consisted of 5 images.

Weights were initialised with values from a normal distribution with 0 mean and standard deviation

of 0.1. Biases were initialised with a value of 0.1. For the fully connected layers we used a

dropout rate of 0.5 at training time. As described in Section 2.1, 5% of the training data was

used as a validation set which was evaluated every 100 iterations, for early stopping. The best

performing models on the validation set were evaluated on the model selection set. We used two

cost functions: a mean squared error (MSE) and a weighted mean squared error. For the standard

MSE, we computed loss as:

L =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

where Y is the vector of reader VAS, Ŷ is the predicted VAS score. For the weighted function,

each weight is inversely proportional to the inter-reader difference, so that examples where both

readers agree, give a larger contribution to the loss:

L =
1

n

n∑
i=1

λi(Yi − Ŷi)
2 (2)

where Y is the vector of reader VAS, Ŷ is the predicted VAS score and λ is the absolute difference

between two reader estimates. We have 8 different network configurations given by the input image

size, sampling strategy and cost function. Table 4 shows their assigned names which will be used

throughout the paper.

The low-resolution networks were trained on a Tesla P100 GPU whilst the high-resolution

networks were trained on 4 Tesla P100 GPUs. Training time was approximately 36 hours for small

resolution images and 6 days for high-resolution images.
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Table 4: Networks configurations. Each configuration is a different combination of input size, cost
function and sampling strategy. The low-resolution configurations have names starting with LR,
and the high-resolution with HR. The cost function is reflected in the name as “w” for weighted
cost function and “nw” for non-weighted. Finally, the sampling strategy adds “b” or “r” to the
name, for balanced and random respectively.

Name Input size (pixels) Cost function Mini-batch sampling strategy
LR-w-b 640×512 weighted MSE balanced by VAS ranges of 20
LR-nw-b 640×512 MSE balanced by VAS ranges of 20
LR-w-r 640×512 weighted MSE random
LR-nw-r 640×512 MSE random
HR-w-b 1240×1024 weighted MSE balanced by VAS ranges of 20
HR-nw-b 1240×1024 MSE balanced by VAS ranges of 20
HR-w-r 1240×1024 weighted MSE random
HR-nw-r 1240×1024 MSE random

3.5 Predicting density score

The MLO or CC network predicted a single VAS score for each previously unseen mammogram

image. A small proportion of images (approximately 1%) produced a negative VAS score and were

set to zero. The VAS score for a woman was computed by averaging scores across all mammogram

images available (both breasts and both views).

3.6 Model selection & testing

Breast cancer risk prediction was assessed by first selecting the CNN architecture that gave the

highest accuracy on the model selection set. The predicted VAS scores from this model were used

to assess breast cancer risk on both the prior and SDC datasets.

Model selection

VAS scores per image and woman were predicted for low and high-resolution images for different

parameter configurations (Table 4) for the model selection dataset, with the aim of selecting the
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best performing model. MSE with bootstrap confidence intervals were calculated for each config-

uration. Additionally, Bland-Altman plots42 were used to evaluate the agreement between reader

and predicted VAS scores and to identify any systematic bias in predicted VAS. We computed

the reproducibility coefficient (RPC) which quantifies the agreement between reader and predicted

VAS. 95% of predicted VAS scores are expected to be within one RPC from the median after

adjusting for systematic bias.

Prediction of breast cancer

To evaluate the selected model’s ability to predict breast cancer we used the screen detected cancer

(SDC) and prior datasets described in Section 2.3. For this we used only predicted VAS per woman

which was calculated differently for the two datasets. For prior, scores for all views available were

averaged. For the SDC set, only the contralateral side was used for cancer cases; for controls, we

used the same side as their matched case.

The relationship between VAS and case-control status was analysed using conditional logistic re-

gression with density measures modelled as quintiles based on the density distribution of controls.

The difference in the likelihood-ratio chi-square between models with reader and predicted VAS

scores was compared. The matched concordance (mC) index,43 which provides a statistic similar

to the area under the receiving operator characteristic curve (AUC) for matched case-control stud-

ies, was calculated with empirical bootstrap confidence intervals43 to compare the discrimination

performance of the models. All p-values are two-sided.
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4 RESULTS

Model selection

For all network configurations and for both views, a learning rate of 5 × 10−6 was found to give

the lowest MSE on the validation set. Table 5 and Table 6 show the MSE per image, per view

and per woman obtained with different training strategies for the model selection set. The lowest

MSE is obtained for the HR-nw-r configuration (high-resolution input, non-weighted cost func-

tion and random mini-batches) per image and HR-nw-b (high-resolution input, non-weighted cost

function and balanced mini-batches) per woman. Overall, the high-resolution input configurations

outperformed the corresponding low-resolution configurations by a small margin. Training with

balanced mini batches increased the MSE in the majority of cases with the exception of HR-nw-b

per woman and HR-w-b both per image and per woman. This may be because balancing mini-

batches has the equivalent effect of increasing the weight of under-represented VAS labels in the

cost function.

Table 5: Mean squared error (95% confidence intervals) for the model selection set, for the high-
resolution images. Each column represents a different network configuration. The first row shows
values obtained for the predictions made per image; the second and third row show MSE for CC
and MLO respectively; the fourth row shows results averaged per woman.

HR-nw-r HR-w-r HR-nw-b HR-w-b
per image 96.1 (94.8 - 97.3) 106.5 (105.1 - 107.9) 99.2 (97.9 - 100.5) 104.1 (102.8 - 105.2)
CC 94.6 (93.0 - 96.3) 103.3 (101.4 - 105.2) 99.0 (97.3 - 100.8) 103.1 (101.5 - 104.8)
MLO 97.6 (95.8 - 99.5) 109.8 (107.6 - 111.9) 99.3 (97.5 - 101.0) 105.0 (103.1 - 106.9)
per woman 79.3 (77.2 - 81.3) 86.2 (84.0 - 88.7) 77.3 (75.4 - 79.3) 81.9 (79.8 - 84.1)

Fig. 4 (a) and (b) and show the MSE value per range of 10 values of reader VAS for low- and

high-resolution input respectively. These plots show the impact of different training parameters on

prediction error.
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Table 6: Mean squared error (95% confidence intervals) for the model selection set, for the low-
resolution images. Each column represents a different network configuration. The first row shows
values obtained for the predictions made per image; the second and third row show MSE for CC
and MLO respectively; the fourth row shows results averaged per woman.

LR-nw-r LR-w-r LR-nw-b LR-w-b
per image 98.0 (96.7 - 99.2) 108.4 (107.0 - 109.9) 104.0 (102.7 - 105.3) 113.3 (112.0 - 114.8)
CC 100.0 (98.2 - 101.7) 110.8 (108.8 - 112.8) 108.0 (106.2 - 109.8) 116.8 (114.8 - 118.6)
MLO 95.9 (94.1 - 97.7) 106.1 (104.1 - 108.3) 99.9 (97.9 - 101.8) 109.9 (108.0 - 111.7)
per woman 79.4 (77.3 - 81.4) 87.2 (84.8 - 89.7) 82.1 (80.0 - 84.3) 90.2 (88.0 - 92.4)

Fig 4: MSE with 95% CI per image for low- and high-resolution input. All configurations are
displayed with a different line style or colour. Configurations with weighted cost function are
displayed in purple, and non-weighted in orange. Balanced mini-batches are displayed with a
solid line, and random ones with dashed lines. Data were analysed in divisions of 10% of VAS
score. The Y-axis shows the mean squared error of the predicted VAS score.

Using balanced mini-batches increased the error in the smaller values of VAS but decreased it

for larger VAS values. The weighted cost function improves the error at the ends of the VAS range,

where the inter-reader variability is low (shown in Fig. 5). The effects of balancing and weighted
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cost function are less prominent for the high-resolution images. The reduced performance with

balanced mini-batches may have been caused by the impact this weighting had on changing the

distribution of VAS labels between training and test data. The weighted cost function also increased

the MSE across all models. This cost function reduced the weight of those samples for which there

is disagreement between two readers. Fig. 5 shows the distribution is heavily skewed towards the

middle of the VAS range, thus the weighting of these samples would also change the distribution

of VAS labels with respect to the test set. Similar plots for CC performance and MLO performance

are shown in Fig. 6. Table 7 shows the mean squared difference between the two readers.

Fig 5: Plot of inter-reader variability with 95% CI for ranges of 10 values of reader VAS score.
X-axis shows the ranges of reader VAS (average of two readers) and Y-axis shows the average
inter-reader variability. Inter-reader variability is computed as the absolute difference between the
scores of two readers for each mammographic image.
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Fig 6: MSE with 95% CI per image for low- and high-resolution input for CC and MLO views.
All configurations are displayed with a different line style or colour. Configurations with weighted
cost function are displayed in purple, and non-weighted in orange. Balanced mini-batches are
displayed with a solid line, and random ones with dashed lines. Data were analysed in divisions of
10% of VAS score. The Y-axis shows the mean squared error of the predicted VAS score. (a) and
(b) show the MSE for low-resolution, (c) and (d) for high-resolution.
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Table 7: Mean squared difference between readers

MSE (95% CI)
per image 267.5 (264.4 - 270.9)
per woman 258.7 (252.6 - 264.6)

Plots of the inter-reader difference against predicted vs reader difference are shown in Fig. 7.

Fig 7: Plot of inter-reader absolute difference vs absolute difference between reader and predicted
VAS on the model selection set for two models (a) HR-nw-b, (b) HR-nw-r.

For all configurations, Bland Altman analysis42 showed good agreement between predicted

VAS and reader scores. The reproducibility coefficient (RPC) for predicted VAS per mammo-

graphic image was <18.0% for high-resolution input and <19.0% for low-resolution input. When

analysed on a ‘per woman’ basis, the RPC values were <16.0% and <16.3% for high- and low-

resolution input respectively. Systematic bias was low across all configurations with values be-

tween -2.0% and 1.5% per image and between -1.5% and 1.3% per woman. Table 8 shows the

Pearson correlation values for the model selection set and the two test sets. Bland-Altman plots of

HR-nw-r and HR-nw-b for the model selection set are shown in Fig. 8.
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Table 8: Correlation between predicted and reader VAS per image and per woman. All correlations
have p<0.01

dataset HR-nw-r HR-nw-b

per image
model selection set 0.805 0.803
SDC 0.808 0.806
prior 0.812 0.812

per woman
model selection set 0.838 0.843
SDC 0.834 0.845
prior 0.846 0.851

Fig 8: Bland-Altman plot of predicted and reader VAS score for the model selection set. The
horizontal axis shows the average of reader and predicted VAS scores; the vertical axis shows the
difference between predicted and reader VAS scores. Solid line represents median, dashed lines
show the 95% confidence limits. The grey level of each point indicates the number of points as
shown on the right hand side of each plot. (a) and (b) for Hr-nw-b, (c) and (d) for HR-nw-r.
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Fig. 9 shows the reader scores plotted for all pairs of views. The Pearson correlation coefficient

r varies between 0.97 and 0.99. Fig. 10 and Fig. 11 show the predicted scores for all pairs of views

obtained with HR-nw-r and HR-nw-b respectively. The Pearson correlation coefficient r varies

between 0.86 and 0.92 showing good agreement between scores across all four views.

Fig 9: Scatter plot and density plots of reader scores for all pairs of views.
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Fig 10: Scatter plot and density plots of predicted scores for HR-nw-r, for all pairs of views.

22



Fig 11: Scatter plot and density plots of predicted scores for HR-nw-b, for all pairs of views.

Prediction of breast cancer

Fig. 12 illustrates the odds of developing breast cancer for women in quintiles of predicted VAS

score compared to women in the lowest quintile for the prior dataset. Table 9 shows the odds of

developing breast cancer for women in the highest quintile of VAS score compared to women in

the lowest quintile. Predicted and reader VAS both gave a statistically significant association with
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breast cancer risk for the SDC and prior datasets. However, the odds ratio associated with reader

VAS was higher than that for predicted VAS. For the SDC dataset, the odds ratio for women in the

highest quintile compared to women in the lowest quintile of predicted VAS was 2.49 (95% CI:

1.57 - 3.96) for HR-nw-r and 2.40 (95% CI: 1.53 - 3.78) for HR-nw-b. In the prior dataset the OR

for predicted VAS was 4.16 (95% CI: 2.53 - 6.82) for HR-nw-r and 4.06 (95% CI 2.51 - 6.56) for

HR-nw-b.

Fig 12: Odds of developing breast cancer with 95% CIs for reader and predicted VAS on the prior
dataset. Predicted VAS is computed with the HR-nw-r model (high-resolution input, non-weighted
cost function, random mini-batches).

Table 9: Odds ratio (95% CI) for highest quintile compared to lowest quintile of VAS scores for
both case-control datasets

Prior (OR, 95% CI) SDC (OR, 95% CI)
Reader VAS 4.41 (2.76 - 7.06) 4.63 (2.82 - 7.60)
HR-nw-r 4.16 (2.53 - 6.82) 2.49 (1.57 - 3.96)
HR-nw-b 4.06 (2.51 - 6.56) 2.40 (1.53 - 3.78)

Table 10 shows the matched concordance index obtained for both case-control datasets. The

matched concordance index for reader VAS was higher than predicted VAS for both datasets show-
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ing better discrimination between cases and controls for reader VAS. Table 11 shows the p-values

based on the likelihood ratio chi-square comparing the difference between models for each case-

control dataset. In the SDC case control study, reader VAS was a significantly better predictor than

predicted VAS for both HR-nw-r (p=0.002) and HR-nw-b (p=0.001). For the prior dataset, there

was no significant difference between reader VAS and predicted VAS for HR-nw-r (p=0.134) but

reader VAS was a better predictor than HR-w-b (p=0.041). There was no significant difference

between HR-w-r and HR-w-b on either the prior (p=0.902) or SDC (p =0.760) datasets.

Table 10: Matched concordance index for predicted and reader VAS for both case-control datasets

Prior (95% CI) SDC (95% CI)
Reader VAS 0.642 (0.602 - 0.678) 0.645 (0.605 - 0.683)
HR-nw-r 0.616 (0.578 - 0.655) 0.587 (0.542 - 0.627)
HR-nw-b 0.624 (0.586 - 0.663) 0.589 (0.551 - 0.628)

Table 11: P-values based on likelihood ratio comparing different models

Model comparison Prior (p-values) SDC (p-values)
Reader vs HR-nw-r p=0.134 p=0.002
Reader vs HR-w-b p=0.041 p=0.001
HR-w-b vs HR-nw-r p=0.902 p=0.760

Bland-Altman plots of HR-nw-r and HR-nw-b for the two case control sets are shown in Fig. 13

and Fig. 14.
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Fig 13: Bland-Altman plot of predicted and reader VAS score for the HR-nw-r model. The
horizontal axis shows the average of reader and predicted VAS scores; the vertical axis shows the
difference between predicted and reader VAS scores. Solid line represents median, dashed lines
show the 95% confidence limits. The grey level of each point indicates the number of points as
shown on the right hand side of each plot. (a) and (b) for the SDC set; (c) and (d) for the prior set.
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Fig 14: Bland-Altman plot of predicted and reader VAS score for the HR-nw-b model. The
horizontal axis shows the average of reader and predicted VAS scores; the vertical axis shows the
difference between predicted and reader VAS scores. Solid line represents median, dashed lines
show the 95% confidence limits. The grey level of each point indicates the number of points as
shown on the right hand side of each plot. (a) and (b) for the SDC set; (c) and (d) for the prior set.

5 Discussion

In this paper we present a fully automated method to predict VAS scores for breast density assess-

ment. Breast density is an important risk factor for breast cancer, although studies vary in their

findings regarding which breast density measure is most predictive of cancer. Recent studies have

shown that automated methods are capable of matching radiologists’ performance for breast den-

sity assessment. Kerlikowske et al.44 compared automatic BI-RADS with clinical BI-RADS and
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showed they similarly predicted both interval and screen-detected cancer risk, which indicates that

either measure may be used for density assessment. A deep learning method proposed by Lehman

et al.45 for assessing BI-RADS density in a clinical setting, showed good agreement between the

model’s predictions and radiologists’ assessments. Duffy et al.46 investigated the association of

different density measures with breast cancer risk using digital breast tomosynthesis and compared

automatic and visual measures. All measures showed a positive correlation with cancer risk, but

the strongest effect was shown by an absolute density measure. However, Astley et al.14 showed

that subjective assessment of breast density was a stronger predictor of breast cancer than other

automated and semi-automated methods.

Our method is the first automated method to attempt to reproduce reader VAS scores as an

assessment of breast cancer risk, with results showing performance comparable to reader esti-

mates. We used a large dataset with 145,820 mammographic full-field digital mammograms from

36,606 women and tested our networks on two datasets. We showed that CNNs can predict a VAS

score that reflects reader VAS as a first step towards building a model for cancer risk prediction.

Results showed a strong agreement between reader VAS and predicted VAS for both low and high-

resolution images. Bland-Altman analysis showed similar results for all network configurations

and there was no substantial difference in performance between low and high-resolution images.

The mean difference (systematic bias) between reader and predicted VAS was small, however 95%

limits of agreement showed considerable variation, which has been found to be a problem in the

visual assessment of breast density both within and between readers.18

We investigated our method’s capacity to predict breast cancer in the datasets previously used

28



by Astley et al.14 An important finding is that although there is not complete agreement between

predicted and reader VAS, this doesn’t hinder the capacity of our method to predict cancer. Our

method performed well, both in predicting breast cancer in women with screen detected cancer

using the contralateral breast, and in predicting the future development of the disease, however

ORs for predicted VAS were lower than those for reader VAS on both case-control datasets.

For predicting the future development of breast cancer our method suggests a stronger association

with breast cancer risk than other automated density methods (Volpara, Quantra and Densitas) as

reported by Astley et al. using the same data sets. Matched concordance index analysis revealed

that VAS scores predicted using our method are similar to reader VAS in terms of assessing cancer

status on the prior set (compared to 0.64 for reader VAS, 0.616 and 0.624 for our method with

overlapping confidence intervals). On the SDC set, our predicted scores produced slightly lower

matched concordance indices (0.587 and 0.589 for our method, and 0.645 for Reader VAS). This

might be due to the use of only two predicted VAS scores to compute the average for each woman,

rather than four for the prior dataset. However, the ability to identify women at risk before cancer

is detected (as in the prior dataset) is more relevant for screening stratification. In this context, our

method can identify women at risk similarly to radiologists.

One limitation of our study is that we used mammographic images produced with acquisition

systems from a single vendor (GE Senographe Essential mammography system). Future work

includes extending the method to work with images produced by different systems. The strengths

of this approach include the fact that the method requires no human input and the pre-processing

step is minimal. Our method aims to encapsulate expert perception of features that are associated

with risk but may not be captured by methods that estimate the quantity of fibroglandular tissue.
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Predicted VAS is fully automatic so does not suffer from the limitations of reader assessment such

as inter-reader variability18 or variations in ability to identify women at higher risk of developing

breast cancer.19 This would make it a pragmatic solution for population-based stratified screening.
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