6 research outputs found

    Reliable bounding zones and inconsistency measures for GPS positioning using geometrical constraints

    Get PDF
    Reliable confidence domains for positioning with Global Navigation Satellite System (GNSS) and inconsistency measures for the observations are of great importance for any navigation system, especially for safety critical applications. In this work, deterministic error bounds are introduced in form of intervals to assess remaining observation errors. The intervals can be determined based on expert knowledge or - as in our case - based on a sensitivity analysis of the measurement correction process. Using convex optimization, bounding zones are computed for GPS positioning, which satisfy the geometrical constraints imposed by the observation intervals. The bounding zone is a convex polytope. When exploiting only the navigation geometry, a confidence domain is computed in form of a zonotope. We show that the relative volume between the polytope and the zonotope can be considered as an inconsistency measure. A small polytope volume indicates bad consistency of the observations. In extreme cases, empty sets are obtained which indicates large outliers. We explain how shape and volume of the polytopes are related to the positioning geometry. Furthermore, we propose a new concept of Minimum Detectable Biases. Using the example of the Klobuchar ionospheric model and Saastamoinen tropospheric model, we show how observation intervals can be determined via sensitivity analysis of these correction models for a real measurement campaign. Taking GPS code data from simulations and real experiments, a comparison analysis between the proposed deterministic bounding method and the classical least-squares adjustment has been conducted in terms of accuracy and reliability. It shows that the computed polytopes always enclose the reference trajectory. In case of large outliers, large position deviations persist in the least-squares solution while the polytope algorithm yields empty sets and thus successfully detects the cases with outliers

    Techniques de détection de défauts à base d’estimation d’état ensembliste pour systèmes incertains

    Get PDF
    This thesis proposes a new Fault Detection approach for linear systems with interval uncertainties, bounded perturbations and bounded measurement noises. In this context, the Fault Detection is based on a set-membership state estimation of the system. The main contributions of this thesis are divided into three parts:- The first part proposes an improved method which combines the good accuracy of the zonotopic set-membership state estimation and the reduced complexity of the ellipsoidal set-membership estimation.- In the second part, a new ellipsoidal state estimation approach based on the minimization of the ellipsoidal radius is developed, leading to Linear Matrix Inequality optimization problems. In this context, both multivariable linear time-invariant systems and linear time-variant systems are considered. An extension of these approaches to systems with interval uncertainties is also proposed. - In the continuity of the previous approaches, two Fault Detection techniques have been proposed in the third part based on these set-membership estimation techniques. The first technique allows to detect sensor faults by checking the consistency between the model and the measurements. The second technique is based on Multiple Models. It deals with actuator/component/sensor faults in the same time. A Min-Max Model Predictive Control is developed in order to find the optimal control and the best model to use for the system in spite of the presence of these faults.Cette thèse propose une nouvelle approche de détection de défauts pour des systèmes linéaires soumis à des incertitudes par intervalles, des perturbations et des bruits de mesures bornés. Dans ce contexte, la détection de défauts est fondée sur une estimation ensembliste de l'état du système. Les contributions de cette thèse concernent trois directions principales :- La première partie propose une méthode d'estimation d'état ensembliste améliorée combinant l'estimation à base des zonotopes (qui offre une bonne précision) et l'estimation à base d'ellipsoïdes (qui offre une complexité réduite).- Dans la deuxième partie, une nouvelle approche d'estimation d'état ellipsoïdale fondée sur la minimisation du rayon de l'ellipsoïde est développée. Dans ce cadre, des systèmes multivariables linéaires invariants dans le temps, ainsi que des systèmes linéaires variants dans le temps ont été considérés. Ces approches, résolues à l'aide de problèmes d'optimisation sous la forme d'Inégalités Matricielles Linéaires, ont été étendues au cas des systèmes soumis à des incertitudes par intervalles.- Dans la continuité des approches précédentes, deux techniques de détection de défauts ont été proposées dans la troisième partie utilisant les méthodes d'estimation ensemblistes. La première technique permet de détecter des défauts capteur en testant la cohérence entre le modèle et les mesures. La deuxième technique fondée sur les modèles multiples permet de traiter simultanément les défauts actionneur/composant/capteur. Une commande prédictive Min-Max a été développée afin de déterminer la commande optimale et le meilleur modèle à utiliser pour le système, malgré la présence des différents défauts

    Fortgeschrittene Methoden und Algorithmen für die computergestützte geodätische Datenanalyse

    Get PDF
    Die fortschreitende Digitalisierung mit ihren innovativen Technologien stellt zunehmende Anforderungen an Wirtschaft, Gesellschaft und Verwaltungen. Digitale Daten gelten als Schlüsselressource, die hohe Ansprüche u.a. an die Datenverarbeitung stellt, wie z. B. hohe Geschwindigkeit und Zuverlässigkeit. Besondere Bedeutung sind digitalen Daten mit Raumbezug beizumessen. Digitale Daten stammen im Bereich der Geodäsie und Geoinformatik von Multi-Sensor-Systemen, Satellitenmissionen, Smartphones, technischen Geräten, Computern oder von Datenbanken unterschiedlichster Institutionen und Behörden. „Big Data“ heißt der Trend und es gilt die enormen Datenmengen so breit und so effektiv wie möglich zu nutzen und mit Hilfe von computergestützten Tools, beispielsweise basierend auf künstlicher Intelligenz, auszuwerten. Um diese großen Datenmengen statistisch auszuwerten und zu analysieren, müssen laufend neue Modelle und Algorithmen entwickelt, getestet und validiert werden. Algorithmen erleichtern Geodätinnen und Geodäten seit Jahrzehnten das Leben - sie schätzen, entscheiden, wählen aus und bewerten die durchgeführten Analysen. Bei der geodätisch-statistischen Datenanalyse werden Beobachtungen zusammen mit Fachkenntnissen verwendet, um ein Modell zur Untersuchung und zum besseren Verständnis eines datengenerierenden Prozesses zu entwickeln. Die Datenanalyse wird verwendet, um das Modell zu verfeinern oder möglicherweise ein anderes Modell auszuwählen, um geeignete Werte für Modellterme zu bestimmen und um das Modell zu verwenden, oder um Aussagen über den Prozess zu treffen. Die Fortschritte in der Statistik in den vergangenen Jahren beschränken sich nicht nur auf die Theorie, sondern umfassen auch die Entwicklung von neuartigen computergestützten Methoden. Die Fortschritte in der Rechenleistung haben neuere und aufwendigere statistische Methoden ermöglicht. Eine Vielzahl von alternativen Darstellungen der Daten und von Modellen können untersucht werden. Wenn bestimmte statistische Modelle mathematisch nicht realisierbar sind, müssen Approximationsmethoden angewendet werden, die oft auf asymptotischer Inferenz basieren. Fortschritte in der Rechenleistung und Entwicklungen in der Theorie haben die computergestützte Inferenz zu einer praktikablen und nützlichen Alternative zu den Standardmethoden der asymptotischen Inferenz in der traditionellen Statistik werden lassen. Die computergestützte Inferenz basiert auf der Simulation statistischer Modelle. Die vorliegende Habilitationsschrift stellt die Ergebnisse der Forschungsaktivitäten des Autors im Bereich der statistischen und simulationsbasierten Inferenz für die geodätische Datenanalyse vor, die am Geodätischen Institut der Gottfried Wilhelm Leibniz Universität Hannover während der Zeit des Autors als Postdoktorand von 2009 bis 2019 publiziert wurden. Die Forschungsschwerpunkte in dieser Arbeit befassen sich mit der Entwicklung von mathematisch-statistischen Modellen, Schätzverfahren und computergestützten Algorithmen, um raum-zeitliche und möglicherweise unvollständige Daten, welche durch zufällige, systematische, ausreißerbehaftete und korrelierte Messabweichungen charakterisiert sind, rekursiv sowie nicht-rekursiv auszugleichen. Herausforderungen bestehen hierbei in der genauen, zuverlässigen und effizienten Schätzung der unbekannten Modellparameter, in der Ableitung von Qualitätsmaßen der Schätzung sowie in der statistisch-simulationsbasierten Beurteilung der Schätzergebnisse. Die Forschungsschwerpunkte haben verschiedene Anwendungsmöglichkeiten in den Bereichen der Ingenieurgeodäsie und der Immobilienbewertung gefunden

    Localization in urban environments. A hybrid interval-probabilistic method

    Get PDF
    Ensuring safety has become a paramount concern with the increasing autonomy of vehicles and the advent of autonomous driving. One of the most fundamental tasks of increased autonomy is localization, which is essential for safe operation. To quantify safety requirements, the concept of integrity has been introduced in aviation, based on the ability of the system to provide timely and correct alerts when the safe operation of the systems can no longer be guaranteed. Therefore, it is necessary to assess the localization's uncertainty to determine the system's operability. In the literature, probability and set-membership theory are two predominant approaches that provide mathematical tools to assess uncertainty. Probabilistic approaches often provide accurate point-valued results but tend to underestimate the uncertainty. Set-membership approaches reliably estimate the uncertainty but can be overly pessimistic, producing inappropriately large uncertainties and no point-valued results. While underestimating the uncertainty can lead to misleading information and dangerous system failure without warnings, overly pessimistic uncertainty estimates render the system inoperative for practical purposes as warnings are fired more often. This doctoral thesis aims to study the symbiotic relationship between set-membership-based and probabilistic localization approaches and combine them into a unified hybrid localization approach. This approach enables safe operation while not being overly pessimistic regarding the uncertainty estimation. In the scope of this work, a novel Hybrid Probabilistic- and Set-Membership-based Coarse and Refined (HyPaSCoRe) Localization method is introduced. This method localizes a robot in a building map in real-time and considers two types of hybridizations. On the one hand, set-membership approaches are used to robustify and control probabilistic approaches. On the other hand, probabilistic approaches are used to reduce the pessimism of set-membership approaches by augmenting them with further probabilistic constraints. The method consists of three modules - visual odometry, coarse localization, and refined localization. The HyPaSCoRe Localization uses a stereo camera system, a LiDAR sensor, and GNSS data, focusing on localization in urban canyons where GNSS data can be inaccurate. The visual odometry module computes the relative motion of the vehicle. In contrast, the coarse localization module uses set-membership approaches to narrow down the feasible set of poses and provides the set of most likely poses inside the feasible set using a probabilistic approach. The refined localization module further refines the coarse localization result by reducing the pessimism of the uncertainty estimate by incorporating probabilistic constraints into the set-membership approach. The experimental evaluation of the HyPaSCoRe shows that it maintains the integrity of the uncertainty estimation while providing accurate, most likely point-valued solutions in real-time. Introducing this new hybrid localization approach contributes to developing safe and reliable algorithms in the context of autonomous driving

    Uncertainty modelling in power spectrum estimation of environmental processes

    Get PDF
    For efficient reliability analysis of buildings and structures, robust load models are required in stochastic dynamics, which can be estimated in particular from environmental processes, such as earthquakes or wind loads. To determine the response behaviour of a dynamic system under such loads, the power spectral density (PSD) function is a widely used tool for identifying the frequency components and corresponding amplitudes of environmental processes. Since the real data records required for this purpose are often subject to aleatory and epistemic uncertainties, and the PSD estimation process itself can induce further uncertainties, a rigorous quantification of these is essential, as otherwise a highly inaccurate load model could be generated which may yield in misleading simulation results. A system behaviour that is actually catastrophic can thus be shifted into an acceptable range, classifying the system as safe even though it is exposed to a high risk of damage or collapse. To address these issues, alternative loading models are proposed using probabilistic and non-deterministic models, that are able to efficiently account for these uncertainties and to model the loadings accordingly. Various methods are used in the generation of these load models, which are selected in particular according to the characteristic of the data and the number of available records. In case multiple data records are available, reliable statistical information can be extracted from a set of similar PSD functions that differ, for instance, only slightly in shape and peak frequency. Based on these statistics, a PSD function model is derived utilising subjective probabilities to capture the epistemic uncertainties and represent this information effectively. The spectral densities are characterised as random variables instead of employing discrete values, and thus the PSD function itself represents a non-stationary random process comprising a range of possible valid PSD functions for a given data set. If only a limited amount of data records is available, it is not possible to derive such reliable statistical information. Therefore, an interval-based approach is proposed that determines only an upper and lower bound and does not rely on any distribution within these bounds. A set of discrete-valued PSD functions is transformed into an interval-valued PSD function by optimising the weights of pre-derived basis functions from a Radial Basis Function Network such that they compose an upper and lower bound that encompasses the data set. Therefore, a range of possible values and system responses are identified rather than discrete values, which are able to quantify the epistemic uncertainties. When generating such a load model using real data records, the problem can arise that the individual records exhibit a high spectral variance in the frequency domain and therefore differ too much from each other, although they appear to be similar in the time domain. A load model derived from these data may not cover the entire spectral range and is therefore not representative. The data are therefore grouped according to their similarity using the Bhattacharyya distance and k-means algorithm, which may generate two or more load models from the entire data set. These can be applied separately to the structure under investigation, leading to more accurate simulation results. This approach can also be used to estimate the spectral similarity of individual data sets in the frequency domain, which is particularly relevant for the load models mentioned above. If the uncertainties are modelled directly in the time signal, it can be a challenging task to transform them efficiently into the frequency domain. Such a signal may consist only of reliable bounds in which the actual signal lies. A method is presented that can automatically propagate this interval uncertainty through the discrete Fourier transform, obtaining the exact bounds on the Fourier amplitude and an estimate of the PSD function. The method allows such an interval signal to be propagated without making assumptions about the dependence and distribution of the error over the time steps. These novel representations of load models are able to quantify epistemic uncertainties inherent in real data records and induced due to the PSD estimation process. The strengths and advantages of these approaches in practice are demonstrated by means of several numerical examples concentrated in the field of stochastic dynamics.Für eine effiziente Zuverlässigkeitsanalyse von Gebäuden und Strukturen sind robuste Belastungsmodelle in der stochastischen Dynamik erforderlich, die insbesondere aus Umweltprozessen wie Erdbeben oder Windlasten geschätzt werden können. Um das Antwortverhalten eines dynamischen Systems unter solchen Belastungen zu bestimmen, ist die Funktion der Leistungsspektraldichte (PSD) ein weit verbreitetes Werkzeug zur Identifizierung der Frequenzkomponenten und der entsprechenden Amplituden von Umweltprozessen. Da die zu diesem Zweck benötigten realen Datensätze häufig mit aleatorischen und epistemischen Unsicherheiten behaftet sind und der PSD-Schätzprozess selbst weitere Unsicherheiten induzieren kann, ist eine strenge Quantifizierung dieser Unsicherheiten unerlässlich, da andernfalls ein sehr ungenaues Belastungsmodell erzeugt werden könnte, das zu fehlerhaften Simulationsergebnissen führen kann. Ein eigentlich katastrophales Systemverhalten kann so in einen akzeptablen Bereich verschoben werden, so dass das System als sicher eingestuft wird, obwohl es einem hohen Risiko der Beschädigung oder des Zusammenbruchs ausgesetzt ist. Um diese Probleme anzugehen, werden alternative Belastungsmodelle vorgeschlagen, die probabilistische und nicht-deterministische Modelle verwenden, welche in der Lage sind, diese Unsicherheiten effizient zu berücksichtigen und die Belastungen entsprechend zu modellieren. Bei der Erstellung dieser Lastmodelle werden verschiedene Methoden verwendet, die insbesondere nach dem Charakter der Daten und der Anzahl der verfügbaren Datensätze ausgewählt werden. Wenn mehrere Datensätze verfügbar sind, können zuverlässige statistische Informationen aus einer Reihe ähnlicher PSD-Funktionen extrahiert werden, die sich z.B. nur geringfügig in Form und Spitzenfrequenz unterscheiden. Auf der Grundlage dieser Statistiken wird ein Modell der PSD-Funktion abgeleitet, das subjektive Wahrscheinlichkeiten verwendet, um die epistemischen Unsicherheiten zu erfassen und diese Informationen effektiv darzustellen. Die spektralen Leistungsdichten werden als Zufallsvariablen charakterisiert, anstatt diskrete Werte zu verwenden, somit stellt die PSD-Funktion selbst einen nicht-stationären Zufallsprozess dar, der einen Bereich möglicher gültiger PSD-Funktionen für einen gegebenen Datensatz umfasst. Wenn nur eine begrenzte Anzahl von Datensätzen zur Verfügung steht, ist es nicht möglich, solche zuverlässigen statistischen Informationen abzuleiten. Daher wird ein intervallbasierter Ansatz vorgeschlagen, der nur eine obere und untere Grenze bestimmt und sich nicht auf eine Verteilung innerhalb dieser Grenzen stützt. Ein Satz von diskret wertigen PSD-Funktionen wird in eine intervallwertige PSD-Funktion umgewandelt, indem die Gewichte von vorab abgeleiteten Basisfunktionen aus einem Radialbasisfunktionsnetz so optimiert werden, dass sie eine obere und untere Grenze bilden, die den Datensatz umfassen. Damit wird ein Bereich möglicher Werte und Systemreaktionen anstelle diskreter Werte ermittelt, welche in der Lage sind, epistemische Unsicherheiten zu erfassen. Bei der Erstellung eines solchen Lastmodells aus realen Datensätzen kann das Problem auftreten, dass die einzelnen Datensätze eine hohe spektrale Varianz im Frequenzbereich aufweisen und sich daher zu stark voneinander unterscheiden, obwohl sie im Zeitbereich ähnlich erscheinen. Ein aus diesen Daten abgeleitetes Lastmodell deckt möglicherweise nicht den gesamten Spektralbereich ab und ist daher nicht repräsentativ. Die Daten werden daher mit Hilfe der Bhattacharyya-Distanz und des k-means-Algorithmus nach ihrer Ähnlichkeit gruppiert, wodurch zwei oder mehr Belastungsmodelle aus dem gesamten Datensatz erzeugt werden können. Diese können separat auf die zu untersuchende Struktur angewandt werden, was zu genaueren Simulationsergebnissen führt. Dieser Ansatz kann auch zur Schätzung der spektralen Ähnlichkeit einzelner Datensätze im Frequenzbereich verwendet werden, was für die oben genannten Lastmodelle besonders relevant ist. Wenn die Unsicherheiten direkt im Zeitsignal modelliert werden, kann es eine schwierige Aufgabe sein, sie effizient in den Frequenzbereich zu transformieren. Ein solches Signal kann möglicherweise nur aus zuverlässigen Grenzen bestehen, in denen das tatsächliche Signal liegt. Es wird eine Methode vorgestellt, mit der diese Intervallunsicherheit automatisch durch die diskrete Fourier Transformation propagiert werden kann, um die exakten Grenzen der Fourier-Amplitude und der Schätzung der PSD-Funktion zu erhalten. Die Methode ermöglicht es, ein solches Intervallsignal zu propagieren, ohne Annahmen über die Abhängigkeit und Verteilung des Fehlers über die Zeitschritte zu treffen. Diese neuartigen Darstellungen von Lastmodellen sind in der Lage, epistemische Unsicherheiten zu quantifizieren, die in realen Datensätzen enthalten sind und durch den PSD-Schätzprozess induziert werden. Die Stärken und Vorteile dieser Ansätze in der Praxis werden anhand mehrerer numerischer Beispiele aus dem Bereich der stochastischen Dynamik demonstriert
    corecore