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Zusammenfassung

Für eine effiziente Zuverlässigkeitsanalyse von Gebäuden und Strukturen sind robuste Belas-
tungsmodelle in der stochastischen Dynamik erforderlich, die insbesondere aus Umweltprozessen
wie Erdbeben oder Windlasten geschätzt werden können. Um das Antwortverhalten eines
dynamischen Systems unter solchen Belastungen zu bestimmen, ist die Funktion der Leis-
tungsspektraldichte (PSD) ein weit verbreitetes Werkzeug zur Identifizierung der Frequenzkom-
ponenten und der entsprechenden Amplituden von Umweltprozessen. Da die zu diesem Zweck
benötigten realen Datensätze häufig mit aleatorischen und epistemischen Unsicherheiten be-
haftet sind und der PSD-Schätzprozess selbst weitere Unsicherheiten induzieren kann, ist eine
strenge Quantifizierung dieser Unsicherheiten unerlässlich, da andernfalls ein sehr ungenaues
Belastungsmodell erzeugt werden könnte, das zu fehlerhaften Simulationsergebnissen führen
kann. Ein eigentlich katastrophales Systemverhalten kann so in einen akzeptablen Bereich ver-
schoben werden, so dass das System als sicher eingestuft wird, obwohl es einem hohen Risiko der
Beschädigung oder des Zusammenbruchs ausgesetzt ist. Um diese Probleme anzugehen, wer-
den alternative Belastungsmodelle vorgeschlagen, die probabilistische und nicht-deterministische
Modelle verwenden, welche in der Lage sind, diese Unsicherheiten effizient zu berücksichtigen
und die Belastungen entsprechend zu modellieren. Bei der Erstellung dieser Lastmodelle wer-
den verschiedene Methoden verwendet, die insbesondere nach dem Charakter der Daten und der
Anzahl der verfügbaren Datensätze ausgewählt werden.
Wenn mehrere Datensätze verfügbar sind, können zuverlässige statistische Informationen aus
einer Reihe ähnlicher PSD-Funktionen extrahiert werden, die sich z.B. nur geringfügig in Form
und Spitzenfrequenz unterscheiden. Auf der Grundlage dieser Statistiken wird ein Modell der
PSD-Funktion abgeleitet, das subjektive Wahrscheinlichkeiten verwendet, um die epistemischen
Unsicherheiten zu erfassen und diese Informationen effektiv darzustellen. Die spektralen Leis-
tungsdichten werden als Zufallsvariablen charakterisiert, anstatt diskrete Werte zu verwenden,
somit stellt die PSD-Funktion selbst einen nicht-stationären Zufallsprozess dar, der einen Bereich
möglicher gültiger PSD-Funktionen für einen gegebenen Datensatz umfasst.
Wenn nur eine begrenzte Anzahl von Datensätzen zur Verfügung steht, ist es nicht möglich,
solche zuverlässigen statistischen Informationen abzuleiten. Daher wird ein intervallbasierter
Ansatz vorgeschlagen, der nur eine obere und untere Grenze bestimmt und sich nicht auf eine
Verteilung innerhalb dieser Grenzen stützt. Ein Satz von diskret wertigen PSD-Funktionen wird
in eine intervallwertige PSD-Funktion umgewandelt, indem die Gewichte von vorab abgeleiteten
Basisfunktionen aus einem Radialbasisfunktionsnetz so optimiert werden, dass sie eine obere und
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untere Grenze bilden, die den Datensatz umfassen. Damit wird ein Bereich möglicher Werte
und Systemreaktionen anstelle diskreter Werte ermittelt, welche in der Lage sind, epistemische
Unsicherheiten zu erfassen.
Bei der Erstellung eines solchen Lastmodells aus realen Datensätzen kann das Problem auftreten,
dass die einzelnen Datensätze eine hohe spektrale Varianz im Frequenzbereich aufweisen und sich
daher zu stark voneinander unterscheiden, obwohl sie im Zeitbereich ähnlich erscheinen. Ein aus
diesen Daten abgeleitetes Lastmodell deckt möglicherweise nicht den gesamten Spektralbereich
ab und ist daher nicht repräsentativ. Die Daten werden daher mit Hilfe der Bhattacharyya-
Distanz und des k-means-Algorithmus nach ihrer Ähnlichkeit gruppiert, wodurch zwei oder
mehr Belastungsmodelle aus dem gesamten Datensatz erzeugt werden können. Diese können
separat auf die zu untersuchende Struktur angewandt werden, was zu genaueren Simulation-
sergebnissen führt. Dieser Ansatz kann auch zur Schätzung der spektralen Ähnlichkeit einzelner
Datensätze im Frequenzbereich verwendet werden, was für die oben genannten Lastmodelle
besonders relevant ist.
Wenn die Unsicherheiten direkt im Zeitsignal modelliert werden, kann es eine schwierige Aufgabe
sein, sie effizient in den Frequenzbereich zu transformieren. Ein solches Signal kann möglicher-
weise nur aus zuverlässigen Grenzen bestehen, in denen das tatsächliche Signal liegt. Es wird eine
Methode vorgestellt, mit der diese Intervallunsicherheit automatisch durch die diskrete Fourier
Transformation propagiert werden kann, um die exakten Grenzen der Fourier-Amplitude und
der Schätzung der PSD-Funktion zu erhalten. Die Methode ermöglicht es, ein solches Inter-
vallsignal zu propagieren, ohne Annahmen über die Abhängigkeit und Verteilung des Fehlers
über die Zeitschritte zu treffen.
Diese neuartigen Darstellungen von Lastmodellen sind in der Lage, epistemische Unsicherheiten
zu quantifizieren, die in realen Datensätzen enthalten sind und durch den PSD-Schätzprozess
induziert werden. Die Stärken und Vorteile dieser Ansätze in der Praxis werden anhand mehrerer
numerischer Beispiele aus dem Bereich der stochastischen Dynamik demonstriert.

Schlüsselwörter: Stochastische Dynamik, Schätzung der Leistungsspektraldichte, Stochastis-
che Prozesse, Zufällige Schwingungen, Quantifizierung von Unsicherheiten, Ungenaue Wahrschein-
lichkeiten.
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Abstract

For efficient reliability analysis of buildings and structures, robust load models are required in
stochastic dynamics, which can be estimated in particular from environmental processes, such
as earthquakes or wind loads. To determine the response behaviour of a dynamic system under
such loads, the power spectral density (PSD) function is a widely used tool for identifying the
frequency components and corresponding amplitudes of environmental processes. Since the real
data records required for this purpose are often subject to aleatory and epistemic uncertainties,
and the PSD estimation process itself can induce further uncertainties, a rigorous quantification
of these is essential, as otherwise a highly inaccurate load model could be generated which may
yield in misleading simulation results. A system behaviour that is actually catastrophic can
thus be shifted into an acceptable range, classifying the system as safe even though it is exposed
to a high risk of damage or collapse. To address these issues, alternative loading models are
proposed using probabilistic and non-deterministic models, that are able to efficiently account
for these uncertainties and to model the loadings accordingly. Various methods are used in the
generation of these load models, which are selected in particular according to the characteristic
of the data and the number of available records.
In case multiple data records are available, reliable statistical information can be extracted from a
set of similar PSD functions that differ, for instance, only slightly in shape and peak frequency.
Based on these statistics, a PSD function model is derived utilising subjective probabilities
to capture the epistemic uncertainties and represent this information effectively. The spectral
densities are characterised as random variables instead of employing discrete values, and thus the
PSD function itself represents a non-stationary random process comprising a range of possible
valid PSD functions for a given data set.
If only a limited amount of data records is available, it is not possible to derive such reliable
statistical information. Therefore, an interval-based approach is proposed that determines only
an upper and lower bound and does not rely on any distribution within these bounds. A set of
discrete-valued PSD functions is transformed into an interval-valued PSD function by optimising
the weights of pre-derived basis functions from a Radial Basis Function Network such that they
compose an upper and lower bound that encompasses the data set. Therefore, a range of possible
values and system responses are identified rather than discrete values, which are able to quantify
the epistemic uncertainties.
When generating such a load model using real data records, the problem can arise that the
individual records exhibit a high spectral variance in the frequency domain and therefore differ
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too much from each other, although they appear to be similar in the time domain. A load model
derived from these data may not cover the entire spectral range and is therefore not represen-
tative. The data are therefore grouped according to their similarity using the Bhattacharyya
distance and k-means algorithm, which may generate two or more load models from the entire
data set. These can be applied separately to the structure under investigation, leading to more
accurate simulation results. This approach can also be used to estimate the spectral similarity of
individual data sets in the frequency domain, which is particularly relevant for the load models
mentioned above.
If the uncertainties are modelled directly in the time signal, it can be a challenging task to
transform them efficiently into the frequency domain. Such a signal may consist only of reliable
bounds in which the actual signal lies. A method is presented that can automatically propagate
this interval uncertainty through the discrete Fourier transform, obtaining the exact bounds on
the Fourier amplitude and an estimate of the PSD function. The method allows such an interval
signal to be propagated without making assumptions about the dependence and distribution of
the error over the time steps.
These novel representations of load models are able to quantify epistemic uncertainties inherent
in real data records and induced due to the PSD estimation process. The strengths and advan-
tages of these approaches in practice are demonstrated by means of several numerical examples
concentrated in the field of stochastic dynamics.

Keywords: Stochastic dynamics, Power spectral density estimation, Stochastic processes, Ran-
dom vibrations, Uncertainty quantification, Imprecise probabilities.
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1 Introduction

In structural engineering it is nowadays of enormous importance to determine the reliability of
existing buildings and structures, or those designed for the future, and to confirm their stability.
In particular, structures that are exposed to environmental processes are at risk of failure. For
example, in almost all regions of the world, wind loads, especially on high-rise buildings, can
cause slow damage due to dynamic system behaviour. Heavy winds and storms can cause
immediate and severe damage or even cause the collapse of a building. Offshore structures
located in the ocean can be subject to a combination of wind and waves. In some other regions
of the world, such as China, Japan or Indonesia, just to name a few, buildings can be exposed
to short but extreme events such as earthquakes, which can cause serious damage. Many recent
events have shown that such environmental processes can have severe consequences.
Although a variety of safety criteria exist for the construction of new structures to counteract
such events, it is often not possible or practical to apply them directly due to the complexity of
the structures. An important tool in this case are computer simulations, such as finite element
model simulations. Due to the ever-increasing computational power, there are more and more
accurate models and approaches available to determine the reliability of structures, which is an
tremendous advantage in risk assessment. With the help of simulation models, real buildings and
structures can be abstracted and tested under certain loads with regard to given safety criteria.
Often, simplifications and assumptions of the real case are necessary in a simulation in order not
to make the model unnecessarily complex, as very accurate models have a negative impact on
the simulation time. Nevertheless, meaningful statements can be made even with a simplified
building model. A simulation therefore always represents a compromise between the accuracy of
the results and simulation time. However, a significant advantage of simulations is that different
scenarios, such as different extreme loads with different intensities, can be analysed, which could
possibly occur in reality. Thus, a building can be planned for the worst possible case. Also,
computer simulations are indispensable for assessing the reliability of existing structures and for
designing new structures in the future.
Since the above-mentioned environmental processes cause a dynamic system behaviour in par-
ticular, a characterisation of the dynamic components is necessary. If the peak frequencies of
the loads are in the range of the natural frequencies of the structure, this can lead to resonance
and cause severe system behaviour. A spectral/frequency analysis of both the system and the
load must be performed. An important tool for this purpose is the analysis of specific power
spectral density functions, which transforms a signal so that the determining frequencies and
their energy distribution are decomposed. Using this method, a system can be assessed with
regard to the risk posed by a particular excitation in frequency domain.
Dealing with uncertainties, however, are a major problem in simulations and in predicting the
system behaviour. These uncertainties can arise, for instance, from measurement errors, inaccu-
rately calibrated sensors, or a limited amount of samples of the respective load. This can result
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CHAPTER 1. INTRODUCTION

in a negative impact on the simulation results. In the worst case, a simulation model influenced
by uncertainties can be assessed as safe, although the actual system behaviour would be catas-
trophic. A reliable prediction regarding critical system behaviour and/or system failure is thus
made enormously difficult. An appropriate quantification of these uncertainties is therefore of
utmost importance. The challenge and main objective of this work is to quantify and reduce the
uncertainties such that reasonable and meaningful simulation results can be obtained. This will
also yield in a reduced variability of the simulation results, ensuring that they are more reliable.
Due to the problems mentioned above, uncertainties in the estimation of the power spectral
density are investigated and quantified in this work.

1.1 Research background

This section outlines the essential subjects of interest in the context of this work, namely un-
certainties and power spectral density estimation. A fundamental overview for both is given in
this section.

1.1.1 Uncertainties

This section addresses uncertainties in engineering, in particular the sources, their character-
isation and categorisation and the propagation of uncertainties in reliability analyses. There
is broad agreement in the scientific world that uncertainties are characterised by aleatory and
epistemic uncertainties [1]. Aleatory uncertainties occur due to intrinsic randomness and are irre-
ducible, while epistemic uncertainties occur due to lack of knowledge and are therefore reducible,
for example by collecting more data. Thus, a consolidated judgement can be determined, for
example, about the distribution of a random variable. If such additional information is available
and can be collected/measured, the uncertainties can be characterised as epistemic. If no further
information is available such that the uncertainty can be reduced, those are classified as aleatory
uncertainties. Often, however, a clear classification is not possible and it is up to the analyst to
decide how to treat a particular uncertainty. Such a decision should always be combined with
the underlying information and input data. In some cases, both types of uncertainties may exist
in the given problem but cannot be strictly separated from each other. This type is called hybrid
uncertainty, see for instance [2, 3].
Fig. 1.1 provides a first impression of the classification of uncertainties [4]. The upper part of
the figure shows the entire spectrum between complete ignorance, when nothing is known about
the model or the parameters, to certainty, when the entire model, its parameters and all other
necessary information are completely known and the simulation results are absolutely certain.
In between, however, is the present state of knowledge, which indicates that all information is
only partly certain and partly uncertain. The uncertain part is described in more detail in the
lower part of the figure. The present state of knowledge can be improved to a certain extent,
namely by reducing the uncertainties, for example by acquiring more information. Once this
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Complete ignorance Present state of knowledge Certainty

Uncertainty
Maximum uncertainty
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Present state
of knowledge

Perfect state
of knowledge Certainty

Figure 1.1: Interpretation of uncertainties in an engineering context, adapted from [4].

is accomplished, the perfect state of knowledge is reached. At this point, everything that can
be known is known. A level of residual uncertainty, the irreducible uncertainties, remains and
stands between the perfect state of knowledge and certainty.

Sources and Characterisation

Uncertainties have a variety of sources and causes that can lead to a wide range of phenomena and
have a corresponding negative impact on simulation results [1, 5, 6]. While in [1] uncertainties
are defined as parameter uncertainties, model uncertainties and uncertainties in basic variables,
in [6] they are classified according to the stage of planning of the development of a model:
model development, application or implementation of the model, results of the model. This
provides a first understanding of the complexity and the different perspectives on how to classify
and characterise uncertainties. A thorough analysis of the uncertainties and their causes can
contribute to addressing them appropriately.
Every simulation is preceded by an abstraction of a real case. Accordingly, a structure is repre-
sented in simplified form as a model. An exact representation is often not possible and would
result in an extremely high computational effort. Thus, simplification always induces uncer-
tainty. Further assumptions and simplifications during the simulation, such as discretisation
in space and time, will induce further uncertainty. While a fine discretisation leads to more
accurate results but a higher computational effort, a coarser discretisation can deliver fast but
less accurate outputs. A further simplification can be made, for example, by assumptions and
simplifications in material laws, whether e.g. simple linear models are used or more complex
non-linear models, which are closer to reality but result in a higher computational effort. In
principle, every simulation model is subject to numerical errors and approximations, which also
induce a certain degree of uncertainty. The examples presented correspond to epistemic un-
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certainties, as these can be reduced by using more accurate models or a finer discretisation.
Nevertheless, it is in the analyst’s judgement how these assumptions are chosen and, above all,
to the requirements for the corresponding simulation and its evaluation.
Uncertainties often occur in the data used. Measurement errors, i.e. incorrect recording of
the real data, can also have a negative influence on the simulation and the incorrect data can
lead to simulation results that do not correspond to the actual system behaviour. For example,
during data acquisition, external influences can cause noise in the data that interferes with the
actual signal to be recorded. A sensor may not be calibrated accurately enough, resulting in
measurement uncertainties. Another source of uncertainty in the recorded data may be missing
data due to damage or failure of a sensor, possibly due to the event itself that it is supposed to
record. These uncertainties can usually be classified as epistemic, as the uncertainties can be
reduced by obtaining more data, if possible.
However, it is not always clear whether uncertainties should be classified as epistemic or aleatory.
To take up the previous example again: If a signal that is disturbed by measurement errors is
uncertain, but this uncertainty cannot be reduced by obtaining further data because they are
simply not available, it can be classified as aleatory and not epistemic. Another good example of
such a case is given in [1]: A material property, in this case compressive strength of concrete, is
classified as either aleatory or epistemic according to the circumstances. If the sample is a piece
of concrete that can be taken from an existing building and tested for compressive strength (the
method of testing does not matter here), it is considered epistemic. However, if this concrete
exists only “virtually” in the design of a future building, and thus no testing can be performed,
it is classified as aleatory, since no more accurate conclusions can be made than those known so
far. This example shows that the classification is not always unambiguous and also depends on
further circumstances and the state of planning.
A rigorous distinction between aleatory and epistemic uncertainties is of utmost importance and
should always be conducted in the analysis. Such a distinction can lead to the characterisation of
uncertainties and, in the best case, to their reduction through further analysis or the acquisition
of additional information. This not only has an impact on the characterisation and quantification
of the uncertainties, but also affects the system analysis and its results, as the system analysis
with reduced uncertainties is, if applicable, more accurate and thus more reliable. For such a
distinction, the following categories are given in [7]:

• Category I: Parameters without any uncertainty

• Category II: Parameters with only epistemic uncertainty

• Category III: Parameters with only aleatory uncertainty

• Category IV: Parameters with both aleatory and epistemic uncertainties

In this context, category I parameters are assumed to be constants. Since the parameters of
category II only contain epistemic uncertainties, they can be bounded by known intervals, these
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parameters are also called unknown-but-fixed constants. The aleatory uncertainties occurring
in category III parameters are described as random variables that can be described by prob-
ability characteristics. These can be, for instance, mean, variance or distribution type. Since
both uncertainties occur in category IV, they are modelled with imprecise probabilities. The
characteristics of these uncertainties can only be roughly identified. Depending on which cate-
gory an uncertain parameter falls into, it can be treated and quantified accordingly. Although
modelling of uncertainties is suggested in this manner in [7], it is up to the analyst how to model
a specific uncertainty. In some cases, it might be beneficial to choose another modelling scheme,
depending on what type of uncertainty occur and what amount of information is available.
A more detailed review of epistemic uncertainties shows that these can be divided into different
types according to [8], depending on how they are described. The three types are illustrated on
the basis of the probability density function (PDF) and are as follows:

• Type I: Different shapes of the PDF with identical parameters

• Type II: Different PDFs with different parameters

• Type III: The same type of the PDF with different parameters

Type I describes the case where different PDFs can be used to approximate a data set even
though the PDF parameters are identical. In [8] the example is given that, for instance, for
a specific set of data both a lognormal and Weibull distribution can be used according to a
goodness-of-fit test. In type II, an original PDF can be adjusted via procedures such as Bayesian
Updating, which affects the shape of the PDF due to updated parameters. For type III, it can
be assumed that a random variable follows a certain distribution. Due to uncertainties in the
data (e.g. limited amount of samples), epistemic uncertainties arise in the estimation of the
PDF parameters. Therefore, different parameters are possible, which can lead to various forms
of the PDF.
The elaborations on the sources and characterisation of uncertainties demonstrate how com-
plex the problem of a reliable quantification of uncertainties may be and that the identification
of uncertainties might be challenging. Therefore, quantifying the uncertainties properly is of
paramount importance in the context of reliability analysis. A rigorous assessment of uncertain-
ties is important as it is crucial for the system analysis and results.

Modelling of uncertainties

The previously described characterisations of uncertainties can be described mathematically
with specific models. There is a wide range of models available that can be selected depending
on the characterisation of uncertainties in aleatory or epistemic. In the literature, a distinction
is made between three groups of models. These are precise probability models, non-probabilistic
models and imprecise probabilistic models. The three types of models are briefly described in
the following and examples of such models are given.
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The precise probability models [9, 10] are the most basic type of models and are based on classical
probability theory. They can be used to model and quantify the aforementioned uncertainties
for the utilisation in simulations. Such a probability model consists of a sample space Ω, which
contains all possible outcomes ω of an experiment. A σ-field F is a collection of subsets of Ω that
is used to represent the results of the experiment. Due to the definition of F , the empty set is a
subset of the σ-field, such that ∅ ∈ F . In addition, if an event A is a subset of F , it follows that
A ∈ F → Ac ∈ F , where Ac denotes the complementary event of A. The probability measure P
ensures that each event of F is assigned a probability, such that P : F → [0, 1] and P (Ω) = 1.
A precise probability model is thus this described by a probability space (Ω,F ,P).
A cumulative distribution function (CDF) F (x) is able to describe a random variable X uniquely,
since F defines a value for each x:

FX(x) = PX(X ≤ x). (1.1)

Such a function has the properties that it is increasing and right continuous with 0 ≤ FX(x) ≤ 1.
It can be described by limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1. The PDF is described by
an integrable function fX(x) and is the derivative of the distribution function FX(x), such that

FX(b)− FX(a) =
∫ b

a
fX(x)dx a ≤ b. (1.2)

As fX(x) is directly related to FX(x) it has the property
∫∞

∞ fX(x)dx = 1. The CDF and the
PDF are commonly used functions in the classical probability theory, which is well established
in the literature, see for instance [9–12].
Non-probabilistic models are a different way of modelling uncertainties, see for instance [13–
16]. While in probabilistic models the parameters assume values with specific probabilities, in
non-probabilistic models only fixed bounds are assumed and a parameter is characterised by
whether it lies within these bounds. In this case the parameters do not follow any distribution.
In the context of non-probabilistic models, uncertain parameters can be modelled with intervals.
Intervals are a subset of the real numbers R and are defined as

x = [x, x] = {x ≤ x ≤ x}. (1.3)

Important quantities for describing the interval are the interval midpoint

µx = x+ x

2 (1.4)

and the interval width
ξ = x− x

2 . (1.5)
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In central notation an interval can be expressed as

x = x+ ξ∆, (1.6)

where ∆ = [−1, 1] is the unitary interval. Computations with intervals are made possible by
interval arithmetic, which is an extension of the regular arithmetic to interval-valued parame-
ters. Some of the basic arithmetic operations, such as addition, subtraction, multiplication and
division are given here. The addition of two intervals is given by the addition of their respective
lower bounds.

x+ y = [x+ y, x+ y] (1.7)

The subtraction is described by the subtraction of the respective lower bounds.

x− y = [x− y, x− y] (1.8)

In multiplication, all combinations of upper and lower bounds of x and y are calculated. The
respective minimum and maximum describe the interval product.

x · y =
[
min

(
xy, xy, xy, xy

)
,max

(
xy, xy, xy, xy

)]
(1.9)

The division is described by dividing the interval x by the respective upper and lower bounds
of y, provided 0 is not in y. If 0 is in y, the division is not defined.

x/y =


x ·
[

1
y ,

1
y

]
if 0 /∈ y

undefined if 0 ∈ y
(1.10)

These operations can also be extended to other cases, e.g. square or square root, or to the
complex numbers C. Not only simple numbers can be defined as intervals, but also vectors and
matrices. In an interval vector or an interval matrix, each element is defined as an interval. Due
to the assumption that these intervals are independent of each other, the interval vector x ∈ Rn

is described by an n-dimensional hypercube. The vertices of this hypercube are each described
by the vertices of the intervals in the interval vector.
Another way of describing uncertainties in non-probabilistic models is the fuzzy set theory. This
enables the description of the number x via a membership of an interval with a certain degree,
the so-called membership level. The fuzzy set theory is therefore to be understood as a natural
extension of the interval models and is often used to translate uncertain linguistic variables to
a non-deterministic model. A value x is accordingly described by its membership in the fuzzy
set x̃, or in other words, to what degree the value x belongs to the fuzzy set, such that

x̃ = {(x, µ(x))|x ∈ X}, (1.11)
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Figure 1.2: Example of a Fuzzy set with several α-level sets.

where µ(x) ∈ [0, 1] describes the membership function. For the sake of simplicity, a distinction
can be made here between three cases. If µ(x) = 0, then x does not belong to the fuzzy set,
if µ(x) = 1, then it belongs to the set completely, which only holds for one element x, and if
0 < µ(x) < 1, then it belongs to the set partially. The latter case can be described via the
α-level sets, such as

xα = {x ∈ X|µ(x) ≥ α}. (1.12)

Therefore, the α-level set x̃α describes a subset of the fuzzy set x̃. These sets have the property

xαm ⊆ xαn ∀αn, αm ∈ (0, 1] with αn ≤ αm. (1.13)

An illustration of this concept is given in Fig. 1.2.
The possibility theory [14, 15] represents another approach for modelling uncertainties in a non-
probabilistic way. It is closely related to the fuzzy set theory and consists of a pair (Xi, ri) for a
variable xi. Here, Xi describes the set of all possible values that xi can assume and ri describes
a function that is called the possibility distribution function for xi. The possibility distribution
function can take the values 0 ≤ ri(xi) ≤ 1 and thus denotes the presence of a specific value
xi ∈ Xi. For a subset A ⊆ Xi, the possibility Pos(A) and necessity Nec(A) can be specified,
which are defined as follows

Pos(A) = sup{r(x) : x ∈ A} (1.14)

Nec(A) = 1− sup{r(x) : x ∈ Ac} = 1− Pos(Ac), (1.15)

where Ac denotes the complementary of A.
Imprecise probabilistic models, see for example [16–18], are another way to model uncertainties
effectively. Some examples are given here.
Evidence theory, or Dempster-Shafer theory, is to be understood as a generalisation of tradi-
tional probability theory and can be applied when the available information has a probabilistic
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background but does not follow traditional probability theory, see [17]. It consists of the basic
probability assignment m, the Belief function Bel and the Plausibility function Pl. In evidence
theory, according to the basic probability assignment, weights are distributed among the sets
Ai so that ∑

i

m(Ai) = 1. (1.16)

By definition it is m(∅) = 0. Moreover, m(Ai) only makes statements about set Ai and not
about any subsets. Thus, a subset B ⊆ Ai requires its specific assignment m(B). Although the
basic idea of assigning a weight to each set is similar to probability theory, these weights cannot
be understood as probabilities. According to the basis probability assignment, the so-called
belief and plausibility functions can be employed to determine an upper and lower bound that
a set of interest lies within. The lower bound is thus determined by the belief function

Bel(A) =
∑

B|B⊆A
m(B) (1.17)

and the plausibility function determines the upper bound

Pl(B)
∑

B|B∩A ̸=∅
m(B). (1.18)

For more details the reader is referred to [17, 19], for instance.
Interval probabilities [16, 17, 20] are another method of modelling uncertainties that result, for
example, from limited data or vague information. The basic idea is to bound the probabilities
with intervals in order to obtain a more precise statement about the result. Instead of a proba-
bility P (A) from classical probability theory, an event A is bounded by a range of probabilities
[P1(A), P2(A)] ⊆ [0, 1]. For two interval probabilities P (A) = [a1, a2] and P (B) = [b1, b2], the
following rules apply for conjunction

P (A ∩B) = [max(0, a1 + b1 − 1),min(a2, b2)] (1.19)

and disjunction
P (A ∪B) = [max(a1, b1),min(1, a2 + b2)]. (1.20)

A frequently used method for modelling uncertainties in the context of imprecise probabilistic
models is that of probability bounds or so-called p-box models. It represents a combination
of classical probability theory with interval models. With p-boxes it is possible to bound a
probability distribution if only little information is known about the input parameters. In
general, only a few information or assumptions are necessary for the construction of a p-box.
Depending on the amount and quality of the information, the bounds of the p-box can be very
narrow or rather wider. Using a p-box, the CDF F (x) of a random variable X is constrained
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by an upper and lower CDF F (x) and F (x), respectively, such as

F (x) ≤ F (x) ≤ F (x). (1.21)

That means that the precise but unknown CDF F (x) lies within these CDF bounds. Such a
p-box is called distribution-free if no further conclusions can be made about the distribution
of the individual CDFs in the bounds and only the outer CDFs are known. Every conceivable
CDF within these boundaries can be a possible CDF. With distributional p-boxes, on the other
hand, the distribution is known but the parameters that determine this distribution are only
known within certain bounds. For example, it may be known that a random variable follows a
normal distribution, but for the parameters describing this distribution, i.e. mean and standard
deviation, only upper and lower bound are known.

Uncertainty propagation

In the following section, a brief overview of different methods for propagating uncertainties
in the context of reliability analyses in stochastic dynamics is given. Although propagation
of uncertainties is not the main objective of the present work, it is nevertheless important to
understand different methods, as they can be applied directly after uncertainty quantification
in order to propagate uncertainties efficiently and to obtain the most accurate result possible.
The overview in this section of the different methods and techniques is inspired by [3, 21].
Uncertainty propagation refers to the observation of an output variable y when an uncertain
input parameter x is applied to a system such that y = g(x), where g(x) is known as the
limit state function. It defines the failure domain in case g(x) < 0. Particularly in structural
dynamics, the calculations of failure probabilities Pf are often in the focus in order to determine
the reliability of a structure. In case of precise probabilistic uncertainties, the determination of
the failure probability Pf can be expressed in a simple formulation

Pf =
∫

X
I(x)f(x)dx (1.22)

with f(x) as PDF and I(x) as indicator function

I(x) =

1, g(x) ≤ 0

0 otherwise.
(1.23)

Several methods have been developed to calculate the failure probability for precise probabilistic
models, see for instance [3, 21]. The first type are the stochastic simulation methods. One of
the most well-known stochastic simulation methods is the Monte Carlo (MC) method [22]. MC
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is known to be a robust sampling procedure by applying the following expression:

PMC
f = 1

n

n∑
i=1

I
(
x(i)

)
(1.24)

However, in particular for the efficient determination of small failure probabilities MC has its
limitations. In this case, MC is impractical because an prohibitively high number of samples
NMC ≈ 1

Pf
may be required to determine the failure probability. For this purpose, advanced

sampling techniques such as Subset-Simulation [23] or Directional Importance Sampling [24] were
developed to overcome this issue. Nevertheless, the calculation of error probabilities in a detailed
simulation model can still be computationally challenging. Asymptotic approximation methods,
such as the first-order reliability method (FORM) [25–27] or the second-order reliability method
(SORM) [28–30], are the second type of methods for uncertainty propagation and intend to
approximate the limit state function by means of the first- and second-order Taylor expansion.
The third type, moment methods, aim to adapt a probability distribution to the output variable
of a limit state function using the information on the estimated moments as a basis. Integer
moment-based methods [31], for instance, are typical examples of this type of model. Probability
conservation based methods, such as the probability density evolution method [32, 33], form the
fourth type of methods and are used to determine the reliability of a system as well as to model
the time variation of the system. They are techniques for modelling time-dependent stochastic
physical systems. The last types for precise probabilistic models are the so-called surrogates or
metamodels. They are designed to imitate a system with a high computational cost in order
to obtain a more cost-effective alternative and to calculate the corresponding probabilities of
failure. These models range from neural networks [34, 35], support vector machines [36, 37],
polynomial chaos expansions [38–40] and many more.
For the classification of non-probabilistic uncertainties, different models are also listed in [3]. A
classical representative for propagating non-probabilistic uncertainties is interval arithmetic [41–
44], which extends classical arithmetic to interval-valued parameters. Optimisation methods,
such as in [3], are able to find the best possible ranges within the intervals in order to prop-
agate uncertainties efficiently. Perturbation methods [45, 46] draw random samples from the
distribution of the uncertain parameter and propagate them to the system, quantifying the un-
certainty in the system response. Lastly, advanced sampling techniques for interval analysis are
mentioned [47, 48].
Imprecise uncertainties are usually classified as a combination of the above-mentioned models,
such as precise probabilistic uncertainties and non-probabilistic uncertainties. This is often due
to the fact that aleatory and epistemic uncertainties cannot be separated from each other and
must be represented in a single model. The propagation of these type of uncertainties is often
carried out by double-loop approaches, see for instance [2, 49], or the non-intrusive stochastic
simulation (NISS) [50, 51].
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1.1.2 Stochastic processes and power spectral density estimation

Besides uncertainties, the estimation of power spectral density (PSD) functions from stochastic
processes is the second topic of interest in this work. Therefore, the estimation of PSD functions
is introduced in this section. This also includes an overview of stochastic processes, which occur
in nature as environmental loads and form the basis of frequency analysis in this context.

Stochastic processes

A stochastic process is a process that varies over time and consists of stochastic variables or
fluctuations at every point in time. This means that each value of said process is influenced or
described by random phenomena or random variables and therefore cannot be described precisely
or deterministically. If a random experiment is run several times under identical conditions, but
is influenced by random variables at each point in time, different outcomes can be observed.
Each of these outcomes is described as a realisation of the stochastic process, the collection of
all outcomes as an ensemble. Environmental processes, such as earthquakes or wind loads, can
be represented as stochastic processes [11].
The autocorrelation function is capable of defining the correlation of two points in time in the
stochastic process. If this is calculated from two different stochastic processes, it is called cross-
correlation. The autocorrelation function of a stochastic process X(t) can be expressed as the
mean value of the product of two values of said process, such that

RX(τ) = E [X(t)X(t+ τ)] , (1.25)

where τ describes the time lag. The autocorrelation function for a stationary stochastic process
it only depending on the time lag τ and not on the time t itself. This also results in RX(τ)
being an even function: RX(τ) = E [X(t)X(t+ τ)] = E [X(t)X(t− τ)] = RX(−τ), see [12].
According to [11], a stationary stochastic process is described by the fact that “statistical equi-
librium” prevails, meaning that “the statistical properties of the process do not change over
time, i.e. they are the same at all time points”. A stationary process is strictly stationary if the
finite dimensional distributions are time-invariant, described as

(X(t1), X(t2), . . . , X(tn)) = (X(t1 + τ), X(t2 + τ), . . . , X(tn + τ)). (1.26)

Such a process is said to be weakly stationary if this only holds for first- and second-order prob-
abilities, so that the expected value is constant and the autocorrelation function is independent
of the time t and only depends on the time lag τ . A process can additionally be ergodic if the
ensemble mean value is identical to mean value of a single realisation of the ensemble [9, 12, 52].
An example of a stationary and non-stationary process is given in Fig. 1.3
To determine the PSD function of a stochastic process, the Fourier transform of the autocorre-
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Figure 1.3: Example for a stationary and a non-stationary signal.

lation can be calculated
SX(ω) =

∫ ∞

−∞
RX(τ)e−iωτdτ, (1.27)

where SX(ω) describes the PSD function. The inverse Fourier transform results in

RX(τ) = 1
2π

∫ ∞

−∞
SX(ω)eiωτdω. (1.28)

Eqs. 1.27 and 1.28 are the so-called Wiener-Khintchine theorem. The PSD function SX(ω) is
a real and even function, such that SX(ω) = SX(−ω) and is described by its non-negativity
SX(ω) ≥ 0, see e.g. [52, 53].

Stationary PSD estimation

Since stochastic dynamic problems have been studied very efficiently in recent decades, different
models have been developed in the modelling of stochastic processes. One of these models is the
PSD function, as mentioned above, which can be utilised in applications such as earthquake,
wind and ocean engineering, see for instance [52, 54, 55].
Although the rigorous mathematical relationships between stochastic processes and the PSD
function were explained in the previous section, estimation techniques are often required. The
relationships presented refer to continuous signals with infinite length, which only exist in theory.
In the real case, the signals are discrete-valued and always have finite length, which is the reason
for using estimators. Therefore, when estimating PSD functions, some problems occur. In the
stationary case, the true PSD function of an ergodic process can only be calculated if the data
set has infinite length. Therefore, it is assumed that the mean of multiple PSD estimates from
shorter data sets of the same stochastic process generally tends to the true PSD function [12].
Another problem is the often too small sample size of the available data sets. In reality, in most
cases, only a single record might be available to estimate the spectrum. In other cases, it can be
reasonably argued that a small sample size can be used to estimate the spectrum. In any case,
however, with a limited number of samples, it is difficult to average the true PSD function of
ergodic processes, especially in the presence of spectral outliers that cannot be clearly identified
as outliers.
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Furthermore, the quality of a PSD estimate usually suffers from bias and variances [56, 57]. A
PSD estimate thus has a high variance in the spectral direction and thus cannot reliably reflect
the actual PSD.
In the non-stationary case, the time signal is usually divided into smaller segments and analysed
to account for the change over time. The quality of the calculated non-stationary PSD function
depends on the chosen length of the segments and leads to a compromise in the time-frequency
resolution.
In order to solve the above problems, different estimators for PSD functions have been progres-
sively derived, with different sensitivities to these problems. In general, it is convenient to have
several options for estimating the PSD function in order to perform an estimation in the best
possible way under the given conditions. Some selected concepts are presented below.
In earthquake engineering, for example, Housner [58] or Kanai [59] were the pioneers in utilisation
of the PSD. In the following decades, the utilisation of the PSD in environmental processes was
continuously improved, which enables to estimate and utilise non-stationary processes and PSD
functions in the investigations of systems. A frequently used estimator of the stationary PSD
function from time records is the periodogram, introduced in [60] and discussed in e.g. [12, 52,
61]. To transform a stationary stochastic process from time domain to frequency domain, the
discrete Fourier transform (DFT) can be utilised. The periodogram is the squared absolute
value of the DFT of the time signal xn

SX(ωk) = lim
T→∞

∆t2

T

∣∣∣∣∣
N−1∑
n=0

xne
−2πikn/N

∣∣∣∣∣
2

, (1.29)

where N is the total number of data points, T is the total length of the record, n describes the
data point index in the record, ∆t is the time discretisation and k is the integer frequency for
ωk = 2πk

T .
If the length of the time record xn is infinite, i.e. T →∞, the periodogram is the true underlying
PSD function. As in reality no time records of infinite length exist, the periodogram can be
considered as a poor estimator with respect to the spectrum. Alternatively, the PSD function can
be approximated by calculating the ensemble mean of all time records, if these are available [62].

SX(ωk) = E

∆t2

T

∣∣∣∣∣
N−1∑
n=0

xne
−2πikn/N

∣∣∣∣∣
2 (1.30)

An example of a signal transformed to frequency domain with the periodogram is given in
Fig. 1.4.
Since the periodogram often leads to results with high variance, it is considered a poor estimator
for PSD functions. Bartlett’s method [63, 64] is an alternative method which can reduce this
variance by splitting the time signal into several non-overlapping segments and calculating the
periodogram for each of these segments. The individual periodograms are then averaged to
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Figure 1.4: Example for a stationary signal transformed to frequency domain with the periodogram.

obtain a smoother estimated PSD function. However, this procedure results in a lower resolution
in the frequency domain, depending on the length of the segments.
Another alternative is Welch’s method [65], whose idea is similar to Bartlett’s method. The
aim is to calculate modified periodograms of segments of the time signal with length L instead
of the periodogram of the entire time signal x(t), which are then averaged. The segments can
overlap in order to maintain continuity. This will result in a smoother spectral estimate. The
entire signal is accordingly divided into K segments

x1(t) = x(t∗)

x2(t) = x(t∗ +D)
...

xK(t) = x(t∗ + (K − 1)D)

(1.31)

with t∗ = 0, 1, . . . , L − 1 and D as a parameter that determines the spacing for the starting
points of the segments, respectively. Each of these time segments is multiplied by a window
function W (t) before the modified periodograms are formed:

Pk(ωm) = 1
L

∣∣∣∣∣
L−1∑
t∗=0

xk(t∗)W (t∗)e−2πim∗/L

∣∣∣∣∣
2

(1.32)

with k = 1, . . . ,K. These resulting modified periodograms are averaged to obtain the estimated
PSD function:

SWx (ωk) = 1
K

K∑
k=1

Pk(ωm) (1.33)

The selection of the window function can be chosen according to the PSD estimation require-
ments. Two window functions are suggested in [65], which are W1(t) = 1−t2 and W2(t) = 1−|t|.
Both window functions ensure that the values in the middle of the segment are weighted more
heavily than the outer values. This results in further smoothing of the data through the es-
timation process, which can be appreciated from Fig. 1.6, where the same signal as for the
periodogram is transformed.
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Figure 1.5: Overlapping windows of the time signal, adapted from [65].

Some other methods are the Blackman-Tukey method [66, 67], the Lomb-Scargle periodogram [68,
69], multi-taper methods and approaches such as zero-padding and many more, see for in-
stance [56, 61]. These PSD estimators come with advantages and disadvantages. Each of these
methods deserves to be presented, but it is beyond the scope of this work, so for the sake of
simplicity, these methods are only referred to.
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Figure 1.6: Example for a stationary signal transformed to frequency domain with Welch’s method. The signal
used is identical to the one in Fig. 1.4.

Non-stationary PSD estimation

Further possibilities in the investigation of environmental processes with the development of
evolutionary PSD functions where developed in [70, 71], while in [72–74] important contributions
to the estimation such spectra were made. The assumption that a signal has a constant frequency
distribution often does not reflect reality. For example, an earthquake is a non-stationary signal
with a frequency composition that varies over time. The estimators in the previous section are
not able to represent this time-varying character of a signal in frequency-domain. Therefore,
methods other than those presented previously must be used to derive a representation of the
frequency components in time-frequency domain. Two of them, the short-time Fourier transform
and the wavelet transform, are presented here.
An alternative to the stationary estimators is the short-time Fourier transform (STFT) [12, 75].
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A window function w(m) is shifted over the entire signal and the DFT is calculated for each
segment. The window function is utilised in order to extract the spectral characteristics for
the local area, because it is assumed that a signal is stationary if it is sufficiently short. This
procedure of shifting the window function and computing the DFT is repeated until the end of
the signal is reached. The result is a time-frequency representation of the signal, by which the
time-varying frequency component is determined.

Xm(ωk) =
K−1∑
m=0

x(n−m)w(m)e−2πikm/K (1.34)

By calculating the absolute squared value of the STFT, i.e. |Xm(ωk)|2, the representation
of the PSD function for the non-stationary case, the so-called spectrogram, is obtained. In
this, the time-varying frequencies can be identified directly. However, one disadvantage of this
approach is that there is a trade-off between resolution in the frequency domain and resolution
in the time domain. A high resolution in both domains cannot be obtained. The resolution is
significantly determined by the length of the window function, which means that a short window
provides good resolution in the frequency domain and poor resolution in the time domain and
conversely. The analyst must therefore find the best compromise of time-frequency resolution
for the modelling requirements.
Wavelets are another way of describing the time-varying character of the frequencies of a time
signal. The elaborations on wavelets are inspired by the explanation in [76–78]. As for the
stationary case, a process representation for a non-stationary process is required. In this context,
a new representation for a non-stationary process was introduced in [79, 80]. Instead of a Fourier
basis, a time/frequency-localised wavelet basis is utilised and refers to the theory of locally
stationary processes as in the STFT before. The process representation is

X(t) =
∑
j

∑
k

wj,kψj,k(t)ξj,k (1.35)

where ξj,k is as stochastic orthonormal increment sequence, ψj,k(t) is a family of wavelets, and
j and k representing the different scales and translation levels, respectively. The term |wj,k|2

contributes locally to the variance of the process.
Since a wavelet basis is utilised for the aforementioned model, these are discussed further. The
generalised harmonic wavelets have a band-limited, box-shaped frequency spectrum [72, 73].
They are defined for scale (m,n) and position (k) and can be represented in frequency domain
in the form

ΨG
(m,n),k(ω) =


1

(n−m)∆ωe
(

−iω kT0
n−m

)
, m∆ω ≤ ω < n∆ω

0, otherwise.
(1.36)

The variables m, n and k are considered to be positive integers and ∆ω = 2π
T0

with T0 as the
total time duration of the signal.
In order to get the time-domain representation of the wavelet in Eq. 1.36, the inverse Fourier
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transform is applied and is equal to

ψG(m,n),k(t) =
exp

(
in∆ω

(
t− kT0

n−m

))
− exp

(
im∆ω

(
t− kT0

n−m

))
i (n−m) ∆ω

(
t− kT0

n−m

) , (1.37)

which is in general complex-valued. For completeness the magnitude

|ψG(m,n),k(t)| =
sin
(
π (n−m)

(
t
T0
− k

n−m

))
π (n−m)

(
t
T0
− k

n−m

) (1.38)

and phase

φG(m,n),k(t) = π (n+m)
(
t

T0
− k

n−m

)
(1.39)

are given [81]. A collection of harmonic wavelets spans adjacent non-overlapping intervals at
different scales along the frequency axis. The continuous generalised harmonic wavelet transform
(GHWT) is defined as [73]

WG
(m,n),k = n−m

kT0

∫ ∞

−∞
f(t)ψG(m,n),k(t)dt, (1.40)

where ψG(m,n),k(t) is the complex conjugation of ψG(m,n),k(t). This allows the function f(t) to be
projected onto the wavelet basis. When utilising the generalised harmonic wavelets, Eq. 1.35
becomes [82]

X(t) =
∑

(m,n)

∑
k

(
X(m,n),k(t)

)
, (1.41)

with
X(m,n),k(t) =

√
S(m,n),k(n−m)∆ωψ(m,n),k(t)ξ(m,n),k. (1.42)

This represents a localised process at scale (m,n) and translation (k) defined in the intervals
[m∆ω, n∆ω] and

[
kT0
n−m ,

(k+1)T0
n−m

]
. S(m,n),k is the evolutionary PSD function SX(ω, t) at scale

(m,n) and translation (k). This equation can be written in the form [82]

X(m,n),k(t) =
∫ n∆ω

m∆ω
eiω
(
t− kT0

n−m

)
dZ(m,n),k(ω) (1.43)

with the properties
E(dZ(m,n),k(ω)) = 0 (1.44)

and
E

(∣∣∣dZ(m,n),k(ω)
∣∣∣2) = S(m,n),k(n−m)∆ω. (1.45)

Eventually, the evolutionary PSD function SX(ω, t) of a non-stationary process X(t) is estimated
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by a wavelet process based estimation approach (see [82, 83])

SX(ω, t) = SX(m,n),k =
E

(∣∣∣WG
(m,n),k[X]

∣∣∣2)
(n−m)∆ω ,

m∆ω ≤ ω < n∆ω, kT0
n−m

≤ t < (k + 1)T0
n−m

(1.46)

where SX(m,n),k represents the evolutionary PSD function of the non-stationary process X(t). It
is assumed to have constant value in the intervals [m∆ω, n∆ω] and

[
kT0
n−m ,

(k+1)T0
n−m

]
. An example

of an estimated non-stationary PSD function is given in Fig. 1.7.
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Figure 1.7: Example for a non-stationary signal transformed to the time-frequency domain utilising the wavelet
transform.

Analytical PSD functions

The modelling of stochastic processes is an important aspect in simulations. Such a process
in time domain can be adapted to specific needs and requirements to a structure or it can be
planned against a worst-case scenario, for instance. Therefore, it might be useful to generate
artificial time series in order to perform specific simulations. For this generation, an analytical
(or estimated) expression of a PSD function is required. A variety of these (semi-)empirical PSD
models have been derived for specific applications, such as earthquakes, and serve to describe
certain processes. They offer the possibility of adjusting the process via various parameters so
that intensity or soil conditions are reflected in said process. Some of the most commonly used
PSD models are presented here.
The first PSD function presented here is taken from [84, 85] and represents an artificially gen-
erated PSD function of an earthquake.

SSD(ω) = 1
4σ

2b3ω2e−b|ω| (1.47)

In this equation, σ represents the standard deviation and b is a parameter proportional to the
correlation distance of the stochastic process. It is mostly used in modelling purposes and
was proposed in line with the so-called Spectral Representation Method (SRM), which will be
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explained later in this section. An example of the PSD function with parameters σ = 1 and
b = 1 is given in Fig. 1.8. The corresponding autocorrelation to Eq. 1.47 function appears to be

RSD(τ) = σ2 b
4(b2 − 3τ2)
(b2 − τ2)3 . (1.48)

The Kanai-Tajimi PSD function [59, 86] is a semi-empirical PSD function for the characterisation
of seismic ground motions. It has been observed from multiple real earthquake ground motions
that the spectrum has constant characteristics in the bedrock. On the surface, however, it is
multiplied by the vibration properties of the ground layer. The model reads as follows

SKT (ω) = S0
1 + 4ζ2

g
ω2

ω2
g(

1− ω2

ω2
g

)2
+ 4ζ2

g
ω2

ω2
g

, (1.49)

where ωg is the dominant frequency of the process and the parameter ζg describes the sharpness
of this peak frequency. The intensity of the excitation is described by S0, which is charac-
terised by the seismic waves. This model has a clear physical motivation and is often used to
model earthquake ground motions subject to engineering structures due to its simplicity, see for
example [53].
A modified version, the Clough-Penzien spectrum [87], which extends the Kanai-Tajimi PSD by
a linear filter is given by

SCP (ω) = S0 ·
ω4
g + 4ζ2

gω
2
gω

2

(ω2
g − ω2)2 + 4ζ2

gω
2
gω

2 ·
ω4

(ω2
f − ω2)2 + 4ζ2

fω
2
fω

2 . (1.50)

In this equation, ωg describes the dominant frequency with shape parameter ζg as in the Kanai-
Tajimi spectrum. The parameters ωf and ζf are the natural frequency and damping of the
linear filter, respectively.
In Fig. 1.8 an overview of the presented PSD functions is given.
Waves in the ocean often affect offshore structures through their dynamic forces. In [53] it is
shown that the spectral density of the wave force is linearly related to the spectral density of the
sea surface elevation. It is therefore sufficient to model the sea surface elevation. A well-known
model is the Pierson-Moskowitz spectrum [88]

SPM (ω) = αg2

ω5 e
−β( gu0

ω )4
. (1.51)

Here, α and β describe empirical parameters, g is the gravity acceleration and the parameter u0

the average wind speed.
As part of the Joint North Sea Wave Observation Project (JONSWAP) [89], a PSD function
was derived which is an extension of the Pierson-Moskowitz PSD function and extended by a
peak enhancement factor. To obtain a realistic representation of this stochastic process, a large
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Figure 1.8: Examples for earthquake power spectra.

amount of real data was analysed for the derivation of this model, which reads as follows

SJ(ω) = αg2

ω5 exp
(
−5

4

(
ωp
ω

)2
)
γr (1.52)

with the peak enhancement factor

r = exp
(
−(ω − ωp)2

2σ2ω2
p

)
. (1.53)

In these equations, α describes a spectral energy parameter, g is the gravity acceleration, ωp
describes the peak frequency, γr is the peak enhancement factor and σ the spectral width
parameter.
A more realistic representation of a stochastic process in the frequency domain can be deter-
mined with non-stationary or evolutionary PSD functions. Non-stationary PSD functions are
characterised by the fact that they not only represent the distribution of the spectral density
over the individual frequencies, but also represent their temporal change. It is therefore a func-
tion dependent on frequency and time. Non-stationary PSD functions can be distinguished
between separable and non-separable PSD functions. While separable PSD functions consist of
two separable parts for frequency and time, these are nested in a non-separable function.
A separable PSD function can be generated by multiplying one of the above mentioned stationary
PSD functions by means of a so-called envelope or time modulation function, such as SN (ω, t) =
S(ω)g(t) or SN (ω, t) = S(ω)|g(t)|2, with S(ω) as a stationary PSD function and g(t) as an
envelope function. A stationary PSD function can thus be synthesised into an evolutionary PSD
function, which leads to a two-dimensional function. Some selected examples ([81, 90]) of such
envelope functions are listed below and illustrated in Fig. 1.9.
The envelope function g1(t) depends on the parameters k, a and b. In Fig. 1.9 these have
been chosen to be k = 4, a = 0.25 and b = 0.5. Of course, other parameters are conceivable,
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Figure 1.9: Examples of envelope functions for a generating a time-modulated PSD function.

depending on the requirements on the stochastic process.

g1(t) = k
(
e−at − e−bt

)
(1.54)

The envelope function g2(t) consists of different cases that are applied depending on the time.
Again, the choice of timing is variable and can be adapted to the process. For the function
shown in Fig. 1.9, the parameters ta = 5 and tb = 7.5 have been chosen.

g2(t) =


0.8 + 0.2 t2 , t < ta

1, ta ≤ t ≤ tb(
tb
t

)2/3
, t > tb

(1.55)

The third presented envelope function g3(t) also consists of different cases that can be adapted
to the stochastic process depending on the requirements. For the envelope function shown in
Fig. 1.9, α = 1, ta = 10 and tb = 15 have been chosen.

g3(t) =



(
t
ta

)2
, t < ta

1, ta ≤ t ≤ tb
e−α(t−tb), t > tb

(1.56)

However, if frequency and time parameters are inseparable in one expression, the term non-
separable PSD function is used. An example of such a function is

SE(ω, t) = S0

(
ω

5π

)2
e−ctt2e−( ω

5π
)2t (1.57)

with c = 0.15 for instance, see e.g. [82]. Such as function is depicted in Fig. 1.10.
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Figure 1.10: Example for the non-stationary non-separable PSD Function SE(ω, t) (Eq. 1.57).

Generation of stochastic processes

While in the previous section the focus was on analytical or (semi-)empirical expressions of PSD
functions for certain stochastic processes, the generation of time signals with the characteristics
of such a PSD function is described. To obtain a stochastic process in the time domain, the
analytical PSD functions mentioned above can be used. This can be useful to determine the
reliability of a structure in the context of e.g. Monte Carlo (MC) simulations. A major advantage
of this approach is that the processes can be adapted to specific requirements in order to evaluate
different possible scenarios. For the generation of a stochastic process, random variables are
often used, which leads to a certain variability in the processes and thus also in the simulation
results. It is therefore necessary either to generate a sufficiently large number of MC samples
to minimise the influence of the random variables, or to keep the number of random variables
small, if possible. Some selected methods for generating stochastic processes are presented here.
A widely used method is the Spectral Representation Method (SRM) [84]. It provides a suitable
approach for generating compatible stochastic processes XSRM

t derived from an underlying PSD
function SX . Due to the form of the method, the generated time signals have the characteristics
and properties of the underlying PSD function. The method reads as follows

XSRM
t =

√
2
N−1∑
n=0

An cos(ωnt+ φn), (1.58)

with amplitude
An =

√
2SX(ωn)∆ω, (1.59)

where n = 0, 1, 2, . . . , N − 1. N is the number of frequency points in SX , ωn = n∆ω is the
frequency vector with ∆ω as frequency discretisation and t as time coordinate. The random
variables φn are uniformly distributed random phase angles in the range [0, 2π]. The strength of
the method is that a large number of time signals representing the PSD in the time domain can
be generated with little effort. The generated time signals also exhibit a low autocorrelation. A
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disadvantage, however, is that a large number of random variables are required, since for each
frequency component an additional random variable is needed.
To reduce the number of random variables, a method based on SRM was proposed in [91], the so-
called stochastic harmonic functions (SHF). The general idea is to subdivide the frequencies into
smaller intervals [ωi−1, ωi] for i = 1, 2, . . . , N from which a random frequency is sampled and the
corresponding PSD value is plugged into the expression of the amplitude. A stochastic process
can subsequently be generated using Eq. 1.58 by substituting the amplitude according to SHF.
Two types, the Stochastic Harmonic Functions of the First Kind (SHF-I) and the Stochastic
Harmonic Functions of the Second Kind (SHF-II) are proposed.
For SHF-I the amplitude is

ASHF−I(ωi) =

√√√√√ 1
π

ωi∫
ωi−1

G(ω)dω, (1.60)

where fi(ω) is the standardised PSD over the interval [ωi−1, ωi], such that

fi(ω) = G(ω)
ωi∫

ωi−1
G(ω)

for ω ∈ [ωi−1, ωi] , (1.61)

with G(ω) as target PSD function.
For SHF-II the amplitude appears to be

ASHF−II(ωi) =
√

1
π
G(ω̃i)∆ωi, (1.62)

where ∆ωi = ωi − ωi−1 is the length of the subdivided interval. In this case, the ωi’s are
uniformly distributed over the said interval, such that

fi(ω) = 1
ωi − ωi−1

= 1
∆ωi

. (1.63)

In [91] it is also proposed, that the intervals may overlap. Furthermore, it was shown that
the proposed methods generating stochastic processes with either SRM or SHF have similar
properties, such as low autocorrelation. However, by utilising SHF it can be achieved to reduce
the number of random variables. SHF was further extended to generate non-stationary time
signals [92].
Since a high number of random variables for a simulation of a non-linear structure can result
in a high computational effort, a further extension of SHF is proposed in [93], which introduces
dependencies between the frequencies in order to reduce the number of random variables. For
the dependence between frequencies, only one uniformly distributed random variable λ in the
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range [0, 1] is introduced. The random frequencies ωj can be determined via this random variable

ωj = fj(λ), (1.64)

where fj(0) = ωj−1 and fj(1) = ωj . A convenient way to determine the frequencies according
to λ is

fj(λ) = ωj−1 + (ωj − ωj−1)λ. (1.65)

Therefore, the amplitudes are

A(fj(λ)) =
√

4S(fj(λ)) (ωj − ωj−1). (1.66)

The fundamental equation of the SRM (1.58) can thus be modified to generate artificial stochas-
tic processes

XSHF−R
t =

N∑
j=1

A(fj(λ)) cos(fj(ω)t+ φn). (1.67)

It has been shown, that realisations of non-stationary stochastic processes can be generated by
utilising a generalisation of SRM (Eq. 1.58) with

X(t) =
N−1∑
j=0

√
4SX(ωj , t)∆ω cos(ωjt+ φj). (1.68)

Note, that this equation is similar to Eq. 1.58 except that the stationary PSD function SX(ω) is
replaced by a compatible non-stationary equivalent SX(ω, t), see [94]. Therefore, the generated
stochastic process has a non-stationary character, which is passed by the evolutionary PSD
SX(ωj , t).
Many derived methods are based on SRM, which has been studied extensively in the literature,
see for instance [95–97]. Nevertheless, the needs and requirements for certain simulations of
stochastic processes are constantly changing or other developed methods provide new ways to
efficiently generate stochastic processes.
For example, in [98] a method is presented to generate multivariate stationary stochastic pro-
cesses from the Fourier-Stieltjes integral of the spectral representation, leading to ergodic stochas-
tic processes. In [99], an enhanced SRM was developed to generate ergodic multivariate stochas-
tic processes via shifting a frequency increment. In [100], 500 real earthquake ground motions
were analysed and divided into groups, of which the standards time-domain enhancement atten-
uation process is described as an edge envelope curve. A method for non-stationary zero-mean
processes whose target acceleration is one of its own samples is presented in [101]. The variety
of methods for generating stationary and non-stationary stochastic processes, especially the re-
cently published results, shows that it is a thriving research topic and that there is a constant
need for improvement as the requirements are constantly changing as well. It should be noted
that this is not an exhaustive list and only serves to give an impression of the extent of the
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research area.
To conclude this section, some approaches are presented that have already dealt with the problem
of uncertainties in the data or the estimation of PSD functions. In these works, the uncertainties
arise from different sources, such as incorrect recording, suffering from noise or missing data. The
problem of missing data is in particular an important area of research, as it has a big impact on
estimating PSD functions. The DFT is very sensitive to changes in the time signal, which have
a strong impact on the PSD functions. An incorrectly reconstructed signal can therefore lead
to highly erroneous results, such as the peak frequency being determined incorrectly or with an
incorrect magnitude. Especially missing data reconstruction plays an important role. In [102],
individual segments of signals separated by long gaps were investigated. These gaps were filled
using a maximum entropy method, which was followed by a prediction based on the observed
data. In [103], an algorithm is proposed that examines two cases: signals with missing data
and signals with completely randomly sampled data points. That means, that the signal is not
uniformly sampled. The algorithm performs an iterative deconvolution of the time window in
the frequency domain, removing artefacts due to the finite nature of signals. Another algorithm
that estimates PSD functions in missing data problems with high accuracy is proposed in [104],
which is also applicable to practical problems. For the reconstruction of missing data, artificial
neural networks (ANN) can be used [76]. An ANN is able to detect the stochastic pattern in the
available data and thus reconstruct the missing data. From the reconstructed signal, the PSD
function can be estimated using the established methods. Other methods ([77, 105]) fill the gaps
in signals with missing data with random variables to propagate this signal, then consisting of
fixed values and random variables through the DFT in a closed-form expression. The result
is a PSD function described by a probability density function at each frequency. For spectra
that can only be described with a few frequency components, compressive sensing approaches
can be used to fill gaps in the signals [78, 106]. For this purpose, an appropriate basis, such as
the Fourier basis, is chosen in the time domain and an L1 minimisation is performed to obtain
the sparsest representation of the process. Then the signal can be reconstructed or the PSD
function can be obtained directly. It is shown that signals with up to 65% missing data can
be efficiently reconstructed. In [107], an approach is presented that uses genetic algorithm to
reconstruct missing data and noisy signals.
Other approaches quantify uncertainties in the data differently from missing data problems.
Metrics that can be used to assess uncertainty in a PSD are presented in [108]. PSD func-
tions that are consistent with a given range of values for the estimated statistic represent an
uncertainty set over the underlying PSD function. With this uncertainty set, upper and lower
bounds are derived to quantify the underlying PSD function with confidence. In [109], a large
set of accelerograms is used to determine interval parameters for a semi-empirical PSD function.
Thus, different representations of the PSD functions are resulting, depending on the bounds
used for the derived interval parameters. To evaluate the structural safety, the PSD function
of the ground motion acceleration was embedded with different interval parameters in classical
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first-passage problems in order to perform a reliability analysis to derive the bounds for the
failure probability.

1.2 Aims and objectives

Since uncertainties occur in the time signal, e.g. due to measurement errors, poor quality due to
inaccurate calibration of the sensor, discretisation of the signal, etc., and further uncertainties
are induced by the estimation process of the PSD - as mentioned, the periodogram is a poor
estimator, Welch’s method averages the data - the true underlying PSD cannot be determined
unambiguously and with absolute certainty. Therefore, approaches are proposed to capture the
uncertainties simultaneously and in one step directly in the frequency domain. The main goal
of this work is to derive non-deterministic PSD representations that are able to quantify the
uncertainties mentioned. These models are then able to be used in the context of reliability
analyses and to assess the reliability of a structure that takes these uncertainties into account,
for instance.
To derive these models, a set of available data from environmental processes such as earthquakes
or wind loads is used. The precondition for the PSD models to be derived is that these data
have similar spectral characteristics in the frequency domain, such as peak frequency or general
distribution of frequencies and amplitudes. Once this spectral similarity is verified, the PSD
models can be derived in two different ways, which should be chosen according to how much data
is available. If multiple data is available, reliable statistics such as mean and standard deviation
can be obtained, so a probabilistic model is derived. If data is limited, it is not possible to derive
reliable statistics, so in this case an interval-based approach is chosen that determines an upper
and lower bound on the data set. In some cases, when only a single but uncertain signal may be
available, for example when only reliable bounds of the signal are known, an approach is used
which propagates this interval signal through the DFT to generate an interval-based PSD model
with an upper and lower bound.
The main objective of quantifying and modelling uncertainties in the PSD function can therefore
be refined into the following specific objectives:

1. Development of a probabilistic PSD model based on the assumption that multiple similar
data records are available. In such a case, statistics can be reliably derived and there-
fore confident statements about the distribution of the data can be made. Therefore, a
probabilistic approach is chosen.

2. Development of an interval-based PSD model based on the assumption that only a few
similar data records are available. In such a case, no reliable statements can be made
about the distribution of the data. In this case, an interval-based approach is chosen.

3. The development of an approach to determine the spectral similarity of a data set, which
can be used to choose appropriate data for the derivation of the two non-deterministic
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PSD models mentioned above. The approach can also be used to assess a large data set
for similarity, which can be used in a reliability analysis to reduce variability in the data
and simulation results.

4. An extension of the DFT, which allows the calculation of exact bounds for the Fourier
amplitude and the PSD function of interval-valued signals. The repeated variables problem
is taken into account to counteract artificially inflated bounds.

1.3 Original contributions

The contributions of this work in the context of uncertainty quantification of PSD functions are
mainly in the development of different non-deterministic load models of PSD functions. These
models are able to quantify uncertainties in the data in the time domain and eventually in
the frequency domain and aim to achieve robust simulation results in the context of reliability
analyses. The simulation results are presented in a form identical to the non-deterministic input
data. The main developments are as follows:
First, a model is proposed that represents the PSD function in the frequency domain as a
probabilistic model. A variety of data with similar characteristics in the frequency domain,
such as peak frequency and shape, are used to derive reliable statistics. From these statistics,
a probability density function is derived for each individual frequency, modelling the spectral
density at that frequency as a random variable. The resulting relaxed PSD thus forms a non-
stationary stochastic process itself. In this work, a truncated normal distribution is proposed for
the probability density function of the individual frequencies, which has been proven to fit with
various statistical tests. For other data sets, other distributions are also conceivable. In any case,
it must be ensured that the function cannot assume negative values, since negative values are
physically impossible within the framework of PSD functions. Due to the probabilistic character
of the PSD function, individual PSD functions can be sampled and stochastic processes can be
generated from them, which enables the use in the context of Monte Carlo simulations or similar
schemes to analyse the system behaviour of a structure. In a further work, different methods for
generating stochastic processes from the relaxed PSD were investigated. The aim of this work is
to find alternative methods that generate a stochastic process with as few random variables as
possible. In particular, the variances of the transformed signals in the frequency domain have
been investigated under different numbers of samples. In addition, the autocorrelation function
of the generated stochastic processes was analysed.
A second development in this thesis also deals with the estimation of an alternative non-
deterministic PSD model. In contrast to the previous model, the assumption is made that
additional uncertainties are induced due to limited data. Since no reliable statements about the
distribution of the data can be made due to the limited data set, this non-deterministic model
is defined by an upper and lower bound that encloses the data. A Radial Basis Function (RBF)
network is used to approximate a basic power spectrum derived from the data set, which roughly
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pre-defines the shape of the PSD and reflects its physics. The resulting basis functions from
the RBF network are manipulated via the associated weights so that the bounds are optimised
taking into account dependencies between the frequencies, resulting in the imprecise PSD. The
advantage of this approach is that reliable data-enclosing bounds are derived and the analyst
has control over the number of basis functions to be used, which is an advantage for subsequent
interval propagation. This approach is applicable to both artificially generated data and real
data sets and thus has a practical use. In an earlier development, confidence intervals based on
the data were used to derive the bounds, which were calculated at different confidence levels.
From the different confidence levels, fuzzy memberships can be subjectively assigned to generate
a fuzzy number for each individual frequency.
The third development is mainly concerned with the classification of data in the frequency
domain, especially if they have a high spectral variance. For simulations, it is important to keep
the variability in the data and in the results low, as this high variance data sets cannot provide
reliable results. If the variance in the data is too high, this also has a negative effect on the
results and they become less reliable. Therefore, an approach is proposed that determines the
spectral similarity of the data entirely in the frequency domain and divides them into groups
accordingly. To get a first measure of similarity, the Bhattacharyya distance is used. The
distance values are divided into groups according to the k-means algorithm, from which new
load models can be generated. For reliability analyses, all classified load models of a data set
can be averaged and a reliability analysis based on the probability of occurrence of each load
model can be obtained. The result of this approach is more accurate simulation results and the
reduction of variability in the data. Furthermore, this approach can be used to determine the
spectral similarity to derive a relaxed PSD or imprecise PSD, as their precondition is that only
similar data can be used.
For the last development, unlike before, no data set is used, but only a single signal is considered.
This signal is assumed to suffer from poor precision and may only be known in reliable bounds.
It is therefore represented as an interval signal. Since the DFT is required for the transformation
of a signal into the frequency domain, but is not capable of transforming interval-valued signals,
an extension is proposed. This novel interval DFT algorithm is able to transform such interval
signals into the frequency domain. This is done by taking into account the repeated variables
problem, which in interval arithmetic leads to the fact that calculated bounds are artificially
inflated when a variable occurs several times. The interval DFT algorithm is able to capture
this problem and thus provide exact bounds for each frequency. The interval signal can be
transformed into the frequency domain and the exact bounds for the Fourier amplitude and
PSD function can be obtained. Further work evaluates the missing data problem assuming
that missing data can be represented as intervals with some confidence. This signal is then
transformed into the frequency domain and reliable bounds can be derived even under missing
data. The work is mainly concerned with different cases such as the length of the gap and the
size of the interval uncertainty. It is shown that reliable results can be obtained even with a
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Figure 1.11: Concept of the proposed methods

high number of missing data under an appropriate reconstruction of the data.
The developments mentioned above result in a framework for quantifying uncertainties in the
estimation of PSD functions. Each development contributes successfully to a specific case. All
models have proven useful in practical simulations and have contributed to an improvement
in quantifying uncertainties effectively. An overview of the framework in this work, i.e. the
individual contributions and its interaction, is shown in Fig. 1.11. The starting point in each
case is the time domain, in which a set of discrete-valued time signals is given. These are
individually transformed into the frequency domain and the so-called ensemble of PSD functions
can be obtained. In the case that these have a high spectral variance, the developed classification
approach is applied to identify a group of PSD functions that have a spectral similarity. This
ensemble of similar PSD functions can then, depending on how much data is available, be
transformed into the relaxed PSD if multiple records are available, or into the imprecise PSD
if only limited records are available. If only a single uncertain signal is available, i.e. an
interval-valued signal, it is first transformed into the frequency domain using the interval DFT
by propagating the intervals as complex numbers in the Fourier domain. Then, an endpoint
analysis is carried out until the absolute value is formed, which is done individually for each
frequency and results in an interval PSD model. The derived models, shown on the right hand
side in Fig. 1.11, can then be used for simulation, for example in reliability analysis, via various
methods of uncertainty propagation. The basic idea is that the respective model is propagated
through the system in the way it exists, i.e. probabilistically or interval-valued, and the system
response can also be obtained probabilistically or interval-valued, respectively. This scheme is
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Figure 1.12: Uncertainty propagation for identifying the system behaviour

shown in Fig. 1.12. The standard approach is represented as a discrete-valued PSD function
which will lead to a discrete-valued response after simulation. The probabilistic model of the
relaxed PSD yields a probabilistic response after the propagation, while the imprecise PSD or
interval PSD from the interval DFT algorithm yield an interval-valued system response.

1.4 Structure of the thesis

This dissertation is comprised of four journal articles and three conference papers. The journal
articles provide the main developments of this work, while the conference papers can be seen
as further developments or elaborations of the findings in the journal articles. The structure
is based on the specific research results in the framework of uncertainty quantification in PSD
estimation, i.e. the relaxed PSD estimation, the imprecise PSD estimation, the definition of the
spectral similarity and the interval DFT algorithm.
The first journal article is concerned with the development of the relaxed PSD derived from
multiple data records, which is a probabilistic representation of an ensemble of PSD functions,
see Chapter 2. The results of this journal article are examined with regard to the generation of
stochastic processes, see Chapter 3.
The second journal article addresses the same problem, but assuming that only limited data
records are available. Therefore, the imprecise PSD is derived by using an RBF network to
obtain an upper and lower bound for the data set. This is explained in more detail in Chapter 4.
An alternative and earlier development of the imprecise PSD based on the determination of
confidence intervals in combination with Fuzzy sets is discussed in Chapter 5.
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Since the development of a load model, such as the relaxed PSD and the imprecise PSD, requires
the definition of the similarity of the data, the determination of the spectral similarity of these
data is explained in Chapter 6.
The last article considers the uncertainty in the time signal itself, leading to the development
of the interval DFT algorithm and an additional bounded PSD function, which is discussed in
Chapter 7. The results presented in Chapter 8 are a further work focusing in particular on
missing data problems using the interval DFT algorithm.
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2 Relaxed power spectrum estimation from multiple
data records utilising subjective probabilities

The first development in this thesis introduces a probabilistic representation of an ensemble
of PSD functions with similar properties to quantify the epistemic uncertainties. These un-
certainties arise from various problems in data acquisition, such as measurement errors, sensor
failures, inaccurately calibrated sensors or incorrectly recorded extreme values. In addition, the
process of estimating PSD functions induces further uncertainties, as these are often based on
the assumption that a continuous infinite signal is present. Since this is never the case in reality,
and due to the aforementioned problems in data acquisition, a certain degree of uncertainty in
the recorded signal can always be assumed in the real case. As these uncertainties are inherent
in the signal in the time domain, they are also propagated into the frequency domain when
estimating the PSD function. The goal is therefore to find a way to quantify these uncertainties
in the frequency domain and thus provide a basis for making simulation analyses more reliable.
Reliable statistics, such as mean and standard deviation, can be derived mainly in the presence
of multiple data. Hence, a probabilistic model based on probability density functions can be
derived. The basic principle is to transform a set of data in the time domain, e.g. of earthquakes
or wind loads, into the frequency domain. If these data have similar characteristics, such as
the peak frequency or the shape of the PSD functions, mean and standard deviation can be
determined for each frequency component, from which a probability density function is then
generated. Since negative values are not physically possible in the context of PSD functions,
a truncated normal distribution is suggested. However, due to the shape of the data, other
distributions are also conceivable. Furthermore, the truncation bounds can be fitted individually
to the given data. Statistical tests were performed to validate the choice of a truncated normal
distribution. For a convergence study, individual PSD functions are sampled from the generated
relaxed PSD, a time signal is generated from it and then transformed back into the frequency
domain. Thus, the validity of such a probabilistic model is checked by means of statistical tests
and a convergence study. Furthermore, the influence of such a model on the generated time
signals and their autocorrelation function is examined, as these could be used in Monte Carlo
simulations. These results also show valid results.
In order to demonstrate the practical applicability of the presented relaxed PSD, two numerical
examples were carried out. Reasonable results can be observed for both examples. The relaxed
PSD thus enables the quantification of uncertainties efficiently in the frequency domain. Instead
of discrete values, a range of possible values with different probabilities can be calculated, which
is particularly useful in the area of reliability analyses in order to determine a probabilistic
response in the frequency domain.
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Abstract

In structural dynamics, the consideration of statistical uncertainties is imperative to ensure a realistic modelling
of loading and material parameters. It is well-known that any deterministic analysis only constitutes a single
result for the given input parameters. Because of aleatoric or epistemic uncertainties, many factors must be
considered either in certain intervals or with subjective probabilities. Especially for environmental processes, such
as earthquakes or wind loads, a reliable prediction of future event characteristics is important for the design of
safe structures. This work attends to the statistical procedure of simulating the response behaviour of a dynamic
system under an excitation described by a stochastic process. A versatile option for this procedure is the es-
timation of the Power Spectral Density (PSD) function from real data records. The PSD function determines
dominant frequencies and their magnitude of influence on the stochastic process. There are numerous methods
for estimating the PSD function from source data, but usually these estimators do not account for uncertainties
inherent in data records as they have a rigorous mathematical relationship between data and estimated PSD
function. To address this issue, an approach for a stochastic load model that captures epistemic uncertainties by
encompassing inherent statistical differences that exist across real data sets is proposed. Due to an increase in
available data, reliable statistical information can be extracted from an ensemble of similar PSD functions that
differ, for instance, only slightly in shape and peak frequency. Based on these statistics, a PSD function model
is derived utilising subjective probabilities to capture the epistemic uncertainties and represent this information
effectively. The spectral densities are characterised as random variables instead of employing discrete values, and
thus the PSD function itself represents a non-stationary random process comprising a range of possible valid PSD
functions for a given data set. This novel representation is useable for producing non-ergodic process realisations
immediately applicable for Monte Carlo simulation analyses. The strengths and advantages are demonstrated by
means of numerical examples.
Keywords: Power spectral density, Relaxed power spectrum, Random vibrations, Stochastic processes, Stochas-
tic dynamics, Uncertainty quantification.

2.1 Introduction

In the vast field of stochastic dynamics, enormous progress has been made in recent years,
which has contributed to improving simulation models or to better understanding the underlying
physics [52, 55]. For the simulation of buildings and other structures in stochastic dynamics,
models with excitation and response processes are required. These buildings are often subject
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to excitations consisting of random vibrations [12, 54]. Stochastic processes are suitable to
characterise these excitations, especially when the underlying excitation is an environmental
process. Buildings can, for example, be subjected to permanent loads, such as wind loads,
or in certain regions to very short-term loads, such as earthquakes. In order to analyse the
influence of these processes on structures, whether to design safe structures for the future or to
make predictions about the durability of existing buildings, these environmental processes are
recorded and applied to building models. In many cases, a direct application of safety codes of
civil engineering practice such as Eurocode 8 is not possible (e.g., for high-rise buildings, critical
infrastructure such as bridges, or abnormal structures such as oil platforms or dams); instead,
detailed time analyses and simulations must be carried out to ensure robust design [5]. For this
purpose Monte Carlo (MC) simulations will be applied. It has been shown that for complex
non-linear relations, MC simulations can compute probabilistic characteristics of the response
[110].
A suitable and widely used tool in the modelling of stochastic processes is the Power Spectral
Density (PSD) function, through which Housner proposed the white noise model [58]. Later,
earthquakes were described via PSD functions, which have been continuously improved [59, 86].
With the help of PSD functions, environmental processes can be examined for their relevant
frequencies and the corresponding amplitudes. In addition, the PSD function can be used to
derive a relationship between excitation and response, at least in the linear case [111]. Further-
more, adequate stochastic processes can be generated via a descriptive PSD function [84], for
example for extensive MC simulations. In this area, some progress has been made recently to
reduce the number of random variables for the generation of time histories of signals, namely
the Stochastic Harmonic Function (SHF) [91–93].
Thus, when estimating such a model by statistical analysis of source data, it is assumed that the
governing process coincides with a single power spectrum. Without having significant confidence
that this is the case, for any set of source data where the power spectrum is of interest, traditional
statistical power spectrum estimation could result in a highly unrepresentative model of the
process.
Thus, when estimating such a model by statistical analysis of source data, it is assumed that the
governing process coincides with a single power spectrum. Without having significant confidence
that this is the case, for any set of source data where the power spectrum is of interest, traditional
statistical power spectrum estimation could result in a highly unrepresentative model of the
process. Especially in the field of environmental stochastic load modelling, when estimating
any spectral model from multiple source data sets, the assumption that each realisation, if it
exists in the limit, corresponds to the same power spectrum is highly unlikely. Uncertainties
introduced by estimating the PSD function from averaging the periodograms of multiple real
data sets can be substantial and at least an attempt should be made to quantify them. An
overview of efficient methods is given in [17] and the references therein.
Nowadays, for the purpose of simulations, databases with a large variety of environmental pro-
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cesses are accessible, e.g. [112]. Nevertheless, it should be noted that even these data can often
be subject to uncertainties caused by equipment failure, damaged sensors or measurement er-
rors, to name a few examples. Missing data problems also occur frequently. Different approaches
to deal with this issue and reconstruct data appropriately are given in [76–78] and have been
successfully applied to real-world problems [106]. Epistemic uncertainties in the data sets can
lead to incorrect or even dangerous results, for example if simulations with an uncertain data set
indicates that a structure is not endangered, but the structure would actually be damaged by
the excitation. Many of the well-known and commonly used PSD function estimators, such as
periodogram, Bartlett’s method, Welch’s method or Blackman-Tukey method (see for example
[61], [56]) do not take uncertainties in the data into account. Other models, such as the Super
Asperity Model [113], take uncertainties into account, but are derived and valid only for specific
regions and particular parameters. Moreover, it is usually time-consuming and costly to set up
these kinds of models.
This paper proposes a stochastic load representation that takes epistemic model uncertainties
into account and aims to be universally valid and independent of site-specific parameters. At-
tempts to represent the PSD function as a probabilistic model for missing data problems have
already been made [77, 105]. However, in this work the excitation spectrum is estimated from
multiple data sets with same characteristics to obtain a reliable probabilistic representation. The
individual discrete frequencies will be treated as probability density functions and thus random
variables, resulting in a model controlled by subjective probabilities. For this purpose, mean-
ingful statistical variables of the ensemble are extracted. The main novelty of this load model
is the accounting for epistemic uncertainties in data sets to derive a probabilistic description of
the input data in the frequency domain. The structural response in the frequency domain can
also be represented probabilistically, which enables likely and unlikely spectral density values to
be identified by probability density functions, instead of using discrete and thus less accurate
values. This facilitates the assessment of the risk to structures from environmental processes.
The load model is thus directly useable for MC simulations and is referred to as the relaxed
power spectral density function. The main difference between the traditional PSD function and
the relaxed PSD function is that random variables are now used to describe the input PSD
function, whereas previously discrete values were used. This allows uncertainties in the data to
be better captured. Furthermore, the relaxed PSD function can be incorporated directly into
recently developed methods for reliability assessment, such as the Probability Density Evolution
Method [52, 114] and their extensions, see for instance [8, 115].
This work is structured as follows: A brief overview of stochastic processes, power spectral den-
sity functions and their relationship is given in section 2.2. Section 2.3 describes the estimation
of the relaxed PSD function from an ensemble of given data utilising subjective probabilities. In
addition, the differences to traditional methods are presented. The strengths and advantages of
the relaxed PSD function are demonstrated in Section 2.4 by means of two numerical examples.
The final conclusion is given in Section 2.5.
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2.2 Stochastic process representation and power spectrum estimation

In this section a brief overview of the theory of stationary stochastic processes as well as the
power spectrum estimation are presented.
For a given stationary power spectral density function SX(ω), a stochastic process X(t) can be
generated using

X(t) =
N−1∑
n=0

√
4SX(ωn)∆ω cos(ωnt+ φn), (2.1)

where

ωn = n∆ω, n = 0, 1, 2, . . . , N − 1

∆ω = ωu
N
,

(2.2)

with N →∞, ωu as the upper cut-off frequency and φn as uniformly distributed random phase
angles in the range [0, 2π]. This method is referred to as the Spectral Representation Method
(SRM) [84] and has been widely used to generate artificial earthquake time histories, as in e.g.
[116].
In general, this means that for every real-valued process X(t) a corresponding orthogonal process
Z(ω) exists and can be written in the form [11]

X(t) =
∞∫

0

eiωtdZ(ω), (2.3)

where the process Z(ω) has the properties

E
(∣∣∣dZ2(ω)

∣∣∣) = 4SX(ω)dω

E(dZ(ω)) = 0.
(2.4)

To transform a stochastic process from time domain to frequency domain, the discrete Fourier
transform is applied. A frequently used estimator of the power spectrum is the periodogram [12]
which is the squared absolute value of the discrete Fourier transform of the time signal X(t)

ŜX(ωk) = lim
T→∞

∆t2

T

∣∣∣∣∣
T−1∑
t=0

X(t)e−2πikt/T
∣∣∣∣∣
2

, (2.5)

with T as the total length of the record, ∆t as the time increment, t describes the data point
index in the record and k is the integer frequency for ωk = 2πk

T .

2.3 Relaxed power spectrum and relaxed spectral representation method

In this section, the estimation of a relaxed PSD function from an ensemble of periodograms
using subjective probabilities is given. This novel model combines the calculation of statistical
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information from process record ensembles with probability density functions, which represent
the individual frequencies. The differences in the estimation of stationary processes from the
relaxed model are explained using short examples.
The strength of this novel method can be exploited when a large amount of data, for instance
environmental processes such as earthquake ground motions, are available. Nowadays, a large
number of time histories of earthquakes around the globe are provided among others in the
PEER Ground Motion Database [112], which can be used to calibrate the input ensemble. The
ensemble consists of a number of different periodograms with cardinality R, i.e. ensemble =
{ŜXi}, i = 1, 2, ..., R. Here R is determined by the number of periodograms available, estimated
either from real seismic ground motions or from artificially generated stochastic processes. Each
periodogram in the set can be evaluated and yield a value si,ωn = ŜXi(ωn). The ensemble is an
empirical collection of periodograms that determines the possible range in the probability input
space for the relaxed PSD function described below.
Throughout this work artificially generated stochastic processes are used by utilising the fol-
lowing definition of the underlying analytical power spectral density function, describing an
environmental process in the frequency domain, given in [84],

SX(ω) = 1
4σ

2b3ω2e−b|ω|, −∞ < ω <∞. (2.6)

Here, σ = 1 is the standard deviation of the stochastic process and b = 1 is a parameter
proportional to the correlation distance of the stochastic process [85]. For the generation of
the time signals, a MC simulation with 50 samples is carried out using SRM (2.1), where the
analytical PSD function in Eq. 2.6 is used as the source spectrum. The aim of this procedure is
to simulate data sets and their corresponding estimated periodograms and to set up the novel
relaxed PSD function. For the MC simulation, the following parameters are used in the SRM:
Total length of time record T = 64 s, time step size ∆t = 0.25 s, cut-off frequency ωU = 12.5664
rad/s, frequency step size ∆ω = 0.0974 rad/s and a total number of frequencies Nω = 129,
see [84]. Since SRM (2.1) is influenced by random phase angles φ, different time signals are
generated despite the identical source spectrum. These signals are used as input signals and
are individually transformed to the frequency domain by Eq. 2.5, resulting in the so-called
ensemble of periodograms, which is a collection of data in the frequency domain with similar
characteristics, see Fig. 2.1. As mentioned before, for the ensemble presented here, a total of 50
artificially generated time signals and the corresponding estimated periodograms are employed.
Although the individual periodograms in the ensemble show the same characteristics, such as
peak frequency and shape, there is still variance among them. In order to estimate the relaxed
PSD function from the ensemble, the mean µωn

µωn = 1
N

N−1∑
i=0

si,ωn (2.7)

and standard deviation σωn

38



CHAPTER 2. RELAXED POWER SPECTRUM ESTIMATION FROM MULTIPLE DATA RECORDS UTILISING
SUBJECTIVE PROBABILITIES

0 2 4 6 8 10 12
Frequency (rad/s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

m
2 /s

3 )

Ensemble
Ensemble mean

Figure 2.1: Ensemble {ŜXi }, i = 1, 2, ..., 50 with corresponding mean

σωn =

√√√√ 1
N

N−1∑
i=0

(si,ωn − µωn)2, (2.8)

with ωn = n∆ω and n = 0, 1, 2, . . . , N − 1, must be calculated for each individual frequency.
By extracting this statistical information from the ensemble, a probability distribution function
can be derived for each frequency. Here, a truncated normal distribution is utilised and given
by

fωn(s;µ, σ, a, b) = 1
σ

Φ( s−µσ )
Φ( b−µσ )− Φ(a−µ

σ )
, (2.9)

with Φ(η) = 1√
2π exp

(
−1

2η
2
)

as standard normal distribution and Φ(ζ) = 1
2

(
1 + erf(ζ/

√
2)
)

as
the corresponding cumulative distribution function. The truncation bounds are described with a
and b. The subscripts in Eq. 2.9 are omitted for simplicity. The probability density function must
be determined separately for each frequency ωn, since dependencies and correlations between
the frequencies are not taken into account. As negative values are not possible in terms of power
spectral density functions, the truncation bound a must not be smaller than 0. The utilisation of
a truncated normal distribution may result in a shift of the mean value. Therefore, to highlight
the influence of the truncation bounds, the bounds [aωn = 0, bωn =∞] and [aωn = 0, bωn = 2µωn ]
are used in this work.
Using the frequency ω = 2.16 rad/s as an example, the spectral densities from the ensemble
are depicted with the fitted truncated normal distribution in Fig. 2.2. Both the histogram
and the corresponding empirical cumulative distribution function of spectral densities are pre-
sented in blue. The fitted probability density function with truncation bounds [0,∞] and the
corresponding cumulative distribution function are also shown in red.
From Fig. 2.2, it can be obtained that the truncated normal distribution fits the data well. This
is also confirmed by various statistical tests in which the null hypothesis could not be rejected.
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Figure 2.2: Histogram and empirical CDF of spectral densities at frequency ω = 2.16 rad/s with fitted truncated
normal distribution

Table 2.1: Statistical tests

Kolmogorov-Smirnov Chi-square Anderson-Darling
p-value 0.9494 0.3676 0.3933

The corresponding p-values can be found in Table 2.1.
The resulting relaxed PSD functions estimated from the ensemble of periodograms is depicted
in Fig. 2.3. Note that the probability density is normalised here.
For instance, the probability density functions for the three selected frequencies ω = 1.08 rad/s,
ω = 2.65 rad/s and ω = 4.22 rad/s are depicted in Fig. 2.4. The solid lines show the probability
density functions for the relaxed PSD function with truncation bounds [0,∞], while the dashed
lines represent the same for a relaxed PSD function with truncation bounds [0, 2µ]. These lines
describe “slices” of the relaxed PSD functions (Fig. 2.3) for selected frequencies and exemplify
the probability density for those frequencies assigned to the PSD values.
The derived relaxed PSD function can be utilised for producing non-ergodic stochastic process
realisations immediately applicable for MC simulations. In order to generate adequate time
signals for MC simulations, SRM (Eq. 2.1) can be reformulated to

X(t, θ) =
N−1∑
n=0

√
4SX,ωn(ω, θ)∆ω cos(ωnt+ φn(θ)) (2.10)
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Figure 2.3: Normalised relaxed PSD functions corresponding to Eq. 2.9 with truncation bounds [0, inf] (left)
and [0, 2µ] (right)
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Figure 2.4: Probability density functions for selected frequencies ωn in Eq. 2.9 of the relaxed PSD functions

and shall be called the Relaxed Spectral Representation Method (RSRM). In this equation, the
spectral density SX(ωn) is replaced by the sampled spectral density value SX,ωn(ω, θ) from the
relaxed PSD function of the corresponding frequency.
Since the difference between Eq. 2.10 and Eq. 2.1 is only that a sampled PSD function from the
relaxed PSD function is used instead of a deterministic/analytical PSD function (such as Eq.
2.6), the conditions and requirements on the stochastic process are not changed and still apply
to both equations, see [84]. Therefore, the generated time signals in Eq. 2.10 have identical
properties to those in Eq. 2.1, such as stationarity and non-ergodicity. Furthermore, in both
cases zero-mean signals are generated.
As the spectral densities for individual frequencies are treated as random variables controlled by
subjective probabilities, the PSD function itself is a non-stationary random process. The relaxed
PSD functions derived here will be used for further investigations and simulations throughout
this work.

2.3.1 Convergence of the relaxed PSD function

In this section, a brief convergence study is conducted to show that the PSD functions sampled
from the relaxed PSD function converge towards the target relaxed PSD function. For this
purpose, 100,000 PSD functions were sampled from the relaxed PSD function and adequate
time signals were generated using Eq. 2.10. The time signals were transformed back to the
frequency domain by Eq. 2.5. From the resulting ensemble, the relaxed PSD function was
calculated again. Fig. 2.5 shows the deviation of the estimated PSD function and the original
PSD function for the mean value and the standard deviation, as well as the convergence towards
the target relaxed PSD function, calculated via the Euclidean norm.
With increasing sample size, the mean PSD function converges to the target mean PSD function.
However, the standard deviation is slightly higher than in the target function. This can be
attributed to the sampling process. With a high number of samples, higher, respectively lower
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Figure 2.5: Target and converged mean and standard deviation of the relaxed PSD function with corresponding
error

spectral densities are sampled for the individual frequencies that do not occur in the original
ensemble, which leads to higher standard deviations being calculated. This fact is not critical
for the simulation as the relaxed PSD function is still able to account for epistemic uncertainties,
for which this new representation of PSD functions is intended.
Convergence was also assessed with different input ensembles from which different relaxed PSD
functions were derived. Therefore, it can be stated that convergence holds for arbitrary relaxed
PSD functions.

2.3.2 Influence on Generated Time Signals

To investigate the influence of the relaxed PSD function on the generated time signals, different
simulations were carried out. In addition, to obtain comparative values, the standard and
commonly used SRM was utilised in combination with the ensemble mean to generate time
signals.
First, an example for two sampled power spectral densities from the relaxed PSD function
and the corresponding generated time signals are depicted in Fig. 2.6. It should be noted,
that correlations or dependencies between frequencies are not considered here. Similarities such
as peak frequency and shape can be recognised, but differences can be seen in the specific
values of the spectral density, of course. These differences are propagated to the generated
signals. However, using the exact same random phase angles φ in Eq. 2.10, which neglects
the randomness in the phase shift and therefore provides a look on the amplitude changes only,
slight differences in the generated time signals can be seen. Shape and amplitudes of the time
signals show similarities, but still differ which may cause a difference in the application to a
system, depending on the system’s properties.
Since for the simulation of buildings and structures certain limit values in the excitations are
often decisive, e.g. when regarding first passage failure conditions or reliability over time es-
timates, the attention is directed to the maximum amplitudes in the time signals. For this
purpose, 10,000 time signals are generated with SRM (Eq. 2.1) and RSRM (Eq. 2.10) and the
respective absolute maximum values are plotted as a histogram. In addition, the empirical cu-
mulative distribution functions are presented, see Fig. 2.7. Histograms and CDFs are presented
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Figure 2.6: Example for two sampled PSD functions and the corresponding generated stochastic processes (Eq.
2.10) by utilising identical random phase angles φ
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Figure 2.7: Histogram and empirical CDF of the maximum acceleration max
t∈[0,T ]

(|ẍ(t)|) of generated time signals

by SRM and RSRM with truncation bounds [0, ∞] (top) and [0, 2µ] (bottom)

for both relaxed PSD functions with truncation bounds [0,∞] as well as for [0, 2µ].
The results clearly show that the truncation bounds of [0,∞] lead to a shift of the mean in the
direction of higher maximum values, which leads to a higher probability of failure of buildings
and structures. When using the truncation bounds of [0, 2µ], the histogram and CDF are almost
identical to those of conventional SRM, since only a smaller range is thus possible for sampling
the spectral densities.
As a final investigation, the autocorrelation functions of SRM and RSRM are compared. An
analytical expression for the autocorrelation function is given by

RXX(τ) = σ2 b
4(b2 − 3τ2)
(b2 + τ2)3 , −∞ < τ <∞, (2.11)

with σ = 1 and b = 1 identical as in Eq. 2.6. The parameter τ describes the time lag [84, 85].

43



CHAPTER 2. RELAXED POWER SPECTRUM ESTIMATION FROM MULTIPLE DATA RECORDS UTILISING
SUBJECTIVE PROBABILITIES

0 20 40 60
Time lag (s)

-0.5

0

0.5

1

A
ut

oc
or

re
la

tio
n

10 12 14 16 18 20 22 24 26 28 30
Time lag (s)

-0.02

0

0.02

A
ut

oc
or

re
la

tio
n Analytical SRM RSRM

0 20 40 60
Time lag (s)

-0.5

0

0.5

1

A
ut

oc
or

re
la

tio
n

10 12 14 16 18 20 22 24 26 28 30
Time lag (s)

-0.02

0

0.02

A
ut

oc
or

re
la

tio
n Analytical SRM RSRM

Figure 2.8: Mean autocorrelation for 100 (top) and 1,000 (bottom) time signals

Two examples are presented. It is important to note that the same random phase angles φ were
used for the generated time signals in Eq. 2.1 and Eq. 2.10 in order to exclude differences due to
the randomness of the phase angles. For the first example, 100 time signals were generated and
the mean value of the autocorrelation was calculated. The result is depicted in Fig. 2.8. It can
already be seen in the enlarged area that the autocorrelation does not exceed the value |0.02|.
For the second example, 1000 samples were used. The results are also depicted in Fig. 2.8. An
improvement can be obtained compared to the example with 100 samples, but no significant
improvement in the autocorrelation was detected by further increasing the number of samples.

2.4 Numerical examples

To show the strengths and advantages of the relaxed PSD function, it is applied in the context
of two numerical examples. The two derived models of a relaxed PSD function with truncation
bounds [0,∞] and [0, 2µ] are utilised as excitation (see Fig. 2.3). A total of 10,000 MC samples
were generated for each of the simulations. In order to obtain a relaxed response spectrum in the
frequency domain of the systems, the same procedure to generate the relaxed excitation from
the ensemble (Eq. 2.7-2.9) is applied to the individual responses obtained by MC simulation.

2.4.1 Linear SDOF oscillator

For the first example, a simple Single Degree-of-Freedom (SDOF) linear oscillator in the form

mẍ(t) + cẋ(t) + kx(t) = F (t), (2.12)

with mass m = 50 kg, damping coefficient c = 37.2 Ns
m and spring constant k = 1922 N

m is
utilised. x, ẋ and ẍ denote displacement, velocity and acceleration of the system, respectively.
The excitation F (t) on the right-hand side is modelled by a stochastic process by utilising the
RSRM (Eq. 2.10). An explicit Runge-Kutta scheme according to [117] is used to solve Eq. 2.12.
After applying the MC samples of both relaxed PSD functions to the system, the relaxed response
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Figure 2.9: Normalised relaxed response spectra of the linear oscillator corresponding to Eq. 2.9 with truncation
bounds [0, inf] (left) and [0, 2µ] (right)
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Figure 2.10: Probability density functions for selected frequencies ωn in Eq. 2.9 of the relaxed response spectra
of the linear oscillator

spectra of the system’s displacement were obtained from the individual responses. These results
can be seen for both excitations in Fig. 2.9.
As expected, the responses of the two relaxed excitation spectra look similar, as the excitation
also shows only minor differences. However, the excitation with larger truncation bounds also
leads to a clearly more relaxed behaviour in the response. This also shifts the mean value
slightly in the direction of higher spectral densities. This is also confirmed when looking at the
probability density functions for three frequencies around the natural frequency of the system
(see Fig. 2.10). The PDFs of the same frequencies have similar shapes, but differ in mean value
and probability density, which is due to the bounds.
For a simple system like the one used here, analytical results are often available. Here, the
analytical solution can be calculated via the transfer function

H(ω) = 1
ω2

0 − ω2 + 2ξω0ωi
(2.13)

and the frequency response function

SY (ω) = SX(ω)|H(ω)|2. (2.14)
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Figure 2.11: Comparison of the numerical and analytical mean response spectra

In Eq. 2.13, ω0 =
√

k
m describes the natural angular frequency of the system, ξ = c

2
√
km

is the
damping ratio and i is the imaginary unit. In Eq. 2.14, SX(ω) is the excitation spectrum and
SY (ω) describes the response spectrum. For better comparability, the analytical system response
for the ensemble mean (see Fig. 2.1) is therefore calculated. The resulting analytical response
spectrum and the mean spectrum of the SRM as well as for the two relaxed PSD functions are
depicted in Fig. 2.11.
In addition to the results in the frequency domain, those in the time domain are also important,
e.g. for reliability analysis. Therefore, the focus will now be on the resulting system displace-
ment, more precisely on the maximum displacement of the system obtained by the MC samples
generated from the relaxed PSD functions. Fig. 2.12 shows the histograms of the resulting
maximum displacements of the simulations, each from the simulation with the standard SRM
and with the RSRM. The empirical cumulative distribution functions are shown to the right.
Here again, similar to the behaviour in frequency domain, a shift of the mean value towards
higher maximum displacements can be obtained with the relaxed power spectrum with trunca-
tion bounds [0,∞]. This behaviour becomes particularly clear when looking at the cumulative
distribution functions. The entire function is shifted towards higher displacements yielding a
higher failure probability of the system. Utilising the truncation bounds of [0, 2µ], the mean
value is almost identical to that of the SRM. However, it can be seen here, especially in the
CDF, that both smaller and larger maximum system displacements can be noticed, which can
be explained by the relaxed nature of the model.

2.4.2 Non-linear Bouc-Wen-Baber-Noori model

Another simulation was carried out with a more complex Multiple Degree-of-Freedom (MDOF)
model. A non-linear eight-storey shear frame structure was utilised, which was simulated adopt-
ing the Bouc-Wen-Baber-Noori model. The model is an extension of the equation of motion
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Figure 2.12: Histogram and empirical CDF of the maximum displacement max
t∈[0,T ]

(|x(t)|) of the response of the

linear oscillator by utilising SRM and RSRM with truncation bounds [0, ∞] (top) and [0, 2µ] (bottom)

(Eq. 2.12) and reads as follows

M ẍ(t) + Cẋ(t) + αKx(t) + (1− α)Hz(t) = F (t), (2.15)

where M , C, K and H are mass matrix, damping matrix, stiffness matrix and hysteretic matrix,
respectively. The parameter α controls the "degree" of non-linearity and z is the hysteretic
variable, a pseudo-displacement. For a detailed description of the model see e.g. [118, 119] and
[120–122] for its extension. The model parameters given in Table 2.2 are adopted from [123].
The mass and stiffness given in Table 2.3 are utilised for the structure.
To show the non-linear behaviour of the building, the restoring force versus the displacement of
the first storey is plotted in Fig. 2.13.
As in the linear example before, the two relaxed PSD functions with truncation bounds [0,∞]
and [0, 2µ] are used as the excitation (see Fig. 2.3). Fig. 2.14 shows the response in the
frequency domain for the excitation with truncation bounds [0,∞] on the left. On the right is
the response of the excitation with bounds [0, 2µ] depicted. The responses were calculated from
the displacements of the top storey of the structure. In Fig. 2.14, the areas apart from the
natural frequency of the building have been omitted as they are close to zero.
A similar behaviour as in the previous linear example results can be obtained. For both relaxed
excitations, a relaxed response can also be determined, which can be used for uncertainty quan-
tification. It can also be seen that the truncation bounds [0,∞] again lead to a more relaxed
response. However, the difference between the two relaxed responses is not as high as in the
linear example, which is particularly clear in Fig. 2.15, where the “slices” of the relaxed PSD
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Table 2.2: Parameter for the Bouc-Wen-Baber-Noori model [123]

Parameter Value Description
α 0.01 Ratio of linear to non-linear response
A 1 Basic hysteresis shape control
β 1.4 Basic hysteresis shape control
γ 0.2 Basic hysteresis shape control
n 1 Sharpness of yield
δv 0.002 Strength degradation
δη 0.001 Stiffness degradation
ζs 0.95 Measure of total slip
q 0.25 Pinching initiation
p 2 Pinching slope
Ψ 0.2 Pinching magnitude
δψ 0.005 Pinching rate
λ 0.1 Pinching severity/rate interaction

Table 2.3: Structural parameters of the eight-storey shear frame structure

Storey 1 2 3 4 5 6 7 8
Mass (×105 kg) 3.5 3.3 3.0 3.0 3.0 3.0 3.0 2.7
Stiffness (×1010 N/m) 1.47 1.63 1.62 1.60 1.60 1.92 1.85 0.96
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Figure 2.13: Restoring force versus inter-story drift for the first storey of the non-linear Bouc-Wen-Baber-Noori
model
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Figure 2.14: Normalised relaxed response spectra of the Bouc-Wen-Baber-Noori model corresponding to Eq. 2.9
with truncation bounds [0, inf] (left) and [0, 2µ] (right)
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Figure 2.15: Probability density functions for selected frequencies ωn in Eq. 2.9 of the relaxed response spectra
of the Bouc-Wen-Baber-Noori model

functions in Fig. 2.14 are given. The influence thus seems to be smaller in the case of a non-linear
MDOF system. Nevertheless, a slight shift of the mean value towards higher spectral densities
due to the wider truncation bounds compared to the excitation with smaller truncation bounds
can be seen here as well.
Considering the results in the time domain, the behaviour is similar to the linear system, al-
though not as strong. The left side of Fig. 2.16 shows the histograms of the maximum displace-
ments from the top storey of the building resulting from the MC simulation of the two relaxed
excitation spectra and the traditional SRM. Time histories, generated from the sampled PSD
functions of the relaxed PSD function, were applied to the structure. From the histograms it can
be seen that the mean is almost identical to that of SRM. However, lower and higher maximum
system displacements can also be determined. This becomes clear when looking at the right
side of Fig. 2.16. There, the empirical cumulative distribution functions corresponding to the
histograms are shown. For both cases it can be identified that the CDFs intersect at a certain
point. Here, the relaxed excitations lead to a higher dispersion of the maximum values into
higher and lower ranges. This also allows the determination of different failure probabilities of
buildings and structures.
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Figure 2.16: Histogram and empirical CDF of the maximum displacement max
t∈[0,T ]

(|x(t)|) of the response of

the Bouc-Wen-Baber-Noori model by utilising SRM and RSRM with truncation bounds [0, ∞] (top) and [0, 2µ]
(bottom)

2.5 Conclusion

In this work, a new model of a PSD function incorporated in the generation of stochastic
processes by spectral representation is proposed: the relaxed PSD function. Compared to tra-
ditional methods, where the spectral densities are described with discrete values, the relaxed
PSD function offers several advantages. By describing the spectral densities using probability
density functions, different probabilities can be assigned to the densities. Especially in the case
where a large amount of data is available, an approach with subjective probabilities is useful,
as it is possible to obtain reliable statistical information from the ensemble of data. By using a
probabilistic approach, the relaxed PSD function is more robust in the presence of outliers and
captures epistemic uncertainties.
Although correlation and dependence between frequencies is not considered, the variance changes
throughout the spectrum. This is simply due to the non-negative nature of the PSD function,
i.e. smaller mean densities must lead to smaller variances. Hence, the relaxed PSD function
is defined as a non-stationary random process with mean values and uncorrelated variances
indexed over a finite frequency space.
An important aspect in the development of the relaxed PSD function is the choice of probability
density function used to represent the spectral densities. Here, a truncated normal distribution
is suggested and utilised, but not limited to this. Other PDFs are also possible, as this depends
mainly on the underlying data, such as its shape and appearance. In addition, it is possible to
control the probability density functions, e.g. by changing the truncation bounds to vary the
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width of the spectrum. One option, for instance, is to make them dependent on the mean and
standard deviation instead of using the entire positive range. Both cases were demonstrated in
this work. However, it must be ensured that the bounds are chosen large enough, as too narrow
bounds are very restrictive and the relaxed PSD function hardly differs from traditional methods
in the simulation results. Manipulating the parameters of the probability density functions will
yield in a new shape and will of course also influence the simulation results. It must therefore
be ascertained that a change in the input data does not falsify the output data.
Another important point for developing a relaxed PSD function is to guarantee that only data
that has similarities is used. For example, the data must have similar peak frequencies, shape
and spectral densities. If the data sets vary too much from each other, it is almost impossible
to determine a relaxed PSD function that represents the entire ensemble. A robust and reliable
relaxed PSD function can therefore only be derived from similar data records.
The developed load model is suitable for producing non-ergodic process realisations that are
directly useable for MC simulation analyses. Due to the sampling approach used, the system
response in the frequency domain can also be represented as a relaxed model. Instead of a
discrete but uncertain response of the system, the spectral density can thus be determined in
a probabilistic representation. Based on the determined probability densities, a range can be
identified with some certainty in which the actual response is located. With discrete spectral
densities, on the other hand, only a specific value is given without safety margins.
The simulation results in the frequency domain exhibit, depending on the chosen truncation
bounds, a shift of the mean value towards higher spectral densities, as well as a shift towards
higher system displacements in the time domain. This can be attributed to the fact that the
probability density functions used cannot sample values smaller than zero due to the non-
negative nature of the PSD function, but there is no limitation in the direction of higher densities
when utilising the truncation bounds [0,∞]. This slightly shifts the mean value to higher spectral
densities and results in an imbalance and in a non-symmetric sampling of the spectral densities.
However, this does not falsify the results, which is confirmed by the fact that the mean value
of the SRM is also in the range of high probability densities of the relaxed response. The effect
of the shifted mean values is amplified by a higher standard deviation in the PDFs. Therefore,
the standard deviation of the relaxed PSD function should not be too high, as the results may
then no longer be representative. Again, it should be noted that this can be circumvented if the
data from which the PSD function is estimated are similar, thus excluding very high standard
deviations. Due to the shifted mean, the relaxed PSD function with high standard deviation
can be considered a more conservative method compared to SRM.
Probabilistic consideration of spectral densities by means of normally distributed random vari-
ables increases the dimension of random variables. In general, methods with a small number of
random variables are to be preferred in order to avoid stochastic fluctuations that are strongly
influenced by this randomness. Therefore, every attempt should be made to reduce the random
variables. The use of Stochastic Harmonic Functions (SHF) or bivariate probability distributions
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provide a good basis.
In summary, the relaxed PSD function offers a useful and valuable extension to traditional
methods such as the Spectral Representation Method.
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3 Stochastic process generation from relaxed power
spectra utilising stochastic harmonic functions

This part of the thesis deals with the generation of stochastic processes from the relaxed PSD
introduced in Chapter 2. The stochastic processes employed reflect the characteristics of a PSD
function in the time domain. However, since random variables are required to generate these
processes, an investigation of their influence is highly important. As a large number of random
variables affects the results and can therefore only be averaged out by a large number of samples
and thus a high simulation effort, it is advisable to use methods that keep the number of random
variables low. In the context of this work, an investigation is carried out with different methods,
in particular the Spectral Representation Method (SRM), as well as the method of Stochastic
Harmonic Functions (SHF).
The SRM is a traditional method for generating time signals using a known PSD and has
been used in Chapter 2 to generate stochastic processes from the relaxed PSD. Although SRM
yields robust results and also has low autocorrelation in the time domain, the number of random
variables required is relatively high, as one random variable is needed per each discrete frequency
of the PSD. SHF, on the other hand, offers a promising alternative, as this method defines
intervals from which a spectral density is sampled. The sampled spectral density is then used
to generate a time signal. Thus, the number of random variables can be significantly reduced.
The disadvantage of this method, however, may be a higher autocorrelation of the time signal.
Another difficulty is the extension of the random dimension by using PDFs in the relaxed PSD.
Using SRM, the number of random variables would thus be doubled, since for each frequency
the randomly sampled spectral density would also be added. SHF offers a good alternative to
reduce the number of random variables.
However, using SHF to generate stochastic processes from the relaxed PSD is still a compromise,
as the number of random variables can be reduced, but will increase the autocorrelation. It can
be shown that the new method yields better results, with a slight decrease in the number of
random variables required.
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Abstract

In order to design and safely construct buildings and structures that are exposed to environmental processes such
as earthquakes and wind loads, simulations are essential in advance. Although simulations are an approximation
of reality, they are still dominated by uncertainties, that must be taken into account. These uncertainties can
arise for various reasons, such as incorrectly recorded data or inaccurate simulation models. One widely used
approach for generating and simulating environmental processes is the power spectral density (PSD) function. It
establishes a relationship between the time and frequency domains and determines the relevant frequencies and
their magnitude of the transformed signals. Since the model of the PSD function provides discrete values of the
density for each frequency, the idea arises to model this density uncertain. For this purpose, statistical values are
extracted from an ensemble of similar PSD functions that differ slightly in shape and peak frequency, for example.
These values are used to derive a relaxed model of a PSD function. By using such a model, the response processes
of buildings and structures are also uncertain, resulting in a range of possible values instead of discrete values.
However, a disadvantage of this model is a higher number of random variables that can affect the simulation
results. In this work, the stochastic harmonic functions (SHF) are used instead of the spectral representation
method (SRM). Stochastic processes generated with both SRM and SHF are compared in a benchmark simulation
to assess the advantages.
Keywords: Power spectral density function, Stochastic dynamics, Stochastic processes, Spectral representation,
Uncertainty quantification.

3.1 Introduction

Many problems in engineering sciences are subject to random vibrations and thus lead to stochas-
tic dynamic problems, for example, where environmental processes have an influence. These
examples could be high-rise buildings, bridges or critical infrastructure subjected to earthquake,
wind loads, or offshore platforms excited by waves. The fields of random vibrations [12, 53,
54, 111, 124] and stochastic dynamics [52, 55, 125, 126] are well described in the literature.
Problems arise due to the structural complexity, incomplete information of the system or hardly
predictable natural processes. Aleatory and epistemic uncertainties exist. Therefore, for these
aforementioned facilities often a direct application of safety codes of civil engineering practice

54



CHAPTER 3. STOCHASTIC PROCESS GENERATION FROM RELAXED POWER SPECTRA UTILISING
STOCHASTIC HARMONIC FUNCTIONS

is not possible, which demands detailed time analyses and simulations to ensure a robust de-
sign [5]. To determine the influence of environmental processes on structures and to determine
their response behaviour, simulations with either artificial or recorded data are imperative.
Not only the model design and natural influences but also real data records for the system
analysis are often subject to uncertainties. These uncertainties can arise due to various reasons,
such as a limited amount of samples, damaged sensors, device failure, perhaps due to the en-
vironmental process itself, sensor threshold limitations and measurement errors. Additionally,
the sensor may capture the data incorrectly, e.g., extreme features. Other causes such as sensor
maintenance, bandwidth limitation or data acquisition restrictions could lead to poor quality of
the data records as well. Due to uncertainties in real data records incorrect estimated system
responses can be obtained. Therefore, uncertainties must be mitigated as much as possible.
Since stochastic dynamics have been studied very efficiently in recent decades, different models
have been developed to describe seismic ground motion. One of these tools to capture infor-
mation of phenomena involving random fluctuations in time and space is the power spectral
density (PSD) function, which is widely used in the modelling of stochastic processes, especially
in applications such as earthquake, wind and ocean engineering [52, 54, 55]. In earthquake
engineering, for example, the use of the PSD function dates back to Housner [58] or Kanai [59].
The available information of the probabilistic models for the input is often not enough to directly
assess the resulting randomness of a structural response. For seismic ground motions with critical
peaks, the structural response is generally non-linear and a direct relation of the probabilistic
input models to the probabilistic output is not available. For this purpose the Monte Carlo
(MC) simulation will be applied. It has been shown that for complex non-linear relations MC
can compute probabilistic characteristics of the response [110].
For the development of a load model that uses such a random excitation process, the following
applies: The more real data sets are available, the better, since the numerical results are statisti-
cally more accurate for a large amount of data. In addition, it is useful if the underlying physics
is understood well in order to make further assumptions. Since there is often not enough data
available and too little is known about the physics of the structures, other approaches must be
found to develop a load model that represents the data in the best possible way [106]. When
estimating the PSD function from multiple real data records by averaging their periodograms, it
is assumed that the process defined by the records may be represented by a single PSD function.
When dealing with real data, the uncertainty introduced by this assumption could be signifi-
cant and at the very least, an attempt should be made to quantify it. Such a load model, the
so-called relaxed PSD function, was developed by the authors of this work in [127]. Meaningful
statistical variables of the ensemble are extracted for each frequency separately. Based on these
variables a probability density function for each single frequency is calculated, which results in
a probabilistic model of the PSD function. In [127] the classical spectral representation method
(SRM) is utilised, see e.g., [84, 128]. In this work, the stochastic process generation based on
the relaxed PSD function is extended by using stochastic harmonic functions (SHF) [91]. In [92]
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SHF was successfully expanded to non-stationary stochastic processes and in [129] a data-driven
description using SHF to generate wind induced vibration on a high-rise building was applied.
Continued efforts led to a further reduction in the number of random variables [93].
This work is organised as follows: An overview of environmental processes and PSD function
estimation is given in Section 3.2. A brief overview of SHF is given in Section 3.3. Section 3.4
introduces the relaxed PSD function that uses SRM and the relaxed PSD function that replaces
SRM with SHF. A benchmark simulation and the corresponding results are given in Section 3.5.
The final conclusion is given in Section 3.6.

3.2 Spectral representation and PSD function estimation

To generate a stationary stochastic process, the following model, formulated by Shinozuka, is
considered in this work [84]

X(t, θ) =
N−1∑
n=0

√
4SX(ωn)∆ω cos (ωnt+ φn(θ)) , (3.1)

where ωn = n∆ω with n = 0, 1, 2, . . . , N − 1, ∆ω = ωu/N and φn(θ) with nφ = N are uniform
distributed phase angles in the range [0, 2π]. This method is referred to as the SRM and has
been widely used to generate artificial earthquake time histories, as in e.g., [116]. For the PSD
function used to generate the sample functions in Eq. 3.1, SX(ω) is given as the two-sided PSD
function

SX(ω) = 1
4σ

2b3ω2e−b|ω|, (3.2)

in which b = 1 and σ = 1. This specific PSD function in combination with Eq. 3.1 resembles a
stochastic process X(t) with zero mean, standard deviation σ equal to one and autocorrelation
function RXX(τ)

RXX(τ) = σ2 b
4(b2 − 3τ2)
(b2 + τ2)3 . (3.3)

In this equation τ denotes the time lag. To transform a stochastic process from time domain to
frequency domain, the discrete Fourier transform is applied more precisely the discrete Fourier
transform (DFT) algorithm. A frequently used estimator of the PSD function is the periodogram
[12] which can be understood as the squared absolute value of the discrete Fourier transform of
the time signal xn

ŜX(ωk) = ∆t2

T

∣∣∣∣∣
N−1∑
n=0

xne
−2πikt/N

∣∣∣∣∣
2

(3.4)

In this equation, T is the total length of the record in time, ∆t is the time increment, m describes
the data point index in the record and k is the integer frequency for ωk = 2πk

T .
An example for a generated stochastic process using Eq. 3.1 from the given analytical two-sided
PSD function (Eq. 3.2) is depicted in Fig. 3.1.
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Figure 3.1: Analytical PSD function (left) and generated stochastic process (right).

3.3 Stochastic harmonic function representation

A major drawback of SRM is that when dealing with long time intervals a high number of
summation terms in Eq. 3.1 are necessary to avoid a high correlation of realised signals, this
leads to a high number of random variables needed. To overcome this drawback in [91] the
SHF representation was developed by introducing a second random variable, ω̃n(θ), to generate
sample functions XSHF (t, θ). The frequency domain of the PSD function is therefore distributed
into NSHF equally spaced intervals [ωn−1, ωn] with ω0 = ωL and ωNSHF

= ωU , where ωL and
ωU are the lower and upper bound cut-off frequency, respectively.
The generation of an example function with the following content describes the reformulation
of the SRM

XSHF (t, θ) =
NSHF −1∑
n=0

√
2A(ω̃n(θ)) cos (ω̃n(θ)t+ φn(θ)) , (3.5)

where the amplitude factor A is defined as

A(ω̃n(θ)) =
√

2SX(ω̃n(θ))∆ω̃n (3.6)

and ∆ω̃n = ωn−ωn−1 is the length of the interval. In addition to the random variable φn(θ), the
frequency component ω̃n(θ) is drawn from a uniform distribution over the interval [ωn−1, ωn]. In
[91] it has been shown that the total number of needed random variables, i.e. Nφ+Nω̃ = 2NSHF ,
to resemble specific input PSD functions was smaller than using only one random dimension in
SRM.
The procedure of introducing random distributed ωn’s over specific intervals is also possible
by describing a different underlying distribution function than the uniform distribution. The
method presented here is in fact called stochastic harmonic function of the second kind (SHF-
II) because it utilises a uniform distribution of the frequency realisations over their pre defined
support intervals.
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3.4 Relaxed PSD function

The relaxed PSD function is a probabilistic representation of the set of power spectra. This
approach was derived and presented in detail in [127], whereas a brief overview is given here.
The strength of this novel method can be utilised when a large amount of data, specifically
earthquake time histories are available. Nowadays for example on the PEER Ground Motion
Database [130], a large amount of time histories of earthquakes around the globe is provided
which can be used to calibrate the input ensemble. The ensemble is a set of different PSD
functions with cardinality R, i.e. ensemble = {ŜXi}, i = 1, 2, ..., R. Here, R is determined by the
number of available PSD functions estimated either from real seismic ground motions or from
artificially created stochastic processes. Each PSD function in the set can be evaluated and yield
a value si,ωn = ŜXi(ωn). The ensemble is an empirical collection of PSD functions that determine
the possible range in the probability input space for the relaxed PSD function described below.
However, before merging these data into an ensemble, it is necessary to verify that the spectral
similarity is high enough to derive a load model based on these, as it is counter-intuitive to
generate a load model from significantly dissimilar data. An approach for determining their
similarity is presented in [131].

3.4.1 Relaxed PSD function utilising a truncated normal distribution

For the calculation of a relaxed PSD function representation of an ensemble of PSD functions
a truncated normal distribution is utilised. In order to define the probabilistic representation,
the mean

µωn = 1
R

R∑
i=1

si,ωn (3.7)

and the standard deviation

σωn =

√√√√ 1
R

R∑
i=1

(si,ωn − µωn)2, (3.8)

are calculated for each frequency component ωn = n∆ω, n = 0, 1, 2, . . . , N − 1. By extracting
these statistical information from the ensemble, a truncated normal distribution (Eq. 3.9) can
be defined for each frequency component in order to develop the relaxed PSD function. The
probability density function is given by

fωn(s;µ, σ, a = 0, b =∞) = 1
σ

φ
(
s−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) , (3.9)

and has to be determined for each frequency ωn separately. In Eq. 3.9 a = max(0,min(0, µωn −
4σωn)) and b = max(µωn + 4σωn , 2µωn) defining the interval, φ(ξ) = 1√

2π exp
(
−1

2ξ
2
)

is the

standard normal distribution and Φ(s) = 1
2

(
1 + erf(s/

√
2)
)

is the corresponding cumulative
distribution function. As negative values are not possible in terms of PSD functions, the interval
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Figure 3.2: Ensemble of PSD functions (left) and relaxed PSD function (right).

[aωn ; bωn ] is defined beforehand for each frequency.

3.4.2 Relaxed spectral representation method

Using Eq. 3.9 as the shaping stochastic process of the relaxed PSD function, the SRM method
can be rewritten and shall be called the relaxed spectral representation method (RSRM)

X(t, θ) =
N−1∑
n=0

√
4SX,ωn(θ)∆ω cos (ωnt+ φn(θ)) , (3.10)

where SX,ωn(θ) denotes that corresponding to each ωn a PSD function value can be drawn from
the distribution function fωn (Eq. 3.9) utilising a sampling technique, such as inverse sampling.
This leads likewise as for φn(θ), nφ to a number of nS new random distributions, which are now
distinctively for each ωn defined, i.e. SX,ωn(θ), nS . This extension random dimension wise is not
ideal. However, for a first accurate approximation this approach was chosen.
It is possible to say that the probability density function with changing bounds in Eq. 3.9 from
which a sample for each frequency is drawn, describes a non-stationary stochastic process itself
in the frequency domain. Here the relation lies between the value of the PSD function amplitude
SX and the frequency ω.

3.4.3 Relaxed stochastic harmonic function representation

To derive an alternative approach to RSRM, the classical SRM is replaced by SHF-II. Instead
of determining a truncated normal distribution corresponding to (Eq. 3.9) for each frequency,
this will be done only for each interval defined by SHF. The probability density function is
calculated at each interval’s midpoint. This provides the best possible approximation of each
interval’s PSD function value in a probabilistic representation. The RSRM method Eq. 3.10 can
be rewritten and shall be called relaxed stochastic harmonic function method (RSHF-II). This
novel description of stochastic processes reads as follows

XSHF (t, θ) =
NSHF −1∑
n=0

√
4SX,ω̃nθ

(θ)∆ω̃n cos (ω̃n(θ)t+ φn(θ)) , (3.11)
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Figure 3.3: Probability density functions for selected frequencies.

where SX,ω̃nθ
(θ) describes the PSD function value drawn from a truncated normal distribution

based on the ensemble and sampled ω̃n(θ).
Although replacing SRM by SHF-II and thus introducing the intervals for frequency domain in-
creases the number of random dimensions, the total number of random variables can be reduced,
which will be demonstrated in the following benchmark simulation.

3.5 Benchmark setup and results

The primary goal of the benchmark is to assess the accuracy and performance of all presented
methods to generate a stationary stochastic process with underlying PSD function given in
Eq. 3.2. For the relaxed PSD function the parameters b and σ vary in a small range, 25 different
PSD functions are used to build the ensemble as discussed in Section 3.4 and shown in Fig. 3.2.
For instance, the probability density functions for the frequencies 2 rad/s, 4 rad/s and 6 rad/s
for the relaxed PSD function are depicted in Fig. 3.3. The resulting sample functions of X(t)
from Eq. 3.1 are chosen to be the reference since the accuracy of SRM for this specific setup
has been shown in [84] to be very good. Different criteria will be analysed and shown in this
section.
First, just to visualise the different signals for each method one realisation for each method
is shown in Fig. 3.4. Here the number of sample functions used is indicated by nθ, on the
right-hand of each generated signal. As discussed in the earlier sections, due to the different
sampling techniques and random information weaved into the sample function generation, the
random dimension nθ differs. SRM with nθ = 128 is chosen to be the benchmark, since this
configuration has been shown in [84] to deliver a very good approximation. From Fig. 3.4 it is
possible to see that the amplitude of all signals seems to vary approximately between −2 and 2,
other than that not much of information can be drawn from one signal itself.
To overcome the lack of information when regarding and comparing single signals to one and
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(d) NMC = 100
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(e) NMC = 1000
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(f) NMC = 1000

Figure 3.5: Mean PSD after applying the DFT of MC output (left) and mean autocorrelation for different MC
simulations (right) according to Eq. 3.13.
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another, MC simulation is applied. It is fair to say at this point that this indicates the problem
that usually a single generated signal does not carry enough information to resemble the input
characteristics e.g., the PSD function out of which the signal is generated. This procedure
has also been applied in [91] and physically makes sense since the goal is to describe random
processes in nature and each one of them is different and varies in a range. It is sufficient to say
that a total ensemble resembles the information given to the process generation procedure.
Second, in Fig. 3.5 the results of the MC simulation can be seen, here on the left side the mean
PSD function approximation for different Number of MC samples NMC is shown, on the right
side the corresponding mean autocorrelation of all signals generated during the MC simulation.
For the left side it can be said that by increasing the number of samples NMC , the accuracy
to resemble the analytical PSD function (Eq. 3.2) of SHF-II and RSHF-II is improving. When
comparing (c) and (e) it is also possible to see that the accuracy of RSHF-II is better than
SHF-II. As already mentioned, for this specific example setup SRM is performing nearly perfect
while RSRM yields in poor results.
On the right side the autocorrelation for a sole signal (b) and the mean autocorrelation for NMC

signals (d), (f) are shown. Here in (b) can be seen that even though SRM is performing the best
given the aligned setup of the example it does show a not neglectable deviation. In (d) and (f),
analogous to the findings of the results on the right side, by increasing NMC the autocorrelation
is decreasing and therefore the ulterior method is performing better (SRM, SHF-II, RSHF-II).
The exception here is RSRM which shows large correlations that indicate a repeating pattern in
the signal after a time lag τ ≈ 15 s. This can already be seen with a precise look on the RSRM
result in Fig. 3.4.
Finally, to assess the overall performance of the presented methods, the results of reproducing the
PSD function and the characteristics of the autocorrelation, are analysed in a more extensive MC
simulation concerning the error in the Euclidean norm of the respective signal’s PSD functions
and autocorrelation. The error ϵS is calculated compared to the analytical PSD function in
Eq. 3.2. ϵA compares the numerical mean autocorrelation with the analytical autocorrelation
given in Eq. 3.13. Suppose X̂ are NMC artificially generated signals of any presented method.
Let RX̂X̂ be the autocorrelation of a deterministic signal calculated by

RX̂X̂(τ) =

TE
∆t∑
m=1

X̂(m∆t+ τ)X̂∗(m∆t), (3.12)

where the asterisk flags the complex conjugate. In a normalised fashion this is rewritten to be
R̂(τ) = 1√

RX̂X̂(0)2RX̂X̂(τ). With this normalised autocorrelation vector values the mean over
all MC simulations is calculated by using

¯̂
R(τ) = ¯̂

RX̂X̂(τ) = 1
NMC

NMC∑
i=1

R̂i(τ). (3.13)

62



CHAPTER 3. STOCHASTIC PROCESS GENERATION FROM RELAXED POWER SPECTRA UTILISING
STOCHASTIC HARMONIC FUNCTIONS

101 102 103 104 105 106

Number of samples

10-3

10-2

10-1

100

P
S

D
 e

rr
or

SRM
SHF-II
RSHF-II

(a) ϵS for approximations of the PSD function

101 102 103 104 105 106

Number of samples

2.3

2.35

2.4

A
ut

oc
or

re
la

tio
n 

er
ro

r

SRM
SHF-II
RSHF-II

(b) ϵA for approximations of the autocorr. mean

Figure 3.6: Error in Euclidean norm for PSD function approximation and autocorrelation for different numbers
of MC samples.

Table 3.1: Error in PSD function for 106 MC samples.
Error Value
ϵSRSRM 0.9747
ϵSSHF−II 0.1273
ϵSRSHF−II 0.0346
ϵSSRM 0.0027

The errors are always defined comparing two vectors in the Euclidean norm using following
expression

ϵ = ϵ
(
V, V̂

)
=

√√√√ K∑
k=1

∣∣∣V (k)− V̂ (k)
∣∣∣2, (3.14)

here V̂ can either be a vector of PSD function values (Eq. 3.4) or a vector of normalised mean
autocorrelation values (Eq. 3.13).
In Fig. 3.6 the resulting values ranging from one sample to one million samples are presented
in a log-log scale. The key information that can be drawn from this figure is that in both
cases RSHF-II is converging faster to a smaller error than SHF-II. The corresponding values are
given in Table 3.1 for the PSD function approximation and in Table 3.2 for the autocorrelation.
For the latter case RSHF-II is even performing better in the Euclidean norm than SRM. Since
RSRM converges to the highest errors and these errors are significantly larger compared to the
others, RSRM is omitted in Fig. 3.6, however, the corresponding values are given in Table 3.1
and Table 3.2 for comparison.

Table 3.2: Error in autocorrelation function for 106 MC samples.
Error Value
ϵARSRM 3.1118
ϵASHF−II 2.2935
ϵARSHF−II 2.2730
ϵASRM 2.2746
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3.6 Conclusion

Based on a benchmark model it has been shown that the novel method RSHF-II used to generate
stationary stochastic processes is performing better than SHF-II, by only a slight increase in
the number of random variables used during the process. A better approximation with less MC
samples can be achieved. However, this is still a trade-off since RSHF is introducing another
random dimension and for each frequency interval, a new probability distribution function was
introduced to handle the uncertainty in the PSD functions amplitude. Nonetheless, this poses
a challenge and at the same time offers a chance. The future challenge lies in reducing the total
number of random variables used in the whole process of generating these relaxed PSD functions.
This might be achievable by using multivariate distribution functions for each frequency interval
with a specific correlation dependant on the PSD functions slope/gradient or by introducing hard
dependencies between the random dimensions, based on data-driven information. The chance
for the future application of this method is to incorporate data of natural influences such as
wind, earthquake or vibrations where it is possible to assume that the signals somehow must
base on a similar PSD function. But in most cases it is impossible to define a crisp PSD function
for these signals. So gathered data can be transformed into an ensemble which is the foundation
of the relaxed PSD function.
At a first glance at the results, the performance of SRM is always outstanding but it has to
be mentioned that for all calculations the total number of random variables for SRM is always
128, this is considerably larger than the number of random variables used in SHF-II and also
larger than the number of random variables used in RSHF-II. This fact should be kept in mind,
especially when evaluating the error graphs in Fig. 3.6. That means, by changing only one of the
parameters for this example represented in [128], the results yielded by SRM are getting worse.
Since the methods of RSHF-II shall be included in the practical analysis where the ensemble
information to define the relaxed PSD function is gathered from data, a more robust method
to parameter and setup changes is mandatory. Different time-increments, different frequency
discretisations or a different number of random variables yield very different results. For these
scenarios SRM seems to be not applicable, therefore the usage of RSHF-II can yield a faster and
more accurate representation of pre-defined signals with specific data driven information.
A crucial point is the variation of the signals time step size, for complex structural analysis
an adaptive time step size control is crucial to perform a stable analysis, especially for large
structures analysed using e.g., Finite Element models. A change of parameters in this regard
for the signal generation sets the correct representation of a signal’s PSD function for SRM out
of sync, meanwhile methods like SHF-II and the relaxed PSD functions still perform robust.
Lastly, the computational performance needs to be considered, as SHF-II and RSRM are in-
troducing new random variables interval-wise, which is kind of the description of a stochastic
process but only by generalising information into intervals, which are in fact more distinct. Due
to this fact for each interval new random variables needs to be generated and because of the
RSFH-II dependence on the ensemble, for each MC calculation new distribution functions needs
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to be defined. For now they are defined within the generation of the sample functions and there-
fore reduces the performance of the signal generation greatly, this should be considered to be
done previously before the signal generation. That means for each sample function the random
realisations should be made in advance to increase the computational performance.
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4 Estimation of an imprecise power spectral density
function with optimised bounds from scarce data for
epistemic uncertainty quantification

The following chapter deals with the derivation of an imprecise PSD model for the quantification
of uncertainties. The initial problem is identical to that explained in Chapter 2. However,
while the assumption was made that a large data set of similar PSD functions is available, this
chapter deals with the same issue under the assumption that only limited data are available.
A probabilistic model, as before, cannot be reliably derived because no safe statistical values
such as mean and standard deviation can be extracted due to a lack of data. A probabilistic
model generated from a limited amount of data can therefore be highly erroneous and falsify
the simulation results. A reliability analysis based on such a model would have to be considered
very critically. For this reason, an interval approach is used in this work.
The idea is to compute an interval-based PSD model from a limited data set, generating an
upper and lower bound based on the data. For this purpose, a radial basis function (RBF)
network is used to approximate the so-called basis spectrum, which is determined to get a
first approximation of the shape of the PSD functions. The basis functions resulting from the
RBF network are manipulated via the associated weights in such a way that a reliable upper
and lower bound can be calculated via these basis functions. This is done in the context of
an optimisation with the constraint that all PSD functions are included in the bounds. This
approach also reflects the physics of the data set and takes into account dependencies between
frequencies. This results in the derivation of reliable bounds for the corresponding data set.
The presented model is directly applicable to interval propagation due to the definition via basis
functions only. An advantage of this approach is that the user has direct control over the number
of basis functions and can thus plan for the simulation. The number of basis functions can also
determine how the resulting bounds look like. The analyst thus has some flexibility in deriving
the imprecise PSD. The model itself is able to quantify epistemic uncertainties that occur in the
data set and thus make the simulation results more reliable, which is a great advantage in the
context of reliability analyses. Therefore, this work contributes significantly to the quantification
of uncertainties with a limited amount of available data.
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Abstract

In engineering and especially in stochastic dynamics, the modelling of environmental processes is indispensable
in order to design structures safely or to determine the reliability of existing structures. Earthquakes or wind
loads are examples of such environmental processes and can be described by stochastic processes. Such a process
can be characterised by the power spectral density (PSD) function in the frequency domain. The PSD function
determines the relevant frequencies and their amplitudes of a given time signal. For the reliable generation of a
load model described by a PSD function, uncertainties that occur in time signals must be taken into account.
This work mainly deals with the case where data is limited and it is infeasible to derive reliable statistics from the
data. In such a case, it may be useful to identify bounds that characterise the data set. The proposed approach
is to employ a radial basis function network to generate basis functions whose weights are optimised to obtain
data-enclosing bounds. This results in an interval-based PSD function. No assumptions are required about the
distribution of the data within those bounds. Thus, the spectral densities at each frequency are described by
optimised bounds instead of relying on discrete values. The applicability of the imprecise PSD model is illustrated
with recorded earthquake ground motions, demonstrating that it can be utilised for real world problems.
Keywords: Power spectral density function, Random vibrations, Stochastic processes, Stochastic dynamics,
Imprecise probabilities, Uncertainty quantification.

4.1 Introduction

The robust determination of the reliability of buildings and structures in engineering and es-
pecially in the field of stochastic dynamics is of utmost importance [9, 52, 55, 125]. Buildings
and structures are subject to random vibrations induced, for example, by environmental pro-
cesses such as earthquakes or wind loads [53, 54, 111]. These loads initiate a dynamic system
behaviour of the structures. To determine whether this can lead to critical system behaviour,
simulations can be carried out as part of a reliability analysis. Simulations are an important
part of engineering, especially to determine failure probabilities of such structures. This can be
done for existing structures or for the design of new structures in the future.
Within the framework of spectral analysis, a signal can be decomposed into its harmonic com-
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ponents via the Fourier transform, which allows it to be examined for dominant frequencies
and their amplitude by means of the power spectral density (PSD) function [12, 61]. The PSD
function is an important tool for determining whether the governing frequencies of the excitation
interfere with those of the structure under investigation, which can lead to dangerous system
behaviour. For linear systems, a relationship between input and output PSD can be derived,
while for non-linear systems, a time signal analysis must be conducted. Various methods can be
used to generate time signals that intrinsically reflect the characteristics of the PSD and thus
represent it in the time domain. Such artificially generated time signals can be used to perform
reliability analyses, e.g. in the context of Monte Carlo simulations [22, 110] and other advanced
sampling techniques such as subset sampling [23], line sampling [132], directional importance
sampling [24] or others.
In general, data records are subject to uncertainties, which may stem, for example, from measure-
ment errors, damaged or inaccurately calibrated sensors or from a limited number of available
data, see for instance [4, 6]. Transformations based on estimations, such as a PSD estimation,
can introduce additional uncertainties, as some of these estimators may provide results of poor
quality [61]. To obtain reliable simulation results, these uncertainties must be considered in
the representation of the physical process. If these uncertainties are not taken into account or
are incorrectly quantified, this can lead to fatal misinterpretations of the results. For example,
a building may be classified as safe under a certain load, when in reality it has a high risk
of damage or collapse. The consideration of uncertainties in data sets is therefore of utmost
importance to obtain reliable simulation results. Typically, uncertainties can be divided into
aleatory and epistemic uncertainties [1]. While aleatory uncertainties are irreducible, epistemic
uncertainties can be reduced, for example, by obtaining further information. There are dif-
ferent general approaches available to quantify these uncertainties depending on their source
and occurrence, such as probabilistic models [9, 10], non-probabilistic models [13] or impre-
cise probabilistic models [17]. Specific methods are, for instance, p-boxes [133], which are used
to bound the cumulative distribution function of an uncertain parameter, sliced-normal [134,
135] or sliced-exponential [136] approaches can be utilised to derive probability distributions
of multivariate data sets, interval predictor models are able to capture reliable bounds on a
data set when information is limited [137, 138] which can also be combined with interval neural
networks [139]. A framework for uncertainty quantification with limited information is given
in [140]. Other works use operator norm theory to reliably determine first passage problems
under imprecise loads [2, 49, 141].
Some approaches to estimate the PSD functions that account for uncertainties in the data have
already been presented. For example, in [77, 105] the problem of missing data is addressed.
These missing data are reconstructed and assumed to be normally distributed. The probabil-
ity distributions of the reconstructed missing data are then propagated through the discrete
Fourier transform to quantify the uncertainties in the frequency domain. In [109], a large set of
accelerograms is used to determine interval parameters for a semi-empirical PSD function. Thus,
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different representations of the PSD functions result, depending on the bounds used for the de-
rived interval parameters. A relaxed PSD function, based on a large data set of similar signals
transformed into the frequency domain, is derived in [127]. Since it is possible to extract robust
statistical information from a large amount of data, the relaxed PSD provides a probabilistic
representation of the data in the frequency domain. Although these are different approaches,
they all have in common that the PSD functions are not treated as purely deterministic and
discrete-valued functions, as it is usually the case.
In this work, specifically uncertainties that stem from a limited amount of available data are
considered. If not sufficient data are available, the actual underlying PSD function cannot be
estimated with certainty from the data records. Commonly used estimators of the PSD function,
such as the periodogram, could lead to a highly unrepresentative model under scarce data, so
that the simulation results may not reflect the actual response behaviour of the system under
investigation.
Since reliable statistical information can not be derived from a small amount of data, this paper
proposes an interval approach to define optimal bounds without considering the distribution
within these bounds. The estimation of the proposed imprecise PSD is carried out entirely in
the frequency domain, using a radial basis function (RBF) network [142] in order to approximate
a basis power spectrum and to obtain basis functions representing such basis power spectrum.
The individual weights of the basis functions will be optimised to obtain reasonable bounds
considering the actual minimum and maximum of the data set. These bounds reflect the physics
of the data and also account for dependencies between frequency components. The premise for
this approach is data similarity. A method for determining the spectral similarity for such a
data set is given in [131]. To illustrate the strength of the imprecise PSD, different data sets are
utilised to derive optimal bounds for those. In particular, two artificially generated data sets are
utilised and one estimated from real earthquake ground motions is used to show the feasibility
of this approach for real world cases.
This paper is structured as follows: A brief overview of PSD estimation, stochastic processes
and RBF networks is given in Section 4.2. The proposed imprecise PSD model is described in
Section 4.3. This approach is illustrated by means of two academic examples in Section 4.4 and
a set of real data records in Section 4.5. The paper concludes with Section 4.6.

4.2 Preliminaries

This section introduces some basic theoretical concepts that are relevant for the derivation and
understanding of the imprecise PSD model introduced later in this work.

4.2.1 PSD estimation and stochastic processes

A stochastic process is affected by random occurrences. Therefore it cannot be described in a
purely deterministic way, but has to be modelled as a stochastic process. The resulting stochastic
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process at any time is determined by random variables, see e.g., [11].
If no data are available or if the data do not meet the requirements for the simulation, artificially
generated stochastic processes can be used for the simulations as an approximation to real
stochastic processes. Such a process can be generated using the Spectral Representation Method
(SRM) [84]. SRM requires an analytical or empirical function of a PSD SX to construct a
stochastic process Xt with their underlying characteristics. SRM reads as follows

Xt =
Nω−1∑
n=0

√
4SX (ωn) ∆ω cos (ωnt+ φn) , (4.1)

where
ωn = n∆ω, n = 0, 1, 2, . . . , Nω − 1, (4.2)

with Nω as the total number of frequency points considered in the analysis ωn as the frequency
vector, ∆ω as frequency step size, φn as uniformly distributed random phase angles in the range
[0, 2π] and t as time coordinate. Note that ∆ω and Nω are selected according to the properties
of the problem at hand. For instance, the frequency step size can be defined as ∆ω = 2π/T , with
T as total length of the record, and the number of frequency points Nω can be chosen according
to a cut-off frequency around 99% or more of the total energy of the PSD function [84]. This
provides a suitable method for generating compatible time signals derived from and carrying
the characteristics of the underlying PSD function SX .
The estimation of the PSD function of a stationary stochastic process can be obtained by the
periodogram [12, 52], which is formed by the squared absolute value of the discrete Fourier
transform of the signal x(t). The periodogram reads as follows

ŜX(ωk) = 1
Nt

∣∣∣∣∣∣
Nt−1∑
j=0

x(j)e− i2π
Nt

kj

∣∣∣∣∣∣
2

, (4.3)

where Nt is the total number of data points in the time record, x(j) represents the value of the
time signal at the j-th time instant, where j = 0, . . . , Nt − 1, i is the imaginary unit and k is
the integer frequency for ωk = 2πk

T with T as the total length of the record.
However, the periodogram is considered a poor estimator for PSD functions because it may
exhibit a high variation in the frequency domain. Even small perturbations or noise in the data
can lead to a high variability in the estimated PSDs, which does not correspond to reality. An
alternative approach is Welch’s method [65]. It is based on forming overlapping segments of
the time signal and uses a periodogram modified via a window function to estimate the PSD.
The individual estimates are then averaged to obtain a smoother PSD function in trade-off to a
lower resolution in the frequency domain.
In Welch’s method, the signal x(t) is divided into K segments, such that x1(t) = x(t∗), x2(t) =
x(t∗ + D), . . ., xK(t) = x(t∗ + (K − 1)D) with t∗ = 0, 1, . . . , L − 1, L as the length of the
individual segments and D as a parameter that determines the spacing for the starting points
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of the segments, respectively. It is noted that D determines the degree of overlap between the
segments. For example, when D = L/2, there is a 50% of overlap. Each segment is multiplied
by a window function W (t∗) before the modified periodograms are calculated as:

Pk(ωm) = 1
L

∣∣∣∣∣
L−1∑
t∗=0

xk(t∗)W (t∗)e−2πimt∗/L
∣∣∣∣∣
2

(4.4)

with k = 1, . . . ,K and ωm analogous to ωk in Eq. 4.3. The resulting modified periodograms are
averaged to obtain the estimated smoother PSD function.

ŜWx (ωm) = 1
K

K∑
k=1

Pk(ωm) (4.5)

The selection of the window function can be chosen according to the PSD estimation require-
ments. Two window functions are suggested in [65], which are

W1(j) = 1−
(
j − L−1

2
L+1

2

)2

(4.6)

and
W1(j) = 1−

∣∣∣∣∣j − L−1
2

L+1
2

∣∣∣∣∣ , (4.7)

with j = 0, 1, . . . , L − 1. Since both window functions ensure that the values in the middle
of the signal segment are weighted more heavily than the outer values. This results in further
smoothing of the data through the estimation process.

4.2.2 Radial basis function networks

A radial basis function (RBF) network is a class of artificial neural networks [142]. It typically
consists of three layers, namely the input layer, the hidden layer and the output layer. It is used
to interpolate or approximate functions from a given (and possibly multidimensional) input
space to the scalar output space but can be extended to a multi-output network. Thus, in this
work the RBF network is a mapping of y : RNω → R.
The input layer of an RBF network passes the input data to the hidden layer. The hidden layer
consists of a number of NB neurons whose activation functions are RBFs, which are characterised
by the fact that they are symmetrical around their assigned centre ci. In this work, the RBF

φi(x) = e−(||x−ci||·bφi)
2

(4.8)

is used, where ||x− ci|| · bφi describes the Euclidean distance from the input x to the designated
centre ci multiplied with a scale factor bφi =

√
− log(0.5)/sB, where sB denotes the basis

function spread.
The function values of the RBFs based on the input data are propagated to the output layer,
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where a weighted linear combination of all neurons takes place. The weights wi of all neurons
can be determined with a linear least squares method. In addition, to manipulate the sensitivity
of a neuron, a bias b0 can be employed. Thus, the RBF network results in

y(x) =
NB∑
i=1

wi φi(||x− ci|| · bφi) + b0 x ∈ RNω . (4.9)

For an exact interpolation of a function, the number of RBFs NB must be equal to the number
of data points Nω. In general, however, exact function interpolation is not necessary. Often,
the input data are noisy. Therefore, it is advisable to approximate a smoother function and
thus average out the noise. In addition, for an exact interpolation the number of neurons can
be prohibitively high, which leads to a significantly higher computational effort. In the case of
an approximation, the number of RBFs NB is usually less than the number of data points Nω.
For more information on RBF networks, such as training and validation of the network, the
reader is referred to [143–146] and the references therein.

4.3 Method development

For robust simulation results considering uncertainties introduced by the limited number of
available data and the PSD estimation processes in general, it is proposed to derive an imprecise
PSD function, i.e., an interval-valued PSD function determined by an optimal upper and lower
bound with respect to the data set used and parameters chosen. The estimation process is carried
out entirely in the frequency domain. The data, for example earthquake ground motions, are
usually given in the time domain. After transforming these data into the frequency domain, an
ensemble of PSD functions is obtained. Based on such an ensemble, the imprecise PSD function
can be derived performing the following steps:

1. Identification of the basis power spectrum of the ensemble

2. Fitting an RBF network to the basis power spectrum

3. Optimisation of the weights of the basis functions with a constrained optimisation to obtain
reasonable, data enclosing bounds

These steps will be discussed in the subsequent sections in details.

4.3.1 Basis power spectrum

The basis power spectrum Sbasis(ωn) can be identified using different approaches. As the impre-
cise PSD function delivers an upper and lower bound regardless of any distribution of the data
within those bounds, the mean spectrum or the midpoint spectrum are reasonable choices for
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the basis power spectrum. The mean spectrum can be obtained by

Smean(ωn) = 1
R

R∑
i=1

S(i)(ωn), (4.10)

where the superscript indicates the i’th PSD function in the ensemble and R is the cardinality of
the ensemble, i.e. the total number of PSD functions. The midpoint spectrum can be obtained by
computing the midpoint between maximum and minimum values of the ensemble, i.e. the vector
consisting of all minimum values of the ensemble is defined as Smin(ωn) = min(S(i)(ωn)) ∀ i ∈ R
and accordingly the vector of all maximum values is Smax(ωn) = max(S(i)(ωn)) ∀ i ∈ R, such
that

Smidpoint(ωn) = 1
2 (Smax(ωn) + Smin(ωn)) . (4.11)

If the PSD functions are relatively evenly distributed between the maximum and minimum
values, the midpoint spectrum can be useful. If the data is unevenly distributed, the mean
spectrum may be a better choice, as it will draw the basis power spectrum towards the direction
of the majority of PSD functions.

4.3.2 Fitting an RBF network

To fit the RBF network to the basis power spectrum Sbasis(ωn), the hyperparameters NB, the
number of basis functions, as well as sB, the basis function spreads, are required. For an exact
interpolation of the basis power spectrum Sbasis(ωn), it is required to use as many basis functions
(i.e., neurons in the RBF network) as frequency points in the ensemble. As such a representation
will often yield in a highly spiky power spectrum and the subsequent optimisation of the bounds
will yield in the minimum and maximum value of the ensemble at each frequency, it is advisable
to choose a lower number of basis functions. This will results in a smoother approximation for
Sbasis(ωn). However, the objective of this work is to find optimal bounds rather than an exact
interpolation. Since an exact interpolation is not feasible due to the poor scaling of interval
propagation schemes in terms of dimensionality, optimal bounds with a significantly reduced
number of basis functions compared to frequency points in the PSD are sought.
The choice of the hyperparameter NB and sB is crucial. It must be kept in mind, that the
choice of the hyperparameters will also affect the subsequent optimisation of bounds. This can
result in the bounds of the imprecise PSD may being too wide or too narrow and therefore
not correspond to the actual data set or the constrains of the optimisation are violated. An
unfavourable choice of these hyperparameters can lead to unreliable results and will falsify the
subsequent simulation analysis. Furthermore, if a low NB is chosen, the RBF network operates
as a smoother for its realisations.
There are several approaches in the literature to find a set of optimal hyperparameters, such as
pruning methods, see e.g., [144, 145, 147] and references therein. Since the fitting of the RBF
network is followed by the optimisation of the boundaries, the problem here is somewhat more
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complex. Later in this work, it will be discussed that finding good parameters is not a trivial
task considering the subsequent optimisation of the bounds. Finding appropriate parameters
can be challenging, but defining these parameters is crucial for deriving optimal bounds. This
section only presents the proposed idea of how to derive these optimal bounds for two examples
with predefined hyperparameters. In Section 4.4.2 the influence of different hyperparameters on
the resulting bounds is discussed and in Section 4.3.4 an optimisation of the hyperparameters
is suggested.

4.3.3 Obtaining optimised bounds

The derivation of optimal bounds is done by optimising the weights calculated via the fitting
of the RBF network. This requires the definition of an optimal weight wup ∈ RNw and wlow ∈
RNw for the upper and lower bounds, respectively, as optimisation parameters that control
the sensitivity of the respective basis functions and thus the distance between the basis power
spectrum Sbasis and the upper and lower bounds, respectively.
For the calculation of an upper and lower bound, the term from the RBF network (Eq. 4.9)
must be adapted for the following optimisation problem. The upper bound thus results in

Sopt(ωn;wup) =
m∑
i=1

wupi φi + b0 (4.12)

and the lower bound is
Sopt(ωn;wlow) =

m∑
i=1

wlowi φi + b0 (4.13)

with ωn and n as defined in Eq. 4.2. The basis functions φi and the bias b0 including the spread
sB result from fitting the RBF network to the basis power spectrum Sbasis, similarly for the
weights w which are the initial values for wup = w and wlow = w. This leads to a total number
of parameters to be optimised of wup + wlow = 2NB.
To ensure that representative and optimal bounds are derived for the data set, the norm of the
difference between the upper and lower bound will be the objective function for the optimisation.
This optimisation is subject to the condition, such that the resulting upper bound shall be
larger than the maximum of the ensemble and the resulting lower bound shall be smaller than
the minimum of the ensemble to ensure that all data points are included in the bounds. For
physical reasons the lower bound must not be smaller than 0 by all means as negative values are
not possible in terms of power spectral densities. The optimisation problem results as follows

min
∑
ωn

∣∣∣Sopt(ωn;wup)− Sopt(ωn;wlow)
∣∣∣

s.t. Sopt(ωn;wup) ≥ Smax(ωn)

Sopt(ωn;wlow) ≤ Smin(ωn)

Sopt(ωn;wlow) ≥ 0

(4.14)
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for n = 1, . . . , Nω. If the weights wup and wlow are optimised, reasonable bounds can be provided.

4.3.4 Optimisation of the hyperparameter

In general, it may be a difficult task to find the optimal hyperparameters manually. Therefore,
it seems natural to leave the choice of the hyperparameters NB and sB to an optimisation.
Since the hyperparameters also influence the subsequent optimisation of the bounds, a nested
optimisation must be carried out. This means that the hyperparameters are determined in an
outer optimisation, while the bounds are defined in a nested inner optimisation. A study of
different optimisation algorithms has proven that the best results are obtained with a Bayesian
optimisation for the hyperparameters and a non-linear constrained optimisation for the bounds.
However, different problems arise. Finding optimal hyperparameters is no trivial task as multiple
local minima exist, which makes it even for advanced algorithms difficult to find the global
optimum. Moreover, the number of basis functions is an integer value, which is a challenge in
optimisation problems in general, see for instance [148]. In addition, a large number of basis
functions NB leads to better results, as already confirmed by the results in the previous section,
which is why the optimisation for both parameters tends towards a higher number of basis
functions.
Since the number of basis functions is also decisive for a simulation following the optimisation of
the bounds, e.g. an interval propagation as part of a reliability analysis, it is desirable to obtain
a lower number of these. Since it makes sense, especially with regard to interval propagation, for
the analyst to have control over the number of basis functions and since optimising an integer
value is difficult, it is suggested to predefine a feasible number of basis functions NB and optimise
only the parameter sB. In this way, control over the trade-off, more basis functions for better
results, less basis functions for better a interval propagation, is left to the analyst.

4.4 Academic examples

This section illustrates the derivation of the imprecise PSD with two academic examples. Al-
though two specific examples are used in this case, it should be noted that in general any PSD
function can be employed. Therefore, this choice of PSD functions does not affect the general
nature of the approach. Note that in these examples, most physical units are omitted, as they
have no effect for the purpose of illustrating the application of the proposed approach.
The first PSD function utilised is the Kanai-Tajimi PSD function of the form

S1(ω) = S0
1 + 4ξ2 ω2

ω2
p(

1− ω2

ω2
p

)2
+ 4ξ2 ω2

ω2
p

(4.15)

is utilised in this section and throughout this work. In this equation, S0 = 0.25 is a constant,
ωp = 3π describes the peak frequency and ξ = 0.5 indicates the sharpness of the peak [59, 86].
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Furthermore, the upper cut-off frequency is defined to be ωu = 50 rad/s.
For verification, a second PSD function is utilised, which is given in [84].

S2(ω) = 1
4σ

2b3ω2e−b|ω| (4.16)

In this PSD, the parameter σ = 1 is the standard deviation of the underlying stochastic process
and b = 1 is a parameter proportional to the correlation distance of said stochastic process [84,
85]. The upper cut-off frequency is ωu = 12.5 rad/s.
For both PSD functions, three time signals were generated using SRM shown in Eq. 4.1, which
were then transformed back into the frequency domain using the periodogram as in Eq. 4.3, to
generate two data sets for the subsequent derivation of the imprecise PSD. Due to the influence
of the random variables in SRM and the poor estimation quality of the periodogram, these data
reflect a certain randomness and to a certain extent have the character of real data. Both data
sets, or so-called ensembles, are depicted in Fig. 4.1. The ensembles utilised aim to illustrate
the capabilities of the imprecise PSD in dealing with different forms of datasets, such as a more
tight and a more variant dataset, i.e. with low and high spectral variance, respectively. The
respective ensembles will be called ensemble A and ensemble B throughout this work.
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Figure 4.1: Ensemble A and ensemble B consisting of 3 PSD functions each, utilised to estimate the imprecise
PSD function.

For the illustration of the estimation of the imprecise PSD, in this work the midpoint spectrum
is utilised for establishing the basis power spectrum Sbasis.

4.4.1 Estimation of an imprecise PSD function

Since this section aims to illustrate the approach in a comprehensible way by means of examples,
the optimisation of the hyperparameters will be omitted. Instead, a predefined number of basis
functions and spread for both examples are used.
For ensemble A the number of frequency points is Nω = 238. The number of basic functions
has been chosen to be NB = 10 with a spread of sB = 3.8. Ensemble B consists of Nω = 121
frequency points. NB = 5 and sB = 2 are the predefined parameters here. For both ensembles,
the weighted basis functions derived via the RBF network are shown in Fig. 4.2. In addition,
the calculated basis spectra (target) and the basis spectra approximated via the basis functions
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(output) are given.
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Figure 4.2: Weighted basis functions used to approximate the basis power spectrum.

The imprecise PSD function for the ensembles given in Fig. 4.1 are shown in Fig. 4.3. The final
objective value for ensemble A is 1.825 and for ensemble B 0.885. These objective values will
be of importance for section 4.4.2, where the influence of the hyperparameters on the resulting
bounds is investigated.
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Figure 4.3: Bounds of the estimated imprecise PSD function.

In some cases, PSD values may lie (by a small margin) outside the optimised bounds or the
bounds may take values smaller than 0 and thus violate the optimisation constraints. This can
occur because the basis functions and their optimised weights are not able to capture all values,
so the optimisation problem can be too unflexible. Values smaller than zero are an artefact
of the optimisation. However, both violations of the optimisation constraints are justifiable,
since the general form of the PSD and the underlying physics were nevertheless captured very
well. Moreover, these violations often only occur at low PSD values, whose influence is of minor
importance. However, this is more of an implementation problem than a theoretical issue.
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4.4.2 Influence of the hyperparameter on the optimised bounds

The optimisation of the bounds has been carried out in a brute-force manner for both ensembles.
This section aims to evaluate the influence of the hyperparameters and to show how complex
finding optimal parameters can be. For each possible parameter combination of NB and sB, the
optimal bounds were calculated. NB was run over the values 3 to 50, while sB was run from
0.01 to 10 with increment 0.01, yielding a total of 43,248 optimisations for each ensemble. The
resulting objective values for ensemble A are depicted in Fig. 4.4, while those for ensemble B
can be obtained in Fig. 4.5. In both figures, the colour scale is adjusted to reasonable objective
values, i.e. the optimised bounds with such an objective value are considered acceptable.
The figures show that there are many local minima, which complicates finding suitable pa-
rameters. A higher number of basis functions often leads to better results, which seems to be
reasonable because with a high number of basis functions the signal can be better captured. This
is clearly reflected in the figures. However, since a lower number of basis functions is desirable in
the propagation of intervals, this is in contradiction to each other. Therefore, the aim must be
to find favourable parameters, under the condition that the number of basis functions does not
become too high while still maintaining an acceptable objective value for the optimised bounds.
Although this is of course case-dependent and influenced by the shape of the input data, it can
be reasonably concluded that the optimal trade-off here is around 15 basis functions and a basis
function spread of 3-4 for ensemble A, and around 6-8 neurons and neuron spread of 2-3 for
ensemble B.
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Figure 4.4: Objective values for ensemble A.

However, it can be concluded here that it is a highly complicated task and challenging for
the analyst to find optimal parameters, which motivates to incorporate the optimisation for
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Figure 4.5: Objective values for ensemble B.

identifying the parameters such as described in Section 4.3.4.

4.5 Optimising the bounds of real data

In order to show the derivation of optimal bounds not only for academic examples, but also
to demonstrate its applicability to a real case, the proposed method is applied to a real data
set in this section. The data used here come from the PEER database [112, 149] and are the
records of the El Centro earthquake on 18 May 1940. Under the premise of this work that the
proposed method is in particular useful for limited data, only two time signals are used, recorded
in north-south and east-west direction, which are shown in Fig. 4.6. The signals have a total
length of T = 53.46 s and a time discretisation of ∆t = 0.02 s. At this point, only the stationary
PSD function is estimated from the given earthquake data as a simplification. Nevertheless,
it should be noted that an earthquake always has a non-stationary character and an estimate
of the evolutionary PSD function taking into account the time-frequency resolution provides a
more realistic representation.
The two time signals are transformed into the frequency domain using the periodogram (Eq. 4.3),
which leads to the PSD functions given in Fig. 4.7. Using this data set for optimisation poses
some problems. The data set shows a high spectral variance, a problem that arises from the use
of the periodogram, as already mentioned in Section 4.2. Due to the high variance, many PSD
values, including those near the peak frequencies, are close to zero, which poses a challenge for
the proposed method. This problem can be solved with a more suitable estimator. Instead of the
periodogram, Welch’s method (Eqs. 4.4 and 4.5) can be used, which usually leads to smoother
results by averaging and windowing the input signals. This can be appreciated in Fig. 4.8.
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Figure 4.6: Time records of the El Centro Earthquake.
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Figure 4.7: El Centro earthquake records transformed to frequency domain with the periodogram.
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Figure 4.8: El Centro earthquake records transformed to frequency domain with Welch’s method.
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Figure 4.9: El Centro earthquake records transformed to frequency domain with Welch’s method and definition
of suitable cut-off frequency.

Another problem is that although the spectral variance has now been reduced, many values are
still close to zero. This is natural as it indicates that the spectral density for high frequencies
in this data set are close to zero, a typical pattern for earthquake data. However, since the
optimisation of the bounds is problematic at values close to zero, a suitable cut-off frequency ωU
must be chosen. This can reasonably be done since high frequencies with low spectral densities
have a negligible small effect on the simulation results anyway. In [84], it is suggested that ωU
be chosen such that 99% of the total energy is still contained in the PSD function. Here, the
cut-off frequency is set at 95% of the total energy, which is ωU = 50 rad/s, because, as it can
be seen in Fig. 4.8, a very large amount of frequency components are close to zero.
After appropriate pre-processing of the data set, the bounds can be optimised according to
the proposed approach. As described earlier, the analyst has control over the number of basis
functions NB, so the optimisation of the bounds was performed for NB ∈ {8, 10, 15, 20}. The
resulting bounds can be seen in Fig. 4.10. From the optimised bounds it can be seen that
the more basis functions are used, the smaller the area between the upper and lower bounds
becomes. Further, the bounds are more data-enclosing for a higher number of basis functions.
This behaviour can easily be explained by the fact that, as mentioned before, a high number
of basis functions is better able to capture the signal. Nevertheless, a high number of basis
functions is not always useful in terms of interval propagation, so it is reasonable to obtain a
higher area between upper and lower bound in exchange to a lower number of basis functions.
For comparison, the corresponding optimised spreads sB and objective values for the optimised
bounds are given in Table 4.1.
To draw the reader’s attention to the importance of selecting suitable parameters and the pre-
processing of the data, two counter-examples are given here. If the number of basis functions and
their spread are incorrectly selected or the pre-processing of the data set was not done thoroughly
enough, the optimised bounds can lead to a highly unrepresentative results. The optimisation
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Figure 4.10: Optimised bounds of the real data set for NB ∈ {8, 10, 15, 20} basis functions.

Table 4.1: Optimised spread and resulting objective value depending on the number of basis functions.
NB sB Objective value
8 4.9141 0.0468
10 6.7423 0.0459
15 2.6417 0.0383
20 1.7656 0.0354

was carried out for the pre-processed data set but with a bad combination of parameters, i.e.
NB = 15 and sB = 0.5375. The resulting bounds are given in Fig. 4.11 (left). For the second
counter-examples the optimisation was carried out for the ensemble given in Fig. 4.7, where the
signals were transformed to frequency domain using the periodogram 4.3. The counter-example
is depicted in Fig. 4.11 (right). No further discussion is required to prove that such bounds do
not reflect the data set. Therefore, these bounds are not acceptable and cannot be used for a
subsequent simulation.

4.6 Conclusions

Accounting for uncertainties in data sets to obtain reliable simulation results is of paramount
importance in engineering. Especially when only limited data are available, uncertainties can
have a large impact on the results and can easily lead to wrong conclusions. This may result in
disastrous consequences, e.g., when an actually catastrophic result is shifted into an acceptable
range due to incorrect consideration of uncertainties. In such a case, it is important to correctly
interpret the data and to quantify uncertainties rigorously. For the generation of appropriate
load models it is important to account for those uncertainties. From a large amount of data, it
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Figure 4.11: Counter-examples: a poor choice of hyperparameters (left) and a poorly pre-processed data set
(right).

is often possible to derive a robust model that provides reliable simulation results. However, as
this is often not possible from limited data, an imprecise model of a PSD function is proposed
in this paper, which provides optimal bounds of the data set. Moreover, by using an RBF
network, the physics of the underlying stochastic process is reflected and dependencies between
frequencies are taken into account. The resulting basis functions of the RBF network are used
to optimise the weights to obtain an upper and lower bound for the data set. One advantage of
this approach is that no assumptions have to be made about the distribution of the data within
the bounds, as this would be difficult in any case due to the limited data. Another advantage
is that the choice of the number of basis functions is left to the analyst, which is particularly
important for the propagation of intervals in the context of a reliability analysis. This also allows
some flexibility in modelling the bounds. An important aspect is the pre-processing of the data,
as the method may not yield acceptable results for high variant data or in case many spectral
density values are close to zero. Adequate pre-processing of the data is therefore essential. The
proposed approach was not only elaborated using academic examples, but its applicability to
real data was also demonstrated. The imprecise PSD presented here is able to obtain optimal
bounds and is thus suitable for quantifying uncertainties due to a limited amount data. This
work only refers to the derivation of the optimised bounds for a data set consisting of only a few
data records. Future works will address the robust propagation of the bounds in the context of
reliability analyses.
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5 Development of a relaxed stationary power spectrum
using imprecise probabilities with application to
high-rise buildings

The following is an earlier development of the imprecise PSD described in Chapter 4 and ad-
dresses the same problem of capturing uncertainties in a limited data set. Also in this case, it
is not possible to obtain reliable information from the data set because there is insufficient data
for a probabilistic representation. An interval or fuzzy-based approach is seen as the remedy for
this problem.
The basic idea is to generate a Fuzzy PSD function from an ensemble of PSD functions so that
the spectral density at each individual frequency is represented by a Fuzzy number. First, a
basis power spectrum is determined, which can be the mean power spectrum, for instance. Next,
confidence intervals of each frequency are calculated at different confidence levels, which are then
subjectively assigned to the membership function of the Fuzzy number. Since the basis power
spectrum is identified to be the most reliable spectrum, the membership value 1 is assigned to
it. The remaining confidence intervals are correspondingly assigned to lower membership values.
This results in a PSD function where the spectral density value at each individual frequency is
translated to a Fuzzy number.
The PSD model presented is validated by means of numerical examples. It is shown that the
generation of such a model has the advantage that the epistemic uncertainties are quantified.
This is especially important for the use in the context of reliability analyses, since only small
uncertainties can lead to a wrong interpretation of the results. A load model that quantifies
these uncertainties in terms of Fuzzy numbers has significant advantages compared to a discrete-
valued PSD function. Because the system response can also be given as Fuzzy numbers, a range
of possible system responses can be calculated instead of a discrete response. This approach
allows critical system behaviour to be determined more reliably, taking these uncertainties into
account.
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Abstract

Modern approaches to solve dynamic problems, where random vibrations are the governing excitations, are in
most cases based on the concept of the power spectrum as the core model for the representation of excitation
and response processes. This is partly due to the practical applicability of spectral models for frequency do-
main analysis. In addition, compatible time-domain samples can easily be generated. Such samples can be used
for numerical performance evaluation of systems or structures represented by complex non-linear models. The
development of spectral estimation methods that use ensemble statistics to generate a single or finite number
of deterministic spectra results in spectral models that can be applied directly in structural analysis. However,
the properties of the measured environmental process are still lost. In order to produce reliable and realistic
power spectra for the application to systems, in most cases not enough real data sets are available. To capture
the epistemic uncertainties of the model by taking into account inherent statistical differences that exist across
real data sets, an approach for a stochastic representation of the loads can be used. In this work, the epistemic
uncertainties in the spectral density of the process are captured by using an interval approach which, in combi-
nation with the stochastic nature of the process, leads to an imprecise probability model. From all the available
power spectra of the ensemble, one power spectrum is identified on which the resulting relaxed power spectrum
is based. To relax the power spectrum, interval parameters are implemented, thereby forming an enveloping
boundary for all estimated power spectra. In order to capture the epistemic uncertainties and to present this
information effectively, imprecise probabilities are used in this newly developed load representation. The relaxed
power spectrum is validated by application to a single-degree-of-freedom system and a multiple-degree-of-freedom
system by determining and analysing the response spectra of the systems.
Keywords: Stochastic process, Power spectrum estimation, Relaxed power spectrum, Imprecise probabilities,
Fuzzy set theory, Uncertainty quantification, Random vibrations.

5.1 Introduction

Many systems and structures in engineering underlying random vibrations and thus lead to a
problem of stochastic dynamics in which, for example, environmental influences have a significant
impact. High-rise buildings excited by earthquake and wind loads, or offshore platforms in the
ocean excited by waves are typical examples for these type of problems.
To determine the influence of environmental processes on the structures by performing simula-
tions, these influences must be recorded and applied to a model with system excitation/response
process [76].
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For the analysis of a structure e.g. earthquake ground motions can be recorded and applied. Due
to various reasons, uncertainties occur in these data. These can be: limited number of samples;
damaged sensors or equipment failures, possibly due to the earthquake itself; sensor threshold
limitations; measurement errors. Additionally, for several reasons the sensors may capture the
data incorrectly due to sensor maintenance, bandwidth restrictions or data acquisition restric-
tions. Thus, the recorded data may be of poor quality. For this reason, the real data sets must
be adequately represented, and uncertainties reduced as much as possible [106].
As the stochastic dynamics have been investigated very efficiently in the last decades, different
models have been developed. One of them is the power spectrum density (PSD), which is widely
used in the modelling of stochastic processes, especially in applications such as earthquake, wind
and ocean engineering ([52, 54, 55]). In earthquake engineering, the use of PSD can be traced
back to Housner [58] or Kanai [59], for example. At least in the linear case considered in this
work, an elegant relationship between the power spectra of the input data and the output data
can be derived for the system’s behaviour [91].
The more real data records are available, the better are the results of the simulations, since they
are more accurate for a large amount of data and represent environmental processes better than
just a few data. Additionally, the underlying physics of the system should be well understood.
Since in reality often insufficient real data records are available and the underlying physics is
not well known, other approaches must be found to develop a load model that best represents
the data and mitigates uncertainties [106].
This work is focused on the case when only a few real data records are available. Since it is not
possible to calculate an average power spectrum which represents the whole ensemble adequately,
other approaches must be pursued. Traditional statistical power spectrum estimation could
result in a highly unrepresentative model of the process. Such a power spectrum might be too
limiting and too restrictive regarding the numerical simulations, the response process would not
correspond to the actual behaviour and the inherent uncertainties are not mitigated. In this
case an interval approach is used to capture the epistemic uncertainty in the spectral density of
the process, which leads to an imprecise probabilistic model. Therefore a basis power spectrum
is defined which is then relaxed by implementing intervals such that the resulting model bounds
form an envelope. For the calculation of the interval a method according to Beer [150] is used.
The proposed method combines confidence intervals and α-level sets from fuzzy set theory [151].
This work is structured as following: An explanation in which form the environmental processes
are available and how a power spectrum density is estimated from a stochastic process is pre-
sented in Section 5.2. In Section 5.3 it is described how the relaxed power spectrum density
is developed using imprecise probabilities. Based on the derived relaxed power spectrum, two
numerical examples, one of a single-degree-of-freedom system and one of a multiple-degree-of-
freedom system are presented in Section 5.4. The conclusion is given in Section 5.5.
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5.2 Stochastic Process Representation and Power Spectrum Estimation

This section describes the generation of a stochastic process and the transformation of such a
process into a power spectral density.
Given a real-valued stationary stochastic process X(t), −∞ < t <∞. For such a process exists
a corresponding orthogonal process Z(ω). Thus, X(t) can than be written in the form

X(t) =
∞∫

0

eiωtdZ(ω). (5.1)

This equation is called the spectral representation of the process X(t), where the process Z(ω)
has the following properties:

E [dZ(ω)] = 0 (5.2)

and
E
[∣∣∣dZ2(ω)

∣∣∣] = 4SX(ω)dω (5.3)

with E(·) as expectation operator [11]. In this equation SX(ω) describes the two-sided power
spectrum of the stationary process X(t). To generate a stationary stochastic process, a model
proposed by Shinozuka and Deodatis ([85], [84]) is considered in this work:

X(t) =
N−1∑
n=0

√
4SX(ωn)∆ω cos(ωnt+ Φn), (5.4)

where
ωn = n∆ω, n = 0, 1, 2, . . . , N − 1

∆ω = ωu
N

(5.5)

with N →∞ and Φn as uniformly distributed random phase angles in the range 0 ≤ Φn < 2π.
The power spectral density

SX(ω) = 1
4σ

2b3ω2e−b|ω|, −∞ < ω <∞ (5.6)

is utilised. In this equation σ is the standard deviation of the stochastic process and b is a
parameter proportional to the correlation distance of the stochastic process. An example of a
generated stochastic process is depicted in Fig. 5.1 (left). To transform a stochastic process
from time domain to frequency domain the periodogram is utilised [12]. This is a frequently
used estimator of the power spectrum and can be understood as the squared absolute value of
the discrete Fourier transform of the time signal x(t):

SX(ωk) = lim
T→∞

2∆T
T

∣∣∣∣∣
T−1∑
t=0

xte
−2πikt/T

∣∣∣∣∣
2

(5.7)
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Figure 5.1: Example for a generated stochastic process (left) and the estimated power spectrum (right).

In this equation, T is the number of data points, t describes the data point index in the record,
k is the integer frequency for ωk = 2πk

T0
and T0 is the total length of the record. The stochastic

process depicted in Fig. 5.1 (left) is transformed to the power spectrum, which is also depicted
in Fig. 5.1 (right).

5.3 Estimation of a Relaxed Power Spectrum

This section discusses the estimation of a relaxed power spectrum from an ensemble of power
spectra using a semi-heuristic concept similar to Beer [150] for individual random variables.
This method combines the calculation of confidence intervals with the fuzzy set theory introduced
by Zadeh [151] and extensively studied in [152] and [153].
The starting point is the estimation of power spectra from the stochastic processes by Eq. 5.7.
Once the power spectra are estimated from the time histories, the calculation of the relaxed
power spectrum is based on three steps:

1. Identification of the basis power spectrum of the ensemble,

2. Calculation of the confidence intervals,

3. Assignment of the confidence intervals to the fuzzy membership values.

From the ensemble of power spectra the basis power spectrum is identified. There are different
approaches to identify this power spectrum and the choice not limited. In this work the mean
of the ensemble of the power spectra is assumed to be the basis power spectrum. Therefore, for
each angular frequency the mean of all values for the corresponding frequencies is calculated.
Based on additional knowledge about the stochastic process and the underlying physics, other
identifications of the basis power spectrum can also be utilised.
Next, the confidence intervals are calculated based on the type of distribution function. The
ensemble of power spectra is assumed to be normal distributed in this case. Therefore, additional
to the mean mX , the standard deviation σ of the ensemble is determined. With mean and
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standard deviation the confidence interval is calculated by Eq. 5.8 for different α-levels:

C = mX ± t(1− α
2 ;n−1)

σ√
n
, (5.8)

where n is the number of power spectra in the ensemble and t(1− α
2 ;n−1) is the (1 − α

2 )-quantile
of the t-distribution with n− 1 degrees of freedom.
As the last step, the confidence levels are assigned to the membership function µ(X) of the
fuzzy set by subjective assignment. Since the mean mX of the power spectra in this example
is identified as the basis power spectrum, and thus the most plausible value, it is assigned to
the membership value one. Since the largest confidence level describes the outer bounds of the
calculated intervals, these values are almost not plausible. The membership value for the this
confidence level is therefore set to zero and thus, the α-level 0.0 specifies bounds for the possible
range of power spectra, which leads to an envelope of the ensemble of power spectra. For the
remaining confidence levels the assignment should be combined with expert knowledge. If there is
no additional information about the underlying process, the assignment can be done accordingly
to distances between the individual confidence levels. Thus, the confidence level 0.9 would be
assigned to the membership value 0.25, the confidence level 0.75 assigned to membership value
0.5 and confidence level 0.5 to membership value 0.75. Since the confidence level 0.99 and the
mean of the ensemble are already assigned to the fuzzy membership values 0 and 1, respectively,
all confidence levels are assigned to membership values. This model of a relaxed power spectrum
based on confidence intervals and fuzzy numbers can be applied to systems. Since the excitation
power spectrum is represented in a relaxed model, the response spectrum of the system will also
be a relaxed model, which will result in bounds combined with fuzzy numbers of possible failure
of the structure.

5.4 Numerical Example

In this section a numerical example for the calculation of a relaxed power spectrum will be given.
Later it will be applied to a single-degree-of-freedom (SDOF) system and a multiple-degree-of-
freedom (MDOF) system.
The stochastic processes and the estimated power spectra derived in Section 5.2 are utilised for
the numerical example. For the generation of the stochastic processes and the estimation of the
corresponding power spectra equations 5.4 – 5.7 are used. The time duration is T = 64s with
time step size ∆t = 0.25s. For the frequency parameters an upper frequency ωu = 12 rad/s and
a frequency step size of ∆ω = 0.05 rad/s are used.
In order to generate a variation of the different power spectra, the parameters σ and b in Eq. 5.6
are uniformly distributed random variables within the range 0.9 ≤ σ, b ≤ 1.2. In this example
five power spectra are used. From the ensemble of power spectra the mean is calculated, as
described in Section 5.3 (Fig. 5.2).
The next step is the calculation of the confidence intervals. Here this is done for the confidence

89



CHAPTER 5. DEVELOPMENT OF A RELAXED STATIONARY POWER SPECTRUM USING IMPRECISE
PROBABILITIES WITH APPLICATION TO HIGH-RISE BUILDINGS

0 2 4 6 8 10 12

Frequency (rad/s)

0

0.05

0.1

0.15

0.2

P
o
w

e
r 

S
p
e
c
tr

a
l 
D

e
n
s
it
y
 (

m
2
/s

3
)

estimated PSDs

mean

Figure 5.2: Ensemble of power spectra with mean power spectrum.

0 2 4 6 8 10 12

Frequency (rad/s)

0

0.05

0.1

0.15

0.2

0.25

P
o
w

e
r 

S
p
e
c
tr

a
l 
D

e
n
s
it
y
 (

m
2
/s

3
)

mean

0.99

0.9

0.75

0.5

Figure 5.3: Mean power spectrum with confidence intervals.

levels 0.99, 0.9, 0.75 and 0.5 (Fig. 5.3). Based on the confidence level 0.99, which describes the
largest confidence interval, the bounds of the possible range of the power spectra are determined,
what is depicted in Fig. 5.4. It can easily be seen that these bounds form an envelope to the
original ensemble of power spectra. This ensures that the relaxed model is defined for realistic
values only, based on the ensemble of power spectra.
The subjective assignment of the confidence levels to the fuzzy numbers is shown, for instance,
for three selected frequencies in Fig. 5.5. The plots of the power spectral density are related
to the lines labelled with ‘A’, ‘B’ and ‘C’ in Fig. 5.4, which are describing intersections of the
power spectral density at the specified frequencies. Corresponding to Fig. 5.5, in table 5.1 a
summary of the values for the frequency ω = 1.97 rad/s (‘A’) are given, as an example.
In the next sections the derived relaxed power spectrum will be applied to a SDOF system and a
MDOF system, in order to determine and analyse the resulting response spectra of the systems.
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Figure 5.4: Power spectra bounds.
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Figure 5.5: Membership function for selected frequencies.

5.4.1 Single-Degree-of-Freedom System

The derived relaxed power spectrum is applied to a SDOF system with the equation of motion

mÿ + cẏ + ky = F (t), (5.9)

where ÿ, ÿ and y are the acceleration, velocity and displacement, respectively; m, c and k are
the mass, damping coefficient and stiffness, respectively, and F (t) is the external load. F (t)
is assumed to be a zero-mean stationary stochastic process with power spectral density SX(ω)
[154].
If the SDOF system is excited by the power spectral density SX(ω), the power spectrum SY (ω)
of the system response can be obtained by

SY (ω) = |H(ω)|2 SX(ω). (5.10)

This equation is called transfer function, where H(ω) is referred to as the frequency response
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Table 5.1: Confidence levels and membership values for frequency ω = 1.97 rad/s (labelled with ‘A’ in Fig. 5.5).

Confidence level Spectral Power α-level
— 0.1438 1
0.5 [0.1338, 0.1537] 0.75
0.75 [0.1257, 0.1619] 0.5
0.9 [0.1151, 0.1724] 0.25
0.99 [0.0818, 0.2057] 0.0
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Figure 5.6: Bounds of the response spectra for the SDOF system.

function:
H(ω) = 1

ω2
0 − ω2 + 2ζω0ωi

(5.11)

In this equation ω0 is the natural frequency of the system, ζ is the damping ratio and i =
√
−1

is the unit of the imaginary number [91].
If the relaxed power spectrum derived in Section 5.3 is applied to the SDOF system via the
transfer function (eq. 5.10) with a natural frequency of ω0 = 2π rad/s and a damping ratio
ζ = 0.05, the following relaxed response spectrum can be obtained, depicted in Fig. 5.6. The
resulting relaxed power spectrum indicates the bounds for the possible range of response power
spectra. The fuzzy membership values for the natural frequency of ω0 = 2π rad/s are depicted
in Fig. 5.7 and for the exact values shown in table 5.2.

5.4.2 Multiple-Degree-of-Freedom System

Similarly to the SDOF, the equation of motion for a MDOF system is

MŸ + CẎ +KY = BX(t), (5.12)

where Ÿ , Ẏ and Y are the acceleration, the velocity and the displacement vector, respectively,
M , C and K are the mass, the damping and the stiffness matrices, respectively, X is the
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Figure 5.7: Fuzzy membership values for the natural frequency of ω0 = 2π rad/s for the SDOF system.

Table 5.2: Confidence levels and membership values for the natural frequency ω0 = 2π rad/s for the SDOF
system.

Confidence level Spectral Power (x10−4) α-level
— 7.9566 1
0.5 [7.0905, 8.8227] 0.75
0.75 [6.3846, 9.5286] 0.5
0.9 [5.4638, 10.4494] 0.25
0.99 [2.5731, 13.3402] 0.0

stochastic excitation vector and B the input force influence matrix. For the MDOF system a
nine-storey shear frame structure (Fig. 5.8) is investigated. The corresponding values for mass
and stiffness for each of the storeys are given in table 5.3. This example, which includes both
the system and the system properties, is based on Chen et al. [91].
Similarly to the SDOF system, the frequency response function of the MDOF system

H(ω) = (K − ω2M + iωC)−1 (5.13)

can be obtained and the power spectrum of the response is

SY (ω) = H(ω)BSX(ω)BTH∗(ω), (5.14)

where H∗(ω) is the complex-conjugate matrix of H(ω) and SX(ω) is the power spectral density
of X(t). Since it is usually hard and time-consuming to obtain H(ω) directly from Eq. 5.13,
alternatively the pseudo-excitation method (PEM) is adopted here. A brief summary is given
here, for a detailed explanation see Lin et al. [155] and Li and Chen [52].
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Figure 5.8: Nine-storey shear frame structure [91].

Table 5.3: Mass and stiffness of the shear frame structure [91].

Storey no. Mass (x105) Stiffness (x108)
1 3.5 1.47
2 3.3 1.63
3 3.0 1.62
4 3.0 1.60
5 3.0 1.60
6 3.0 1.92
7 3.0 1.85
8 2.7 0.96
9 2.7 0.89

Pseudo-excitation method

Consider a SDOF system with a harmonic excitation. The stable-state response of the system
is

Y (ω, t) = H(ω)
√
SX(ω)eiωt (5.15)

and its complex-conjugate is

Y (ω, t)∗ = H∗(ω)
√
SX(ω)e−iωt. (5.16)

By multiplying both sides of equations 5.15 and 5.16 the response spectrum SY (ω) can be
derived:

SY (ω) = Y (ω, t)Y ∗(ω, t) = |H(ω)|2 SX(ω). (5.17)

This indicates that the power spectrum of the response at certain angular frequency can be
calculated by multiplying the deterministic response of the system to a harmonic excitation of
the same angular frequency by its complex-conjugate part. Note that this excitation is made
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Figure 5.9: Bounds of the response spectra for the 1st, 4th and 9th storey of the MDOF system.

artificially, why this method is called pseudo-excitation method.

Numerical Procedure

For each angular frequency ωj , j = 1, . . . , Nω, of the considered power spectrum a complex
pseudo-excitation

√
SX(ωj)eiωjt or two real pseudo-excitations, one sine type

√
SX(ωj) sin(ωjt)

and one cosine type
√
SX(ωj) cos(ωjt), t ∈ [0, T ], are generated. These pseudo-excitations are

set as the outer excitation of the system and the corresponding stable-state response, Y (ωj), is
recorded. The power spectrum of the response SY (ωj) can be obtained via Eq. 5.17 for each
angular frequency ωj .

Application to a MDOF System

The determination of the natural frequencies of the system yields

ω0 = [3.86, 10.84, 16.63, 23.67, 29.05, 33.28, 37.93, 42.87, 46.85].

Since the spectral power of the excitation power spectrum for ω ≥ 10 rad/s, which includes
all other natural frequencies, are close to zero, the focus is on the first natural frequency. The
application of the power spectrum derived in Section 5.3 yields to the response spectra depicted
in Fig. 5.9. The response spectra for the first, fourth and ninth storey are shown. As it can be
seen, the response spectra are similar, only the power of the response is higher and the bounds
are widened, for higher storeys, since the system is a linear model. This behaviour can also be
obtained in Fig. 5.10, where the fuzzy membership values of the corresponding storeys for the
first natural frequency of ω0 = 3.86 rad/s are given. The shapes of the single fuzzy numbers are
similar, they are only widened.
For instance, the fuzzy membership values of the ninth storey of the building for the response
spectrum at the natural frequency ω0 = 3.86 rad/s are given in Table 5.4, corresponding to Fig.
5.10.
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Figure 5.10: Membership values for the natural frequency ω0 = 3.86 rad/s for the 1st, 4th and 9th storey of the
MDOF system.

Table 5.4: Confidence levels and membership values for the natural frequency ω0 = 3.68 rad/s for the 9th storey
in Fig. 5.10.

Confidence level Spectral Power α-level
— 0.2415 1

0.50 [0.2289, 0.254] 0.75
0.75 [0.2187, 0.2643] 0.50
0.90 [0.2053, 0.2776] 0.25
0.99 [0.1634, 0.3196] 0.00

5.5 Conclusion

In this work the calculation of a relaxed power spectrum was presented. The new developed
relaxed power spectrum offers several advantages compared to a traditional power spectrum
described by discrete values for each frequency. The relaxed spectrum is characterized by the
fact that it is more robust and able to capture the epistemic uncertainties. The model is
especially useful when there are only a few real data records available. In this case, an approach
with imprecise probabilities is useful in order to calculate a relaxed power spectrum because, in
particular, due to the limitations mentioned in the Section 5.1, no reliable statistical information
of the ensemble can be obtained.
Non-ergodic process realisations can be generated by the developed load model, which are di-
rectly applicable to Monte Carlo simulation analyses. Since the response process of the system,
where the relaxed power spectrum is applied, will be presented in the same relaxed form of
the load model, outer bounds and the corresponding fuzzy numbers can be calculated. The
propagation of the fuzzy numbers through the system results in a fuzzy representation of each
individual frequency of the response process, which allows due to the membership values of the
fuzzy numbers a gradual failure range to be defined in the structural analysis. Thus, instead of
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a crisp but uncertain response of the system a gradual failure range with mitigated uncertainties
of the process can be determined.
In the examples considered in this work, the system behaviour is linear, what makes the propa-
gation of the fuzzy numbers easy. For more complex systems with a non-linear behaviour, the
propagation of the fuzzy numbers will be more difficult, and thus, there is a need of improvement
for these cases.
Three crucial points must be taken into account when calculating the new developed relaxed
power spectrum: First, the identification of the basis power spectrum: The shape of the result-
ing relaxed power spectrum depends strongly on the chosen or calculated, respectively, power
spectrum. The mean of the ensemble of power spectra is used in this work as the basis power
spectrum. However, other power spectra may be used, depending on the available data; Second,
the calculation of the confidence interval: Depending on the available data, and the type of
distribution function, different approaches may be used to calculate the confidence intervals,
which will result in different relaxed power spectra. In addition, the confidence levels and their
number is not limited to the way presented in this work. In other cases it might be useful to
calculate more confidence intervals in order to get a more accurate presentation of the fuzzy
numbers and thereby the response process; Third, the subjective assignment of the membership
values: Since this affects the shape of the fuzzy sets for the individual frequencies, different
relaxed power spectra can result. Therefore, it should be combined with expert knowledge to
assign the values appropriately.
Practically in all cases, earthquakes, as a short-term process, have a relevant transient behaviour
instead of a steady-state response on dynamic accelerations characterized by the response to a
power spectrum. Since this work only considers the stationary case, it is necessary to extend
the developed relaxed power spectra to the non-stationary case, where harmonic wavelets are
utilised to estimate the frequency in the time-frequency domain.
In summary, the newly developed relaxed load model offers new possibilities in the analysis
of structures. The uncertainties that arise due to various reasons are largely reduced. The
load model provides a relaxed response process, resulting in spectral powers of frequencies with
different membership values. Based on this, a failure range of the structures can be calculated.
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6 Data-driven reliability assessment of dynamic
structures based on power spectrum classification

A typical problem in engineering when using real data records is that they are never identical.
This complicates the generation of a load model that describes the underlying stochastic process.
The relaxed PSD (Chapter 2) and the imprecise PSD (Chapter 5 and 4) are examples of such
load models.
In this part of the thesis, the data are classified according to their similarity to generate different
load models from these data, which in turn contribute to the refinement of the simulation results.
Uncertainties and especially dissimilarities are in the nature of such stochastic processes, so that
no two identical earthquakes will ever occur, for instance. In particular, data sets are considered
that have a high spectral variance in the frequency domain and are thus too dissimilar to generate
a valid load model therefrom. Such a model would not represent the data set because the entire
spectral range cannot be covered. Furthermore, selecting similar data reduces the variability in
the simulation results, which is of high importance to obtain reliable results.
Therefore, a classification approach is presented that groups the data based on their spectral
similarity. Although a variety of classification approaches already exist, they often require a set
of parameters to obtain a valid classification. The approach presented here does not require any
parameters other than a maximum number of groups to be determined. The similarity of the
individual PSD functions is determined using Bhattacharyya distance. Based on this distance
measure, the individual data sets are classified into groups using the k-means algorithm. From
each of these groups, an individual load model can be generated, which reflects the similarity of
the data and reduces the variability in the simulation results. Since each load model results in
a new independent simulation, it is also proposed to determine the optimal number of groups
using the Silhouette method. This ensures that as many simulations as necessary are carried
out, but as few as possible.
The method is presented using two real data sets and two numerical examples in different
scenarios. On the one hand a linear single degree of freedom system is used, on the other hand
a non-linear model of a bridge pier is used to show its applicability to realistic cases. In each
simulation, the maximum system displacement is determined. Based on this, a CDF is calculated
to obtain an approximation of the failure probability. It is shown that the classification of the
data leads to more accurate simulation results and that the previously determined optimal
classification is valid. Using the probability of occurrence, a weighted CDF can also be formed
that takes all load models into account. The classification approach is thus able to achieve a
refinement of the simulation results. Moreover, the approach is useful to determine the similarity
of the data, for the generation of the relaxed PSD or the imprecise PSD. These load models are
also considered valid only if the data used have a certain similarity, which can be ensured with
the proposed PSD classification.
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Abstract

The power spectral density function is a widely used tool to determine the frequency components and amplitudes
of environmental processes, such as earthquakes or wind loads. It is an important technique especially in the
engineering field of vibration analysis and in determining the response of structures. When using a large amount
of data, a load model can be generated, which describes the characteristics of the underlying stochastic process.
This load model enables artificially generated excitations to be created within the framework of Monte Carlo
simulations. If multiple data records are utilised, a problem that can occur is that the individual records have a
high variance in the frequency domain and are therefore too dissimilar from each other, even though they appear to
be similar in the time domain. A load model derived from this data does not represent the entire data set, because
not the whole spectral range is covered. Therefore, every attempt must be made to group the records according to
their characteristics and thus combine similar data to derive two or more load models accordingly. In this work,
an approach is proposed to classify real earthquake ground motion records using the k-means algorithm based
on similarities within the data ensemble as determined by the Bhattacharyya distance. The silhouette method
enables the identification of the optimal number of groups for the classification. The classified data thus form
a subset of the entire data set from which load models can be generated and can be applied separately to the
structure under investigation, leading to more accurate simulation results. The advantages of this classification
approach are illustrated by means of an academic example and a seismic-isolated bridge pier model as a non-linear
dynamic system.
Keywords: Power spectral density function, Stochastic processes, Stochastic dynamics, Reliability assessment,
Uncertainty quantification, Earthquake engineering.

6.1 Introduction

The simulation and subsequent reliability assessment of buildings and structures under specific
loads have become increasingly important in engineering in the recent decades [53, 54, 111,
124]. In particular, structures that are subject to environmental processes such as wind and
earthquake loads and thus exhibit dynamic system behaviour are of special interest [52, 55, 126].
A general understanding of the dynamic behaviour of structures, especially under earthquake
loads, is given in [125]. To describe the environmental processes, which can be characterised
as stochastic processes, in terms of their frequency components and governing frequencies, the
power spectral density (PSD) function can be utilised [58, 61]. The PSD function describes the
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stochastic process in the frequency domain and thus provides information about the frequencies,
which are particularly important in structural dynamics. Through the PSD function, suitable
stochastic processes can be generated in the time domain [84], which may be used for numerical
simulations within the framework of extensive Monte Carlo (MC) simulations in order to obtain
the response of the structure under investigation [9, 22, 110]. Modal analysis and frequency
decomposition methods by singular value decomposition of the PSD function are alternative
approaches to MC simulations for characterising system responses, see for example [156–160].
Especially in simulations involving dynamic system behaviour due to environmental processes,
accurate simulation results are important to evaluate existing structures in terms of their re-
sistance and durability or for the design of new buildings in the future. An overview about
risk assessment of earthquakes is provided in [161]. Simulations are necessary to provide an
understanding of the real case and to obtain an initial assessments of the response behaviour
of a structure. A direct application of the safety specifications for structures at risk in civil
engineering, such as defined in [162], is often not possible due to the structural complexity or
incomplete information about the system. Such a model can be investigated with regard to
different excitations. The simulation and evaluation of the dynamic response of structures un-
der specific loads, and in particular under seismic loads, has become increasingly important,
with a special emphasis on variability and uncertainties: variability of the model and variability
of the input seismic motion. Accounting for uncertainties in both the structure and the input
ground motions is important for a rigorous assessment of the seismic capacity of the struc-
ture. A suitable method for this purpose is Incremental Dynamic Analysis (IDA) [163–165],
which applies earthquake loads with different scaled intensities to a structure. This yields func-
tions that enables a comparison of different system responses to a range of intensity levels of
the excitation. This method can be used to determine system responses for different potential
earthquake excitations and to design the structure accordingly. Performance-based engineering
demand approaches, specifically fragility functions are utilised for defining the probability that
a component exceeds a certain limit state depending on the excitation, e.g., the peak ground
acceleration (PGA). An overview of different methods for determining fragility functions can be
found in [166–170]. In [171] a computationally efficient method for analysing the seismic fragility
of structures is proposed, while in [172] fragility analyses are linked to artificial neural networks.
Seismic fragility analysis is combined with Bayesian linear regression demand models in [173],
yielding more accurate results compared to traditional methods. Other works deal with fragility
analysis for specific structures, such as highway bridges [174], concrete dams [175] or railway
bridges [176]. Both, the fragility analysis and IDA are concerned with the selection of seismic
ground motions and with the definition of efficient and sufficient intensity measures [177, 178]
of ground motions [179].
The definition of appropriate seismic intensities plays a key role in earthquake engineering and
engineering seismology to reduce the variability of the analysis results. The variability would
strongly increase if the input ground motions have no similarity, which in general is always the
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case. Thus, it is valuable to classify the real earthquake records, which is the objective of this
work, and define appropriate seismic loading models with smaller uncertainty to obtain more
reliable results. To support this and to improve the simulation results, real data records can be
used instead of artificially generated data. An overview of the data analysis of real data can
be found, for instance, in [180–182]. Thanks to the ever-increasing databases of environmental
processes (e.g. [112, 183]), a large amount of data is available from which corresponding load
models can be generated. Although a pre-selection of the data can be conducted based on
seismological criteria such as magnitude, epicentral distance, depth of the earthquake or site
conditions, these data are never identical due to the nature of earthquakes. Furthermore, soil
conditions, the path and the source mechanisms, such as normal, inverse or strike-flip faults,
influence the ground motions, see [184] for an overview. In all cases, even when using similar
ground motion criteria and a similar building model, a large variability of the building response
might be observed, which is difficult even for data of the same region [185]. In addition, un-
certainties due to, for example, measurement errors, incorrect calibration, a damaged sensor or
total failure of the sensor can complicate the selection and the subsequent analysis. Despite
the fact that the data can be pre-selected according to the criteria mentioned above, they may
still be too different to obtain reliable results, i.e., with reduced variability. In such a case, a
fatal assessment of the situation can emerge. For those problems, the temporal similarity can be
defined considering time or frequency parameters [186]. In some cases, the data ensemble has a
high spectral variance in the frequency domain, so that a single PSD function estimate is not
sufficient to adequately represent the process statistics. It can reasonably be assumed that a
more realistic representation of the process is captured by estimating two or more PSD functions
to better represent the spectral range of the process. Therefore, it is necessary to define the
spectral similarity that can be used to categorise individual data sets.
A variety of different methods for classifying earthquake ground motions can be found in the
literature. Many of these methods rely on heuristic methods such as the k-means algorithm [187]
that can be used for fast local solutions [188]. For example, in [189] a method is presented that
takes the spectral shape into account. In [190], different frequency content-based parameters are
used to classify the earthquakes using k-means and self-organising maps (SOM). The moment
magnitude and the Joyner-Boore distance [191] are used in [192, 193] to classify earthquake
ground motions with the k-means algorithm as well, while in [194] and [195] fuzzy-based ap-
proaches are employed. All these approaches require different parameters from the time and/or
the frequency domain for the classification of earthquake ground motions. This presupposes a
prior knowledge of the data used. In addition, the choice of parameters can lead to different
results of the desired classification, which in turn affects the simulation results. To simplify the
classification and provide more robustness, this paper proposes a method where only the simi-
larity in the frequency domain needs to be determined, and subsequently the earthquake ground
motions can be grouped using the k-means algorithm. Furthermore, suitable load models can
be generated from the classified PSD functions of the earthquakes.
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The proposed approach is to first define the number of spectral groups and then optimise the
arrangement of the data records between the groups by minimising their respective spectral
distance. The classification is carried out in the frequency domain only, as the frequency com-
ponents of a time signal can thus be determined unambiguously. In addition, the signals in
the time domain show hardly any or only small differences, whereas the transformation into
the frequency domain often reveals larger differences. Moreover, these signals are used in the
field of stochastic processes and dynamic systems, hence it is useful to classify ground motions
based on their frequency characteristics. For the classification, the Bhattacharyya distance [196–
198] is used to determine the similarity of the individual PSD functions. Utilising the k-means
algorithm, the PSD functions are classified into two or more groups. It is expected that in
most cases, considering multiple spectral models will result in a more accurate overall response
statistic than a single model. However, the latter requires that several different simulations of
the structural response are carried out, which can be time consuming for large model analyses.
Therefore, an approach based on the silhouette method [199, 200] is proposed to determine the
optimal classification, which results in avoiding to perform structural response simulations more
than necessary. This type of data processing leads to a more accurate analysis of structures and
buildings, especially in the area of reliability analysis and assessment, and can reveal system
failure that would not be detected when utilising a single PSD function estimate of the data set.
The proposed method also enables to estimate the system response considering the probability
of occurrence of each load model. Therefore, this method is useful in particular when utilising
multiple real data records for the reliability assessment of real structures. The novelty is in the
combination of the different basic tools and their further development and adjustment to solve
the given classification problem. The proposed method improves the quality of the reliability
assessment for large structures utilising site- and source-specific information. In addition, the
classification does not require any parameters, except for a maximum number of groups to be
determined, and is automatic, including the determination of the number of optimal groups,
whereas other approaches require a set of parameters and prior knowledge. The classification
approach presented in this work is valuable from an engineering view point, especially in proba-
bilistic seismic engineering as it contributes significantly to the selection of appropriate real data
for other commonly used methods in earthquake engineering. The selection of suitable real data
is essential for reliable simulation results and especially for reducing the variability of the results.
The classification approach can thus be transferred to other methods in probabilistic earthquake
engineering. For instance, such a classification is necessary to determine the similarity of data
records to generate a probabilistic load model from multiple data, as proposed in [127].
In this work, real earthquake ground motion records are used, which are provided by the Na-
tional Research Institute for Earth Science and Disaster Resilience in the K-NET and KiK-net
databases [183]. This demonstrates that the proposed method is also feasible for practical
applications. The developed load models from real data records are applied to a linear spring-
mass-damper system with one degree of freedom and a seismic-isolated bridge pier model as an
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example of a non-linear dynamic system.
This work is organised as follows: Section 6.2 summarises briefly the theoretical background used
in this work. In Section 6.3 the approach for classifying PSD functions is explained. Section
6.4 provides the classification approach for two examples of real earthquake ground motions. In
Section 6.5 the classified ensembles are applied to two numerical examples to show the strength
of the approach. The work concludes with Section 6.6.

6.2 Stochastic processes and power spectrum estimation

Stochastic processes are determined by random influences, so that each value is described by a
random variable. It is not possible to describe a stochastic process in a deterministic way. The
frequency composition of a zero-mean stationary stochastic process X(t) can be derived via the
Fourier transform of its auto-correlation function RX(τ) = E[X(t)X(t+ τ)]

SX(ω) = 1
2π

∫ ∞

−∞
RX(τ)e−iωτdτ (6.1)

and the inverse Fourier transform

RX(τ) =
∫ ∞

−∞
SX(ω)eiωτdω, (6.2)

where SX(ω) describes the PSD function and τ denotes the time lag. Eq. 6.1 and Eq. 6.2 are
the so-called Wiener-Khintchine theorem (see e.g. [11, 12, 52]).
The Spectral Representation Method (SRM) [84] can be employed to artificially generate stochas-
tic processes X(t). The prerequisite is a known expression of a PSD function SX . SRM is
described by the following expression

X(t) =
N−1∑
n=0

√
4SX (ωn) ∆ω cos (ωnt+ φn) , (6.3)

where the frequency points are defined as ωn = n∆ω with n = 0, 1, 2, . . . , N−1, N is the number
of frequency points, ∆ω is the frequency discretisation, φn are uniformly distributed random
phase angles in the range [0, 2π] and t is the time vector.
To estimate the PSD function from either real data records, e.g. an earthquake ground motion,
or an artificially generated stochastic process, the periodogram [12, 52] can be utilised, which is
based on the discrete Fourier transform and is as follows

ŜX(ωk) = lim
T→∞

∆t2

T

∣∣∣∣∣
T−1∑
t=0

X(t)e− i2π
T
kt

∣∣∣∣∣
2

. (6.4)

In this expression, ∆t describes the time discretisation, T is the total length of the record and
k is the integer frequency for ωk = 2πk/T .
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6.3 Classification of spectral groups within ensembles

In this section, a brief overview of the problem is given and the method for classifying an
ensemble of PSD functions is explained using an academic example. In addition, a method is
presented which determines the optimal number of groups.

6.3.1 Problem statement

In most cases, no differences can be detected in the time domain, the time signals seem to be
almost identical, see left side of Fig. 6.1. The time signals given here are derived from two
different source PSD functions but the exact same random variables for generating the time
signals (Eq. 6.3) are utilised. The PSD functions estimated from the time signals are given
on the right side of Fig. 6.1. Despite the small differences in the time domain, significant
differences are evident in the frequency domain, where it is clear that the PSD functions differ
in spectral density and peak frequency. Although this is an academic example it illustrates that
only infinitesimal differences in the time domain can cause significant differences in the frequency
domain. Such a problem can occur when working with a large amount of data. Therefore, a
thorough investigation of the data must be conducted, and it may be useful to define two or
more load models.
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Figure 6.1: Example of two signals that show hardly any differences, but reveal the differences in the frequency
domain.

6.3.2 Methodology

To identify different groups of PSD functions, the spectral similarity between two PSD func-
tions S1 and S2 must be determined. In this work, it is proposed to use the Bhattacharyya
distance [196–198]

DB (S1, S2) = −log

∑
ω∈Ω

√
S1 (ω)S2 (ω)

 . (6.5)

Due to its definition, the Bhattacharyya distance is a suitable distance measure for determining
the similarity of the individual PSD functions within the ensemble. Indirectly it accounts, for
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instance, for the total power and shape (i.e., the distribution of frequency power) of the PSD
functions. Therefore, two PSD functions with, for example, the same total power but different
shape will have a larger distance than two PSD functions with the same total power and similar
shape.
To determine the similarity of the PSD functions in the ensemble, the ensemble mean is used
as a reference spectrum. Using the Bhattacharyya distance (Eq. 6.5), the similarity of each
individual spectrum to the ensemble mean is determined. Therefore, Eq. (6.5) is evaluated
for each individual spectrum and the ensemble mean. The resulting distance values are similar
for PSD functions with similar shape and power. These distance values are used to determine
similarity clusters using the k-means algorithm and to divide the entire data set into clusters,
or so-called groups, i.e., similar distance values to the ensemble mean lead to the assignment
to the same group. To perform this procedure, the number of desired groups must be defined
beforehand. In general, a higher number yields in load models covering wider spectral ranges,
while it requires larger computational burden. Therefore, it is important to determine the
optimal number of groups. A method for this purpose is proposed in Section 6.3.3.

6.3.3 Optimal number of spectral groups

here are various methods to determine the optimal number of groups kopt, such as the elbow
method, for instance. However, these methods require often a visual assessment of the analyst
to determine kopt with respect to certain statistics. Another problem is that kopt is subjective
as it depends on the given data and on the methods used to measure the distances. In this
work, it is suggested to use the silhouette method [199, 200] for the determination of kopt. Other
approaches can be found in [201] and the references therein.
A maximum number of groups kmax has to be defined beforehand and the previously described
procedure of classifying the PSD functions will be performed kmax−1 times, i.e., for 2, 3, . . . , kmax
groups. The maximum number of groups kmax is case-dependent. For instance, an ensemble of
power spectra with a high spectral variance might need more groups than with lower spectral
variance. In any case, it is practical to choose a low number of kmax, for instance 5 ≤ kmax ≤ 10.
A very high kmax would not be reasonable because then it would also be possible to apply all
given data records individually to the structural model. This would no longer correspond to
the intended classification. In order to obtain the most accurate classification possible, as many
groups as necessary should be obtained, but as few as possible.
The silhouette coefficient sC provides a measure of the quality of a clustering that is independent
of the number of clusters. The silhouette coefficient is defined as the arithmetic mean of all
silhouette values s(i)

sC = 1
ni

ni∑
i=1

s(i) (6.6)

where ni describes the total number of data points and the silhouette values s(i) are defined as
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s(i) = b(i)− a(i)
max (a(i), b(i)) . (6.7)

According to [199], a(i) is the average distance of the sample i to the other samples within the
same cluster A and b(i) is the average distance of sample i to the other samples in another
cluster C which is closest to cluster A. The silhouette value can range from −1 ≤ s(i) ≤ 1,
while a high silhouette value implies a high similarity to sample i’s cluster. In the proposed
method, the number of groups corresponding to the highest silhouette coefficient sC is chosen
as the optimal number of groups kopt.

6.3.4 Example

In order to illustrate the proposed classification approach including the determination of the
optimal number of groups by utilising the silhouette method, a short academic example is given
in Fig. 6.2. In this example 3 different underlying analytical expressions of power spectra are
utilised to generate 10 PSD functions each, with slightly different values, to simulate a certain
randomness. From the given example it can be clearly seen that the optimal number of groups
is kopt = 3. The example therefore only aims to illustrate the proposed method. In this case, it
can be seen that the mean value of the entire ensemble (dashed line) is unsuitable for deriving
a load model for the ensemble. Especially at frequencies around 2.5 rad/s, the 3 classified
groups are completely disjoint, which clearly shows that a classification is useful. This can be
confirmed by determining the optimal number of groups kopt. The silhouette values for this
example are calculated by Eq. (6.7) and are depicted in Fig. 6.3 for the classification into 2,
3, 4 and 5 groups. It can be appreciated that, especially for the classification in group 3, very
high individual silhouette values are obtained as all of them are close to 1. When classified
in 4 or 5 groups, on the other hand, silhouette values with lower quality are more frequent,
showing that the classification is not well-suited for certain PSD functions. To determine the
optimal number of groups kopt, Eq. (6.6) is used to compute the silhouette coefficient for
each individual classification, which is the mean value of all silhouette values for the respective
classification. This yields the silhouette coefficients shown in Fig. 6.4. The maximum of all
silhouette coefficients reveals the optimal number of groups, accordingly kopt = 3 in this example.
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Figure 6.2: Unclassified ensemble (left) and the corresponding mean values of the classified groups and the entire
ensemble (right).
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Figure 6.3: Silhouette values for the classification into 2, 3, 4 and 5 groups.
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Figure 6.4: Silhouette coefficients for 2, 3, 4 and 5 groups. The optimal number of groups is kopt = 3.

6.3.5 Usage of the method

When using real data, usually given in the time domain, there are two possibilities, for both of
which it can be argued why they are useful. After transforming the data from time domain to
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frequency domain and carrying out the classification, the options are:

(i) Set up a load model based on the mean spectra of the classified groups. Then utilise Eq.
6.3, for instance, to generate time signals, which can be applied via MC simulation to
structures.

(ii) The data in time domain can be applied directly for the respective groups in order to carry
out a reliability analysis.

Whether to use option (i) or (ii) is dependent on the amount of given data. If the size is small,
option (i) seems to be appropriate in order to set up a load model from which data with similar
characteristics within the classified groups can be generated. If real data is available in a large
amount, option (ii) might be the better choice as it can be applied directly to the system.
However, in the numerical examples in this work in the following sections, the focus is on case
(i).

6.4 Classification of real data records

The real data records utilised in this work are provided by the K-NET and KiK-net database [183]
and were chosen and downloaded by the authors. Thus, no pre-existing data selected by other
authors were used. In general, there are mainly two ways to characterise ground motions, namely
source-specific and site-specific characterisation. For source-specific characterisation only records
of the same earthquake event but from different monitoring sites are utilised. Site-specific char-
acterisation means that records of the same monitoring site but from different earthquake events
are used. In the following, both ways of characterising ground motions are illustrated.
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Figure 6.5: Source-specific (left) and site-specific (right) ensemble of real data records.

6.4.1 Source-specific data ensemble

For the classification of data records and the application to structures, real data of a spe-
cific earthquake event was utilised, see Fig. 6.5 (left). The earthquake occurred at 20:50 on
17/07/2021 at a depth of 80 km at latitude 33.6N and longitude 131.9E with a magnitude
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of 5.1. Data was collected from 313 monitoring sites. All given ground motions have a to-
tal length T = 120 s and time step size ∆t = 0.01 s. For a reliable classification, however,
the data was pre-selected according to their PGA, as it is meaningless to compare and clas-
sify data with completely different amplitudes. Therefore, only ground motions in the range
0.02 m/s2 ≤ PGA ≤ 0.06 m/s2 were utilised in the following. The resulting data ensemble
consists of 168 earthquake ground motions. The data were transformed into the frequency do-
main according to Eq. (6.4) and then classified using the Bhattacharyya distance (Eq. 6.5) and
k-means algorithm. This was done for k = 2 and k = 3 groups. Fig. 6.6 shows the mean PSD
functions of the resulting groups. For the classification into k = 2 groups, group 1 and group 2
both consists of 84 PSD functions. The classification in k = 3 groups yields 58 PSD functions
in group 1, 63 in group 2 and 47 in group 3.
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Figure 6.6: Mean PSD functions of the classified groups estimated from source-specific seismic ground motions
with total length T = 120 s.

According to the silhouette method described in Section 6.3.3, the optimal number of groups
is kopt = 2, as shown in Fig. 6.7 and 6.8. For illustration purposes, however, classification and
simulation are carried out for both k = 2 and for k = 3 groups.
In order to verify the classification not only by sight, which can solely be an indicator, this is
also substantiated by the total power and the peak frequency values of the classified group in
frequency domain. For each group, the respective maximum and minimum are determined and
given in Table 6.1. In the time domain, minimum, maximum and mean value of the PGA of
the classified groups were determined and are shown in Table 6.2. Overlapping intervals of the
minimum and maximum values with regard to the different groups are permissible here, since
a combination of these factors influence the classification. However, a clear trend in the values
can be recognised.

6.4.2 Site-specific data ensemble

For the site-specific classification of earthquake ground motions, data from the K-NET moni-
toring station in Tokyo, Japan (site code TKY007, site name Shinjuku) at latitude 35.7107N,
longitude 139.6859E, and elevation 34 m were used, see Fig. 6.5 (right). Data from July 2010
to July 2021 were used for the classification. The utilised earthquake ground motions have a
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Figure 6.7: Silhouette values for the ensemble of source-specific data for the classification into 2, 3, 4 and 5
groups.
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Figure 6.8: Silhouette coefficients for the source-specific ensemble for 2, 3, 4 and 5 groups. The optimal number
of groups is kopt = 2.

total length of T = 60 s and a time step size ∆t = 0.01 s. As for the source-specific data before,
the data was pre-selected according to their PGA. In this example, ground motions in the range
0.005 m/s2 ≤ PGA ≤ 0.015 m/s2 are utilised. The resulting data ensemble consists of a total
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Table 6.1: Classification values for source-specific data in frequency domain
Classification Group Total power Peak frequency value

k = 2 1 [5.40 · 10−5, 5.29 · 10−4] [1.54 · 10−7, 2.32 · 10−5]
2 [7.9 · 10−6, 7.39 · 10−5] [3.39 · 10−8, 1.94 · 10−6]

k = 3
1 [9.00 · 10−5, 5.29 · 10−4] [4.27 · 10−7, 2.32 · 10−5]
2 [3.83 · 10−5, 1.24 · 10−4] [1.54 · 10−7, 5.05 · 10−6]
3 [7.9 · 10−6, 5.04 · 10−5] [3.39 · 10−8, 8.78 · 10−7]

Table 6.2: Classification values for source-specific data in time domain
Classification Group PGA mean(PGA)

k = 2 1 [0.0218, 0.0595] 0.0432
2 [0.0202, 0.0488] 0.0282

k = 3
1 [0.0271, 0.0595] 0.0446
2 [0.0218, 0.0595] 0.0347
3 [0.0202, 0.0475] 0.0262

of 64 individual records. After transforming the data into the frequency domain according to
Eq. (6.4) and classification for k = 2 and k = 3 groups, the corresponding mean PSD functions
are obtained in Fig. 6.9. For the classification into k = 2 groups, group 1 consists of 35 PSD
functions and group 2 consists of 29 PSD functions. The classification in k = 3 groups yields 25
PSD functions in group 1, 22 in group 2 and 17 in group 3.
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Figure 6.9: Mean PSD functions of the classified groups estimated from site-specific seismic ground motions
with total length T = 60 s.

Determining the optimal number of groups using the silhouette methods yields kopt = 3, as
shown in Fig. 6.10 and 6.11.
The classification is verified by the total power and the peak frequency values. For each group,
the respective maximum and minimum are determined and given in Table 6.3. The minimum,
maximum and mean values of the PGA in the time domain of the groups were also determined
and are shown in Table 6.4. As with the source-specific classification, a clear trend can also be
seen in these values.
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Figure 6.10: Silhouette values for the ensemble of site-specific data for the classification into 2, 3, 4 and 5 groups.
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Figure 6.11: Silhouette coefficients for the site-specific ensemble for 2, 3, 4 and 5 groups. The optimal number
of groups is kopt = 3.

6.5 Numerical examples

In this section, generated load models from the classified ensembles of real earthquake ground
motions are applied to two numerical examples in order to show the strength of the novel
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Table 6.3: Classification values for site-specific data in frequency domain
Classification Group Total power Peak frequency value

k = 2 1 [1.24 · 10−5, 3.56 · 10−5] [1.34 · 10−7, 1.08 · 10−6]
2 [4.35 · 10−6, 1.39 · 10−5] [3.77 · 10−8, 4.08 · 10−7]

k = 3
1 [1.73 · 10−5, 3.56 · 10−5] [2.57 · 10−7, 1.08 · 10−6]
2 [8.85 · 10−6, 1.73 · 10−5] [1.06 · 10−7, 8.96 · 10−7]
3 [4.35 · 10−6, 9.33 · 10−6] [3.77 · 10−8, 2.46 · 10−7]

Table 6.4: Classification values for site-specific data in time domain
Classification Group PGA mean(PGA)

k = 2 1 [0.0088, 0.0148] 0.0124
2 [0.0051, 0.0142] 0.0095

k = 3
1 [0.0092, 0.0148] 0.0129
2 [0.0061, 0.0142] 0.0107
3 [0.0051, 0.0127] 0.0089

approach. The first example aims to demonstrate the effectiveness of the proposed classification
approach and verify the identified optimal classification, using a linear mass-spring-damper
system considering different scenarios in the relationship between the natural frequency of the
system and dominant frequencies of input ground motions. The second example, on the other
hand, aims to show the feasibility of the proposed method for reliability assessment of non-linear
dynamic systems using a seismic-isolated bridge pier model.
The ensembles classified into 2 and 3 groups (Fig. 6.6 and Fig. 6.9) are used in the following
for the numerical examples. For these, SRM (Eq. 6.3) is utilised to generate adequate time
signals as excitation for the systems. The derived mean PSD functions of the individual groups
are used as the underlying PSD function required for SRM. For each classified group 10,000 MC
samples were generated and applied to the structures. For each sample, the maximum displace-
ment of the systems in the time domain are determined, from which a cumulative distribution
function (CDF) is calculated that can be used to estimate the probability of failure for specific
displacements.
Stationary stochastic processes are generated for the mass-spring-damper system discussed in
6.5.1, while non-stationary stochastic processes emulated by an envelope function are generated
for the bridge pier model in 6.5.2, since the response properties of non-linear dynamic systems
are strongly affected by the non-stationarity of input ground motions. The envelope function is
given by

g(t) = k
(
e−at − e−bt

)
, (6.8)

with k = 500, a = 0.05 and b = 0.8. This is to emulate a strong earthquake ground motion.
Two examples of a generated stationary and a non-stationary process are given in Fig. 6.12.
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Figure 6.12: Stationary (left) and non-stationary ground motion acceleration (right), generated by SRM (Eq.
6.3) and the envelope function (Eq. 6.8).

6.5.1 Linear mass-spring-damper system

The first numerical example is performed using a Single-Degree-of-Freedom (SDOF) mass-spring-
damper system. The system can be described by the following equation of motion

mẍ+ cẋ+ kx = F (t), (6.9)

with m as mass, c as damping coefficient and k as stiffness. The natural frequency is ω0 =√
k/m and the damping ratio is ξ = c/(2ω0m). x, ẋ and ẍ denote displacement, velocity and

acceleration of the system, respectively. The excitation F (t) on the right-hand side is modelled
by a stochastic processes based on the classified PSD functions derived in Section 6.4. An explicit
Runge-Kutta scheme [117] is used to solve Eq. (6.9).
To show not only the influence of the input ensemble, but also of the system and its parameters,
2 different scenarios are calculated for each input ensemble, which will be called A and B for
the source-specific ensemble and C and D for the site-specific ensemble in the following. The
scenarios A and C represent the cases where the natural frequencies of the system and the
dominant frequencies of the input ground motions differ, while scenarios B and D represent the
cases where they are close to each other. The respective system parameters are given in Table
6.5.

Table 6.5: Parameters of the SDOF system for different scenarios.
Data set Scenario m (kg) c (Ns/m) k (N/m) ω0 (rad/s) ξ (–)

source-specific A 50 15 1922 6.2 0.024
B 10 15 2800 16.733 0.045

site-specific C 19 15 1922 10.058 0.039
D 10 15 4835 21.989 0.034

Results of source-specific data

The resulting CDFs of the maximum system displacements for the classified source-specific data
for scenario A are shown in Fig. 6.13. The CDFs for the classification into 2 groups are given
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on the left and for the classification into 3 groups on the right. For a better comparability,
the results are shown for the mean value of the entire ensemble as well as for the mean values
of the individual groups. In addition, a weighted mean CDF is given, taking into account the
probability of occurrence of each load model (i.e., the ratio between the number of real ground
motion records assigned to each group).
It can be seen, that the simulation results are more accurately for the classified load models
compared to the load model of the entire ensemble. The distribution of the maximum system
displacements varies considerably depending on the used load models defined by the groups.
The results clearly show that a significantly higher range is covered by defining different load
models. The individual load models themselves only cover a smaller range, but the load models
considered as a whole reach a larger range. This shows that the definition of a single load model
is not sufficient to cover all possible ranges of the maximum displacement. Such a load model
can lead to large system displacements not being identified in the simulation and a possible
system failure remaining undetected. This is particularly evident when comparing the CDF of
group 1 and group 2 for the classification into 2 groups (6.13, left). Where the CDF of group 2
reaches its maximum, the CDF of group 1 is almost identical to 0, which confirms that based
on the two distinct simulations completely different values for the maximum displacements can
be obtained. A similar result can be seen for the classification into 3 groups (6.13, right).
Furthermore, it can be easily recognised that in the example with the classification into 3 groups,
group 2 and 3 hardly differ from each other. This is because the PSD functions of the group 2
and 3 are close to each other at the natural frequency of the system. The weighted mean CDF,
calculated from the individual CDFs of the groups taking into account their weights, reveals a
slight shift compared to the CDF of the entire ensemble. This indicates that a more accurate
system response was calculated by considering the weights of the individual groups because the
weighted mean CDF can consider the probability of occurrence of each load model which will
also affect the determination of the system reliability or decisions for planning buildings and
structures in the future. The weighted mean CDFs are in a similar range to the CDF of the
entire ensemble regardless of the number of groups, which supports that kopt = 2 is reasonable
and correct.
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Figure 6.13: CDFs of the maximum response displacement of the linear mass-spring-damper system for scenario
A for the classification into 2 groups (left) and into 3 groups (right) of the source-specific data ensemble.
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In Fig. 6.14 the results for the SDOF system for scenario B are depicted. Since the natural
frequency of the system has changed due to the use of other system parameters, different simu-
lation results arise. Compared to scenario A, where the spectral densities of the different groups
were very close to each other at the natural frequency, now the natural frequency is around the
area of the largest differences in the spectral densities of the ensemble. This can be seen in
particular on the right-hand side of Fig. 6.14, as the CDFs of group 2 and 3 are significantly
further apart than they were in scenario A. This also causes the weighted mean CDFs in both
cases to shift to the left into the range of smaller system displacements. Accordingly, with the
system parameters of scenario B, there is no overlap of the weighted mean CDF and the CDF
of the entire ensemble. Nevertheless, the weighted mean CDFs are still in a similar range, which
supports that the classification into 2 groups is sufficient.
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Figure 6.14: CDFs of the maximum response displacement of the linear mass-spring-damper system for scenario
B for the classification into 2 groups (left) and into 3 groups (right) of the source-specific data ensemble.

Although the silhouette coefficients are often very close, see for example Fig. 6.8, the application
of the classified models, however, shows that it is indeed effective. This is particularly evident
in the results in Fig. 6.13. The classification results in the optimal number of groups kopt = 2,
which yields reasonable results. When classified into 3 groups, the results of group 1 and group
2 are fairly close, indicating that they can form one group. This supports the argument that
the classification into 2 groups is optimal.

Results of site-specific data

The results of the site-specific data and the corresponding classifications show a similar behaviour
as the results of the source-specific classification. In Fig. 6.15 the CDFs for the classification into
2 groups (left) and into 3 groups (right) are shown for scenario C. Again, the individual groups
show a more accurate distribution of the maximum system displacements. Without a prior
classification into groups, smaller and larger system displacements can hardly be recognised;
this is only made possible by the classification. The overall model, which takes into account the
weighted individual groups, also shows a more accurate representation of the maximum system
displacements. Compared to the source-specific data, the optimal number of groups has been
determined to be kopt = 3. The weighted mean CDF for the classification into 3 groups is further
shifted to the left side from the ensemble mean CDF compared to that for the classification into
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2 groups. It supports that the classification into 2 groups is not sufficient for an accurate
estimation of system responses, and thus the classification into 3 groups is reasonable.
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Figure 6.15: CDFs of the maximum response displacement of the linear mass-spring-damper system for scenario
C for the classification into 2 groups (left) and into 3 groups (right) of the site-specific ensemble.

The results of scenario D, using the site-specific data and its classification, are shown in Fig. 6.16.
As the natural frequency has changed due to the use of other system parameters, correspondingly
different simulation results can be obtained. Since the spectral densities are now somewhat
higher compared to scenario C, the system displacements are also in part significantly higher.
On the left side of Fig. 6.16 the results for the classification into 2 groups are shown, while
on the right side the results for the classification into 3 groups are given. In particular, the
classification into 3 groups reveals high distances between the CDFs of the individual groups
and also the weighted mean CDF is slightly further shifted to the left side from the ensemble
mean CDF for the case classified into 3 groups than the case classified into 2 groups, which
indicates that a classification into 3 groups is optimal. In both cases, reasonable weighted mean
CDFs are calculated based on a refined subdivision of the ensemble.
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Figure 6.16: CDFs of the maximum response displacement of the linear mass-spring-damper system for scenario
D for the classification into 2 groups (left) and into 3 groups (right) of the site-specific ensemble.

6.5.2 Non-linear bridge pier model

For the numerical investigation of a non-linear system a seismic-isolated bridge pier model with
rubber bearings is utilised. The model is based on the design specifications for highway bridges
of the Japan Road Association [202] and the manual on bearings for highway bridges [203]. The
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bridge pier is modelled as a 2-DOF lumped mass system and consists of a superstructure and
a reinforced concrete (RC) pier, which is modelled as a non-linear horizontal spring, see Fig.
6.17. The rubber bearings are idealised as a bilinear model, while for the RC pier a bilinear
model with elastoplastic characteristics and stiffness degradation model is used, the so-called
Takeda model [204]. A fixed boundary condition is assumed for the connection to the surface.
Rayleigh damping is adopted, with the damping ratios of 0% for the bearing and 2 % for the
pier, respectively. For the numerical solution, a dynamic response analysis is performed using
the Newmark-beta method with γ = 1/2, β = 1/4 and the time step size ∆t = 0.01 s. The
utilised structural parameters are given in Table 6.6.

mass of superstructure

mass of pier

stiffness of bearing

stiffness of pier

5 x 40 000 mm
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1
2
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Figure 6.17: 2-DOF lumped mass model for the bridge pier.

Table 6.6: Model parameters of the bridge pier.
Model parameter Nominal value

Superstructure Mass MS (ton) 604

Rubber bearing
Yield strength (kN) 1118
Yield stiffness KB1 40,000
Post-yield stiffness KB2 6000

RC pier

Mass Mp (ton) 346.2
Yield strength (kN) 3374
Yield displacement (m) 0.0306
Ultimate displacement (m) 0.251
Yield stiffness Kp (kN/m) 110,100

An example of the non-linear force-displacement behaviour of the rubber bearing of the bridge
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pier model is depicted in Fig. 6.18.
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Figure 6.18: Force-displacement behaviour of the rubber bearings.

As in the example of the linear mass-spring-damper model in the preceding section, a total of
10,000 MC samples were generated and applied to the bridge pier model. For each sample, the
maximum displacement of the system, i.e., the maximum displacement at the RC pier and at the
rubber bearings, is determined in the time domain, from which the CDF is calculated. In this
case, only non-stationary earthquake ground motions were utilised to provide a more realistic
example. It is important to note that unlike the previous case of the linear system, it is difficult to
discuss about the validity of the identified optimal number of groups for the classification, since
response properties of the non-linear dynamic system are significantly affected by the structural
non-linearity and non-stationarity of the input ground motions. This example rather aims to
demonstrate the feasibility of the proposed classification approach in reliability assessment of
non-linear dynamic systems and thus, for the sake of brevity, only the results of the optimal
classifications are presented.

Results of the non-linear bridge pier model

The results of the source-specific data are given in Fig. 6.19. The CDFs of the maximum
displacements at the RC pier of the bridge (left) for the optimal number of groups kopt = 2 and
of those at the rubber bearings (right) are shown. The results demonstrate for the non-linear
model that the classification of the ensemble yields more accurate results. With the classification
into 2 groups, it can be seen that higher overall system displacements can be calculated with
the load model generated from group 1 than with the load model of the entire ensemble. In
this example it is again confirmed that the classification of an ensemble leads to more accurate
results. It can also be seen that the weighted mean CDF deviates slightly from the CDF of the
entire ensemble for the RC pier case, while they overlap each other for the rubber bearings.
In Fig. 6.20 the results of the site-specific data are shown. The CDFs for the optimal number
of kopt = 3 groups are shown for the RC pier (left) and for the rubber bearings (right). It can
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Figure 6.19: CDFs of the maximum response displacement of the seismic-isolated bridge pier model for the
source-specific ensemble for the classification into kopt = 2 groups. Results for the RC pier are shown on the left,
results for the rubber bearings are shown on the right.

be seen that the classification leads to more accurate results instead of considering the entire
ensemble and determine a load model from it. The classification into 3 groups shows a high
diversity of the CDFs, which is a consequence of the optimal number of groups having been
determined to be kopt = 3. This also leads to the fact that the weighted mean CDF here partly
deviates strongly from that of the entire ensemble for each of the cases. Overlaps can only be
seen in the range of small system displacements.
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Figure 6.20: CDFs of the maximum response displacement of the seismic-isolated bridge pier model for the
site-specific ensemble for the classification into kopt = 3 groups. Results for the RC pier are shown on the left,
results for the rubber bearings are shown on the right.

The results demonstrate that the classification of the ensemble can cover wider ranges of the
system responses. Moreover, except for the results at the rubber bearings for the source-specific
case, the weighted mean CDFs provide more accurate results than the ensemble CDF. These
results thus demonstrate the feasibility of the proposed method for reliability assessment of
non-linear dynamic systems.

6.6 Conclusions

A new technique has been proposed for developing load models from ensembles of PSD functions
that exhibit high spectral variance. Using the Bhattacharyya distance, groups of similar PSD
functions in the frequency domain can be determined applying the k-means algorithm. Classifi-
cation in the frequency domain is necessary because differences in the time domain often cannot
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be detected; similar signals in the time domain can lead to highly differing PSD functions in the
frequency domain. The dissimilarities can often only be revealed there. The classification of the
ensemble leads to more accurate simulation results, which can be important especially for the
reliability assessment of the structure under investigation. In many cases, the higher number
of load models results in higher system displacements that would otherwise remain undetected
and a possible system failure would thus not be identified. However, it requires that multiple,
distinct simulations of the structural behaviour must be carried out, which could equate to a
significant time investment for large model analysis. Therefore, a method for identifying the
optimal number of groups for the classification based on the silhouette method was also pro-
posed to avoid performing more simulations than necessary. The results of the individual groups
can be weighted considering the probability of occurrence of each load model to obtain a more
accurate overall system response, which can then be evaluated for design purposes. This may
allow the use of modified system parameters in the design of the structure or lead to cost savings
in the computations of the simulations. The validity of the identified optimal classification and
the strength of the proposed method were first investigated using a linear mass-spring-damper
system, and then the proposed method was applied to a seismic-isolated bridge pier model to
demonstrate its feasibility in reliability assessment of non-linear dynamic systems. While the
application in this work is based on seismic ground motions, the developed approach is also
suitable for other stochastic processes, such as wind or wave loads subject to structures. The
prerequisite for the application of this approach to other stochastic processes is that they exhibit
similar characteristics among themselves after the transformation into the frequency domain,
otherwise a classification would not be useful as it would be obvious that the data are dissimilar.
If they show similar characteristics but high variance, classification is indispensable.
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7 Projecting interval uncertainty through the discrete
Fourier transform: An application to time signals
with poor precision

In contrast to the previous chapters, where only discrete-valued signals were analysed, this
chapter deals with the quantification of uncertainties of single interval-valued signals. The un-
certainties in such a time signal are modelled as intervals. In order to calculate the Fourier
amplitude and subsequently estimate the PSD function from such an interval signal, an algo-
rithm is needed that can propagate intervals through the DFT. An algorithm that is capable
of performing this task is presented in this part of the work. The algorithm allows to calculate
the exact bounds of the Fourier amplitude and the PSD function. While plain interval arith-
metic is sufficient to determine bounds, a more advanced algorithm is provided that also takes
into account the repeated variables problem that arises in this computation. When a variable
occurs multiple times in a computation, plain interval arithmetic can overestimate the interval
uncertainty and thus artificially inflate it, so that the bounds can be unreasonably large. The
algorithm presented here takes repeated variables into account and thus provides exact bounds.
The proposed interval DFT algorithm is explained in detail in this part of the thesis, with
particular emphasis on the individual steps of the algorithm. In addition, the entire algorithm
is verified in a comparison with plain interval arithmetic and it is shown that the exact bounds
are in fact calculated. Three different algorithms are considered, one that employs plain interval
arithmetic, a brute-force algorithm and the selective algorithm. The latter one is based on the
brute-force algorithm but computes the bounds significantly faster due to the calculation of the
convex hull of all endpoints for each calculation step. A comparison of the computational costs
is presented, as well as pseudocodes for all algorithms.
The algorithm is demonstrated using an example of an offshore wind turbine subject to wave
loads. An artificially generated signal describing the sea waves is translated into an interval
signal assuming uncertainty. This interval signal is then transformed into the frequency domain
by means of the proposed interval DFT algorithm in order to obtain the exact bounds of the
PSD function. By means of an analytical description of the input-output relationship via the
frequency response function, the bounded PSD function is propagated through the system such
that bounds can be obtained for the system response as well. This allows an immediate deter-
mination of whether the system response is in a critical range. The interval DFT algorithm can
therefore be used directly for reliability analysis, taking interval uncertainties in time signals
into account.
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Abstract

The discrete Fourier transform (DFT) is often used to decompose a signal into a finite number of harmonic
components. The efficient and rigorous propagation of the error present in a signal through the transform can
be computationally challenging. Real data is always subject to imprecision because of measurement uncertainty.
For example, such uncertainty may come from sensors whose precision is affected by degradation, or simply from
digitisation. On many occasions, only error bounds on the signal may be known, thus it may be necessary to
automatically propagate the error bounds without making additional artificial assumptions. This paper presents a
method that can automatically propagate interval uncertainty through the DFT while yielding the exact bounds
on the Fourier amplitude and on an estimation of the Power Spectral Density (PSD) function. The method
allows technical analysts to project interval uncertainty–present in the time signals–to the Fourier amplitude
and PSD function without making assumptions about the dependence and the distribution of the error over
the time steps. Thus, it is possible to calculate and analyse system responses in the frequency domain without
conducting extensive Monte Carlo Monte Carlo simulations nor running expensive optimisations in the time
domain. The applicability of this method in practice is demonstrated by a technical application. It is also shown
that conventional Monte Carlo methods severely underestimate the uncertainty.
Keywords: Discrete Fourier transform, Complex intervals, Dependency tracking, Interval arithmetic, Power
spectral density estimation, Uncertainty quantification.

7.1 Introduction

The discrete Fourier transform (DFT) is ubiquitous in signal processing and in engineering
computing in general. The DFT allows signals to be decomposed into single harmonics and so
facilitate their data compression and analysis. Its versatility resides in its mathematical property
of being linear and fully invertible. The DFT is used in a range of different applications in
science and engineering, such as in spectral analysis, random vibrations, differential equations,
data compression, signal processing, image processing or probabilistic programming [205, 206].
There are various algorithms available for transforming a signal with the DFT, of which the best-
known is probably the fast Fourier transform (FFT), presented by Cooley & Tukey [207]. Due to
the increasing computational power, simulations and equivalent calculations can be carried out
ever faster, which has also opened up the possibility of conducting the FFT analysis on-the-fly
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on embedded systems. An overview of a variety of algorithms used can be found in abundance
in the literature [208, 209].
The uncertainty in signals can arise, for example, from damaged sensors, equipment failures,
measurement errors, operational range, inaccurately calibrated sensors, and incorrectly recorded
extreme values. Moreover, data can be imprecise because of measurement uncertainty, e.g., due
to degradation or digitisation. There are numerous cases and reasons why the signal can be
imprecise, and yet still informative in sensing critical circumstances. In order to obtain accurate
simulation results, e.g., in the context of reliability analysis, it is imperative to use suitable
simulation methods and models. Since the simulation is only a representation of the real case,
real data should be used by all means. Uncertain data increasingly complicates the task of
obtaining meaningful results. Some approaches on how to deal with uncertain data can be
found in [5, 17, 210].
Handling interval uncertainty is a broad problem at the intersection between engineering, math-
ematics and statistics [210–212]. For the reasons mentioned above, the signal can be of poor
quality and the interpretation of the simulation results might lead to unrealistic or even dan-
gerous outcomes, for example if an actually disastrous assumption is shifted into an acceptable
range by incorrect quantification. Such a scenario is particularly conceivable in risk analysis, as
even smallest deviations in the input data can lead to a system failure that must be detected.
Especially in the dynamic behaviour of systems, data with poor precision can lead to enormous
problems, e.g., when the natural frequencies of the system under consideration are excited. The
behaviour of the system can change significantly in magnitude if imprecise rather than precise
data is used. Therefore, every attempt must be made to account for uncertainties.
Especially in the field of random vibrations [54, 111] and stochastic dynamics [52], where environ-
mental processes, such as wind and earthquake loads or sea waves, are the governing excitations,
a precise analysis of structures and buildings is indispensable. The DFT is particularly useful
here to determine the dominant frequencies of excitation for vibration analysis. A versatile
method to represent stochastic processes is the Power Spectral Density (PSD) function, which
represents the transformation of signals in the frequency domain and is also calculated by means
of the DFT [12]. For instance, it is used in earthquake engineering to display the amplitude of
acceleration with respect to frequencies given a signal. Therefore, the amplitude of the DFT is
of special interest in these fields, as it has an important physical meaning.
Some approaches have already been taken to estimate a reliable amplitude of the DFT from
uncertain data. In the field of stochastic dynamics, missing data were reconstructed under the
assumption that they are normally distributed. This probability density function of those data
was then propagated through the DFT [77, 105]. In other fields, the FFT and convolution were
studied for signals with interval and fuzzy uncertainty [213].
In this work, signals with poor precision are represented by intervals whose width can either be
constant or variable along the signal. The objective is to find the ranges of the absolute value of
the DFT of such an interval signal, i.e. upper and lower bounds of the Fourier amplitude, and not
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merely the ranges for real and imaginary parts of the transformed signal. Interval arithmetic
is sufficient to propagate interval signals through the DFT, but since the calculation of the
amplitude contains repeated variables, this approach usually does not yield exact bounds [41,
42, 44]. An interval algorithm has been proposed in [214] that fully addresses the dependency
problem caused by the repeated variables, leading to the exact bounds on the amplitude of the
DFT. In this paper, the proposed algorithm is presented in details and applied to an engineering
example involving signals with poor precision.
This work is organised as follows: An overview about the theoretical background is given in
Section 7.2. In Section 7.3, the novel algorithm for propagating interval uncertainty through
the DFT is described. Section 7.4 presents an application for the utilisation of the proposed
algorithm. The final conclusions are given in Section 7.5.

7.2 Preliminaries

In this section, some essential background is given on the rules of interval arithmetic used in this
work, on the representation of interval signals and on the interval extensions of the transform. In
addition, the repeated variables problem is introduced and the theory of PSD function estimation
is described briefly.

7.2.1 Interval arithmetic

An interval x is a compact subset of R and is defined as x = [x, x] = {x ≤ x ≤ x}. A complex
interval z ⊆ C, consisting of intervals for the real component zre ⊂ R and the imaginary
component zim ⊂ R, is defined as

z = zre + i zim = {zre + i zim | zre ∈ zre ∧ zim ∈ zim}. (7.1)

Using the rectangular interpretation of a complex interval, there are four endpoints: z1 =
zre + i zim, z2 = zre + i zim, z3 = zre + i zim, z4 = zre + i zim, each corresponding to a vertex
of the rectangle. The addition between two complex intervals z and w, can be defined in terms
of such endpoints as:

z + w = [min{zi + wj},max{zi + wj}], for i, j = 1, ..., 4. (7.2)

For a singleton a ∈ R, the singleton-interval multiplication is:

az = [min{azi},max{azj}], for i, j = 1, ..., 4. (7.3)

The absolute value of a complex number is obtained by squaring real and imaginary components
separately, followed by the square root of their sum, |z| =

√
z2

re + z2
im. The square and square
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Figure 7.1: Two signals with poor precision: constant interval uncertainty ξ = 0.5 (left), variable interval
uncertainty between ξmin = 0.1 and ξmax = 1.5 (right).

root of a real interval x are

x2 =


[
x2, x2] , x > 0[
x2, x2] , x < 0[
0,max

(
x2, x2)] , x ∋ 0,

(7.4)

and
√
x =

[√
x,
√
x
]
, x > 0. (7.5)

7.2.2 Signal with interval uncertainty

Sensor data can be subject to experimental uncertainty for a variety of reasons, given that their
acquisition can be faulty, intermittent due to maintenance, and of poor precision [210]. The
reasons are complex and range from simple measurement errors to total failure of the sensors.
Often the sensors are not accurate enough, are not calibrated correctly or are subject to certain
technical limitations. For example, extreme values may not be recorded due to sensor threshold
limitations. In some cases, the data can be disturbed by external influences, specifically if sensors
are used for long-term recordings. It is also possible that the sensor is damaged by the event
it is supposed to record, for example an earthquake, and makes incorrect recordings or stops
recording completely. The placement of the sensors also has a significant impact on the quality
of the signal. In addition, sensors may be temporarily unavailable due to maintenance. If the
time interval of unavailability is sufficiently short, intervals could be used to bridge this gap.
In this work, the assumption is made that sensors work accurately only within certain tolerances.
These tolerances are represented by intervals, i.e. each value of the data record is described by an
upper and lower bound and every arbitrary value within these bounds is possible. The interval
uncertainty can be specified as constant or variable along the signal. Two examples of constant
and variable interval uncertainty are illustrated in Fig. 7.1. Intervals are the most conservative
model of error, because no assumption is made about how the error is distributed nor how it
depends on anything else. Statistics for experimental data carrying interval uncertainty are
being extensively studied in the literature and just to mention a few, include [210–212, 215].
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An interval signal can be defined in central notation as

x = x+ ξ∆, (7.6)

where x ∈ RN is the vector of midpoints, ∆ = [−1, 1] is the unitary interval and ξ is the precision
of the signal. When the precision is variable across the signal, ξ ∈ RN is a vector of differing
scalars, otherwise it is a vector of identical scalars. This representation will be used to generate
simulated interval signals from precise intervals given measurement error.

7.2.3 Interval extensions

The DFT converts a signal x = x0, x1, ..., xN−1 to its Fourier sequence z = z0, z1, ..., zN−1, for
k = 0, ..., N − 1.
The interval extension of the DFT is obtained by replacing the real signal with their interval
values. The resulting interval Fourier transform at frequency number k is

zk =
N−1∑
n=0

xn · e− i2π
N
kn =

N−1∑
n=0

xn ·
[
cos

(2π
N
kn

)
− i · sin

(2π
N
kn

)]
. (7.7)

The interval DFT amplitude is

Ak = |zk| =

√√√√√[N−1∑
n=0

xn · cos
(2π
N
kn

)]2

+
[
N−1∑
n=0

xn · sin
(2π
N
kn

)]2

. (7.8)

An alternative interval extension of the DFT can be obtained representing the interval signal as
xn = xn + ξ∆, i.e. separating interval from non-interval components, which results in

zk =
N−1∑
n=0

xn · e− i2π
N
kn +

N−1∑
n=0

ξ∆ · e− i2π
N
kn, (7.9)

where ∆ = [−1, 1] is the unitary interval and ξ ∈ R is the precision of the interval signal, ex-
pressed in the same units as the signal. This extension can also be used to derive algorithms
for the interval propagation based on the zonotope representation as shown in [216, 217], and to
make comparisons with other methods, like Monte Carlo, for computing the bounds. Nonethe-
less, this representation will not be used for the derivation of the main algorithm.

Remark: An interval extension is obtained replacing the original expression’s variables directly
with interval variables. The fundamental theorem of interval analysis states that every interval
extension–obtained combining the four rules of arithmetic–is inclusion monotonic [42, 43]. This
translates into the well-known conservatism of interval analysis for computing the bounds. In
other words, the bounds obtained by interval analysis on interval extensions are always inclusive
thus rigorous.
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Remark: A united extension is defined as the union of all the images of a function evaluated
on all the subsets of a given interval space. The image of a united extension is often not a
box, but an arbitrarily-shaped set, which is referred to as the united set. In interval analysis,
conservatism is often due to approximating the united set with its enclosing box. This kind of
conservatism of interval computations arises in functions with repeated variables, or in back-
calculation problems, and is also known as the wrapping effect.

7.2.4 Repeated variables problem

For readers not familiar with the repeated variables problem of interval computing, a brief recap
is given as follows: Interval computations produce bounds that are best possible, i.e. without
inflated uncertainty, when the interval variables appear only once in their mathematical expres-
sion. For example, the evaluation of a second-degree polynomial ax2 + bx + c with interval
arithmetic can result in inflated bounds due to the interval x repeating twice in the expression.
For more details on this problem the reader can be referred to [218].

7.2.5 PSD function estimation

A stochastic (or random) process is influenced by random phenomena and fluctuations, so that
it cannot be described completely deterministically. The value of the stochastic process at any
point in time is determined by random variables [11]. An estimation of the stationary PSD
function of a stochastic process can be obtained by the periodogram [12, 52], which can be
defined by the squared amplitude of the DFT. The periodogram for a non-interval discrete
signal xn is

ŜX(ωk) = ∆t2

T

∣∣∣∣∣
N−1∑
n=0

xn · e− i2π
N
kn

∣∣∣∣∣
2

, (7.10)

where ∆t is the time step size, T is the total length of the record, n describes the data point
index in the record and k is the frequency number of ωk = 2πk

T . The interval extension of Eq.
(7.10) in trigonometric form for an interval signal xn is

ŜX(ωk) = ∆t2

T

[N−1∑
n=0

xn · cos
(2π
N
kn

)]2

+
[
N−1∑
n=0

xn · sin
(2π
N
kn

)]2 . (7.11)

Because Eq. (7.11) can be expressed in terms of the square of the Fourier amplitude as follows:
ŜX(ωk) = ∆t2

T A
2
k, and because the Fourier amplitude Ak, is a non-negative real interval, the

interval PSD function ŜX(ωk) can be computed without inflation, provided that its frequency
components are not combined together in further computations.
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7.3 The interval discrete Fourier transform algorithm

The objective of this work is to calculate the exact bounds on the interval extension of the Fourier
amplitude in Eq. (7.8), and subsequently on the interval extension of an estimation of the PSD
function in Eq. 7.11. Under no dependency assumption (noninteractivity) interval arithmetic
suffices to obtain the exact bounds on the Fourier sequence. To support this statement, it
will suffice to note that Eq. (7.7) has no repeated variables. Conversely, repeated interval
variables occur in the calculation of the interval amplitude spectrum of Eq. (7.8), thus additional
computational investment is needed. In order to obtain the exact bounds, the finite set of
complex pairs determining the boundary of the united set of the DFT is needed. Because the
DFT is a linear map, its image under the interval constraints, is a compact set called united set.
In this section, an algorithm that computes such united set, leading to the exact bounds on the
amplitude of the DFT is presented. This algorithm is referred to as the selective algorithm.
Because the DFT is a linear map, the united set can be obtained by endpoints analysis on Eq.
(7.7). Tracking all the endpoints in Eq. (7.7) allows the representation of the united extension
in terms of its finite boundary, but this task has exponential complexity O(2N ), with N being
the cardinality of the set of intervals, which coincides with the length of the signal in this study.
So, a better algorithm is needed to track down the endpoints whose image through the DFT
lies on the boundary of the united set. Fig. 7.2 shows the united set (octagon), the interval
extension (box), the image through the DFT of the endpoints (blue dots). Among the latter,
those on the boundary of the united set are depicted with orange diamond-shaped markers. The
interval extension is obtained applying the rules of interval arithmetic presented in Section 7.2.
The selective algorithm is tasked with the following three main steps:

1. Select the set of complex pairs on the boundary (vertices) of the united set, and track
down the corresponding endpoints.

2. Select the two vertices that are farthest and nearest to the origin of the complex plane.
These are named anchoring points. If the united set contains the origin of the complex
plane, then return the origin as the nearest point.

3. Compute the absolute value of these two precise complex numbers to obtain the resulting
interval amplitude. The absolute value of the farthest and nearest point is the upper and
lower bound, respectively.

These three steps are repeated for each frequency number k in Eq. 7.8, to construct the interval
Fourier spectrum.

7.3.1 Obtaining the boundary of the united set

In this section, the procedure used by the selective algorithm o track down the endpoints whose
image is on the boundary of the united set is presented. To understand the procedure, the
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Figure 7.2: Boundary points (orange diamond markers) of the united set (light blue), interval extension box
(green), and endpoints (blue dots) mapped through the Fourier transform for a short signal with N = 8.

Fourier sum of Eq. (7.7) can be conceptualised as a sequence of elementary additions. Each
addend of this series, xn · e− i2π

N
kn, is an interval in the complex plane, whose real and imaginary

components are perfectly dependent. In order to see that real and imaginary components are
perfectly dependent, the (n+ 1)th addend for a given frequency number k in trigonometric form
can be written as:

zk,n = xn cos
(2π
N
kn

)
− i xn sin

(2π
N
kn

)
.

From the trigonometric form, it appears evident that real and imaginary components are the
same interval xn differing by just a multiplicative factor.
In the complex plane, the interval addend zk,n is better represented by an oriented segment
rather than a box, as shown in Fig. 7.3. The Fourier series can be imagined as the sum of
such dependent interval objects. What happens when two such objects are added together?
Because a segment is a convex bounded set, the sum between two such sets is another convex
set, whose vertices are obtained by summing the addends’ vertices. Will all the vertices end up
on the boundary of the resulting convex set? The answer is no, but why? Although there is
an intuition as to which pairs of vertices will reach the boundary before the addition is done,
the algorithm adds together all the vertices, and a posteriori discards the pairs of vertices that
end up in the interior of the united set. An important theorem in computational geometry, that
has led to the Minkowski addition, guarantees that the points in the interior are necessarily
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Figure 7.3: First three addends of the interval Fourier series seen as the sum of perfectly dependent intervals,
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for N = 8, and k = 5.

mapped in the interior of the resulting polygon. In practice, the interior points are discarded by
constructing the convex hull of the set of vertices mapped through each addition, followed by
the indexing of only the points on the boundary, which will be subsequently kept in memory.
The polygon resulting from adding two dependent intervals—shown in Fig. 7.4—is then added
to the third dependent interval as shown in Fig. 7.5. This time, the addition generates two
polygons, whose convex hull is the resulting united set. Once again, all the mapped vertices
that end up in the interior are removed from memory, whilst the process continues until each
addend of the Fourier sum has been processed.
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Figure 7.4: The first addition of the Fourier series results in a polygon with four vertices.

The key steps performed by the selective algorithm are also presented in the Pseudocode 1 and
are described in detail in Appendix A.

Verification of the selective algorithm

The interval extension of the DFT can be used as verification tool to ensure the correctness of the
algorithm on arbitrary signals. This is possible thanks to the fact that the bounding box tightly
circumscribe (see Fig. 7.2) the united set because there are no repeating variables in Eq. 7.7.
In other words, for the verification of the algorithm, it is sufficient to show that the boundary
of the united set is always resting (for some points) on the boundary of the interval extension
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Figure 7.5: The second addition is the Minkowski sum of a polygon (resulting from the first addition) and the
third dependent interval in the Fourier series. The two vertices mapped in the interior of the resulting polygon
will be discarded.

Pseudocode 1 Selective algorithm
1: function ExactAmplitudeBounds(x, k)
2: N ← l(x) ▷ length of interval signal
3: v ← [e−i2π0k/Nx[0], e−i2π0k/Nx[0]] ▷ compute first two vertices
4: chull ← v ▷ initialise convex hull
5: for n← 1 to N − 1 do
6: v ← [e−i2πnk/Nx[n], e−i2πnk/Nx[n]] ▷ compute subsequent vertices
7: ep← add the two vertices v separately to the list chull to get a list of new endpoints
8: chull ← get convex hull of ep in R2 with real and imaginary components as coordinates
9: end for

10: if origin is inside chull then
11: Ak ← Interval(0, max(|chull|))
12: else
13: Ak ← Interval (min(|chull|), max(|chull|))
14: end if
15: return Ak ▷ bounds on the Fourier amplitude for frequency k

16: end function

box. This verification procedure can be done automatically and systematically within the code
that implements the algorithm. This result can be appreciated in Fig. 7.6 where the boundary
of the united set, the interval extension box and the endpoints are all depicted in the same plot
for four different frequency numbers k. The interval extension algorithm, which is presented
in the Pseudocode 2 in Appendix A, can also be used to obtain an outer approximation of the
united set, when speed is a priority. This verification algorithm is much faster than the selective
algorithm (Pseudocode 1), because no convex hull evaluation ought to take place. More details
about the cost of the selective and interval algorithms are provided in Section 7.3.4.

7.3.2 Determining the two anchoring points

The two anchoring points are defined as the farthest and the nearest vertices of the united set
from the origin of the complex plane. The absolute value of these two anchoring points yield the
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Figure 7.6: Boundary of the united set in red, image of the endpoints, and interval extension box, at each term
of the Fourier series, up to n = 7, for frequencies k ∈ {9, 12, 19, 25}.

minimum and maximum amplitude at any given frequency. This holds under the interpretation
that the absolute value, thus the amplitude of Eq. (7.8), can be seen as the Euclidean distance
from the origin of an equivalent point in R2 whose coordinates are the real and imaginary
components. In Appendix B, a simple proof is provided to show that the maximal distance is
attained at one of the vertices of the united set.
If the united set at a given frequency number k is denoted by Zk, and its border by ∂Zk, the
interval amplitude of the Fourier transform can be computed taking the minimum and maximum
over all the vertices of the united set,

Ak =
max
min

{|zk| : zk ∈ ∂Zk} . (7.12)

This is exemplified in Fig. 7.7 for four different frequencies. When the united set contains the
origin, the lower bound amplitude is zero, see Fig. 7.8. A function that checks if the origin of
the complex plane is contained in the united set is needed to perform this task.
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Figure 7.7: Anchoring points on the united set boundary at frequencies k ∈ {12, 14, 20, 24}, for a signal with
±0.1 [units] imprecision. The anchoring points corresponding to maximum and minimum amplitude are depicted
with a triangle marker pointing up for the maximum and down for the minimum.

7.3.3 Obtaining the interval amplitude spectrum

The amplitude spectrum of an arbitrary interval signal is constructed by collecting minimum and
maximum amplitude for all frequencies k ∈ {0, . . . , N − 1}, as shown in the previous section. A
few examples of this interval spectrum are shown in Fig. 7.9 for the same simulated signal with
different values of interval uncertainty. In Fig. 7.9 the interval amplitude spectrum obtained
with the algorithm (united extension), displayed in dark orange, is superimposed on the interval
amplitude spectrum obtained with interval arithmetic (interval extension), displayed in light
blue. It can be seen from Fig. 7.7 that the number of vertices composing the boundary of
the united set differs between frequency numbers. For example, frequency number k = 24 has
less vertices than frequency number k = 14. While the algorithm should produce exactly 2
more vertices at each iteration, for certain frequencies the Fourier coefficient is such that some
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Figure 7.8: An example of a united set (at frequency k = 28) that contains the origin of the complex plane.
In this case the minimum amplitude is zero. The anchoring points corresponding to maximum and minimum
amplitude are depicted with a triangle marker pointing up for the maximum and down for the minimum.

vertices get projected onto the same vertex. For example, frequency numbers that are a power
of two display projections that are always parallel to the coordinate axes, making the resulting
united set identified by four vertices only. This behaviour can be appreciated in Fig. 7.9, where
the united extension of the spectrum “peaks” at frequencies k = {32, 64, 96}. Therefore, these
peaks are not due to a numerical artefact but are inherent to the process of propagating intervals
through a discrete transform. For frequencies that are divisible by two, but have another cofactor
like k = 14 = 2 ·7 or k = 24 = 23 ·3, some projections parallel to the coordinate axes make some
of the vertices map onto the same one vertex, effectively making those aligned vertices collapse
into one. When N = 2m with m ∈ N, the Fourier coefficients 2π

N kn for frequency numbers k that
are a power of two: k = 2p, p ∈ N, p < m, correspond to a rotation on the Euler circle with
the following angle: 2π n2p

2m = 2π n
2m−p , which for p = m− 1 (or k = N/2) is a multiple of π. For

such frequency numbers the united set is a rectangle, thus united extension interval extension
coincide. This can be appreciated in Fig. 7.9, where for frequency number k = 64 the interval
extension and the united extension meet in one point in the upper bound.

7.3.4 Computational cost

The selective algorithm (Pseudocode 1) tracks down the endpoints corresponding to the vertices
of the united set for each frequency number. This process entails the addition of at most 4k
complex numbers (twice 2k additions). Set aside the convex hull step, a total of at most 4N
additions are performed at the end of the sum. At each k, however, the selective algorithm
computes the convex hull of the set of vertices obtained by the polygon-segment addition de-
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Figure 7.9: Interval Fourier amplitude spectrum obtained with the proposed algorithm (united extension) in
dark orange versus interval spectrum obtained with interval arithmetic (interval extension), displayed in light
blue, for signals with constant imprecision ξ = {0.5, 1.0, 1.5, 2.0}.

picted in Fig. 7.5, to eliminate the vertices that lie in the interior of the resulting polygon.
Because of the convex hull, each addition step will cost at least 4k log 4k. In total, because∑N
k k = N (N+1)

2 ≤ N2, N = 1, 2, ..., the cost of obtaining the boundary points is at most
(4N log 4N)2 for each frequency number k. For a signal of length N–with N = 2m a power
of two–the DFT outputs exactly N/2 frequencies, because the matrix of Fourier coefficients is
symmetric and orthogonal. Hence, overall the cost of running the selective algorithm is at most
N
2 (4N log 4N)2 = 8N3 log2 4N . Using the big O notation, the cost of the selective algorithm
is O(N3 log2N), which means that the interval DFT can be performed in polynomial time.
In contrast, an exhaustive search of all the endpoints of the interval signal (described in Pseu-
docode 3) would require 2k complex additions, so a total of N22N floating-point operations. In
big O notation such a brute-force algorithm costs O(2N ), which makes it unusable in practice.
The evaluation of the interval extension (described in Pseudocode 2), which yields the bounding
box that circumscribes the united set, here used for verification, need not compute a convex
hull at each addition, so it is much cheaper. The cost of obtaining the interval extension is thus
equivalent to the standard DFT algorithm with the only exception that each operation is done
within interval analysis. When interval multiplications (or divisions) are involved the cost of
the intervalised algorithm is at most four times (eight times with complex intervals) the cost
of the standard DFT algorithm. When there are only interval additions (or subtractions) and
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non-interval multiplications, the cost of an intervalised algorithm is at most two times (four
times with complex intervals) the cost of the standard DFT algorithm. In summary, the cost
of the intervalised DFT is: 1

2 N 4N = 2N2, which in big O notation is O(N2). Given that the
DFT algorithm runs in O(N2), there is no appreciable additional cost in running its intervalised
version.
An overview of the computational costs for the individual algorithms is provided in Table 7.1.

Table 7.1: Summary of computational costs

Algorithm Computational costs
Interval extension O(N2)
Selective O(N3 log2N)
Brute-force tracker O(2N )

7.4 Technical application

In order to demonstrate the propagation of intervals through the DFT, the pile foundation of an
offshore wind turbine excited by sea waves is considered. This model was chosen because it is easy
to understand, especially to demonstrate the proposed method, but still has the characteristics
of a real structure. An exemplary illustration of the offshore wind turbine model is shown in
Fig. 7.10. The total height of the structure is denoted by hpile. Since the structure is hollow
from the inside, the cross-section of the structure is specified. The outer radius R and the inner
radius r are important parameters to describe the wind turbine. The structure is subjected to
the continuous changes of the water height caused by the sea waves. When the water is at rest,
the water height is hwater, which is indicated by the dashed line. The change in water height
due to the sea waves is expressed by hwave(t), which is a time-dependent variable. The total
water height including the sea waves is thus H(t) = hwater + hwave(t).
This structure will be idealised as a Single-Degree-of-Freedom (SDOF) mass-spring-damper sys-
tem and described by means of the following equation of motion

mẍ(t) + cẋ(t) + kx(t) = F (t), (7.13)

where m describes the mass of the system, c is the damping coefficient and k denotes the
spring constant. x, ẋ and ẍ describe the displacement, velocity and acceleration of the system,
respectively. The external excitation of the system is F (t). The following structural parameters
are assumed for the wind turbine. The mass m is defined as

m = ρsteel hpile(R2 − r2)π + CONST = 1.71 · 106 + CONST [kg], (7.14)

with ρsteel = 7800 kg/m3 as the density of steel, hpile = 60 m as the total height of the offshore
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Figure 7.10: Exemplary illustration of the offshore wind turbine model used in this work.

pile, R = 3 m is the outer radius of the pile and r = 2.8 m is the inner radius of the hollow pile.
The constant CONST in Eq. (7.14) denotes the weight of any other components of the offshore
wind turbine, such as the turbine itself, the blades and other technical devices and equipment.
Furthermore, the stiffness is k = 106 N/m and the damping coefficient is c = 105 Ns/m.

7.4.1 Modelling of the excitation by sea waves

The dynamic behaviour of the system is caused by the sea waves. The waves continuously
change the water depth and thus the water pressure and the resulting buoyant force on the
pile foundation. To model the dynamic behaviour of sea waves in the frequency domain, a PSD
function derived within the Joint North Sea Wave Observation Project (JONSWAP) [89] is used,
which describes an extension of the Pierson-Moskowitz PSD function [88] and reads as follows

S(ω) = αg2

ω5 exp
(
−5

4

(
ωp
ω

)2
)
γr (7.15)

with
r = exp

(
−(ω − ωp)2

2σ2ω2
p

)
. (7.16)

In these equations α describes a spectral energy parameter, g is the gravity acceleration, ωp
describes the peak frequency, γr is the peak enhancement factor and σ the spectral width
parameter. An example for the JONSWAP PSD function with α = 0.0081, wp = 0.7, γ = 3.3
and
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σ =

0.7 ω ≤ ωp
0.9 ω > ωp

is given in Fig. 7.11 (left).
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Figure 7.11: Example for the JONSWAP PSD function (left) and a generated signal of wave heights with interval
uncertainty ξ = 0.1 m.

The JONSWAP PSD function (Eq. 7.15) is utilised to generate an artificial signal for the height
of the sea waves, which will be the signal under consideration. The spectral representation
method (SRM), given in Eq. (7.17), allows to generate stochastic processes from a given PSD
function SX [84]. It provides a suitable method for generating compatible time signals derived
from and carrying the characteristics of an underlying PSD function. The method reads as
follows

Xt =
N−1∑
n=0

√
4SX(ωn)∆ω cos(ωnt+ φn), (7.17)

with
ωn = n∆ω, n = 0, 1, 2, . . . , N − 1 (7.18)

where N → ∞, t as time vector and φn as uniformly distributed random phase angles in the
range [0, 2π].
For generating the signal Xt with total length of T = 350 s, the time step size ∆t = 2π/(2ωu) and
frequency step size ∆ω = (2π)/T are determined according to [84]. The upper cut-off frequency
is defined as ωu = 2.2975 rad/s. Thus, ∆t = 1.367 s and ∆ω = 0.018 rad/s. To emulate the poor
precision of the resulting signal Xt, it is intervalised using Eq. (7.6) with interval uncertainty
ξ = 0.1 m. The entire interval signal Xt is then represented by an interval at each point in time,
see Fig. 7.11 (right). This step is performed here to simulate a real signal with poor precision.

7.4.2 Computing the interval PSD function and the interval system response

The intervalised signal Xt of the wave height is transformed to the frequency domain as explained
in Section 7.3 by means of the interval extension and the united extension using Eq. (7.11).
Pushing the interval signal Xt through Eq. (7.11) using the algorithm described in Section 7.3
yields the exact bounds on ŜX ,
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ŜX(ωk) = ∆t2

T
A2
k (7.19)

because Ak ≥ 0 is non-negative by definition, see Eq. (7.8), and shows no dependence with T

and ∆t.
The bounds on the interval PSD function ŜX are shown on the left side of Fig. 7.12. For
comparison, the midpoint spectrum is also given, which is calculated via the ordinary DFT from
the signal without interval uncertainty. This procedure allows the uncertainties of the interval
signal Xt to be quantified in the frequency domain and to obtain an upper and lower bound for
the respective frequency components.
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Figure 7.12: Bounds obtained by the interval extension and the united extension of the signal with interval
uncertainty ξ = 0.1 m (left) and bounds on the resulting PSD function of the response (right) computed by Eq.
(7.20). The bounds derived by interval extension are displayed in light blue, the exact bounds derived by the
united extension in dark orange.

After the excitation of the wind turbine by the sea waves, a displacement of the pile foundation
can be detected. The PSD function of the system response indicates the frequency components
and their amplitude corresponding to the system displacement x(t) of the pile foundation in
the frequency domain. The system response is significantly dependent on the excitation and
the system parameters and can be utilised to detect critical system behaviour or system failure.
Instead of a numerical solution obtained by extensive MC simulation in time domain, the re-
sponse of the pile foundation in frequency domain can be directly attained by the the frequency
response function (e.g., [52, 124])

SY (ω) = SX(ω)|H(ω)|2 (7.20)

with H(ω) as transfer function

H(ω) = 1
ω2

0 − ω + 2ζω0ωi
. (7.21)

In these equations ω0 =
√
k/m describes the natural frequency of the system, ζ = c/(2ω0m)

is the damping ratio and i is the imaginary unit, while the PSD function of the excitation is
denoted by SX .
The natural frequency of the system thus results in ω0 = 0.7657 rad/s and the damping ratio is
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ζ = 0.0383. The constant CONST in Eq. (7.14) will be neglected for illustration purposes.
The upper and lower bounds of the interval PSD function of the response ŜY can be determined
separately by interval arithmetic using the singleton-interval multiplication (Eq. 7.3) for the
frequency response function (Eq. 7.20) on the upper and lower bounds of the interval PSD
function ŜX . The uncertainty in the original signal of wave heights is thus propagated to the
PSD function of the response ŜY and determined by their upper and lower bounds, see Fig.
7.12 (right). The determination of a bounded system response in the frequency domain thus
leads to a significant improvement in the evaluation of system responses in general, taking into
account the uncertainties in the input signal. For each frequency component, an upper and
lower bound is now identified in the response, which can be employed to determine whether
possible responses are within an acceptable window or result in dangerous system behaviour.
This procedure thus makes it possible to propagate the uncertainty of the input signal to the
system response and consequently to detect critical or dangerous system behaviour taking these
uncertainties into account. In particular, the range of natural frequencies of a system can thus
be assessed more accurately in this way.

7.4.3 Comparison with Monte Carlo

To determine the uncertainty of an interval signal, random signals within the bounds of the
interval signal are usually sampled using Monte Carlo (MC). In this example, a signal with
constant interval uncertainty ξ = 0.5 m is used. Within the interval bounds of the signal Xt,
any arbitrary signal is possible due to the definition of intervals. For illustration, a set of 20
sampled signals within the bounds is shown in Fig. 7.13. Each of these realisations is transformed
separately using Eq. (7.10) to obtain the PSD function. The maximum and minimum at each
frequency can then be determined from all individual transforms to obtain the envelope. These
are the extrema of the PSD function determined via MC. A comparison of these extrema and
the bounds determined by the interval and united extension is depicted in Fig. 7.13. To obtain
the MC extrema a total of 106 sample signals were generated and transformed.
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Figure 7.13: Signal with interval uncertainty ξ = 0.5 m and randomly sampled signals within the bounds (left),
resulting PSD function bounds obtained by the interval extension in light blue, the united extension in dark
orange and MC with 106 samples in light green (right).

It can be clearly seen that the minimum/maximum determined by MC are clearly suboptimal
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compared to the bounds determined by the united extension and interval extension. Since the
united extension produces exact bounds, it can be concluded that the determination of the
bounds with MC severely underestimates the uncertainty of the signal, which leads to major
problems and potential hazards in reliability assessment.
The MC method is tasked to identify the local minimum and maximum while complying with
the interval constraints. The number of MC samples determines how close these two extrema are
to the exact bounds. In principle, the more MC samples are utilised the closer the minimum and
maximum are to the exact bounds. However, the number of MC samples that provides enough
coverage can be prohibitively high, as shown in Fig. 7.13, where 106 MC samples were evaluated.
In Fig. 7.14, the PSD functions were estimated for 3, 10, 100 and 500 sampled signals to show
the progression of coverage as the number of MC samples increases. In Fig. 7.15 the envelopes
of 101, 103 and 106 MC samples are compared against each other. This problem of coverage
for the MC method has been presented for example in [219, 220]. A numerical optimization
study has also been conducted using fmincon in Matlab. The minimum/maximum found by the
optimizer are significantly better than those obtained with Monte Carlo, whilst also requiring a
lot less DFT evaluations. Nevertheless, the minimum and maximum outputted by the optimiser
are only known to be local optima, so they are not guaranteed to approximate the exact bounds
to the desired accuracy in general.
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Figure 7.14: Estimated PSD functions for 3, 10, 100 and 500 sampled signals, against interval PSD function,
for a signal with interval uncertainty ξ = 0.5 m.
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Figure 7.15: Envelopes of estimated PSD functions for 101, 103 and 106 sampled signals for a signal with interval
uncertainty ξ = 0.5 m (top) compared against the bounds obtained by the interval extension in light blue and
the united extension in dark orange (bottom).

7.4.4 Sensitivity analysis

To investigate the influence of the interval uncertainty ξ of the signal on the interval width of
the PSD functions, a sensitivity analysis is carried out in this section. The interval uncertainty
of the signal used in the previous sections was successively increased by 0.1 up to 5.0 and the
Fourier transform with interval extension and united extension were calculated. For comparison,
the interval width of the spectra at the peak frequency of ω0 = 0.7657 rad/s, which is the natural
frequency of the system, is used. The results for both proposed methods are shown in Fig. 7.16
(left). It should be noted that for an interval uncertainty of ξ ≥ 0.4, the lower bound is zero
for the interval extension. This is shown in Table 7.2, where some selected values of the interval
bounds are presented and is also visible in Fig. 7.16 (right). The same applies for an interval
uncertainty of ξ ≥ 0.5 for the united extension. Accordingly, the interval width grows only by
the increase of the upper bounds. From Fig. 7.16 (right) a linear trend between widths can
be appreciated up to ξ ≥ 0.5. For values of imprecision greater than ξ ≥ 0.5, for which the
lower bound is always zero, a non-linear trend between widths can be appreciated instead. Such
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uncertainty growth can have significant impact on the analysis, since there could be a potentially
quadratic increase of the energy content in the PSD function as the uncertainty of the signal
grows.
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Figure 7.16: Influence of the interval uncertainty ξ of the signal on the interval width of the PSD function at the
peak frequency ω0 = 0.7657 rad/s (left) and linear trend for smaller interval uncertainties in the signal (right).

Table 7.2: Interval width and bounds at the peak frequency ω0 = 0.7657 rad/s for the interval extension and
the united extension of the PSD function ŜX .

ξ Interval extension United extension

width
(
ŜX
)

ŜX width
(
ŜX
)

ŜX

0 0 [4.4, 4.4] 0 [4.4, 4.4]

0.1 5.7 [2.0, 7.7] 4.1 [2.6, 6.7]

0.2 11.3 [0.6, 11.9] 8.1 [1.3, 9.4]

0.4 22.9 [0, 22.9] 16 [0, 16.0]

0.8 55.9 [0, 55.9] 35 [0, 35.0]

1 77.8 [0, 77.8] 47.1 [0, 47.1]

2 241.9 [0, 241.9] 135.2 [0, 135.2]

3 496.7 [0, 496.7] 268.6 [0, 268.6]

4 842.1 [0, 842.1] 447.3 [0, 447.3]

5 1278 [0, 1278] 671.3 [0, 671.3]

7.5 Conclusions

Especially in engineering, the quantification of uncertainties is a matter of paramount impor-
tance. In particular, it can be argued that real recorded data are hardly ever exact, being
subject to uncertainties due to a wide variety of factors. The algorithm presented in this paper
allows interval signals to be projected through the DFT to obtain an upper and lower bound on
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the Fourier amplitude and an estimation of the PSD function, which has a significant impact
on the quantification of uncertainty present in time signals. The propagation of signals can
be computed using interval arithmetic, which generally provides outer bounds, as opposed to
exact. An algorithm that characterises the geometry of the united set of the DFT is presented.
The algorithm fully addresses the repeated variables problem arising in the calculation of the
amplitude and therefore yields the exact bounds. Both the interval and the united extension
were compared against the MC method. It was shown that the extrema derived via MC severely
underestimate the uncertainty. The proposed algorithm is thus more adequately able to account
for the uncertainties of signals with poor precision in the Fourier domain. One advantage of this
algorithm is that no assumptions have to be made about the error distribution. This leads to
a significant improvement in the assessment of engineering problems regarding risk, reliability
and uncertainty. The strengths and advantages of the algorithm were illustrated by means of an
example involving dynamic structural analysis, in which the bounds of the PSD estimation of an
interval signal were calculated. These bounds can be propagated through the system to quantify
the response behaviour and the impact of the signal’s inherent uncertainty on the quantity of
interest.

7.6 Replicability

The software for computing the interval DFT can be accessed in a single instance via GitHub
at: https://github.com/interval-fourier-transform/DFT (last accessed February 2022);
whilst the code running the presented examples is available at: https://github.com/inter

val-fourier-transform/application-to-poor-precision-time-signals (last accessed
February 2022). The code, examples and numerical results presented in this paper are therefore
fully replicable.
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Appendix A. Pseudocodes

The provided Pseudocodes 1 and 2 describe the computation of the interval Fourier amplitude of
an interval signal x for a specific frequency k with the selective algorithm and with the interval
extension using interval arithmetic. Pseudocode 3 describes the tracking of all endpoints for
each iteration step. This code is mainly used for illustration purposes and as the foundation of
the selective algorithm.
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Pseudocode 1: This algorithm, also called the selective algorithm, calculates the Fourier
amplitude of an interval signal x for any frequency k by determining the convex hull of the
endpoints. First, the length N of the interval signal is determined. The first two vertices v are
calculated by computing the first coefficient for n = 0 of the DFT for the first segment of the
signal for the upper and lower interval bounds. These are stored in chull and describe the first
two vertices of the endpoint analysis.
Within the for loop, the next vertices v are iteratively computed by calculating the next coef-
ficients for n = 1, . . . , N − 1. These two vertices v are added separately to the list chull to get
a new list of endpoints, which are stored in the variable ep. The convex hull is calculated from
ep, where the real and imaginary components represent the coordinates in R2. The vertices
forming the convex hull are stored in chull and all other endpoints are discarded. This procedure
is repeated for each n until the last iteration n = N − 1 is reached, thus chull constitutes the
convex hull after each iteration.
Since the minimum and maximum distance from the convex hull to the origin of the coordinate
system determine the interval bounds, these are obtained from the absolute values of chull. If
the origin is inside the convex hull, the lower bound is 0, otherwise it is defined by min(|chull|).
The upper bound is always defined by max(|chull|).
The algorithm returns the upper and lower bound on the Fourier amplitude Ak for the respective
frequency k.
Pseudocode 2: In this algorithm interval arithmetic is utilised to achieve the bounds on the
Fourier amplitude. This algorithm is mainly used as a verification algorithm for the algorithm
presented in Pseudocode 1.
First, the interval extension of the DFT (Eq. 7.7) of the interval signal x for the frequency
k is determined and stored in zk. From the complex interval zk the absolute values of the
vertices of the bounding box are calculated. Those are defined by the 4 possible combinations
of upper and lower bound for real and imaginary parts of zk: dll = |Re(zk) + i Im(zk)|, dlh =
|Re(zk) + i Im(zk)|, dhl = |Re(zk) + i Im(zk)| and dhh = |Re(zk) + i Im(zk)|.
Since the minimum and maximum distances to the origin of the coordinate system define the
interval bounds, these will be determined: The upper bound is the maximum value of all
distances to the origin described by Ak = max(dll, dlh, dhl, dhh). The lower bound is de-
termined by considering different cases: If the origin of the coordinate system is inside zk,
0 is determined as the lower bound. If Re(zk) ≤ 0 ≤ Re(zk), then the lower bound will
be defined as Ak = min (|Im(zk)| , |Im(zk)|). If Im(zk) ≤ 0 ≤ Im(zk), the lower bound
will be Ak = min (|Re(zk)| , |Re(zk)|), and otherwise the lower bound is determined to be
Ak = min (dll, dlh, dhl, dhh).
The algorithm returns an outer approximation of the interval bounds Ak of the Fourier amplitude
for a given frequency k.
Pseudocode 3: This algorithm describes the tracking of all endpoints using a brute-force
method. The idea behind the code is the same as in Pseudocode (1). The difference is that

146



CHAPTER 7. PROJECTING INTERVAL UNCERTAINTY THROUGH THE DISCRETE FOURIER TRANSFORM:
AN APPLICATION TO TIME SIGNALS WITH POOR PRECISION

the convex hull is not determined in each iteration and therefore no endpoints are discarded.
Instead, all endpoints ep are stored in a binary tree for all N and are passed on to the next
iteration. During this procedure the number of endpoints becomes significantly larger than in
the selective algorithm, as the number of endpoints increases exponentially in base two and with
exponent given by the iteration number. The total number of iterations is determined by length
N of the interval signal. The resulting bounds for the Fourier amplitude are the same as in
Pseudocode (1), but for practical simulations this code is not feasible as it is too inefficient to
be used for long signals. Therefore, this code is herein mainly used for illustration purposes and
as the foundation of the selective algorithm.

Pseudocode 2 Verification algorithm with rigorous interval arithmetic
1: function IntervalAmplitudeBounds(x, k)
2: zk ← DFT(x, k) ▷ interval extension of the discrete Fourier transform (Eq. 7.7) for frequency k

3: dll ← |Re(zk) + i Im(zk)|
4: dlh ← |Re(zk) + i Im(zk)|
5: dhl ← |Re(zk) + i Im(zk)|
6: dhh ← |Re(zk) + i Im(zk)| ▷ dll, dlh,dhl and dhh define distances of the vertices of the bounding

box to the origin
7: Ak ← max(dll, dlh, dhl, dhh) ▷ get maximum distance to origin
8: if origin is inside zk then ▷ get minimum distance to origin depending on different cases
9: Ak ← 0

10: else if Re(zk) ≤ 0 ≤ Re(zk) then
11: Ak ← min (|Im(zk)| , |Im(zk)|)
12: else if Im(zk) ≤ 0 ≤ Im(zk) then
13: Ak ← min (|Re(zk)| , |Re(zk)|)
14: else
15: Ak ← min (dll, dlh, dhl, dhh)
16: end if
17: Ak ← Interval(Ak, Ak)
18: return Ak ▷ bounds on the Fourier amplitude for frequency k

19: end function

Appendix B. Anchoring points

The maximum amplitude of the DFT is the maximum distance from the boundary of the united
set to the origin of the complex plane. This holds under the interpretation that a complex
number is a point in R2, whose coordinates are the real and imaginary components, and its
complex absolute value is the Euclidean distance of that point from the origin. Because the
boundary of the united set consists of a finite number of vertices, in this Appendix, it will be
sufficient to show that the farthest point to the origin of the plane is attained at the vertices
and not on any of the connecting edges.

Proposition 1. Let A,B ∈ R2 two points on the real plane, O the origin of the plane, and −−→AB
the segment connecting the two points. For every point P ∈ −−→AB, it holds that
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Pseudocode 3 Tracking of all the endpoints
1: function EndpointsTreeTracker(x, k)
2: N ← l(x) ▷ length of interval signal
3: v ← [e−i2π0k/Nx[0], e−i2π0k/Nx[0]] ▷ compute first two vertices
4: ep← v ▷ initialise endpoints
5: tree[0]← ep
6: for n← 1 to N − 1 do
7: v ← [e−i2πnk/Nx[n], e−i2πnk/Nx[n]] ▷ compute subsequent vertices
8: ep← add the two vertices v separately to the list ep to get a list of new endpoints
9: tree[n]← ep ▷ store nth level of endpoints ep in tree

10: end for
11: return tree ▷ endpoints of the Fourier sum for each iteration
12: end function

∥∥∥−−→OP∥∥∥ ≤ max
(∥∥∥−→OA∥∥∥ , ∥∥∥−−→OB∥∥∥) . (7.22)

A

B

O

P
A

B

O

α
−−→
AB

Figure 7.17: Two vertices on the boundary of the united set. On the right, the point P in the interior is obtained
multiplying the vector AB times a scalar α ∈ [0, 1].

Proof. It is well-known in Linear Algebra that the difference between two points yields the
oriented segment between the two points:

−−→
OB −

−→
OA = −−→AB. (7.23)

Any point P = −−→OP in the interior of the segment −−→AB, see Figure 7.17, can be expressed as:

−−→
OP = −→OA+ α

−−→
AB, where α ∈ [0, 1]. (7.24)

Therefore, any point in the interior of the segment is

P = −−→OP = −→OA+ α
(−−→
OB −

−→
OA

)
, (7.25)

Assuming that
∥∥∥−−→OB∥∥∥ ≥ ∥∥∥−→OA∥∥∥, so that

∥∥∥−−→OB∥∥∥ is maximum. Then, primarily because α ∈ [0, 1],
it holds

(1− α)
∥∥∥−→OA∥∥∥+ α

∥∥∥−−→OB∥∥∥ ≤ ∥∥∥−−→OB∥∥∥ . (7.26)

148



CHAPTER 7. PROJECTING INTERVAL UNCERTAINTY THROUGH THE DISCRETE FOURIER TRANSFORM:
AN APPLICATION TO TIME SIGNALS WITH POOR PRECISION

The left-hand side of (7.26) satisfies the Triangle Inequality:∥∥∥(1− α)−→OA+ α
−−→
OB

∥∥∥ ≤ (1− α)
∥∥∥−→OA∥∥∥+ α

∥∥∥−−→OB∥∥∥ . (7.27)

Therefore, it holds ∥∥∥(1− α)−→OA+ α
−−→
OB

∥∥∥ ≤ ∥∥∥−−→OB∥∥∥ . (7.28)

If the left-hand side of (7.28) is rearranged as follows, the original statement is proven:∥∥∥−→OA+ α
(−−→
OB −

−→
OA

)∥∥∥ =
∥∥∥−−→OP∥∥∥ ≤ ∥∥∥−−→OB∥∥∥ . ■ (7.29)
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8 Assessing the severity of missing data problems with
the interval discrete Fourier transform algorithm

The contribution in this chapter is a further investigation of the interval DFT algorithm (Chap-
ter 7). While it was previously assumed that signals can be uncertain due to various reasons
and influences and were therefore represented as interval signals, this part considers the problem
of missing data in more detail. Often a failed sensor or corrupted data is the reason for missing
data in a data record. This is a common problem when dealing with real data sets, as it may
have a significant impact on the simulation results. Especially in spectral analysis, where a sig-
nal is transformed from time domain to frequency domain to determine its spectral properties,
a signal with missing data can yield misleading results. There are several methods available to
reconstruct the gaps in the signal, e.g. least squares or autoregressive methods, but none of
these methods can guarantee an exact reconstruction. Furthermore, an incorrect reconstruction
can lead to undesired side effects and the signal transformed into the frequency domain, i.e., the
PSD function, may not reflect the actual characteristics of the process.
In this part of the thesis, the interval DFT algorithm described in the previous chapter is
examined for its capabilities on signals with missing data. The missing data are reconstructed
using only two very simple and conservative reconstruction methods, as the objective of the
part is to investigate the interval DFT algorithm on signals with missing data and not to find a
particularly suitable reconstruction method. The gaps are reconstructed with intervals to obtain
a certain margin of safety. The interval DFT algorithm is then tested in several case studies:
the sensitivity to the interval uncertainty in general, the influence of the number of missing
data, the influence of the gap size and the distribution of the missing data within the signal are
investigated.
The results show that the interval DFT algorithm can cope with missing data signals. In general,
the algorithm can transform any signal, regardless of the interval uncertainty or the size of the
missing data gap. However, it is important to ensure that appropriate methods and/or interval
widths are used to reconstruct the missing data. If the interval uncertainty is too large, the
bounds in the frequency domain are correspondingly large as well, such that the quantification
of the uncertainties is correct but no longer applicable in practical examples or realistic cases.
However, if the reconstruction methods and the interval uncertainties are chosen appropriately
for the given problem, the algorithm provides results that are useful in practice. A quantification
of the uncertainties of an input signal is therefore enabled by the interval DFT algorithm.
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Abstract

The interval discrete Fourier transform (DFT) algorithm can propagate in polynomial time signals carrying
interval uncertainty. By computing the exact theoretical bounds on a signal with missing data, the algorithm
can be used to assess the worst-case scenario in terms of maximum or minimum power, and to provide insights
into the amplitude spectrum bands of the transformed signal. The uncertainty width of the spectrum bands
can also be interpreted as an indicator of the quality of the reconstructed signal. This strategy must however,
assume upper and lower values for the missing data present in the signal. While this may seem arbitrary, there
are a number of existing techniques that can be used to obtain reliable bounds in the time domain, for example
Kriging regressor or interval predictor models. Alternative heuristic strategies based on variable (as opposed to
fixed) bounds can also be explored, thanks to the flexibility and efficiency of the interval DFT algorithm. This is
illustrated by means of numerical examples and sensitivity analyses.
Keywords: Missing data, Exact bounds, Interval discrete Fourier transform, Power spectral density estimation,
Interval uncertainty, Uncertainty quantification.

8.1 Introduction

The consideration and quantification of uncertainties in real data are of paramount importance
for the design and simulation of buildings and structures. Even small measurement errors can
lead to a wrong consideration of the input data and result in a disastrous interpretation of the
simulation results, e.g. if an actually catastrophic result is shifted into an acceptable range
by not taking uncertainties into account. Uncertainties should therefore be considered in any
case and included in the simulation, also in order to determine possible safety margins. In
order to safely design or to assess the reliability and robustness of buildings and structures that
are subject to environmental processes such as wind, earthquakes or waves and thus exhibit
dynamic behaviour, simulations are indispensable. The discrete Fourier transform (DFT) is
an important tool in this field to determine the frequency components and their amplitude of
the environmental processes. Consideration of uncertainties in the data, such as missing data,
should be combined with the DFT to obtain reliable results.
Some approaches for estimating power spectral density (PSD) functions from signals with miss-
ing data have already been proposed. In particular, approaches treating missing data as normal
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distributed random variables and propagating them through the DFT [77, 105]. Another ap-
proach was presented by [213], where the fast Fourier transform (FFT) and convolution were
studied for signals with interval and fuzzy uncertainty. An algorithm to propagate interval sig-
nals through the DFT to obtain exact bounds on the Fourier amplitude was proposed by the
authors of this work in [214], while the algorithm is described in details and applied to an exam-
ple involving dynamic structural analysis in [221]. The algorithm enables the quantification of
uncertainties in time signals and to project them into the frequency domain. No assumptions are
made about the dependence and distribution of the error over the time steps. Thus, a bounded
Fourier amplitude and a PSD function can be computed, which can be used to analyse system
responses in the frequency domain, taking into account these uncertainties. The objective of
this work is to investigate the capabilities of the interval DFT in missing data problems. It also
aims to determine the severity of the missing data and the possible impact on the interval DFT
algorithm. The quantity used to measure uncertainty in this work is the area between the upper
and lower bounds. Contrarily, a Fourier amplitude without uncertainty will have such an area
equal to zero.
This work is organised as follows: Some theoretical background that is relevant for this work is
provided in Section 8.2. The problem of missing data is elaborated in Section 8.4. In Section 8.3
the interval DFT algorithm is described briefly. The capabilities of said algorithm in combination
with missing data problems are explored in Section 8.5, while the final conclusions are given in
Section 8.6.

8.2 Preliminaries

This section introduces some fundamental theoretical concepts that will be required in this work.

8.2.1 Power spectrum estimation

Given a signal xn, represented as a zero mean stochastic process. To examine the signal for its
frequency components, it can be transformed into the frequency domain using the periodogram.
The periodogram is the squared absolute value of the Fourier transform and reads as follows

ŜX(ωk) = ∆t2

T

∣∣∣∣∣
N−1∑
n=0

xn · e− 2πikn
N

∣∣∣∣∣
2

, (8.1)

where ∆t is the time step size, T is the total length of the record, n describes the data point
index in the record, N is the total number of data points in the signal and k is the frequency
number of ωk = 2πk

T .

8.2.2 Generation of artificial time signals

To generate an artificial time signal for simulation purposes, the Spectral Representation Method
(SRM) can be utilised [84]. The SRM generates a time signal Xt based on an underlying PSD
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function SX and carries their characteristics. The SRM is

Xt =
M−1∑
m=0

√
4SX(ωm)∆ω cos(ωmt+ φm), (8.2)

with ωm = m∆ω, m = 0, 1, 2, . . . ,M − 1, where M is the total number of frequency points, t as
time vector and φm as uniformly distributed random phase angles in the range [0, 2π].
As the underlying PSD function, a spectrum derived within the Joint North Sea Wave Observa-
tion Project (JONSWAP) [89] will be used throughout this work. The JONSWAP spectrum is
an extension of the Pierson-Moskowitz PSD function [88] and is utilised to describe the dynamic
behaviour of sea waves in the frequency domain.

8.3 The interval DFT algorithm

To transform signals into the frequency domain, the DFT can be employed. The DFT converts
a signal x = x0, x1, ..., xN−1 to a Fourier sequence z = z0, z1, ..., zN−1 for k = 0, ..., N − 1.
Since many signals are subject to missing data, these must be taken into account during the
transformation in order to obtain reliable results. One possibility is to reconstruct the data before
the transformation. However, since the DFT is very sensitive to changes in the signal, as shown
in Section 8.4, it is more reasonable to fill the missing data gaps with intervals and propagate
them through the DFT. However, since the DFT is not able to transform such uncertainties, an
algorithm was proposed that is capable to propagate interval uncertainties through the DFT and
thus calculate exact bounds on the Fourier amplitude. This interval DFT algorithm is briefly
described here, for a detailed explanation and examples the reader is referred to [221] and [214].
Based on the interval extension of the DFT, obtained by replacing the real signal with their
interval values for each frequency number k

zk =
N−1∑
n=0

xne
−iak =

N−1∑
n=0

xn · [cos ak − i · sin ak] , (8.3)

with ak = 2πkn/N , the algorithm computes two vertices for each iteration n, resulting from the
interval values of the n-th data point of the signal. In each iteration step, the vertices are added
to the previous vertices. The convex hull is calculated from these. The points of the convex hull
are passed on to the next iteration step, while the remaining vertices have no influence on the
calculation and are discarded. Once all points of the signal have been iterated, the minimum
and maximum distance of the convex hull to the origin of the coordinate system is determined,
which defines the interval bounds of the absolute value of the transform

Ak = |zk| =

√√√√√[N−1∑
n=0

xn cos ak

]2

+
[
N−1∑
n=0

xn sin ak

]2

. (8.4)
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Figure 8.1: The signal under investigation with two examples each with missing data.

The absolute values of the points in the convex hull are calculated for this purpose. If the origin
of the coordinate system is within the convex hull, the lower bound is 0, otherwise it is defined by
the minimum absolute value. The upper bound is always determined by the maximum absolute
value. Thus, an upper and lower bound of the Fourier amplitude can be computed for each
frequency number k.

8.4 Missing data

A common problem when using real data records is that of missing data. The causes of missing
data range from simple measurement errors to total sensor failure. It is possible that the sensor
is damaged by the event it is supposed to record, e.g. an earthquake, and makes incorrect
recordings or stops recording completely. In addition, the sensors may be temporarily unavailable
due to maintenance. If the period of unavailability is sufficiently short, intervals can be used
to bridge this gap. These causes introduce uncertainty into the data series. Although there are
various reconstruction methods, e.g. least squares method, compressive sensing or autoregressive
methods, the method for reconstructing the signal in case of missing data will not be considered
further. Here, the focus is on the performance of the proposed algorithm rather than the
reconstruction method. The reconstructed data are represented by intervals, accounting for
uncertainties induced through the reconstruction. Thus, the reconstructed signal is passed to
the interval DFT algorithm as an interval signal. Fig. 8.1 shows the signal under investigation
in this work with two examples each with missing data. In this work, the same signal is used
throughout to ensure maximum comparability of the different cases. If a signal in time domain
is certainly known, it can be transformed to the frequency domain via the DFT without loss
of information. In fact, the DFT is sensitive to small changes in the signal. To demonstrate
the sensitivity, the signal in Fig. 8.1, consisting of 64 data points, is investigated. The target
spectrum, i.e. the Fourier amplitude of the signal without missing data computed with Eq. 8.1,
is depicted with the Fourier amplitudes of the same signal with 5%, 10% and 25% missing
data, which are reconstructed by linear interpolation between the two adjacent non-missing
data points, see Fig. 8.2. The position of the missing data is randomly chosen. The interpolated
values are treated as discrete values instead of intervals first. Although linear interpolation is not
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Figure 8.2: Influence of the linear interpolation on the amplitude of the DFT.

considered as a reconstruction method in this work, it can be used to illustrate the sensitivity.
It can be clearly seen that the transformations have the same shape and peak frequency, but
are in part very different from the target spectrum and are not as smooth. Since reconstructed
data accordingly do not allow a reliable transformation into the frequency domain and do not
take uncertainties into account, it is reasonable to derive bounds in which the actual spectrum
may be located. The algorithm presented in 8.3 is applicable for this purpose.
Two reconstruction methods are utilised in this paper:

1. A method based on artificial inflation of the “true” data point using the sample standard
deviation s of the entire signal. An interval of height [−s, s] replaces the missing data.

2. A method that replaces the missing data by an interval determined by the minimum and
maximum value of the entire signal.

The sample standard deviation of the signal is defined as:

s =

√∑N−1
n=0 (xn − x̃)2

N − 1 ,

where x̃ is the sample mean of the signal.

8.5 Case studies

In this section, the influence of missing data on the bounds of the estimated PSD is investigated.
Specifically, interval width, the number of missing data, the gap length, and the distribution
of missing data within the signal are examined. The signal under investigation is generated by
SRM (Eq. 8.2) with the underlying PSD function given in [89]. The positions of the missing
data in the signal are artificially generated in random order. It is assumed that the missing
data is uniformly distributed within the signal. A study is also conducted to investigate the
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Figure 8.3: Interval width of the bounded PSD function at the peak frequency ωp (top) and the area between
upper and lower bound (bottom) for increasing interval uncertainty ξ and different lengths of the gap lg ∈
{1, 3, 5, 7, 9, 11}.

influence of the position of the missing data, comparing the uniformly distributed missing data
with binomially distributed missing data. In order to obtain the best possible comparison, the
same signal is used in all studies of this work.

8.5.1 Sensitivity to interval uncertainty

Let ξ be the height of the interval gap, a.k.a. interval uncertainty. To investigate the sensitivity
of the interval uncertainty ξ in time domain to the interval uncertainty in the frequency domain,
the signal is randomly equipped with missing data gaps of length lg ∈ {1, 3, 5, 7, 9, 11}, where
the gap length is given as the number of missing time points.
The interval uncertainty ξ of these gaps is successively increased from 0.1 to 10. To determine
the sensitivity, the interval width of the Fourier amplitude at the peak frequency ωp, as well
as the area between the upper and lower bound are determined. The results are depicted in
Fig. 8.3. For smaller gaps with low interval uncertainty, a linear trend in the interval width at
ωp appears at the beginning, which later changes to a non-linear trend. This occurs as soon as
the lower bound of the Fourier amplitude reaches 0 and only the upper bound contributes to
the interval width. The increase is nevertheless moderate and not extremely strong. The area
between the bounds, on the other hand, has a non-linear trend even with low interval uncertainty
and small gaps. This non-linearity becomes stronger the larger the gap becomes. This is due to
the fact that the entire frequency range is considered instead of only the peak frequency ωp. At
many frequency points, the lower bound has already reached 0, while it still higher at the peak
frequency. For larger gaps, the lower bound is mostly zero, which explains why in Fig. 3 the
start of the non-linear behaviour is appreciated for lower interval uncertainty.

8.5.2 Number of missing data

In the following example, the interval uncertainty has been kept constant and corresponds to
the sample standard deviation s of the signal. The number of missing data points, on the other
hand, has been gradually increased to investigate the influence of the number of missing data
on the bounds of the PSD. In Fig. 8.4, the reconstructed signals and the the bounds of the
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Figure 8.4: Signal with 5%, 10%, 25% and 50% missing data reconstructed using method (1) and corresponding
bounded PSD functions.

estimated PSDs are shown for 5%, 10%, 25% and 50% missing data in the signal. The results
show that a small amount of missing data (e.g. 5% or 10%) can be captured well with the interval
DFT algorithm. The bounds enclose the estimated PSD function of the discrete signal relatively
tightly and are therefore very useful for quantifying the uncertainties. Also, the bounds of the
PSD for a higher amount of missing data in the signal (up to 50% in this example) can still be
considered, despite the relatively wide bounds, e.g. for a worst-case consideration where only
the upper bound is used.
In the following, the same example is shown, but the data was reconstructed using method (2),
see Fig. 8.5 for the reconstructed signals and the bounds of the PSDs in frequency domain.
The results also show here that small amounts of missing data can be mapped well in the
frequency domain even with reconstruction method (2). With higher numbers of gaps, however,
the determination of the bounds in the frequency domain reaches its limitation, as the computed
bounds are very high and can no longer be used for practical purposes. For example, the bounds
from the previous example with 50% missing data have a lower interval uncertainty than the
signal with 25% missing data in this example. This yields in particular that if there is little
missing data, reconstruction can be carried out conservatively with wide intervals. Conversely,
if the number of missing data is large, a method with a more accurate reconstruction is required.
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Figure 8.5: Signal with 5%, 10%, 25% and 50% missing data reconstructed using method (2) and corresponding
bounded PSD functions.

As a measure for uncertainty, the area between upper and lower bound is utilised. Fig. 8.6 shows
this for an increasing number of missing data recovered with the two reconstruction methods.
Due to possible random fluctuations, as the position of missing data is randomly chosen, this
simulation was carried out 100 times in order to average out these fluctuations. As expected,
there is a significantly higher area between the bounds when using reconstruction method (2)
compared to reconstruction method (1).

8.5.3 Gap size of missing data

Recall that gap size is given as the number of missing time points, and it is also referred to as
gap length. To determine the influence of the gap length, different scenarios were evaluated.
The gap lengths lg ∈ {1, 20, 40, 60} were artificially inserted into the signal. The gaps were
first reconstructed with method (1). The signals and the corresponding transformations are
shown in Fig. 8.7. It can be seen that small gaps filled with the intervals provide a good
transformation and the bounds are relatively tight around the exact spectrum. The interval
DFT algorithm can also handle larger gaps well, although the bounds of the transformation are
comparatively large. Nevertheless, these can be used, for example, to design for a worst-case
when only the upper bound with the largest energy content is used for planning and simulation.
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Figure 8.6: Area between upper and lower bound investigated for the number of missing data.

For these investigations, all examples with reconstruction method (2) are omitted, since it has
been shown that large gaps already lead to extremely large bounds with reconstruction method
(1) and are practically no longer useful. Since the length of the gap naturally corresponds to the
number of missing data, no significant differences between Fig. 8.8 and Fig. 8.6 in the previous
section can be detected. This indicates that the position of the missing data has a minor role in
determining the uncertainty, but the number has a major role. Nevertheless, for completeness
the influence of the distribution of the missing data will be investigated in the next section.

8.5.4 Distribution of missing data

This example is used to investigate the influence of the distribution of the missing data within
the signal. For the sake of brevity, only the results for reconstruction method (1) are shown. In
addition, it has been shown in the previous sections reconstruction method (2) cannot be used
for real phenomena if the number of missing data is sufficiently high, as the bounds are extremely
large. For the investigations a uniform distribution and a binomial distribution were utilised
to randomly generate the missing data and to investigate their influence on the transformation
to the frequency domain. The interval PSDs of the reconstructed signal with 4, 8, 16 and 32
missing data are depicted in Fig. 8.9. It can be seen that the influence of the position of the
missing data is of minor relevance. Although the transformed signals shown are only specific
cases, they are nevertheless representative of the general case. This statement can be supported
by the fact that this simulation has been carried out several times, but the results are always
identical. The transforms look almost identical in each case, regardless of the distribution of the
missing data. In addition, the interval widths at the respective frequencies, such as the peak
frequency, are very similar and the area between the bounds are also almost identical.
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Figure 8.7: Signals with a gap of length lg ∈ {1, 20, 40, 60} of missing data reconstructed by method (1) and
corresponding bounded PSD functions.
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Figure 8.8: Area between upper and lower bound investigated for the length of the gap.

8.6 Conclusions

In this work, the interval DFT algorithm has been investigated for its ability to transform signals
with missing data reconstructed by intervals. Different scenarios have been considered, such as
the influence of the interval width, the number of missing data, the length of the gap of missing
data and the distribution of the missing data in the signal. It was shown, that the largest
influence was exerted by the interval uncertainty in the signal and the number of missing data,
while the distribution of the data and their position is of minor importance. In addition, no
indications could be found of an influence whether the data are missing at individual points
or appear as a large gap. It was found that too large intervals often lead to extremely wide
bounds, which are usually no longer usable for practical purposes. If the number of missing data
is sufficiently small, however, a good transformation can be computed even with a conservative
estimation of the intervals, in which the bounds are close to the actual spectrum. With a
larger number of missing data or larger gaps, it is also possible to plan for the worst-case by
considering only the upper bound, provided that the interval width is reasonably chosen. It has
also been shown that the potential energy content of the PSD can change significantly depending
on the choice of intervals. In summary, the interval DFT algorithm provides excellent results
for uncertain data. However, it should be noted that the results are highly dependent on the
reconstruction of the data. Thus, it is highly recommended that in the case of missing data, the
interval DFT algorithm should be employed with an advanced reconstruction method in order
to obtain reliable results.

Replicability

The software for computing the interval DFT can be accessed in a single instance via GitHub
at: https://github.com/interval-fourier-transform/application-to-missing-data.
The code, examples and numerical results presented in this paper are therefore fully replicable.
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Figure 8.9: Influence of the distribution of missing data within the signal for 4, 8, 16 and 32 missing data
reconstructed with method (1).
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9 Conclusions and Outlook

In this concluding chapter, the main developments of the work are summarised and useful
extensions and possible improvements are suggested.

9.1 Conclusions

The quantification of uncertainties is a very important issue in reliability analysis simulations
and in determining the dynamic system behaviour of buildings and structures. If uncertainties
are not adequately taken into account, this can have fatal consequences, so that a structure is
considered safe even though it is at high risk of damage or collapse. Especially when using real
data, uncertainties are present and need to be quantified and, if possible, reduced. This work
therefore focuses on the quantification of uncertainties in the frequency domain.
The novel methods presented in this thesis contribute to the quantification of uncertainties that
occur in the data records and are induced by the PSD estimation process. The methods are
based on uncertainty quantification in the frequency domain, resulting in novel load models
that, depending on the amount and appearance of the data, result in a probabilistic or an
interval-based model. These models have proven useful in quantifying uncertainties and thus
providing reliable simulation results. Since the system responses have the same appearance as
the input models, i.e. probabilistic or interval-based, reliable ranges instead of deterministic
values can be determined in which the actual system behaviour is located, taking into account
the corresponding uncertainties. This has the advantage that the system response can thus
be determined more reliably. A conclusion without taking uncertainties into account may be
difficult and misleading.
The first approach presented is based on the assumption that multiple data records are available
that have similar characteristics in the frequency domain. From these similar data, a proba-
bilistic model, the relaxed PSD, is derived that is characterised by a PDF at each individual
frequency. This has the advantage that reliable ranges in which the true PSD lies can be de-
termined by subjective probabilities. It is robust against spectral outliers, which can lead to
non-representative results. The probabilistic nature of this model makes it possible to directly
sample individual PSDs, which can be used to generate artificial stochastic processes. In another
part of this thesis, the possibilities of generating stochastic processes are examined, as these are
often influenced by random variables. Overall, it can be stated that the relaxed PSD is able to
generate stochastic processes with suitable methods. It is also possible to reduce the number of
random variables if suitable methods such as the SHF are used.
In the case where only few but similar data are available, it is not possible to derive a reli-
able probabilistic model. The derived PDFs and associated probabilities can then be highly
misleading. In such cases, it may be useful to derive an interval-based model instead of using
probabilities. The advantage of this approach is that bounds are derived which constrain the
data, and no information about the distribution of the data within these bounds needs to be
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known. First, a model was presented that optimises reliable bounds via the computed basis
functions of a radial basis function network. This approach takes into account the physics of the
underlying process and reflects the dependencies between frequencies. A second proposed model
calculates confidence intervals of the data at different confidence levels, which are transformed
into Fuzzy numbers for each frequency. Both representations result in non-probabilistic models,
thus they can be used to calculate reliable ranges of system response and to robustly determine
critical system behaviour.
Since the models presented are based on the assumption that the data used are similar in
frequency domain, it is necessary to first verify the similarity of these data before deriving the
respective load models. In all cases, arbitrarily used data can lead to load models that do not
adequately represent the actual underlying process. In a probabilistic model, the PDFs can have
a very high variance, and in an interval-based model the bounds can be very wide, making these
models less accurate. This may lead to less meaningful system responses in subsequent system
analyses, as the aim is to narrow the actual system response as much as possible, rather than
measuring a wide range. A prior determination of the data for spectral similarity is therefore
absolutely necessary. An approach addressing this issue is presented in this thesis. Based on
distances, measured with the Bhattacharyya distance, and the k-means algorithm, a data set
with high spectral variance can be effectively classified into groups of similar data. An algorithm
for determining the optimal number of groups based on the Silhouette method was presented in
addition. This approach can not only be used to classify data, but also enables the reduction of
variance in the data set and in the simulation results. Individual load models can be generated
from the respective groups, which can be applied to the structure under investigation in order
to obtain more accurate simulation results. For an approximation of the failure probability, the
empirical CDF can be derived. A weighted CDF can be calculated from the individual load
models taking into account the probability of occurrence.
The final contribution of this thesis is an extension of the DFT. Signals are typically subject to
uncertainties, so it can be useful to assume reliable bounds for such a signal. Instead of a discrete-
valued signal, an interval-valued signal can subsequently be obtained, which is characterised by
an upper and lower bound for each point in time. In this case an exact statement about the
position of the true signal cannot be made. The presented interval DFT algorithm characterises
the geometry of the united set and thus provides exact bounds instead of outer bounds. It also
addresses the repeated variables problem, a typical problem in interval arithmetic that causes
an artificial inflation of the bounds. The presented algorithm thus allows the propagation of
an interval signal through the DFT whereby exact bounds of the Fourier amplitude can be
obtained. The algorithm enables the propagation of signals with missing data, provided that
the data have been reconstructed appropriately beforehand. Missing data signals can be a major
problem, as no information about the actual position of the data point is known. Therefore, a
reliable reconstruction and subsequent derivation of bounds in the frequency domain is essential
and contributes to the efficient quantification of uncertainties.
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Overall, the methods presented in this thesis provide a significant contribution to the quantifi-
cation of uncertainties in PSD estimation. A wide range of different cases are covered, namely
multiple data resulting in a probabilistic model; limited data, allowing interval and fuzzy-based
models to be generated; single uncertain time signals, which led to the interval DFT algorithm
and the computation of exact bounds on the Fourier amplitude; and the classification of data
in the frequency domain to define the spectral similarity and reduce the variance in the results
and input data. In addition, the missing data problem was addressed by reconstructing the
data with reliable intervals and calculating reliable Fourier amplitude bounds using the inter-
val DFT algorithm. The developments in this work thus provide a framework for quantifying
uncertainties in the PSD estimation and in determining the reliability of buildings and struc-
tures. This has opened up new avenues and possibilities in the treatment of uncertainties in the
frequency domain. Since uncertainties are present in time signals and further uncertainties are
induced by the PSD estimation process, a quantification of these uncertainties directly in the
frequency domain seems to be reasonable. Thus, this framework offers a significant contribution
to uncertainty quantification and closes a gap in this research area.

9.2 Outlook

The methods presented in this paper have proven to be capable of handling uncertainties in
environmental processes and developing corresponding load models in the frequency domain.
Nevertheless, further useful extensions and improvements have already been identified during
the development, which will be further discussed here.
The main focus of the thesis is on modelling uncertainties. However, the propagation of uncer-
tainties in the simulation should not be neglected. While relatively simple propagation methods,
such as Monte Carlo, were used in this work, advanced approaches should be used in future works
so that, for example, the failure probability can be determined efficiently in the context of relia-
bility analyses. Advanced sampling methods such as Subset Sampling or Directional Importance
Sampling can be used to generate adequate stochastic processes efficiently, the Probability Den-
sity Evolution Method (PDEM) can be applied to obtain a probabilistic system response which
develops over time, and Change of Measure (COM) may be implemented to efficiently propagate
PSD functions and stochastic processes. These methods lead to a robust and efficient propaga-
tion of uncertainties through a system and provide reliable system responses. Within this scope,
any attempt should be made to reduce the number of random variables in the derived load mod-
els and generated stochastic processes. Random variables introduce further uncertainty in the
sense of stochastic variation into the processes, such that a relatively high number of generated
processes is required to average out the influence of the random variables. Therefore, efficient
methods to reduce the random variables are necessary. Initial studies on this have already been
carried out in Chapter 3.
When developing load models, it is important to consider correlations and dependencies between
frequencies. For the imprecise PSD in Chapter 4, this has already been realised through the

165



CHAPTER 9. CONCLUSIONS AND OUTLOOK

use of basis functions and an approximation of the basis spectrum. For the relaxed PSD in
Chapter 2 the dependencies between frequencies are not considered. However, this can be
achieved by including a full covariance matrix of the spectrum process. Correlations identified
in the ensemble spectrum can have a significant impact on the model description of the process.
For example, the individual PSD functions for each data set in an ensemble might be comparably
different, but their integral sums might remain constant. In this case, not taking spectrum
covariance into account may result in a model that contains uncharacteristic extreme values of
high and low power.
Since this work aims at modelling environmental processes considering uncertainties, it is im-
portant to prove the feasibility with real data sets and real-world problems. The load models
developed in Chapter 4 and 6 demonstrate that they can be employed for this purpose. Never-
theless, an extension of the other developed models is necessary. Nowadays, thanks to numerous
databases, it is possible to obtain real data easily. It is assumed that the usability of real data is
not a major challenge, provided that adequate pre-processing of the data has taken place. Since
real data are usually subject to uncertainties, they are often affected by strong variations in the
frequency domain if no suitable PSD estimators are used. However, if estimators for PSDs are
used in an averaged sense, for instance, the difficulties in deriving the proposed load models are
diminished. This has already been demonstrated in Chapter 4, where the use of weak estimators
and inadequately pre-processed data led to unacceptable results. This was counteracted by the
utilisation of appropriate estimation techniques.
Another important step is the extension of the load models to the non-stationary case, as the
estimation of evolutionary PSD functions also takes into account temporal changes in frequency.
Thus, the process behaviour will be represented more realistically. In particular, earthquakes
as short-term processes have a relevant transient behaviour instead of a stationary response
to dynamic accelerations characterised by the response to a PSD function. Since only the
stationary case is considered in this work, it is necessary to extend the developed load models
to the non-stationary case, using the short-time Fourier transform (STFT) or the harmonic
wavelet transform to estimate the frequency in the time-frequency domain. This is expected
to be straightforward in all cases, except for minor adjustments, as the methods developed are
independent of the dimension of the given problem. However, two problems can already be
identified in the estimation of evolutionary PSDs that need to be addressed. The first challenge
is to determine the relative position in time of each process record as part of an ensemble. For
processes that have a strict timestamp for comparison, this is not a problem. However, when
records from independent environmental processes are used as part of an ensemble, establishing
a strict beginning, end and duration for each record is not a simple task. To account for this,
an optimisation problem must be solved over the temporal shift of the spectrum that minimises
the total spectral variance over the ensemble. Such a problem could be solved iteratively by
defining an initial mean spectrum, then optimising the shifts of each data set to reduce the
variance of the ensemble, and eventually recalculating the mean spectrum. Such a framework
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would prove to be a useful tool in a number of areas outside of civil engineering where non-
stationary ensembles of data are analysed. The second problem to be solved is the occurrence
of "end-effects" in the time-frequency domain, or specifically in the context of wavelets referred
to as "cone-of-influence", which are artefacts in wavelet or STFT representations of the process
estimated from data in time domain. The problem arises from the fact that numerical wavelet
transforms and the discrete Fourier transform (for STFT) involve cyclic convolutions, which
causes the spectral power to spill over from one end of the signal to the other. This problem is
usually mitigated in STFT by applying a smooth window when truncating the data set, but the
orthogonality of the transformation is no longer preserved. With wavelets, the problem can be
solved by artificially expanding the signal, e.g. by padding with zeros or mirrored copies of the
signal.
By incorporating the above-mentioned considerations, the load models presented in this the-
sis can be further improved and a more realistic description can be derived. The resulting
simulations, for example in the context of reliability analyses, thus become more accurate and
robust.
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