648 research outputs found

    An architecture for automatically developing secure OLAP applications from models

    Get PDF
    Context: Decision makers query enterprise information stored in Data Warehouses (DW) by using tools (such as On-Line Analytical Processing (OLAP) tools) which use specific views or cubes from the corporate DW or Data Marts, based on the multidimensional modeling. Since the information managed is critical, security constraints have to be correctly established in order to avoid unauthorized accesses. Objective: In previous work we have defined a Model-Driven based approach for developing a secure DWs repository by following a relational approach. Nevertheless, is also important to define security constraints in the metadata layer that connects the DWs repository with the OLAP tools, that is, over the same multidimensional structures that final users manage. This paper defines a proposal to develop secure OLAP applications and incorporates it into our previous approach. Method: Our proposal is composed of models and transformations. Our models have been defined using the extension capabilities from UML (conceptual model) and extending the OLAP package of CWM with security (logical model). Transformations have been defined by using a graphical notation and implemented into QVT and MOFScript. Finally, this proposal has been evaluated through case studies. Results: A complete MDA architecture for developing secure OLAP applications. The main contributions of this paper are: improvement of a UML profile for conceptual modeling; definition of a logical metamodel for OLAP applications; and definition and implementation of transformations from conceptual to logical models, and from logical models to the secure implementation into a specific OLAP tool (SSAS). Conclusion: Our proposal allows us to develop secure OLAP applications, providing a complete MDA architecture composed of several security models and automatic transformations towards the final secure implementation. Security aspects are early identified and fitted into a most robust solution that provides us a better information assurance and a saving of time in maintenance.This research is part of the following Projects: SIGMA-CC (TIN2012-36904), GEODAS-BC (TIN2012-37493-C01) and GEODAS-BI (TIN2012-37493-C03) funded by the Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER. SERENIDAD (PEII11-037-7035) and MOTERO (PEII11- 0399-9449) funded by the Consejería de Educación, Ciencia y Cultura de la Junta de Comunidades de Castilla La Mancha, and Fondo Europeo de Desarrollo Regional FEDER

    Modelling Security of Critical Infrastructures: A Survivability Assessment

    Get PDF
    Critical infrastructures, usually designed to handle disruptions caused by human errors or random acts of nature, define assets whose normal operation must be guaranteed to maintain its essential services for human daily living. Malicious intended attacks to these targets need to be considered during system design. To face these situations, defence plans must be developed in advance. In this paper, we present a Unified Modelling Language profile, named SecAM, that enables the modelling and security specification for critical infrastructures during the early phases (requirements, design) of system development life cycle. SecAM enables security assessment, through survivability analysis, of different security solutions before system deployment. As a case study, we evaluate the survivability of the Saudi Arabia crude-oil network under two different attack scenarios. The stochastic analysis, carried out with Generalized Stochastic Petri nets, quantitatively estimates the minimization of attack damages on the crude-oil network

    Showing the Benefits of Applying a Model Driven Architecture for Developing Secure OLAP Applications

    Get PDF
    Data Warehouses (DW) manage enterprise information that is queried for decision making purposes by using On-Line Analytical Processing (OLAP) tools. The establishment of security constraints in all development stages and operations of the DW is highly important since otherwise, unauthorized users may discover vital business information. The final users of OLAP tools access and analyze the information from the corporate DW by using specific views or cubes based on the multidimensional modelling containing the facts and dimensions (with the corresponding classification hierarchies) that a decision maker or group of decision makers are interested in. Thus, it is important that security constraints will be also established over this metadata layer that connects the DW's repository with the decision makers, that is, directly over the multidimensional structures that final users manage. In doing so, we will not have to define specific security constraints for every particular user, thereby reducing the developing time and costs for secure OLAP applications. In order to achieve this goal, a model driven architecture to automatically develop secure OLAP applications from models has been defined. This paper shows the benefits of this architecture by applying it to a case study in which an OLAP application for an airport DW is automatically developed from models. The architecture is composed of: (1) the secure conceptual modelling by using a UML profile; (2) the secure logical modelling for OLAP applications by using an extension of CWM; (3) the secure implementation into a specific OLAP tool, SQL Server Analysis Services (SSAS); and (4) the transformations needed to automatically generate logical models from conceptual models and the final secure implementation.This research is part of the following projects: SERENIDAD (PEII11- 037-7035) financed by the ”Viceconsejería de Ciencia y Tecnología de la Junta de Comunidades de Castilla-La Mancha” (Spain) and FEDER, and SIGMA-CC (TIN2012-36904) and GEODAS (TIN2012-37493-C03-01) financed by the ”Ministerio de Economía y Competitividad” (Spain)

    A UML profile for multidimensional modeling in data warehouses

    Get PDF
    The multidimensional (MD) modeling, which is the foundation of data warehouses (DWs), MD databases, and On-Line Analytical Processing (OLAP) applications, is based on several properties different from those in traditional database modeling. In the past few years, there have been some proposals, providing their own formal and graphical notations, for representing the main MD properties at the conceptual level. However, unfortunately none of them has been accepted as a standard for conceptual MD modeling. In this paper, we present an extension of the Unified Modeling Language (UML) using a UML profile. This profile is defined by a set of stereotypes, constraints and tagged values to elegantly represent main MD properties at the conceptual level. We make use of the Object Constraint Language (OCL) to specify the constraints attached to the defined stereotypes, thereby avoiding an arbitrary use of these stereotypes. We have based our proposal in UML for two main reasons: (i) UML is a well known standard modeling language known by most database designers, thereby designers can avoid learning a new notation, and (ii) UML can be easily extended so that it can be tailored for a specific domain with concrete peculiarities such as the multidimensional modeling for data warehouses. Moreover, our proposal is Model Driven Architecture (MDA) compliant and we use the Query View Transformation (QVT) approach for an automatic generation of the implementation in a target platform. Throughout the paper, we will describe how to easily accomplish the MD modeling of DWs at the conceptual level. Finally, we show how to use our extension in Rational Rose for MD modeling.This work has been partially supported by the METASIGN project (TIN2004-00779) from the Spanish Ministry of Education and Science, by the DADASMECA project (GV05/220) from the Regional Government of Valencia, and by the MESSENGER (PCC-03-003-1) and DADS (PBC-05-012-2) projects from the Regional Science and Technology Ministry of Castilla-La Mancha (Spain)

    Planning and Design Soa Architecture Blueprint

    Full text link
    Service Oriented Architecture (SOA) is a framework for integrating business processes and supporting IT infrastructure as secure, standardized components-services-that can be reused and combined to address changing business priorities. Services are the building blocks of SOA and new applications can be constructed through consuming these services and orchestrating services within a business process. In SOA, services map to the business functions that are identified during business process analysis. Upon a successful implementation of SOA, the enterprise gain benefit by reducing development time, utilizing flexible and responsive application structure, and following dynamic connectivity of application logics between business partners. This paper presents SOA reference architecture blueprint as the building blocks of SOA which is services, service components and flows that together support enterprise business processes and the business goals

    A UML framework for OLAP conceptual modeling

    Get PDF
    Data warehouses are used by organizations around the world to store huge volumes of historical data. Ultimately, the purpose of the warehouse is to allow decision makers to assess both the history and, more importantly, the future of the organization. In practice, the capacity to make meaningful decisions is further supported through the use of Online Analytical Processing (OLAP) applications that provide more sophisticated representations of the warehouse data. In order to do this, OLAP systems rely on a multidimensional conceptual data model that represents the core elements of the data warehouse, as well as the relationships between them. Currently, there is no definitive conceptual model for this kind of environment. It is therefore quite difficult for data warehouse designers to express the kinds of complex analytical requirements which arise in real-world situations. In this thesis, we propose a robust and flexible conceptual model that can be used to represent multi-dimensional OLAP domains. Specifically, we present a profile extension of the Unified Modeling Language (UML) that consists of a set of stereotypes, constraints and tagged values that elegantly represent multi-dimensional properties at the conceptual level. We also make use of the Object Constraint Language (OCL) to ensure the correctness and completeness of the specification, thereby avoiding an arbitrary use of the basic components. Furthermore, we demonstrate how the new OLAP profile is utilized in MagicDraw, one of the leading UML development tools. The end result is an OLAP Modeling Environment (OME) that should significantly reduce development time, as well as improving the quality of the analytical interface for the end user

    A Catalog of Reusable Design Decisions for Developing UML/MOF-based Domain-specific Modeling Languages

    Get PDF
    In model-driven development (MDD), domain-specific modeling languages (DSMLs) act as a communication vehicle for aligning the requirements of domain experts with the needs of software engineers. With the rise of the UML as a de facto standard, UML/MOF-based DSMLs are now widely used for MDD. This paper documents design decisions collected from 90 UML/MOF-based DSML projects. These recurring design decisions were gained, on the one hand, by performing a systematic literature review (SLR) on the development of UML/MOF-based DSMLs. Via the SLR, we retrieved 80 related DSML projects for review. On the other hand, we collected decisions from developing ten DSML projects by ourselves. The design decisions are presented in the form of reusable decision records, with each decision record corresponding to a decision point in DSML development processes. Furthermore, we also report on frequently observed (combinations of) decision options as well as on associations between options which may occur within a single decision point or between two decision points. This collection of decision-record documents targets decision makers in DSML development (e.g., DSML engineers, software architects, domain experts).Series: Technical Reports / Institute for Information Systems and New Medi

    Soa Reference Architecture Blueprint

    Full text link
    Service Oriented Architecture (SOA) is a framework for integrating business processes and supporting IT infrastructure as secure, standardized components services that can be reused and combined to address changing business priorities. Services are the building blocks of SOA and new applications can be constructed through consuming these services and orchestrating services within a business process. In SOA, services is map to the business functions that are identified during business process analysis. Upon a successful implementation of SOA, the enterprise gain benefit by reducing development time, utilizing flexibility and responsive application structure, and following dynamic connectivity of application logics between business partners. This paper presents SOA reference architecture blueprint as the building blocks of SOA which is services, service components and flows that together support enterprise business processes and the business goals. Layanan Berorientasi Arsitektur (SOA) merupakan framework untuk mengintegrasikan proses bisnis dan mendukung infrastruktur TI secara aman, layanan komponen standar yang dapat digunakan kembali dan dikombinasikan untuk mengatasi Perubahan prioritas bisnis. Layanan merupakan blok bangunan SOA, di mana aplikasi baru dapat dibangun melalui konsumsi layanan ini dan merancang layanan dalam proses bisnis. Dalam SOA, layanan dipetakan ke fungsi bisnis yang diidentifikasi selama analisis proses bisnis. Setelah keberhasilan implementasi SOA, Perusahaan memperoleh keuntungan diantaranya mengurangi waktu pengembangan, memanfaatkan fleksibilitas dan struktur aplikasi responsif, dan mengikuti konektivitas dinamis dari logika aplikasi antara mitra bisnis. Paper ini menyajikan cetak biru referensi arsitektur SOA sebagai blok bangunan SOA yang merupakan komponen pelayanan jasa, dan arus yang bersama-sama mendukung proses bisnis Perusahaan dan tujuan bisnis
    corecore