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Abstract

In model-driven development (MDD), domain-speci�c modeling lan-
guages (DSMLs) act as a communication vehicle for aligning the require-
ments of domain experts with the needs of software engineers. With the
rise of the UML as a de facto standard, UML/MOF-based DSMLs are
now widely used for MDD. This paper documents design decisions col-
lected from 90 UML/MOF-based DSML projects. These recurring design
decisions were gained, on the one hand, by performing a systematic litera-
ture review (SLR) on the development of UML/MOF-based DSMLs. Via
the SLR, we retrieved 80 related DSML projects for review. On the other
hand, we collected decisions from developing ten DSML projects by our-
selves. The design decisions are presented in the form of reusable decision

records, with each decision record corresponding to a decision point in
DSML development processes. Furthermore, we also report on frequently
observed (combinations of) decision options as well as on associations be-
tween options which may occur within a single decision point or between
two decision points. This collection of decision-record documents targets
decision makers in DSML development (e.g., DSML engineers, software
architects, domain experts).

1 Introduction

This report presents a collection of reusable design-decision descriptions (de-
cision records) and auxiliary materials (prototype solutions, rationale tables)
gained from systematically reviewing 90 domain-speci�c modeling language
(DSML) projects. The variety of these 90 projects allowed us to gain signi�cant
insights into the design of DSMLs (e.g., knowledge about frequently observed
decision options and combinations of options in and across existing DSML de-
signs). The audience of this document collection are decision makers in DSML

∗This work has partly been funded by the Austrian Research Promotion Agency (FFG) of
the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT) through
the Competence Centers for Excellent Technologies (COMET K1) initiative and the FIT-IT
program.
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development processes (e.g., DSML engineers, software architects, domain ex-
perts). We consider this report as a valuable source for the decision-making
process of design-decision makers by providing, e.g., guidance on when to favor
or to discard certain candidate solutions for a DSML design problem. The
reviewed DSMLs are based on the Uni�ed Modeling Language 2 (UML; [116])
and the corresponding Meta Object Facility (MOF [115]). As a consequence,
the documented design rationale is to some extent speci�c to the capabilities of
the UML 2.x, in general, and the UML 2.x extension techniques, in particular.

This documentation of generic design-rationale documentation has been
compiled in several steps, in a long-running research project:

1. Initial design reviews of 10 of our own DSML projects [70]; see also Ap-
pendix B.

2. A pilot literature-review study [51].

3. An authoritative, large-scale systematic literature review (SLR) of software-
engineering publications published between 2005 and 2012 [141] yielding
80 DSML projects; see also Appendix C).

In step 1, we reviewed ten (out of the �nal 90) DSML projects which had
been developed by ourselves and are summarized in Table 1. The �rst column
of Table 1 states the consecutive DSML project numbering used throughout this
paper, the DSML's name, and a reference to the corresponding publication(s).
The application domains shown in the third column of Table 1 are encoded
according to the 2012 ACM Computing Classi�cation System (CCS).1

Projects P2�P9 provide support for modeling various security properties of
software-based information systems, such as, role-based access control (RBAC),
process-related duties, or data con�dentiality and integrity. The DSMLs result-
ing from P2�P9 are based on a common and generic metamodel de�ned in P2.
The other two DSMLs support the modeling of interdependent concern behavior
(P1) and the modeling of composition in dynamic programming environments
(P10).

In step 3), we performed a systematic literature review (SLR; see, e.g., [26,
87, 164]) on the development of UML/MOF-based DSMLs (more information
is available at [141]). With the SLR, we were able to retrieve 80 related DSML
projects and to complement and revise our decision catalog. The revisions to the
initial version of the catalog [70, 71] are documented in Appendix A. The SLR
helped us to collect evidence for validating the decision options and associations
we identi�ed (see Table 3).

To map the domain coverage of the 90 projects, we classi�ed every DSML
according to the CCS. Table 15 shows the frequency of categories assigned to the
selected DSML projects (due to its size, the table was moved to Appendix D
at the end of this paper). In total, we used 63 distinct CCS categories and
we assigned 177 category tags, that is a mean of ∼2 category assignments per
DSML project. The frequency distribution shows that the paper corpus covers
a very broad and diverse range of application domains. The most frequently
assigned CCS categories see an important number of DSMLs falling into the
areas of service-oriented architectures (especially implemented via web services),
software security engineering, as well as business process modeling.

1Available at http://www.acm.org/about/class; last accessed: Feb 2, 2015.
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Table 1: Overview of conducted DSML development projects. See also Ap-
pendix B.

DSML Objective Domains

P1
ConcernAc-
tivities
[151]

An approach to model interdependent con-
cern behavior using extended UML activity
models.

Access control, Software
design engineering

P2
BusinessAc-
tivities
[150]

An integrated approach for modeling pro-
cesses and process-related RBAC models
(roles, hierarchies, statically and dynamically
mutual exclusive tasks etc.).

Access control, Business
process modeling, Software
security engineering

P3
UML-PD
[137, 138]

A UML extension for an integrated modeling
of business processes and process-related du-
ties; particularly the modeling of duties and
associated tasks in business process models.

Access control, Business
process modeling, Software
security engineering

P4
UML-DEL
[136, 138]

An approach to provide modeling support for
the delegation of roles, tasks, and duties in
the context of process-related RBAC models.

Access control, Business
process modeling, Software
security engineering

P5
SOF
[68]

A UML extension to model con�dentiality
and integrity of object �ows in activity mod-
els.

Business process modeling,
Software security engineer-
ing

P6
UML-PD
[135]

UML modeling support for the notion of mu-
tual exclusion and binding constraints for du-
ties in process-related RBAC models.

Access control, Business
process modeling, Software
security engineering

P7
SOFServices
[67, 72]

Incorporation of data integrity and con�den-
tiality into the MDD of process-driven SOAs.

Business process model-
ing, Service-oriented archi-
tectures, Software security
engineering, Web services

P8
UML-CC
[139]

Integration of context constraints with
process-related RBAC models and thereby
supporting context-dependent task execu-
tion.

Access control, Business
process modeling, Software
security engineering

P9
SecurityAu-
dit
[69]

A generic UML extension for the de�nition of
audit requirements and speci�cation of audit
rules at the modeling-level.

Publish-subscribe / event-
based architectures, Soft-
ware security engineering

P10
MTD
[161]

An approach based on model transformations
between the valid structural and behavioral
runtime states that a system can have.

Object oriented languages,
Software architectures

Additionally, we extracted the UML diagram types tailored by the 90 DSMLs
according to Annex A of the UML superstructure [116] (see Table 2). In total,
the DSMLs tailor 156 diagram types, that is a mean of ∼1.8 diagram types per
DSML project. In this calculation, we omit four DSMLs, which target all UML
diagram types or are unspeci�c about the diagram types. Regarding DSMLs'
primary modeling instruments, ∼65% (101/156) of the tailored diagram types
de�ne structure and ∼35% (55/156) behavior of a software system. In terms
of modeling a system's structure, class diagrams are adopted by 55 DSMLs,
followed by component and package diagrams (15 and 14 DSMLs). On the
behavioral side, activity (27), state machine (13), and use case diagrams (9) are
the three most frequently used ones.

To structure this document collection, we adopted the notion of a tai-

2The DSML does not tailor a UML diagram type speci�cally; for example, a stereotype
extension of a UML element applicable in all diagram types, such as, Element (see, e.g., [27, 69])
or Constraint (see, e.g., [37]).
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Table 2: Frequency of DSML-tailored UML diagram types.

Diagram type Diagram-type kinds Frequency

Class Structure 55

Activity Behavior 27

Component Structure 15

Package Structure 14

StateMachine Behavior 13

UseCase Behavior 9

CompositeStructure Structure 8

Object Structure 6

Sequence Behavior 5

*2 � 4

Deployment Structure 3

InteractionOverview Behavior 1

lorable DSML development procedure from [152]. In particular, this procudural
model includes the following main tasks: 1) core-language-model de�nition, 2)
concrete-syntax de�nition, 3) behavior speci�cation, and 4) platform integra-
tion (for details see Section 2.1). If these tasks are performed in sequence, an
instance of this procedure will result in a language-model-driven development
approach (steps 2 and 3 are performed in parallel; see also [162]).

The remainder of the paper is structured as follows. First, we elaborate on
our choices of representing design rationale for DSMLs (Section 2), including
the identi�ed decision points (Section 2.1), a template for decision records (Sec-
tion 2.2), an excerpt from encoded design decisions and options (Section 2.3),
as well as the notational conventions used throughout this document (Sec-
tion 2.4). Next, Section 3 explains seven prototype option-sets and sketches
nine frequently adopted decision options found at corresponding decision points.
Subsequently, the complete catalog of collected decision records for designing
UML/MOF-based DSMLs is presented in Section 4 (Sections 4.1�4.6 correspond
to the identi�ed decision points in Section 2.1). Associations between options
of one decision point and between options of di�erent decision points are dis-
cussed in Section 5. Following the bibliography, revisions to the initial version of
the catalog [70, 71] are explained in Appendix A. The complete list of encoded
design decisions for each of the 90 DSMLs is provided in Appendix B. In addi-
tion, Appendix C enumerates the application domain(s), the tailored diagram
type(s), and the option sets per DSML project in an overview table. At last,
the frequency of application domains is reported in Appendix D.

2 Representing Design Rationale

Design rationale ([29, 46]) on DSML development is the reasoning and justi�ca-
tion of decisions made when designing, creating, and using the core artifacts of
a DSML (e.g., abstract and concrete syntax, behavior speci�cation, metamodel-
ing infrastructure, MDD toolchain integration). Documenting design rationale
explicitly aims at helping design-decision makers by providing and explaining
past decisions (e.g., in a design-space analysis) and by improving the under-
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standing of a DSML design during development and maintenance (e.g., as a
kind of design-process documentation).

2.1 Decision Points

The process of developing a DSML can be divided into 6 di�erent decision points
which can be conducted in di�erent sequences depending on the development
style used and the intention behind developing the DSML [152]. In general,
each decision point corresponds to a decision record in this document (D1�D6
below), with each decision record grouping a number of design-decision options.

In a large-scale empirical investigation [141], most DSMLs were found to
involve decisions related to 3 of the 6 phases: D1, D2, D4 (highlighted using
rectangle boxes below). Besides, depending on the context (e.g., application
domain, usage intention, and development style), some decision points may also
be skipped.

D1 Language-model de�nition (Section 4.1). After a systematic anal-
ysis and a structuring of the respective language domain, one identi�es the
domain abstractions to be represented by a DSML. In this context, one
of the main questions is how one describes these domain abstractions to
arrive at a comprehensive and comprehensible language model which can
be used as a basis for developing the DSML. Corresponding options are
the description via a (formal) textual description, via formal or informal
(graphical) models, or through a combination of these options.

D2 Language-model formalization (Section 4.2). At this decision
point, it is determined how a language model de�ned informally or de�ned
independently from the UML (see D1) is turned into a formal UML model.
By formal model, we refer to a realization of the language model using a
well-de�ned metamodeling language such as the UML/MOF metamodeling
infrastructure. A metamodeling language is itself based on a well-de�ned
and well-documented language model (i.e., CMOF for the UML metamodel
[115]) and provides at least one well-de�ned and well-documented concrete
syntax to de�ne an own language model (e.g., the CMOF diagram syntax
to specify a UML metamodel extension). At this decision point, decision
options are the de�nition of an M1 structural model, a UML pro�le, a UML
metamodel extension, a UML metamodel modi�cation, or a combination
of these options.

D3 Language-model constraints (Section 4.3). A structural UML model
cannot (or only insu�ciently) capture certain categories of constraints on
domain abstractions, such as invariants for domain abstractions, pre- and post-
conditions, as well as guards. As a result, the language-model formalization
could be incomplete or ambiguous. To prevent this, one can specify special-
purpose language-model constraints, for instance via a constraint-language
(such as the OCL [118]), code/textual annotations, model-to-model/model-to-
text transformations (M2M/M2T), or a combination of these options.
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D4 Concrete-syntax de�nition (Section 4.4). The concrete syntax of
a UML/MOF-based DSML serves as its user interface and can be de�ned
in several ways. One can either use model annotations, reuse or extend a
diagrammatic syntax, mix foreign syntaxes with the UML syntax, extend a
UML/MOF-based frontend syntax, provide an alternative syntax, or apply
a combination of some of these options.

D5 Behavior speci�cation (Section 4.5). The behavior speci�cation of a
DSML de�nes behaviors speci�c to one or more DSML language element(s).
It determines how the language elements of the DSML interact to produce
behavior as intended by the DSML engineer. Behavior can be speci�ed via M1
behavior models, formal or informal textual speci�cations, constraining model
executions, or a combination thereof.

D6 Platform integration (Section 4.6). In order to produce platform-
speci�c, executable models (e.g., source code) from DSML models, all DSML
artifacts need to be mapped to a software platform. Corresponding decision
options at this point are the generation of intermediate models, using code
generation templates, employing API-based generators, the direct execution of
models, performing M2M transformations, or applying a combination of these
options.

2.2 A Template for Decision Records

For structuring and presenting the recurring DSML design decisions, we employ
a document template which lays out prede�ned sections. This template has
been derived from prior work on documenting design rationale in software en-
gineering, in particular architectural design decisions [70]. The decision-record
template provides a space of solutions to a given DSML design problem. Each
decision-record document contains the following sections (see Figure 1):

1. Problem statement: Describes the problem that has been repeatedly ob-
served for several DSML design projects, in a speci�c decision context (see
below).

2. Decision context: Each decision record captures problem and solution
statements speci�c to a decision context (e.g., using certain metamodeling
toolkit, the application domain modeled by a DSML, or a certain decision-
making phase [152]).

3. Decision options: For each decision problem, several candidate solutions
are listed (e.g., formalizing the language model using a UML pro�le or a
MOF metamodel). The options listed by each decision record have been
extracted from the selected DSML projects as primary sources (see Ta-
ble 13) and/or secondary studies on designing MOF/UML-based DSMLs.

4. Decision drivers: Describe forces which steer the DSML engineer towards
a particular option (e.g. whether the DSML must extend the UML meta-
model).

5. Decision consequences: The selection of an option (or, a combination of
options) a�ects the solution spaces of subsequent decisions (e.g. another
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decision context and the follow-up decisions). DSML designers must be
aware of such consequences for an informed decision making in subsequent
decision steps (e.g., to avoid con�icting language-model constraint de�ni-
tions).

6. Application: This section documents how di�erent design options were
applied in actual DSML projects. The main goal is to document the
successful application of corresponding options and to provide references
for further investigation by the design-decision maker.

7. Sketch: Finally, each decision record gives a concrete example of applying
one of the options. This excerpt, while being limited to one option, is
meant to improve the comprehensibility of the previously described op-
tions which are presented in an abstracted manner.

+application

Record

Problem Option

2..*

1..1

1..1

1..1

describes 

a recurring

documents 

recurring

Driver

1..1

1..*

states 

a recurring

Decision

1..1

1..*
1..1

refers to

as an example

Consequence leads to
1..*

has

1..*

0..*

0..*can cause a

subsequent

Context

1..1

1..1

1..*0..*

0..*

can set 

a new
0..*

0..*
for

0..*

0..*

Figure 1: Conceptual overview of key concepts: decision records, decision con-
text, decision problem, decision options, decision drivers, and decision conse-
quences.

2.3 Excerpt from Encoded Design Decisions and Options

Table 3 shows an overview of the identi�ed DSML design decisions and their
corresponding options. Projects P1�P10 were performed by us (see also Table 1)
while the remaining projects were collected via the SLR. Table 3 shows only an
excerpt from the DSML development projects found during the SLR for the
purpose of demonstrating di�erent combinations of options (as referenced in
the decision records presented in Section 4). Because of its size the complete
table was moved to Appendix B at the end of this paper.
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2.4 Notation Conventions

In this report, as well as in related papers [141], we use the following conventions
to refer to decision points, corresponding options, associations between options,
and DSML projects in a consistent way:

• Dx, where x is a number between one and six, refers to one of the Decision
points described in Section 2.1. For instance, decision point D2 refers to
the language-model formalization point.

• Ox.y, where x is a number between one and six and y is a number between
one and seven, refers to a corresponding Option y at decision point x. The
allowed value of y depends on the number of design options for a speci�c
decision point (e.g., we identi�ed �ve options for D3 and seven options
for D4; see Table 3 for an overview). For instance, O5.3 refers to the
third option (informal textual speci�cation) at decision point D5 (behavior
speci�cation).

• In some cases we use an abbreviated notation x.y instead of Ox.y. The two
notations are fully exchangeable and have identical meaning. The trun-
cated form is only used when it is referred to multiple options under limited
space (e.g., for the de�nition of option sets; for examples see Table 4). For
instance, 6.5 (=̂O6.5 ) refers to the �fth option (M2M transformation) at
decision point D6 (platform integration).

• Ax, where x is a number between one and 21, refers to a dedicated
Association between two or more decision options of either one decision
point or two or more decision points. The associations between options
are numbered consecutively throughout this paper. For instance, A16
refers to the association between options O3.3↔O6.6 named mandatory
platform integration (see Section 5.2).

• Px, where x is a number between one and 90, refers to a dedicated DSML
Project. The DSML projects are numbered consecutively, the �rst ten
being our own developments (P1�P10). The remaining DSMLs were re-
trieved via the SLR (P11�P90). For instance, P48 refers to the DSML
named SystemC published in [126] (see Table 14).

3 Frequently Adopted Decision Options

We describe the design-decision making for a given UML/MOF-based DSML
as a set of decisions or, more precisely, as a set of decision options (option
sets, hereafter). Each decision is about evaluating and �nally adopting one or
several decision options, with the available decision options being listed by a
corresponding decision record. This way, a decision links to and conforms with
a decision record, such as the ones contained by our catalog (see also Figure 1).
By collecting the decision options which apply to a given DSML as an option
set, we characterize the DSML in the scope of the cataloged decision records
(see Section 4).
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At the time of conducting the SLR, this catalog o�ered 27 decision options to
describe a DSML.3 Six subsets of these decision options are associated with the
six decision points (see Section 2.1). For example, four options are speci�c to
de�ning a language model (D1; see Table 3). In this paper, we used this design-
decision space to code the selected DSMLs according to this option scheme,
thereby, yielding one characteristic decision-option set per DSML.4

In order to characterize the observable design-decision space for UML/MOF-
based DSMLs, we mined for frequent and characteristic option sets using an
analysis that is based on frequent item-sets [22, 61]. Frequent option sets are
recurring combinations of decision options (or of other, smaller option subsets).
Thus, we were interested in option sets adhering to certain constraints (i.e.
minimum support, closedness, freeness, maximality; [22, 61]). Support denotes
the occurrence frequency of a given option (sub-)set in a collection of observed
option sets as any possible subset. We de�ne an option (sub-)set as relatively
highly supported when found three or more times in the DSML projects gath-
ered via the SLR.5 Otherwise, an option (sub-)set is de�ned as relatively lowly
supported. Options not found in any of the selected DSML projects are de�ned
as candidate options ([141] provides detailed background on those concepts in
the context of our study).

Option (sub-)sets can express fragments of a DSML design as well as com-
plete DSML designs (also called prototype option-sets). Option (sub-)sets can
di�er in terms of the number of options contained by them (size), in terms of
their relatively higher or lower levels of support, and whether they are con-
tained as-is in the base of observed option sets or not (i.e., whether they totally
describe at least one DSML design alone, rather than a fragment of it).

The 80 DSMLs obtained via the SLR contain seven distinct prototype de-
signs, that is, option sets which are frequent and describe entire DSML designs,
with and without extensions. Six prototype option-sets come with frequent ex-
tensions (see Table 4). One prototype option-sets with frequent extensions is an
option set which represents a highest-common, largest option subset (i.e., a de-
sign fragment of maximal size, which is frequently observed and has a relatively
high support) which was also frequently found as complete DSML design. Be-
cause for this option set frequently occurring supersets exist, this (evolutionary)
prototype option-sets is often extended by adding other (frequently observed)
options [141].

For example, the option set of P26 (UML-PMS [57]) describes �ve observed
and complete DSML designs (frequency) while it is found as a large subset in
25 other DSMLs (support − frequency) in an extended form. Five prototype
option-sets involve UML pro�les only (O2.2), just one frequently found proto-
type option-set builds solely on metamodel extensions (O2.3; e.g., P13 [13]).
All six designs involve at least one concrete-syntax decision option (see also
Figure 2, indicating D4 as mandatory). The only platform-integration option
found adopted in three prototype option-sets (and twelve more extensions of it)
are M2T generator templates (O6.2).

A seventh prototype option-set was found which comes with infrequent exten-

3Note that there are actually 31 decision codes (see, e.g., Table 3). Four of those
codes/numbers serve for coding pseudo-decision options; e.g., not taking any decision.

4The complete list of each option set per DSML is shown in Table 14 in Appendix C.
5This way, we adopt a commonly followed rule of thumb in the software-pattern community

(see, e.g., [30, 36]).
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Table 4: Overview of the six prototype option-sets which are frequently extended
(ordered by decreasing absolute support).

Prototype Support (abs.) Frequency (abs.) DSMLs (excerpt)

{1.1,2.2,3.4,4.1,4.6} 30 5

P26 (UML-PMS [57]),
P44 (Prede�nedCon-
straints [37]), P68
(UML-AOF [84])

{1.1,2.2,3.1,4.1,4.6} 26 4
P18 (UML4PF [63, 64]),
P62 (CUP [15]), P63
(REMP [78])

{1.1,1.4,2.2,4.1,4.6} 22 5
P25 (RichService [48]),
P54 (SPArch [6]), P55
(MoDePeMART [23])

{1.1,2.2,4.1,4.6,6.2} 15 3
P51 (WCAAUML [73]),
P64 (DPL [10]), P85
(WS-CM [86])

{1.1,2.2,3.1,3.4,4.1,4.6} 13 3
P22 (C2style [122]), P59
(SHP [106]), P70 (Archi-
tecturalPrimitives [160])

{1.1,2.3,4.6} 10 4
P13 (UML4SPM [13]),
P14 (MDATC [14]), P49
(UML2Ext [24])

sions. A prototype option-set with infrequent extensions is an option set which
represents a lowest-common, largest option subset (i.e., a design fragment of
maximal size, which is frequently observed and has a relatively low support)
which was also frequently found as complete DSML design. Because for this op-
tion set no frequent supersets exist, this prototype option-set is often employed
as is. Extensions that add options to this (evolutionary) prototype are rarely
observed [141]. The identi�ed prototype option-set with infrequent extensions
is realized by three DSMLs (P34, P37, and P52; see Table 5) and it is found
extended twice (support − frequency). The option subset re�ects a widely
documented and recommended�but not necessarily frequently used�way of
creating a DSML using UML pro�les, by two-option strategies to de�ne the
language model (O1.1, O1.4) and the language-model constraints (O3.1, O3.4),
respectively. The concrete-syntax choices O4.1 and O4.6 are often implied by
adopting UML pro�les.

Table 5: Overview of one prototype option-set which is infrequently extended.

Prototype Support (abs.) Frequency (abs.) DSMLs (excerpt)

{1.1,1.4,2.2,3.1,3.4,4.1,4.6} 5 3
P34 (UACL [133]), P37
(SafeUML [166]), P52
(IEC61508 [119, 120])

The seven prototype option-sets which are realized as-is and with extensions
for 63 out of the 80 DSMLs obtained via the SLR (∼79%) and for 68 out of the
total 90 DSMLs (∼76%) are summarized in terms of their commonalities and
di�erences as a feature diagram [39] in Figure 2.

The seven designs are combinations of nine options (see Table 6). By looking
at these nine options and their characteristic combinations (see Tables 4 and 5),
27 out of both, the 80 DSMLs retrieved via the SLR (∼34%), and the total 90
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DSMLs (30%) can be described in their entirety (prototype option-set).

...

Prototype option-set

O1.1 O1.4 O2.2 O2.3 O3.1 O3.4 O4.1 O4.6 O6.2

O2.2 O4.1 O4.6

O2.3 O4.6 O4.1

O2.2O6.2

O2.2O1.4

Figure 2: A feature model which represents the prototype option-sets found in
the pool of 80 DSMLs; that is, each con�guration of the feature space represents
one of the seven observed prototype option-sets listed in Tables 4 and 5.

The seven prototype option-sets are composed of nine decision options. Ta-
ble 6 provides thumbnail descriptions of these frequently adopted decision op-
tions. The complete decision record for each decision point is documented in
the following Section 4.

4 Decision Records

This section presents the complete list of decision records, structured according
to our template de�ned in Section 2.2, for each decision point as introduced in
Section 2.1.

4.1 D1 Language-Model De�nition

Problem statement. How should the domain (or domain fragment) be de-
scribed?
Decision context. A prerequisite for DSML design is a systematic analysis
and the structuring of the language domain. By applying a domain analy-
sis method, such as domain-driven design [49], information about the selected
domain is collected and evaluated (e.g. based on literature reviews, scenario an-
alyzes, and collected expert knowledge). If the domain is already captured by
an existing software system, artifacts related to the software system (e.g. code
base, documentation, test suites) provide valuable input for the domain anal-
ysis. Based on this material, a structured domain description (referred to as
a generic language model [152], hereafter) is de�ned. The domain description
provides a domain de�nition, the domain vocabulary, and a catalog of domain
abstractions and abstraction relations. The domain abstractions can be de-
scribed using narrative text and/or using textual or diagrammatic speci�cation
formalism. These concept descriptions (models) form the basis for subsequent
steps of formalizing a core language model (i.e, the abstract syntax of a DSML;
see Section 4.2).
Decision options.

O1.1 Informal textual description:6 Use primarily textual artifacts to iden-

6Frequently adopted options are underlined in the decision-record descriptions (for more
information see Section 3).
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Table 6: Thumbnail descriptions of nine frequently adopted decision options.

Problem statement Options Drivers

How should the domain
(or domain fragment) be
described?

O1.1 Textual description
O1.4 Formal diagrammatic
model

Availability of existing dia-
grammatic domain descrip-
tions, intended target au-
dience, correspondence mis-
matches with UML seman-
tics, consistency preservation
e�ort, cognitive e�ectiveness
of a representational format

In which MOF/UML-
compliant way should
the domain abstractions
be formalized?

O2.2 Pro�le (re-)de�nition
O2.3 Metamodel extension

Overlap of DSML and UML
domain spaces, degree of
DSML expressiveness, porta-
bility and evolution require-
ments, compatibility with ex-
isting artifacts

Do we have to de�ne con-
straints over the core lan-
guage model(s)? If so,
how should these con-
straints be expressed?

O3.1 Constraint-language
expression
O3.4 Informal textual anno-
tation

Constraint formalization re-
quirements, language-model
checking time, integrated
language-model constraint
requirements, maintainabil-
ity e�ort, portability require-
ments, language model and
constraints conformance

In which representation
should the domain mod-
eler create models using
the DSML?

O4.1 Model annotation
O4.6 Diagram symbol reuse

Non-diagrammatic UML no-
tation requirements, degree
of cognitive expressiveness,
disruptiveness, degree of re-
quired modeling-tool support

How should the DSML
artifacts be mapped to
(and/or integrated with)
a software platform?

O6.2 Generation template

Targeting multiple plat-
forms, maintainability e�ort
of static code fragments,
non-executable models

tify and to de�ne domain abstractions and their relationships in an informal
way. Exemplary text types are domain-vision (scoping) statements in narra-
tive prose text, domain-distillation documents containing lists of core domain-
abstractions [49], and/or domain-de�nition and feature tables [39].

O1.2 Formal textual model: Use textual formalisms to identify and to de-
�ne domain abstractions and their relationships. For example, mathematical
expressions (e.g. universal algebra [81]) or formal grammars (e.g. the Extended
Backus-Naur Form [75]) provide means for well-formed and unambiguous de�-
nitions of domain concepts and relations.

O1.3 Informal diagrammatic model: Use ad hoc diagrams to identify and
to describe domain abstractions and their relationships. Ad hoc diagrams are
diagrammatic representations not being compliant to any standardized software
modeling language and corresponding diagrammatic production rules. Exam-
ples are forms of visual concept modeling (e.g. early feature diagrams [39]) or
pseudo UML diagrams (e.g. class diagram notations being used as re-composable
drawing shapes).

O1.4 Formal diagrammatic model: Use diagrams de�ned by a (formally)
speci�ed/standardized modeling language (e.g. MOF, UML, ER, STATEM-
ATE), which adopts a graphical representation (e.g. UML class models, UML
activity models, and/or STATEMATE statecharts), to identify and to describe

13



domain abstractions and their relationships.
Combination of options: For instance, to facilitate communicating con-

cepts, diagrammatic models (O1.3, O1.4) can be used in support of a predom-
inantly informal textual description (O1.1; see also related association A1 in
Section 5.1). For explanatory purposes, normative and formal textual de�ni-
tions (O1.2) are commonly supported by non-normative and informal textual
descriptions (O1.1).
Decision drivers.

Availability of existing diagrammatic domain descriptions: If either formal or
informal diagrammatic descriptions are available (e.g. a UML M1 class model),
a domain description could be devised as a re�nement (see also A6 in Sec-
tion 5.2). For instance, by perfective re�nement (e.g. turning an informal into
a formally correct diagram; O1.4) and/or by re�ning the domain description
as such (e.g. adding additional classes and associations to integrate previously
uncovered domain abstractions).

Intended target audience: The language-model de�nition is used as a mutual
communication vehicle for both, the domain experts and the DSML engineers.
Depending on the domain, di�erent views and notations must be considered. If,
for example, the domain experts are mathematicians, a mathematical expression
(O1.2) is suitable (see, e.g., [81]). In case of a DSML for software engineers (e.g. a
DSML for de�ning software tests) the UML can be used to de�ne the language
model (O1.4). For non-technical business experts, prior experiences (see, e.g.,
[97, 131]) suggest that a process-oriented view (e.g. task and data �ows) and
process-oriented notations (e.g. UML activity models or BPMN models) are
more adequate (O1.3, O1.4).

Correspondence mismatches with UML semantics: If the domain is described
in a generic manner by adopting a formal notation (O1.2, O1.4), it needs to be
transformed into a formal UML-compliant operationalization model (see D2 in
Section 4.2 and also related association A6). Di�erent transformation needs
may result from various mismatches:

1. A mismatch between modeling languages: For example, when using ER
modeling for describing domain abstractions, a transformation from ER
elements into a UML class model or a MOF-compliant UML metamodel
(extension) is needed. This bears the risk of impedance mismatches due to
diverging de�nitional foundations (e.g. UML-elements have unique iden-
ti�ers independent of attribute values; ER models use a minimal set of
uniquely identi�able attributes for entity identi�cation).

2. A mismatch between modeling views: There might also be a discrepancy
between the views stressed by di�erent model representations (e.g. ER di-
agrams cannot model behavior, for instance there are no UML operation
or message type equivalents in ER diagrams). A domain description might
stress a behavioral angle (e.g. using statecharts) while an operationalized
language model (e.g. due to the speci�city of the modeling language) re-
quires additional structure details (e.g. properties of domain abstractions).

3. A mismatch between di�erent modeling levels: Finally, even from the
same view and within the same language framework, di�erent levels of
model granularity (e.g. for the MOF/UML context: meta-metamodel,
metamodel, model, instance/repository model [116, 115]) can be adopted.
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Having de�ned, for example, the domain description at the UML M1 level
raises the issue of creating a mapping up to a metamodel (M2) for opera-
tionalizing the language model.

4. Multiple mismatches: Mismatches can occur in any combination of the
previous three mismatch categories.

Consistency preservation e�ort: The e�ort required to preserve the consis-
tency between di�erent domain description artifacts (e.g. diagrams and textual
descriptions) is a critical factor when considering combined options. The neg-
ative e�ects of introducing inconsistency, for instance between a diagram and
its textual description, can be mitigated by declaring either representation the
normative one.

Cognitive e�ectiveness of a representational format: A decision between any
formal textual (O1.2) or any formal diagrammatic notation (O1.4) must con-
sider the cognitive load caused by either representation choice. Irrespective of
the target domain, diagrammatic representations bene�ts from their capacity
to spatially group information bits otherwise spread in their textual form. Also,
supporting visual perception and visual reasoning facilitate processing and com-
municating domain abstractions (see [74] for an overview). At the same time,
there is a major tension between cognitive e�ectiveness of diagrams and the
complexity of the perception task. This complexity is determined by the level
of diagrammatic detail (e.g. in a formal notation) and the multiplicity of dia-
grams and views covered. For extensive domain descriptions or a high level of
detail (views), textual representations (in support of visualizations) are consid-
ered more appropriate. This has been reported for inadequately designed visual
variability models [35]. However, given the intentionally limited expressiveness
of DSMLs (in terms of concepts covered), diagrammatic representations at the
level of a generic domain description are suitable; especially if supported by
(formal) textual descriptions to cover certain details. Besides, perceptional bi-
ases of the domain audience a�ect the cognitive e�ectiveness of the adopted
representation type (see also above).

An overview of positive and negative links between decision drivers and
available options is shown in Table 7. The following coding schema is used
in the table. (+)+: (very) positive in�uence; o: no in�uence; (−)−: (very)
negative in�uence. An option having either a (very) positive or a (very) negative
in�uence�depending on the intended DSML's application domain, professional
background as well as prior knowledge and experience of users etc. (see above)�
is denoted by (+)+/(−)−.

Table 7: Positive/negative links between drivers and options.

Driver/Option O1.1 O1.2 O1.3 O1.4

Availability of existing diagrammatic domain
descriptions

+ + ++ ++

Intended target audience o ++/−− ++/−− ++/−−
Correspondence mismatches with UML seman-
tics

o − o −

Consistency preservation e�ort − − − −
Cognitive e�ectiveness of a representational for-
mat

o +/− o +/−

15



Decision consequences. The initial phase of the generic language-model de�-
nition has to cover all domain-speci�c concepts from the selected target domain
and precedes the formalization via the MOF/UML.

Output artifacts: These are the core language-model concepts, whereas the
description form depends on the application domain and involved domain ex-
perts. The generic language model description can be informal (O1.1, O1.3), in
a structured form (O1.2, O1.4), or de�ned via combinations of these options.

Mapping to metamodeling infrastructure: If the de�nition is not based on
the MOF (e.g. an option in O1.2 or O1.4), the concepts have to be mapped
to MOF-equivalent elements (correspondence mismatches can occur; see the
drivers section above).
Application. As all our DSMLs were created from scratch (see Table 1),
there were no existing domain descriptions available (e.g. in terms of code or
documentation artifacts). This context a�ected our decisions as the option
space was not constrained per se: In a combined form, we adopted formal
textual (O1.2) and UML/MOF-based diagrammatic de�nitions (O1.4) in P2�
P4, P7, and P8. All generic language-model de�nitions (e.g. P1�P10 and P17,
P30, P39, P53, P58, P60, P61 in Table 3) are de�ned via or accompanied by
informal textual descriptions (O1.1). Additionally, P60 serves as an example
for the application of informal diagrammatic models (O1.3).
Sketch. An excerpt from a formal and textual domain description (O1.2) in
combination with surrounding textual explanations (O1.1) is shown beneath.
The example is taken from P7 which requires a de�nitional basis to express
data �ow semantics (i.e., object �ows, later to be mapped to object �ows in
UML activities). In this context, a selector expression for collecting succeeding
object nodes is needed. That is, the set of object nodes for which a direct
path exists between a source and a target object node must be selectable. The
selector de�nition expresses certain conditions, for instance, the object �ow path
must only include arcs or control nodes, whereas tasks or intermediary object
nodes are to be excluded. The domain description adopts a set-theoretical
model (O1.2) to express the selector operation as a mapping and the selection
conditions as mapping constraints:

The mapping successors : O 7→ P(O) is called succeeding object nodes. For successors(os) =

Osucc with os ∈ O and Osucc ⊆ O we call os source node and each ot ∈ Osucc a direct suc-

cessor of os. In particular, Osucc is the set of object nodes for which a path exists between

os and each ot ∈ Osucc. Formally: ∀os ∈ O, ot ∈ successors(os) : ofpath(os, ot) 6= ∅.

4.2 D2 Language-Model Formalization

Problem statement. In which MOF/UML-compliant way should the domain
concepts be formalized?
Decision context. After the identi�cation of language-model concepts, the
corresponding de�nitions serve as input for the phase of formalizing the domain
constructs into a MOF/UML compliant core language model.
Decision options. For UML-based DSMLs, the language model can be for-
malized via dedicated language extension constructs (such as UML pro�les) or
by extending the modeling language to provide the required semantics (see,
e.g. [28, 116]).
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O2.1 M1 structural model: Implement the core language model using struc-
tural UML models at level M1. In a class model, for instance, domain abstrac-
tions can be expressed as classes and their relationships as associations. Other
examples are composite structure, component, and package diagrams.

O2.2 Pro�le (re-)de�nition: Implement the core language model by creating
(or by adapting existing) UML pro�les. A pro�le consists of a set of stereotypes
which de�ne how an existing UML metaclass may be extended.

O2.3 Metamodel extension: Implement the core language model by creating
one or several metamodel extensions. A metamodel extension introduces new
metaclasses and/or new associations between metaclasses to the UML meta-
model or to other, pre-existing metamodel extensions [116, 115]. The extension
elements are typically organized into dedicated �metamodel� packages. The
structure and semantics of existing elements of the UML metamodel are pre-
served.

O2.4 Metamodel modi�cation: Implement the language model by creating
one or several MOF-based metamodel extensions which modify existing meta-
classes; for example, by changing the type of a class property or by rede�ning
existing associations [116, 115]. The extension elements are typically organized
into dedicated �metamodel� packages.

Combination of options: A combination may include the de�nition of a
metamodel extension as well as an equivalent pro�le de�nition (see, e.g., P7).
Similarly, stereotype de�nitions can be provided to accompany a metamodel
extension/modi�cation (see, e.g., P9).
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 8.

Overlap of DSML and UML domain spaces: The degree of overlap between
the domain space of the DSML concepts and the general purpose language con-
structs (i.e., the UML speci�cation) has, for instance, a direct impact on whether
a pro�le de�nition is su�cient (O2.2) or on whether a metamodel extension/-
modi�cation is needed (O2.3, O2.4).

Degree of DSML expressiveness: A UML pro�le (O2.2) can only customize
a metamodel in such a way that the pro�le semantics do not con�ict with the
semantics of the referenced metamodel. In particular, UML pro�les cannot add
new metaclasses to the UML metaclass hierarchy or modify constraints that ap-
ply to the extended metaclasses (see, e.g., [146]). Therefore, pro�le constraints
may only de�ne well-formed rules that are more constraining (but consistent
with) those speci�ed by the metamodel [116] (see also A9). In contrast, a meta-
model extension/modi�cation (O2.3, O2.4) is only limited by the constraints
imposed by the MOF metamodel (i.e. the abstract syntax of the UML can be
extended via new metaclasses and associations between metaclasses; see also
A11).

Portability and evolution requirements: A newly created metamodel (O2.3,
O2.4) is an extension of a certain version of the UML speci�cation. Thus, the
domain-speci�c metamodel extension possibly needs to be adapted to conform
with newly released OMG speci�cations. Re-usability of a UML extension is
also a�ected by being either compliant with the UML standard (e.g. O2.2 or
O2.3) or not (e.g. O2.4).

Compatibility with existing artifacts: Pre-existing DSMLs, software systems,
and tool support have a direct impact on the design process of a DSML in
terms of compatibility requirements and integration possibilities (see also A17
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and A20). For instance, the UML speci�cation de�nes a standardized way to
use icons and display options for pro�les (O2.2). Tool support for authoring
UML models and pro�les (O2.1 and O2.2) is widely available (see, e.g., [146]).

Table 8: Positive/negative links between drivers and options.

Driver/Option O2.1 O2.2 O2.3 O2.4

Overlap of DSML and UML domain spaces +/− +/− +/− +/−
Degree of DSML expressiveness −− − + ++
Portability and evolution requirements + + − −−
Compatibility with existing artifacts ++ ++ − −

Decision consequences.
Formalization style dependencies: Certain dependencies can result from

combined language-model formalizations (e.g. O2.2 and O2.3; see also A13).
For instance, pro�les are dependent on the corresponding metamodel (i.e., the
UML). If a pro�le is combined with a metamodel modi�cation (O2.4), changes
to the metamodel can a�ect the respective stereotypes (e.g. if a stereotype-
extended metaclass is modi�ed).

Language-model ambiguities: If no further constraints to the language model
are speci�ed (see Decision D3), the language model must be fully and unam-
biguously de�ned using the chosen formalization option and implicitly enforced
restrictions (e.g. by using pro�les and thus inheriting all semantics from the
UML metamodel; O2.2; see also A7 and A9).
Application. In all our DSML projects, we formalized the language models
as metamodel extensions (O2.3). Additionally, pro�les (O2.2) were employed in
P1, P3, P7, P9, and P10. Therefore, we e�ectively adopted combined strategies.
In related approaches, we also found the application of M1 structural models
(O2.1, e.g. in P58) and the modi�cation of the UML metamodel (O2.4, e.g. in
P61) for the formalization of the language model. As an example for O2.4, P61
documents a UML metamodel modi�cation by adding new attributes to existing
UML classes (e.g. to classes Class and Property). This is in contrast to several
other approaches which employ metamodel extensions (O2.3), but do not ex-
plicitly document whether they perform modi�cations to the UML metamodel
(O2.4), as well. For instance, in P53, existing classes from the UML metamodel
(e.g. UseCase) are associated with newly de�ned classes (e.g. UseCaseDescrip-
tion). The metamodel de�nition in P53 remains uncertain regarding the own-
ership of association ends: (1) Both ends could be owned by the association
(O2.3); (2) one end could be owned by the association, one by a class (O2.3 or
O2.4, depending if the owning class is coming from the UML metamodel); or
(3) both ends could be owned by their corresponding classes (O2.4). To avoid
such ambiguities, association end ownership can be made explicit with the dot-
notation [116]. Furthermore, accompanying textual annotations can provide
clarifying details. In Tables 3 and 13 such underspeci�ed DSML projects are
denoted with an option mark being put in parentheses.
Sketch. Figure 3 depicts an excerpt from a UML extension (taken from P7).
On the left hand side, it shows a UML package de�nition called SecureObject-
Flows::Services as an example of a metamodel extension (O2.3) and, on the
right hand side, a UML pro�le speci�cation named SOF::Services (O2.2). Map-
pings between these two language-model representations are provided as M2M
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transformations. Both UML customizations provide the same modeling capa-
bilities for using one of our UML security extensions (for details see [67, 68, 72])
with the SoaML speci�cation [110].

<<metamodel>> 

SecureObjectFlows::Services

<<metaclass>>

ServiceInterface
(from SoaML::Services)

+ isStrict:Boolean = false

<<metaclass>> 

SecureInterface

<<metaclass>> 

SecureActivityParameterNode

<<metaclass>> 

SecurePin

<<metaclass>> 

SecureDataStoreNode

<<profile>> 

SOF::Services

<<metaclass>>

Class
(from Kernel)

+ isStrict:Boolean = false

<<stereotype>>

SecureInterface

<<stereotype>>

secure

<<stereotype>>

ServiceInterface
(from SoaML)

Figure 3: Exemplary UML metamodel extension and pro�le de�nition [67].

4.3 D3 Language-Model Constraints

Problem statement. Do we have to de�ne constraints over the language
model(s)? If so, how should these constraints be expressed?
Decision context. A core language model has been formalized using either a
UML metamodel extension/modi�cation, a UML pro�le, or a UML class model
(D2). The resulting language model describes the domain-speci�c language in
terms of its language elements and their interrelations. The de�nition of these
interrelations is limited through the expressiveness of the MOF and the UML
(e.g. part-of relations). A structural UML model, however, cannot capture cer-
tain categories of constraints over domain abstractions that are relevant for the
description of the target domain. Examples are invariants for domain abstrac-
tions, pre- and post-conditions, as well as guard conditions. As a result, the
language-model formalization could be incomplete or ambiguous (see also A9).

If the language model has been realized by creating multiple formalizations
(e.g. multiple pro�les), there is an additional risk of introducing inconsistencies
if the DSML can be used in di�erent con�gurations (e.g. di�erent pro�le com-
positions). Consider, for example, pro�les which integrate two (independent)
UML extensions.
Decision options.

O3.1 Constraint-language expression: Make language-model constraints ex-
plicit using a constraint-expression language, for example, via the Object Con-
straint Language (OCL [118]) or the Epsilon Validation Language (EVL [89]).

(O3.2 Code annotation:)7 Make language-model constraints explicit us-
ing expressions in (or a specialized sub-language embedded within) a general-
purpose programming language (GPL). This programming language can be the

7Candidate options not applied in any of the selected DSML projects are put in parentheses
in the decision-record descriptions.
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host language of the DSML. In the UML, for instance, this can be realized by
using model annotations and UML's OpaqueExpression [116] (see also A15).

(O3.3 Constraining model transformation:) Express language-model con-
straints via model (M2T/M2M) transformations. The respective template ex-
pressions contain checks (e.g. conditional statements based on model navigation
expressions) which test model instances for the implicit �t with correspond-
ing domain constraints. As for M2M transformations, for example, conditional
statements in the Epsilon Transformation Language (ETL [89]) based on Ep-
silon Object Language (EOL [89]) expressions can be used to specify structural
constraints over the language model (i.e. at the model instance level) and to
enforce them in each transformation run.

O3.4 Informal textual annotation: Use informal and unstructured text an-
notations to capture constraint descriptions in the core language model (e.g.
prose text in UML comments). Certain constraints (e.g. temporal bindings)
elicited from the target domain cannot be captured su�ciently via evaluable
expressions (i.e. constraint-language expressions or code annotations) and/or
the constraints are intended to serve a documentary purpose (esp. annotations
for domain experts).

O3.5 None/Not speci�ed: Static constraints over the language model are not
made explicit in (or along with) the language model.

Combination of options: For instance, textual annotations (prose text)
can be used in addition to constraint-language expressions to provide natural-
language constraint descriptions for readers not familiar with a speci�c con-
straint language (see also A2).
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 9.

Constraint formalization requirements: In early iterations (e.g. DSML proto-
typing), constraints might not be expressed via well-formed, syntactically valid
constraint-language expressions, but rather as pseudo-expressions or unstruc-
tured text (O3.4). When the language model is maturing due to subsequent
iterations, these annotations can be changed into evaluable expressions (O3.1�
O3.3).

Language-model checking time: If tool integration for model checking is a
requirement, we have to choose one ore more of the options O3.1�O3.3 (see also
A3 and A15). A driver toward either option is the intended model-checking time.
Relevant points in time follow from the model formalization option adopted
(e.g. class model vs. metamodel-based) and the platform support (model-level
or instance-level checks). Language-model checking based on transformation
expressions (O3.3) realizes the latest possible checking point. Therefore, this
option does not o�er any constraint-based feedback during model development.

Integrated language-model constraint requirements: Constraint-language ex-
pressions (O3.1) are developed with the purpose of integrating the constraints
with the (meta)model representations. Examples are standard-compliant and
vendor-speci�c OCL expressions for the UML. Models and constraints can also
be integrated, for instance, via programming-language-based expressions over
secondary Ecore representations of UML models (e.g. Eclipse EValidator frame-
work; O3.2) as well as via natural-language UML comments (O3.4). The latter
two options having the drawback that they are speci�c to a certain platform
(O3.2) and lacking automatic evaluation (O3.4).

Maintainability e�ort: Explicitly de�ned model constraints (O3.1�O3.3) cre-
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ate structured text artifacts which must be maintained along with the model
artifacts (e.g. a corresponding XMI representation). Toolkits and their model
representations o�er di�erent strategies for this purpose, for example embedding
constraints into model elements (i.e. model annotations, such as UML com-
ments), maintaining constraint collections as external resources (e.g. separate
text �les), or editor integration. Each strategy a�ects the artifact complexity
and the e�ort needed to keep the constraints and the models synchronized.

Portability requirements: If the portability of constraints between di�er-
ent MDD toolkits (e.g. Eclipse MDT, Rational Software Architect, MagicDraw,
Dresden OCL) is a mandatory requirement, platform-dependent options O3.2
and O3.3 most often have to be excluded. However, due to version incompatibil-
ities and vendor-speci�c constraint-language dialects (e.g. Eclipse MDT OCL),
even O3.1 does not guarantee basic portability for the ambiguously speci�ed sec-
tions of the UML/OCL speci�cations (esp. for semantic variation points such
as navigating stereotypes in model instances or for transitive quanti�ers such as
closure).

Conformance between language model and constraints: Constraints on the
language model can be de�ned separately from the corresponding metamodel
(e.g. using code annotations; O3.2) or at a later stage (e.g. for M2T transforma-
tions; O3.3). It must be ensured that language-model constraints do not contra-
dict their language-model formalization and vice versa. Moreover, constraints
may need to be adapted when the metamodel changes (e.g. OCL navigation
expressions; O3.1).

Table 9: Positive/negative links between drivers and options.

Driver/Option O3.1 O3.2 O3.3 O3.4 O3.5

Constraint formalization requirements − − − + o
Language-model checking time ++ ++ + −− −−
Integrated language-model constraint require-
ments

++ + o + o

Maintainability e�ort − − − o o
Portability requirements + −− −− o o
Conformance between language model and con-
straints

− − − o o

Decision consequences.
Output artifacts: When we choose to de�ne constraints for a DSML, we

receive a catalog of language-model constraints that o�er additional structural
semantics for the DSML. Depending on the actual option(s) adopted, an explicit
catalog of formally de�ned constraints (e.g. via OCL) is available which can be
used to (automatically) test the validity of UML diagrams modeled with the
corresponding DSML. Moreover, a set of M2M/M2T transformation template
expressions used to validate model instances or code/textual annotations can be
produced as output artifacts. The decision which kind of constraint de�nition is
the most suitable is highly dependent on the actual stage of the DSML project,
available tool support, and tool integration (see, e.g., A15 and A16). The DSML
core language model and the DSML language-model constraints serve as an
input for the subsequent de�nition of the DSML's concrete syntax and behavior
speci�cation.

Tool support: The availability of tool support for di�erent lifecylce stages
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(development, veri�cation, evaluation) of formally de�ned language-model con-
straint expressions (O3.1) determines whether adopting a speci�cation or ex-
pression language is justi�ed beyond completing and disambiguating the for-
malized language model. Support for constraint development relates to IDE
integration and IDE awareness of constraint expressions. Another important
issue is how constraint artifacts can be managed along with model artifacts.
Support for constraint veri�cation includes, for example, model-checking sup-
port to assess the satis�ability of expressions. Finally, support for constraint
evaluation requires an execution engines (e.g. an OCL engine) for a given meta-
modeling infrastructure and linking back evaluation results into the development
support. Depending on the speci�cation or expression language adopted (e.g.
OCL, EVL), deployment of the DSML and the models created using the DSML
might be limited to certain MDD tool chains providing the necessary capabilities
(veri�cation, evaluation).
Application. In our DSMLs, we encountered all options but code annota-
tions (O3.2) and unconstrained language models (O3.5; for examples that use
O3.5 see, e.g., P39, P58, P60, and P61). In particular, we provide constraint-
language expressions (O3.1) via the OCL for all of our DSMLs. This is because
we needed to de�ne precise execution semantics for extended UML activities
(such as token �ows in P1) and of the UML state machines (state/transition
models in P10). In eight out of ten DSMLs (P2�P9), these semantics are based
on the same generic and MOF-compliant metamodel and provide corresponding
metamodel extensions. The generic constraints were then mapped to a UML-
based language formalization (i.e. the actual language model and the respective
OCL expressions). Code annotations (O3.2) were not considered because the
additional model constraints should not be speci�c to any platform (e.g. model
representation APIs, generator language). Note that while we did not �nd any
source for constraining code annotations in our SLR, this may still be a vi-
able option for MDD environments that use a single, pre-determined platform
technology (such as a Java or a C# framework for example). In P7, we addition-
ally incorporated constraining M2T transformations (O3.3). Informal textual
annotations (O3.4) are either used to complement OCL constraints or as full
substitutes for otherwise formally expressed constraints.
Sketch. Consider the following excerpt from P8: For a UML activity, each ac-
tion can be guarded by a constraint whose conditions refer to a set of operands
and checking operations. At runtime (level M0), the operations are called to
evaluate whether an action should be entered, depending upon some contextual
state. Constraint 1 shows a constraint-language expression (OCL) accompanied
by a complementary textual annotation. Constraint 5 exempli�es a constraint
expressed in natural language due to a model-level mismatch: While the con-
straint is captured at the language-model level (M2), the operation calls (whose
boolean return values are folded together to yield the runtime evaluation of the
guard) become manifest at the occurrence-level of an activity only (M0).

Constraint 1 : The operands speci�ed in a ContextCondition are either ContextAttributes or
ConstantValues:

context ContextCondition inv:
self.expression.operand.oclAsType(OperandType)->forAll(o |
o.oclIsKindOf(ContextAttribute) or
o.oclIsKindOf(ConstantValue))

Constraint 5 : The ful�lledCD Operations must evaluate to true to ful�ll the corresponding
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ContextCondition.

4.4 D4 Concrete-Syntax De�nition

Problem statement. In which representation should the domain modeler cre-
ate models using the DSML?
Decision context. The concrete syntax serves as the DSML's interface. Dif-
ferent syntax types can be de�ned and tailored to the need of the modeler.
For instance, di�erent syntax styles may be chosen depending on the modeler's
domain and/or software-technical pro�ciency.

The UML has a concrete syntax that provides a visual notation, with its
symbol vocabulary being organized into 14 diagram types [116]. The number
of distinct graphical symbols applicable in these diagram types ranges from 8
(in communication diagrams) to 60 (e.g. in class diagrams) [104]. A DSML
derived from the MOF and/or the UML can add new elements to this symbol
vocabulary or reuse existing ones (see also A10 and A17.

In addition, secondary, non-diagrammatic representation candidates are
available for the MOF and for the UML. Important examples are textual, tree-
structured, and tabular notations (see, e.g., [162]). A textual concrete syntax
expresses DSML models in a text-based format. Typically, textual grammars
are used to de�ne a textual concrete syntax (e.g. via the Extended Backus-Naur
Form [75]). Based on such a grammar a parser infrastructure is build (in some
cases the parser can even be generated automatically). A tree-structured con-
crete syntax is a graphical, but non-diagrammatic representation. It represents
a MOF or a UML model as a nested, collapsible structure with composite and
leaf elements having text labels and/or symbols (for example, the default UML
editor provided by the Eclipse MDT uses a tree structure). A tabular and form-
based concrete syntax organizes DSML elements in a table-like layout. Textual
labels and corresponding input �elds populate a structure of table rows and
columns (such a syntax is similar to the user interface of language workbenches
[53]).
Decision options.

O4.1 Model annotation: Attach UML comments as concrete-syntax cues to a
UML model, containing complementary domain information such as keywords,
narrative statements, or formal de�nitions (see, e.g., [85]). The expressions can
be prede�ned at the level of the language-model de�nition or they are tailored for
each instance. In addition, the UML speci�cation describes the use of keywords
and maintains a list of prede�ned keywords [116].

O4.2 Diagrammatic syntax extension: Extend one or multiple UML diagram
types by creating novel symbols adding to the basic UML symbol set. The new
symbols can be derived from existing shapes. The DSML is to be used primarily
in a diagrammatic manner adopting these extended UML diagram types. In
principle, the design space for the new symbols is unlimited but has to be aligned
with the requirements of the target domain. However, existing guidelines for
designing UML symbols should be considered (e.g. avoidance of synographs;
see, e.g., [104]). The symbol description can be structured according to the
form adopted by the UML speci�cation documents [116]: 1) A descriptive and
detailed statement about each symbol, 2) the optional elements of the symbols,
3) exact styling guidelines for the symbol's components (e.g. text labels, font
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faces), 4) an abstracted example of each symbol, and 5) a concrete example of
a model that uses the new symbol(s). This facilitates cross-reading between the
UML speci�cation and the DSML extension document. A notable example of
a diagrammatic extension is the option to equip UML stereotype elements with
dedicated icons which appear as addition to the standard notions of stereotyped
elements (e.g. tags or nested icons in classi�er rectangles [116]).

O4.3 Mixed syntax (foreign syntax): Create your DSML's concrete syntax
as either a non-diagrammatic syntax (textual, tree-based, or tabular) or as a
diagrammatic syntax not integrated with the UML's. Thus, in contrast to O4.2,
this option would de�ne a new and domain-speci�c diagram type. Hence, the
DSML concrete syntax is independent of and thereby foreign to the basic UML
symbol vocabulary. For example, model speci�cations in the foreign syntax
are managed and stored separately from the UML diagrams. The UML base
syntax is not extended, the symbols of the re�ned or modi�ed metaclasses are
reused (see O4.6). The extension syntax maps only to the DSML abstract
syntax, no UML metamodel element is covered. The foreign syntax is used
exclusively to model the domain-speci�c parts of an extended UML model. For
instance, a non-diagrammatic foreign syntax can be embedded into the primary,
diagrammatic UML syntax (e.g. via UML comments or expression elements).
In the resulting mixed syntax, there is a hierarchical relation between the basic
UML diagram notation and the nested foreign notation. To fully capture a
DSML model, the two syntaxes are mutually dependent. The unextended UML
base syntax cannot capture DSML speci�cs (unambiguously), the foreign syntax
cannot represent basic UML concepts.

O4.4 Frontend-syntax extension (hybrid syntax): Create your DSML's con-
crete syntax as a non-diagrammatic syntax (textual, tree-based, tabular) which
extends a non-diagrammatic frontend syntax to the UML (e.g. a textual UML
notation). As a result, the syntax extension represents a visual vocabulary in-
dependent of the graphical UML base syntax. The UML base syntax remains
unchanged, the symbols of the re�ned or modi�ed metaclasses are reused (see
O4.6). The extended frontend syntax has more expressive power than the UML
base syntax because the modeler can express DSML models unambiguously in
the frontend syntax. In the UML base syntax, the notational defaults (i.e., base
symbols representing DSML elements) limit the expressiveness (i.e., instances
of DSML elements cannot be distinguished from standard UML elements).

O4.5 Alternative syntax: Create a diagrammatic syntax extension to the
UML (O4.2) and provide one or more alternative syntaxes (see O4.3 and O4.4).
As a result, DSML models can either be expressed diagrammatically in the
extended UML notation, as a combination of standard UML diagrams with
an (embedded) foreign syntax, or as a non-diagrammatic speci�cation in the
extended frontend syntax. Each of these three variants has equal expressive
power in terms of abstract syntax elements covered. Lossless back-and-forth
transformations are possible.

O4.6 Diagram symbol reuse: Reuse built-in UML diagram symbols without
modi�cation. No custom, DSML-speci�c extension to the standard UML symbol
vocabulary is created. With the family of UML speci�cations [116] not being
explicit about the case of undeclared notations (i.e., missing �Notation� sub
clauses), the e�ective reuse of symbols de�ned for UML metaclasses re�ned by
the DSML must be stated explicitly (see also A12). This resembles the practice
applied in the UML speci�cation itself. For example, for the Class metaclass
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which specializes the Classifier metaclass. Section 7.3.7 of the UML standard
[116] says:

Notation

. . .
A class is shown using the classi�er symbol.
. . .

O4.7 None/Not speci�ed: The DSML speci�cation does not contain any
notational details, not even the explicit reuse of diagram symbols (see O4.6).
The concrete syntax remains unde�ned.
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 10.

Non-diagrammatic UML notation requirements: Textual notations [59] for
the UML are auxiliary representations and act as frontend syntaxes (O4.4). As
an important example, in XMI [117] a DSML concrete syntax extension would
be realized as an XML schema which extends the XMI schema itself. Besides,
as XMI is meant to represent MOF models natively, the availability of a UML
extension for XMI (e.g. the Eclipse UML2XMI schema) is a prerequisite. Major
pitfalls of an XMI-based extension are syntactic complexity and cognitive load
imposed on the modeler via the XML representation. Also, the respective UML
extensions are often vendor or tool speci�c.

HUTN [108] is an alternative that su�ers from similar limitations as XMI.
In particular, HUTN is speci�ed for use with the MOF or MOF-like modeling
infrastructures, such as Ecore. Thus, via HUTN only MOF views of the UML
can be captured. For example, while class and object models (diagrams) map
naturally to MOF models (HUTN speci�cations), other types of diagrams such
as UML activities are represented via their repository model notation [21, 116].
However, as a repository model, an activity is presented as an instance struc-
ture of the (extended) UML metamodel, omitting any process �ow notation.
This surrogate view is therefore not lossless and the predominantly structural
repository perspective misses the process �ow metaphor which might be critical
for the target domain of a DSML (see D1 in Section 4.1). Another comparable
but vendor-speci�c notation is o�ered by TextUML [33].

Moreover, other non-standard (grammar-based) textual notations that ex-
plicitly target (subsets of) the UML's abstract syntax exist. For example, the
Activity Diagram Linear Form (ADLF [52]) provides a textual representation
(and parser infrastructure) based on a Yacc grammar speci�cation for a subset
of UML activities (action nodes, control �ows, control nodes). Similar text-
based but feature-wise incomplete forms for other UML metamodel fragments
have been proposed (see, e.g., [65] for an example of UML state machines). A
major limitation of such approaches is the missing support of, e.g., notations
interlacing between di�erent diagram types of the UML (for example, nested
interactions in activities).

For a variety of tooling purposes, freestanding textual layout descriptions
for the UML come with a variety of modeling and auxiliary tools. Important
examples are direct diagram speci�cations (e.g. Graphviz-like speci�cations [7])
or intermediate textual notations (e.g. yUML [62]) for rendering and layouting
UML diagrams, also in an embedded manner for document processors. However,
these notations are freestanding in the sense that they are not meant to map to
a complete (sub-)set of the UML abstract syntax and to conform to notational
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restrictions derived from the abstract syntax. Rather, these notations serve
backend purposes (e.g. diagram rendering and formatting).

Degree of cognitive expressiveness: UML stereotypes have limited visual ex-
pressiveness in contrast to tailored model elements (O4.2) which are not re-
stricted with respect to their visual representation. A textual representation
can have a steeper learning curve but might be used to express models in a
shorter period of time (for advanced users). Nevertheless, it is often not the
best way to get an overview (i.e. not well-suited for large models). A tree-based
syntax �ts, for instance, a hierarchically structured DSML, but falls short in an
adequate representation of process �ow constructs such as loops and sequences.

Disruptiveness: The UML includes symbolic (e.g., class, state, association,
generalization) as well as iconic signs (e.g., actor, component, fork and join
nodes) for its graphical notation (concrete syntax) [116]. The perception of
symbolic and iconic signs di�er and is in�uenced by the intended application do-
main as well as the professional background and individual preferences of model
users. A set of experiments published as [147] provides evidence that UML mod-
els (class and collaboration diagrams) mostly consisting of iconic signs (in the
form of stereotype icons) improve comprehension compared to models mostly
consisting of symbolic signs (annotated non-stereotyped elements). These �nd-
ings are supported by results of another study in which the authors conclude
that �iconic UML graphical notations are more accurately interpreted by sub-
jects and that the number of connotations is lower for iconic UML graphical
notations than for symbolic UML graphical notations� [140]. While a DSML
designer must keep this information in mind, the concrete syntax must also be
developed to �t its purpose (i.e. conform to domain requirements, integrate with
other DSMLs etc.). For example, when the domain's graphical notation set has
a long history of symbolic signs, a change may cause confusion and comprehen-
sion problems which may lead to a decrease of DSML users' e�ciency.

In the UML, stereotypes (O4.1/O4.6 without icons) are the native domain-
speci�c visual presentation option. As stereotypes employ the same notation as
classes, they count as symbolic signs unless icons are graphically attached to the
model elements extended by the stereotype (see also A10). As an example of
domain-speci�c notation characteristics, software engineers may be most famil-
iar with textual syntaxes (O4.3, O4.4). Regarding tool support, Eclipse MDT
provides a tree-based view (O4.4) in one of its standard UML model editors.
Moreover, no explicit concrete syntax (O4.7) might be necessary if the DSML
only de�nes language-model constraints, limited behavioral speci�cations, or
provides tool support for standard UML means (see also A14).

Degree of required modeling-tool support: A textual concrete syntax (O4.4)
can be processed by a parser and (most often) does not need speci�c editor tools
(as they are required for a graphical/diagrammatic syntax). It can be integrated
with existing developer tools, such as version management systems or di� and
merge tools (an advantage for joint modeling as well as model evolution). Due
to its hierarchical form, a tree-based syntax is easy to be serialized to or created
from XML-based textual representations (e.g. XMI). Modeling support for UML
stereotypes (O4.1/O4.6) as well as for tree-based syntaxes exists in standard
tools, but must be explicitly integrated for new graphical elements (O4.2).
Decision consequences.

Usability evaluation: The DSML syntax is especially important from the
DSML user perspective. If a DSML is mainly used by non-programmers, a
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Table 10: Positive/negative links between drivers and options.

Driver/Option O4.1 O4.2 O4.3 O4.4 O4.5 O4.6 O4.7

Non-diagrammatic UML notation
requirements

o o − − − o o

Degree of cognitive expressiveness − + +/− +/− +/− − o
Disruptiveness − + + + ++ − +/−
Degree of required modeling-tool
support

++ − +/− + −− ++ o

special focus on usability aspects is needed.
Output artifacts: After de�ning suitable graphical and/or textual notation

symbols, as well as composition and production rules, we receive the DSML
concrete syntax de�nition as an output from this decision point. Together with
all other artifacts created during the DSML development process, the concrete
syntax de�nition is then mapped to the features of a selected software platform.
Application. In our case studies we provide a couple of di�erent concrete syn-
tax de�nitions such as UML stereotype-speci�c annotations for reusing symbols
(P1, P3, P7, P9, P10), new diagrammatic modeling elements (P1�P5, P8, P10),
and an alternative syntax style (a combination of a diagrammatic syntax ex-
tension and an alternative foreign syntax; P9). Additionally, one of our DSMLs
applies extended language-model constraints and does not need a concrete syn-
tax (P6). Approaches from the related work use the full range of options for
concrete syntax de�nitions (see, e.g., P17, P30, P53, P58, and P60). As an
example for an option not covered so far, P53 de�nes a textual frontend-syntax
extension.
Sketch. Figure 4 shows an example of two concrete syntax de�nitions consisting
of a diagrammatic representation on the left hand side and its textual equivalent
on the right hand side (excerpt taken from P9). In the example, an audit rule
is speci�ed for an information system which records data when a failed login
attempt from a user with administrator privileges is recognized (see [69] for
details). Both syntaxes operate on the same abstraction level and can be used
complementary (O4.5).

«AuditEventSource» Login failure :

  loginFailure() -> LoginInfo

    { userID, timestamp }

  <AR> LoginError -> LoginInfo :

    { AuditTrail::log() }

      <C> [userID, OperatorKind::equal, 1]

userID : Integer

timestamp : TimeExpression

«signal»

LoginInfo

publish

«AuditEventSource» loginFailure()

ERP-System

AuditSystem

condition

IfAdmin

userID

OperatorKind::equal

1

C

AuditTrail

log()

LoginError AR

subscribe : LoginInfo

Figure 4: Exemplary graphical and textual concrete syntax [69].

4.5 D5 Behavior Speci�cation

Problem statement. Do we have to de�ne (additional) behavioral semantics
for the DSML? If so, how should the additional behavior of DSML elements be
de�ned?
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Decision context. The behavioral speci�cation of a DSML (sometimes re-
ferred to as dynamic semantics) de�nes the behavioral e�ects that result from
using one or more DSML language element(s). It determines how the language
elements of the DSML interact to produce the behavior intended by the DSML
engineer. Moreover, the behavior speci�cation de�nes how the DSML language
elements can interact at runtime [152]. The behavior of a DSML can be de-
�ned in various ways, for instance, via behavioral models or (formal as well as
informal) textual speci�cations.

Explicitly speci�ed behavior allows for a correct mapping of the (platform-
independent) DSML speci�cations to a certain software platform (see D6 in
Section 4.6). However, sometimes a DSML's behavior is not explicitly speci�ed.
Behavioral relationships may also emerge from the language-model formalization
or the language-model constraints de�nition. Furthermore, accompanying tex-
tual descriptions, while not formally specifying behavior, may hint at intended
usage and interaction scenarios of DSML language elements. If no behavioral
speci�cation exists, the DSML's runtime behavior is implicitly de�ned via the
DSML's platform integration (e.g. via chains of method calls in a source code
implementation).
Decision options.

O5.1 M1 behavioral model: Specify additional behavior of language-model
elements using UML behavioral models at level M1 (e.g. state machines, in-
teraction diagrams, or activity diagrams; see, e.g., A18). For instance, in the
UML, a classi�er can reference owned behavior speci�cations. Behavior is then
executed in the context of the directly owning classi�er [116].

O5.2 Formal textual speci�cation: Specify the additional DSML behavior
using a textual formalism (e.g. algebraic expressions). In this context, a formal
textual speci�cation is a set of expressions in a formal language at some level
of abstraction [94] with the purpose that its correctness can be proven (e.g. by
using the Z notation [76, 77]).

O5.3 Informal textual speci�cation: In contrast to formal speci�cations, in-
formal textual speci�cations may be ambiguous. Thus, they are used to infor-
mally specify the behavior of a DSML, for example via narrative prose text.

(O5.4 Constraining model execution:) Implement behavioral constraints in
a (partial) execution engine for DSML models, so that they are evaluated at
model-processing and/or runtime. The constraints become enforced at model-
processing and/or runtime by the execution engine (e.g. xMOF [99] based on
the fUML [113], with constraints de�ned over fUML activities).

O5.5 None/Not speci�ed: No explicit behavior speci�cation.
Combination of Options: For instance, textual comments (O5.3) are used to

annotate models (O5.1) or to clarify formal speci�cations (O5.2).
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 11.

Model consistency preservation: UML behavioral models (O5.1) allow for a
native integration of behavioral semantics into UML/MOF-based DSMLs (see
also A18). For example, behavior of a DSML element can be de�ned via an
�owned behavior� speci�cation [116]. This facilitates support for integrated
modeling tools as well as execution engines (O5.4). Nevertheless, some semantics
elements may be left unconstrained in the speci�cations to defer behavioral
interpretations to the platform integration phase (which could slightly di�er
from one software platform to the other; e.g. the semantics of concurrency or
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event dispatch scheduling in the fUML [113]).
Behavioral de�nition requirements: For narrow domains, no explicit behavior

speci�cation may be needed (O5.5). Behavioral intentions can be drawn from
the descriptive part of the language model, its formalization, and the language-
model constraints. In such a case, an explicit behavior speci�cations may be
expendable.

Limited expressiveness: If, for some behavioral expressions, it is not feasi-
ble or even impossible to be su�ciently expressed via models (O5.1) or formal
statements (O5.2), informal textual speci�cations are an option (O5.3). For
instance, the speci�cation of the fUML execution model incorporates a degree
of generality for the semantics of inter-object communication mechanisms [113].
The execution model is written as if all communications are perfectly reliable
and deterministic (e.g. it is assumed that signals and messages are never lost or
duplicated) which is not realistic. As raising exceptions and exception handling
are excluded from the fUML speci�cation, an informal and descriptive addition
(O5.3) may be useful.

Behavior veri�cation requirements: Depending on the language and/or for-
malism that is to specify behavior, the correctness of formal speci�cations
(O5.2) and executable (i.e., well-formed) models (O5.4) can be proven (see,
e.g., [32, 76, 77]). If it is the objective to verify all artifacts a DSML consists
of (such as, language model, language-model constraints, behavior speci�ca-
tion, platform-speci�c artifacts), O5.2 and O5.4 are options. This is in contrast
to non-executable behavioral models (O5.1) and informal textual speci�cations
(O5.3) for which behavioral semantics may remain underspeci�ed. The bene�t
of proving the correct behavior of a DSML may come with the additional ef-
fort of a precise speci�cation and the development (or, at least, employment) of
adequate veri�cation methods and tools.

Visualization preferences: Behavior speci�cations may be aligned with other
visualization options. For instance, if all DSML artifacts (such as, language-
model de�nition, language-model constraints, concrete syntax, platform-speci�c
artifacts) are text-based, a textual behavior speci�cation may satisfy user re-
quirements best (O5.2, O5.3). For example, in case of the fUML, UML models
can be entirely represented using the action language ALF [112]. ALF acts as
a textual surface representation for UML modeling elements that can be used
to specify executable behavior.

Table 11: Positive/negative links between drivers and options.

Driver/Option O5.1 O5.2 O5.3 O5.4 O5.5

Model consistency preservation + − − + o
Behavioral de�nition requirements o o o o ++
Limited expressiveness −− −− ++ o o
Behavior veri�cation requirements − ++ − ++ o
Visualization preferences +/− +/− +/− o o

Decision consequences.
Semantic variation points: No behavior speci�cation or implicitly de�ned

behavior (O5.5) may introduce semantic variation points. The same applies to
under speci�ed informal textual de�nitions (O5.3). If precise behavior speci�ca-
tions are missing, it is nearly impossible to verify the platform integration (i.e.,
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to prove that the DSML behaves as intended). A missing behavioral guidance
may result in multiple (incompatible) possibilities for de�ning execution seman-
tics while mapping the DSML to a software platform. Semantic variation points
a�ect the consistency (e.g. to ensure intended behavior), traceability (e.g. to be
able to reproduce behavior), and transferability (e.g. to enable a mapping to
another software platform) of a DSML.

Platform-speci�c behavior speci�cation: When no explicit behavior is de-
�ned (O5.5), a DSML's behavior speci�cation is deferred to the platform in-
tegration phase. Runtime semantics (e.g. function calls or if-clauses) can be
used to establish a platform-speci�c behavior speci�cation. Platform-bound
execution semantics do not provide a generalized description of a DSML's be-
havioral intentions (i.e., no explicit behavioral documentation exists). Mapping
the DSML to another platform may be cumbersome as DSML behavior needs
to be abstracted from the platform-speci�c developments �rst. Furthermore, no
automatic behavior veri�cation is possible (in contrast to O5.4 for example).

Di�erent behavior enforcement points: Constraining model executions
(O5.4) establish two behavior enforcement points: 1) during model execution
and 2) after each execution step [32]. In the �rst case, behavioral conformance
is checked at each execution step. The second option relies on an execution
trace: after each execution step, the resulting model state is stored. Behavioral
properties are then validated against models from this trace. The behav-
ioral enforcement options then depend on the corresponding execution engine.
Furthermore, all behavior speci�cation options (O5.1�O5.4) allow to check
behavioral aspects before mapping the DSML to a speci�c platform (e.g. peer-
reviewed behavioral model walk-through via informal textual speci�cations;
O5.3). If no behavior is de�ned (O5.5), the earliest checking point is at the
time of platform integration (e.g. reviewing or debugging source code).
Application. As most of our case studies de�nes a DSML for a narrow do-
main they do not include explicit behavior speci�cations (P1, P2, P4�P10).
In P3, we employ UML state machines (O5.1) in combination with narrative
free-text (O5.3). In related approaches, we identi�ed di�erent options of behav-
ioral speci�cations. For example, formal textual speci�cations (mathematical
models; O5.2) in P30 and informal textual speci�cations (narrative semantics
descriptions; O5.3) in P53. No approaches constraining models via an execution
engine (see, e.g., [32, 99]) quali�ed for the decision catalog. This may be due
to the fact that we did not �nd any publications targeting executable models
prior to 2010. Furthermore, �rst (beta) versions of related speci�cations were
just recently published in 2010 [112] and 2011 [113], respectively.
Sketch. In P3, a UML state machine (O5.1) with accompanying informal
textual descriptions (O5.3) are used to specify states for process-related duties
(see Figure 5). For di�erent tasks in a business process, a duty de�nes an action
which must be performed by a certain subject [149]. Among others, P3 extends
the UML metamodel with a new Duty metaclass for which the state machine
in Figure 5 de�nes possible state changes (e.g. a transition from a passive to
a pending state). Additionally in P3, the occurring sequence of steps when
entering a Duty are listed textually (O5.3).
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Figure 5: Exemplary behavior speci�cation via a UML state machine [137].

4.6 D6 Platform Integration

Problem statement. How should the DSML artifacts be mapped to (and/or
integrated with) a software platform?
Decision context. Before platform integration, we have de�ned the DSML's
core (i.e., formalized) language model, a set of (additional) structural and be-
havioral constraints, as well as a concrete syntax speci�cation. At this stage,
DSML models (or an executable subset of the models) should be mapped to a
software platform (e.g. programming languages, frameworks, components, ser-
vice applications) and to customized platform artifacts (e.g. source code and
execution speci�cations that are tailored for the respective DSML).

Most often platform integration is achieved via model transformations (see,
e.g., [41, 101]) that convert a model into another platform-speci�c model (also:
model-to-model transformation, M2M) or into executable software artifacts
(also: model-to-text transformation, M2T; see also A4). Alternatively, DSML
models can also be evaluated and executed without intermediate transforma-
tions (to be more precise DSML models are then directly transformed into exe-
cutable machine code via a corresponding DSML interpreter; see also A19).
Decision options.

O6.1 Intermediate model representation: Provide for generating a second
and intermediate model (i.e., the target model) based on a DSML model (i.e.,
the source model) using M2M transformations. This intermediate model can
be described via an own metamodel. The source model and target model are
separate model entities. From the intermediate model we can create platform-
speci�c artifacts/models (e.g. using M2T transformations). This intermediate
structure can be used to optimize the source model (e.g. model canonization
and compression) and to attach debugging meta-data (see, e.g., [40]). More
speci�cally, the intermediate model can act as a decorator and/or as an adapter
(see, e.g., [54]).

A decorator model (e.g. an Eclipse Modeling Framework (EMF) generator
model [148]) manages references to the source DSML model and stores meta-
data (e.g. code docstrings, pre�xes for generated code entities, code package
names) which are speci�c to the platform integration tasks (e.g. code gener-
ation). As a result, the domain-speci�c model data and the transformation-
speci�c model data can be maintained independently from each other.

An adapter model does not preserve links back to the source DSML model
but replicates the DSML model in a restructured manner. The restructuring
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aims at facilitating subsequent platform integration tasks (e.g. code generation)
by adjusting the model structure (see, e.g., [40]). For example, to overcome cer-
tain abstraction mismatches between the DSML model (e.g. graph abstractions
in UML activities) and a family of platform-speci�c artifacts (e.g. block-based
process descriptions [100]).

O6.2 Generator template: Create transformation template which turn DSML
models into platform-speci�c execution speci�cations (e.g. markup documents)
and/or source code in the host programming language. Templates access
input model data via metamodel-based selections and extraction expressions
(e.g. OCL or XPath) and integrate the extracted model data into opaque output
strings that represent code fragments. Examples are the Eclipse-based Xpand
or the Epsilon Generation Language (EGL).

O6.3 API-based generator: Realize the platform-speci�c model transforma-
tion (e.g., code generation) by instrumenting a programmatic representation
of DSML models. The DSML core language model and, thereby, each DSML
model (i.e. each instance of the core language model) are internally represented
as a collaboration of programmatic entities (e.g. objects). Based on a dedicated
API for traversing this internal representation (e.g. a visitor-based API [40] or
a mixin-based API [159]), model transformation is achieved by instrumenting
this API (e.g. implementing visitors or mixins) to travel the object-based DSML
model representation and, for example, to serialize the model data to an output
string (see, e.g., [145]). The resulting platform-speci�c artifacts are independent
from the generator language or the generator implementation.

O6.4 (Direct) model execution: Use a (partial) model-execution engine to
generate platform-speci�c instructions directly from DSML models. This re-
quires that the target software platform (and its DSML-speci�c functions) can
be accessed through the same programming language which is used to represent
the internal, programmatic DSML model structure (e.g. object-based). Alter-
natively, inter-language bridges (e.g. wrappers, cross-language re�ection) are
available to realize such a feature. Given that this internal model representa-
tion is accessible through an API (e.g. using visitors [40] or mixins [159]), the
internal representation is processed and instrumented to emit platform instruc-
tions directly (rather than to generate and to store away instruction statements
to be performed at a di�erent point in time). In particular, this options (re)uses
and/or extends an existing interpreter or compiler infrastructure for the execu-
tion of DSML models.

O6.5 M2M transformation: Perform platform integration via (multiple) en-
dogenous model-to-model (M2M) transformations speci�ed via M2M transfor-
mation languages (ATL [19] or ETL [89]). The source and target models share
the same metamodel infrastructure on the M3 level (e.g. several re�ned platform-
speci�c UML pro�les). This is in contrast to O6.1 which describes platform-
speci�c model chains not necessarily sharing the same metamodel (e.g. a trans-
formation between a UML-based model and an intermediate Java object model).
Target models can either be executed directly (O6.4) or they need further pro-
cessing, for instance, via subsequent M2T transformations (O6.2, O6.3).

O6.6 None/Not speci�ed: No platform integration is performed; for example,
the DSML serves only for documentation purposes, for sketching a software
design, or for analyzing requirements.

Combination of options: Template-based (O6.2), generator-driven (O6.3),
and model-interpreting (O6.4) platform integration can be combined with inter-
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mediate structures (O6.1) to bene�t from the advantages of an intermediate rep-
resentation. In this way, transformation templates can operate on compressed
and canonicalized DSML models, generators run against decorator models pro-
viding generation-speci�c meta-data, and a model interpreter �nds a prefab-
ricated and execution-oriented model representation (e.g. an unfolded control
�ow).

In model-driven language workbenches [53], intermediate models (O6.1) can
be instantiated from metamodels that are de�ned via the host language used by
the corresponding target platform (e.g. JetBrains MPS/Java). In such a setup,
platform integration involves two steps: 1) A M2M transformation turning the
DSML model into a programmatic language model; 2) the direct interpretation
of the model via the interpreter/compiler infrastructure of the respective host
language (see O6.4; e.g. for prototyping and debugging purposes). Additionally,
source code artifacts can be generated (O6.2) to keep the code base separated
(e.g. for deployment purposes).
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 12.

Targeting multiple platforms: An intermediate model (O6.1) can act as a
common, canonicalizing representation that can be mapped to multiple target
platforms which have similar platform-speci�c abstractions (e.g. a family of
process-engine execution speci�cation languages such as BPEL4WS and WS-
BPEL). If the constructs of the modeling language di�er signi�cantly from their
intended platform integrations, an intermediary representation can increase the
e�ciency of subsequent M2T transformations. For instance, in P7, we transform
into an intermediate model �rst, to bridge between the graph-based PIMs and
the block-based PSMs (see also [100]).

Maintainability e�ort of static code fragments: With an API-based generator
(O6.3), the code independent from the DSML model must be integrated with
the generator implementation (e.g. a custom visitor). When using generation
templates (O6.2), non-changeable and non-parametric code fragments can be
clearly separated from generator statements in templates [145]. Depending on
the relative amount of static code fragments, an API-based generator involves
extra maintenance e�ort for managing the interwoven fragments of generative
code and static code.

Non-executable models: If the DSML should only serve modeling purposes,
for example via the de�nition of a UML pro�le (O2.2) and the utilization of
a standard modeling editor, no explicit platform integration might be needed
(O6.6). In this case, the DSML is not meant to be executed on a software
platform (see also A16). However, the DSML might primarily serve as a com-
munication instrument between domain experts and software engineers.

Table 12: Positive/negative links between drivers and options.

Driver/Option O6.1 O6.2 O6.3 O6.4 O6.5 O6.6

Targeting multiple platforms ++ o o o o o
Maintainability e�ort of static code frag-
ments

o + − o o o

Non-executable models −− −− −− −− −− ++

Decision consequences. Depending on which option(s) were chosen, this
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decision-making step produces a set of output artifacts. Important examples
include transformation speci�cations, test suites (e.g. to test generated code),
and platform extensions. The latter are functional additions to the target soft-
ware platform to cover DSML-speci�c execution requirements (e.g. through a
framework extension or integration of auxiliary frameworks).

Constraint inconsistencies: If the PIM-to-PSM model transformations are
performed via multiple M2M transformations generating intermediate model
representations (O6.1, O6.5), it has to be ensured that the language-model
constraints (O3.1) also hold in the intermediate model(s). Either a second set
of explicit constraints (O3.1) must be provided for the intermediate model or
constraining M2M transformations (O3.3) must be applied.

Di�erent constraint enforcement points: Code generation templates (O6.2)
are applied to instances of the language model. Therefore, constraints enforced
on the language model (O3.1) can also be checked for the generator templates
(e.g. with EVL, O3.3; see also A21). However, this only prevents wrong usage
of the construction rules in the code templates. As no constraints are enforced
on the generated code, it may not entirely conform to the constraints de�ned at
the level of the DSML's language model. This means, in contrast to language
workbenches, code templates work by generating free-text not conforming to
any metamodel.
Application. In P9, we transform Ecore-based language models into Java code
via generator templates (O6.2). In P5, no platform integration has been per-
formed (O6.6) because the primary contribution was a non-executable DSML
to capture selected security concerns in UML activities. Only later, in P7, the
DSML was integrated with the SoaML in an executable manner, with support
for generating web Services execution speci�cations. For this purpose, we em-
ployed API-based generators (O6.3) for intermediate models (O6.1) in P7 (a
combined option). This is because we had to address certain abstraction mis-
matches between the DSML model and the platform-speci�c model.

While not explicitly documented, platform integration and DSML execution
(e.g. for testing and simulation purposes) via direct model execution (O6.4) is
prepared in several of our projects (e.g. P3, P4, and P8). Based on a model
representation and model runtime environment implemented in a DSL toolkit
comparable to the one in [159], object-oriented DSML model representations
can be created and inspected. For platform integration, these representations
could be instrumented for model execution (O6.4).

In related approaches, we �nd, for instance, intermediate models (O6.1) in
P17, generation templates (O6.2) in P17 and P39, API-based templates (O6.3)
in P58, M2M transformations (O6.5) in P17, and no documented platform in-
tegration (O6.6) in P30, P53, P60, and P61.
Sketch. The following EGL code shows an excerpt from an M2T generation
template applied in P9. Here, a Java method is generated for the speci�cation
of an audit rule according to the structure of a corresponding metamodel. An
audit rule consists of a set of evaluable conditions, whereas the validity of each
condition is checked via a generated if-clause. True is returned (see variable
passed) when all condition checks passed successfully, otherwise the method
returns false.

[% operation auditRule(auditRule) { %]
private boolean [%=auditRule.name%]() {
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Map<String, String> data;
boolean passed = true;
[% for (signal in auditRule.subscribe) {
out.println(’data = ’ + signal.name + ’.getData();’);
for (condition in auditRule.conditions) {
out.println(’if (!(’ + condition.name + ’)) passed = false;’);

}
} %]
return passed;

}
[% } %]

5 Associations between Options

A decision option chosen at one decision point may in�uence options at the same
or at subsequent decision points (for example, a choice can favor, determine, or
exclude following options). By reviewing our DSML projects and related ap-
proaches (see Table 13 in Appendix B) using the decision catalog from Section 4,
we identi�ed 21 decision associations within a single decision (Section 5.1) or
between two or more decisions (Section 5.2; see also Figure 6). Each association
is denoted by a pairing of a�ected decision options as explained in Section 4.
In Figure 6, an association is shown as an edge connecting either two encircled
options (e.g. O5.4↔O6.4) or connecting an option and a decision point (shown
as a rectangle). An edge between an option and a decision point shows an asso-
ciation between the option and all options of the corresponding decision point
(e.g. O1.4↔D2 which is equivalent to O1.4↔O2.1�O2.4).
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Figure 6: Overview of associations between decision options.
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5.1 Associations between Options of one Decision Point

A1 O1.1↔O1.4 Textually accompanied formal diagrammatic models:8 Dia-
grammatic models complying to a formal speci�cation (O1.4; e.g., the MOF)
may not be su�cient to describe a DSML's language model unambiguously
without further explanations. Textual descriptions (O1.1) were found for all
of the 90 DSML projects (see Table 13), particularly explaining the semantics
of accompanying language models and providing additional information (e.g.,
intentions behind model and package designs, explanation of model elements,
attributes, and associations; see, e.g., P34 [133] or P37 [166]).

A2 O3.1↔O3.4 Textually accompanied constraint-language expressions:8

Similarly to the former association (A1), constraint-language expressions are
also annotated textually (e.g., an OCL statement is explained in natural lan-
guage, as well; see, e.g., P30 [16] or P40 [32]). This is merely due to increase
the readability of constraints as the reader may not be familiar with a certain
constraint language (e.g., the OCL). Furthermore, this association emerges
also from the fact that not every language-model constraint can formally be
described with a constraint language (see next association A3).

A3 O3.4↔O3.1�O3.3 Impossible constraint evaluation: Some constraints
cannot be captured by the means of constraint languages and the underlying
language models, code annotations, or model transformation templates (see,
e.g., [116]). Such constraints have to be provided as text annotations in a
natural language. Either these constraints have a documentation purpose only,
or they serve for porting the constraints to another environment as they are
not locked to a concrete expression form. For example, in P8, language-model
constraints are de�ned via the OCL. However, some constraints need to be
expressed in natural language due to a model-level mismatch. Constraints are
captured at the language-model level (M2), but some operation calls become
manifest at the occurrence level of an activity (M0) only.

A4 O6.2↔O6.5 Model transformation chains:8 The observed association is
characterized by endogenous M2M transformations (O6.5) prior to the code gen-
eration step (O6.2; see, e.g., P17 [4] or P32 [5]). In these M2M transformations,
source and target models share the same metamodel infrastructure on the M3
level (e.g., the MOF). For example, we found the association being employed
for analyzing models (P32) as well as for generating test cases (P17). On the
one hand, P32 provides an approach for analyzing OCL-constrained UML class
models for inconsistencies via Alloy [80]. A UML class model is transformed into
an instance model of the Alloy metamodel (both instantiating the MOF; O6.2).
From the Alloy model, a M2T transformation generates a textual representation
(O6.5) which serves as input to the Alloy analyzer. Located con�icts can then
be traced back to the original model elements in the UML class diagram. On the
other hand, P17 uses M2M transformations to generate platform-independent
and platform-speci�c test models (e.g., UML sequence diagrams) from the ac-
tual application models (O6.2). Via M2T transformations application code and
corresponding test cases are generated (O6.5). In both examples, the Alloy
model (P32) and the platform-speci�c application and test models (P17), all
serve as intermediate representations (O6.1) from which textual artifacts are

8The association was added or revised based on the �ndings on smallest option subset

as well as the option combinations identi�ed for generating prototype option-sets and largest
components [141].
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created.

5.2 Associations between Options of two or more Decision

Points

A5 O1.2↔O3.1 Shared expression foundations: Adopting certain formal textual
(e.g. set-theoretical) representations a�ect the choice of a language (e.g. the
OCL) for de�ning constraints over the core language model explicit and vice
versa. If there is a common de�nitional foundation of both languages, a trans-
formation is facilitated. For example, as basic OCL semantics have been de�ned
in terms of a set-theoretical model (see, e.g, [127]), set theory and set algebras
are a natural choice to de�ne a language model at the CIM (computation in-
dependent model) level. This underlying correspondence allows for mapping
set de�nitions (e.g. set builders) to equivalent, built-in or custom-de�ned OCL
expressions (e.g. OCL selectors).

A6 O1.4↔D2 Language-model formalization as re�nement:8 If the domain
description includes MOF or UML diagrams, a stepwise transition into a UML-
based core language model is facilitated. In particular, an association between
options O1.4 and O2.2 is a candidate (see, e.g., P16 [83] or P20 [103]). Neverthe-
less, in some DSML projects found via the SLR, the de�nition of a MOF-based
or modeling-language independent metamodel and the corresponding mapping
to a UML pro�le was not documented explicitly (see, e.g., [44, 153, 163]).9 This
leaves the reader of pro�le applications, for instance, in the example sections
of the papers, with assuming a direct 1:1 mapping of language-model elements
into equally named stereotypes�a rather silent naming convention. This lack of
explicit documentation is problematic, because it is implicitly assumed that the
modeling-language independent metamodel and the UML pro�le share under-
lying semantics, which is not necessarily the case. As an example contributing
to overcome such impedance mismatches emerging due to diverging de�nitional
foundations of modeling languages, in [91] an approach for the semi-automatic
transformation of MOF-based conceptual domain models (O1.4) into UML pro-
�les (O2.2) is presented.

A7 O2.1↔O3.4 Constraint limitations for structural models: An M1 struc-
tural model (e.g. a class model) de�nes a language model at the UML instance
level (i.e. at the M1 layer [115]). This means, no metamodel is employed to
re�ect the domain space and, therefore, domain abstractions can neither be
instantiated nor explicitly constrained for their usage as modeling constructs
(contradicting the meta-layer architecture of MDD). Thus, restrictions can only
be de�ned in terms of text annotations attached to the language model.

A8 O2.1↔O4.1 Impossible diagram extensions: The decision to de�ne the
core language model at the UML M1 level (O2.1) is in con�ict with a UML
syntax extension (O4.2). In other words, if we use an M1 model to de�ne the
DSML's core language model, an extension of the UML's concrete syntax (within
the UML framework) is not an option. In this case, model annotations (O4.1)
remain the only viable option. However, UML pro�les can tailor existing UML
metaclasses. In particular, pro�les can be used to de�ne dedicated icons which
appear as full replacements for the standard notation of stereotyped elements

9Please note that projects exhibit formalization and/or critical documentation defects
were excluded from the extraction of encoded DSML design decisions.
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and which can act as a limited diagrammatic syntax extension.
A9 O2.2↔O3.1∨O3.4 Constrained UML pro�les:8 The speci�cation of a

UML pro�le (O2.2) was found accompanied by either formal (O3.1) or informal
textual (O3.4) constraint de�nitions (or both; see, e.g., P70 [160] or P80 [79]).
The pro�le-speci�c part represents an extension to A2 in Section 5.1 and may
indicate a demand for the de�nition of dedicated constraints besides native UML
pro�le semantics. This can be interpreted as a possible hint that the de�nitional
foundations of particular UML-pro�le-speci�c elements, such as Stereotype or
Extension, are not explicit enough to ful�ll the requirements for formalizing a
DSML language model.

A10 O2.2↔O4.1∧O4.6 Native stereotype speci�cation:8 A UML pro�le de�-
nition (O2.2) for the language-model formalization was observed in combination
with a concrete syntax speci�cation via annotating model elements (O4.1) and
reusing diagram symbols (O4.6; see, e.g., P22 [122] or P54 [6]). This association
has its cause in the stereotype de�nition of the UML speci�cation: �A Stereo-
type uses the same notation as a Class, with the addition that the keyword
�stereotype� is shown before or above the name of the Class� [116]. Hence, a
reused symbol (from Class; O4.6) is annotated with the keyword �stereotype�
(O4.1). Please note that this association does not cover icons graphically at-
tached to the model elements extended by the stereotype (O4.2).

Furthermore, by applying the native UML pro�ling mechanism, the abstract
and the concrete syntax of extended model elements are coupled [121]. A stereo-
type inherits all semantics (abstract syntax) and the notation (concrete syntax)
from its extended UML base class. A DSML designer has to choose a base class
whose either abstract syntax or concrete syntax most closely matches that of the
domain-speci�c concept. In every case, either the semantics or the notation may
not resemble the DSML's application domain. On the one hand, by focusing
on concrete-syntax conformance, the stereotyped element may need to be con-
straint heavily (an increase in complexity). On the other hand, by focusing on
abstract-syntax conformance, the addition of keywords and/or icons might not
be su�cient or suitable for the intended domain. An approach to overcome this
discrepancy is presented in [121]. Therein, the abstract and concrete syntax is
decoupled by de�ning notational extensions via the UML Diagram Interchange
speci�cation (DI [109])10 allowing the modeling of arbitrary notations.

A11 O2.2�O2.4↔D4 Concrete syntax drives UML extension: The formal-
ization strategy for the language model a�ects the selection of a concrete syntax
style. If the language model is de�ned via a UML pro�le (O2.2), di�erent pre-
sentation options for stereotypes may be considered. A textual presentation
(i.e., tags) does not extend the basic UML symbol vocabulary (O4.1, O4.6;
see former association A10). Stereotype icons, however, are extensions in the
sense of O4.2. For a metamodel extension (O2.3), the de�nition of new mod-
eling elements (O4.2) is an option. The di�erent combined diagrammatic and
non-diagrammatic options are also applicable.

A12 O2.3↔O4.6∧¬O4.1 Underspeci�ed concrete syntax de�nition:8 Ex-
tending the UML metamodel (O2.3) without an explicit concrete syntax de�-
nition (O4.6)�even not annotating model elements (O4.1)�was an observed
association (see, e.g., P13 [13] or P88 [34]). The authors of these DSMLs silently

10Please note that the UML Diagram De�nition speci�cation (DD [114]) has replaced the
DI speci�cation.
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assume that symbols de�ned for UML metaclasses (in the UML speci�cation
[116]) are inherited by the DSML-speci�c extensions (e.g., via a generaliza-
tion relationship). This is in contrast to the practice applied in the UML
speci�cation itself (see O4.6 in Section 4.4).

A13 O3.1↔O2.2�O2.4 Constraint inconsistencies: A combination of di�er-
ent language-model formalizations (e.g. a UML pro�le and a metamodel ex-
tension) may require the duplication and modi�cation of constraint de�nitions.
For instance, in P7 [67, 72] we de�ne both, a UML metamodel extension and
a pro�le de�nition to integrate with the SoaML speci�cation [110]. Hence, we
de�ne constraint-language expressions as OCL invariants over both language
model formalizations. Thus, both constraint de�nitions need to be maintained
and held consistent.

A14 O3.1∧O3.4↔O4.7 Tailoring semantics only:8 Customizing the UML
or any extensions of it (e.g., SoaML, SysML [111]) via explicit constraint ex-
pressions (O3.1, O3.4) without a concrete syntax de�nition (O4.7) to specify a
DSML was an observed association (see, e.g., P40 [32] or P84 [124]). This asso-
ciation bears the risk that while the formal semantics of DSML elements may
be well-de�ned, they cannot be distinguished from non-constrained UML ele-
ments (see also A12 and A17). The DSML should only be used in isolation, not
mixing concrete syntaxes of tailored and UML model elements. The problem of
ambiguity exists also for extensions of DSMLs (e.g., a revision of a previously
de�ned DSML). Whether new features are added or formerly de�ned semantics
are changed, a unique identi�er (e.g., version number, modi�ed name) should
be used to distinguish between di�erent releases of a DSML.

A15 O3.2↔O6.6 Speci�c host/platform language: If code annotations were
used to express constraints over the core language model, a runtime environment
to execute the code statements would be needed, for instance, as part of the
platform integration step. As an example, consider Java expressions attached
to an extended UML metamodel. In such a case, a JVM is needed to evaluate
these Java expressions and execute them on the system-level.

A16 O3.3↔O6.6 Mandatory platform integration: Whether constraining
M2M or M2T transformations are actually an option for de�ning language-
model constraints depends directly on the decision if we want to perform plat-
form integration or not. Likewise, if the use of constraining M2M/M2T trans-
formations is a mandatory requirement known up front (e.g. due to the toolkit
choice or in a legacy system scenario), integrating language-model constraints
into the transformation template suite avoids duplicated speci�cation e�ort as
well as redundant model-level artifacts (e.g. OCL constraints plus correspond-
ing template expressions). However, the specialized constraint languages com-
ing with M2M/M2T generation languages (e.g. EVL for EGL) are commonly
restricted in their constraint-expressing power compared to model-level con-
straint languages (e.g. an equivalent to OCL's message introspection might be
missing). Besides, integrating constraint-checking and generation-speci�c tem-
plate expressions can hinder a separation of concerns by including expressions
which are irrelevant for the actual generation task. In particular, this may cause
overly complex or even con�icting template code. These pitfalls can be avoided
when applying the constraint-checking M2M templates in a transformation of
the DSML into an intermediate model representation (O6.1), with the actual
platform integration step (M2T code generation) being performed on the vali-
dated intermediate model.
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A17 O4.6↔O2.2 Symbol ambiguity in diagrams: When reusing existing
UML symbols, the resulting �extended� diagrams are most often ambiguous.
In particular, using the same symbol for di�erent concepts means that re�ning
concepts cannot be distinguished from the re�ned ones. To introduce a simplis-
tic discriminator without creating new symbols, one can provide a UML pro�le
to de�ne a series of stereotype tags which can then be attached to the reused
symbols to denote the DSML-speci�c re�nements. In this case, UML pro�les
serve primarily for clarifying the concrete syntax elements used for a DSML. This
resembles the usage of standard pro�les as de�ned by the UML [116], however,
without adding to the abstract syntax and semantics of the language model. In
P7 [67, 72], for example, we do not de�ne a dedicated concrete syntax (that is,
no diagrammatic extension) to a newly de�ned metamodel element called Se-
cureInterface. It is only distinguishable from a pre-existing ServiceInterface
via its pro�le mapping and stereotyped representation as �SecureInterface�.

A18 O5.1↔O3.1 M1 behavioral models as constraints: M1 models can be at-
tached to metamodel elements for behavioral speci�cations (e.g. via the owned-
Behavior relation of a BehavioredClassifier [116]). In doing so, they are
constraining/de�ning the behavior of metamodel elements. For example, in P3
[137, 138] we make use of a UML state machine to de�ne states (e.g. passive,
pending, discharged) and transition options between those states for DSML
elements.

A19 O5.4↔O6.4 Integrated model execution: Interpreting UML models
directly (e.g. via an execution engine) demands a precise speci�cation of 1)
DSML structural properties, 2) well-formed instance models, 3) execution se-
mantics, and 4) operational semantics. Regarding (1), structural properties of a
UML/MOF-based DSML (domain elements, relationships etc.) are represented
via a formalized language model (i.e., the abstract syntax of a DSML; D2). An
executable model must adhere to certain well-formedness criteria (2). For a
DSML, these are speci�ed via language-model constraints (D3) and enforced at
the level of the instance model. Execution semantics (3) of a DSML are de�ned
via behavior speci�cations (D5) to be processed via a certain platform (D6).
The de�nition of behavioral constraints (O5.4) and the model execution (O6.4)
may be supported by the same model execution environment. Operational
semantics (4) at the level of the executing environment (i.e. interpretation of
the platform-speci�c implementation as a sequence of computational steps) are
speci�c to an execution engine and do not need to be de�ned speci�cally via
the DSML.

A20 O6.2↔O1.4∧O2.2 Existing toolchain support:8 Tools for editing UML
models, including the de�nition and application of pro�les (O2.2), are nowadays
frequently available (e.g., MagicDraw, Eclipse Papyrus, Rational Software Ar-
chitect, Enterprise Architect, Modelio, UModel). In addition, template-based
M2T transformations (O6.2) are a widely supported platform integration tech-
nique in contemporary MDD tool chains, and a variety of template language
implementations exist, such as, Eclipse Xpand, Xtend2, EGL, JET, or Acceleo
(see, e.g., [41, 130]). Several UML model editors provide combined tool support
for M2T transformations in an MDD-based way, as well (e.g., in the Eclipse-verse
based on EMF-compliant models). Thus, the observed association is character-
ized by a high availability of modeling tools and generator engines (see, e.g.,
P12 [3] or P67 [128]). Nevertheless, a formal diagrammatic model not compli-
ant with the UML speci�cation (e.g., an ER model; O1.4) must be mapped to
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native UML constructs �rst (i.e. a pro�le de�nition) to bene�t from standard
tool support. Alternatively, the EMF-based technical projection of the EMOF
[115] (i.e. an Ecore model; O1.4) is also a candidate option to facilitate toolchain
support as automatic transformations into and from UML class models exist.
Furthermore, a partially tool-supported approach for the semi-automatic trans-
formation of MOF-based models into UML pro�les is presented in [91] (see also
A6).

A21 O6.2↔O3.5 Platform-speci�c constraint enforcement:8 This observed
association is characterized by a late and platform-speci�c constraint enforce-
ment point. Corresponding DSMLs do not de�ne constraints for the language
model explicitly (O3.5), but integrate them into (templates of) code generators
(see, e.g., P51 [73] or P85 [86]). As generation templates (O6.2) are applied to
instances of the language model, constraints can basically be enforced (see also
A16). However, constraints are checked late in the DSML development process;
i.e. at the time of executing M2T transformations. Until platform integration is
performed, the conformance of models to their corresponding constraints is not
validated. Furthermore, constraints need to be duplicated for di�erent generator
engines and for the support of multiple platforms. In addition, a DSML designer
has to keep in mind that�independent of an existing or lacking de�nition of
language model constraints�no constraints are enforced on the generated code
(i.e. the output of a M2T transformation is not interpreted by its generator
component).
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A Revision to the Initial Version of the Catalog

Based on the �ndings derived from the extracted and codi�ed decision data (via
the SLR), we revised the catalog of decision records�the initial version was
published as [70, 71]�to reach its current state (this document). The revision
involved changes to the content as well as the presentation as follows:

Document structure

• De�ned decision template structure: We speci�ed the descriptive parts
which must necessarily be included in a decision record (problem state-
ment, decision context, decision drivers etc.) and added a conceptual
overview (see Section 2.2).

• Added format convention: We added a convention for referencing decision
points, corresponding options, associations between options, and DSML
projects in a consistent way (see Section 2.4).

• Added revision history: The di�erences and additions to the initial version
of the catalog [70, 71] are explained (this section).

Decision points (records)

• Added decision-point descriptions: We added a description for each deci-
sion point considered (D1�D6; see Section 2.1). The section also highlights
the decision records which were applied frequently in our SLR study [141].

• Added decision record: We added a decision record and corresponding op-
tions for a newly introduced decision point, namely behavior speci�cation
(D5; see Section 4.5).

Decision options

• Added decision options: By studying the 80 related DSMLs found, we
required a more �ne-grained encoding schema which let us to the de�nition
of a new decision point and new (corresponding) options:

� O5.1�O5.5: Along with adding a new decision point (D5; see above),
decision options O5.1�O5.5 were introduced. The pool of 80 DSMLs
(obtained via the SLR) also provides known-usage examples for op-
tions which we were lacking from our initial resource collection (see,
e.g., P53 [143] and P84 [124]).

� O6.5: The description of alternative options for D6 (see Section 4.6)
was extended to di�erentiate between di�erent styles of M2M trans-
formations (exogenous, endogenous; see O6.1 and O6.5). Again, we
complemented each amendment to this revised description with ex-
amples (see, e.g., P17 [4] and P35 [2]).

• Updated decision options: Descriptions of decision options were revised
according to the examples found by studying the 80 DSMLs. In addition,
selected DSMLs out of this pool were added as known uses of an option
to the decision records. The following changes in response to our �ndings
are notable:
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� O2.1: The description was limited to M1 structural models only
(see Section 4.2) as the newly introduced decision point D5 covers
behavioral speci�cations (including M1 behavioral models; O5.1).

� O2.2: The description was extended to cover the extension and/or
rede�nition of existing pro�le(s); rather than introducing new pro�les
only (see Section 4.2). Examples of this practice can be found in P36
[56, 98] and in P54 [6].

� O4.3: The description was relaxed so that diagrammatic notations
other than UML diagram notations (or variants thereof) are covered
(see Section 4.4). This was triggered by examples found in P30 [16]
and in P39 [93].

• Made links between drivers and options explicit: Positive and negative
links between decision drivers and available options are listed in an
overview table in the decision drivers section of each decision record (see
Sections 4.1�4.6).

• Added option thumbnails: A comparatively large share of observed DSML
designs can be described based on nine out of the 27 decision options
provided by the revised catalog.11 We, therefore, added thumbnail de-
scriptions of nine base options to the catalog (see Table 6 in Section 3).

• Highlighted options: Each of the nine frequent options featured by found
prototype option-sets and largest subsets was, in addition, highlighted in
the individual decision-record descriptions by underlining the correspond-
ing option number and title (see Sections 4.1�4.6).

• Marked candidate options: Three options (O3.2, O3.3, and O5.4; see Sec-
tions 4.3 and 4.5) not applied in any of the selected DSML projects were
marked as candidate options in the decision-record descriptions (option
number and title are put in parentheses). The options are preserved in
the catalog because they have been identi�ed as such by secondary stud-
ies and/or there are known uses which are documented in selected DSML
designs not recovered or con�rmed by empirical evidence such as with this
SLR study.

• Adapted presentation: On the one hand, the representation of decision-
option sets allowed us to remove pseudo-options (and the respective codes)
which signal a combination of options taken at one decision point, which
turned out not informative enough for our study [70, 71]. On the other
hand, in some DSML projects it was not unambiguously clear whether an
option had been applied or not. Thus, we introduced a representation for
denoting options as underspeci�ed (for O2.4, see, e.g., P41 [55] and P88
[34] in Table 13 in Appendix B).

• Updated associations between options: Based on the �ndings on smallest
option subsets as well as the option combinations identi�ed for generating
prototype option-sets and largest components, we revised option associ-
ations within decision points (options of one and the same record) and

11Note that there are actually 31 decision codes (see, e.g., Table 13), the di�erence of four
codes serving for coding pseudo-decision options; e.g., not taking any decision.
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between them (see Section 5). These associations are also re�ected in the
subsections on the decision context, options, drivers, and consequences of
the respective decision records (see Sections 4.1�4.6).

• Added navigation structure: We added navigation structures (reading se-
quence for option descriptions, feature diagrams etc.) to the catalog to
re�ect possible reading paths based on the intention of a planned or DSML
under review.

DSML projects encoding

• Complemented encoded decision options: The initially encoded design de-
cisions and options for our ten DSML projects were updated (according
to the new encoding scheme) and the retrieved 80 related DSML projects
were added to Table 13 in Appendix B.

• Added domains and diagram types: For each DSML, we added its applica-
tion domain(s) and the tailored UML diagram type(s). An overview table
of all 90 DSML projects was added providing the name, the domains, the
diagram types, and the option set for every DSML (see Table 14 in Ap-
pendix C). Furthermore, Table 2 in Section 1 and Table 15 in Appendix D
list the frequency of DSML-tailored diagram types and DSML application
domains.
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B Encoded Design Decisions and Options

This section provides an overview of chosen options per design decision for all
90 DSML projects (see Table 13). The DSML projects P1�P10 were performed
by ourselves, the remaining projects were collected via the SLR (the protocol
of the SLR is available at [141]). The SLR has been performed to �nd relevant
UML/MOF-based DSML engineering approaches and to extract design decisions
and corresponding options from them.
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C Domains, Diagram Types, and Option Set per

DSML

Table 14 lists all 90 DSMLs this catalog is based on, of which ten are our own de-
velopments (P1�P10), the rest has been retrieved via the SLR (P11�P90). The
�rst column states the consecutive DSML project numbering used throughout
this paper, the DSML's name (either speci�ed by the authors themselves or�
when no explicit name was mentioned�one chosen by us), and a reference to
the corresponding publication(s). In the second column, the DSML application
domain(s) are encoded according to the 2012 ACM Computing Classi�cation
System (CCS).12 We have extracted the UML diagram type(s) tailored by a
DSML as classi�ed by the UML superstructure itself (shown in the third col-
umn of Table 14). The last column lists the decision-option set representing a
DSML's design as encoded according to our catalog (see Section 4). Please note
that Table 13 in Appendix B provides more details on the option set for each
DSML in another view.

Table 14: Domains, diagram types, and option set per DSML project.

DSML Domain(s)
Diagram
type(s)

Option set

P113

ConcernActivities

[151]

Access control, Software design
engineering

Activity
{1.1, 2.2, 2.3, 3.1, 3.4,
4.1, 4.2, 4.6, 5.5, 6.6}

P2

BusinessActivities

[150]

Access control, Business process
modeling, Software security en-
gineering

Activity,
Class

{1.1, 1.2, 1.4, 2.3, 3.1,
3.4, 4.2, 5.5, 6.1, 6.4}

P313

UML-PD

[137, 138]

Access control, Business process
modeling, Software security en-
gineering

Activity,
Class

{1.1, 1.2, 1.4, 2.2, 2.3,
3.1, 3.4, 4.1, 4.2, 4.6,

5.1, 5.3, 6.6}
P4

UML-DEL

[136, 138]

Access control, Business process
modeling, Software security en-
gineering

Class
{1.1, 1.2, 1.4, 2.3, 3.1,

3.4, 4.2, 5.5, 6.6}

P5

SOF

[68]

Business process modeling,
Software security engineering

Activity
{1.1, 2.3, 3.1, 3.4, 4.2,

5.5, 6.6}

P6

UML-PD

[135]

Access control, Business process
modeling, Software security en-
gineering

Activity,
Class

{1.1, 2.3, 3.1, 3.4, 4.7,
5.5, 6.6}

P713

SOFServices

[67, 72]

Business process modeling,
Service-oriented architectures,
Software security engineering,
Web services

Activity,
Compos-
iteStructure

{1.1, 1.2, 1.4, 2.2, 2.3,
3.1, 3.3, 3.4, 4.1, 4.6,

5.5, 6.1, 6.3}
P8

UML-CC

[139]

Access control, Business process
modeling, Software security en-
gineering

Class
{1.1, 1.2, 1.4, 2.3, 3.1,

3.4, 4.2, 5.5, 6.6}

P913

SecurityAudit

[69]

Publish-subscribe / event-based
architectures, Software security
engineering

*14
{1.1, 2.2, 2.3, 3.1, 3.4,
4.1, 4.3, 4.5, 4.6, 5.5,

6.2}

12Available at http://www.acm.org/about/class; last accessed: Feb 2, 2015.
13The DSML's option set contains (at least) one of the seven prototype option-sets shown

in Tables 4 and 5.
14The DSML does not tailor a UML diagram type speci�cally; for example, a stereotype

extension of a UML element applicable in all diagram types, such as, Element (see, e.g., [27, 69])
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DSML Domain(s)
Diagram
type(s)

Option set

P1013

MTD

[161]

Object oriented languages, Soft-
ware architectures

Activity,
Class,
Object,
StateMachine

{1.1, 2.2, 2.3, 3.1, 3.4,
4.1, 4.2, 4.6, 5.5, 6.6}

P11

ADModel

[25]

Business process modeling Activity
{1.1, 2.3, 3.5, 4.7, 5.5,

6.3}

P1213

AspectSM

[3]

Robustness, Software develop-
ment techniques, Software test-
ing and debugging

StateMachine
{1.1, 1.4, 2.2, 3.1, 4.1,

4.6, 5.5, 6.2}

P1313

UML4SPM

[13]

Software development process
management

Activity,
Class

{1.1, 2.3, 3.5, 4.6, 5.5,
6.6}

P1413

MDATC

[14]

Reusability, Software devel-
opment techniques, Software
product lines

Activity,
Package

{1.1, 2.3, 3.5, 4.6, 5.5,
6.6}

P1513

TLM

[82]

Model veri�cation and valida-
tion, System on a chip

Class
{1.1, 2.2, 3.1, 4.1, 4.6,

5.5, 6.2}

P1613

UPSS

[83]

Service-oriented architectures
Class, Com-
positeStruc-
ture

{1.1, 1.4, 2.2, 3.4, 4.1,
4.6, 5.5, 6.6}

P1713

BIT

[4]

Software testing and debugging Class
{1.1, 2.2, 3.1, 4.1, 4.6,

5.5, 6.1, 6.2, 6.5}

P1813

UML4PF

[63, 64]

Design patterns, Model check-
ing, Requirements analysis, Se-
curity requirements

Class
{1.1, 2.2, 3.1, 4.1, 4.6,

5.5, 6.6}

P1913

UP4WS

[43]

Service-oriented architectures,
Web services

Class
{1.1, 2.2, 3.4, 4.1, 4.6,

5.5, 6.2}

P2013

CB

[103]

Reusability, Software develop-
ment techniques

Class, Com-
ponent

{1.1, 1.4, 2.2, 3.4, 4.1,
4.6, 5.5, 6.1, 6.3, 6.5}

P2113

AbstractSet

[92]

Model veri�cation and valida-
tion

Class, Pack-
age

{1.1, 1.4, 2.2, 3.5, 4.1,
4.6, 5.5, 6.6}

P2213

C2style

[122]

Architecture description lan-
guages, Systems analysis and
design

Component,
Sequence

{1.1, 2.2, 3.1, 3.4, 4.1,
4.6, 5.5, 6.6}

P2313

MARTE-DAM

[17, 18]

Embedded systems, Fault tree
analysis, Real-time systems,
Software fault tolerance, Trans-
portation

Component,
Sequence,
StateMa-
chine, Use-
Case

{1.1, 1.4, 2.2, 3.1, 4.1,
4.6, 5.5, 6.3, 6.5}

P2413

UMM-Local-

Choreographies

[66]

Business process modeling, Or-
chestration languages

Activity
{1.1, 2.2, 3.1, 4.1, 4.6,

5.5, 6.6}

P2513

RichService

[48]

Service-oriented architectures,
Web services

Class, Com-
ponent,
StateMachine

{1.1, 1.4, 2.2, 3.5, 4.1,
4.6, 5.5, 6.6}

P2613

UML-PMS

[57]

Performance, Ubiquitous and
mobile computing

Activity
{1.1, 2.2, 3.4, 4.1, 4.6,

5.5, 6.6}

or Constraint (see, e.g., [37]).
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DSML Domain(s)
Diagram
type(s)

Option set

P2713

SOA

[9]

Service-oriented architectures
Class, Com-
ponent,
Deployment

{1.1, 1.4, 2.2, 3.1, 4.1,
4.2, 4.6, 5.5, 6.6}

P2813

SWS

[58]

Semantic web description lan-
guages, Web services

Activity
{1.1, 1.4, 2.2, 3.5, 4.1,

4.6, 5.5, 6.6}

P2913

eSPEM

[47]

Software development process
management

Activity,
StateMachine

{1.1, 2.3, 2.4, 3.5, 4.6,
5.5, 6.6}

P3013

RCSD

[16]

Transportation Class, Object
{1.1, 2.2, 3.1, 3.4, 4.1,

4.3, 4.6, 5.2, 6.6}

P31

UML-SOA-Sec

[132]

Business process modeling, Se-
curity requirements, Service-
oriented architectures, Web ser-
vices

Activity
{1.1, 2.2, 3.5, 4.1, 4.2,

4.6, 5.5, 6.6}

P3213

UML2Alloy

[5]

Model veri�cation and valida-
tion

Class, Pack-
age

{1.1, 1.4, 2.2, 3.1, 3.4,
4.1, 4.6, 5.5, 6.1, 6.2,

6.5}
P3313

ExSAM

[12]

Avionics, Embedded systems,
Engineering

Compos-
iteStructure

{1.1, 1.4, 2.2, 3.4, 4.1,
4.6, 5.5, 6.6}

P3413

UACL

[133]

Availability, Telecommunica-
tions

Class, Com-
ponent

{1.1, 1.4, 2.2, 3.1, 3.4,
4.1, 4.6, 5.5, 6.6}

P35

SECTET

[2]

Service-oriented architectures,
Software security engineering,
Web services

Class
{1.1, 2.1, 3.5, 4.7, 5.5,

6.2, 6.5}

P3613

UML4SOA

[56, 98]

Service-oriented architectures
Activity,
Class, Com-
ponent

{1.1, 2.2, 2.3, 3.1, 4.1,
4.2, 4.6, 5.5, 6.1, 6.3,

6.5}
P3713

SafeUML

[166]

Avionics, Software safety
Class, Pack-
age

{1.1, 1.4, 2.2, 3.1, 3.4,
4.1, 4.6, 5.5, 6.6}

P3813

IStarDW

[155]

Data warehouses, Security re-
quirements

Class, Pack-
age

{1.1, 2.2, 3.1, 3.4, 4.1,
4.2, 4.6, 5.5, 6.5}

P3913

TestOracle

[93]

Software testing and debugging StateMachine
{1.1, 2.2, 3.5, 4.1, 4.3,

4.6, 5.5, 6.2}

P40

MOCAS

[32]

Model checking, Model veri�ca-
tion and validation

Object
{1.1, 2.3, 3.1, 3.4, 4.7,

5.5, 6.4}

P41

CCFG

[55]

Model veri�cation and valida-
tion

Activity
{1.1, 2.3, 3.5, 4.2, 5.5,

6.6}

P4213

TimeSeriesAnalysis

[167]

Data mining, Data warehouses Class, Object
{1.1, 2.2, 3.1, 4.1, 4.2,

4.6, 5.5, 6.6}

P43

ADOM-UML

[125]

Model veri�cation and vali-
dation, Requirements analysis,
Software design engineering

*
{1.1, 1.2, 2.2, 3.5, 4.1,

4.6, 5.5, 6.6}
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Diagram
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P4413

Prede�ned-

Constraints

[37]

Model checking *
{1.1, 2.2, 3.4, 4.1, 4.6,

5.5, 6.6}

P4513

TAM-PM

[90]

Graphical user interfaces, Web
interfaces

Activity,
Class

{1.1, 1.4, 2.2, 3.1, 4.1,
4.6, 5.5, 6.2}

P46

SPEM4MDE

[45]

Software development process
management

Activity,
StateMachine

{1.1, 2.3, 3.1, 3.4, 4.2,
5.5, 6.5}

P47

CSSL

[20]

Collaborative and social com-
puting

Class,
StateMa-
chine

{1.1, 2.3, 3.1, 3.4, 4.5,
5.5, 6.6}

P48

SystemC

[126]

Embedded systems, System on
a chip

Compos-
iteStructure,
StateMachine

{1.1, 2.2, 3.5, 4.1, 4.2,
4.6, 5.5, 6.6}

P4913

UML2Ext

[24]

Requirements analysis, Soft-
ware product lines

UseCase
{1.1, 2.3, 3.5, 4.6, 5.5,

6.6}

P5013

HM3

[31]

Hypertext languages
Class, Use-
Case

{1.1, 2.2, 2.3, 3.1, 3.4,
4.1, 4.6, 5.5, 6.6}

P5113

WCAAUML

[73]

Web applications, Web inter-
faces

Class, De-
ployment,
Package

{1.1, 2.2, 3.5, 4.1, 4.6,
5.5, 6.2}

P5213

IEC61508

[119, 120]

Model veri�cation and valida-
tion, Safety critical systems

Class, Pack-
age

{1.1, 1.4, 2.2, 3.1, 3.4,
4.1, 4.6, 5.5, 6.6}

P5313

UCDM

[143]

Use cases UseCase
{1.1, 2.3, 3.1, 3.4, 4.4,

4.6, 5.3, 6.6}

P5413

SPArch

[6]

Software architectures, Soft-
ware development process man-
agement

Class, Com-
ponent, Pack-
age

{1.1, 1.4, 2.2, 3.5, 4.1,
4.6, 5.5, 6.6}

P5513

MoDePeMART

[23]

Measurement, Metrics, Soft-
ware performance

Class,
StateMa-
chine

{1.1, 1.4, 2.2, 3.5, 4.1,
4.6, 5.5, 6.6}

P56

UPCC

[95]

Enterprise data management,
Service-oriented architectures,
Web services

Class
{1.1, 2.1, 3.5, 4.7, 5.5,

6.6}

P57

SELinux

[1]

Access control, Operating sys-
tems security, Security require-
ments

Class
{1.1, 1.3, 2.2, 3.5, 4.1,

4.6, 5.5, 6.6}

P58

UML-GUI

[144]

Graphical user interfaces
Class, Com-
ponent

{1.1, 1.2, 2.1, 3.5, 4.7,
5.5, 6.3}

P5913

SHP

[106]

Software security engineering
Class, Pack-
age

{1.1, 2.2, 3.1, 3.4, 4.1,
4.6, 5.5, 6.6}

P6013

SMF

[102]

Fault tree analysis, Safety criti-
cal systems, Software safety

Class, Com-
ponent, Use-
Case

{1.1, 1.3, 1.4, 2.2, 3.5,
4.1, 4.6, 5.5, 6.6}

P6113

DMM/UCMM

[42]

Graphical user interfaces
Class, Use-
Case

{1.1, 1.4, 2.3, 2.4, 3.5,
4.6, 5.5, 6.6}
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P6213

CUP 2.0

[15]

Graphical user interfaces
Activity,
Class, Pack-
age

{1.1, 2.2, 3.4, 4.1, 4.2,
4.6, 5.5, 6.2}

P6313

REMP

[78]

Embedded systems, Real-time
systems, Software testing and
debugging

Class,
StateMa-
chine

{1.1, 2.2, 3.1, 4.1, 4.6,
5.5, 6.6}

P6413

DPL

[10]

Web services Activity
{1.1, 2.2, 3.5, 4.1, 4.6,

5.5, 6.2}

P6513

WebRE

[88]

Requirements analysis, Web ap-
plications

Activity, Use-
Case

{1.1, 1.4, 2.2, 3.5, 4.1,
4.2, 4.6, 5.5, 6.6}

P6613

AOM-AD

[38]

Software development tech-
niques

Activity
{1.1, 1.2, 2.2, 3.4, 4.1,

4.6, 5.5, 6.6}

P6713

Reliability

[128]

Software reliability
Interac-
tionOverview,
Sequence

{1.1, 1.4, 2.2, 3.4, 4.1,
4.6, 5.5, 6.2}

P6813

UML-AOF

[84]

Software development tech-
niques

Class, Pack-
age

{1.1, 2.2, 3.4, 4.1, 4.6,
5.5, 6.6}

P69

CompSize

[96]

Embedded systems, Estimation,
Measurement, Metrics

Class, Com-
ponent

{1.1, 2.2, 3.5, 4.1, 4.6,
5.5, 6.6}

P7013

Architectural-

Primitives

[160]

Design patterns, Software archi-
tectures

Component
{1.1, 2.2, 3.1, 3.4, 4.1,

4.6, 5.5, 6.6}

P7113

CUP

[8]

Error detection and error cor-
rection, Model checking

Compos-
iteStructure,
Sequence

{1.1, 2.2, 3.1, 4.1, 4.6,
5.5, 6.6}

P7213

GWfM-Sec

[60]

Orchestration languages, Soft-
ware security engineering, Web
services

Activity
{1.1, 2.2, 2.3, 3.4, 4.1,

4.6, 5.5, 6.6}

P7313

SoC

[134]

Hardware description languages
and compilation, System on a
chip

Activity,
Class,
Compos-
iteStructure,
Deployment

{1.1, 2.2, 3.4, 4.1, 4.6,
5.5, 6.6}

P7413

UMLtrust

[156]

Scenario-based design, Software
development techniques, Trust
frameworks

Class, Pack-
age, UseCase

{1.1, 2.2, 3.4, 4.1, 4.2,
4.6, 5.5, 6.6}

P7513

HERM

[154]

Database design and models Class
{1.1, 1.2, 1.4, 2.2, 3.1,
3.4, 4.1, 4.6, 5.5, 6.6}

P7613

WebML

[105]

Web applications, Web inter-
faces

Class, Com-
ponent,
Compos-
iteStructure

{1.1, 1.4, 2.2, 3.1, 4.1,
4.2, 4.6, 5.5, 6.6}

P77

ODP

[129]

Distributed architectures

Class, Com-
ponent,
Object, Se-
quence

{1.1, 2.2, 3.5, 4.1, 4.6,
5.5, 6.6}

P7813

EIS

[107]

Enterprise information systems
Activity,
Component

{1.1, 2.2, 3.4, 4.1, 4.2,
4.6, 5.5, 6.6}
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P7913

SPTExt

[11]

Embedded systems, Real-time
systems

Activity
{1.1, 1.2, 1.3, 2.2, 3.4,

4.1, 4.6, 5.5, 6.6}

P8013

CAV

[79]

Software architectures, Soft-
ware evolution

Class
{1.1, 2.2, 3.4, 4.1, 4.6,

5.5, 6.6}

P8113

SOA-NF

[158]

Service-oriented architectures
Compos-
iteStructure

{1.1, 2.2, 3.4, 4.1, 4.6,
5.5, 6.2}

P82

SECRDW

[142]

Data warehouses, Security re-
quirements

Class, Pack-
age

{1.1, 2.3, 3.5, 4.7, 5.5,
6.6}

P8313

SECDW

[157]

Data warehouses, Security re-
quirements

Class, Object
{1.1, 2.2, 3.1, 3.4, 4.1,

4.2, 4.6, 5.5, 6.6}

P84

EM

[124]

Electronic commerce, Web ap-
plications

Class,
StateMa-
chine, Use-
Case

{1.1, 2.1, 3.1, 3.4, 4.7,
5.1, 5.3, 6.6}

P8513

WS-CM

[86]

Web applications, Web services
Class,
StateMa-
chine

{1.1, 2.2, 3.5, 4.1, 4.6,
5.5, 6.2}

P8613

aspectJ

[50]

Software development tech-
niques

Class, Pack-
age

{1.1, 2.2, 3.1, 3.4, 4.1,
4.6, 5.5, 6.2}

P8713

ContextUML

[123]

Service-oriented architectures,
Web services

Class
{1.1, 2.2, 3.5, 4.1, 4.6,

5.5, 6.2, 6.3}

P8813

Di�erenceMM

[34]

Software evolution Class
{1.1, 2.3, 3.5, 4.6, 5.5,

6.6}

P8913

Versioning

[27]

Software evolution, Version con-
trol

*
{1.1, 1.4, 2.2, 3.5, 4.1,

4.6, 5.5, 6.3}

P90

NFA

[165]

Avionics, Model checking Class
{1.1, 2.3, 3.5, 4.3, 5.5,

6.5}
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D Application Domains

To map the domain coverage of the 90 DSML projects, we classi�ed every DSML
according to the 2012 ACM Computing Classi�cation System (CCS).15 Table 15
shows the frequency of categories assigned to the selected DSML projects. In
total, we used 63 distinct CCS categories and we assigned 177 category tags.

Table 15: Frequency of DSML application domains.

Domain Frequency

Service-oriented architectures 11

Software security engineering 11

Web services 11

Business process modeling 10

Access control 7

Model veri�cation and validation 7

Software development techniques 7

Embedded systems 6

Security requirements 6

Model checking 5

Web applications 5

Data warehouses 4

Graphical user interfaces 4

Requirements analysis 4

Software architectures 4

Software development process management 4

Software testing and debugging 4

Avionics 3

Real-time systems 3

Software evolution 3

System on a chip 3

Web interfaces 3

Design patterns 2

Fault tree analysis 2

Measurement 2

Metrics 2

Orchestration languages 2

Reusability 2

Safety critical systems 2

Software design engineering 2

Software product lines 2

Software safety 2

Transportation 2

Architecture description languages 1

Availability 1

Collaborative and social computing 1

Data mining 1

15Available at http://www.acm.org/about/class; last accessed: Feb 2, 2015.
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Domain Frequency

Database design and models 1

Distributed architectures 1

Electronic commerce 1

Engineering 1

Enterprise data management 1

Enterprise information systems 1

Error detection and error correction 1

Estimation 1

Hardware description languages and compilation 1

Hypertext languages 1

Object oriented languages 1

Operating systems security 1

Performance 1

Publish-subscribe / event-based architectures 1

Robustness 1

Scenario-based design 1

Semantic web description languages 1

Software fault tolerance 1

Software performance 1

Software reliability 1

Systems analysis and design 1

Telecommunications 1

Trust frameworks 1

Ubiquitous and mobile computing 1

Use cases 1

Version control 1
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