11 research outputs found

    Use of the Delay-Tolerant Networking Bundle Protocol from Space

    Get PDF
    The Disaster Monitoring Constellation (DMC), constructed by Survey Satellite Technology Ltd (SSTL), is a multisatellite Earth-imaging low-Earth-orbit sensor network where captured image swaths are stored onboard each satellite and later downloaded from the satellite payloads to a ground station. Store-and-forward of images with capture and later download gives each satellite the characteristics of a node in a Delay/Disruption Tolerant Network (DTN). Originally developed for the Interplanetary Internet, DTNs are now under investigation in an Internet Research Task Force (IRTF) DTN research group (RG), which has developed a bundle architecture and protocol. The DMC is currently unique in its adoption of the Internet Protocol (IP) for its imaging payloads and for satellite command and control, based around reuse of commercial networking and link protocols. These satellites use of IP has enabled earlier experiments with the Cisco router in Low Earth Orbit (CLEO) onboard the constellation's UK-DMC satellite. Earth images are downloaded from the satellites using a custom IPbased high-speed transfer protocol developed by SSTL, Saratoga, which tolerates unusual link environments. Saratoga has been documented in the Internet Engineering Task Force (IETF) for wider adoption. We experiment with use of DTNRG bundle concepts onboard the UKDMC satellite, by examining how Saratoga can be used as a DTN convergence layer to carry the DTNRG Bundle Protocol, so that sensor images can be delivered to ground stations and beyond as bundles. This is the first successful use of the DTNRG Bundle Protocol in a space environment. We use our practical experience to examine the strengths and weaknesses of the Bundle Protocol for DTN use, paying attention to fragmentation, custody transfer, and reliability issues

    Intermittent connection effect in the Message Ferry Delay Tolerant Network

    Get PDF
    Delay Tolerant Networks (DTN) give a base of communication that permits the delivery of data within harsh environments or even between networks without interconnection. The connection between networks happens when some nodes cross between them and carry information. Our model consists of the Message Ferry Mobility Model (MFMM) where all nodes in the network are confined to their village except one mobile node (the message ferry). In order to reduce the energy consumption the wireless interface is not always on. We aim to study how much does the on/off state of the wireless interface reduces the total connection time available in the MFMM. To answer this question, we created a simulator that uses the MFMM. The simulator generated mobility traces of all nodes and measured the contact time under different patterns of the on/off cycle. As expected the contact time are longer when the interface is active more often. However we found an unanticipated reduction in contact time vs active wireless interface ratio. Hence, we concluded that in the MFMM, the on/off duty-cycle of the wireless interface influences the total contact times

    Towards Flexibility and Accuracy in Space DTN Communications

    Get PDF
    ABSTRACT Although Interplanetary Telecommunications rely on preconfigured contact schedules to make routing decisions, there is a lack of appropriate mechanisms to notify the network about contact plan changes. In order to fill this gap, we propose and evaluate a framework for disseminating information about queueing delays and link disruptions. In this context, we present such a mechanism, focusing not only on its functional properties, but rather on its impact objectives: to improve accuracy and routing performance. Supportively, we couple this mechanism with a DTN-compatible protocol, namely Contact Plan Update Protocol (CPUP), which implements our dissemination policy. Through simulation of space scenarios we show that accuracy can be significantly improved in all cases while routing performance can achieve a wide range, from minor through to significant gains, conditionally

    A Delay Tolerant Networking-Based Approach to a High Data Rate Architecture for Spacecraft

    Get PDF
    Historically, it has been the case that SWaP placed such severe constraints on radios that the links between spacecraft and the ground were relatively slow. This meant that the radio link was normally a significant bottleneck in returning scientific data. Over recent years, however, a combination of more efficient radio design, intelligent waveforms, and highly directed, high-frequency RF / optical systems have led to a rapid increase in the amount of data that can be pushed through radio and optical links. This has led to some cases where the radio links are capable of moving data much more quickly than the spacecraft and instruments are capable of actually generating it! In some instances, scientific data can therefore be lost not because the downlink is too slow to support the data rate, but instead because the spacecraft was not designed in a way that would let it fully utilize both the radio and the networking services available to it.The High Data Rate Architecture (HiDRA) project describes a packet-based approach to building modern, distributed spacecraft systems. It presents a means for spacecraft and other assets to participate in both present and future Delay Tolerant Networks (DTN), while simultaneously ensuring that the asset is able to fully utilize the new, high-speed links that have been seeing more widespread development and deployment in recent years. With this in mind, this paper begins with a discussion regarding HiDRA's evolution. Next, it discusses the capabilities and limitations of NASA's present DTN-enabled networks. Of particular note is the way in which principles of network design at the terrestrial level (e.g. use of programmable networks / software-defined networks, separation between data and control plane, infusion of COTS Ethernet switch chips, etc.) can all be translated into the space environment as well. After this, the paper discusses the design and implementation of a present prototype reference implementation of High-Rate DTN (HDTN), which is intended to demonstrate future high-rate networking concepts as part of a coherent demonstration on the International Space Station (ISS). The goal, of both the research and of this implementation, is to help develop a ready-made toolbox of ideas, approaches, and examples from which mission designers can draw when putting together new missions. Assuming all goes as planned, this should not only work to reduce the cost of individual mission design, but also improve the rate at which science data can be returned for mission participants to review

    Voice Communication in Mobile Delay-Tolerant Networks

    Get PDF
    Push-to-talk (PTT) is one class of voice communication system generally employed in cellular phone services. Today's PTT services mainly rely on infrastructure and require stable end-to-end path for successful communication. But users with PTT enabled mobile devices may travel in challenged environments where infrastructure is not available or end-to-end path is highly unreliable. In such cases those PTT services may exhibit poor performance or may even fail completely. Even though some existing PTT solutions allow users to communicate in an ad-hoc fashion, they need sufficient node density to establish end-to-end path and eventually fail to communicate in sparse mobile ad-hoc environments. Delay-Tolerant Networking (DTN) is an emerging research area that addresses the communication requirements specfic to challenged networks. In this thesis we develop a voice communication system (DT-Talkie) which enables both individual and group users to communicate over infrastructure-less and challenged networks in the walkie-talkie fashion. The DTN concept of asynchronous message forwarding is applied to the DT-Talkie in order to transmit voice messages reliably. We employ variable-length fragmentation mechanism in the application layer with the vision to speed-up session interactivity in stable scenarios. Some approaches to resolve codec interoperability issues are implied in this thesis. To validate the concepts of the DT-Talkie, we implement an application for Maemo based Nokia Internet Tablets, leveraging the DTN reference implementation developed in the DTN Research Group. Moreover in this thesis we evaluate the performance of the DT-Talkie through conducting a set of simulations using several DTN routing protocols and using different mobility models

    EvaluaciĂłn del protocolo Bundle mediante un emulador de redes

    Get PDF
    Las redes de comunicaciones han adquirido una gran importancia a lo largo del tiempo debido a la necesidad del ser humano de descubrir y tener un mayor conocimiento sobre todo lo que nos rodea. Actualmente, las zonas urbanas y las zonas rurales de países desarrollados se encuentran bien comunicadas debido a la red tradicional de cable coaxial o fibra óptica que se encuentra funcionando gracias a la torre de protocolos TCP/IP. Sin embargo, siguen existiendo zonas de nuestro planeta situadas por ejemplo en países subdesarrollados o en entornos extremos como grandes montañas o zonas cercanas a volcanes que también tienen la necesidad de comunicarse. Además, las redes tradicionales no tienen un buen funcionamiento cuando se trata de comunicaciones desde la tierra con el espacio exterior debido a las largas distancias y al entorno. Por ello, surge la necesidad de diseñar otro tipo de redes que se adecuen a este tipo de entornos. Es entonces cuando se propuso el protocolo Bundle con el fin de obtener mejor rendimiento y fiabilidad en redes tolerantes al retardo y a las interrupciones (DTN) sustituyendo a la familia de protocolos de una red tradicional que no tenían un buen funcionamiento en este nuevo tipo de red. En la actualidad, aunque se está realizando una gran investigación sobre el protocolo Bundle, sigue en fase de experimentación ya que tiene muchos aspectos en los que se puede mejorar. En este trabajo, se pretende dar a conocer las características del funcionamiento de una red tolerante al retardo y a las interrupciones y más concretamente del protocolo Bundle sobre el que funcionan. Para ello, después de ofrecer una visión teórica, se realizarán pruebas gracias al emulador de redes CORE, donde se podrá verificar cuál es su rendimiento en distintos escenarios y compararlos con el rendimiento del protocolo TCP de la red tradicional.Communication networks have acquired great importance over time due to the need of humans to have greater knowledge about everything that surrounds us. Currently, urban areas and rural areas in developed countries are well connected due to the traditional network of coaxial or fiber optic cable that is operating thanks to the TCP / IP protocol stack. However, there are still areas of our planet located for example in underdeveloped countries or in extreme environments such as large mountains or areas near volcanoes that also have the need of communication. In addition, traditional networks do not work well in communications between the Earth and outer space due to long distances and the environment. Therefore, the need arises to design other types of networks that are suitable for this type of environments. It is when the Bundle protocol was proposed in order to obtain better performance and reliability in Delay and Disruption Tolerant Networks (DTN) replacing the family of traditional network protocols that did not have a good performance in this new type of network. At present, although a great research is being carried out on the Bundle protocol, it is still in the experimentation phase since it has many aspects in which it can be improved. In this project, it is intended to present the characteristics and performance of Delay and Disruption Tolerant Networks and more specifically of the Bundle protocol on which they operate. To do this, after offering a theoretical vision, tests will be carried out thanks to the CORE network emulator, where we can verify its performance in different scenarios and compare it with the performance of the TCP protocol of the traditional network.Ingeniería en Tecnologías de Telecomunicació

    Satellites d'observation et réseaux de capteurs autonomes au service de l'environnement

    Get PDF
    La collecte d’informations et leur transmission au travers d’un réseau de communications peut être effectuée par des réseaux de capteurs autonomes ainsi que par des satellites d’observation. L’utilisation conjointe de ces réseaux fournirait des données complémentaires et permettrait à l’Humanité de pérenniser son avenir en comprenant les mécanismes du monde qui l’entoure. Ces dernières années, le secteur spatial a montré une volonté d’unifier et de faciliter la réutilisation des développements réalisés avec la création de filières de plateformes multi-missions ainsi que la définition de protocoles applicables à différents contextes. L’objectif de cette thèse est d’étudier les caractéristiques des différentes technologies d’observation afin d’en exploiter les points communs. À ces fins, nous nous intéressons aux technologies et aux architectures utilisées dans de tels contextes. Nous proposons alors une architecture de réseau répondant aux contraintes des systèmes les plus communément utilisés dans un tel cadre. Les principales contraintes des scénarios d’observation sont liées à la forte intermittence des liens et donc au manque de connexité du réseau. Nous nous orientons donc vers une solution ayant recours au concept de réseaux tolérants au délai. Dans un tel contexte, l’existence d’une route entre la source et la destination n’est pas garantie. C’est pourquoi les protocoles de communication utilisés propagent généralement plusieurs exemplaires d’un même message vers plusieurs entités afin d’augmenter le taux de délivrance. Nous avons souhaité diminuer l’utilisation des ressources du réseau tout en conservant des performances similaires afin d’augmenter l’efficacité du réseau. Après avoir proposé une architecture commune, nous nous sommes focalisés sur les spécificités des différents segments de notre réseau afin de répondre localement à ces problèmes. Pour le segment satellite, nous nous sommes plus spécialement concentrés sur les techniques de gestion de mémoire. Nous considérons un satellite défilant avec une mémoire embarquée limitée, collectant des données en provenance de passerelles. Il s’agit alors de sélectionner les messages les plus urgents quitte à déposer sur une autre passerelle les messages moins contraints. Sur le réseau de capteurs terrestre, nous nous sommes focalisés sur la diminution de l’utilisation des ressources du réseau. Pour cela nous avons utilisé l’historique des rencontres entre les nœuds et analysé l’influence de la quantité de mémoire allouée aux accusés de réception sur les performances du réseau. Nous sommes parvenus à atteindre des performances supérieures aux solutions existantes à moindre frais. Les solutions proposées peuvent être mises en œuvre et appliquées dans différents contextes applicatifs. ABSTRACT : Data gathering and transmission through a communicating network can be obtained thanks to wireless sensor networks and observation satellites. Using both these technologies will allow mankind to build a sustainable future by understanding the world around. In recent years, space actors have demonstrated a will to reuse the developed technologies by creating multiple programs platforms and defining context-agnostic protocols. The goal of this thesis is to study the characteristics of several observation technologies to exploit their similarities. We analyse the existing technologies and architectures in several contexts. Then, we propose a networking architecture handling constraints of most commonly used systems in such a context. The main constraints of observation scenarios are due to the links intermittence and lack of network connectivity. We focus on a solution using the delay tolerant networking concept. In such a context, a path between source and destination might not exist at all time. That is why most proposed protocols send multiple copies of a message to increase the delivery ratio. We wanted to decrease network resource use while keeping a similar performance to increase network efficiency. After having proposed a common architecture, we focused on particularities of each network segment to solve problems locally. Concerning the satellite part, we focused specifically on memory management techniques. We considered a low earth orbit satellite with a limited on-board buffer, gathering data from gateways. The goal is then to select the most urgent messages even though the least urgent ones are sent back to the ground. On the terrestrial sensor network part, we focused on the decrease of network resource use. We used the history of encounters between nodes and analysed the influence of the proportion of memory allocated to acknowledgements on network performance. We achieved better performance than existing solutions and at lower cost. The proposed solutions can be deployed and applied in several applications

    Using Self-Delimiting Numeric Values in Protocols

    No full text

    Scaling Up Delay Tolerant Networking

    Get PDF
    Delay Tolerant Networks (DTN) introduce a networking paradigm based on store, carry and forward. This makes DTN ideal for situations where nodes experience intermittent connectivity due to movement, less than ideal infrastructure, sparse networks or other challenging environmental conditions. Standardization efforts focused around the Bundle Protoocol (BP) (RFC 5050) aim to provide a generic set of protocols and technologies to build DTNs. However, there are several challenges when trying to apply the BP to the Internet as a whole that are tackled in this thesis: There is no DTN routing mechanism that can work in Internet-scale networks. Similarly, available discovery mechanisms for opportunistic contacts do not scale to the Internet. This work presents a solution offering pull-based name resolution that is able to represent the flat unstructured BP namespace in a distributed data structure and leaves routing through the Internet to the underlying IP layer. A second challenge is the large amount of data stored by DTN nodes in large-scale applications. Reconciling two large sets of data during an opportunistic contact without any previous state in a space efficient manner is a non-trivial problem. This thesis will present a very robust solution that is almost as efficient as Bloom filters while being able to avoid false positives that would prevent full reconciliation of the sets. Lastly, when designing networks that are based on agents willing to carry information, incentives are an important factor. This thesis proposes a financially sustainable system to incentive users to participate in a DTN with their private smartphones. A user study is conducted to get a lead on the main motivational factors that let people participate in a DTN. The study gives some insight under what conditions relying on continuous motivation and cooperation from private users is a reasonable assumption when designing a DTN.Delay Tolerant Networks (DTN) sind ein Konzept für Netzwerke, das auf der Idee beruht, Datenpakete bei Bedarf längere Zeit zu speichern und vor der Weiterleitung an einen anderen Knoten physikalisch zu transportieren. Diese Vorgehensweise erlaubt den Einsatz von DTN in Netzen, die häufige Unterbrechungen aufweisen. Mit dem Bundle Protocol (BP) (RFC 5050) wird ein Satz von Standardprotokollen für DTNs entwickelt. Wenn man das BP im Internet einsetzen möchte ergeben sich einige Herausforderungen: Es existiert kein DTN Routingverfahren, das skalierbar genug ist um im Internet eingesetzt zu werden. Das Gleiche trifft auf verfügbare Discovery Mechanismen für opportunistische Netze zu. In dieser Arbeit wird ein verteilter, reaktiver Mechanismus zur Namensauflösung im DTN vorgestellt, der den flachen, unstrukturierten Namensraum des BP abbilden kann und es ermöglicht das Routing komplett der IP Schicht zu überlassen. Eine weitere Herausforderung ist die große Menge an Nachrichten, die Knoten puffern müssen. Die effiziente Synchronisierung von zwei Datensets während eines opportunistischen Kontaktes, ohne Zustandsinformationen, ist ein komplexes Problem. Diese Arbeit schlägt einen robusten Algorithmus vor, der die Effizienz eines Bloom Filters hat, dabei jedoch die False Positives vermeidet, die normalerweise eine komplette Synchronisation verhindern würden. Ein DTN basiert darauf, dass Teilnehmer Daten puffern und transportieren. Wenn diese Teilnehmer z.B. private User mit Smarpthones sind, ist es essentiell diese Benutzer zu einer dauerhaften Teilnahme am Netzwerk zu motivieren. In dieser Arbeit wird ein finanziell tragfähiges System entwickelt, welches Benutzer für eine Teilnahme am DTN belohnt. Eine Benutzerstudie wurde durchgeführt, um herauszufinden, welche Faktoren Benutzer motivieren und unter welchen Umständen davon auszugehen ist, dass Benutzer wenn man das BP im Internet einsetzen möchte dauerhaft in einem DTN kooperieren und Resourcen zur Verfügung stellen
    corecore