
helsinki university of technology
Faculty of Electronics, Communications and Automation

Md. Tarikul Islam

VOICE COMMUNICATION IN MOBILE DELAY-TOLERANT NET-
WORKS

Thesis submitted for examination for the degree of Master of Science in
Technology

Espoo November 26, 2009

Thesis supervisor:

Prof. Jörg Ott

Thesis instructor:

Prof. Jörg Ott

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

helsinki university of technology abstract of the
master’s thesis

Author: Md. Tarikul Islam

Title: Voice Communication in Mobile Delay-Tolerant Networks

Date: November 26, 2009 Language: English Number of pages: 9+83

Faculty: Faculty of Electronics, Communications and Automation

Professorship: Networking Technology Code: S-38

Supervisor: Prof. Jörg Ott

Instructor: Prof. Jörg Ott

Push-to-talk (PTT) is one class of voice communication system generally
employed in cellular phone services. Today’s PTT services mainly rely on infras-
tructure and require stable end-to-end path for successful communication. But
users with PTT enabled mobile devices may travel in challenged environments
where infrastructure is not available or end-to-end path is highly unreliable. In
such cases those PTT services may exhibit poor performance or may even fail
completely. Even though some existing PTT solutions allow users to communicate
in an ad-hoc fashion, they need sufficient node density to establish end-to-end
path and eventually fail to communicate in sparse mobile ad-hoc environments.
Delay-Tolerant Networking (DTN) is an emerging research area that addresses
the communication requirements specific to challenged networks.

In this thesis we develop a voice communication system (DT-Talkie) which
enables both individual and group users to communicate over infrastructure-less
and challenged networks in the walkie-talkie fashion. The DTN concept of
asynchronous message forwarding is applied to the DT-Talkie in order to transmit
voice messages reliably. We employ variable-length fragmentation mechanism in
the application layer with the vision to speed-up session interactivity in stable
scenarios. Some approaches to resolve codec interoperability issues are implied in
this thesis.

To validate the concepts of the DT-Talkie, we implement an application for Maemo
based Nokia Internet Tablets, leveraging the DTN reference implementation de-
veloped in the DTN Research Group. Moreover in this thesis we evaluate the
performance of the DT-Talkie through conducting a set of simulations using sev-
eral DTN routing protocols and using different mobility models.

Keywords: DTN, PTT, bundle protocol, asynchronous voice communication

iii

Acknowledgments

This thesis has been accomplished in the Department of Communications and Net-

working of Helsinki University of Technology as a part of a CHIANTI project funded

under Seventh Framework Programme of European Union.

I would like to express my heartiest gratitude to my supervisor, Professor Jörg Ott,

for giving me opportunity to work on such an interesting topic. I am indebted for his

constant assistance, encouragement, guidance and tremendous support throughout

the thesis process.

I want to give special thanks to one of my colleague, Teemu Kärkkäinen, who men-

tored me in every stage of my thesis through solving various issues and giving valu-

able comments.

Thanks also goes to my other colleagues, especially Sathyanarayan Suryanarayanan

and Shengye Lu, who provided constructive suggestions on my thesis and inspired

me all the time.

Finally, I would like to express deep gratefulness to my beloved parents for their

fruitful advice and mental support during my studies.

Otaniemi, November 26, 2009

Md. Tarikul Islam

iv

Contents

Abstract ii

Acknowledgments iii

Contents iv

List of Acronyms ix

1 Introduction 1

1.1 Related Works . 2

1.2 Motivation . 3

1.3 Objective . 4

1.4 Thesis Outline . 5

2 Technology Background 6

2.1 Why DTN? . 6

2.2 DTN Architectural Overview . 7

2.2.1 Store-and-Forward Message Switching 7

2.2.2 Endpoint Identifier (EID) and Registration 8

2.2.3 Late Binding and Class of Service 9

2.2.4 Fragmentation and Reassembly 9

2.2.5 Contacts . 10

2.2.6 Time . 11

2.2.7 Custody Transfer . 11

2.2.8 Security . 12

2.3 Bundle Protocol . 12

2.3.1 Basic Bundle Structure . 14

2.3.2 Convergence Layer Protocols 16

2.4 Routing in Delay-Tolerant Networks (DTNs) 17

v

2.4.1 Routing in Deterministic DTNs 18

2.4.2 Routing in Stochastic DTNs 19

2.5 OMA specified PoC . 21

2.6 Summary . 23

3 System Architecture 25

3.1 System Concepts of the DT-Talkie 25

3.1.1 Audio Encoding . 27

3.1.2 Application Layer Framing . 27

3.1.3 Bundle Addressing . 29

3.1.4 Bundle Routing and Delivery 30

3.1.5 Group Communication . 31

3.2 Voice Message Fragmentation . 31

3.2.1 Different Fragmentation Schemes 32

3.2.2 MIME Encapsulation of a Fragment 33

3.3 Codec Interoperability Issues . 34

3.4 Summary . 36

4 Implementation 38

4.1 Background . 38

4.1.1 Maemo . 38

4.1.2 GTK+ . 40

4.1.3 GStreamer . 40

4.1.4 DTN2 . 41

4.1.5 Other Libraries . 42

4.2 DT-Talkie Application Architecture and its components 42

4.2.1 State flow of the DT-Talkie application 43

4.2.2 Bundle S/R . 45

4.2.3 Voice R/P . 46

vi

4.2.4 MIME C/P . 48

4.2.5 GUI . 50

4.3 DT-Talkie Fragmentation . 51

4.4 DT-Talkie Screenshot . 52

4.5 Summary . 53

5 Performance Evaluation 55

5.1 Simulation Tool - ONE . 55

5.2 Mobility Models . 56

5.2.1 Random Waypoint Model . 56

5.2.2 Working Day Movement Model 56

5.3 Simulation Setup . 57

5.3.1 Message Generation for ONE 57

5.3.2 Destination Node Selection . 57

5.3.3 Routing Protocols . 58

5.3.4 Performance Metrics . 59

5.3.5 Simulation Parameters . 60

5.4 Simulation Observations . 62

5.4.1 Simulations Group 1 . 62

5.4.2 Simulations Group 2 . 64

5.4.3 Simulations Group 3 . 67

5.4.4 Simulations Group 4 . 69

5.5 Summary . 73

6 Conclusion 75

vii

List of Figures

2.1 DTN protocol hierarchy . 14

2.2 A bundle node classification . 14

2.3 Classification of routing approaches in DTNs 18

2.4 OMA specified PoC architecture . 22

3.1 General processing steps of the DT-Talkie 26

3.2 Sample MIME message generated in a DT-Talkie session 29

3.3 Signal representation of a voice message 33

3.4 MIME encapsulation of a voice message fragment 34

3.5 MIME encapsulation of three audio parts representing the same voice

message . 36

3.6 MIME encapsulation of uncompressed audio and XML content 37

4.1 High-level architecture of the DT-Talkie application 43

4.2 DT-Talkie application state flow diagram 44

4.3 Sequence diagram of bundle sending functionality 45

4.4 Sequence diagram of bundle receiving functionality 47

4.5 Voice recorder pipeline . 48

4.6 Voice player pipeline . 49

4.7 Fragments creation through separating talk-spurts 52

4.8 Screenshot of the DT-Talkie application 53

5.1 Selection of a destination node when communication radius is speci-

fied corresponding to a particular source node 58

5.2 A voice session with three interactions 60

5.3 Message delivery probability (message mode, maximum 10 hop-count) 63

5.4 Fragment delivery probability (fragmentation mode, maximum 10

hop-count) . 63

5.5 Message delivery probability with loss of ≤1 fragment (fragmentation

mode, maximum 10 hop-count) . 64

viii

5.6 Average message delivery delay (message mode, maximum 10 hop-

count) . 64

5.7 Average fragment delivery delay (fragmentation mode, maximum 10

hop-count) . 65

5.8 Message delivery probability (message mode, maximum 120 minutes

TTL) . 65

5.9 Fragment delivery probability (fragmentation mode, maximum 120

minutes TTL) . 66

5.10 Message delivery probability with loss of ≤1 fragment (fragmentation

mode, maximum 120 minutes TTL) 66

5.11 Average message delivery delay (message mode, maximum 120 min-

utes TTL) . 67

5.12 Average fragment delivery delay (fragmentation mode, maximum 120

minutes TTL) . 67

5.13 Message delivery probability (message mode, maximum 120 minutes

TTL, maximum 10 hop-count) . 68

5.14 Fragment delivery probability (fragmentation mode, maximum 120

minutes TTL, maximum 10 hop-count) 69

5.15 Message delivery probability with loss of ≤1 fragment (fragmentation

mode, maximum 120 minutes TTL, maximum 10 hop-count) 69

5.16 Average message delivery delay (message mode, maximum 120 min-

utes TTL, maximum 10 hop-count) 70

5.17 Average fragment delivery delay (fragmentation mode, maximum 120

minutes TTL, maximum 10 hop-count) 70

5.18 Message delivery probability (50 meters communication radius, max-

imum 120 minutes TTL, maximum 10 hop-count) 71

5.19 Session completion rate (50 meters communication radius, maximum

120 minutes TTL, maximum 10 hop-count) 72

5.20 Session completion time (50 meters communication radius, maximum

120 minutes TTL, maximum 10 hop-count) 72

ix

List of Acronyms

API Application Programming Interface

BP Bundle Protocol

BPA Bundle Protocol Agent

CLA Convergence Layer Adapter

DoS Denial-of-Service

DTN Delay-Tolerant Network(ing)

DTNRG Delay-Tolerant Networking Research Group

EID Endpoint Identifier

GUI Graphical User Interface

IP Internet Protocol

MIME Multipurpose Internet Mail Extension

OMA Open Mobile Alliance

ONE Opportunistic Network Environment

PCM Pulse Code Modulation

PoC Push-to-talk over Cellular

PRoPHET Probabilistic Routing Protocol using History of Encounters and Transitivity

PTT Push-to-talk

RTP Real-time Transport Protocol

RWP Random Waypoint

S/MIME Secure/Multipurpose Internet Mail Extension

SDNV Self Delimiting Numeric Values

SIP Session Initiation Protocol

SnW Spray-and-Wait

SSP Scheme-Specific Part

TCP Transmission Control Protocol

TCPCL TCP Convergence Layer

TTL Time-To-Live

UDP User Datagram Protocol

URI Uniform Resource Identifier

VAD Voice Activity Detection

WDM Working Day Movement

WLAN Wireless Local Area Network

XML Extensible Markup Language

1

1 Introduction

Wireless communication between mobile users has been increasingly widespread,

due to advancement of the wireless networking technologies (e.g. Wi-Fi, 3G/GPRS,

WiMax) and proliferation of personal handheld devices (e.g. PDA, Smartphone)

around the world. With the advent of wireless Internet, the mobile users are able

to use popular Internet applications like web, email from almost anywhere. Internet

telephony, also known as Voice over IP (VoIP), is one of the key Internet services

which can be considered as a rapidly growing technology over public Internet. In ad-

dition to the globally-deployed wired Internet telephony services, integrating VoIP

into wireless networks has also gained significant acceptance in the recent years. But

Quality of Service (QoS) is still not guaranteed to the wireless VoIP application, be-

cause of peculiar and unpredictable behaviors of wireless networks.

Push-to-talk (PTT) is a half-duplex voice application, which provides both individ-

ual and group communications in the walkie-talkie fashion over (mobile) wireless

networks. Due to half-duplex nature of the communication, only one user can talk

at a time and others can listen. PTT is commonly employed in the cellular phone

services that use a single button to switch between voice transmission mode and

voice reception mode. There is a version of PTT, called Push-to-talk over cellular

(PoC), which is based on 2.5G or 3G packet-switched networks. The Open Mobile

Alliance (OMA) has developed an open standard for PoC [1], which mainly relies

on the Internet infrastructure.

The success of the traditional PTT services heavily relies on the performance of

the Internet protocols. The traditional Internet protocols work on the basis of

some basic principles. They assume that there is continuous end-to-end path be-

tween communication nodes, the delays and error probabilities in the network are

relatively low. If the principles remain true, the protocols operate well. But in chal-

lenged environments, one or more of the above principles may be violated. Therefore

the performance of the Internet protocols may deteriorate severely in such environ-

ments. On the other hand, PTT-like communication in the peer-to-peer fashion is

also possible by forming an ad-hoc network. The classical ad-hoc routing protocols

assume end-to-end path prior to forward the data. In such case node population is

required to be sufficiently dense in order to establish end-to-end path. But if the

ad-hoc network becomes increasingly sparse, then the ad-hoc routing protocols may

2

not work properly. So the design of new architecture and protocols is necessary to

enable communication in challenged scenarios.

Delay-Tolerant Networking (DTN) is an emerging research area which is focused on

addressing the communication requirements in the challenged networks, i.e., net-

works that may suffer from frequent disconnection, long or variable delay, high error

rates, low or asymmetric data rates between source and destination. The Delay-

Tolerant Networking Research Group (DTNRG) has devised DTN architecture and

bundle protocol with the vision to improve network performance in the challenged

environments. Delay-Tolerant Networks (DTNs) run as an overlay on top of het-

erogeneous type of networks, each of which may use different underlying networking

technologies. The bundle protocol provides common means to interoperate among

the diverse set of networks.

1.1 Related Works

The PoC service over either cellular networks or operator independent wireless net-

works, has received significant interest in the research arena. Wu et al. have pro-

posed client architecture for the PoC service based on the OMA specification and

implemented in the WLAN environment [2]. Akshai Parthasarathy in [3] presents a

prototype implementation of Push-to-talk server in the Internet environment. In [4],

Kim et al. have provided PoC solution for packet-switched networks accessed via

GPRS/UMTS or WLAN technology, which is compliant with the OMA approach.

IMS is used as a service infrastructure in their solution. In [5], Swapnil Kumar

Raktale presents the architecture for PoC services in UMTS networks and evaluates

the performance of the proposed architecture. Rui Santos Cruz et al. describes a

PTT over IMS solution designed with a Talk Burst Control Protocol based on SIP

messages for call session control [6]. They deploy and test their solution both with

high bandwidth LAN and CDMA2000 wireless network. However the PoC enabled

mobile devices may be used in environments where infrastructure is not available.

Valter Rnnholm presents an outline for a push-to-talk system over Bluetooth, which

is independent of cellular networks. His solution is not based on client-server archi-

tecture unlike the OMA specified PoC [7]. Lin et al. have proposed peer-to-peer

Push-to-talk (PTT) service for Voice over IP with the aim to provide PTT service

over distributed and operator independent network environments [8]. Their solu-

3

tion is based on standard SIP and RTP/RTCP, and does not rely on functionalities

provided by the underlying mobile networks. In [9], Chai-Hien Gan et al. propose

a distributed PTT system for the Intelligent Transportation Systems environment.

Under their system, group communication is performed through distributed learning

interaction unlike the OMA central arbitrator approach. In [10], L.-H. Chang et al.

have designed and implemented the PTT mechanism in ad hoc VoIP network. Un-

der their implementation, the PTT server and user agent combined with the pseudo

SIP server provide the PTT service without the support of standalone SIP server.

1.2 Motivation

We present the motivation of this thesis through discussing the limitation of existing

PoC solutions. The traditional PoC services which are implemented in [2], [3], [4],

[5] and [6], rely on infrastructure. But the mobile users may roam in an environ-

ment, where infrastructure is not available. In such case the PoC services may fail

to communicate successfully.

The PoC solutions provided in [7], [8], [9] and [10], work in ad-hoc environments in

the peer-to-peer fashion. But the traditional ad-hoc networking requires higher den-

sity of nodes to establish a network layer end-to-end path between communication

peers. So the mobile users may not be able to communicate in the sparse ad-hoc

networks using those PoC services.

All of the PoC solutions discussed above, either in infrastructure-based environments

or in ad-hoc environments, more or less rely on the traditional Internet protocols.

But the traditional Internet protocols require stable end-to-end path between source

and destination for successful protocol operations. The protocols may not work in

the scenarios characterized by intermittent connectivity and frequent partitions.

Moreover the phenomena of attenuation and interference in wireless networks may

lead to packet loss and this packet loss characteristics may degrade voice quality.

In all of the extreme scenarios, the performance of underlying networks may be

reflected badly in the application performance, and eventually the overall user ex-

perience. So a unique solution is demanded to combat with the above problems.

4

1.3 Objective

The objective of this thesis is threefold. The first objective is to develop a voice

communication system which enables both individual and group users to commu-

nicate over infrastructure-less and challenged networks in the walkie-talkie fashion.

To achieve this we choose DTN technology as a basis, which allows communication

in the sparse mobile ad-hoc and other challenged networking environments. We call

our system DT-Talkie.

A preconfigured codec is used in the DT-Talkie for encoding and decoding. We

employ an application layer framing mechanism to aggregate voice and optionally

other contents in a structured way, rather than aggregating them simply one af-

ter another. We also focus on splitting the entire voice message into several pieces,

which is basically the idea of application layer fragmentation. This is due to the fact

that if the latency in the network is assumed to be low, sending fragments of each

large voice message can boost up the interactivity of the DT-Talkie communication.

Now the question is that how the voice message will be fragmented? Dividing a 10

seconds voice message into fixed-length fragments of 2 seconds is trivial and each

fragment may contain fraction of a talk-spurt1. We suggest splitting up the voice

message into meaningful fragments using silence-suppression mechanism, where each

fragment holds single random-length talk-spurt of the voice message.

The second objective of this thesis is to implement the DT-Talkie for Linux based

Nokia Internet Tablet, leveraging the DTN reference implementation2 developed in

the DTN Research Group. This serves as a validation of the concepts presented in

the DT-Talkie. We use Maemo as a development platform and other open source

technologies for the DT-Talkie implementation, with the aim to produce a useful

piece of software.

The final objective is to carry out a set of simulations using the ONE simulator to

evaluate the performance of the DT-Talkie using several DTN routing protocols in

different mobility scenarios.

1A complete uttered sentence followed by silence period in a voice message.
2We will discuss about DTN Reference Implementation in Chapter 4.

5

1.4 Thesis Outline

In Chapter 2, we discuss about DTN architecture and bundle protocol in detail.

A wide range of routing approaches in DTNs is introduced. We also give a brief

overview about the OMA specified PoC architecture in this chapter.

We present an elaborate description of higher level components of the DT-Talkie

system architecture in Chapter 3. This includes the discussion of application layer

framing mechanism for transmitting optionally other contents along with voice mes-

sages. We explain how a fragmentation technique is applied in the DT-Talkie. Some

codec negotiation approaches are also implied in this chapter.

Chapter 4 introduces implementation details of the DT-Talkie. We present a short

discussion about high-level application architecture and then individual functional

components of the DT-Talkie application are broadly described in this chapter.

In Chapter 5, we talk about mobility scenarios and simulation environment where a

series of simulation is conducted. In this chapter we assess the performance of the

DT-Talkie through discussing the simulation results.

Finally, the last chapter concludes the thesis with review of everything done before

and with possible future works.

6

2 Technology Background

DTN is an approach which enables communication in the environments character-

ized by intermittent connectivity, long or variable delay, high error rates, low data

rates and frequent network partitions. The traditional Internet protocols may fail

to operate in those stressed environments. A delay-tolerant network operates as an

overlay on top of diverse regional networks, including Internet. The bundle proto-

col, a primary protocol of DTN, provides key services to interoperate among various

internets, regardless of underlying network characteristics.

In this chapter, we motivate the reasons for DTN. We give an overview of the major

parts adopted in the DTN architecture. A detailed description of the bundle pro-

tocol is presented in this chapter. We introduce several classes of routing protocols

proposed for DTNs and finally present the OMA specified PoC briefly.

2.1 Why DTN?

The existing Internet protocols require stable end-to-end path between source and

destination prior to data transfer. The motivation of DTN stems from the obser-

vation that there are some environments where the Internet protocols may fail to

establish end-to-end path. The overall performance characteristics of the existing

Internet protocols rely on some fundamental assumptions of underlying networks.

The assumptions include continuous end-to-end connectivity, low end-to-end delay,

symmetric data rates and low error rates. The protocols perform well when the

above assumptions are met. The challenged networks do not conform to one or

more of the Internets underlying assumptions and the Internet protocols may work

poorly or may even fail completely in those networks.

One class of challenged networks is the Interplanetary Internet, which focuses on the

issues of deep-space communications in high-delay environments. The Interplane-

tary Internet is considered as the basis for DTN architecture [11]. Typically, the

round-trip delays are just fractions of a second in the existing terrestrial Internet

which spans the globe. On the other hand, the delays may be several minutes or

hours in the deep-space communications. For example the round-trip transmission

delay between Earth and Mars lies between 4 minutes to 20 minutes [12]. Using

Internet protocols in such an environment would be highly impractical.

7

DTN strives to overcome the problems associated with intermittent connectivity,

long or variable delay, high error rates, low data rates and frequent partitions,

using store-and-forward message switching mechanism. DTN also defines a common

overlay layer called bundle layer which lies on top of dissimilar regional networks and

offers generic services to communicate in the non-compatible network environments.

2.2 DTN Architectural Overview

The DTN architecture is aimed to provide interoperable communication among a

wide range of networks that may suffer from frequent partitions and that may be

used more than one divergent set of lower layer protocols or protocol families. The

architecture is based on message switching abstraction. The DTN architecture is

also envisioned to enable communication in the extreme challenged and disruptive

environments where the protocols of todays Internet may operate poorly, or may

even fail completely. The DTNRG [13] has defined the design principles in [11] to

interconnect challenged and frequently-disconnected networks. Major features of

the DTN architecture guided by those design principles are briefly described below.

2.2.1 Store-and-Forward Message Switching

In the DTN architecture, application data sent by DTN-enabled application is car-

ried in variable-length messages, called bundles. The idea of bundles stems from

the consideration that attempts to reduce the number of round-trip message ex-

changes by bundling all information together. This makes sense in the scenarios

where round-trip time is hours, days, or even weeks [14]. Bundles are sent towards

the destination using store-and-forward model like the e-mail system. Intermediate

nodes along the path from the source to the destination hold the bundles in storage

for a while until the next node becomes available. This means there is no need of

end-to-end connectivity between source and destination at any point of time unlike

traditional Internet. The bundles are typically stored in persistent storage to in-

crease reliability and to cope with hardware failures.

Even though IP networks are also based on store-and-forward operation, there is an

assumption that the packets will be stored in the Internet routers queue for shorter

duration, whereas in the DTN architecture, it is not expected that network links

8

are always available. In the typical DTN scenario, bundles are stored in persistent

storage (perhaps for longer period of time) and forwarded as soon as the opportunity

occurs.

2.2.2 Endpoint Identifier (EID) and Registration

A DTN node is an entity that can send, receive or forward bundles. A DTN endpoint

is therefore a set of DTN nodes. In the DTN architecture, All nodes are identified

by a unique endpoint identifier (EID), which conforms to the Uniform Resource

Identifier (URI) [15] syntax. An EID may refer to one or more DTN nodes and

an individual node may have more than one EID. EIDs may be of unicast, anycast,

multicast or broadcast types. Every node, however, must have at least one EID that

identifies it.

A DTN EID is composed of an EID scheme followed by a scheme-specific part (SSP):

<scheme name>:<scheme-specific part>. “dtn:” is the one default scheme in the

bundle protocol that takes arbitrary string as SSP. An example of an EID is as

follows:

dtn://host.dtn/path

The first part of the EID before the colon is the scheme name and the subsequent

part after the colon is the SSP. DTN EIDs are restricted to being not more than

1023 bytes [16]. There is a notion of null EID in DTN where no addressing is in-

cluded, and this is represented by “dtn:none”. Wildcarding some portion of EID

may be useful for routing and diagnostic purposes. The adoption of URI-like general

naming syntax allows multiple naming schemes to be used in conjunction with the

basic DTN protocols. Currently there is an Internet draft which proposes the use

of other EID schemes [17].

A registration is a process that associates an EID to an application that is intended

to receive ADUs to that particular EID, and is maintained persistently by a DTN

node. Any bundles received by a DTN node at a registered EID, are transferred to

the application with the associated EID. A DTN node may have several registrations

concurrently. A single registration at any point of time can be one of two states:

9

Active or Passive.

2.2.3 Late Binding and Class of Service

In any communication network, name resolution techniques may be required to ac-

tually locate the destination. The DTN architecture calls the idea of late binding,

where the binding of a destination EID to a region-specific lower layer address does

not necessarily happen at the bundle source node. The binding may take place at

the source node, at the intermediate nodes during transit, or possibly at the destina-

tion. This is completely opposite to the DNS and ARP name resolution techniques of

traditional Internet, in which the mapping occurs at the source node before transmit-

ting the data. The late binding principle is beneficial in the occasionally-connected

networks because the transit time of a message may exceed the validity time of a

mapping. So the mapping at the source node in this case would be impractical.

The DTN architecture defines three different classes of service for bundling priorities

which include bulk, normal and expedited. A bulk bundle has the lowest priority and

it is not delivered before other classes of bundles. Normal-class bundles are shipped

before bulk-class bundles but not prior to expedited-class bundles. An expedited

bundle gets the highest priority over other classes of bundles. The priority class of

bundle is only necessary to differentiate bundles from the same source. Based on

a particular DTN node’s forwarding policy, priority may or may not be applied on

different sources [11].

2.2.4 Fragmentation and Reassembly

As we have discussed earlier that application data is conveyed in variable-length

bundles, but there may be some situations where contacts between DTN nodes are

only of such a short duration that the entire bundle cannot be sent in one piece.

DTN incorporates fragmentation and reassembly to enhance the efficiency of bundle

transfer through ensuring maximum utilization of link capacity and through avoid-

ing retransmission of partially-forwarded bundles.

Two types of fragmentation exist in the DTN architecture: proactive and reactive.

In proactive fragmentation, a DTN node divides the entire large bundle into mul-

tiple fragments prior to a transmission attempt and transmits each fragment as an

10

independent bundle over the DTN infrastructure. This approach is used in the sce-

nario where contact volumes are predicted or known ahead of time to the DTN node

[11].

In reactive fragmentation, a bundle may be fragmented cooperatively when the bun-

dle is only partially transferred. In this case the previous-hop DTN node may learn

via lower-layer protocols that only a portion of the entire bundle was transmitted to

the next hop and send the remaining portion(s) when subsequent contacts become

available (likely to different next-hops if routing changes).

In case of both fragmentation types, the fragments are only reassembled at the

final destination node. Fragments may be further fragmented, either proactively or

reactively. To verify the integrity of a digitally signed bundle, it can be set “do not

fragment” flag in the bundle to avoid fragmentation [12].

2.2.5 Contacts

A contact is defined as a time period during which two nodes have the opportunity

to communicate. In the highly disrupted and frequently-disconnected networks, all

the nodes may not contactable at any point of time. This is in contrast to the

principle of the regular Internet where nodes are strictly considered to be online all

the time [12]. The following major types of contacts have been defined in [11].

• Persistent - links are always available and no action is required to instantiate.

• On-Demand - like persistent contact but needs some action in order to instan-

tiate.

• Scheduled - An intermittent link established for a particular duration which

may or may not be periodic.

• Opportunistic - An intermittent link formed unexpectedly without any prior

knowledge.

• Predicted - An intermittent link is setup based on previously observed contacts

or by other means.

11

2.2.6 Time

The DTN architecture requires some degree of time synchronization to identify bun-

dle and to compute bundle expiration time. Bundle identification and expiration

are maintained by setting the creation time and lifetime in each bundle. If a DTN

node in transit receives a bundle and the bundle is expired, then the bundle will

be dropped and no longer forwarded. Time information is also needed to define

application registration expiration. When an application registers to a particular

DTN node, this registration is maintained only for finite period of time specified by

the application [11].

2.2.7 Custody Transfer

Since communication in DTNs does not rely on end-to-end connectivity, ensuring

end-to-end reliability in this kind of communication is a challenging problem to cope

with. The DTN architecture supports the notion of custody transfer to improve de-

livery reliability of a message, effectively creating hop-by-hop reliability. This is

achieved through transferring the responsibility of reliable delivery in the interme-

diate DTN nodes along the path from source to destination.

Custody transfer operation is initiated by the source application. The source node

sends a bundle with custody transfer request to the next hop and starts a time-to-

acknowledge retransmission timer. If the next node accepts custody, an acknowl-

edgement is returned to the sending node through return receipt. The node which

currently has a bundle with custody request is called the custodian of the bundle.

However the source node retransmits the bundle if no acknowledgement is received

before expiration of the retransmission timer. A custodian must store the bundle

until another node accepts custody or the bundles time-to-live expires [18].

In DTN architecture, every node is not necessarily provided custodian transfer ser-

vice. Some nodes may refuse to accept custody transfer for message due to shortage

of free storage space or power limitation. The custody transfer mechanism is advan-

tageous to allow an endpoint to free storage resources as soon as a custody transfer

acknowledgment arrives [19].

12

2.2.8 Security

As discussed before, the DTN overlays on top of heterogeneous regional networks.

These underlying networks might suffer from scarce resources such as limited band-

width, limited connectivity, constrained storage in the intermediaries, etc. Security

is a critical issue in the DTN architecture, where the communicating nodes running

in the extreme environments, may be threatened by malevolent security attacks. The

DTN Security Overview document [20] highlights some possible security threats that

pose unique challenges to secure DTN communication. These include unauthorized

resource consumption and denial-of-service (DoS) attacks. Without integrity and

confidentiality, bundle data might be corrupted or read by malicious users while in

transit. So security services are required in some circumstances in the delay-tolerant

networks. The DTN architecture security requirements differ from traditional net-

work security model in the sense that security services need to be incorporated in

the intermediate DTN nodes in addition to the source and destination node [21].

DTN security is concerned with the authenticity, integrity and confidentiality of

bundles conveyed among bundle nodes. These features are realized via the use of

three independent security specific bundle blocks, which may be used together to

provide multiple bundle security services or independently of one another, depending

on perceived security threats, mandated security requirements, and security policies

that must be enforced [16].

DTN security allows for intermediate DTN nodes to apply or check the validity of

the cryptographic credentials. The nodes are called security-source and security-

destination, which may or may not be the original bundle source and destination

nodes. Authenticity and integrity can be provided by means of the Bundle Authen-

tication Header (BAH) block along a single hop from sender to receiver and the

Payload Security Header (PSH) block from PSH security-source to PSH security-

destination. Secrecy can be assured by using the Confidentiality Header (CH) block

between CH security-source and CH security-destination offered by BSP [22].

2.3 Bundle Protocol

As mentioned earlier, DTN provides communication in the extremely challenged

environments like those with intermittent connectivity, long or variable delays, high

13

error rates and low bit rates. DTN also defines an overlay network which operates

on top of heterogeneous internets running diverse family of protocols. A bundle

is the variable-length DTN protocol data unit that contains application data as

well as signaling information needed to traverse the overlay network. In DTN, a

bundle node is an entity that can send, receive, or forward bundles - typically, a

process running on a general-purpose computer but might be a thread, an object,

or a special-purpose hardware device [16]. The key protocol of DTN used by bundle

nodes is called bundle protocol and the layer in which the protocol works is termed

as bundle layer.

DTN protocol hierarchy is depicted in Figure 2.1. The bundle protocol sits at the

application layer or at least above the transport layer. A bundle node can be acted

as a host, router, or gateway. A host can be a source or destination in the DTN

communication which sends and receives bundles, but does not forward them. A

router is an intermediary which forwards bundles within a single DTN region (e.g.

from Internet to Internet). A gateway is also an intermediary which forward bundles

among two or more dissimilar regions (e.g. from Internet to non-Internet). Both

router and gateway may optionally be a host [18]. In the left-hand side of the

figure, the bundle protocol runs on top of the Internet. The right-hand side shows

a network under the bundle layer which uses different suite of protocol other than

TCP/IP. The bundle protocol communicates with arbitrary transport protocols to

provide interoperable communication. The application layer does not aware of the

underlying transport mechanisms.

In DTN, each bundle node has three conceptual components (Figure 2.2): a bundle

protocol agent, zero or more convergence layer adapters and an application agent [16].

The bundle protocol agent (BPA) of a node is the component that implements bundle

protocol functionalities. It has an interface with the application agent (AA) to

provide bundle protocol services. A convergence layer adapter (CLA) is the bundle

node component that implements convergence layer protocol. It sends and receives

bundles on behalf of the BPA, using native internetwork protocol services. A CLA

interfaces between the BPA and the specific internetwork protocol suite. A bundle

node may have several CLAs, which enables the BPA to adapt in heterogeneous

networking environment. The application agent (AA) is the component that utilizes

bundle protocol services for effective communication and could provide interfaces to

upper layers.

14

Application

Bundle

TCP

IP

Link

Bundle

TCP

IP

Link

TCP

IP

Link

Bundle

TCP

IP

Link

non-TCP

non-IP

Link

Application

Bundle

non-TCP

non-IP

Link

Host Host

Router Gateway

Internet non-Internet

Figure 2.1: DTN protocol hierarchy

Bundle Node

Application Agent

Bundle Protocol Agent

Convergence Layer

Adapter(s)

Figure 2.2: A bundle node classification

2.3.1 Basic Bundle Structure

Each bundle is a sequence of at least two or more blocks1. First block in the se-

quence is called primary block which contains basic information to route bundles

to destination. No bundles can have more than one primary block. Other types of

bundle blocks (e.g. bundle security block) may follow the primary block, to sup-

port extension of the bundle protocol. Last block of the sequence is the payload

block that holds application data [16]. DTN incorporates some noteworthy encod-

ing mechanisms to represent the bundle block fields, which are discussed below in a

nutshell.

1Equivalent to the concept of headers used in other network protocols.

15

Self Delimiting Numeric Values (SDNV)

DTN defines Self Delimiting Numeric Values (SDNV) encoding scheme to represent

number. Many block fields in the bundle protocol use SDNV, which is basically

fairly a flexible way to encode non negative integer numbers of arbitrary magnitude,

without consuming unnecessary space [23]. SDNV encoding is based on the basic

encoding rules (BER) encoding of abstract syntax notation one (ASN.1) [24]. A

SDNV is a numeric value encoded into a series of octets, where the most significant

bit (MSB) of each octet is used as flag, leaving seven bits remaining to carry infor-

mation. The flag is set to 0 for last octet and set to 1 for other octets of the SDNV.

The following is an example of encoding the hexadecimal value 0x4234 to SDNV:

0x4234 = 0100 0010 0011 0100 is encoded as 10000001 10000100 00110100

The SDNV scheme efficiently represents very large and very small integer values.

However the scheme is not ideal for representing numeric values that fall in the range

from 128 to 255 [16].

Dictionary and Timestamp encoding

The dictionary is used in the primary block of a bundle to group variable-length

EIDs together. The reference to the actual EID string within the dictionary is en-

coded as an offset of the length of two octets. First octet represents the offset of

the scheme name and second octet points to the scheme-specific part or SSP of the

EID. This mechanism is advantageous in the sense, if the same EID string is used

more than once, there will be no extra overhead for the additional occurrences [14].

Timestamp fields in bundles use 8-byte to represent time. The high-order 4 bytes

are used to encode coordinated universal time (UTC) in seconds since the start of

the year 2000. The remaining 4 bytes hold nanosecond value to differentiate between

bundles generated during the same second [12].

16

2.3.2 Convergence Layer Protocols

Since the bundle protocol is an overlay protocol, it requires some mechanism to

communicate with heterogeneous underlying protocol stack (e.g. TCP/IP), that

evolves the idea of convergence layer. The convergence layer provides abstraction

to adapt lower layer protocols. The layer performs mapping between the bundle

protocol and network-specific lower layer protocol. This allows the bundle protocol

agent to run over wide range of network types. The Bundle Protocol Specification

document [16] summarizes the services of the convergence layer. The bundle protocol

agent expects the following services from the convergence layer.

• Sending a bundle to the node identified by a specific EID that is reachable via

the convergence layer protocol.

• Delivering a bundle to the bundle protocol agent that was sent by a remote

bundle node via the convergence layer protocol.

For TCP-like reliable transport protocol, the design of the convergence layer protocol

is fairly simple. The convergence layer just needs to aware of connection manage-

ment and message delimiting issues. For unreliable transport protocol like UDP, a

separate implementation for ensuring reliability should augment in the convergence

layer protocol.

There is an Internet draft exists for TCP-based convergence layer protocol (TCPCL)

[25]. TCPCL specifies bundle transmission over TCP transport protocol with con-

sidering two aspects: connection setup and teardown, and bundle encapsulation.

Before establishing a TCPCL connection between two communication nodes, a TCP

connection is initiated. After successful completion of TCP connection procedures,

an initial contact header is exchanged in both directions, which conveys TCPCL

connection parameters and a singleton EID to identify bundle endpoint. When the

TCPCL connection is established, bundle is sent in one or more segments in either

direction. The length of each segment can be variable and is specified in the segment

header. The starting and ending segments are identified through flag values in the

segment header.

In TCPCL the receiving node sends acknowledgements when the bundle data seg-

ments arrive, as an optional feature. Through these acknowledgements, the sending

17

node can keep track of the number of bundles received. This enables the sender to

perform reactive fragmentation in case of connection interruption. Another optional

feature of TCPCL is that a receiver may tell the sender to stop transmission of the

current bundle by sending a negative acknowledgement, after receiving a portion

of the bundle data segment. A message may be sent optionally to keep the idle

connections alive. TCPCL also defines a message to release the connection.

There is another draft exists that specifies the convergence layer for transmitting

bundles over UDP [26]. Other convergence layer protocols have been suggested

to support delivery of DTN bundle directly over a link layer, e.g. directly over

Bluetooth, or directly over wireless Ethernet [27].

2.4 Routing in Delay-Tolerant Networks (DTNs)

All communications network must have the fundamental feature to route data from

source to destination. For all the routing protocols proposed for MANETs (e.g.,

OLSR [28]and AODV [29]), it is implicitly assumed that the network is connected

and there is an instantaneous end-to-end path exits between any source and destina-

tion pair. In such cases when packet arrives and no instantaneous end-to-end paths

for their destinations can be found, they are simply dropped. These protocols do not

work properly in the DTNs, which are characterized by frequent network partitions

and intermittent connectivity. So new routing mechanisms should be developed for

DTNs.

Routing is one of the key components in the DTN architecture. Currently there is

no routing protocols defined to be used in conjunction with DTN. However various

routing protocols have been proposed from research communities for DTNs and also

implemented. Each of the proposed routing approaches has both advantages and

disadvantages in particular scenario. No routing schemes proposed so far are con-

sidered ideal for DTNs.

A wide range of routing protocols has been studied in [30] based on two different

types of DTNs, deterministic and stochastic. In the deterministic networks the

future network topology is known beforehand or at least foreseeable, whereas the

network topology is totally unknown or just could be estimated in case of stochastic

18

networks. The classification of various routing approaches in DTNs on the basis of

deterministic and stochastic cases is depicted in Figure 2.3.

Routing in DTNs

Stochastic DTNsDeterministic DTNs

Tree Approach

Space Time

Routing

Modified Shortest

Path Approach

Epidemic/Spraying

Estimation Based

Approach

Model Based

Approach

Control Movement

Based Approach

Coding Based

Approach

Figure 2.3: Classification of routing approaches in DTNs

2.4.1 Routing in Deterministic DTNs

Here we discuss some routing approaches briefly that work with the assumption

of complete knowledge about future node movements and connections. For all the

approaches under the deterministic case, an end-to-end route is determined before

messages are actually delivered.

Tree approach

In [31] the authors have proposed tree approach to be used in the deterministic

networks. Under the tree approach it is assumed that each host has the global

knowledge of characteristics profile (motion and availability of the hosts) of others

with respect to space and time. A tree is built from the source host by adding chil-

dren nodes and time associated with nodes. Each node carries information about

19

all the previous nodes and the minimum time to reach them. To deliver messages to

the intended destination, a shortest path can be selected from the tree by choosing

the minimum time.

Space time routing

Rather than having knowledge of the characteristic profile for infinite time period,

the authors in [32] have assumed that the characteristic profile can be accurately

predicted over the time interval of T. They model the dynamic of the networks as

a space-time graph and developed routing algorithms using dynamic programming

and shortest path algorithm.

Modified shortest path approaches

Several routing algorithms for DTNs are proposed in [33] depending on the certain

knowledge of the network (knowledge oracles). They define four knowledge oracles.

The Contacts Summary Oracle contains information about aggregate statistics of

the contacts. The Contacts Oracle provides information about contacts between

two nodes at any given time. The Queuing Oracle gives information about instan-

taneous buffer occupancies at any node at any time. The Traffic Demand Oracle

contains information about the present or future traffic demand.

Based on the assumption of which oracles are available, the authors in [33] present

corresponding routing algorithms. For example, if all the oracles are known, a linear

programming is devised to determine the best route. If only the Contacts Summary

Oracle is available, Dijkstra with time invariant edge costs based on average waiting

time is used to select the best path. If only the Contact Oracle is available, modified

Dijkstra with time-varying cost function based on waiting time is used to find the

route.

2.4.2 Routing in Stochastic DTNs

Here we present a brief overview of the routing schemes in the stochastic networks,

where routing decisions may be simply to forward messages to any contacts within

range. The other routing decisions may be based on history data, mobility patterns,

20

or other information.

Epidemic

In [34] the authors propose an epidemic routing protocol for intermittently con-

nected networks. When a message arrives at an intermediate node, the node floods

a copy of the message to other encountered nodes. Hence, messages are quickly

disseminated through the connected portions of the network. In their scheme, when

two nodes come into communication range with one another, they exchange only

those messages which have not seen yet by either node.

While flooding-based schemes ensure high delivery rates, they are responsible for

huge resource consumption which may be scarce in DTNs. To achieve resource effi-

ciency, Spray-and-Wait [35] routing protocol limits the distribution of messages by

setting a strict upper bound on the number of copies per message allowed in the

network. The routing scheme sprays a number of copies into the network, and then

waits till one of these nodes meets the destination.

Estimation Based Approach

A probabilistic routing protocol PRoPHET (Probabilistic Routing Protocol using

History of Encounters and Transitivity) [36] uses knowledge of previous encounters

for selecting suitable next hops to deliver a given message. PRoPHET first estimates

a delivery predictability value, which in turn is used to decide whether a copy of

the data item is forwarded to an encountered node. When two nodes meet, they

exchange a delivery predictability vector containing the delivery predictability in-

formation for known destinations and update the predictability value.

Model Based Approach

In epidemic and estimation based routing schemes mobile nodes are assumed to

move randomly without any specific knowledge of their trajectories. But in practice

mobile nodes follow some certain known patterns. Model Based Routing (MBR) is

proposed in [37], which uses knowledge of movement patterns to improve routing.

21

MBR relies on user profile to choose a relay that moves to the destination with

higher probability.

Node Movement Control-Based Approach

In this approach, the trajectories of some nodes can be controlled to improve overall

system performance metrics such as delay. In [38] the authors describe a Message

Ferrying (MF) approach for data delivery in sparse mobile ad-hoc networks. MF

utilizes a set of special mobile nodes called message ferries to provide communi-

cation services for nodes in the network. These message ferries move around the

deployment area and take responsibility for carrying data between nodes.

Coding Based Approach

Erasure coding and network coding techniques have been recently proposed to im-

prove routing in wireless ad-hoc networks and DTNs. The basic idea of erasure

coding is to transform a message of k blocks into n (n > k) blocks such that if k or

more of the n blocks are received, the original message can be successfully decoded.

In [39], both analytical and simulation results show that erasure coding based for-

warding in DTNs can significantly improves the worst-case delay.

The main concept behind network coding is that intermediate nodes combines some

of the packets received so far and send them out as a new packet. A probabilistic

forwarding approach based on network coding is proposed for DTNs in [40]. In their

approach, after generating new packets using network coding, a coding vector is

attached to each new packet. When a packet is received at a node, d new packets

are generated and broadcast to neighbors. The receiver can reconstruct the packet

once it has received enough packets.

2.5 OMA specified PoC

PoC provides a combination of VoIP telephony services and instant messaging style

properties such as presence and messaging. The key advantage of PoC services is that

a single user can reach an active talk group with just a button press, thus the user no

longer needs to make call to each of the group. Like many VoIP solutions, the OMA

22

PoC solution is based on the classical Internet multimedia protocols (Figure 2.4).

PoC Server

PoC Client

Terminal

PoC Client

Terminals

IP Multimedia

Subsystem

(IMS)

Signaling, Codec negotiation

(SIP, SDP)

Audio, Floor control

(RTP, RTCP)

Figure 2.4: OMA specified PoC architecture

PoC Signaling

PoC signaling for session establishment is based on the Session Initiation Protocol

(SIP) [41]. SIP is a text based end-to-end application layer protocol used to estab-

lish, modify and terminate multimedia (e.g., audio, video) sessions. SIP can run on

top of several transport layer protocols such as TCP, UDP and SCTP. There are

several functional entities comprised the SIP architecture includes: user agent client,

user agent server, registrar server, proxy server, redirect server, location server and

back-to-back user agent. Like Hypertext Transfer Protocol (HTTP), SIP is based

on request-response model. It defines INVITE, BYE, REGISTER, OPTIONS, etc.

request messages, several provisional and final response messages.

During establishing PoC session, Session Description Protocol (SDP) is used in a

SIP message body to negotiate codecs and other media related parameters between

two parties in the fashion of offer/answer model. Media parameters may be re-

negotiated in certain cases while ongoing voice session.

PoC Speech

PoC speech is transmitted in Real-time Transport Protocol (RTP) [42] packets. RTP

is an IP-based protocol providing support of real-time data such as audio and video

23

streams. RTP is typically run on top of UDP to make use of its multiplexing and

checksum functions. To deliver media streams timely, RTP includes time stamping,

sequence numbering and other mechanisms to take care of timing issues. The re-

ceiving PoC client uses the timestamp to reconstruct the original timing in order

to play out data in correct rate. The RTP source identification allows the receiving

application to know where the data is coming from.

RTP is designed to work in conjunction with the auxiliary control protocol, RTP

Control Protocol (RTCP), to get feedback on the quality of data transmission and

information about participants in the ongoing session. In the OMA PoC, RTCP

provides floor control through arbitrating requests from PoC clients for the right to

send media.

2.6 Summary

In this chapter, we have presented Delay-Tolerant Networking (DTN) concepts.

DTN is designed to address communication requirements specific to challenged net-

working environments, which include intermittent connectivity, long or variable de-

lay, high error rates and low bit rates. In such scenarios, traditional Internet proto-

cols may perform poorly or may not work at all.

In DTN, application data is carried over variable-length bundles. The bundles may

be stored persistently in the intermediate nodes until the next contact becomes avail-

able. This allows DTN not to rely on stable end-to-end path for communication at

any point of time unlike Internet. Bundle protocol, which we have discussed here,

is the primary protocol of DTN. The bundle protocol operates as an overlay on top

of wide range of network types, while the convergence layer performs mapping be-

tween bundle protocol and network-specific lower layers. Several convergence layer

adapters (CLAs) can be integrated in a bundle node which enables bundle protocol

agent (BPA) to interoperate with heterogeneous underlying networks.

Routing is one of the biggest open issues in DTNs. In this chapter, we have also

introduced various routing approaches based on deterministic and stochastic DTNs.

Deterministic routing schemes work on the assumption of having complete or partial

knowledge of the network topology in advance. On the other hand, the information

24

about the network topology is totally unknown for stochastic cases. However none

of the routing approaches are treated as perfect for DTNs.

The OMA specified PoC architecture has been introduced briefly in this chapter.

The traditional PoC services rely on Internet protocols which require stable end-to-

end path for successful operations. This may subject to abnormal communication

experience in the mobile DTNs where end-to-end path may not exist at any given

time. In this thesis we develop DT-Talkie which enables mobile users to communi-

cate in the infrastructure-less and other challenged environments in the walkie-talkie

fashion. In the next chapter, we describe the high-level architectural concepts of the

DT-Talkie.

25

3 System Architecture

As the Open Mobile Alliance (OMA) specified Push-to-talk over Cellular (PoC) ser-

vice works over either cellular networks or operator independent wireless networks,

it is not very well-suited for infrastructure-less and challenged networks. In the

regular PoC services, several round-trip messages are required to exchange in order

to establish a PoC session. After establishing the session, voice data is transferred

back and forth in the semi real-time fashion between endpoints either directly or

via infrastructure. These services work well in the scenarios (e.g., Internet) when

round-trip delays are significantly short. But in a DTN environment of high end-

to-end delay and high error rates, the PoC session might not be established in the

first place, or huge packet loss may lead to degraded voice quality. Overall, the

traditional approach of voice communication would be unrealistic in the disrupted

environments.

Our aim is to define requirements for practical voice communication in the mobile

DTNs, in which speech quality is not affected, but the voice session can be less

interactive due to delay. To avoid unwanted round-trip message exchanges for ses-

sion establishment, session parameters and optionally other contents can be bundled

along with recorded voice messages. In order to achieve this, we must define how

different data chunks can be aggregated together into larger data structures, and

how these structures are placed into bundles. It might happen that the mobile end-

points experience better link connectivity while ongoing voice session. In such cases

we must provide means for speeding up the session interactivity.

In this chapter, we provide a high-level overview about the DT-Talkie system and

then proceed to discuss the system design broadly. We also describe the fragmen-

tation approach that is applied to the DT-Talkie. Finally some mechanisms to

mitigate the codec interoperability issues are suggested.

3.1 System Concepts of the DT-Talkie

The existing PoC solutions are mainly infrastructure-based and rely on stable end-

to-end path for successful communication. But the mobile nodes may roam in the

environments, where infrastructure is not available or unreliable end-to-end path

does exist. In such cases, those PoC solutions may exhibit poor performance or

26

may even fail completely. So a new approach is necessitated to define for enabling

voice communication in the infrastructure-less and other challenged networking en-

vironments. In this thesis, we devise a system called DT-Talkie in which the DTN

concept of asynchronous message forwarding is applied to transport voice messages

in the infrastructure-less and challenged networks.

Figure 3.1 depicts the general processing steps of the DT-Talkie. Basically in the

DT-Talkie, voice messages are captured and then encoded using a preconfigured

codec. It might happen that the destination endpoint does not have support of

the codec to decode and playback voice messages. One solution to deal with the

problem can be that two endpoints negotiate on a common codec prior to voice

message transfer like traditional PoC services. But this requires several round-trip

message exchanges, which is not feasible in the high delay environment. In order

to handle the issue we primarily provide support of more codecs to the DT-Talkie

which can make the system more codec-interoperable. We also suggest some other

approaches concerning codec interoperability issues, which are discussed later in this

chapter.

Audio

Encoding

Application Level

Framing
Bundling

Bundle Protocol

Service

PCM

Voice

Headers

MIME Message

Optional

Contents

Voice
Headers

DTN Bundle

MIME

Message

Encoded

Voice

DTN

Figure 3.1: General processing steps of the DT-Talkie

However after encoding the voice messages, the next step is to encapsulate them

into bundles. Rather than simply bundling the unstructured voice messages, we use

a framing mechanism which enables aggregation of other optional contents in con-

junction with the voice messages. The bundles are then sent using the DTN bundle

protocol services, which are forwarded reliably on the way to the destination in the

store-carry-forward fashion. The bundles are decapsulated after receiving to get the

voice messages, which are played out after decoding.

After briefly describing higher level architecture of the DT-Talkie, now we provide in-

27

depth discussion about the system design with the aid of a one-to-one communication

scenario. Suppose user A attempts to send a voice message to User B and both have

DTN communication capabilities.

3.1.1 Audio Encoding

DT-Talkie captures voice messages from the audio source (e.g., microphone) of user

A. The captured voice messages can be sent in either uncompressed or compressed

format. The uncompressed audio formats, often referred to as PCM formats, do not

use any compression mechanism. This means all the audio information is available

at the cost of large file size. A WAV audio file is an example of uncompressed audio.

The compressed audio can be of two types: lossless and lossy. Lossless audio com-

pression applies to an uncompressed audio file without any loss of audio information,

whereas lossy compression technique results better compression through eliminat-

ing redundant and unnecessary audio information. Since lossy compression discards

only those parts of audio which cannot be perceived by human auditory system,

it has very little impact on audio quality. For example MP3 and G729 audio files

use lossy compression. DT-Talkie supports transmission of voice messages both in

uncompressed (WAV) and compressed (MP3 and G729) audio format. In this the-

sis, there is no mechanism employed in the DT-Talkie to negotiate audio encoding

format before delivering voice messages. Rather we assume a default audio format

for a particular voice session, which is preconfigured in both side of user A and user

B.

3.1.2 Application Layer Framing

DT-Talkie allows sending optionally other contents (e.g., image, electronic business

card) together with a voice message. The image can be either User A’s profile

picture or instant snapshot from the devices camera. The electronic business card

(vCard) [43] is often attached to email messages, but can be significantly used in

the DT-Talkie to provide information related to sender’s name, email address, phone

numbers and so on. Application layer framing mechanism is applied to place the

voice message and other contents into a single structure. We use MIME (Multipur-

pose Internet Mail Extension) [44] for this purpose.

MIME is an IETF defined standard, which enables electronic mail program and web-

28

browsers to send and receive non-ASCII messages (e.g., image, audio and video) via

the Internet. A MIME message includes both data and metadata. MIME metadata

consists of HTTP-style headers and MIME boundary delimiters. Different types of

contents can be encapsulated in different parts of a multipart MIME message and

the Content-Type header field specifies the type of the content in each part. In such

multipart messages the Content-Type header also includes a boundary attribute that

is used to delimit the message parts. MIME provides the support of custom user-

defined headers (prefixed with “X-”) to be used for application-specific purposes.

Based on MIME standard, S/MIME provides cryptographic security services (e.g.,

authentication, encryption) for the applications that transport MIME data.

Figure 3.2 presents an example MIME message in short form which is generated in

a DT-Talkie session. We add X-Bundle-Destination header in the MIME message

to refer two types of DT-Talkie communication. The value of the above header is

either singleton for one-to-one or multinode for group communication. The value

of the X-Bundle-Type header can be either message when the DT-Talkie sends a

full-length voice message or fragment if the fragments of the voice message are sent.

The encoded voice message is aggregated as a body part of type audio/G729 and

the image as another body part of type image/jpeg. The business card information

is aggregated in the MIME message with type text/x-vcard. The vCard contains a

formatted name string which can be used as a display name and an Internet email

address.

Some protocols cannot carry binary data, or data with a line length of greater

than 1000 lines - specifically Simple Mail Transfer Protocol (SMTP) has both those

restrictions. The MIME messages contains binary data need to be transformed in

such way so that the messages will be transportable by those restricted protocols.

To achieve this, a binary-to-text encoding mechanism is required to apply. Base64,

one of the MIME supported encoding scheme, is used to transform binary data (e.g.,

images, audio) into a text string that contains only US-ASCII characters. But the

pitfall of the scheme is that it increases data volume by 33% [44]. In our case the

restrictions do not apply because we use DTN transport which supports transmission

of binary data without any limitation; thus reduces overall message overhead.

29

X-Bundle-Destination: singleton

X-Bundle-Type: message

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="=-UL99WySTLs0AAPGPLgtN"

--=-UL99WySTLs0AAPGPLgtN

Content-Type: audio/G729

1Í��GŸTS§QâXJqßÚ�Ñ�‰�saÍ^cÃÝÛ”Gl/Œ�^Åˆ��Øð[;a�öÁÆ ’ÿ��hT©—

_ŢBÃT^li˜Ov)ÿQäuúˆ+!š¥öùÙ"=8�A€¤òn={Tf�å:\yð�âÔû�kÈú{äýIsßm� \

.....

--=-UL99WySTLs0AAPGPLgtN—

Content-Type: image/jpeg

�|]ªë�eõÙ»+ö8PIi*nC6î`Œ¨aŒ|ÊsšâüWc7‰üG§ê7¶ö§GÓbka$ó��Á�Û¶äV!w`�~

µ�Å��ø�ÁŸ`ƒK¾û4:¥»KöR�¾Ê¹�B� àþcŠó½�[MBå,m.o4Éæ´0HË6øç

.....

--=-UL99WySTLs0AAPGPLgtN

Content-Type: text/x-vcard

BEGIN:VCARD

VERSION:2.1

FN:Forrest Gump

EMAIL;INTERNET:forrestgump@example.com

.....

END:VCARD

--=-UL99WySTLs0AAPGPLgtN

Figure 3.2: Sample MIME message generated in a DT-Talkie session

3.1.3 Bundle Addressing

After aggregating encoded voice and image into a MIME message, the DT-Talkie

application encapsulates the MIME message into a DTN bundle. Now the bundle

is needed to be addressed for transmission. As described before, All the endpoints

in the DTN domain are identified by an URI-like endpoint identifier (EID), which

has the general form of <scheme name>:<scheme-specific part>. Every node has a

unique singleton EID but can register to any number of multicast EIDs. When an

application wishes to receive bundles destined to a particular EID, it registers the

corresponding EID with its local DTN node.

Basically the bundle protocol is not limited to a specific URI scheme - any valid

scheme (e.g., dtn:, http:, mailto:) can be used in an EID. The scheme name defines

a set of rules that determine how the scheme-specific part should be interpreted [16].

30

However the “dtn:” scheme is adopted as a default scheme in the DTN2 reference

implementation using the structure of “dtn://node-id/application-id” (described in

the earlier versions of the bundle protocol) [45], where node-id identifies a particular

dtn daemon and application-id identifies a particular application that uses the above

daemon to interface to the DTN system.

Since our DT-Talkie implementation uses DTN2, so we must use “dtn:” for all

EIDs. “<host>.dtn” is used as node-id and “dttalkie” is used as application-id

(e.g., dtn://nokia-n810.dtn/dttalkie) to identify DTN nodes running the DT-Talkie

application. Other implementations of the DTN bundle protocol might choose to

use different URI schemes for bundle addressing, rather than the “dtn:” scheme.

The impact of using different URI schemes on our application is minimal.

3.1.4 Bundle Routing and Delivery

The DT-Talkie on the side of user A sends the bundle in the mobile DTNs, using

the services provided by the bundle protocol. We use Epidemic routing protocol

to forward the bundle along the path from the source to the destination. Epidemic

routing protocol is chosen because of its simplicity and higher message delivery rates.

Nevertheless we will observe the behavior of DT-Talkie in the simulation environ-

ment using other DTN routing protocols in Chapter 5. After sending the bundle,

it traverses through the network in the store-carry-and-forward manner, until the

destination node is reached.

As soon as user B receives the bundle, it is decapsulated to extract the MIME

message. The DT-Talkie then parses the MIME message to get the encoded voice

message and other optional contents if any. The Content-Type header of the received

MIME message provides information about the codec through which the voice mes-

sage was encoded. The DT-Talkie then decodes the voice data using the codec

information and starts playback in the audio sink (e.g., speaker) of user B. Finally

appropriate action is applied to the optional contents (e.g., image is shown in the

GUI).

The aforementioned approach is applicable for user B if he wants to answer user A

and in this way the users can exchange several messages until the end of a voice

session. When the first exchange of voice messages between user A and user B is

31

taken place, the DT-Talkie considers that two user are actively communicating in the

session. In this active voice session, the voice messages from other users are stored

locally instead of playing out immediately. So the active users are not interrupted

while communication and they can playback the stored voice messages later after

the active voice session is over.

3.1.5 Group Communication

The epidemic routing protocol which we use primarily in the DT-Talkie one-to-

one communication, is a perfect fit for asynchronous style of group communication.

Group communication may be applicable in many potential DTN applications where

mobile nodes are required to collaborate closely in the infrastructure-less environ-

ment. For example, in the disaster situations, a rescue worker wants to inform other

workers of a group about the current local condition through sending voice messages.

To perform group communication in the DT-Talkie, the same concept of one-to-one

communication is applied with the exception that the voice messages are destined

to a multicast EID. We define the structure of multicast EID as dtn://<group-

name>.dtn/dttalkie (e.g., dtn://netlab.dtn/dttalkie), which is equivalent to single-

ton EID. If the DT-Talkie enabled users want to receive voice messages from a

particular group, they must register with the corresponding EID.

3.2 Voice Message Fragmentation

In some scenarios it is not always good idea to send large voice messages in one

transmission. As we mentioned before that the DTN bundles are variable in length,

so the bundle size may vary from kilobytes to megabytes and even gigabytes. Gen-

erally large messages lead to longer transfer times and the contact duration in the

opportunistic DTN environment may be too short to reliably transmit a large single

message. This implies splitting a large message into smaller pieces through frag-

mentation to enable communication over short-lived links.

In the usual one-to-one DT-Talkie communication, users listen to a received voice

message and attempt to record another voice message for the next transmission. So

to get the next voice message, the receiver used to wait for a while (sender’s listening

time + sender’s recording time + transmission time). For example, if user B received

32

a voice message from User A which he listen for 1 minute and the duration of the new

recorded voice message is 2 minutes, so User A will have to wait for 3 minutes plus

transmission time to listen the new voice message sent from User B. This might be

feasible in the scenarios where the network suffers from poor connectivity (e.g., high

end-to-end delay). But link connectivity may get improved while ongoing DT-Talkie

session. In such cases it might make sense to split up a large voice message into

smaller fragments and send them over different bundles. Thus we can speed-up the

session interactivity. In this thesis the concept of fragmentation is employed in the

application layer with the assumption of well link connectivity. Defining mechanism

to dynamically adapt to the link conditions is beyond the scope of this thesis.

3.2.1 Different Fragmentation Schemes

It is worthwhile to know the ways a voice message can be fragmented and which

one is feasible to use for the DT-Talkie scenarios. First, as it is discussed earlier

that DTN includes the support of proactive fragmentation which allows division of

application data into multiple smaller fragments and transmit each fragment as an

independent bundle. The destination DTN node is responsible for extracting the

fragments from incoming bundles and reassembling them into original bundle. Then

the DTN node hands the original bundle to the application. Enabling proactive frag-

mentation in the DTN layer does not help to step up the speed of the DT-Talkie

session interactivity, because the receiving DT-Talkie application gets the full voice

messages to playback from its DTN node as they are sent. From the DT-Talkie

applications point of view, this approach is not different than the one at which voice

messages are sent and received without enabling fragmentation in the DTN node.

Second, the application layer can take the responsibility to split up a voice message

into multiple fixed-sized fragments and send them as different bundles. This is a

better approach than the previous one in the context of session interactivity speed.

In this scheme, the receiving DT-Talkie application plays out all the fragments as

soon as they are received rather than playing out the full voice message. Thus the

session can be made more interactive. But this approach is not well-suited in some

scenarios. Basically each voice message contains sequence of variable-length talk-

spurts (sentences) and silence periods (Figure 3.3). In this fragmentation scheme,

each fragment may contain fraction of a voice message and any loss of fragments

may lead unmeaningful communication.

33

talk-spurt talk-spurtsilence

Figure 3.3: Signal representation of a voice message

Third and last, variable-length meaningful fragments can be generated through sep-

arating the talk-spurts from the voice message. This mechanism provides more

interactive communication and keeps the communication meaningful to the users in

case of loss of fragments. We suggest the last approach in this thesis.

3.2.2 MIME Encapsulation of a Fragment

Each fragment is required to carry additional metadata along with original data.

We encapsulate each fragment in different MIME messages with three extra headers,

which include X-Msg-No, X-Frag-No and X-Last-Frag. The headers X-Msg-No and

X-Frag-No are monotonically increasing decimal number. The value of the X-Last-

Frag header is true for last fragment and false for other fragments of a particular

voice message. Figure 3.4 represents a MIME message in which the value of the

X-Bundle-Type header is set to fragment. This means the MIME message carries

a voice message fragment. By observing three additional headers, it can be said

clearly that the fragment is the third fragment (last fragment as well) of the first

voice message.

Addition of metadata allows the receiving DT-Talkie application to play out the

fragments in correct order and do some treatment if disorderliness in the received

fragments is encountered. For example, User A sends a voice message as three

fragments to User B. User B receives the first fragment and it is played out imme-

diately. If third fragment receives before second fragment, third fragment is stored

in a queue. When second fragment arrives, the application plays the fragment out

and finally the third fragment is played out. Moreover in Chapter 5, we carry out

34

X-Bundle-Destination: singleton

X-Bundle-Type: fragment

X-Msg-No: 1

X-Frag-No: 3

X-Last-Frag: true

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="=-UL99WySTLs0AAPGPLgtN"

--=-UL99WySTLs0AAPGPLgtN

Content-Type: audio/G729

1Í��GŸTS§QâXJqßÚ�Ñ�‰�saÍ^cÃÝÛ”Gl/Œ�^Åˆ��Øð[;a�öÁÆ ’ÿ��hT©—

_ŽBÃT^li˜Ov)ÿQäuúˆ+!š¥öùÙ"=8�A€¤òn={Tf�å:\yð�âÔû�kÈú{äýIsßm� \

.....

--=-UL99WySTLs0AAPGPLgtN—

Figure 3.4: MIME encapsulation of a voice message fragment

some simulations to observe the characteristics of the DT-Talkie in fragmentation

mode under various circumstances.

3.3 Codec Interoperability Issues

Enabling codec interoperability is one of the most considerable issues in the context

of the DT-Talkie. In the traditional voice communication where stable end-to-end

connectivity is assumed, a session is established through negotiating codec param-

eters prior to voice data transfer, which requires round-trip exchange of several

messages. We do not assume this due to avoid unnecessary round-trips as they

can be costly in the challenged scenarios. On the other hand, while heterogeneous

endpoints participate in the DT-Talkie session, some of them may not have support

of a particular codec1. So there would be a chance that voice messages are left

non-played. In order to deal with those issues, we must define some approaches that

make the DT-Talkie codec interoperable without exchanging some extra messages.

However we imply two mechanisms in this thesis to maximize codec interoperability

of the DT-Talkie. We explain the mechanisms using a one-to-one communication

scenario where user A and user B are communicating in a voice session. First, as

user A does not have any idea about which codecs are supported by user B, he can

1Since G.729 or G.723.1 is a proprietary codec for example, it may not be available in some
open source platforms.

35

encode voice messages using all of his supported codecs and send them with MIME

message encapsulation. Figure 3.5 depicts an example MIME message which can

be used in this mechanism. The MIME message contains three different body parts

of type G729, MP3 and Speex, which are used to encode the same voice message.

We suppose that user B has a support for the G729 codec1. So after receiving the

MIME message, user B can pick up the G729 audio part and then playback. If user

B wants to send a voice message as a reply to user A, he use the same G729 codec

to encode the voice message. After receiving the reply message, user A now have

the knowledge of G729 codec which is supported in the side of user B and all the

remaining voice messages in the session will be transferred using the G729 codec.

The downside of this approach is that if the recipient does not have support of any

codecs which were used at the sender’s side, the sent voice message is missed to

playback and the session is no longer continued.

Second and finally, users can agree upon a common codec through first exchange

of voice messages between each other. In the first exchange, voice messages can be

transferred in the uncompressed PCM format (e.g., WAV), as it is supported by a

wide variety of platforms. For example, if user A attempts to communicate with

user B, he first sends an uncompressed voice message in conjunction with a list of

his supported codecs, which can be encapsulated in a MIME message. Figure 3.6

shows a MIME message of this kind, which contains a voice message in WAV format

and XML [46] content2 to represent a list of supported codecs. In the XML content,

the supportedCodecsList is the root element and the codec element is the child of the

root element. The codec element has two attributes: name and type which carry the

name and the mime type of a codec respectively. However in reply, user B also sends

a voice message to user A in the uncompressed PCM format along with his list of

supported codecs. In this first exchange between user A and user B, they negotiate

on a common codec and in the later exchanges all the voice messages are encoded

using the negotiated codec. If they do not find any common codec, the session can

be continued through transporting uncompressed PCM voice messages in the later

exchanges. In this approach the session does not break up because of unsupported

codecs, which is seen as more advantageous over the previous approach.

1User B may support other codecs, but he always extract one suitable audio part from the
MIME message.

2We do not mandate to enlist the codecs using XML format. Any structured representation
could be used.

36

X-Bundle-Destination: singleton

X-Bundle-Type: message

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="=-UL99WySTLs0AAPGPLgtN"

--=-UL99WySTLs0AAPGPLgtN

Content-Type: audio/G729

1Í��GŸTS§QâXJqßÚ�Ñ�‰�saÍ^cÃÝÛ”Gl/Œ�^Åˆ��Øð[;a�öÁÆ ’ÿ��hT©—

_ŢBÃT^li˜Ov)ÿQäuúˆ+!š¥öùÙ"=8�A€¤òn={Tf�å:\yð�âÔû�kÈú{äýIsßm� \

.....

--=-UL99WySTLs0AAPGPLgtN—

Content-Type: audio/mpeg

�Ê�ŒâÒ(��́èUƒ½@3Fj�x‚E…‚UAÁÀÆ�©,âÐ¡©(AÑ'Io‹Òd˜BY´‰œ9Œ¹°ØõH�Sà��¥›

ÄˆD9X;~ je.�����Pß€�yŒIŠ0°PI~Xò4˜���,«�Mfˆ†Ì�a[#=^1T�ýL[

.....

--=-UL99WySTLs0AAPGPLgtN

Content-Type: audio/x-speex

Û��e�ÿÿÿÿÿ‰�ò��í¼tÊU¸_=“¾¶@>V—ê®¶——(Ã
Fƒ�ó�8)IsÎ¿3³uÔþ�«.üÝØ½[¬Æ¡Ţäú¥� Z§(Ã

»„�òü™óÐý=ùY¸pê�Î¦|¢3õ€cQí~}Ñ��ţÿ§(ÝýdÅ¸v}Fïî�yó:¨éürëª�|“s#�ù

.....

--=-UL99WySTLs0AAPGPLgtN

Figure 3.5: MIME encapsulation of three audio parts representing the same voice
message

3.4 Summary

In this chapter, we have presented the overall concepts of the thesis. The system

architecture of the DT-Talkie is discussed comprehensively using a one-to-one com-

munication scenario. Basically captured voice messages are encapsulated in the

bundles and sent them over DTN infrastructure. There might have issues regarding

codecs support to play out the received voice messages, since we do not use any ne-

gotiation mechanism. However adding support of more codecs can be considered as

a remedy. We have defined MIME framing technique which allows other contents to

be sent with voice messages. Group communication is carried out in the DT-Talkie

using the ideas of one-to-one communication with very few exceptions.

Voice message fragmentation has been suggested in the well-connected scenarios in

order to speed-up the session interactivity. We have introduced different fragmenta-

37

X-Bundle-Destination: singleton

X-Bundle-Type: message

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="=-UL99WySTLs0AAPGPLgtN"

--=-UL99WySTLs0AAPGPLgtN

Content-Type: audio/x-wav

RIFF$ ÿWAVEfmt @ €> data ÿ C O 7 @ : > D A E < = 6

? ; : 8 : < < > @ > 9 7 6 < : : 7 5 3 2 0 3 5 ; ; < 9 9 9 7 8 7

...

--=-UL99WySTLs0AAPGPLgtN—

Content-Type: text/xml

<?xml version="1.0" encoding="utf-8"?>

<supportedCodecsList>

<codec name="MP3" type="audio/mpeg"/>

<codec name="G729" type="audio/mpeg"/>

<codec name="Speex" type="audio/x-speex"/>

.....

</supportedCodecsList>

--=-UL99WySTLs0AAPGPLgtN

Figure 3.6: MIME encapsulation of uncompressed audio and XML content

tion schemes. The chosen fragmentation mechanism separates talk-spurts through

detecting silences in a voice message and sends them as fragments. We have also

talked about two approaches to negotiate codec between endpoints without the cost

of some extra round-trip message exchanges.

Theoretical work that is presented in this chapter has little significance unless it

is realized in practice. The concepts discussed here serve as a basis for the next

chapter, which provides implementation details of the DT-Talkie.

38

4 Implementation

After presenting the conceptual framework in the previous chapter, we now pay our

attention to the implementation of the DT-Talkie. Our goal is to produce the fully

functional delay-tolerant push-to-talk application that can be used for small-scale

deployments. The aim is not to create production-grade software, but a proof of

concept to get practical realization of the ideas presented in the previous chapter.

The DT-Talkie application is intended to be implemented on Linux and an open

source based mobile computing platform. We integrate Graphical User Interface

(GUI) to the application with the vision to improve the end-user experience. DTN

reference implementation (DTN2) is used to get the bundle protocol services and

the DT-Talkie is realized as a separate application program.

In this chapter, we briefly introduce our intended software platform and the technolo-

gies which form the foundation of the implementation. The high-level application

architecture and the implementation steps of the DT-Talkie functional components

are also discussed in this chapter. The intention is to present the implementation

with sufficient detail so that this chapter, the source code and its inline comments

will allow the readers to understand how the application works and how it could

be further developed. Then we give an implementation overview of the DT-Talkie

fragmentation mechanism and finally the graphical elements of the application user

interface are discussed.

4.1 Background

Before approaching to the in-depth discussion of the DT-Talkie application archi-

tecture, it is worthwhile to have some background knowledge about the application

development platform and other dependent technologies, which are introduced in

the following subsections.

4.1.1 Maemo

Maemo [47] is a software development platform provided by Nokia for their se-

ries of Internet Tablets (e.g., N800, N810 and N900). Maemo is based on Debian

GNU/Linux operating system kernel. The Linux kernel is the central software com-

39

ponent of the system. It builds the abstraction layer for the system devices and

provides memory management, process management, networking services, file man-

agement and various other services. Maemo devices run the recent Linux 2.6 kernel.

The ARM/OMAP-based Linux kernel of the Maemo platform implements hardware-

specific device and bus drivers on top of the core kernel’s virtual services.

The user interface is based on XWindow System with the Matchbox window man-

ager. The application programming interface (API) on top of XWindow is a GTK+

widget toolkit with the Hildon extensions. GNOME is an application framework

for desktop Linux systems. From the GNOME project, maemo has inherited many

central components, such as the GTK+ GUI toolkit, the GStreamer multimedia

framework, the GConf application configuration management, the GnomeVFS, and

the XML library.

The Hildon framework provides components on top of the GNOME components

to support stylus-based usage, high display pixel density, hardware buttons, con-

trol panel, status bar, task navigator, and home applets. It also provides the

backup/restore framework, the help framework, and an application manager.

The debian-oriented scratchbox cross compilation toolkit [48] provides a sandbox en-

vironment for Maemo application development. Scratchbox-compatible rootstraps,

which contain all the development libraries and header files required for application

development, are available for both x86 and ARMEL (ARM emulator). This enables

almost all development and debugging tasks on the x86 PC host environment, with

final validating and packaging being for ARMEL.

Maemo is built around the debian packaging system and mainstream Debian tools

that provide the software package management infrastructure. This also facilitates

easy updating of the development environment when new versions of the software

components are made available. Maemo application programming interfaces (APIs)

are natively supported for the C language. Maemo also has C++ and Python

bindings for its core APIs. Unofficial bindings for other languages and environments

are also available.

40

4.1.2 GTK+

GTK+ (GIMP Toolkit) [49] is a cross-platform widget toolkit for creating graphical

user interfaces. It is called GIMP toolkit because it was originally designed for a

raster graphics editor called the GNU Image Manipulation Program (GIMP). GTK+

was adopted as the default graphical toolkit of GNOME and Xfce, two of the most

popular Linux desktop environments. While it was originally used on the Linux

operating system, GTK+ has been expanded to support Microsoft Windows and

other UNIX-like operating systems: Solaris, Mac OS X, BeOS and others. GTK+

is written entirely in C, and the majority of GTK+ software is also written in C.

There are GTK+ bindings for many other languages including C++, Python, PHP,

Ruby, Perl, C#, and Java.

GTK+ is fully object oriented although written in C. It uses classes and callback

functions implemented as structures and pointers to functions. GTK+ is built on

top of a number of other libraries such as GLIb, GObject, Pango, ATK, GDK and

Xlib. Glib provides low-level data structures, types, threads, an event loop, an object

system and dynamic loading. GObject implements an object-oriented system in C

without requiring C++. Pango provides layout and rendering of internationalized

text. ATK supports screen readers and alternative input devices. GDK performs

the actual rendering to the display. It abstracts from the display so that it can run

on top of X11, Win32, or Cocoa. Xlib provides the low-level graphics functionalities

on Linux and UNIX systems.

4.1.3 GStreamer

GStreamer [50] is a cross-platform multimedia framework for developing streaming

multimedia applications. The GStreamer framework is designed to facilitate build-

ing applications that handle audio or video or any kind of data. One of the most

obvious uses of GStreamer is to build a media player. GStreamer supports a very

wide variety of formats, including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime,

mod, and more. The framework is based on plugins that provides the various codecs

and other functionalities. The plugins can be linked and arranged in a pipeline which

defines the flow of the data.

GStreamer has been ported to a wide range of operating systems which include

41

Linux (x86, PowerPC and ARM), Solaris (Intel and SPARC), Mac OS X, Microsoft

Windows and OS/400. The GStreamer core library is written in the C programming

language with the type system based on GObject. It has bindings for programming-

languages like Python, C++, Perl, GNU Guile and Ruby.

The most important component in GStreamer is the element. Each element is pro-

vided by a plugin. Elements communicate by means of pads which can be viewed

as plugs or ports. Pads are used for linking one element to other elements through

which data can flow to or from those elements. Normally they have specific data

manipulation capabilities and can restrict the data types that can pass through it.

Source elements generate data, for example reading from disk or from a sound card.

Sink elements accept data but do not produce anything, for example disk writing,

soundcard playback, and video output. Filters and filter-like elements have both

input and output pads. They receive data on their input (sink) pads, and will

provide data on their output (source) pads. A bin works as a container where

elements can be grouped together. A pipeline is a higher level bin. When the

pipeline is in the playing state, data flow starts between the pads of the elements.

4.1.4 DTN2

DTN2 is the reference implementation of the DTN bundle protocol developed by

DTNRG. It is designed with the vision to provide the platform for researchers to do

experiments and evaluate the protocol designs. DTN2 also aims to be high-quality,

production-ready code for real-world deployments [51].

DTN2 includes support for TCP, UDP, Bluetooth, Ethernet, Sneakernet and Exter-

nal convergence layers. DTN2 supports several link types such as always available

links, on-demand links, opportunistic links and links with scheduled contacts. There

are several routing schemes implemented in DTN2, such as Static, Flooding, Neigh-

borhood, Delay-Tolerant Link State Routing, PRoPHET. For new routing schemes,

DTN2 has a XML based External router interface. Persistent storage is used to

store bundles, network state information (e.g. routing tables) and application state

information (e.g. registrations). DTN2 has the support for BerkeleyDB, MySQL,

PostgreSQL, file system and memory to provide persistent storage services. For

42

neighbor discovery, DTN2 adds support for Bluetooth, IP and Bonjour discovery

mechanisms.

DTN2 is written primarily in C++ and ported to Linux, Solaris, Win32 (Cygwin),

Linux on PDA (ARM), FreeBSD and Mac OS X. It provides APIs which enable

applications to access the bundle protocol services. There are also other implemen-

tations of the bundle protocol exists such as IBR-DTN [52], Java BP-RI [53] and

DASM [54], but these focus on embedded systems, Java and Symbian respectively

and do not provide as much functionality and are not as mature as DTN2.

4.1.5 Other Libraries

GMime library provides mechanism for creating, editing and parsing the Multipur-

pose Internet Mail Extension (MIME) messages and structures. It is built upon

GLibs GObject system allowing for a lot of flexibility.

Hildon library allows creating widgets and themes specific to the Maemo. It is

primarily a set of GTK+ extensions which focuses on providing a finger-friendly

interface and other mobile device oriented functionalities.

4.2 DT-Talkie Application Architecture and its components

Four major functional components serve as a basis for the DT-Talkie application.

They are GUI, Voice R/P (Recorder/Player), MIME C/P (Creator/Parser) and

Bundle S/R (Sender/Receiver). In Figure 4.1, the high-level overview of the appli-

cation architecture is represented.

GTK+ and Hildon are used in the GUI component to render the application user

interface. The Voice R/P component relies on GStreamer to record and playback

voice messages. GMime library is used by the MIME C/P component to carry out

creating and parsing the MIME messages. The Bundle S/R component is depen-

dent on DTN2 (Version 2.6.0) in order to send and receive bundles. The Maemo

platform provides GTK+, Hildon and GStreamer libraries by default. We just port

GMime and DTN2 libraries to the Maemo platform. The implementation of all the

functional components is described in detail later in this section.

43

Nokia Internet Tablet

GUI

Voice R/P

MIME C/P

Bundle S/R

«library»

GStreamer

«library»

GMime

«library»

DTN2

«library»

GTK+

Maemo OS

«executable»

DT-Talkie

«library»

Hildon

Figure 4.1: High-level architecture of the DT-Talkie application

4.2.1 State flow of the DT-Talkie application

Figure 4.2 shows the state flow diagram of the DT-Talkie application. In the appli-

cation we define a structure that holds the most important data. The data reflects

the current state of the DT-Talkie application and propagates to different methods.

After initializing the application state data, a thread is spawned to receive new

bundles. Then GTK+ main loop starts running in which the main window along

with other widgets are rendered and the handlers process the input when users in-

teract with the widgets using stylus and presses the hard keys. Before starting voice

recording a user selects an EID of the destination (voice messages can be destined to

either individual user or a group of users) from the application GUI. The EID list of

individual users and groups of users are pre-stored in the local filesystem. However

voice recording starts when the user presses a hard key1 for the first time and it

continues in a GStreamer loop2. The recording is stopped by pressing the hard key

1We use full screen hard key of the Nokia Internet Tablets.
2The GStreamer loop is basically a GLib event loop, which is used for the purpose of getting

messages, errors, and other important information while running.

44

for the second time. The recorded voice message and an image1 are aggregated in a

MIME message. The MIME message is then encapsulated in a bundle which is sent

in the mobile DTNs.

GUI

Initializing application state data

Bundle receiving thread

Rendering main window and widgets

Handling stylus and hard key inputs

Spawning a thread to receive bundles

Infinite loop

to poll for

bundles
GTK+ main loop starts

at the beginning of the

program and runs until

application termination

Voice recording

Voice recording starts when

the hard key interrupt is

received for the first time

Gstreamer loop runs

while recording

Voice recording stops when

the hard key interrupt is

received for the second time

Creating MIME message

The recorded voice

message and an image

are to be aggregated

Bundle sending

The MIME message

is to be bundled for

sending

View

Input

DTN

Parsing MIME message

MIME messages are

to be parsed after

decapsulating the

bundles

Voice playback

Gstreamer loop runs

while playback

The parsed

voice message

is to playback

The parsed image
is shown in the GUI

Figure 4.2: DT-Talkie application state flow diagram

On the other hand, the bundle receiver thread continuously polls for new bundles in

an infinite loop. As soon as a bundle is received, it is decapsulated to get the MIME

message. The extracted MIME message is then parsed to get the voice message

which is played out in another GStreamer loop. The parsed image is also shown in

the GUI.

1In the current implementation we only aggregate users profile picture together with voice
messages, not other contents.

45

4.2.2 Bundle S/R

The Bundle S/R component consists of two modules: bundle sender and bundle

receiver. Both modules connect to the DTN daemon (dtnd). dtnd is a background

process that provides the actual communication of bundles between hosts. It must

be run on a host in order to send, receive, or forward bundles. The processing steps

of the bundle sender and bundle receiver modules are discussed as follows.

Bundle Sender

Figure 4.3 illustrates the sequential execution of dtnd APIs when the bundle sender

is called for sending bundles. In order to send a bundle, first the bundle sender in-

vokes dtn open() method to open a new connection to the running dtnd daemon,

which initializes a new handle to the daemon on success. Then the bundle (which

we attempt to send) headers are populated using the bundle spec structure. This

structure is initialized with destination, source and replyto EIDs, bundle priority,

expiration time and delivery options. dtn://host.dtn/path

Bundle Sender dtnd

dtn_send()

dtn_close()

dtn_set_payload()

dtn_open()

send_bundle()

Bundle sent

Figure 4.3: Sequence diagram of bundle sending functionality

46

Then bundle payload structure is populated with the invocation of the dtn set payload()

interface in order to send a bundle. The payload contents can be copied either from

memory or from file. In this case we use local file and specify the filename in the

interface as a parameter. After this step the actual transmission process is ac-

complished with the dtn send() interface, which takes the opened handle and

the prepared payload structure as parameters. If the bundle sending succeeds, the

bundle sender module reports an info message in the GUI about success of bundle

transmission. Finally dtn close() method is called to close the opened handle.

Bundle Receiver

The bundle receiver module executes in a different thread, which is spawned at the

beginning of the program. The execution steps of the bundle receiver are illustrated

in Figure 4.4. Like the bundle sender, a new handle is initialized to open a connection

to the running dtnd daemon. Now the registration to the local DTN node needs to

be performed in order to receive bundles to a particular EID. To achieve this, the

registration info structure is set with EID1, registration expiration time and flag.

Then dtn register() method is used to create registration in the active state

and bind to the opened handle.

We use the dtn recv() interface that is called periodically in an infinite loop to

get new bundles from the bundle router. The bundle spec and the bundle payload

structures are filled with the bundle data using the interface when a bundle is re-

ceived successfully. Then the bundle is further processed by decapsulating to extract

the MIME message which is parsed to separate the voice message for playing out

and the image for showing in the GUI. Finally the payload structure is freed from

memory to avoid memory leak. The opened handle is closed when the application

terminates.

4.2.3 Voice R/P

The Voice R/P module comprises of Voice Recorder and Voice Player modules. Even

though the DT-Talkie application supports voice recording in MP3, G729 and WAV

coding techniques, we discuss the processing steps of the voice recorder and the

voice player modules using an example of MP3 codec. gst init() interface is in-

1The EID is specified in the DT-Talkie configuration file.

47

Bundle Receiver Thread dtnd

dtn_recv()

dtn_register()

dtn_open()

loop

Processing bundles

upon receiving

Spawn thread

Figure 4.4: Sequence diagram of bundle receiving functionality

voked at the beginning of the program to perform the necessary initialization of the

GStreamer library as well as parses the GStreamer-specific command line options.

Two GStreamer loops are created which run while voice recording and playback.

We present individual discussion of both modules in the following.

Voice Recorder

In the Voice Recorder module, a new GStreamer pipeline is created and a message

handler is attached to the pipeline bus. When a message (e.g., end-of-signal, error)

is posted on the bus, the default main context calls the handler to perform action

on the message.

Three different elements are created which include source, coder and sink. GStreamer

must have the support of plugins which are used for creating elements1. We use dsp-

pcmsrc plugin for creating source element to receive raw PCM audio from the DSP

device. The coder element is created with lame plugin to translate the raw audio

into MP3 format. Then filesink element is used in order to create the sink element

1The availability of a specific plugin can be queried through gst-inspect tool.

48

for writing the encoded audio data into a local file.

After creating three GStreamer elements, all of them are added into the pipeline

and linked together. Then the pipeline is set to “playing” state and the GStreamer

loop starts running. This time the voice recorder pipeline captures raw voice data

from the user, encodes and saves them in a file. Figure 4.5 depicts the voice recorder

pipeline. The loop continues unless any explicit call to quit the loop takes place.

Upon termination of the loop, the pipeline is set to “null” state and the reference

of the pipeline is cleaned up.

Source element

(dsppcmsrc)

Coder element

(lame)

Sink element

(filesink)

src sink src sink

Pipeline

Figure 4.5: Voice recorder pipeline

Voice Player

The processing steps in the voice player module work the same way as the voice

recorder. But the source, coder and sink elements are created in different way. In

this case filesrc plugin is used for source element to receive audio data in MP3 format

from a local file. MP3 audio is decoded into raw PCM audio data using the mad

plugin in the coder element. Then the sink element with dsppcmsink plugin transfers

the raw audio stream to the DSP device for playing out the audio. Figure 4.6 shows

the pipeline used for the voice player.

4.2.4 MIME C/P

MIME Creator and MIME Parser are the two modules of the MIME C/P component.

At the beginning of each module, g mime init() method is called to initialize the

GMime library. GMime file based stream object is created in both modules to read

and write MIME messages. In the following we discuss the functional steps of the

Mime Creator and the Mime Parser separately.

49

Source element

(filesrc)

Coder element

(mad)

Sink element

(dsppcmsink)

src sink src sink

Pipeline

Figure 4.6: Voice player pipeline

MIME Creator

The MIME creator module creates a new MIME message object which is initially

empty. On the MIME message object, we set a header named X-Bundle-Destination

with the value either singleton if the communication is one-to-one or multinode in

case of group communication. After this step, an empty MIME multipart object is

created with a default content-type of multipart/mixed in order to fill the body of

the MIME message. The multipart object can contain multiple parts with different

types of contents. For this implementation we only create two empty MIME parts;

one with the content-type of audio/G729 to carry G729 encoded voice messages1

and another with image/jpeg to carry profile picture in JPEG format. Now we pop-

ulate the two parts with recorded voice and profile image data without applying any

content encoding mechanism. Then the two parts are added to the multipart object

and the multipart object is set to the message object. Finally the message object is

written to the file based stream.

MIME Parser

The MIME parser module creates a new parser object preset to parse the file based

stream. Then it constructs a MIME message from the parser, which contains headers

and a multipart body. Through extracting the X-Bundle-Destination header of the

message, the application can get the idea whether a voice message is intended for

a single user or for group users. Then the module iterates through all the parts of

1The content-type can be audio/mpeg for MP3 or audio/x-wav for WAV encoded voice messages.

50

the message, get the audio and image contents and saves them in separate files for

further processing.

4.2.5 GUI

At the beginning of the GUI module, all initialization work is done by calling

gtk main() to use GTK+ and all of its supporting libraries. It begins by set-

ting up the GTK+ environment, including obtaining the GDK display and prepar-

ing the GLib main event loop and basic signal handling. Even though most of

the GTK+ widgets1 work seamlessly in the Maemo GUI environment, we create

HildonProgram and HildonWindow widgets to fit the DT-Talkie application

into the environment. Any Hildon application is based on the HildonProgram,

which is inherited from GObject and represents an application running in the Hildon

framework. The HildonWindow is inherited from the GtkWindow which repre-

sents a top-level window of an application running in the Hildon framework.

Then some basic GTK+ widgets, such as button, label, list, frame, scrollbar and

text entry, are created over the hildon window. To organize the basic widgets, we

use specialized non visible widgets called layout containers. These containers work

as parent widgets. In the GUI module a table widget is used to organize child wid-

gets in rows and columns. We also use vertical box and horizontal box widgets to

pack child widgets into a single column and a single row respectively.

Basically all GTK+ GUI applications are event-driven in nature. In GTK+ an event

is a message from the X Window System. When a user performs some action like

clicking a mouse or typing a keyboard, an event is fired. When the event reaches a

widget, it reacts to the event by emitting a signal. In this module specific signals are

caught from the application and connected them to callback functions for perform-

ing particular actions based on the type of the signals. In the DT-Talkie application,

recording and sending voice messages are carried out through two consecutive presses

of the fullscreen hard key of the Nokia Internet Tablets. So we also implement a

callback function to handle the signal which is emitted when the hard key is pressed.

Finally gtk main() is called to start a main loop, which continuously checks for

1Widgets are basic building blocks of a GUI application. For example: button, check box or
scrollbar.

51

newly generated events. The loop ends when the application is terminated.

4.3 DT-Talkie Fragmentation

We have discussed earlier the fragmentation approach that is applied in this the-

sis. In the approach fragments are generated through separating the talk-spurts

from a voice message and sent them as different bundles. In this section we discuss

how the implementation of the talk-spurts separation technique is carried out. We

implement the technique in a separate module for testing purposes. Since this im-

plementation is not yet matured, currently we do not integrate the implementation

to the mainstream DT-Talkie application.

Talk-spurts Separation Mechanism

Silence periods in the voice message are considered as markers in the process of

separating talk-spurts from the voice message. We use Voice Activity Detection

(VAD) technique to detect silence periods in the voice message. VAD is a mech-

anism which is used to detect presence and absence of human speech in an audio

signal. In VoIP and mobile telephony applications, VAD plays an important role

to reduce bandwidth usage and network traffic by transmitting audio packets only

if speech is detected. We do not incorporate any new VAD algorithm into our sys-

tem. Rather the built-in VAD feature of the G.729 codec is used to meet our goal.

DT-Talkie only provides fragmentation support in the one-to-one communication

scenario and when the G.729 codec is enabled. Figure 4.7 illustrates how the talk-

spurts are extracted while recording the voice message and sent as fragments. In

DT-Talkie with fragmentation mode, voice data is stored as soon as voice capturing

starts. If any silence is detected DT-Talkie stops storing voice data and considers

the previously stored voice data as a talk-spurt (talk-spurt 1). Just before starting

of another talk-spurt (talk-spurt 2) after the silence period, talk-spurt 1 is encapsu-

lated to send as a bundle. This process continues unless the user halts the recording

explicitly.

Considering the length of silence period between two talk-spurts is a significant

aspect to concern. The application has no idea when the next talk-spurt will start

after detecting the silence and which part of the voice data will be considered as a

talk-spurt. In a recent study [55] the authors, after investigating the characteristics

52

talk-spurt 1 silence talk-spurt 2 silence

fragment 1 fragment 2

Figure 4.7: Fragments creation through separating talk-spurts

of packetized voice stream for different codecs, have figured out that the mean silence

duration for G.729 codec1 is 1.5621 seconds. Based on their observation we use 1.5

seconds as threshold for the silence duration. This means talk spurts, which start

after the silence period of length greater than the threshold value, are treated as

different.

4.4 DT-Talkie Screenshot

In order to provide decent experience to the users, we implement an intuitive and

user- friendly GUI for the DT-Talkie application. The screenshot of the application,

while running in the Nokia N810 device, is shown in Figure 4.8.

The top-level window mainly consists of four frames, which include Individual Con-

tacts, Group Contacts, Pending List and Notification Box. The Individual Contacts

frame contains a list of singleton EIDs that are used to transport bundles in the

one-to-one communication scenario. The list of multicast EIDs resides in the Group

Contacts frame, which are used to send bundles towards a group of users. The

“Join” and “Leave” buttons beneath the Group Contacts frame are used for joining

to and leaving from a specific group. Basically the application registers and unregis-

ters the specified multicast EID with the local DTN node, when joining and leaving

operations are triggered. The user can traverse through both contact lists using the

“Increase/Decrease” hard key of the Nokia Internet Tablets. In between the contact

lists there are a text entry box to input an EID, an add-up button to add the EID to

the individual contact list and an add-down button to insert the EID in the group

contact list.

Usually the voice messages are immediately played out as soon as they are received

and deleted after playing out so that the resource constrained Internet tablets do

1We just pick the result for G.729 codec among others.

53

Figure 4.8: Screenshot of the DT-Talkie application

not run out of storage. The intention of adding the Pending List frame in the main

window is to list all the non played voice messages. This means when two users are

actively communicating and a third user sends a voice message to any of the active

users; the voice message is enlisted as pending rather than immediate playback. So

the user can listen to the voice message later and delete using the “Play & Delete”

button underneath the Pending List frame. The Notification Box frame is used to

notify users while sending and receiving voice messages. Upon receiving a voice

message, the encapsulated image (if any) with the voice message is also shown in

the frame.

4.5 Summary

In this chapter, we have given a detailed description of the DT-Talkie implemen-

tation, which verifies the ideas presented in this thesis. The current state of the

application is at the proof of concept level. But the application architecture is de-

signed is such a way that opens the door to evolve our application to a level as

production-grade software through further development.

54

The DT-Talkie application relies on DTN2 reference implementation to get the

Bundle Protocol (BP) services. But any BP implementation that provides the same

services can be used. Our application supports three codecs currently. Integration

of more codecs support could increase the codec interoperability of the application.

It is worth noting that the DT-Talkie application is also executable in other Unix/Linux

based platforms, such as Openmoko, Mac and Linux PC [56]. We just need to port

the application to specific platform. Even though GTK+, GStreamer and GMime

support Windows, but DTN2 does not - hence, our implementation cannot be run

on Windows machine.

Evaluating an application is also necessary to carry out after the implementation

process to observe how the application performs in different scenarios. In the next

chapter, we will discuss about the performance evaluation of the DT-Talkie appli-

cation through conducting a set of simulations using different routing protocols and

using various mobility scenarios.

55

5 Performance Evaluation

After discussing the DT-Talkie implementation details in the previous chapter, we

now focus on evaluating the performance of our system. To achieve this a set of

simulations are carried out in different scenarios. Basically simulation is an effec-

tive way to gain better understanding the characteristics of a real system. Different

movement models and different DTN routing protocols are used to conduct the sim-

ulations. Despite of having both one-to-one and group communication support in

the DT-Talkie, we only consider the one-to-one communication scenario for simplic-

ity while performing simulations.

In this chapter, we briefly describe a software-based simulation tool that we use

to carry out the simulations. We give a brief overview of two mobility models

including one simple model and one realistic model. Then a detailed description

of the simulation setup is presented in this chapter. Finally we discuss about the

results observed from the simulations.

5.1 Simulation Tool - ONE

Numerous software-based simulators exist to analyze the behavior of DTN routing

and application protocols. We use the Opportunistic Network Environment (ONE)

[57] simulator for our evaluation. The ONE is a highly customizable network envi-

ronment which combines movement modeling, routing simulation, visualization and

reporting in a single program. The core of the ONE is an agent-based discrete event

simulation engine. To generate node movements, different mobility models ranging

from simple models to more realistic models are implemented in the ONE. It can

import mobility data from real-world traces or other mobility generators.

Six well-known DTN routing protocols are supported in the ONE, which are used to

route messages between mobile nodes in the simulation environment. It allows gen-

eration of application messages inside the simulation either through message event

generators or from external event files. All the messages inside the simulation world

are unicast with a single source and destination host. The ONE can be extended by

including new mobility models and routing protocols. Node mobility and message

passing in real-time are visualized in its graphical user interface. Various reports and

post-processing tools are used to collect and analyze simulation results. The ONE

56

simulator can also be used in conjunction with DTN2 for testing and evaluating

real-world DTN applications.

5.2 Mobility Models

A mobility model governs the way nodes are moving and how their location and

speed change over time. Such models play a very important role to simulate a new

MANET or DTN protocol and evaluate the protocol performance. Even though

there is several mobility models supported in ONE, we limit our discussion to simple

RWP model and more realistic WDM model, which are used to conduct simulations

in this thesis.

5.2.1 Random Waypoint Model

The Random Waypoint (RWP) [58] model is an elementary synthetic model fre-

quently used in ad-hoc network simulations. In this model, a node chooses a random

waypoint on the simulation area and moves to that waypoint with the speed drawn

from a uniform distribution. When the node arrives in the destination waypoint, it

pauses for random amount of time and continues in the same fashion.

5.2.2 Working Day Movement Model

The Working Day Movement (WDM) model [59] has been developed with the aim of

increasing the reality of node mobility. It models typical human movement patterns

during working weeks. The WDM model presents everyday life of average people

by modeling three major activities: 1) being at home in the morning, 2) working at

offices in the day and 3) going out for shopping in the evening. These three activities

are defined in home, office and evening activity sub-models. The WDM model also

employs three different transport models when nodes move between home, office

and evening activity. The nodes without cars move by following walking or bus

sub-model. The car sub-model defines movement of the nodes which have cars.

The support of different transport models adds additional heterogeneity which has

impact on the performance of e.g., routing protocols.

57

5.3 Simulation Setup

Inside the ONE simulation environment, mobile nodes typically move following the

rules of a mobility model. The way messages are generated inside the simulation

varies from application to application. A routing protocol governs the way messages

are forwarded inside the simulation environment towards the destination. Various

parameters related to the mobility model, the routing protocol and message gen-

eration are required to specify in the ONE configuration file before running the

simulations. Before discussing simulation parameters for different scenarios, we

briefly state the message generation, destination node selection procedure and the

performance metrics.

5.3.1 Message Generation for ONE

We implement a message generator in ONE to produce DT-Talkie style voice mes-

sages inside the simulation environment. The messages can be either full-length

voice messages (message mode) or fragments of the voice messages (fragmentation

mode), depending on the input parameter in the ONE configuration file. As we

discussed earlier that a voice message comprises both talk spurts and silences. In

the fragmentation mode, we take the silences as marker to separate the talk spurts

and consider those talk spurts as fragments. Either full-length voice messages or

fragments of voice messages are always generated on the basis of duration drawn

from a distribution. For example, in the simulations the generator chooses dura-

tion for a voice message. Then it divides the message duration into talk spurts and

silence periods. A recent study [55] suggests that Pareto distribution can be used

as an accurate model for the talk spurt and silence period. So we choose Pareto

distribution to model the duration of voice messages, talk spurts and silences while

generating messages.

5.3.2 Destination Node Selection

Generally we choose the destination nodes randomly anywhere from the simula-

tion area. But the real-life observation reveals that most of the cases walkie-talkie

like communications takes place at shorter distance such as in the offices or in the

construction areas. This assumption is applied to some of our simulations and we

observe increasing message delivery rates when destination nodes are selected from

58

shorter distance. To achieve this, firstly, we specify a communication radius1 (e.g.,

50 m) of a source node, at which messages are supposed to send to any of the nodes

within that boundary. Secondly, we calculate Euclidean distance from the source

node to other nodes in the simulation area. Only the nodes that are within the

communication radius are taken into consideration. Finally we pick up a random

node drawn from uniform distribution among the considered nodes. Figure 5.1 il-

lustrates how a destination node is chosen at a particular point of simulation time

when communication radius is specified.

Source

Destination

50 m

Figure 5.1: Selection of a destination node when communication radius is specified
corresponding to a particular source node

5.3.3 Routing Protocols

In the simulation environment, messages are forwarded on the basis of routing pro-

tocols. Epidemic routing protocol is primarily used to examine its impact on the

delivery probability and the delivery delay. In this routing scheme, a node spreads

the same copy of a message to all other nodes in its vicinity, which turns out higher

message delivery rate and lower end-to-end transmission delay. But the downside of

the routing protocol is that it highly consumes system resources (e.g., bandwidth,

1Communication radius should not be confused with transmission range of each mobile node
(e.g., 10 m for Bluetooth case)

59

memory, power). The way which we can minimize the resource consumption is

to limit hop-count and Time-To-Live (TTL). The hop-count refers the number of

nodes a message can traverse along the path from the source to the destination. The

longevity of a message in the network is defined by the message TTL. So we use

different hop-count and TTL values as parameters in our simulations and observe

how the DT-Talkie reacts with those varying parameters.

We also use binary version of Spray-and-Wait (SnW) routing protocol to conduct the

simulations and compare the simulation results with those using epidemic protocol.

Basically Spray-and-Wait protocol achieves better delivery rate with low resource

utilization by setting a strict upper bound on the number of copies per message

allowed in the network. Maximum 10 copies per message are set while using SnW

routing protocol in our simulations.

5.3.4 Performance Metrics

To evaluate the performance of the DT-Talkie, we mainly consider two metrics: the

delivery probability and the delivery delay. The delivery probability is defined as

the ratio between the number of total messages received and the number of total

messages sent in the simulation environment. The delivery delay is calculated as the

time that a message takes to transmit from the source to the destination. Both met-

rics are observed in two different modes: (1) message mode (when messages are sent

in full-length) and (2) fragmentation mode (when messages are sent as fragments).

In the mobile DTNs when a voice message is sent as fragments, all the fragments

of the voice message may or may not reach the destination. But the received voice

message might be intelligible if a small number of fragments (e.g., 1 fragment) are

missing in the voice message. So we also look at the rate of delivered messages with

no loss of fragments and with loss of certain number of fragments.

In our simulation setup, destination nodes can be selected from a certain commu-

nication radius in addition to selecting randomly from anywhere in the simulation

area. In this thesis we study the effect of different communication radius values

(from short to long) on the delivery probability and the delivery delay, when dif-

ferent routing protocols (Epidemic and SnW) and different mobility models (RWP

and WDM) are used.

60

Usually in most of our simulations, messages are sent in one-way direction (from

the source to the destination). But in reality we see that voice messages can be

exchanged back and forth between two DT-Talkie users. This is exploited in some of

our simulations where two users can have different number of interactions. Figure 5.2

depicts a voice session between two users in which three interactions have taken

place. Besides delivery probability, we specify two more metrics in this setup: the

session completion rate and the session completion time. The session completion

rate is calculated as total number of sessions completed over total number of sessions

created and the session completion time is defined as the time elapsed to complete

a session. We observe the delivery probability, the session completion rate and

the session completion time in both RWP and WDM mobility scenarios and using

both Epidemic and SnW routing protocols. For simplicity, the performance metrics

are studied only when full-length voice messages are sent in order to understand the

behavior of the DT-Talkie while interaction between two users. The metrics analysis

in the fragmentation mode would be considered as a possible future work.

User A User B

1

2

3

Figure 5.2: A voice session with three interactions

5.3.5 Simulation Parameters

We have carried out simulations in different scenarios using both RWP and WDM

mobility models. Different parameters are required to set in order to initialize the

simulations in the ONE simulation environment. In the simulations we use warmup

period and cooldown period in addition to simulation time. The warmup period is

used for the movement models to reach a steady state. During the cooldown period

none of the generated messages get recorded, only the received messages are taken

into account. In our simulations a default configuration file is used for the default

61

settings of all the scenarios and another configuration file is used for scenario specific

settings. We assume mobile users are moving in the simulation area with DT-Talkie

enabled modern mobile devices and the devices have Bluetooth connectivity of 10

m radio range with 2 Mbps data rate. We limit our scope to the Bluetooth case as

WLAN radios with 100 m radio range have less impact on the elementary interac-

tion characteristics [57]. The simulation area can be either open space or a part of

the Helsinki city area. The mobile devices have upto 100 MB free buffer space for

storing and forwarding messages. The buffer size is large enough to never get full.

For all scenarios we conduct five simulations using different seed values and plot the

average result.

RWP

As a baseline, we use the RWP with 100 mobile nodes modeled as pedestrians and

1000 × 1000 m2 simulation areas (open space). For the simulations using this move-

ment model, we use six hours simulation time and two hours for both warmup period

and cooldown period. The mobile nodes are moving in the open space at random

speeds of 0.5-1.5 m/s with pause times of 0-120 s. Both speeds and pause times are

uniformly distributed.

WDM

For the WDM model, we choose the default scenario for section 5 in [59], at which

nodes move in the Helsinki city area. But the number of nodes is reduced from 1029

to 323 by shrinking the group sizes that the basic contact characteristics remain.

Since WDM models daily routines of working days, we select simulation duration of

one working day plus six hours warmup period and two hours cooldown period.

Voice Messaging

For both cases of RWP and WDM, our own implemented message generator requires

some parameters to initiate. We choose voice message duration, fragment duration

and silence duration in the range of 5-15 s, 2-3 s and 1-2 s respectively. All of the

durations are drawn from a Pareto distribution. Pareto coefficient is set to 0.5 for

all the cases. There is a parameter that specifies the way messages are generated

(either as full-length voice messages or as fragments of voice messages). In every

62

500 simulation seconds the message generator attempts to create voice messages for

sending. For some simulations the destination nodes are selected from a particular

distance, which is defined by the communication radius parameter.

This yields a light load on the overall system. Using a light load is intentional be-

cause we are interested in the achievable performance given different mobility and

messaging models, less in comparing different routing protocols and buffer manage-

ment schemes.

5.4 Simulation Observations

All the simulations are divided into four groups on the basis of four different settings

that are discussed below.

5.4.1 Simulations Group 1

In the first group of simulations, destination nodes are selected randomly from any-

where of the simulation area. In this group we observe the performance metrics with

respect to increasing TTL values (minimum 20 minutes and maximum 120 minutes),

when the maximum hop-count is set to 10.

In Figure 5.3 and Figure 5.4, we see that the delivery probability in both message and

fragmentation modes increases with incrementing TTL values. In the RWP scenario,

the performance of the Epidemic routing protocol to deliver messages is higher than

the SnW in every TTL value, but to deliver fragments the SnW performs better than

the Epidemic when the TTL value is more than 40 minutes. In the WDM scenario,

the impact of both routing protocols on the delivery probability is almost equivalent

and the delivery probability is very low in both message and fragmentation mode.

Only about 5% messages and 3% fragments are delivered with maximum TTL value.

This delivery probability is such low that would be impractical to use the DT-Talkie

application.

In the fragmentation mode, variable number of fragments is generated depending

on the number of talk-spurts in a voice message. Our analysis reveals that in the

fragmentation mode some messages are received without any loss of fragments, some

are received with loss of single fragment and the rest of them are received with loss of

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120

m
e
s
s
a
g
e
 d

e
liv

e
ry

 p
ro

b
a
b
ili

ty

TTL (min)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.3: Message delivery probability (message mode, maximum 10 hop-count)

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120

fr
a
g
m

e
n
t
d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

TTL (min)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.4: Fragment delivery probability (fragmentation mode, maximum 10 hop-
count)

two or more fragments. As we discussed earlier that small number of fragment loss

may not have so much effect on the quality of a voice message. So the voice messages

received with no loss of fragment or with single loss of fragment are assumed as

intelligible. We simulate this and plot the results in Figure 5.5. In case of RWP

scenario and SnW routing protocol, 53% and 84% messages are delivered with loss

of ≤1 fragment when the TTL value is 1 hour and 2 hours respectively.

In Figure 5.6 and Figure 5.7, we depict the average delay to transmit both messages

and fragments. From the results of the simulations, we find that both messages and

64

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120

m
e
s
s
a
g
e
 d

e
liv

e
ry

 p
ro

b
a
b
ili

ty
w

it
h
 l
o
s
s
 o

f
!
!"

 f
ra

g
m

e
n
t

TTL (min)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.5: Message delivery probability with loss of ≤1 fragment (fragmentation
mode, maximum 10 hop-count)

fragments take more time to reach the destination using Epidemic than using SnW

in the scenario of both RWP and WDM.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20 40 60 80 100 120

a
v
e
ra

g
e
 m

e
s
s
a
g
e
 d

e
liv

e
ry

 d
e
la

y
 (

s
e
c
)

TTL (min)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.6: Average message delivery delay (message mode, maximum 10 hop-count)

5.4.2 Simulations Group 2

In the second group of simulations, we also select destination node randomly from

anywhere of the simulation area as the first group. But the performance metrics are

examined in terms of increasing hop-count limit values (minimum 2 and maximum

65

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20 40 60 80 100 120

a
v
e
ra

g
e
 f
ra

g
m

e
n
t
d
e
liv

e
ry

 d
e
la

y
 (

s
e
c
)

TTL (min)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.7: Average fragment delivery delay (fragmentation mode, maximum 10
hop-count)

10), when the TTL value is set to maximum 120 minutes.

From Figure 5.8 to Figure 5.10, we see little impact on the delivery probability if

the hop-count is 6 or more in both cases of RWP and WDM scenarios and using

both epidemic and SnW routing protocols. This means most of the messages or

fragments are delivered to the destination through traversing not more than 6 hops.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

m
e
s
s
a
g
e
 d

e
liv

e
ry

 p
ro

b
a
b
ili

ty

hop-count

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.8: Message delivery probability (message mode, maximum 120 minutes
TTL)

In Figure 5.11 and Figure 5.12, when messages or fragments are routed using SnW,

66

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

fr
a
g
m

e
n
t
d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

hop-count

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.9: Fragment delivery probability (fragmentation mode, maximum 120 min-
utes TTL)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

m
e
s
s
a
g
e
 d

e
liv

e
ry

 p
ro

b
a
b
ili

ty
w

it
h
 l
o
s
s
 o

f
!
!"

 f
ra

g
m

e
n
t

hop-count

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.10: Message delivery probability with loss of ≤1 fragment (fragmentation
mode, maximum 120 minutes TTL)

they take less transmission time on average than using epidemic to reach the des-

tination in both mobility scenarios. Usually increasing hop-count values leads to

higher deliver delay. But in some cases the delivery delay can be lower with respect

to higher hop-count values. Because when we allow more hops to transmit a mes-

sage, more copies of the message are dispersed in the network. This increases the

probability to meet the destination and allows to deliver the message quickly.

67

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10

a
v
e
ra

g
e
 m

e
s
s
a
g
e
 d

e
liv

e
ry

 d
e
la

y
 (

s
e
c
)

hop-count

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.11: Average message delivery delay (message mode, maximum 120 minutes
TTL)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10

a
v
e
ra

g
e
 f
ra

g
m

e
n
t
d
e
liv

e
ry

 d
e
la

y
 (

s
e
c
)

no. of hops

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.12: Average fragment delivery delay (fragmentation mode, maximum 120
minutes TTL)

5.4.3 Simulations Group 3

Unlike first and second groups, destination nodes are selected randomly from a par-

ticular distance of the simulation area, which we call communication radius. The

performance metrics are studied over 4 varying values of communication radius: 50,

100, 500 and 1000 meters. We set the TTL and the hop-count values to maximum

120 minutes and to maximum 10 respectively.

68

From Figure 5.13 to Figure 5.15, the delivery probability, using both Epidemic and

SnW routing protocols in the RWP scenario, does not heavily rely on the commu-

nication radius parameter. On the other hand, we observe significant effect of the

communication radius values on the delivery probability in the WDM scenario. The

delivery probability in the WDM scenario is higher when the communication be-

tween the source node and the destination node takes place in closer distance. In

the message mode when using WDM scenario and using Epidemic routing protocol1,

48% messages are delivered if the communication radius is set to 50 meters and the

delivery rate reduces to 13% in case of 500 meters communication radius. In the

fragmentation mode, 47% and 11% messages are delivered with loss of ≤1 fragment

for 50 and 500 meters communication radius respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

 1000 500 100 50

m
e
s
s
a
g
e
 d

e
liv

e
ry

 p
ro

b
a
b
ili

ty

communication radius (m)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.13: Message delivery probability (message mode, maximum 120 minutes
TTL, maximum 10 hop-count)

In the WDM scenario of Figure 5.16 and Figure 5.17, shorter communication radius

leads to less delivery delay for transmitting either messages or fragments. In this

scenario, SnW provides low transmission delay than Epidemic routing protocol in

every value of communication radius parameter. With the setting of 50 meters

communication radius, the delivery delay is almost half of the delivery delay, which

was calculated in the first simulations group with 120 minutes TTL value and 10

hop-count limit.

1In the WDM scenario, SnW has almost similar impact as Epidemic on the delivery probability.

69

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

 1000 500 100 50

fr
a
g
m

e
n
t
d
e
liv

e
ry

 p
ro

b
a
b
ili

ty

communication radius (m)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.14: Fragment delivery probability (fragmentation mode, maximum 120
minutes TTL, maximum 10 hop-count)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

 1000 500 100 50

m
e
s
s
a
g
e
 d

e
liv

e
ry

 p
ro

b
a
b
ili

ty
w

it
h
 l
o
s
s
 o

f
!
!"

 f
ra

g
m

e
n
t

communication radius (m)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.15: Message delivery probability with loss of ≤1 fragment (fragmentation
mode, maximum 120 minutes TTL, maximum 10 hop-count)

5.4.4 Simulations Group 4

In all of the above groups of simulations, the performance metrics are measured on

the basis of one way communication from the source to the destination. In the fourth

group of simulations, we study the delivery probability, the session completion rate

and the session completion time in terms of different number of interactions (mini-

mum 2 and maximum 6) associated with a voice session. We set the communication

70

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

 1000 500 100 50

a
v
e
ra

g
e
 m

e
s
s
a
g
e
 d

e
liv

e
ry

 d
e
la

y
 (

s
e
c
)

communication radius (m)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.16: Average message delivery delay (message mode, maximum 120 minutes
TTL, maximum 10 hop-count)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

 1000 500 100 50

a
v
e
ra

g
e
 f
ra

g
m

e
n
t
d
e
liv

e
ry

 d
e
la

y
 (

s
e
c
)

communication radius (m)

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.17: Average fragment delivery delay (fragmentation mode, maximum 120
minutes TTL, maximum 10 hop-count)

radius to 50 meters, the TTL to maximum 120 minutes and the hop-count limit to

maximum 10. To conduct the simulations for this group, we consider only when

voice messages are sent in full-length.

In Figure 5.18 the message delivery probability in the WDM scenario increases with

increasing number of interactions. In the RWP scenario when SnW routing protocol

71

is used, we see that messages reach the destination with high delivery probability

than using Epidemic routing protocol.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6

m
e
s
s
a
g
e
 d

e
liv

e
ry

 p
ro

b
a
b
ili

ty

no. of interactions

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.18: Message delivery probability (50 meters communication radius, maxi-
mum 120 minutes TTL, maximum 10 hop-count)

In Figure 5.19 the session completion rate is decreasing with increasing number of

interactions in both mobility scenarios and using both routing protocols. In this

simulation setup, a source node (node A) chooses a destination node (node B) from

50 meters communication radius and messages are exchanged back and forth between

two nodes based on the number of interactions. As the nodes move arbitrarily in the

RWP scenario, node A and node B may not always stay in the same communication

radius. So it can happen that after single exchange of messages between node A

and node B, other exchanges may hardly complete when the interactions number

is high - thus turns out low session completion rate in case of higher interactions

number. On the other hand in the WDM scenario when the nodes interact within

50 meters communication radius in the offices1, they mostly remain in the same

radius and sessions are succeeded most of the time even when interactions number

is high. That’s why the voice sessions in the WDM scenario are completed in higher

rate using Epidemic routing protocol than in the RWP scenario, when 4 or more

number of interactions in a voice session is taken place. In the RWP scenario about

24% and 9% sessions are completed with the settings of 4 and 6 interactions number

respectively and in the WDM scenario about 26% and 20% sessions are completed

are completed with the same settings of interactions number. The performance of

1We consider offices as an example because the delivery success is observed in the WDM scenario
mostly during working hours of a day.

72

SnW routing protocol is almost equal to Epidemic routing protocol in the WDM

scenario, but SnW provides higher session completion rate compared to Epidemic

in the RWP scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6

s
e
s
s
io

n
 c

o
m

p
le

ti
o
n
 r

a
te

no. of interactions

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.19: Session completion rate (50 meters communication radius, maximum
120 minutes TTL, maximum 10 hop-count)

In Figure 5.19 each voice session takes less time to complete in the WDM scenario

than in the RWP scenario for each number of interactions. In the WDM scenario we

also observe little increase in the session completion time with respect to increasing

number of session interactions.

 1500

 3000

 4500

 6000

 7500

 9000

 10500

 12000

 13500

 2 3 4 5 6

s
e
s
s
io

n
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
)

no. of interactions

Epidemic, RWP

SnW, RWP

Epidemic, WDM

SnW, WDM

Figure 5.20: Session completion time (50 meters communication radius, maximum
120 minutes TTL, maximum 10 hop-count)

73

5.5 Summary

In this chapter we evaluate the performance of the DT-Talkie through conducting

four groups of simulations using the ONE simulator. In these groups of simulations

epidemic and spray-and-wait routing protocols are used in both RWP and WDM

mobility scenarios. No routing protocols are seen as perfect in all of the simulation

scenarios. But in most of the scenarios SnW routing protocol performs similar like

or better than Epidemic routing protocol.

While analyzing the results of the simulations, we observe that Epidemic and SnW

routing protocols have nearly same impact on the performance metrics in the WDM

scenario. In case of SnW messages or fragments take less transmission time to get

delivered to the destination than the case of Epidemic in both RWP and WDM

scenarios. We also observe that in the RWP scenario and using Epidemic, messages

are delivered with high probability then SnW. On the other hand if the messages

are sent as fragments then using SnW the delivery probability becomes higher than

using Epidemic.

Selecting destination nodes from closer distance in the WDM scenario yields high de-

livery probability and low delivery delay than the scenario where destination nodes

are selected from anywhere of the simulation area. In some simulations when nodes

interact with each other closely in voice sessions, then the sessions in the WDM sce-

nario complete with higher rate for larger number (e.g., 4 or more) of interactions

and take less time to complete than in the RWP scenario.

After studying the impact of various simulation settings on the performance met-

rics, we realize that the DT-Talkie application is more feasible to use practically

in the scenario where users stay within a relatively short communication boundary

and their movement is not so arbitrary; generally in the offices. In such case any of

the routing protocols, Epidemic or SnW, can be used as we observed pretty much

similar impact of both routing protocols in the more realistic WDM scenario. The

DT-Talkie can also be used in the conference scenario. Typically when people par-

ticipate a conference, mostly they stay close to each other but move randomly. In

that scenario SnW routing protocol is more appropriate to use in the DT-Talkie

than Epidemic.

74

This chapter ends the discussion of the work done in this thesis. In the next chapter,

we draw conclusion of the thesis and give some ideas about possible future works.

75

6 Conclusion

In this thesis, we have presented an approach for voice communication in the mo-

bile DTNs. We have discussed why the traditional IP-oriented voice communication

is not suitable in the challenged networking environments and defined necessary

requirements to adapt voice communication in those environments. All over the

thesis our approach is basically compared with the traditional Internet protocols

based Push-to-talk (PTT) system.

Regular PTT services are mainly infrastructure-based and require stable end-to-end

path for successful communication. But the mobile users may travel in the environ-

ment where infrastructure is not available or frequent disconnection is common. In

such cases those PTT services may exhibit poor performance or may even fail com-

pletely. Moreover the packet loss characteristics of wireless networks may subject

to unintelligible speech, which badly affects the overall user experience. To resolve

the above issues we have devised a system called DT-Talkie, which enables individ-

ual and group users to communicate in the infrastructure-less and other challenged

networking environments in the walkie-talkie fashion. The DTN concept of asyn-

chronous reliable message forwarding is applied to our system. In the DT-Talkie the

speech quality is kept intact but the voice session can be less interactive due to delay.

In the DT-Talkie voice messages are encoded after capturing and then carried in the

DTN bundles. Rather than direct mapping of voice messages into bundles that can

be done trivially, we have incorporated MIME application-layer framing mechanism.

This mechanism allows other contents (e.g., image, vCard) to be sent optionally

along with voice messages. Unlike traditional PTT services, the DT-Talkie does not

assume any codec negotiation approaches (e.g., Offer/Answer Model) before trans-

ferring voice messages. The aim is to avoid unnecessary round-trips because they

can be costly in the DTN environments. But with this assumption voice messages

can be missed to playback in the receiving endpoint due to lack of sufficient codecs

support. So in this thesis we have suggested some techniques to accomplish codec

negotiation without the cost of some extra round-trip message exchanges. Fur-

thermore we have discussed an application layer fragmentation scheme to transport

individual talk-spurts of a large voice message as separate bundles instead of sending

a large voice message bundle. This is applied in the stable scenarios with the vision

to increase the speed of the session interactivity.

76

We have implemented the DT-Talkie application that validates the concepts pre-

sented in this thesis. The application is primarily developed for the Maemo-based

Nokia Internet Tablets. The application architecture relies on DTN Reference Im-

plementation (DTN2) to get the bundle protocol services and other open source

technologies to render graphical components, to record and playback voice mes-

sages, and to create and parse MIME messages. In order to provide the DT-Talkie

support to the heterogeneous clients, we have also ported the application to other

Unix/Linux based platforms.

The performance evaluation of the DT-Talkie has been carried out using the ONE

simulator in the simple RWP and more realistic WDM scenarios. We have used

Epidemic and the Spray-and-Wait routing protocols in both mobility scenarios and

observed the performance metrics while voice messages are sent in both message and

fragmentation modes. After analyzing the simulation results we have found that in

the WDM scenario both epidemic and spray-and-wait routing protocols show almost

equal performance and communication in closer distance results high delivery prob-

ability and low delivery delay. After simulating session interactions between mobile

nodes, we have figured out that in the WDM scenario more sessions are completed

with less session completion time than in the RWP scenario in case of higher number

of interactions.

In reality the DT-Talkie application can be used in the offices where people remain

at shorter distance and they move in nearly nonrandom fashion. In this case ei-

ther Epidemic or SnW would be perfect as a routing protocol for the DT-Talkie.

Moreover people in the conference may use the DT-Talkie for communication. As

the movement of the people in the conference is arbitrary, so in such scenario SnW

routing protocol is more suitable to use in the DT-Talkie than Epidemic.

An obvious step for future development of the DT-Talkie is to integrate codec ne-

gotiation feature and fragmentation support with the capability of link adaptation.

In the current implementation, two DT-Talkie users communicate on the basis of

a preconfigured codec, which seems insensible because in reality one user may not

have the idea about which codecs are supported by other user. The suggested codec

negotiation mechanisms in this thesis can serve as a valuable basis to resolve the

77

codec interoperability issues. On the other hand we have implemented the DT-Talkie

fragmentation mode in this thesis as a separate functionality with the assumption

of better link connectivity. But in the practical scenarios the link performance can

be varied while ongoing DT-Talkie session. So it could be potentially worthy if the

application has the ability to observe the link characteristics (e.g., by examining

the round-trip time) and make some decisions about on what link conditions the

DT-Talkie will switch to fragmentation mode. However having the codec negoti-

ation feature and the fragmentation support with link adaptivity would make the

DT-Talkie more useful piece of software.

While performing simulations, the load in the network was intentionally low to

have the achievable performance. But it would be worthwhile to see how the DT-

Talkie behaves under heavy load condition. Two routing protocols, Epidemic and

Spray-and-Wait, have been used in the current simulations to assess the perfor-

mance of the DT-Talkie. Conducting simulations using other routing protocols,

such as PRoPHET, could give a better understanding of the DT-Talkie system.

Enabling security support in the DT-Talkie application could be another interesting

avenue to pursue. The application may be jeopardized by malevolent security at-

tacks (e.g., DoS attack) due to the resource-scarcity that characterizes many DTNs.

Epidemic routing protocol, currently used in the DT-Talkie, floods voice messages in

the network and the messages may travel an arbitrary path of hosts before reaching

its ultimate destination. In such case malicious users in the middle can eavesdrop

the voice messages or alter the voice bundles if the security services (e.g., authentic-

ity and confidentiality) are not integrated in the application. Those security services

can be applied in the bundle layer using the bundle security protocol, even though

it is still a work-in-progress and there are some significant open issues (e.g., key

management) remaining to be determined. On the other hand since the DT-Talkie

application uses MIME encapsulation, the security features could be easily employed

in the application layer using S/MIME with the ideas from the previous work done

in [60].

As the expectation of the Internet-based communication stretches out to even more

diverse network environments, the Delay-Tolerant Networking can play a significant

role among future networking technologies. The research in the DTN field is pro-

78

gressing rapidly. The success of the DT-Talkie heavily relies on the maturity of the

DTN technology. However after resolving the remaining issues of the DT-Talkie, it

might be a prospective voice communication application for the mobile DTNs.

79

References

[1] Open Mobile Alliance. Push to talk over Cellular (PoC) Architecture. OMA-

AD-PoC-V1 0-20060609-A, June 2006.

[2] Lin-Yi Wu, Meng-Hsun Tsai, Yi-Bing Lin, and Jen-Shun Yang. A Client-Side

Design and Implementation for Push to Talk over Cellular Service. Wireless

Communications and Mobile Computing, June 2007.

[3] A. Parthasarathy. Push to talk over Cellular (PoC) Server. IEEE conference

on Networking, Sensing and Control, March 2005.

[4] Kim P., Balazs A., Broek E., Kieselmann G., and Bohm W. IMS-based Push-

to-Talk over GPRS/UMTS. IEEE Wireless Communications and Networking

Conference, March 2005.

[5] S.K. Raktale. 3PoC - An Architecture for Enabling Push to Talk Services in

3GPP Networks. IEEE International Conference on Personal Wireless Com-

munications, January 2005.

[6] Rui Santos Cruz, Mário Serafim Nunes, Guido Varatojo, and Lúıs Reis. Push-

To-Talk in IMS Mobile Environment. International Conference on Networking

and Services, April 2009.

[7] Valter Rönnholm. Push-to-Talk over Bluetooth. Hawaii International Confer-

ence on System Sciences, January 2006.

[8] Jiun-Ren Lin, Ai-Chun Pang, and Yung-Chi Wang. iPTT: Peer-to-Peer Push-

to-Talk for VoIP. ACM International Wireless Communications and Mobile

Computing Conference, December 2008.

[9] Chai-Hien Gan and Yi-Bing Lin. Push-to-Talk Service for Intelligent Trans-

portation Systems. IEEE Transactions on Intelligent Transportation Systems,

September 2007.

[10] L.-H. Chang, C.-H. Sung, H.-C. Chu, and J.-J. Liaw. Design and implementa-

tion of the push-to-talk service in ad hoc VoIP network. IET Communications,

May 2009.

[11] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and

H.Weiss. Delay-Tolerant Network Architecture. RFC4838, 2007.

80

[12] Stephen Farrell and Vinny Cahill. Delay- and Disruption-Tolerant Networking,

2006.

[13] Delay-Tolerant Networking Research Group. http://www.dtnrg.org/ .

[14] Kevin Fall and Stephen Farrell. DTN: An Architectural Retrospective. IEEE

Journal on Selected Areas in Communications, June 2008.

[15] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier

(URI): Generic Syntax. RFC3986, January 2005.

[16] Keith L. Scott and Scott C. Burleigh. Bundle Protocol Specification. RFC5050,

November 2007.

[17] K. Fall, S. Burleigh, A. Doria, J. Ott, and D. Young. The DTN URI Scheme.

Internet-Draft, March 2009.

[18] Forrest Warthman. Delay-Tolerant Netwokrs (DTNs): A Tutorial v1.1, March

2003.

[19] Kevin Fall, Wei Hong, and Samuel Madden. Custody Transfer for Reliable

Delivery in Delay Tolerant Networks. Intel Research Technical Report IRB-

TR-03-030, July 2003.

[20] S. Farrell, S. Symington, H. Weiss, and P. Lovell. Delay-Tolerant Networking

Security Overview. Internet-Draft, March 2009.

[21] Kevin Fall. A Delay-Tolerant Network Architecture for Challenged Internets.

Proceedings of ACM SIGCOMM 2003, Computer Communications Review, Vol

33, No 4, August 2003.

[22] S. Symington, S. Farrell, H. Weiss, and P. Lovell. Bundle Security Protocol

Specification. Internet-Draft, November 2009.

[23] W. Eddy. Using Self-Delimiting Numeric Values in Protocols. Internet-Draft,

November 2009.

[24] Abstract Syntax Notation One (ASN.1). ASN.1 Encoding Rules: Specifica-

tion of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER). ITU-T Rec. X.690 (2002) | ISO/IEC

8825-1:2002, 2003.

81

[25] Michael Demmer and Jörg Ott. Delay Tolerant Networking TCP Convergence

Layer Protocol. Internet Draft draft-demmer-dtnrg-tcp-clayer-00.txt, Work in

Progress, October 2006.

[26] H. Kruse and S. Ostermann. UDP Convergence Layers for the DTN Bundle

and LTP Protocols. Internet-Draft, November 2008.

[27] Lloyd Wood, Wesley M. Eddy, Will Ivancic, Jim McKim, and Chris Jackson.

Saratoga: a Delay-Tolerant Networking convergence layer with efficient link

utilization. International Workshop on Satellite and Space Communications,

September 2007.

[28] Thomas Clausen and Philippe Jacquet. Optimized Link State Routing Protocol

(OLSR). RFC 2326, October 2003.

[29] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das. Ad hoc

On-Demand Distance Vector (AODV) Routing. Experimental RFC 3561, July

2003.

[30] Z. Zhang. Routing in intermittently connected mobile ad hoc networks and

delay tolerant networks: Overview and challenges. IEEE Communications Sur-

veys and Tutorials, January 2006.

[31] Radu Handorean, Christopher Gill, and Gruia-Catalin. Accommodating Tran-

sient Connectivity in Ad Hoc and Mobile Settings. Second International Con-

ference on Pervasive Computing, April 2004.

[32] Shashidhar Merugu, Mostafa Ammar, and Ellen Zegura. Routing in Space and

Time in Networks with Predicable Mobility. Georgia Institute of Technology

Technical Report, 2004.

[33] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in Delay Tolerant Net-

works. Proceedings of the ACM SIGCOMM 2004 Conference, Portland, OR,

USA, 2004.

[34] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc

networks. Technical Report CS-200006, Duke University, April 2000.

[35] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra.

Spray and wait: an efficient routing scheme for intermittently connected mobile

networks. In WDTN ’05: Proceeding of the 2005 ACM SIGCOMM workshop

on Delay-tolerant networking, pages 252–259, 2005.

82

[36] Anders Lindgren, Avri Doria, and Olov Schelen. Probabilistic routing in inter-

mittently connected networks. In The First International Workshop on Service

Assurance with Partial and Intermittent Resources (SAPIR), 2004.

[37] C. Becker and G. Schiele. New Mechanisms for Routing in Ad Hoc Networks.

4th Plenary Cabernet Workshop, October 2001.

[38] Wenrui Zhao, Mostafa Ammar, and Ellen Zegura. A Message Ferrying Ap-

proach for Data Delivery in Sparse Mobile Ad Hoc Networks. In Proceedings

of the ACM Mobihoc, Tokyo, Japan, May 2004.

[39] Yong Wang, Sushant Jain, Margaret Martonosi, and Kevin Fall. Erasure Coding

Based Routing for Opportunistic Networks. In ACM SIGCOMM Workshop on

Delay-Tolerant Networking (WDTN), 2005.

[40] Jörg Widmer and Jean-Yves Le Boudec. Network Coding for Efficient Com-

munication in Extreme Networks. In ACM SIGCOMM Workshop on Delay-

Tolerant Networking (WDTN), 2005.

[41] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston,

Jon Peterson, Robert Sparks, Mark Handley, and Eve Schooler. SIP: Session

Initiation Protocol. RFC 3261, June 2002.

[42] Henning Schulzrine, Stephen Casner, Ron Frederick, and Van Jacobsen. RTP:

A Transport Protocol for Real-Time Applications, July 2003. RFC 3550.

[43] vCard (Version 2.1). http://www.imc.org/pdi/vcard-21.txt .

[44] N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail Extensions)

Part One: Mechanisms for Specifying and Describing the Format of Internet

Message Bodies. RFC 1521, September 1993.

[45] Jörg Ott, Teemu Kärkkäinen, and Mikko Pitkänen. Application Conventions

for Bundle-based Communications. Internet-Draft, November 2007.

[46] XML 1.0 (Fifth Edition). http://www.w3.org/TR/2008/REC-xml-20081126/ .

[47] maemo.org. http://maemo.org/ .

[48] Scratchbox. http://www.scratchbox.org/ .

[49] GTK+. http://www.gtk.org/ .

83

[50] GStreamer. http://gstreamer.freedesktop.org/ .

[51] DTN Reference Implementation. http://www.dtnrg.org/wiki/Code.

[52] IBR-DTN. http://www.ibr.cs.tu-bs.de/projects/ibr-dtn.

[53] Off-World Communication Protocols Research Project Bundling Protocol.

http://irg.cs.ohiou.edu/ocp/bundling.html .

[54] DTN@TKK Comnet. http://www.netlab.tkk.fi/ jo/dtn/index.html .

[55] T. D. Dang, B. Sonkoly, and S. Molnàr. Fractal Analysis and Modelling of VoIP

Traffic. 11th International Telecommunications Network Strategy and Planning

Symposium, June 2004.

[56] Md. Tarikul Islam. DT-Talkie: Interactive Voice Messaging for Heterogeneous

Groups in Delay-Tolerant Networks. IEEE Consumer Communications and

Net-working Conference, January 2009.

[57] A. Keränen and J. Ott. Increasing Reality for DTN Protocol Simulations.

Technical report, Helsinki University of Technology, Networking Laboratory,

2007.

[58] David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad Hoc

Wireless Networks. Mobile Computing, 353:153–181, 1996.

[59] Frans Ekman, Ari Keranen, Jouni Karvo, and Jörg Ott. Working day movement

model. In Proceedings of the 1st SIGMOBILE Workshop on Mobility Models

for Networking Research, May 2008.

[60] Md. Tarikul Islam. Secure Email Gateway Access for DTN. Special Assignment,

2008.

