14 research outputs found

    Efficient Asymmetric Threshold ECDSA for MPC-based Cold Storage

    Get PDF
    Motivated by applications to cold-storage solutions for ECDSA-based cryptocurrencies, we present a new threshold ECDSA protocol between nn ``online\u27\u27 parties and a single ``offline\u27\u27 (aka.~cold) party. The primary objective of this protocol is to minimize the exposure of the offline party in terms of connected time and bandwidth. This is achieved through a unique asymmetric signing phase, in which the majority of computation, communication, and interaction is handled by the online parties. Our protocol supports a very efficient non-interactive pre-signing stage; the parties calculate preprocessed data for future signatures where each party (offline or online) sends a single independently-generated short message per future signature. Then, to calculate the signature, the offline party simply receives a single short message (approx.~300B) and outputs the signature. All previous ECDSA protocols either have high exposure for all parties, or rely on non-standard coding assumptions. (We assume strong RSA, DCR, DDH and enhanced unforgeability of ECDSA.) To achieve the above, we present a new batching technique for proving in zero-knowledge that the plaintexts of practically any number of Paillier ciphertexts all lie in a given range. The cost of the resulting batch proof is very close to that of the non-batch proof for a single ciphertext, and the technique is applicable to arbitrary Schnorr-style protocols

    Efficient and Secure ECDSA Algorithm and its Applications: A Survey

    Get PDF
    Public-key cryptography algorithms, especially elliptic curve cryptography (ECC)and elliptic curve digital signature algorithm (ECDSA) have been attracting attention frommany researchers in different institutions because these algorithms provide security andhigh performance when being used in many areas such as electronic-healthcare, electronicbanking,electronic-commerce, electronic-vehicular, and electronic-governance. These algorithmsheighten security against various attacks and the same time improve performanceto obtain efficiencies (time, memory, reduced computation complexity, and energy saving)in an environment of constrained source and large systems. This paper presents detailedand a comprehensive survey of an update of the ECDSA algorithm in terms of performance,security, and applications

    Cryptographic Protection of Digital Identity

    Get PDF
    Dizertační práce se zabývá kryptografickými schématy zvyšující ochranu soukromí uživatelů v systémech řízení přístupu a sběru dat. V současnosti jsou systémy fyzického řízení přístupu na bázi čipových karet využívány téměř dennodenně většinou z nás, například v zaměstnání, ve veřejné dopravě a v hotelech. Tyto systémy však stále neposkytují dostatečnou kryptografickou ochranu a tedy bezpečnost. Uživatelské identifikátory a klíče lze snadno odposlechnout a padělat. Funkce, které by zajišťovaly ochranu soukromí uživatele, téměř vždy chybí. Proto je zde reálné riziko možného sledovaní lidí, jejich pohybu a chovaní. Poskytovatelé služeb nebo případní útočníci, kteří odposlouchávají komunikaci, mohou vytvářet profily uživatelů, ví, co dělají, kde se pohybují a o co se zajímají. Za účelem zlepšení tohoto stavu jsme navrhli čtyři nová kryptografická schémata založená na efektivních důkazech s nulovou znalostí a kryptografii eliptických křivek. Konkrétně dizertační práce prezentuje tři nová autentizační schémata pro využití v systémech řízení přístupu a jedno nové schéma pro využití v systémech sběru dat. První schéma využívá distribuovaný autentizační přístup vyžadující spolupráci více RFID prvků v autentizačním procesu. Tato vlastnost je výhodná zvláště v případech řízení přístupu do nebezpečných prostor, kdy pro povolení přístupu uživatele je nezbytné, aby byl uživatel vybaven ochrannými pomůckami (se zabudovanými RFID prvky). Další dvě schémata jsou založena na atributovém způsobu ověření, tj. schémata umožňují anonymně prokázat vlastnictví atributů uživatele, jako je věk, občanství a pohlaví. Zatím co jedno schéma implementuje efektivní revokační a identifikační mechanismy, druhé schéma poskytuje nejrychlejší verifikaci držení uživatelských atributů ze všech současných řešení. Poslední, čtvrté schéma reprezentuje schéma krátkého skupinového podpisu pro scénář sběru dat. Schémata sběru dat se používají pro bezpečný a spolehlivý přenos dat ze vzdálených uzlů do řídící jednotky. S rostoucím významem chytrých měřičů v energetice, inteligentních zařízení v domácnostech a rozličných senzorových sítí, se potřeba bezpečných systémů sběru dat stává velmi naléhavou. Tato schémata musí podporovat nejen standardní bezpečnostní funkce, jako je důvěrnost a autentičnost přenášených dat, ale také funkce nové, jako je silná ochrana soukromí a identity uživatele či identifikace škodlivých uživatelů. Navržená schémata jsou prokazatelně bezpečná a nabízí celou řadu funkcí rozšiřující ochranu soukromí a identity uživatele, jmenovitě se pak jedná o zajištění anonymity, nesledovatelnosti a nespojitelnosti jednotlivých relací uživatele. Kromě úplné kryptografické specifikace a bezpečnostní analýzy navržených schémat, obsahuje tato práce také výsledky měření implementací jednotlivých schémat na v současnosti nejpoužívanějších zařízeních v oblasti řízení přístupu a sběru dat.The doctoral thesis deals with privacy-preserving cryptographic schemes in access control and data collection areas. Currently, card-based physical access control systems are used by most people on a daily basis, for example, at work, in public transportation and at hotels. However, these systems have often very poor cryptographic protection. For instance, user identifiers and keys can be easily eavesdropped and counterfeited. Furthermore, privacy-preserving features are almost missing and, therefore, user’s movement and behavior can by easily tracked. Service providers (and even eavesdroppers) can profile users, know what they do, where they go, and what they are interested in. In order to improve this state, we propose four novel cryptographic schemes based on efficient zero-knowledge proofs and elliptic curve cryptography. In particular, the thesis presents three novel privacy-friendly authentication schemes for access control and one for data collection application scenarios. The first scheme supports distributed multi-device authentication with multiple Radio-Frequency IDentification (RFID) user’s devices. This feature is particularly important in applications for controlling access to dangerous areas where the presence of protective equipment is checked during each access control session. The other two presented schemes use attribute-based approach to protect user’s privacy, i.e. these schemes allow users to anonymously prove the ownership of their attributes, such as age, citizenship, and gender. While one of our scheme brings efficient revocation and identification mechanisms, the other one provides the fastest authentication phase among the current state of the art solutions. The last (fourth) proposed scheme is a novel short group signature scheme for data collection scenarios. Data collection schemes are used for secure and reliable data transfer from multiple remote nodes to a central unit. With the increasing importance of smart meters in energy distribution, smart house installations and various sensor networks, the need for secure data collection schemes becomes very urgent. Such schemes must provide standard security features, such as confidentiality and authenticity of transferred data, as well as novel features, such as strong protection of user’s privacy and identification of malicious users. The proposed schemes are provably secure and provide the full set of privacy-enhancing features, namely anonymity, untraceability and unlinkability of users. Besides the full cryptographic specification and security analysis, we also show the results of our implementations on devices commonly used in access control and data collection applications.

    2PC-MPC: Emulating Two Party ECDSA in Large-Scale MPC

    Get PDF
    Motivated by the need for a massively decentralized network concurrently servicing many clients, we present novel low-overhead UC-secure, publicly verifiable, threshold ECDSA protocols with identifiable abort. For the first time, we show how to reduce the message complexity from O(n^2) to O(n) and the computational complexity from O(n) to practically O(1) (per party, where n is the number of parties). We require only a broadcast channel for communication. Therefore, we natively support use-cases like permissionless bridges and decentralized custody, where P2P channels between every pair of parties are infeasible. Consequently, the message complexity is reduced and the protocol is publicly verifiable. We enable all communication to be public (over a broadcast channel), by using a threshold additively homomorphic encryption scheme and novel zero-knowledge proofs. To further reduce the computation and communication overheads, our protocols employ novel batching and amortization techniques, which may be of independent interest. Our second main contribution is the introduction of the notion of a 2PC-MPC protocol - a two-party ECDSA protocol where the second party is fully emulated by a network of n parties. This notion assures that both the first party (the client) and (a threshold) of the network are required to participate in signing, while abstracting away the internal structure of the network. In particular, the communication and computation complexities of the client remain independent of the network properties (e.g. size). This allows ultimate decentralization in distributed custody use-cases, as recent growing interest in the industry demands. We report that our implementation completes the signing phase in 1.23 and 12.703 seconds, for 256 and 1024 parties, respectively

    Batch Verification of Elliptic Curve Digital Signatures

    Get PDF
    This thesis investigates the efficiency of batching the verification of elliptic curve signatures. The first signature scheme considered is a modification of ECDSA proposed by Antipa et al.\ along with a batch verification algorithm by Cheon and Yi. Next, Bernstein's EdDSA signature scheme and the Bos-Coster multi-exponentiation algorithm are presented and the asymptotic runtime is examined. Following background on bilinear pairings, the Camenisch-Hohenberger-Pedersen (CHP) pairing-based signature scheme is presented in the Type 3 setting, along with the derivative BN-IBV due to Zhang, Lu, Lin, Ho and Shen. We proceed to count field operations for each signature scheme and an exact analysis of the results is given. When considered in the context of batch verification, we find that the Cheon-Yi and Bos-Coster methods have similar costs in practice (assuming the same curve model). We also find that when batch verifying signatures, CHP is only 11\% slower than EdDSA with Bos-Coster, a significant improvement over the gap in single verification cost between the two schemes

    The inspection model for zero-knowledge proofs and efficient Zerocash with secp256k1 keys

    Get PDF
    Proving discrete log equality for groups of the same order is addressed by Chaum and Pedersen\u27s seminal work. However, there has not been a lot of work in proving discrete log equality for groups of different orders. This paper presents an efficient solution, which leverages a technique we call delegated Schnorr. The discovery of this technique is guided by a design methodology that we call the inspection model, and we find it useful for protocol designs. We show two applications of this technique on the Findora blockchain: **Maxwell-Zerocash switching:** There are two privacy-preserving transfer protocols on the Findora blockchain, one follows the Maxwell construction and uses Pedersen commitments over Ristretto, one follows the Zerocash construction and uses Rescue over BLS12-381. We present an efficient protocol to convert assets between these two constructions while preserving the privacy. **Zerocash with secp256k1 keys:** Bitcoin, Ethereum, and many other chains do signatures on secp256k1. There is a strong need for ZK applications to not depend on special curves like Jubjub, but be compatible with secp256k1. Due to FFT unfriendliness of secp256k1, many proof systems (e.g., Groth16, Plonk, FRI) are infeasible. We present a solution using Bulletproofs over curve secq256k1 ( q ) and delegated Schnorr which connects Bulletproofs to TurboPlonk over BLS12-381. We conclude the paper with (im)possibility results about Zerocash with only access to a deterministic ECDSA signing oracle, which is the case when working with MetaMask. This result shows the limitations of the techniques in this paper. This paper is under a bug bounty program through a grant from Findora Foundation

    Efficient and secure ECDSA algorithm and its applications: a survey

    Get PDF
    Public-key cryptography algorithms, especially elliptic curve cryptography (ECC) and elliptic curve digital signature algorithm (ECDSA) have been attracting attention from many researchers in different institutions because these algorithms provide security and high performance when being used in many areas such as electronic-healthcare, electronic-banking, electronic-commerce, electronic-vehicular, and electronic-governance. These algorithms heighten security against various attacks and the same time improve performance to obtain efficiencies (time, memory, reduced computation complexity, and energy saving) in an environment of constrained source and large systems. This paper presents detailed and a comprehensive survey of an update of the ECDSA algorithm in terms of performance, security, and applications

    Tiresias: Large Scale, Maliciously Secure Threshold Paillier

    Get PDF
    In the threshold version of Paillier\u27s encryption scheme a set of parties hold a share of the secret decryption key. Whenever a ciphertext is to be decrypted, the parties sends their decryption shares, which are then verified for correctness and combined into the plaintext. The scheme has been widely adopted in various applications, from secure voting to general purpose MPC protocols. However, among handful proposals for a maliciously secure scheme, one must choose between an efficient implementation that relies on non-standard assumptions or an infeasible one that relies on widely acceptable assumptions. In this work, we present a new protocol that combines the benefits of both worlds. We depart from the efficient scheme, which was proven secure relying on non-standard assumptions, and for the first time, prove that it is secure under standard assumptions only. This is possible thanks to a novel reduction technique, from the soundness of a zero-knowledge proof of equality of discrete logs, to the factoring problem. Furthermore, our simple and efficient proof supports batching, and hence enables batched threshold Paillier decryption for the first time. Until now, verifying that a decryption share is correct was the bottleneck of threshold Paillier schemes, and prevented its implementation in practice (unless one is willing to rely on a trusted dealer). Our new proof and batching techniques shift that bottleneck back to the plaintext reconstruction, just like in the semi-honest setting, and render threshold Paillier practical for the first time, supporting large scale deployments. We implemented our scheme and report our evaluation with up to 1000 parties, in the dishonest majority setting. For instance, over an EC2 C6i machine, we get a throughput of about 50 and 3.6 decryptions per second, when run over a network of 100 and 1000 parties, respectively

    Token Based Authentication and Authorization with Zero-Knowledge Proofs for Enhancing Web API Security and Privacy

    Get PDF
    This design science study showcases an innovative artifact that utilizes Zero-Knowledge Proofs for API Authentication and Authorization. A comprehensive examination of existing literature and technology is conducted to evaluate the effectiveness of this alternative approach. The study reveals that existing APIs are using slower techniques that don’t scale, can’t take advantage of newer hardware, and have been unable to adequately address current security issues. In contrast, the novel technique presented in this study performs better, is more resilient in privacy sensitive and security settings, and is easy to implement and deploy. Additionally, this study identifies potential avenues for further research that could help advance the field of Web API development in terms of security, privacy, and simplicity
    corecore