
Dakota State University Dakota State University

Beadle Scholar Beadle Scholar

Masters Theses & Doctoral Dissertations

1-2023

Token Based Authentication and Authorization with Zero-Token Based Authentication and Authorization with Zero-

Knowledge Proofs for Enhancing Web API Security and Privacy Knowledge Proofs for Enhancing Web API Security and Privacy

Michael Lodder

Follow this and additional works at: https://scholar.dsu.edu/theses

https://scholar.dsu.edu/
https://scholar.dsu.edu/theses
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages

Token Based Authentication and Authorization with Zero-Knowledge Proofs

for Enhancing Web API Security and Privacy

by

Michael Lodder

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in Cyber Operations

DAKOTA STATE UNIVERSITY

January 2023

©2023 by Michael A. Lodder

ALL RIGHTS RESERVED

Token Based Authentication and Authorization with Zero-Knowledge Proofs for Enhancing

Web API Security and Privacy

by

Michael Lodder

March 2023

Approved:

Dr. Michael J. Ham, Chair

Dr. Austin F. O’Brien, Co-Chair

Dr. Stephen Krebsbach, Committee

Accepted and Signed:
Michael J. Ham Date

Accepted and Signed:
Austin O’Brien Date

Accepted and Signed:
Stephen Krebsbach Date

Mark L. Hawkes Date

Dean of Graduate Studies and Research

Dakota State University

OBERON: TOKEN BASED AUTHENTICATION i

Abstract

This design science study showcases an innovative artifact that utilizes Zero-Knowledge

Proofs for API Authentication and Authorization. A comprehensive examination of

existing literature and technology is conducted to evaluate the e�ectiveness of this

alternative approach. The study reveals that existing APIs are using slower techniques that

don’t scale, can’t take advantage of newer hardware, and have been unable to adequately

address current security issues. In contrast, the novel technique presented in this study

performs better, is more resilient in privacy sensitive and security settings, and is easy to

implement and deploy. Additionally, this study identifies potential avenues for further

research that could help advance the field of Web API development in terms of security,

privacy, and simplicity.

OBERON: TOKEN BASED AUTHENTICATION ii

TABLE OF CONTENTS

1 Chapter 1: Introduction 1

1.1 Background of the Study . 3

1.2 Statement of the Problem . 9

1.3 Purpose of the Study . 11

1.4 Significance of the Study . 13

1.5 Nature of the Study . 14

1.6 Research Questions . 16

1.7 Assumptions . 17

1.8 Theoretical Framework . 18

1.9 Scope and Limitations . 18

1.10 Summary . 20

2 Chapter 2: Literature Review 23

2.1 Authentication Methods . 23

2.1.1 Markup Languages . 26

2.1.2 Protocols . 28

2.2 Summary of Authentication and Authorization Methods 30

2.3 Cryptography . 31

2.3.1 Cryptographically Secure Random Number Generators 31

2.3.2 Summary of Random Number Generators 32

2.3.3 Cryptographic Hashes . 32

2.4 Summary of Cryptography . 41

2.5 Measuring techniques . 41

2.6 Summary of Measuring techniques . 46

2.7 Summary . 46

OBERON: TOKEN BASED AUTHENTICATION iii

3 Chapter 3: Research Methods 47

3.1 Research Approach . 47

3.2 Data collection and Experiment . 48

3.3 Artifact details . 49

3.4 Notation . 50

3.5 Code Organization . 64

3.6 Instrumentation . 65

3.7 Validity and Reliability . 66

3.8 Data Analysis . 70

3.9 Summary . 71

4 Chapter 4: Experiment Results 73

4.1 Oberon implementation . 73

4.2 Changes from the original design for Oberon-Counter 78

4.3 Oberon-Counter API changes . 78

4.4 Oberon-Z API Changes . 79

4.5 Data Collection . 82

4.6 Non functional measurements . 83

4.7 Data for Basic and Digest Authentication . 84

4.8 Data for SAML, OAuth 2 and OIDC . 85

4.9 Compared to existing API Data . 86

4.10 Summary of Experiment Results . 88

4.11 Summary . 89

5 Chapter 5: Conclusion 90

5.1 Contributions . 90

5.1.1 Oberon-ID and Time . 90

5.1.2 Oberon-Counter . 91

OBERON: TOKEN BASED AUTHENTICATION iv

5.1.3 Oberon-Z . 91

5.2 Lessons Learned . 92

5.3 Limitations . 93

5.3.1 Libraries . 93

5.3.2 Client token persistence . 93

5.4 Conclusion . 94

OBERON: TOKEN BASED AUTHENTICATION 1

1 Chapter 1: Introduction

This study demonstrates the benefits for an artifact that utilizes Zero-Knowledge

Proof (ZKP) based Tokens for protecting Web Application Programming Interface (API)

security and privacy authentication, authorization and data exposure and compares its

e�ectiveness and impact against existing protocols.

An API is a set of rules and protocols that specifies how programs interact with

each other. It serves the contract between di�erent systems, allowing them to communicate

and exchange information.

For example, when building applications needing access to a database of

information, an API can be used to retrieve that information from the database. API’s

handle the communication between the application and the database, allowing the

application to request specific data and the database to return it in a standardized format.

APIs are a central component of modern software development, as they allow di�erent

systems and applications to integrate and work together e�ectively.

According to O’Neill, Zumerle, and D’Hoinn (2017), they predicted in 2022, API

abuses would become the most-frequent attack vector, with more data breaches for

enterprise web applications which Google (2022) and Akamai (2022) have confirmed. The

Open Web Application Security Project (OWASP) maintains a list of the ten most

important considerations for API design (2021) with the top three listed as "Broken Object

Level Authorization", "Broken User Authentication", and "Excessive Data Exposure". The

remainder of the top 10 ranking reflects the ongoing challenge and significance of ensuring

API endpoint security through proper authentication, authorization, and protection

against data breaches.

Despite guidelines and best practices, numerous APIs are still inadequately set up,

resulting in major security lapses for companies such as Checkr, Twilio, Scale, Segment,

Facebook, Cisco, and GitLab (Akamai, 2021). These lapses have resulted in unintended

client data exposure, unauthorized data manipulation, disrupting the availability of end

OBERON: TOKEN BASED AUTHENTICATION 2

clients and consumers and hindering their proper functioning (Wallarm Inc., 2022).

Despite these challenges, the use of APIs continues to grow in importance. The variety of

applications for APIs is increasing where the intended purpose is currently web (57%),

mobile (56%), automation (49%) and Internet of Things (IoT) (46%) (Google, Inc., 2021).

API tra�c also increased 46% year-over-year to 2.21 trillion calls between 2019 and 2020

(Google, Inc., 2021). The variety of data exposed via APIs ranges from HealthCare,

Financial, Telecommunications, Academic, Media & Entertainment, Retail, Travel, and

many more. The risk for API misconfiguration is significant, and incidents of abuse have

seen a three- to four-fold increase from 2020 to 2021 (2021, Salt Security), (2021, Akamai).

A ZKP is a procedure where one party can prove to another they know a piece of

data, without revealing any information about the actual content of that data. Alice, for

example, can prove to Bob that she knows a secret key to a certain account, without

actually revealing the key to Bob. Alice uses a ZKP to demonstrate to Bob that she knows

the key, without revealing the key itself (Blum et al., 1988).

Zero-Knowledge Proof (ZKP)s are used in a variety of contexts, to allow one party

to prove their knowledge or identity without revealing any sensitive information. They are

considered a useful tool for maintaining the privacy and security of sensitive information

(Wu & Wang, 2014). Such contexts include but are not limited to: cryptography to prove

the authenticity of a message or the possession of a secret key, without revealing the actual

contents of the message or key, computer security to authenticate users and grant access to

secure systems without revealing passwords or other sensitive information, identity

verification to validate an identity without revealing their personal details, such as a name,

address, or date of birth, to prove the authenticity of financial transactions without

revealing the details of the transactions, and privacy-preserving data analysis to perform

statistical analysis on sensitive data without actually accessing the underlying data.

Chapter 1 focuses on measuring how the proposed approach to use ZKP tokens can

enhance or diminish the security and privacy of API design and implementation. This

OBERON: TOKEN BASED AUTHENTICATION 3

chapter also compares against known existing API solutions. This chapter covers the

impact of the proposed experiment, the design, and possible results. Additional topics

include further research questions that should be explored. The research goals were to

determine whether ZKP based tokens were more secure and measured their e�ectiveness in

enhancing privacy.

1.1 Background of the Study

As the internet gained popularity in the mid-2000s, companies began making their

APIs available for others to use. One widely adopted protocol for API communication is

Representational state transfer (REST), introduced by Roy Fielding in his doctoral thesis

(2000). REST leverages the same communication protocol that underlies web pages to

enable communication between applications through APIs. REST relies on HyperText

Transfer Protocol (HTTP) verbs to convey the intended action. These verbs are part of the

HTTP protocol and signify the client or browser’s intent. The four verbs used by REST

are GET, POST, PUT, and DELETE. GET is used for querying or retrieving data from

the API, while POST is for creating or adding data to the API’s resource pool based on

the enclosed request. PUT is utilized for updating or replacing existing data with

information from the enclosed request, while DELETE is for removing specified data.

While di�erent APIs may not use REST, they generally follow similar principles for data

processing and access. Other API protocols include Simple Object Access Protocol

(SOAP), Remote procedure call (RPC), and Windows Communication Foundation (WCF),

with RPC being the foundation for many popular derivatives such as Google’s gRPC,

Apache Thrift, and Facebook’s GraphQL (Reselman, 2020) (Source, 2022).

These approaches often lack clear guidance on correct handling of authentication

and authorization, usually left for API providers to figure out on their own. Custom

methods, which may or may not involve cryptography such as passwords, or pre-built

solutions like OpenID Connect (OIDC), Open Authorization Framework (OAuth 2), and

Security Assertion Markup Language (SAML), are among the possible solutions. Custom

OBERON: TOKEN BASED AUTHENTICATION 4

solutions can be implemented quickly, but tend to be less secure, whereas pre-built

solutions have some security issues addressed, but can be challenging to integrate or

deploy. Enterprise-level issues like these are typically handled by specialized companies,

such as Okta, Auth0, Microsoft’s Active Directory, and Amazon’s Web Services. This

experiment aims to explore the various authentication and authorization deployment

methods for web APIs, which have seen a 46% year-over-year increase in external API use

from 2019 to 2020, with further growth expected in 2021 (Google, Inc., 2021). However,

the proliferation of API data has resulted in a constantly evolving landscape where security

is often an afterthought in API operation (Akamai, 2021). This explains the wide range of

di�ering options available.

The varied contexts in which APIs are used may contribute to the range of security

challenges encountered. Industries such as Healthcare, Finance, and Telecommunications

face stringent regulations that require robust security measures to ensure privacy and data

protection. Large companies in these industries tend to have dedicated Information

Security (InfoSec) teams and the resources to invest in strong security measures. In

contrast, industries such as Media, Retail, Travel, and Marketing typically face fewer

regulatory requirements, and smaller companies in these sectors may not prioritize security

to the same extent. However, both regulated and non-regulated industries have

experienced security breaches. According to a report by Akamai (2021), attackers are

outpacing the security industry in recruiting skilled personnel and developing more

sophisticated techniques to exploit security vulnerabilities in APIs. One issue that can

contribute to security problems with APIs is that web developers often work at several

levels of abstraction away from the underlying technologies and may not have a strong

understanding of the HTTP protocol (Akamai, 2021). According to Chris Eng from

Veracode, we are repeating the same security mistakes with APIs that we made with web

security 20 years ago (Akamai, 2021). This lack of progress has resulted in a decline in

modern security measures for APIs, leading to an increased risk of security vulnerabilities

OBERON: TOKEN BASED AUTHENTICATION 5

that can be exploited by malicious actors to gain unauthorized access to sensitive data or

systems.

Developer tools have advanced to a point where they enable developers to design

APIs quickly and easily, often without considering security implications. While this can be

beneficial for productivity, it also presents a challenge for ensuring that APIs are

adequately guarded. In fact, according to a 2021 report, only 6% of companies reported no

security issues related to their APIs (Korolov, 2021). Cheng lists more than 30 major data

breaches in which vulnerabilities in API data were the root cause (2020). In one instance, a

lateral attack using VMWare Workspace One was carried out to breach Solarwinds by

exploiting the API (Cheng, 2020). This led to a supply chain attack that a�ected a wide

range of organizations that rely on or utilize Solarwinds. Consequently, there has been a

decrease in trust in both the software product and the company behind it. In another case,

a significant security flaw in APIs was uncovered, a�ecting numerous automobile

manufacturers such as Nissan, Toyota, and Ford. This vulnerability provided access to

sensitive internal systems and user data, and weaknesses that enabled attackers to

remotely execute code. This flaw is particularly dangerous as it allows adversaries to issue

arbitrary commands to approximately 15.5 million vehicles and even update vehicle

firmware (Lakshmanan, 2023). Another significant event happened where the improper

configuration of T-Mobile’s API led to a data leak of 37 million customer accounts, which

marks the eighth such incident in the last five years (Gatlan, 2023).

Similar findings were reported in cases like Twitter’s Fleet API, which allowed

access to tweets that were supposed to disappear after 24 hours, and Tesla’s Backup

Gateway API, used for arbitrating charging batteries and sending power back to the grid,

which exposed Personal Identifiable Information (PII) and sometimes required no

authentication. These incidents highlight the importance of applying best practices, which

led to the creation of the OWASP Top 10 list. However, it’s worth noting that the OWASP

Top 10 list doesn’t recommend any particular protocol or standard to use for

OBERON: TOKEN BASED AUTHENTICATION 6

authentication or authorization.

Another challenge comes from the lack of prioritization for development security, as

businesses prioritize releasing products to generate revenue over investing time and money

in security. Security is often viewed as a low-risk tradeo�, and patching is seen as a task

that can be deferred until later or not done at all. As a result, fixes are often only applied

when they are considered critical (Akamai, 2021, pg. 12). According to Krishnaswamy,

API developers did not consider security a priority until recently (Krishnaswamy, 2022).

This neglect of development security has contributed to the increase in security

vulnerabilities in APIs.

In order to ensure API security, it is essential to address the three fundamental tests

that determine the validity of a request: authentication, authorization, and access control.

These three aspects are commonly referred to as the ’three A’s of security’.

Authentication is the process of verifying the identity of an entity. This process is

usually done using traditional methods such as usernames and passwords or more advanced

methods that use a combination of something the entity knows (such as a password or

PIN), something they have (such as a cryptographic key, smart card, phone, or fob), and

something they are (such as biometric data like retina scans, voice recognition, facial

recognition, or fingerprints). However, automated systems like software processes do not

have biometric data, so other items are used like environment values or hardware

specifications such as Media Access Control (MAC) addresses, Trusted Execution

Environments (TEE), Hardware Security Module (HSM), Trusted Platform Module

(TPM), or Physical Unclonable Function (PUF)s are used instead.

Authorization is the process of determining whether an entity has the correct

privilege to access a particular resource or perform a specific operation. Access control

involves allowing or denying access to resources and operations based on predefined

criteria. If the entity satisfies the criteria, access is granted; otherwise, it is denied. Access

control policies are typically configured according to predefined rules. Various methods of

OBERON: TOKEN BASED AUTHENTICATION 7

API authentication, authorization, and access control exist, all of which require a secure

channel to protect the credentials sent between communicating parties. Transport Layer

Security (TLS) is commonly used to provide this secure channel. However, it is important

to note that these protocols are vulnerable in the absence of a secure channel.

TLS is a protocol that provides secure communications over a network between two

parties typically a client and a server. It is widely used to secure the transmission of data

such as email and web tra�c that might include sensitive information like credit card

numbers and personal data via cryptographic encryption. To ensure that clients can verify

server identity and not connecting to a malicious party, TLS requires servers to present

signed certificates. Client certificates, while optional, are not commonly used, so clients are

typically authenticated through other means. If a client does present a certificate, their

authentication is similar to that of the server. Certificates are signed by trusted certificate

authorities that validate the server’s identity information and a public encryption key.

Basic authentication is the simplest method of authentication for Web APIs. The

caller supplies a username and password in an HTTP header with each call. This means

the credentials are sent over and over again. Browsers often cache these credentials so the

user isn’t bothered to reenter them each time but the credentials are still communicated.

The system creates a password file that the web server uses to validate the credentials for

the incoming request. If the credentials are not found or incorrect, the request is denied.

Rules for group membership may be included but cannot account for more rigorous

security definitions to create access control policies. Password files can be configured to use

databases instead but the security of the system more or less stays the same (F5, 2022).

SAML replaces basic authentication by having the user’s credentials stored with an

identity provider (Organization for the Advancement of Structured Information Standards,

2005). The identity provider gives the user an attestation token that is used instead of

sending the credentials. Tokens and other system data are exchanged using Extensible

Markup Language (XML) documents between the identity provider and a service provider.

OBERON: TOKEN BASED AUTHENTICATION 8

Service providers receive tokens and they query the identity provider to check if the token

is valid. If attackers compromise tokens they can impersonate a user as if they had the

user’s credentials until the token is revoked or expires. The downside to SAML is the

specification is complex and di�cult to understand. The upside is any service that uses

SAML can allow access to their API without the worry of authenticating users with

credentials. The tokens are sent as HTTP Authentication header with a Bearer tag

(Wierenga & Lear, 2005). OAuth 2 is a standard for determining whether a request is

authorized. OAuth 2 does not handle authentication. OAuth 2 is centered around sharing

resources based on user’s information and permissions. OAuth 2 accomplishes its mission

using two tokens: identification tokens and access tokens. Identity tokens are used by the

identity provider to know who’s resources are request. Access tokens are used by the

service provider to determine if the request is authorized. OAuth 2 is widely deployed and

used for sharing data between providers (Parecki, 2022). Like SAML, the tokens are sent in

an HTTP Authentication header with a Bearer tag.

OIDC builds on top of OAuth 2 by standardizing in areas where OAuth 2 leaves the

choice up to the implementers. Like SAML, users sign in with an identity provider allowing

them to access other websites or APIs without entering their credentials anywhere else.

OIDC is an open standard that can be used by anyone. Okta, Facebook, Google, and

others o�er their solutions as identity providers so users can log in with Google, Facebook,

Okta, Microsoft, etc. The flow for OIDC is similar to OAuth 2.

The downside to using identity providers is two fold: privacy and availability.

Service providers accessed by users are disclosed to identity providers allowing some of

their activities to be tracked. A dishonest identity provider can build a profile for a user

with such information or worse disclose it to another party. Identity providers control

user’s sensitive data and should they be compromised, the attacker can apply techniques

like o�ine dictionary attacks to discover passwords or biometrics and other authentication

credentials. These protocols also require the identity provider always be available or online.

OBERON: TOKEN BASED AUTHENTICATION 9

If the provider is o�ine, the user or system can no longer sign in or access any services.

OIDC, OAuth 2, and SAML rely on trusted third parties to function properly. This

problem will increase as more APIs move to identity provider solutions (Gravitee.io, 2022)

first over token based approaches. Figure C2 shows these approaches in a coherent

diagram.

1.2 Statement of the Problem

There are several reasons why this experiment is being conducted. Firstly, this

study shows API attacks are on the rise, despite existing security recommendations,

indicating that traditional solutions are insu�cient for providing adequate protection.

Secondly, similar mistakes made in the past are still being repeated today. Thirdly, the

damage caused by API breaches is much more significant than before. Fourthly, traditional

methods do not scale e�ectively with the number of users. Fifth, Multi-Factor

Authentication (MFA) is not available to API consumers since their programs run

autonomously or non-interactive. Finally, newer hardware is problematic as protection

parameters must be adjusted for each environment and system. The artifact presented in

this study provides a practical solution to all of these issues.

Additionally, it is important to note that despite advancements in advanced

cryptography that could potentially address many of these issues, there has been little to

no research on applying them to replace traditional methods or e�orts to make them

accessible to everyday API implementers. This highlights the need for further exploration

and dissemination of these newer techniques in the field of API security.

Current authentication and authorization schemes for securing Web APIs require

storing sensitive user credentials either on the local system or with a trusted third party

that is always accessible. All too often, these credentials are stored in a way that makes

them susceptible to compromise (Taujenis, 2022) or exposure (Buchanan, 2022).

A significant challenge with APIs is the absence of simple and secure setup options,

and the di�culty of maintaining the security of those setups. Local setups are often

OBERON: TOKEN BASED AUTHENTICATION 10

misconfigured using insecure methods and practices (Gatlan, 2022), (Lakshmanan, 2022).

Integrating with third parties also tends to involve complex setups and processes.

Attempts have been made to use other techniques with Camenisch, 2014, Haböck and

Krenn, 2019, and Mir et al., 2020 to mitigate and simplify this process but have not seen

wide adoption. Furthermore, there has been little research on the current state of various

techniques and their e�ectiveness. (Akamai, 2021). Thus main problems for API security

can be defined as:

1. Traditional solutions don’t deliver adequate API protection.

2. Storing sensitive credentials and policies and transmission of sensitive credentials

(Team Traceable, 2023).

3. Lack of simple and secure authentication setups.

4. Inability to implement and deploy advanced cryptographic techniques.

5. No research in applying advanced cryptographic techniques to APIs.

In spite of current security guards API attack tra�c has risen 681% in the finance

sector (Balmas, 2022). Companies typically deploy runtime security stacks that consist of

several layers of security tools, including bot mitigation, Web Application Firewalls (WAF),

and API gateways. While these conventional tools o�er essential security capabilities and

protection for standard applications, they fall short for identifying and preventing attacks

that target the API specific logic (Mishra, 2023) especially authentication.

To achieve a more secure setup for APIs and determine the possibility for reducing

the need to store or transmit sensitive credentials, it is crucial to conduct research in this

area that includes applying advanced cryptographic techniques. This study aimed to

investigate potential security issues to avoid and propose a simple yet secure setup for APIs

through the utilization of advanced cryptographic techniques.

OBERON: TOKEN BASED AUTHENTICATION 11

In order to enhance the security of APIs and reduce or eliminate the necessity of

storing or transmitting sensitive credentials, it is essential to conduct extensive research in

this area, particularly focusing on the application of advanced cryptographic techniques.

Such techniques can significantly improve security by ensuring that only authorized users

can access sensitive data or functions. The main objective of this study is to explore

potential security vulnerabilities that should be avoided when setting up APIs and suggest

a secure setup that utilizes advanced cryptographic techniques. This research aimed to

provide insights into the current state of API security and identify potential risks and

threats, as well as o�er solutions to mitigate these risks through the use of advanced

cryptographic techniques. By conducting this research, the goal is to contribute to the

development of more secure and reliable APIs that can be used in a variety of contexts,

from financial services to healthcare and beyond.

1.3 Purpose of the Study

The study’s objective was to gather information about existing API architectures

and compare them against the newer techniques proposed in this study’s artifact which

aimed to overcome the limitations of trusted third parties, constant online connectivity,

and sensitive credential storage for authentication, authorization, and access control in

Web APIs. The artifact’s techniques are not restricted to Web-based APIs and could be

implemented anywhere, while also enhancing privacy by reducing user tracking. The

e�cacy of this approach in achieving these objectives was assessed in this study, with

inspiration drawn from Bonneau et al., 2012.

• How was security handled with existing current API solutions? Various API’s

authentication techniques were examined and contrasted against this study’s

proposal. The findings show equal or better results.

• What tradeo�s did these solutions o�er?

– Complexity refers to how straightforward it is to implement the authentication

OBERON: TOKEN BASED AUTHENTICATION 12

methods used by an API. It was discovered in this study that it is common for

APIs to use multiple authentication methods, including both simple and

complex techniques. This suggests that the API’s design may have begun with a

simpler approach and then integrated more complex methods later on meaning

the techniques in this study can be added without replacing existing solutions.

– Usability refers to how easy it is for end users to consume the APIs examined in

this study, as they have a large number of consumers.

– E�cient is evaluated by measuring the time required to complete

authentication. Existing techniques require multiple network trips or intensive

CPU cycles against sensitive credentials to confirm valid authentication, whereas

the proposed techniques in this study do not, making them a more e�cient

alternative.

– Succinct how much data is exchanged? Current authentication methods

exchange either minimal data that is not secure enough or exchange a large

amount of data. In contrast, the proposed techniques in this study is as concise

as the simple methods but provides the required level of security similar to the

more complex methods.

– Recovery-from-loss if consumers lose their credentials or their credentials are

stolen, can they conveniently regain the ability to authenticate? Also how

complicated is it for the API service to revoke lost or stolen credentials? This

study demonstrates that the advanced cryptographic techniques proposed are

not only more secure against credential theft but also simplifies the process of

credential revocation.

– Resilient-to-observation An attacker (external or internal like a curious

administrator) cannot impersonate a consumer. The proposed techniques in this

study provides complete protection against impersonation by external or

OBERON: TOKEN BASED AUTHENTICATION 13

internal attackers since credentials are not stored on the system.

– Resilient-to-theft how di�cult it is for attackers to steal consumer credentials.

The proposed techniques in this study includes multiple factors that make it

significantly harder for attackers to steal credentials. Furthermore, if attackers

do manage to steal credentials and move them to a di�erent environment, the

functionality of the stolen credentials is broken.

– Resilient-to-leaks If API credentials are compromised, will consumers be

vulnerable to impersonation attacks, or is the system resilient to leaks? The

proposed techniques ensure that the credentials are never exposed during

transmission or storage in the authentication system by using ZKPs, thereby

limiting the possibility of leakage.

– Resilient-to-correlation Can API endpoints determine if the entity is the same or

not. Worse can multiple endpoints collude to complete this determination? The

proposed techniques in this study utilize ZKPs that make each presentations

unique and It has been demonstrated that some of the most advanced

correlation techniques currently available are ine�ective.

1.4 Significance of the Study

Google, Inc., 2021, Security, 2021, Akamai, 2021 show the growth of Web APIs over

the year 2021 to be 3-4 times greater than 2020 with no sign of slowing down. Moreover

the security of Web APIs continues to be a major source of concern and exploitation

(O’Neill et al., 2017), (Security, 2021) in spite of existing recommendations and protocols.

This highlights the necessity for further research on analyzing the various and extensive

implementations for typical security problems and providing recommendations for resolving

these issues. Moreover, there has been limited exploration of utilizing advanced

cryptographic techniques to address these issues. This study represents one of the

pioneering attempts to implement these newer techniques and mitigate the security

OBERON: TOKEN BASED AUTHENTICATION 14

challenges currently a�icting APIs. The primary objective of this study was to address

several challenges related to complexity, usability, e�ciency, succinctness, loss recovery, and

resilience against observation, theft, leaks, and correlation as described. As a result of this

research, API consumers and implementers can leverage the findings and compare to their

own implementations. Additionally, they will have gained knowledge on how intricate

authentication and authorization workflows can be simplified through ZKP-based

alternatives and the tradeo�s associated with such an approach, including reduced

transmission and storage of sensitive information. The hypothesis has been verified in that

ZKP-based methods are less complex, equally secure, and diminish or eliminate access to

sensitive information in comparison to existing deployments. Furthermore, the study

demonstrated that the utilization of advanced cryptographic techniques can satisfy the

following requirements: 1) simplicity of deployment in current solutions, 2) no degradation

of system performance, and 3) enhancement of the overall security of the system.

1.5 Nature of the Study

Due to the scarcity of previous research in this domain and the absence of few

quantitative measurements, two possible methodologies emerge as potential options:

qualitative or design science. While a qualitative study can be useful in understanding the

reasons behind API designs by interviewing their developers, it may not be the most

feasible option for also testing advanced cryptographic techniques. This is because many

existing APIs are managed by large companies and/or groups, and locating the appropriate

personnel to answer such questions can be time-consuming and challenging. Moreover,

these personnel may not have the necessary knowledge to explain the design decisions

adequately. Additionally, these individuals may not have su�cient knowledge about

advanced cryptography to secure their endpoints, rendering a qualitative research project

less suitable. The design science methodology allows the researcher to focus on the creation

of innovative and e�ective solutions to complex problems through the development and

evaluation of artifacts, such as systems, models, methods, and processes (Larsen et al.,

OBERON: TOKEN BASED AUTHENTICATION 15

2020). It can be applied to tackle practical problems related to the design, implementation,

and use of information technologies and assess the validity of the results. The typical

design science research process involves a series of iterative cycles, where the researcher first

identifies a problem and explores its root causes and requirements, in this case simplifying

deployments, limiting performance degradation, and enhancing system security. Then, the

researcher creates a solution in the form of an artifact and evaluates it based on its fitness

for use and usefulness to solve the problem. The researcher may also derive theoretical

contributions from the artifact, which can help to advance the knowledge in the field. The

ultimate goal of design science is to create practical solutions that can be used to address

real-world problems while also contributing to the development of theoretical knowledge in

the field (Creswell, 2018). As the reasons for API design choices are largely unknown and

trying something new, Creswell, 2018 suggests that a design science experiment would be

appropriate. Therefore, given the research objectives and the challenges associated with

conducting a qualitative study, design science research is the most appropriate methodology

for this study. The design science experimental component of this study involved

contrasting the findings with the deployment of advanced cryptographic techniques. The

goal of the experiment was to evaluate the impact of an alternative solution on current

methodologies and compare its e�ectiveness with existing approaches. To guide the

experiment, some quantitative data was collected based on factors such as the use of

similar methods, payload sizes, network tra�c, computational requirements, and security

tradeo�s among di�erent APIs. It’s important to note that the experiment did not involve

human subjects; rather, the design was to control variables for comparison and contrast for

validation. As part of the validation process, data was collected from publicly available

Web APIs of various internet companies to investigate the authentication techniques

employed, without delving into the reasons behind their selection. The selected companies

were among the most heavily tra�cked in the world, as reported in (DuVander, 2023).

OBERON: TOKEN BASED AUTHENTICATION 16

1.6 Research Questions

The hypothesis of this study was to determine whether utilizing advanced

cryptographic techniques to implement an improved authentication and authorization

approach with ZKPs provided any advantages over conventional web API designs. The

research aimed to investigate if the approach simplified any of the three A’s of design

choices and whether there were any improvements or drawbacks regarding payload size,

computational costs, and deployment simplicity. To guide the research, the following

questions were employed: What were the required setup costs in a ZKP-based model, and

did they impact performance, payload size, and privacy?

The study evaluated the impact on various parameters, such as CPU usage, RAM

consumption, payload sizes, number of network trips, o�ine availability, design complexity,

and security and privacy benefits. The experiment assumed that API designers had a basic

understanding of security but lacked expertise in cryptography. The purpose of the research

was to examine how the set of computations impacted the aforementioned parameters.

To conduct a more comprehensive evaluation of the hypothesis, the study

implemented all the required cryptography in a user-friendly artifact. The artifact o�ers

comparable methods to conventional procedures, minimizing the learning curve and

demonstrating that complex techniques can be made simplified. By using this artifact, the

researcher could determine its validity. By providing a similar interface to existing

methods, the researcher was able to make more accurate comparisons, ensuring that the

methods and processes used were comparable. This allowed for a more precise evaluation of

the impact of the implemented methods on the various parameters. The study measured

the privacy impact of ZKPs in terms of the information that can be gleaned through

observation, influence, and correlatability. The observation aspect sought to determine

what an observer could learn from observing the Zero-Knowledge Proof. The attacker

influence aspect investigated whether an attacker could weaken the proof generation

process enough to gain any secret information. The correlatability aspect aimed to

OBERON: TOKEN BASED AUTHENTICATION 17

determine whether an attacker could distinguish between a repeated presentation from the

same entity and that of a di�erent entity.

The design science methodology is appropriate in this case for measuring the

intended outcomes because it involves developing a solution (the advanced cryptography

ZKP-based approach), implementing it, and evaluating it based on objective and subjective

criteria. The methodology allows for an iterative process where the solution can be refined

or modified to improve its performance and meet the intended outcomes. This approach

ensures that the research study is not just a theoretical exercise but produces a practical

solution that can be implemented and tested in real-world scenarios.

The design science methodology proved to be e�ective in the study of the

ZKP-based approach for web API designs. By developing, implementing, and evaluating a

solution to the research problem, the study revealed advanced cryptographic techniques

that confirmed the hypothesis questions demonstrating that the use of ZKPs in web API

designs can o�er several benefits. The study also highlighted some potential limitations

and trade-o�s, such as the setup cost and computational complexity of the ZKP-based

approach. The findings of this study can be used to inform future research and

development of web API designs and cryptographic techniques.

1.7 Assumptions

No research study is flawless in its design, approach, or certainty, so a researcher

must make assumptions about the study. It was considered that the measurements taken

from the computers and environment, which reflected the researcher’s API usage, were

accurate. For example, ZKPs applied directly to the API with minimal e�ect on work flows

and used a dedicated environment to control variables. The study implemented an open

source library that was deployed to a server and local client which enabled the researcher

to collect accurate data measurements. The dedicated environment included an Amazon

AWS web server running only a single service at a time to limit measurement variance.

Open source web server software Nginx (Sysoev, 2011) was used to handle HTTP

OBERON: TOKEN BASED AUTHENTICATION 18

communication and therefore assumed to be following standardized approaches. Nginx

further reversed proxied tra�c to software running the researcher’s software alleged to

perform the correct work.

1.8 Theoretical Framework

Theoretical frameworks as described by Kumar, 2014 provided the structure for

understanding the relationships between di�erent variables in this study. The frameworks

help researchers understand and make sense of complex phenomena. The research is

typically developed from existing relevant literature and theories in the field and guided

the design of the study and the interpretation of the results. It helped to focus the research

and provide a logical structure for the study, as well as to identify areas where further

research is needed.

The model of this study was a ZKP based approach and estimated the cost

benefits/flaws versus existing deployments. Specifically, 1) simplicity of deployment in

current solutions, 2) no degradation of system performance, and 3) enhancement of the

overall security of the system. One way of measuring these is by their original design goals

and results from existing deployments in production systems.

In comparison to SSO-based solutions, the study found that such solutions involve

significant network tra�c and multiple round trips between parties, making them more

susceptible to network latency and multiple hops. In contrast, the ZKP-based approach

required minimal communication between parties, typically involved only one or two

interactions. This minimized the impact of network latency and hops, making the

ZKP-based approach a more e�cient and e�ective solution for web API designs.

1.9 Scope and Limitations

Scope

The scope of this experiment was to evaluate the benefits of using a ZKP-based

approach for web API authentication, authorization, and access control. The experiment

was conducted in a controlled cloud environment using virtual applications and

OBERON: TOKEN BASED AUTHENTICATION 19

open-source software, which enabled the researcher to have complete control over all the

variables measured. To ensure the results were representative of real-world scenarios, the

study was conducted over the live internet using rented server space with cloud vendors

and server hardware available directly to the researcher. The data collected from the

experiment included measurements from virtual and physical web-based servers, mobile

and desktop devices. The experiment revealed that the impact of hardware di�erences

among mobile, desktop, and server platforms on the performance of the ZKP-based

approach was minimal, indicating the approach can be e�ective across a range of devices

and hardware configurations.

The study results are valid for Linux and Unix-based servers. While

Windows-based servers were not included in the study, it is reasonable to expect that the

same ZKP-based approach would be e�ective for Windows-based servers as well. The

results of this study can be reproduced by using the same tools and environments as

presented herein. It should be noted that the techniques presented in this study were

implemented in a chosen programming language. While the results obtained in this study

were specific to the chosen language, it is reasonable to expect similar results in other

programming languages with the exception of performance. If the techniques presented in

this study are implemented in a di�erent programming language, the performance results

may di�er. The artifact implementation was done in a compiled language without garbage

collection, just-in-time compiling, or runtime engines. This may have a significant impact

on the performance of the techniques presented, and thus the results may di�er if the

techniques are implemented in a di�erent language.

Limitations

While this study presented a comprehensive evaluation of the ZKP-based approach

to API authentication, authorization, and access control, it is important to note that the

research was limited to evaluations and deployments of existing solutions against the

proposed approach. Further investigation into the design choices behind API development

OBERON: TOKEN BASED AUTHENTICATION 20

and the implications on security and privacy is necessary. Additionally, while the study

considered the most common and some less common attack scenarios, it is not possible to

account for every possible threat or external influence. Moreover, the wide range of data

types available for a given API poses a challenge in measuring the impact of the proposed

approach on di�erent data types, and further research is needed to address this limitation.

This research is also limited in scope as it does not include various aspects such as the

frequency of API usage, the nature of the data it provides, the deployment setup of the

API system (including load balancers, operating systems, hardware, and cloud or colocated

environment), and how the techniques would scale under heavy load. These factors can

significantly impact the performance and security of the API setup. Future studies could

explore the impact of these variables on the e�ectiveness and scalability of the proposed

ZKP-based approach.

Delimitations

The study was conducted in a controlled web server environment where tra�c

between clients and API endpoints was measured. However, on the Internet, tra�c is

typically routed through di�erent hops each time, which can add variance to delay

measurements and is a di�cult external influence to manage. Nonetheless, multiple

measurements were taken to account for this variability. Moreover, cloud servers are often

shared among multiple tenants, which can also a�ect results depending on the location,

timing, and usage (peak or o� hours). Therefore, the impact of server ownership,

hardware, and location should be considered when shifting the experiments to other

evaluations. These considerations can influence the performance and timing characteristics

of the techniques. These limitations should be taken into account when interpreting the

study’s results and applying the techniques in di�erent scenarios.

1.10 Summary

In Chapter 1, the background and need for more research concerning Web APIs

were presented, with a focus on the challenges and weaknesses surrounding the security and

OBERON: TOKEN BASED AUTHENTICATION 21

privacy of these systems. The significance and nature of the study were discussed, including

the proposed cryptographic technique and its potential benefits, highlighting its advantages

and disadvantages in terms of its ease of deployment in existing solutions, its lack of impact

on system performance, and its enhancement of overall system security in existing systems.

The proposed technique was discussed in the context of its impact on system

performance, including the potential for degradation in speed or e�ciency. Further, the

potential benefits of the technique were explored in terms of the overall security of the

system, with a focus on the benefits of using a ZKP-based approach. The study’s artifact

and the evaluation of models and processes were shaped by the use of design science, which

was also discussed in detail and why its the most appropriate for this research.

Finally, the scope and limitations of the study were explained, including the specific

aspects of Web APIs that were considered in the study, as well as the potential external

factors that may have influenced the results. By carefully considering the scope and

limitations of the study, this research provides a valuable contribution to the ongoing

discussion surrounding the security and privacy of Web APIs.

Chapter 2 presents an in-depth review of the current state of Web APIs, as

examined through a comprehensive literature review. The chapter covers the historical

evolution of Web APIs, analyzing their successes and shortcomings, and exploring how

they have developed over time. It provides critical analyses of existing literature and

explores key issues, challenges, and trends in the field. The chapter also examines the

factors that have shaped the design, implementation, and deployment of today’s Web

APIs, and discusses the impact of these factors on performance, security, and scalability.

Overall, the chapter provides a holistic view of the Web API landscape, including its

challenges, limitations, and future directions.

Chapter 2 will provide an overview of cryptography used in web application

development, including currently used cryptography and more advanced cryptographic

techniques that serve as the foundation for the proposed ZKP-based approach. The

OBERON: TOKEN BASED AUTHENTICATION 22

chapter will cover various advanced cryptographic primitives and related concepts, with the

goal of providing a comprehensive understanding of the range of possibilities that can be

explored and developed in the context of web API security and privacy. The discussion will

also highlight the strengths and weaknesses of each technique, as well as their suitability

for various use cases.

OBERON: TOKEN BASED AUTHENTICATION 23

2 Chapter 2: Literature Review

Chapter 2 provides a comprehensive literature review of the current and historical

state of the art in the field of Web APIs. This chapter o�ers a perspective on the diverse

range of technologies and methodologies that have been used in the field and the industries

that they serve. Furthermore, this chapter delves into the background and evolution of the

cryptographic primitives that form the basis of this study’s proposed approach, along with

related primitives. The aim is to establish a solid foundation for understanding and

measuring the impact of the study’s approach. The review explores the challenges and

shortcomings of current solutions and highlights the problems that the study aims to solve.

By examining the limitations of current solutions, the review provides a foundation for

understanding how advanced cryptography can be used to overcome these limitations

including security, privacy, and e�ciency concerns. Lastly, this chapter explores

measurement techniques for evaluating the e�ectiveness of advanced cryptography

primitives against various statistical attack methods, including correlation and

deanonymization. By covering these topics, Chapter 2 lays the groundwork for evaluating

the study’s proposed ZKP-based approach, which aims to address the limitations of

existing solutions through the use of advanced cryptography.

2.1 Authentication Methods

This section discusses the evolution and deployment of authentication methods in

use by Web APIs. The literature review examines the security, privacy, and ease of

deployment tradeo�s for each one and how they pertain to the proposed model.

Basic and Digest Authentication

Basic Authentication over HTTP was initially proposed in Section 11 of the Internet

Request for Comment (RFC) 1945 (Nielsen et al., 1996). The scheme employs HTTP

Headers to indicate a request for credentials and the response. The request is sent from the

server with the HTTP Header WWW-Authenticate: Basic realm="domain". The response

is sends the HTTP Header Authorization: Basic The header includes the username and

OBERON: TOKEN BASED AUTHENTICATION 24

password separated by a ":" then base64 encoded. Base64 encoding changes binary data

into plain text so it can be easily transmitted over text based protocols like images or files.

The text can be decoded back again into the original binary format losslessly.

The RFC states the scheme is insecure without first securing the communication via

another method like TLS since the username and password are sent in clear text–without

any cryptography to maintain confidentiality. This was more of a problem in the early days

when TLS was costly and di�cult to configure. Now TLS has become more ubiquitous

with the rise of Let’s Encrypt. Google’s reports in 2021 that 97% of indexed websites use

TLS (Google, 2021).

Two changes have been made with Digest Authentication as proposed in RFC2069

(Hallam-Baker et al., 1997), and RFC2617 (Franks et al., 1999) which sends a

cryptographic hash of the password instead. However, this still su�ers from the same

problem, its dependent upon using a secure channel. Hashing the password o�ers little to

no benefit since malicious actors can quickly deduce the hash preimage with credential

stu�ng (Alliance, 2021) and rainbow table attacks. RFC7235 (Fielding & Reschke, 2014)

adds a random challenge from the server which permits authorization requests/responses

but doesn’t change how the credentials are sent or calculated. The scheme also supports

Proxy server authentication (Mozilla, 2021)–an intermediary used to observe network

tra�c.

Basic Authentication is simple to set up for both the client and server entities since

the entire scheme uses HTTP headers to handle the credentials. The server prepares a file

or database containing valid usernames and passwords or password hashes. The client only

needs to know one of these credential pairs to send over the correct HTTP Header (F5,

2022). Other variants include combining with many di�erent cryptographic and password

hashing algorithms.

Another limitation with this approach is that it creates identity silos–the credentials

can only be validated at the same application/domain where they reside. To be reusable,

OBERON: TOKEN BASED AUTHENTICATION 25

the credentials must be copied to other locations or stored in a shared central repository

(F5, 2022).

Mutual TLS

TLS can also be used to authenticate the client as well as the server. The same

di�culty to setup a server also applies to a client. For this to work correctly, the server and

client must have mutual authentication enabled, otherwise the server doesn’t perform

client side authentication using TLS. This protocol uses X.509 certificates where the

certificate chains must be trusted by both sides. This setup reduces or eliminates many

classes of attacks man-in-the-middle, credential stu�ng, password brute-force, and

phishing (Cloudflare, 2022). However, managing certificates for each end client is a di�cult

task (Cloudflare, 2022) and is usually implemented with enterprise systems that have

dedicated security teams.

Token Based Authentication

Token Based Authentication extend Basic and Digest Authentication where the

verifier generates a unique token for a client to use instead of sending their credentials with

each request. This avoids the necessity of requiring users to enter their credentials each

time. The security token contains all the necessary information for the verifier to continue

to interact with the client for a limited time or until the client logs out. The client sends

the token as a web cookie, form data, or both (Rackspace, 2022a). Tokens can be

encrypted or signed with a digital signature or Message Authentication Code (MAC). The

relying party checks the token using cryptographic keys that correspond to the method

used. TLS is required to maintain the token’s confidentiality since tokens are replayed until

they expire or are invalidated. Without confidentiality, an attacker can track the

interaction. The scheme is also vulnerable if an adversary obtains the server’s token signing

or encryption key i.e. she can forge tokens. A variant of this method is to use API tokens

that are randomly generated values that are used for credentials (Rackspace, 2022b),

(AWS, 2019), (Oracle, 2022) instead of a password or pin.

OBERON: TOKEN BASED AUTHENTICATION 26

2.1.1 Markup Languages

Markup languages are a way to encode data objects using tags and delimiters to

indicate how the data is displayed or structured. These play an important role in how

security tokens are used for authentication and authorization.

XML

Extensible Markup Language (XML) is a markup language used for data storage

and transfer (W3C, 2008). It is similar to HTML in that it uses tags to structure the data,

but unlike HTML, the tags used in XML are not predefined and can be created by the user

to suit the specific needs of the data being stored. XML is often used for data exchange

between di�erent systems and organizations, as it allows for data to be represented in a

standardized format that can be easily understood by di�erent systems. XML can be

accompanied by an XML Schema Definition (XSD).

XSD

XSDs are used to specify constraints on the tags and attributes that can appear in

an XML document, as well as the relationships between those tags (W3C, 2012). XSD

facilitates describing the structure of an XML document using a set of rules, similar to a

database schema. It also supports data validation to help ensure that the data in an

document is accurate and consistent. It validates an document during development and

also at runtime, in order to catch errors early, before they cause problems downstream.

JSON

The Javascript Object Notation (JSON) format is also used for data storage and

transfer but is much easier for humans to read and write and easy for machines to parse and

generate (Crockford, 2017). JSON is similar in structure to XML, but it is more succinct.

It is a text-based format that uses a simple syntax to represent objects, collections of

objects, and their properties and values and is often used for data exchange between

systems that are written in di�erent programming languages. The majority of modern day

OBERON: TOKEN BASED AUTHENTICATION 27

APIs opt for JSON over XML given its more compact and easier to read format.

JWT

JSON Web Token (JWT) are a standard for securely transmitting information as a

JSON object for authentication and authorization purposes, as well as for securely

transmitting information between parties. The token is broken into three parts: a header, a

payload, and a signature. The header consists of two parts: the type of the token, which is

JWT, and the cryptographic signing algorithm being used. The payload contains claims.

Claims are data about an entity (typically, the user) and additional metadata. There are

three types of claims: registered, public, and private claims. Registered claims are a set of

predefined claims which are not mandatory but recommended, to provide a set of useful,

interoperable claims. Some example of registered claims are: iss (issuer), sub (subject), aud

(audience), exp (expiration time). Public claims are claims that are defined by those using

JWTs. Private claims are claims that are specific to an implementation, that might not be

shared between implementations. The signature is used to verify the authenticity of the

sender of the JWT and tamper resistance. It can be used to authenticate users in a

stateless way, so the server doesn’t need to keep track of the user’s session. Due to this

flexibility in the claims, there have been vulnerabilities that allow attackers to bypass these

checks (Database, 2022).

CBOR

Concise Binary Object Representation (CBOR) is a data storage and transfer

format similar to JSON but is an even more compact and e�cient binary form, while

maintaining the same level of expressiveness (Bormann & Ho�man, 2020). CBOR is

designed to be easily extensible, allowing for new data types to be added, is self-describing,

which means that data encoded in CBOR can be decoded without prior knowledge of the

schema or structure of the data. Similar technology that exists for JSON can also be used

in CBOR given their similarities in structure.

OBERON: TOKEN BASED AUTHENTICATION 28

2.1.2 Protocols

Security Assertion Markup Language

The SAML standard defined by the Organization for the Advancement of

Structured Information Standards (OASIS) (2005) promotes authentication using XML

tokens. The standard was the first to support Single Sign On (SSO) by identity providers.

User’s are directed to an identity provider who stores their credentials to determine

authentication status. If valid, a SAML token is issued to the user who passes it to any

service that supports the protocol. Service providers are relieved from storing and checking

user credentials but still reliant on identity providers. The standard has been updated to

SAML 2.0 (Wierenga & Lear, 2005) to allow authorization policies and other standards like

Simple Authentication and Security Layer (SASL) (Myers, 1997) and the Generic Security

Service Application Program Interface (GSS-API) (Wray, 1993).

SAML2 enabled the proliferation of SSO providers and simultaneously enhancing

and enabling authentication and authorization (Wilson & Hingnikar, 2019). The benefits

provided by SAML are a solution for web single sign-on across domains and federated

identity. Web APIs redirect clients to their identity providers for authentication and

authorization. Clients only use and/or have to remember a single set of credentials across

multiple services and domains while companies benefit from a central location to enable

and disable accounts. SAML2 supports stronger authentication methods like Two-Factor

Authentication (2FA) or Multi-Factor Authentication (MFA)–a combination of something

the client knows (pin, password), something they have (cryptographic key, smart card,

phone, fob), and something they are (biometric like retina, voice recognition, face or

fingerprints). Configuring strong authentication is complex and not often done by systems

that don’t use SSO (Wilson & Hingnikar, 2019) and can’t be used by autonomous systems

without creating bespoke solutions. SAML is not without weaknesses. Recently, an attack

was successfully executed that permits an adversary to modify authentication responses.

OBERON: TOKEN BASED AUTHENTICATION 29

This enables them to change signed assertions in order to gain unauthorized access to

arbitrary user accounts, inject additional roles, change the recipient of the assertion, or to

inject an entirely new username to compromise another user’s account. (Roberts, 2021).

Any problem in the SSO flow can be catastrophic given the multiple services and data that

can be exposed to unauthorized parties. SAML only supports identity validation which by

itself is not a practical business model (Wilson & Hingnikar, 2019). This new business

model came in combination with OAuth 2.

OAuth 2

OAuth 2 allows applications to access client information and services with the user’s

consent, facilitating the authorization process for accessing third-party APIs. Before

OAuth 2, the only method of sharing resources across services was to copy them, e�ectively

giving ownership of the resource to multiple end points. OAuth 2 does not authenticate

clients but instead relies on other methods like SAML and OIDC. OAuth 2 generates

authorization tokens to indicate the authorization intent. The authorization server receives

requests for an API and returns the security token that can be used by the application to

access the API. The authorization request gives the application the scope of what it wants

from the API. The authorization server evaluates the request and, if authorized, returns a

token to the application (Wilson & Hingnikar, 2019).

OAuth 2 is based on JSON instead of XML with JWT (Jones et al., 2015, RFC

7519) because JWTs are much smaller and simpler to process than the XML packets used

by SAML. Used in combination with OIDC a service is able to provide a more secure

identity and authorization workflow.

OIDC

OpenID Connect (OIDC) is a more API friendly version of OpenID 2.0 built on top

of OAuth 2. OIDC is more opinionated about the cryptography and data formatting so

users only use what’s available rather than having to make those decisions. OIDC uses

JWT to send tokens and receive responses. OIDC "provides an identity service layer on top

OBERON: TOKEN BASED AUTHENTICATION 30

of OAuth 2.0, designed to allow authorization servers to authenticate users for applications

and return the results in a standard way" (Wilson & Hingnikar, 2019, OpenID Connect,

para. 1). The standard employs similar roles to OAuth 2: the authorization server is called

the identity provider that authenticates a user and return the user’s claims and a relying

party that delegates authentication to the provider and requests claims about the user

from the provider. The service operates by passing ID tokens as JWT’s that include a lot

of metadata and claims concerning the user.

The protocol defines many di�erent possible workflows to use and each comes with

its benefits and complications (Wilson & Hingnikar, 2019). Many benefits are the

conjunction between OAuth 2 and a secure login mechanism. However, it requires the

client to define the security policies and controls in the provider and stores these

somewhere that is tamper protected. Maintenance has shown this is also di�cult. The FBI

showed a case where even MFA can be exploited if not done properly (Gatlan, 2022).

Okta, Auth0, Microsoft Active Directory, Google, Amazon AWS, Facebook and Github are

examples OIDC providers in use today. As identity providers adoption becomes more

prevalent, so does their likely of of exploitation (Vaughan-Nichols, 2022a). Okta one of the

biggest was recently shown to have implemented poor security measures creating problems

for their customers (Vaughan-Nichols, 2022b).

2.2 Summary of Authentication and Authorization Methods

This study has covered a brief description the current popular methods in use by

APIs and their data formats. The next section covers newer cryptographic methods that

have come to light recently in the past 10 years that may be used in place of the

aforementioned methods and some older techniques still in use today. The section begins

by describing some basic cryptographic primitives that will be used by this study and

apply to the discussed topics.

OBERON: TOKEN BASED AUTHENTICATION 31

2.3 Cryptography

2.3.1 Cryptographically Secure Random Number Generators

Cryptographically Secure Pseudorandom Number Generator (CSPRNG)s are

algorithms that generate a sequence of seemingly random numbers that can be safely used

for cryptographic purposes. The numbers generated by a CSPRNG are meant to be

indistinguishable from truly random numbers and unpredictable, even if an attacker has

some knowledge of the internal state of the generator.

XorShift

XorShift has good distribution properties but it not deemed suitable for

cryptographic purposes. However, it is commonly used due to its distribution properties in

statistics (Marsaglia, 2003). This study used XorShift to determine if a CSPRNG is needed

or not.

Chacha

ChaCha is a stream cipher (Bernstein, 2008) that is an improved variant of the

Salsa20 cipher family. It has been selected as one of the stream ciphers suitable for

widespread adoption by (ECRYPT II, 2023, eSTREAM). It has also found integration in

the Linux kernel random number generator (Federal O�ce of Information Security, 2022).

Operating System Random Number Generators

Operating System PRNGs are random number generators that are built into

operating systems and are suitable for cryptographic purposes. They are usually

implemented as part of the operating system’s library or API and can be accessed by

di�erent programs running on the system. They serve as strong sources of entropy for

cryptographic key generation and generating nonces, which are unique values used to

prevent replay attacks in protocols such as TLS.

OBERON: TOKEN BASED AUTHENTICATION 32

2.3.2 Summary of Random Number Generators

Random number generators play a major role in cryptography as signing and

encryption keys depend on strong sources of randomness to prevent guessing or predicting

their values. The next section covers another important primitive used in this study and in

cryptogrpahy.

2.3.3 Cryptographic Hashes

Cryptographic hashes take a message and produce a fixed-size output, known as a

’hash’ or ’digest’. They are designed to be a one-way function–it is computationally

infeasible to determine the original input (message) from the output (hash). One of the

main uses of cryptographic hashes is to verify the integrity of data. For example, when a

file is downloaded, the hash of the downloaded file can be calculated and compared to the

known hash of the original file. If the two hashes match, it can be assumed that the file has

not been tampered with. The security of a cryptographic hash depends on the algorithm

used, the hash length, and the collision resistance. Hash functions become vulnerable to

attacks over the years and it’s important to use the most recent and secure hash functions.

This study relies on the Secure Hash Algorithm 2 (SHA-2) family (National Institute of

Standards and Technology, 2002) and Secure Hash Algorithm 3 (SHA-3) (of Standards &

Technology, 2015). The algorithm is specified with the number of output bits. SHA-256,

for example, is the SHA-2 family that produces a 256-bit output with 128-bits of

security–current computational power requires hashing 2128 possibilities to find two

messages that yield the same output (Handschuh, 2011). SHA-512 produces a 512-bit

output. SHA3-256 uses the SHA-3 family to produce a 256-bit output. The SHA-3 family

also includes Extendable-Output Function (XOF)s hashes which can output any number of

bits which a minimum length to ensure security. The SHA-3 XOFs are SHAKE128 and

SHAKE256. SHAKE128 provides 128-bits of security and requires at least 256-bits be

output. SHAKE256 is twice that.

Other uses of cryptographic hashes include preprocessing a variable length message

OBERON: TOKEN BASED AUTHENTICATION 33

before computing a signature or hashing passwords. In the context of passwords, attackers

compromise databases of user credentials and use precomputed large lists of common

passwords in an attempt to guess what the original passwords were. Thus simply hashing a

password is not strong enough in this context. Instead Password Hashing Algorithms exist

for this purpose.

Password Hashing Algorithms

Password hashing algorithms are designed to securely store user passwords in a way

that makes it di�cult for an attacker to recover the original password even if they gain

access to the hashed value. These algorithms take the password and produce a fixed-length

output that is di�cult to reverse or build large tables of precomputed hashes. The most

common algorithms in use today are: PBKDF2, BCrypt, SCrypt, and Argon2. PBKDF2

and BCrypt rely on a number of iterations to loop over the input until the output is

generated. Scrypt, and Argon2 take a di�erent approach. They are designed to be

memory-hard, making it more expensive for an attacker to use specialized hardware such as

ASICs to speed up the cracking process. All algorithms use salting, which is the process of

adding random data to the password before hashing it, a common practice when storing

password hashes. This makes it even more di�cult for an attacker to use precomputed

tables to quickly crack a large number of hashed passwords.

Elliptic Curve Cryptography

Elliptic curves have two fields that they operate in, the base field for scalar values,

and the modulus field for points (Brown, 2009). Scalars and Points each operate in a finite

field (a field that contains a limited number of elements). An elliptic curve contains a set of

parameters that express its form. A Weierstrass curve for example has the form

y2 = x3 + ax + b where a and b are the curve coe�cients and x and y are the point. In

cryptography the curve does not include every possible point and is limited by a curve

modulus p i.e. values for x and y are reduced by p. The curve includes a base point G

which is a finite field generator with an order q also known as the base order. Scalar

OBERON: TOKEN BASED AUTHENTICATION 34

elements are values that operate in order q. Scalars represent elements that multiply points

to result in another point. Since the points and scalars operate in finite fields, this makes it

di�cult given a random point to find a scalar that mapped to it from the base point. This

is called the Elliptic Curve Discrete Log Problem (ECDLP). Private keys are values in the

base field called scalars while public keys are random points on the curve computed from

the base point multiplied by the scalar. As described by ECDLP, the private key should be

hard to find given a public key (Barker et al., 2018).

Di�e-Hellman

The Di�e-Hellman public key cryptosystem is the oldest public key system still in

use since it was first published (Di�e & Hellman, 1976). The idea is based on the fact that

its easy to compute but hard to reverse like the ECDLP. It has been used in cryptographic

proofs to describe the di�culty of finding a secret from a given value (den Boer, 1988).

The algorithm works with elliptic curves where two parties each generate a scalar, compute

a point using the scalar and curve base point and exchange their results. The two parties

use their secret scalars against the exchanged points to arrive at a shared secret, even

though they can only exchange in public settings. The protocol is widely deployed in

almost every cryptosystem like Kerberos and TLS to facilitate secure key exchanges. For

example, Alice generates a random scalar a and computes A = a · G and sends A to Bob.

Bob generates a random scalar b and computes B = b · G and sends B to Alice. Alice

computes S = a · B and Bob computes S = b · A. The results are equivalent S = a · b · G

due to the associative property of multiplication. Since a and b are never disclosed, no

observer can solve the ECDLP (Barker et al., 2018). Protocol variants have been described

for authentication purposes given the simplicity of the computation (Teseleanu, 2021).

Cryptographic Signatures

Cryptographic signatures are a way for a party to prove their identity and the

authenticity of a message or document. It is a generated using a private key, and can be

verified using the corresponding public key. They prove the authenticity, non-repudiation

OBERON: TOKEN BASED AUTHENTICATION 35

and integrity of a document or message. They are created by first applying a hash function

to the message, then transforming the hash with the party’s private key into a signature.

The recipient can then use the party’s public key to run a computation with the signature

and verify that the message hash corresponds to the signature and key. As related to this

study, the signature algorithms are Elliptic Curve Digital Signature Algorithm (ECDSA),

Edwards-curve Digital Signature Algorithm (EdDSA), and Schnorr as these are the

algorithms used by OIDC and OAuth 2. Signing algorithms rely on a combination of

secure hash functions and the hardness of ECDLP.

Schnorr Algorithm

The Schnorr signature algorithm generates a signature given an elliptic curve with a

base point G of order q, create a secret key a and the corresponding public key A = aG

(Schnorr, 1991). To create the signature ‡ over the message m, the following steps are used:

• Choose a random 0 < k < q

• Compute R = kG

• Compute e = H(m||A||R) mod q where H() is a cryptographic hash function.

Di�erent variants hash di�erent values in di�erent orders but this is inconsequential.

• Compute s = k ≠ e · a mod q. Di�erent variants add rather than subtract here, but

this is also inconsequential.

• The signature is ‡ = (e, s)

Verifying a signature with the public requires computing R = sG + eA and

accepting if e = H(m||A||R). Schnorr signatures are also a simple ZKP in that they prove

the signer knows the private key a without revealing it. To expand on this concept, ZKPs

can be created in a similar manner. Instead of calling them signatures, they are called

Schnorr Proofs. This also makes ZKPs non-interactive–no interaction between the prover

OBERON: TOKEN BASED AUTHENTICATION 36

and verifier is needed other than sending the ZKP itself from one to the other. This

technique and the Fiat-Shamir heuristic are used to convert ZKPs to be non-interactive.

Other reasons for using Schnorr signatures over ECDSA include they are more e�cient,

secure against existential forgery under chosen-message attacks and support for

multisignatures–multiple signatures can be aggregated into a single signature.

Fiat-Shamir Heuristic

The Fiat-Shamir heuristic is a method for converting a interactive proof of

knowledge into a non-interactive one (Fiat & Shamir, 1986). The basic idea is to replace

the interactive exchange between the prover and verifier with a publicly verifiable

cryptographic hash function. The prover commits to a random value, which is then used as

the seed for the hash function. The prover then uses the output of the hash function as the

verifier’s challenge. The verifier can then verify the proof by checking that the prover’s

response is consistent with the commitment and the challenge. The technique also can turn

ZKPs that are otherwise di�cult or expensive to perform non-interactively, into much more

e�cient non-interactive proofs. It has been widely used in various cryptographic protocols

and has been found to be a powerful technique for constructing e�cient and secure

non-interactive proofs of knowledge.

El-Gamal Encryption

ElGamal encryption (ElGamal, 1985) is an alternative to the RSA algorithm based

on the di�culty of finding discrete logarithms like ECDLP. Two parties like Alice and Bob

agree on an elliptic curve to use. Bob generates a private key, b, and a corresponding public

key, B = bG. To encrypt a message, m, Alice generates a random value k and calculates a

pair of values, (C1, C2) = (kG, mG + kB). The pair (C1, C2) is the ciphertext. To decrypt

the ciphertext, Bob uses his private key to calculate M = C2 ≠ bC1, which is the original

message in the exponent. Bob can then use other techniques to extract m or M can be the

original message. One important property of ElGamal encryption is the fact that it can be

used to encrypt and sign digital data, it is therefore a digital signature system too. This

OBERON: TOKEN BASED AUTHENTICATION 37

technique can be used to create a ZKP that a message was indeed encrypted to a public

key i.e. Verifiable Encryption.

Oblivious Transfer

Oblivious transfer is defined as a protocol in which the sender transfers information

to the receiver, but the sender is unaware of what information the receiver receives

(Schoenmakers, 2011). In other words, the sender is unaware of the choices made by the

receiver during the protocol, which were used as the basis for the result. The cryptosystem

is used by other protocols like oblivious access control (Camenisch et al., 2009) and multi

party signature generation (Doerner et al., 2018). A more complicated and network

e�cient protocol has been discovered called Adaptive Oblivious Transfer and can be used

in place of the non adaptive version (Libert et al., 2021). The di�erence between them is

that instead of making a choice for all possibilities, the receiver can choose a subset while

the security guarantees remain as strong.

Pairing Friendly Cryptography

Pairing friendly cryptography or pairing based curves are described as "a pairing is

a function that maps a pair of points on an elliptic curve into a finite field" (Moody et al.,

2015, page 11) i.e. a pairing maps a point or set of points to a finite field similar to scalars.

An elliptic curve that supports the pairing function is said to be pairing friendly. Instead of

a single field for points there are two. This function of two points is called a Bilinear map.

These curves consist of the points in G1 of prime order p and G2 of order p2. A pairing

function e receives a point from both fields and returns a result in a large finite field GT of

order p12 known as the target group. The target group must be su�ciently large or it is not

secure. The pairing function essentially takes all the scalars on both points and outputs the

product of them all in the target group. This is written as e(aG1, bG2) == e(G1, G2)ab

where a and b are the point multipliers or scalars. The scalars may be present in either or

both fields. Regardless of which point to which they apply, the result is the same. In other

words, e(aG1, bG2), e(G1, abG2), e(abG1, G2) are all equivalent. If the result did not end in

OBERON: TOKEN BASED AUTHENTICATION 38

a target group, this function could be used to solve ECDLP.

Galbraith et al., 2008 defines three pairing types: Type 1: G1 = G2 also known as

symmetric pairings, Type 2: G1 ”= G2 but there exists an e�cient homomorphism

„ : G2 ≠æ G1, while no e�cient one exists in the other direction, Type 3: G1 ”= G2 and no

e�ciently computable homomorphism exists between G1 and G2, in either direction.

Pointcheval and Sanders, 2016 state "[type 3 pairings] o�er a better e�ciency and are

compatible with several computational assumptions" making them more secure than type 1

or type 2 pairings. Type 1 and Type 2 pairings are no longer used in practice. This study

employs type 3 pairings when referring to pairings. This unique property enables many

new cryptographic protocols that were not previously possible.

BLS signatures

BLS signatures (short for "Boneh-Lynn-Shacham") are a pairing-based digital

signature (Boneh et al., 2001). BLS signatures have succinct signature sizes, about half the

size of ECDSA and Schnorr, fast signing and verification. They are used in various

protocols such as threshold signatures, multisignatures, signature aggregation, and

multiparty computation. They are useful because they o�er several key benefits over other

types of digital signatures. One of the main advantages is that they are very e�cient in

terms of the amount of computation required, making them well-suited for use in

resource-constrained environments such as smart contracts on blockchain networks. BLS

signatures are the only cryptographic signature that can be computed in a threshold

setting with one round and no precomputation unlike Schnorr, its variant EdDSA and

ECDSA. These same benefits apply to all signatures that are similar, covered later in this

section. They form the basis for the other signature schemes used in this study.

Private Set Intersection

Private Set Intersection (PSI) is a ZKP scheme where parties have sets of data and

want to learn the overlap without disclosing their respective sets to each other

(Badrinarayanan et al., 2021). PSI operates with Di�e-Hellman computations, oblivious

OBERON: TOKEN BASED AUTHENTICATION 39

transfer, cryptographic accumulators (Ghosh et al., 2016), pairings (Stefanov et al., 2012),

or discrete-log equalities (Camenisch & Zaverucha, 2009). This has seen some deployment

with respect to authorization and access control policies (Stefanov et al., 2012) called

Authorized PSI. Other applications include database data joins, social networking, and

password breach checks.

Short Group Signatures

Chaum and van Heyst, 1991 introduced group signatures which provide signer

anonymity i.e. any group member can sign a message but the identity of the member

remains hidden. In the event of a problem, a group manager can revoke the identity of the

signer for a specific message.

Boneh et al., 2004 proposed BBS short group signatures–a group signature over a

vector of messages. The signature is short because it’s length is fixed and does not depend

number of messages. This protocol as since been improved by Au et al., 2008 and

Camenisch, Drijvers, and Lehmann, 2016 calling it BBS+ for use in Intel’s Enhanced

Privacy ID (EPID) and TPM’s Direct Anonymous Attestation (DAA). The signature

holder presents a signature proof of knowledge ZKP and selective disclosure ZKP which

hides the signature and any subset of messages. For example, if messages A, B, C are

signed with signature ‡, all messages can be hidden, revealed or any mixture of them. The

verifier checks the ZKP using the group public key, but cannot link any holder to the

presentation using the proof. Because each presentation looks unique, it is said to be

unlinkable i.e. the verifier cannot determine if two presentations are from the same holder

or a di�erent holder (Camenisch & Lysyanskaya, 2002b). A problem with this approach

occurs when linking to a revocation status which has proven di�cult to get right in

practice (Sanders & Traoré, 2020).

Pointcheval and Sanders, 2016 proposed a simpler and smaller short group signature

with a security update in (Pointcheval & Sanders, 2018). The other di�erence between PS

signatures and BBS+ signatures is public key size. PS and BBS+ signatures require a

OBERON: TOKEN BASED AUTHENTICATION 40

unique generator point per message to be signed. BBS+ signatures do not require the

generators to be related to the signing key whereas PS signatures do. Thus, BBS+ public

keys can be optimized into a single point whereas PS public keys require a point per

message. BBS+ signature size is a point with two scalar values where as PS signatures are

two points. Both group signatures require pairings to verify signatures and proofs. Another

benefit to PS signatures is the easier ability to use in a threshold context with Coconut

Attribute Based Credentials (Sonnino et al., 2020) and Vehicle to Vehicle communication

(Camenisch et al., 2020).

Accumulators

An accumulator allows a set of elements to be represented by a fixed sized value.

The scheme also permits proving set membership or nonmembership without revealing the

element being inspected (Camenisch & Lysyanskaya, 2002a). Accumulators that support

membership ZKPs are positive and those that support nonmembership are negative.

Accumulators that support both are universal. If accumulators support adding and

removing elements they are dynamic. Otherwise they are static. Accumulators membership

and nonmembership proofs are constant time regardless of the number of elements in the

set.

An accumulator can be constructed using an RSA modulus by Boneh et al., 2019 or

using pairing friendly elliptic curves by Nguyen, 2005 and Camenisch et al., 2008 and Vitto

and Biryukov, 2020. Both accumulators support e�ciently adding and removing elements

using a trapdoor function called a trusted setup, or a trustless setup where the trapdoor

function is not known by any party and adding and removing elements requires intense

computational work. In a trusted setup, an accumulator manager secures the trapdoor

function like a private key and publishes updates whenever a change occurs.

ZKPs for membership and nonmembership proofs require the use of a witness in

addition to knowledge of the element. The witness can be constructed quickly using the

trapdoor and latest accumulator value, or high computational cost and knowledge of all set

OBERON: TOKEN BASED AUTHENTICATION 41

elements without. When an accumulator value changes, all witnesses become invalidated

and must be updated to become current. Generating ZKPs uses a witness and the set

element to produce an unlinkable proof that can be verified by any party. Pairing friendly

accumulators require pairings during verification.

Accumulators have largely been used to for a revocation scheme for anonymous

credentials (Camenisch & Lysyanskaya, 2002a), (Camenisch et al., 2008), (Camenisch,

Drijvers, & Hajny, 2016a), (Baldimtsi et al., 2017), but recently have been used to enhance

verifiable computation (Ozdemir et al., 2019), blockchain ZKP checks (Boneh et al., 2019),

and limited use tokens (Hölzl et al., 2019), (Camenisch, Drijvers, & Hajny, 2016b), but

none have been deployed with APIs.

2.4 Summary of Cryptography

The previous section covered various cryptography schemes that can be used for

digital signatures and revocation mechanisms. There are a few cases where these more

advanced methods have seen deployment like IBM’s Identity Mixer (Team & Switzerland,

n.d.) and Microsoft’s (“U-Prove Cryptographic Specification V1.1 Revision 3,” 2013).

Identity Mixer hasn’t seen much adoption (if any) in Web APIs and U-Prove has been

found to be insecure (Baldimtsi & Lysyanskaya, 2013) and discontinued. U-Prove requires

the holder to visit the credential issuer for each presentation which further limits its use

with Web APIs. Identity Mixer is similar token issuance in that the token can be reused

multiple times until expiration or revocation halt it. Even so, Identity Mixer employs XML

instead of JSON which deters adoption.

2.5 Measuring techniques

Normally, statistical measurements are metrics used to quantify and describe certain

aspects of a dataset or population such as central tendency (e.g. mean, median, mode),

measures of dispersion (e.g. range, variance, standard deviation), and measures of

correlation (e.g. Pearson’s correlation coe�cient, Spearman’s rank correlation coe�cient).

These measurements are used to summarize and analyze data, and to make inferences

OBERON: TOKEN BASED AUTHENTICATION 42

about a population based on a sample. Although some of these metrics are utilized in this

study, a significant number fail to accurately assess the objectives of the research. This

section describes the methods employed to enhance the precision of this experiment

evaluation by checking that cryptographic data does not exhibit any statistically significant

patterns.

Shannon Entropy

Shannon entropy measures the amount of uncertainty or randomness in data such as

a sequence of characters in a text or the distribution of values (Shannon, 1948). The

entropy in data is calculated by summing the negative of the product of each probability

and the logarithm of that probability for each unique item in the set. Higher entropy

indicates more randomness or uncertainty, while lower entropy indicates less randomness or

more predictability. It is commonly used to measure CSPRNG output to determine if the

entropy is high enough for private keys or nonces. This experiment used Shannon’s entropy

test to quantify the randomness in the ZKPs generated before sending their contents to an

API. In the case of random bytes for private keys, a value of 7.9 or higher was acceptable

(Hamming, 1980).

Arithmetic Mean

The arithmetic mean, also known as the "average," is the measure of central

tendency that is calculated by adding up all the values in a dataset and dividing by the

total number of values. Private keys should have an even number of random bytes and thus

a value between 127 and 128 was used since the lowest byte value is 0 and the highest 255.

Serial Correlation Coe�cient

The serial correlation coe�cient measures the correlation between observations in a

time series dataset. It measures the similarity between a given observation and the previous

observation and can determine whether there is a pattern or trend in the data over time.

A positive coe�cient indicates a positive correlation between observations, meaning

that as the value of one observation increases, the value of the other observation also tends

OBERON: TOKEN BASED AUTHENTICATION 43

to increase. A negative coe�cient indicates a negative correlation, meaning that as the

value of one observation increases, the value of the other observation tends to decrease. If

the coe�cient is close to zero, it indicates that there is no correlation between the

observations.

Perfectly random data has a coe�cient of 0. However, since no data is perfectly

random, this study allowed coe�cients to be between -0.004 and 0.004 (Knuth, 1969, pp.

64-65).

Estimating PI using Monte Carlo

Estimating the value of fi using Monte Carlo methods is a statistical technique that

takes advantage of the properties of random sampling to approximate the value of fi. The

idea is to use random points within a square to approximate the area of a circle inscribed

within that square.

As used in this experiment, the test was run over sequences of six bytes as the X

and Y coordinates within a square, repeatedly. If the randomly generated point is located

at a distance less than the radius of the circle inscribed within the square, it is considered a

"hit". The ratio of hits to total number of points generated is used to approximate the

value of pi. With large number of points, this approximation converges slowly to the true

value of fi, and it is suitable for cryptographic private keys. The Monte Carlo method for

estimating fi results in a value of 3.143580574 with an error of 0.06 percent (Park & Miller,

1988, pp. 1192).

ANOVA Framework

The ANOVA (Analysis of Variance) (Montgomery, 2017) is a statistical framework

used to compare the means of two or more groups. It is a widely used statistical method

for analyzing experimental data such as found in this study.

ANOVA partitions the total variation in the data into two sources: variation

between groups and variation within groups. The variation between groups represents the

OBERON: TOKEN BASED AUTHENTICATION 44

extent to which the group means di�er from each other, while the variation within groups

represents the random variation within each group.

The ANOVA framework involves testing the null hypothesis that there is no

significant di�erence among the group means, against the alternative hypothesis that at

least one group mean is significantly di�erent from the others. To do this, ANOVA uses the

F-test, which compares the ratio of the variation between groups to the variation within

groups (Kutner et al., 2005).

ANOVA is useful for handling situations where there are multiple groups to

compare, which is challenging to do using pairwise comparisons. It provides more

information than a simple t-test by detecting if there are significant di�erences among the

group means while controlling for the overall variability in the data (Faraway, 2005).

ANOVA can be used in a wide range of experimental designs, including one-way

ANOVA (one independent variable with multiple levels), factorial ANOVA (two or more

independent variables), repeated measures ANOVA (within-subjects design), and mixed

ANOVA (combination of within-subjects and between-subjects factors).

Overall, ANOVA is a useful tool for analyzing the study’s experimental data,

allowing the researcher to test hypotheses about group means and draw conclusions about

the di�erences among groups. This experiment employs ANOVA to compare variables and

evaluate their collective impact on computations for CPU timing.

K-means clustering

K-means clustering is a technique for grouping or partitioning a set of objects based

on their feature values. The k in K-means refers to the number of clusters to be generated.

The goal of K-means is to divide data into k clusters, where each cluster is characterized

by its centroid, the mean of all the data points in that cluster. K-means is a simple and

e�cient algorithm, however, it is sensitive to the initial placement of the centroids, and it

may not work well if the clusters have di�erent shapes or sizes. It assumes that the clusters

are spherical, which may not be the case in many real-world datasets. There are variations

OBERON: TOKEN BASED AUTHENTICATION 45

of the K-means algorithm that try to overcome some of these limitations but are not

relevant for this experiment. Here, the study applies K-means in an attempt to cluster

ZKPs. A variation of K-means was used called Lloyd’s algorithm, where the iterative

method assigns each data point to the nearest centroid, then updates the centroid of each

cluster by computing the mean of all the data points assigned to that cluster. This process

is repeated until the assignments no longer change or a stopping criteria is reached. For

cryptographic purposes, if the ZKPs are random enough, the error value for K-means will

be very high meaning unable to e�ectively cluster the values, the desired result.

LSTM Networks

Long Short-Term Memory networks are a type of recurrent neural network capable

of processing input sequences of variable length and maintaining a memory of the past

inputs (Hochreiter & Schmidhuber, 1997). LSTM networks are particularly useful for

processing sequential data, such as time series, natural language, speech, and other

sequence-to-sequence tasks. They are considered to be one of the most powerful

architectures for sequential data processing. An LSTM network consists of a series of cells,

which are units treated as "memory blocks" that maintain a state over time. Each cell has

several gates that control the flow of information into and out of the cell, including an

input gate, an output gate, and a forget gate. These gates allow the LSTM cell to

selectively retain or discard information, enabling it to maintain a memory of past inputs.

The downside to LSTMs is they are more complex than the traditional methods, requiring

more computational power and more data to be trained e�ectively. They also have a

tendency to forget or lose the information about the past inputs over time, specially for

long sequences, which is called the vanishing gradient problem. While this issue can be

addressed by using variants (Sutskever et al., 2014) it was not considered for this study.

LSTMs are not employed in this study at all but are mentioned here for potential future

work for measuring and attacking cryptographic ZKPs along with other time series

analysis, regressions and forecasting techniques.

OBERON: TOKEN BASED AUTHENTICATION 46

2.6 Summary of Measuring techniques

The previous section covered statistical measurements for testing and correlating

datasets generated in this study. The measurements assess randomness and correlation to

describe and analyze the data to infer information. Using these techniques we can increase

the story told by the data generated by the cryptography and ZKPs.

2.7 Summary

The literature studied in Chapter 2 presented a comprehensive outlook on the state

of API technology highlighting the unique features and properties of various authentication

and authorization models. These technologies include HTTP authentication, SAML OAuth

2, and OIDC. Chapter 2 defined advanced methods for authentication and authorization

with advanced cryptographic techniques like private set intersection, short group

signatures, cryptographic accumulators and discussed techniques for refining the

measurements used to evaluate the data. Despite these advancements in security and

privacy, these advanced cryptographic techniques have not seen widespread use or

adaptation, but they are crucial for understanding the research presented in this study.

Chapter 3 provides a comprehensive overview of the precise application of advanced

cryptographic techniques, including the specific cryptographic tools and protocols used in

the implementation. The chapter delves into the design considerations and technical details

of the cryptographic approach, highlighting the unique features and properties of the

approach and how they address specific security and privacy challenges. Additionally, the

chapter discusses the validation process of the approach, including the testing, evaluation,

and verification methods used to ensure the security and reliability of the solution. Overall,

Chapter 3 provides a detailed exploration of the advanced cryptography approach used in

the study, including its design, implementation, and validation.

OBERON: TOKEN BASED AUTHENTICATION 47

3 Chapter 3: Research Methods

Chapter 2 reviewed the literature and current marketplace that applies to this

study. A background of possible cryptographic techniques for authentication and

authorization were surveyed and introduced. Chapter 3 discusses the research methods

that were applied for the study. Details justifying the model and methods covered include:

model design, data collection, data analysis, compare and contrast, and success criteria.

3.1 Research Approach

Design science is a research methodology that focuses on creating and evaluating

artifacts (e.g., new approaches, tools, systems, etc.) that solve practical problems. This

approach is appropriate for this study due to introducing a new approach to web API

authentication, a practical problem that needs a better solution.

Chapter 1 outlined the design requirements and objectives to guide the development

of the proposed approach to API authentication. These requirements include the need for

the approach to be simple to deploy within existing solutions, maintain system

performance, and enhance overall security. Additionally, the research examined the setup

costs of implementing a zero-knowledge proof (ZKP)-based model, and how these costs

a�ected performance, payload size, and privacy.

To ensure a thorough evaluation of the design’s validity, specific variables were

selected to align with the established requirements and objectives. This approach allowed

for a comprehensive assessment of the proposed approach’s ability to meet the identified

needs and improve upon existing solutions then incorporate these improvements on the

proposed artifact.

To enable end consumers to replicate the experiments conducted in this study for

problem-solving, the artifact was developed using the design science methodology approach

(Hevner et al., 2004) since the primary goal of design science is to create novel ideas,

methods, technologies, and products that enhance the ability to analyze, design,

implement, manage, and utilize information systems e�ciently and e�ectively. This type of

OBERON: TOKEN BASED AUTHENTICATION 48

research involved investigating a naturally occurring or artificially created phenomenon to

improve our comprehension of that phenomenon or its particular aspects. In this study, the

primary research activity was dedicated to constructing the artifact, with a willingness to

accept a higher degree of potential failure to explore uncharted territory.

3.2 Data collection and Experiment

To assess the e�ectiveness of the proposed approach to web API authentication, a

set of specific variables were identified and analyzed, including time to complete

authentication or authorization, the number of steps required, network delay, and network

tra�c volume, observability, corruptability, and correlatability each of which played a

critical role in evaluating the approach’s ability to meet the established design requirements

and objectives. The selection and analysis of these variables were driven by the research

questions/hypothesis, which aimed to determine the extent to which the proposed approach

satisfies the identified design requirements and objectives, and how it compares to existing

authentication methods in terms of performance, security, and ease of deployment.

Many of these variables can be quantitatively measured using network tools such as

ping, wireshark, and qperf, as well as operating system clock measurement commands like

time. However, observability, corruptibility, and correlatability require alternative

measurement methods. Observability is measured by analyzing the data passing between

the endpoints (authenticator and authenticatee), the amount and what is human readable,

including the ZKP payloads and associated metadata. Corruptibility is measured by

assessing the ability to correctly authenticate with incorrect data, while correlatability

evaluates the ability to correctly identify when the same authenticatee is attempting to

authenticate.

In this study, various approaches to API design that are currently in use by

production systems were examined. To gain a comprehensive perspective, web APIs from a

diverse range of industries, including cloud infrastructure, single-sign-on, finance,

know-your-customer, security, marketing research, search engines, version control,

OBERON: TOKEN BASED AUTHENTICATION 49

academia, government, telecommunications, and medical, were analyzed.

Web APIs typically have public documentation that do not require creating an

account to access and a sandbox environment to test the API’s credentialing,

authorization, and access control settings (AWS, 2019), (Rackspace, 2022b). While many

APIs do support sandbox environments (AWS, 2021), (Rackspace, 2022b) where the API

doesn’t apply to real resources, the study aimed to assess the security and performance of

APIs in real-world scenarios.

To identify areas where improvements would be most e�ective, the data was

subjected to quantitative analysis as part of the design science validity cycle (Larsen et al.,

2020). This analysis was used to evaluate the impact of changes implemented by the

researcher, allowing for a comprehensive assessment of the e�ectiveness of the proposed

approach.

3.3 Artifact details

To validate the e�ectiveness of the proposed approach, this study used ZKP-based

tokens as a drop in replacement for any existing design. The ZKP approach employed

several di�erent cryptosystems, including Pointcheval-Sanders (PS) short group signatures

(Pointcheval & Sanders, 2016), cryptographic accumulators (Vitto & Biryukov, 2020),

enhanced with techniques from (Jaques et al., 2022), and Private Set Intersection (PSI)

(Badrinarayanan et al., 2021). Short group signatures and accumulators were chosen due

to their ability to satisfy the privacy, payload size, and performance requirements of the

system. These cryptographic primitives enable the transmission of minimal clear text

information, provide succinct ZKPs, and are computationally e�cient.

Each approach is designed to serve specific purposes and is referred to as Oberon,

with a su�x indicating the specific function is serves. The di�erent o�erings are discussed

in detail in this chapter, highlighting their respective strengths and weaknesses. To begin,

the notation followed is documented here

OBERON: TOKEN BASED AUTHENTICATION 50

3.4 Notation

1. Zqú represents the message space used by the elliptic curve.

2. G1 represents the point space used by the elliptic curve in group 1.

3. G2 represents the point space used by the elliptic curve in group 2. This group is

bigger than G1 and slower to perform computations. Thus it is preferred to defer to

G1 when possible.

4. GT represents the value in the target group after computing a bilinear map or pairing

function.

5. HG1 is a hash function that maps a byte sequence to a point in G1 (Faz-Hernández

et al., 2021) and is assumed to not output the point at infinity.

6. HZqú is a hash function that maps a byte sequence to a value in Zqú and never

outputs a zero value.

7. r
$Ω≠ Zqú symbolizes a random integer drawn between the range 0 < r < q.

8. The base point in G1 is P

9. The base point in G2 is ÂP .

10. a · P represents an elliptic curve scalar multiplication between the left hand side

scalars a and the right hand side points P .

11. e() is the bilinear map or type-3 pairing function e : G1 ◊ G2 ≠æ GT . Reminder that

e(aG1, bG2) == e(G1, G2)ab.

Oberon-ID

Oberon-ID is a novel approach that employs PS signatures, which enable the

creation of a cryptographic token using a short group signature over a unique identifier.

OBERON: TOKEN BASED AUTHENTICATION 51

These signatures are similar to BLS signatures and can be computed with threshold

schemes to enhance security. With Oberon-ID, the public key is the only piece of

information that needs to be stored by the API endpoint, and no database of passwords or

credentials is required for validation. The token signing key can be kept in separeate secure

locations to enhance security. When presenting the token, a signature proof of knowledge is

generated and transmitted to the verifier instead of the token itself, ensuring that no valid

or useful values for accessing the API can be obtained by any observer. The token is valid

for a single use only, as it includes a nonce or timestamp to prevent replay attacks.

Nevertheless, the token can generate unlimited ZKP presentations. This approach is an

excellent alternative to traditional username and password or static API token systems

that are long-lived and vary according to the user. The API manager can quickly retire

tokens by rotating the public keys.

The scheme consists of 6 functions: DeriveInternals, Keygen, Signing, Blinding,

Verifying, Proving, and Open.

DeriveInternals(I) ≠æ {m, mÕ, U} is used to compute the three values used for each

function. The following three equations hash the input to a message m, which is then

hashed again to produce a digest of the message as a separate value mÕ, then hashes this

value to a random point U . U serves as a generator for computing the rest of the signature.

This allows values that are not dependent on the secret key to be derived deterministically,

which avoids the need for storage. However, these values can be stored to same

computation. The signature is computed by combining the messages with the secret key

then multiplied to the generator.

1. m = HZqú(I)

2. mÕ = HZqú(m)

3. U = HG1(mÕ)

OBERON: TOKEN BASED AUTHENTICATION 52

4. {m, mÕ, U}

KeyGen PS signatures has three random elements {w, x, y} $Ω≠ Zqú for the secret key and

{ÊW, ÊX, ÂY } in G2 for the public key where {ÊW = w · ÂP , ÊX = x · ÂP , ÂY = y · ÂP}.

Sign(sk, I) ≠æ ‡ - takes the secret key sk and a random identifier I and outputs a token ‡.

1. {m, mÕ, U} = DeriveInternals(I)

2. ‡ = (x + m.y + mÕ.w) · U

‡ is the token value represented by a point on the curve.

Blinding(‡, —) ≠æ ‡Õ - takes the token ‡ and a value — and outputs a blinded token ‡Õ. beta

can be any value that is used for MFA like a 6-digit pin, secure enclave value, or biometric.

The blinding value is hashed to a point that is subtracted from the token. Since the token

is just a point, the computation is simple.

1. B = HG1(—)

2. ‡Õ = ‡ ≠ B

Note: Blinding can be applied any number of times using the latest ‡Õ instead of ‡

with di�erent values for —. Each applied blinding is a di�erent authentication factor that

will be needed when the token is used later.

V erify(pk, I, ‡)≠ > {0, 1} - is run by the token recipient to check the token validity.

1. {m, mÕ, U} = DeriveInternals(I)

2. return 1 if and only if e(U, ÊX + m · ÂY + mÕ · ÁW).e(‡, ≠ ÂP) == 1, otherwise return 0

The idea here is balance the equations using the pairing function. This works because

e(U, ÊX + m · ÂY + mÕ · ÊW) == e(‡, ÂP)

e(U, (x + m.y + mÕ.w) · ÂP) == e((x + m.y + mÕ.w) · U, ÂP)

e(U, ÂP)x+m.y+mÕ.w == e(U, ÂP)x+m.y+mÕ.w

OBERON: TOKEN BASED AUTHENTICATION 53

Prove(I, ‡Õ, [—i, . . . , —n], n) ≠æ · - takes the unique ID, the blinded token, any blinding

factors, and a nonce and outputs a ZKP. This is sent to the server for verification. The

server never sees the actual token. Any observer only sees the identifier I and a proof that

is valid for the specific context. A timestamp with millisecond precision is su�cient to

serve as the nonce however this study plans to use more than a timestamp. The proving

steps randomize both the generator U and token ‡ using two randomizers r, t. Since two

randomizers r, t are used, one of them must be sent to the verifier (t). However, if the

randomizer t is known, the proof can be reversed. So a schnorr proof is sent instead which

proves knowledge of the randomizer instead T . The proof is made non-interactive using the

fiat-shamir heuristic to produce the challenge value c.

1. {m, mÕ, U} = DeriveInternals(I)

2. r, t Ω≠ Zqú creates the two randomizers.

3. {Bi, . . . , Bn} = {HG1(—i), . . . , HG1(—n)} hashes each blinding factor to a point.

4. R = r · U randomizes the generator point U as a commitment to be sent to the

verifier.

5. T = t · U randomizes the generator point T that will be recreated by the verifier as

part of the schnorr proof.

6. · = t · ‡Õ + t · (qn
i (Bi) randomizes the token.

7. c = HZq(pk, I, m, mÕ, U, n, R, T, ·) is the fiat-shamir heuristic that computes the

challenge.

8. s = t ≠ c.r is the schnorr proof.

9. fi = {I, R, ·, c, s, n} is the final proof.

Open(pk, I, fi) ≠æ {0, 1} - is executed by the relying party or API endpoint to check the

validity of the ZKP.

OBERON: TOKEN BASED AUTHENTICATION 54

1. {m, mÕ, U} = DeriveInternals(I)

2. Tv = s · U + c · R recreates the same T value as the prover.

3. cv = HZq(pk, I, m, mÕ, U, n, R, Tv, ·) recreates the same fiat-shamir heuristic.

4. if cv ”= c return 0. The challenges should be equal if the correct values are used.

5. return 1 if e(Tv, ÊX + m · ÂY + mÕ · ÊW).e(·, ≠ ÂP) == 1, otherwise return 0

This works because

e(Tv, ÊX + m · ÂY + mÕ · ÊW) == e(·, ÂP)

e((s + c.r) · U, (x + m.y + mÕ.w) · ÂP) == e(t.(x + m.y + mÕ.w) · U, ÂP)

e((t ≠ c.r + c.r) · U, (x + m.y + mÕ.w) · ÂP) == e(t.(x + m.y + mÕ.w) · U, ÂP)

e(U, ÂP)t.(x+m.y+mÕ.w) == e(U, ÂP)t.(x+m.y+mÕ.w)

A modified version of the Prove function, called AnonProve, provides anonymity to the

user by concealing their identifier during authentication at the endpoint. Additionally, the

identifier can be signed blindly into the token and presented without being revealed,

allowing the user to retain control over their identifier while keeping it and the token

unknown to the endpoint. While this feature adds a layer of privacy for both parties, it

does come with the potential for abuse. It is important for the web API to exercise caution

when providing this option, as any value may be signed. This particular use case is not

examined in this study, but mentioned for its potential for future research.

Oberon-Time

Oberon-Time extends Oberon-ID by limiting the longevity of the token to a specific

epoch. The epoch is additionally signed into the random identifier. Each algorithm

requires the following changes.

OBERON: TOKEN BASED AUTHENTICATION 55

DeriveInternal(I, �) ≠æ {m, v, mÕ, U} derives an additional value v to be hashed into mÕ

1. m = HZqú(I)

2. ‚ = HZqú(�)

3. mÕ = HZqú(m, ‚)

4. U = HG1(mÕ)

KeyGen outputs sk = {w, x, y, z} and pk = {ÊW, ÊX, ÂY , ÂZ} calculated as before.

Sign(sk, I, �) takes as input sk, identifier I, timestamp � and outputs a token ‡. The

updated steps are

1. {m, v, mÕ, U} = DeriveInternals(I, �)

2. ‡ = (x + m.y + mÕ.w + ‚.z) · U

V erify(pk, I, �, ‡)≠ > {0, 1} - is updated to

1. {m, v, mÕ, U} = DeriveInternals(I, �)

2. return 1 if e(U, ÊX + m · ÂY + mÕ · ÊW + ‚ · ÂZ).e(‡, ≠ ÂP) == 1, otherwise return 0

The works just as before but with an additional value v

Prove(I, ‡Õ, [—i, . . . , —n], n) ≠æ fi - is updated to

1. {m, v, mÕ, U} = DeriveInternals(I, �)

2. r, t Ω≠ Zqú

3. {Bi, . . . , Bn} = {HG1(—i), . . . , HG1(—n)}

4. R = r · U

OBERON: TOKEN BASED AUTHENTICATION 56

5. T = t · U

6. · = t · ‡Õ + t · (qn
i (Bi)

7. c = HZq(pk, I, �, m, ‚, mÕ, U, n, R, T, ·)

8. s = t ≠ c.r

9. fi = {I, �, R, ·, c, s, n}

This is the same as Prove without the timestamp. The additional timestamp value doesn’t

add any additional work for prove.

Open(pk, I, fi) ≠æ {0, 1} - is updated to

1. {m, v, mÕ, U} = DeriveInternals(I, �)

2. Tv = s · U + c · R

3. cv = HZq(pk, I, �, m, ‚, mÕ, U, n, R, Tv, ·)

4. if cv ”= c return 0

5. return 1 if e(Tv, ÊX + m · ÂY + mÕ · ÊW + ‚ · ÂZ).e(·, ≠ ÂP) == 1, otherwise return 0

This is the same as Open without the timestamp. The additional timestamp value doesn’t

add any additional work for open.

Oberon-Counter

Oberon-Counter leverages accumulators to restrict the frequency with which the

token can be presented. The API endpoint defines the limited count for the token, i.e., the

maximum number of times the token can be used for one-time verification proofs. Similar

to a punch card that becomes invalid after a certain number of punches, the token can be

utilized until all available uses have been exhausted. The elliptic curve based accumulator

used in Oberon-Counter indicates the revocation status of a particular use. During

OBERON: TOKEN BASED AUTHENTICATION 57

enrollment, the API endpoint computes the accumulator elements by hashing a random

identifier I, the counter start value cs, and the current index i until the limit ce is reached.

Each one-time element rti is then multiplied by the curve base point P . In this way, each

use of the token is derived by hashing a counter and a fixed domain-specific string.

1. s, f Ω≠ Zqú generates a secret signing key s and an accumulator secret key f .

2. ÂS, F, ÂF = x · ÂP , f · P, f · ÂP creates a two public verification keys and a base

accumulator.

3. rti = HZqú(I, P, cs, i, ce) computes the punch value based on the identifier, a start

count, the current index, and the curve parameters.

4. ‡i = BLS-Sign(s, rti) creates a BLS signature for each punch.

5. A =
1rce

i=cs
(rti + f)

2
· P computes the accumulator value by adding each punch to

the secret accumulator key a, then multiplying all the resulting values together into a

field element then multiplying that result by the base point.

A, ÂS, ÂF are stored on the server, {I, cs, ce, {‡}iœcs..ce , F} are sent to the client and

securely deleted. The main security objectives of the study were to ensure that the server

only stores the accumulator value and it cannot determine any current entries or create

new ones. This is important because anyone can reconstruct the accumulator with this

information. The protocol allows the accumulator manager and verifying server to be two

distinct entities or the same.

However, the verifying server can observe a small amount of information regarding

accumulator state, and could perform limited modifications to this state:

• The server can keep track of when a specific token is presented and how many times

a user has presented it by correlating the data. The system might have a fixed limit

that is the same for all users, and in that case, the server could determine how many

OBERON: TOKEN BASED AUTHENTICATION 58

presentations remain. However, making updates without leaking any information

would be costly, as clients would need to create a separate and more complicated

ZKP and proof of correctness over the entire state. Despite this, the server does not

gain any additional information beyond the count, making it more di�cult to

conceal. Thus the extra ZKP and proof of correctness yield little benefit that does

not outweigh the cost.

• The server could delete accumulators or corrupt the accumulator by writing invalid

or inconsistent values. This doesn’t grant the server any capability beyond

interrupting service to users, which the server can do more easily by simply not

responding to client queries.

• The server could reinstate old accumulator values. This only benefits the client (or a

malicious actor) with the ability to replay tokens.

The client can recompute the accumulator value or the server can send A to save on

computation. This study has the client recompute it and relies as little on the server as

possible. In a real world scenario, this can be specified by the API endpoint. rti represent

one-time punches sent back to the server along with an accumulator witness – and ‡i.

Witness construction generates the disposable token and next value of the accumulator.

This scheme is better when combined with Oberon-Time or Oberon-Z to redeem a punch

to gain access to an Oberon signature based token.

Prove(A, I, cs, ce, i) ≠æ fi - takes an accumulator value, the unique ID, the starting value,

the end value, and the current index which must be between the start and end values

1. if not cs < i < ce return ‹

2. rti = HZqú(I, P, cs, i, ce) recomputes the punches.

3. – =
1qce

j=cs ”=i(rtj · P + F)
2

computes the witness for checking the punch against the

accumulator.

OBERON: TOKEN BASED AUTHENTICATION 59

4. fi = {–, rti, ‡i}

The user sends fi to the API endpoint. A is replaced with – if the API accepts the

proof.

Open(rti, ‡i, fi, A) ≠æ {0, 1} - is executed by the API endpoint to check the validity of the

one time token

1. if BLS-Verify(rti, ‡i, ÂF) == False, abort

2. if e(–, rti · ÂP + ÂF).e(A, ≠ ÂP) == 1 replace A with –

3. if – == F delete

The endpoint solely keeps track of the accumulator’s current value, preventing

anyone, including the server, from discerning the constituent elements of the accumulator

or the number of elements remaining. This guarantees that only clients with authorized

access to the original information can generate tokens and that no observer, including

system administrators or malicious actors, can extract valuable information from the

accumulator values. The BLS signatures ensure the client cannot add extra punches.

Oberon-Z

Oberon-Z utilizes a hybrid approach of PS signatures and PSI to generate

Zero-Knowledge Authorization Data Sets (ZKADS). This allows a client and server to treat

their credential values as sets and execute intersection operations PSI for authorization

evaluations. After authentication, the token contains an identification with a set of all the

authorization privileges that the client possesses in the system. It is important to note that

the entity issuing the token may di�er from the one performing verification, and thus can

be multiple entities responsible for verifying the token. Each verifier may have specific

permission requirements to fulfill a request or access information, and authorization is

granted if the client can demonstrate possession of the necessary set of permissions. The

OBERON: TOKEN BASED AUTHENTICATION 60

client engages in an interactive protocol with the server through APIs, while only disclosing

the permissions that intersect with a particular request. For example, the token may

comprise 10 permissions, but only 2 to 3 are shared with the server at a time. The server

learns about the client’s lack of required permissions only in case of protocol failure,

whereas the client is unaware of the server’s expected permissions in any scenario unless

communicated back. This architecture preserves the confidentiality of the server’s

permissions, while thwarting any attempts by observers to uncover the permissions held by

the client. Similar to Oberon-Time, this protocol is an extension of Oberon-ID that

includes a set of permissions, thus enabling precise access control. Each permission is

incorporated into the token in a comparable manner, which increasing the key size while

keeping a constant token size. By signing the permissions in this way, the client is unable

to modify, add, or remove permissions at will, thus guaranteeing the legitimacy and

tamper-resistance of the resultant set of permissions (Camenisch & Zaverucha, 2009).

DeriveInternals(I, �) ≠æ {m, mÕ, {–}, U1} creates the field elements necessary to be signed

similarly to the other Oberon methods

1. m = HZqú(I) converts the identity into a field element

2. –i = HZqú(ai) converts each permission into a field element

3. mÕ = HZqú(m, –1, . . . , –n) creates a digest field element of all elements to be signed.

4. U1 = HG1(mÕ) Computes the generator point for the token.

KeyGen outputs sk = {w, x, y, {z}} and pk = {ÊW, ÊX, ÂY , { ÂZ}} calculated as before in

Oberon-ID. The set of z values indicates each permission granted by the issuing authority.

The permission set can be represented by � = {a1, . . . , an}

Sign(sk, I, �) takes as input sk, identifier I, the permissions � and outputs the token ‡.

The identifier may be omitted if the server is willing to allow the anonymous

OBERON: TOKEN BASED AUTHENTICATION 61

authentication. In such cases, the server only learns that the client was valid, but not the

identity of the requester. For the sake of simplicity, the steps outlined below include the

identity of the requester.

1. {m, mÕ, {–}, U1} = DeriveInternals(I, �)

2. ‡1 = (x + m.y + mÕ.w + –i.zi, . . .) · U1 computes the token that includes all the

permissions and identifier.

3. Compute the polynomial f(t) = qn
i (Âi.ti) = rn

i (t ≠ –i) with coe�cients {Â} that are

used to as part of the PSI protocol.

4. mÕ = HZqú(m, Â1, . . . , Ân) computes the field element digest of all the polynomial

coe�cients.

5. U2 = HG1(mÕ) creates the generator for the signature over the polynomial coe�cients.

6. ‡2 = (x + m.y + mÕ.w + Âi.zi + . . .) · U2 computes the signature over the polynomial

coe�cients.

7. ‡ = {‡1, ‡2}

Verify is similar to previous descriptions.

Prove1(I, �, ‡Õ, [—i, . . . , —n], K) ≠æ fi - is updated to include the Multi-Party Computation

(MPC) steps of the PSI. The prover generates a random point J and sends it to the server.

The server generates a key pair k Ω≠ Zqú, K = k · J and sends back K

1. r1, t1, rt1 , r2, t2, rt2 , rmÕ , rmÕ , rai , rÂi , rrÂi
Ω≠ Zqú

2. {Bi, . . . , Bn} = {HG1(—i), . . . , HG1(—n)}

3. {m, mÕ, {–}, U1} = DeriveInternals(I, �)

4. U Õ
1 = r1 · U1 randomizes the generator for the permissions

OBERON: TOKEN BASED AUTHENTICATION 62

5. ·1 = t1 · U Õ
1 + r1 · ‡Õ

1 + r1 · (qn
i (Bi)) randomizes the token signature over the

permissions and undoes the blinding factors.

6. D1 = t1 · ÂP + mÕ · ÊW + –i · ÂZ creates a commitment to the permissions.

7. T1 = rt1 · ÂP + rmÕ · ÊW + rai · ÂZi + . . . creates a randomized generator point to be

recreated by the verifier.

8. mÕ = HZqú(m, Â1, . . . , Ân)

9. U2 = HG1(mÕ)

10. U Õ
2 = r2 · U2

11. ·2 = t2 · U Õ
2 + r2 · ‡Õ

2 + r2 · (qn
i (Bi)) randomizes the token signature containing the

polynomial coe�cients

12. D2 = t2 · ÂP + mÕ · ÊW + Âi · ÂZ creates a commitment to the coe�cients.

13. T2 = rt2 · ÂP + rmÕ · ÊW + rÂi · ÂZi + . . . creates a randomized generator point to be

recreated by the verifier.

14. Ei = (rÂ · J, Âi · J + rÂi · K) creates the El-Gamal ciphertext first part for the

coe�cient.

15. Eri = (rrÂi
· J, rÂi · J + rrÂi

· K) creates the El-Gamal ciphertext second part for the

coe�cient.

16. c = HZq(pk, I, m, U Õ
1, U Õ

2, ·1, ·2, D1, D2, T1, T2, Ei, . . . , Eri , . . . , J, K) is the fiat-shamir

heuristic that computes the challenge.

17. smÕ = rmÕ ≠ c.mÕ, smÕ = rmÕ ≠ c.mÕ, st1 = rt1 ≠ c.t1, st2 = rt1 ≠ c.t2 computes the

schnorr proofs for the hidden message m’ and the hidden permissions.

OBERON: TOKEN BASED AUTHENTICATION 63

18. s–i = rai ≠ c.–i, sÂi = rÂi ≠ c.Âi, srÂi
= rrÂi

≠ c.rÂi computes the schnorr proofs for

the hidden coe�cients.

19. fi = {I, D1, D2, U Õ
1, U Õ

2, ·1, ·2, Ei, c, smÕ , smÕ , st1 , st2 , s–i , sÂi , srÂi
} is the completed proof.

Open1(pk, fi) ≠æ {0, 1} - is updated to

1. m = HZqú(I)

2. T1 = c · D1 + st1 · ÂP + smÕ · ÊW + s–i · ÂZ recreate the random commitment for the

permissions.

3. T2 = c · D1 + st2 · ÂP + smÕ · ÊW + sÂi · ÂZ recreate the random commitment for the

coe�cients.

4. Let Ei = µi, ‹i, compute Eri = (c · µi + srÂi
· ÂP , c · ‹i + sÂi · ÂP + srÂi

· K). This is the

El-Gamal ciphertext for the coe�cients.

5. cv = HZq(pk, I, m, U Õ
1, U Õ

2, ·1, ·2, K, D1, D2, T1, T2, Ei, . . . , Eri , . . . , n) is the verifier’s

computation of the challenge.

6. if cv ”= c abort

7. if U Õ
1 == 1 or U Õ

2 == 1 abort

8. if ·1 == 1 or ·2 == 1 abort

9. if e(U Õ
1,

ÊX + m. ÂY + D1).e(·1, ≠ ÂP) ”= 1 abort

10. if e(U Õ
2,

ÊX + m. ÂY + D2).e(·2, ≠ ÂP) ”= 1 abort

The last two equations are identical to verifying the tokens from the previous Oberon

schemes.

The server then homomorphically evaluates f for all elements in the permission set

V = {v1, . . . , vn} by computing

OBERON: TOKEN BASED AUTHENTICATION 64

wi =
Q

a
nŸ

j

(vj
i · Ej,1),

nŸ

j

(vj
i · Ej,2)

R

b

Afterwards server computes for each wi = k≠1 · Ei,1 + Ei,2 which will equal

≠kri · J + (ai + kri) · J = ai · J for the case where ai = 0. The server creates a partition of

{w1, . . . , wn}:

C1 = {wi := 1}; Cy = {wi := y ”= 1}

If any elements of V are present in C1, it signifies that the prover possesses a

legitimate set of permissions, and the server has acquired knowledge of the intersection

between V and �. While the server can o�er evidence that would enable the prover to

obtain the same information, this study omits that possibility since the server intends to

preserve the confidentiality of its collection.

3.5 Code Organization

The Oberon code in this study was written using Rust and compiled natively to

match the target operating system and hardware platform. Rust was chosen due to its

rapid run-time performance, ease of development, and extensive collection of cryptographic

libraries. Compared to C/C++, Rust is now gaining popularity for several reasons. Rust

provides numerous benefits that are found in C/C++ languages, while addressing the

long-standing memory safety concerns that have plagued these languages. One of Rust’s

primary benefits is its built-in memory safety features, including a borrow checker, which

assists in preventing programming errors that cause memory-related issues, such as bu�er

overflows and use-after-free errors. These memory safety characteristics make Rust

programs more resilient and less susceptible to security vulnerabilities. As a result, Rust

has been demonstrated to be a secure programming language (Jung, 2020). Additionally,

Rust provides a more expressive type system and modern syntax, making it simpler and

more e�cient to write and maintain large, complex codebases. Rust also prioritizes

concurrency, enabling more e�ective utilization of multi-core processors and proving

advantageous when creating high-performance systems. Recently, Microsoft declared its

OBERON: TOKEN BASED AUTHENTICATION 65

intention to embrace Rust for future projects and phase out the use of C/C++ internally

(Clayburn, 2022).

Rust organizes and distributes library units of code as crates. A crate can

encompass one or more modules, each of which can include functions, types, other items, or

additional crates. Crates are self-contained, meaning they are defined by the code

incorporated within them, rather than the code that invokes them. Crates can be produced

by the user or downloaded from public or private registries, such as crates.io, which is the

o�cial Rust package registry. Crates serve the purpose of code sharing across di�erent

projects, and can be shared as either a binary file or source code. Crates are included as

dependencies in the Cargo.toml file of the project, and the Rust package manager, cargo,

manages the process of downloading, building, and linking the code. The crate system is a

robust feature that empowers developers to generate, share, and utilize libraries and other

code modules in a simple and e�cient manner. The design artifact created in this study is

written as a crate. As Rust does not use a garbage collector, it allows for the generation

and compilation of code as C-compatible binaries. As a result, the final artifact is a C

callable library authored in Rust (Matsakis & Klock II, 2014). This research leveraged this

capability to enable the execution of all the methods discussed in alternative programming

languages like Node.js and Python by consuming the C callable library. This way, the code

was written once and utilized across multiple languages with minimal overhead. Each

Oberon version is divided into separate crates, allowing each component to be employed

either independently or in combination as a whole.

3.6 Instrumentation

This section outlines the data collection methods employed by the information

instruments, which included measurements of network tra�c, latency, CPU and RAM

usage, and code complexity. In addition, human-readable metadata, along with

information such as the time of day and type of API request, and the ZKP data was

collected to assess privacy concerns. The main objective was to assess the e�ectiveness of

OBERON: TOKEN BASED AUTHENTICATION 66

the ZKP in enhancing privacy and security, by measuring the correlation between ZKPs

payloads and the potential for an attacker to deduce if the same user is making di�erent

API requests. However, evaluating the security of the system when the server is

compromised was a challenging task, and it remains an area for future research. This

analysis is more e�ectively measured qualitatively from a risk based approach.

Nevertheless, there are still unanswered questions regarding the use of ZKPs to secure data

in transit and at rest, particularly regarding potential risks and their impact, and possible

mitigation strategies if necessary. These are areas for future research. The study was

conducted across multiple operating systems, including Windows, Mac OSX, and various

Linux-based systems, for both server and client environments, and the results indicated

that the operating system did not have a significant impact on the findings.

3.7 Validity and Reliability

In research, validity refers to whether the researcher is measuring what they intend

to measure or not (Kumar, 2014). It is therefore essential for the researcher to understand

the significance of describing validity with respect to the current study. In this research,

user feedback was not collected, and it is planned for future work. To establish the validity

of this project, three factors were considered. Firstly, the artifact and how easily it can be

integrated into APIs. Secondly, comparison benchmarks were included with the code that

can be run independently, allowing for verification of the results. Finally, a report was

generated, describing the tradeo�s and costs associated with using the new system

compared to existing systems. This information will enable readers to understand what to

expect when using this design science project and the associated costs and benefits. The

design science research validity framework (Larsen et al., 2020) was used to iterate on the

artifact, consisting of three components: Design Antecedent Validity, Development and

Context Validity, and Design Outcome Validity. The first measures validity by examining

the internal composition of the artifact and its relationship to the broader environment.

The second emphasizes the importance of the artifact, while the third demonstrates its

OBERON: TOKEN BASED AUTHENTICATION 67

utility. The framework provides researchers with guidance on how to select and utilize

validities throughout the research process to enhance their designs, evaluations, and

arguments. Design science validity refers to the degree to which the design solution satisfies

the requirements and objectives of its target audience and successfully resolves the problem

for which it was created. The validation of a design solution is established through testing

and evaluating its e�ectiveness in practical situations, in addition to user feedback and

other forms of user-centered evaluations. One e�ective approach for such evaluation is the

test-retest methodology, which involves testing the solution in multiple iterations to

evaluate its consistency over time. However, it is important to note that while test-retest

methodology is a valuable technique for assessing the usability and e�ectiveness of design

solutions, there are other methods available to evaluate design science validity. The

test-retest methodology was a valuable approach as it enabled the researcher to assess the

reliability of a variable or measure over time by administering the same test or measure on

two occasions and comparing the results (Riedl & Robertson, 2010). This method was also

useful for evaluating the stability and consistency of the design solution over time and

comparing against di�erent design alternatives. It is well-suited for technical studies that

do not involve human subjects and where potential confounding factors, such as user

education during testing, can be avoided. In the current research, the test-retest

methodology was employed to gather quantitative data on CPU performance and network

latency, ensuring that numerical data was acquired e�ectively and consistently.

Additionally, the observability of the system was assessed by evaluating the amount of

metadata sent along with the ZKP as this data is human readable and is more easily

correlatable.

Validity and Reliability Performance

Network tra�c and latency were measured to evaluate the performance of the

ZKP-based approach compared to traditional API methods. By measuring the network

tra�c and latency, the researcher was able to compare the speed and e�ciency of the two

OBERON: TOKEN BASED AUTHENTICATION 68

methods, and determine whether the ZKP-based approach had any negative impact on

network performance.

CPU and RAM usage were measured to evaluate the computational cost of the

ZKP-based approach. By measuring the CPU and RAM usage, the researcher was able to

compare the resource requirements of the two methods, and determine whether the

ZKP-based approach was more or less e�cient than traditional API methods.

Validity in this study refers to the extent to which the research accurately measures

what it intends to measure, and whether the results are reliable and trustworthy. The

validity of the instruments used in this study was ensured through rigorous testing and

evaluation, including the use of test-retest methodology to measure the consistency of the

results over time. The researcher compared the results of the ZKP-based approach to

traditional API methods, and included benchmarks that can be run independently and

verified to ensure the accuracy and reliability of the results. The Rust crate criterion was

used which gives data over multiple repeated trials. However, these same trials were run

manually using the linux command time and the compiled binary for the same number of

times to ensure validity for CPU and RAM.

Reliability in this study refers to the consistency and stability of the instruments

used to measure network tra�c, latency, CPU and RAM usage. The reliability of the

instruments was ensured through repeated measurements and comparisons, as well as

through the use of standardized testing procedures and protocols. The instruments were

measured on the same operating systems to ensure that the results were consistent and

reliable and the same times of day to account for tra�c spikes and lulls. Thus the same

server was expected to have the same CPU load and network tra�c each time.

Thus, the network tra�c, latency, CPU and RAM usage measurements were used to

evaluate the performance and computational cost of the ZKP-based approach compared to

traditional API methods. The validity and reliability of the instruments used in the study

were ensured through rigorous testing and evaluation, including the use of test-retest

OBERON: TOKEN BASED AUTHENTICATION 69

methodology and standardized testing procedures.

The tests were run thousands of times to produce the means according to the law of

expected averages. By running many simulations by the law of large numbers the average

converges to the true expected values.

Validity and Reliability Privacy

Human readable metadata, the ZKP payload, time of day, and type of API request

were used to measure the privacy implications of the ZKP-based approach compared to

traditional API methods. Additionally, the ZKP data was statistically analyzed using

randomization tests and clustering algorithms as described in chapter 2.5. Di�erent PRNGs

were used to detect any potential weakening of the ZKP for correlation attacks. These data

points were collected to evaluate the ability of an attacker to deduce whether the same user

was making di�erent API requests and to compare the privacy of the two approaches.

To ensure the validity of the study, the human-readable metadata collected was

carefully chosen to represent the most important information that an attacker could use to

identify a user or their behavior like identifiers and credentials. Additionally, the time of

day and type of API request were chosen to represent di�erent scenarios that could occur

in a real-world setting such as behavior based usage. The data was collected consistently

across all test runs, and the same data points were collected for both the ZKP-based

approach and traditional API methods to enable direct comparison using the network tools

ping, wireshark, and qperf for network timing and package inspection. The results were

analyzed and interpreted carefully to ensure that the conclusions drawn were supported by

the data.

To ensure the reliability of the study, the payloads collected were checked for

accuracy and consistency across test runs. The time of day and type of API request were

carefully recorded to ensure that the data was representative of a real-world scenario. The

data was collected using the same instruments and methods across all test runs to ensure

consistency, and the results were analyzed using statistical methods to ensure that the

OBERON: TOKEN BASED AUTHENTICATION 70

conclusions drawn were supported by the data. The reliability of the instruments was also

checked by running repeated tests and ensuring that the results were consistent.

In summary, the human-readable metadata, ZKP payload, time of day, and type of

API request were important data points for measuring the privacy implications of the

ZKP-based approach compared to traditional API methods. The validity and reliability of

the study were ensured by carefully choosing and collecting the data points, checking for

accuracy and consistency, and analyzing the results using statistical methods.

Validity and Reliability Ease of Deployment

Ease of deployment is an important factor in evaluating the e�ectiveness and

usefulness of a design solution, especially in the context of software development. While

test-retest methodology can be used to measure certain aspects of a design solution, it is

not suitable for evaluating ease of deployment. Instead, ease of deployment is evaluated by

measuring the number of steps required to integrate the artifact into an existing API

framework, as compared to other existing models. The number of steps in this context

refers to the number of lines of code required for integration, as well as any necessary setup

or maintenance tasks, such as configuring an SSO provider, inserting passwords into a

database, updating hashing algorithms, and deleting records.

In order to ensure the validity and reliability of this measurement, it is important to

use a consistent and well-defined methodology for measuring the number of steps required

for integration. This can be done by providing simple code for integration, as well as by

conducting tests and evaluations with multiple developers and teams. Overall, the ease of

deployment of the artifact is an important factor to consider when evaluating its

e�ectiveness and practicality for real-world use.

3.8 Data Analysis

Conducting statistical analysis and monitoring computational performance data

presents certain di�culties. One of the main di�culties is the vast amount of data that can

be collected (Adams & Heard, 2014). Another issue that specifically pertains to network

OBERON: TOKEN BASED AUTHENTICATION 71

data is the correlation and timing of events. For this study, ZKPs do not a�ect network

latency directly, only in the reduced number of trips to various endpoints. Therefore, the

main focus is to evaluate the influence of ZKP on clients and API endpoints. Additionally,

it is valuable to examine the correlation and sequence of ZKPs in relation to one another in

order to better comprehend if an attacker could exploit this information for malicious

purposes. Such data encompasses deanonymization and weak randomization.

Computational tools were used for data gathering and experiments.

To meet these goals, data was gathered to asses these areas that includes using

various CSPRNGs in proof generation to evaluate randomness and anonymization using

the bytes entropy. Other models included clustering for correlation and timing attacks.

Future work should investigate time series regressions and sequential data processing.

Together these calculations and analyses paint a more detailed picture about the

e�ectiveness of ZKPs as they are used for APIs. These calculations were largely utilized

during the data analysis phase to create descriptive statistics. Each PRNG sample was

compared against the others using ANOVA to test for enough evidence to suggest that

there is a significant di�erence between them.

The method used for data generation made data cleansing redundant since the large

number of simulations carried out e�ectively neutralized any influence from outliers.

Additionally, all data points were used in the analysis without any consideration for

outliers as extreme value were considered valid and integral to the dataset. The raw data

was processed from researcher code to yield the desired output format.

3.9 Summary

Chapter 3 provides a comprehensive analysis of the ZKP-based token authentication

and authorization artifact. The chapter delves into the mathematics and methods used in

detail, outlining the architecture for each one and its various applications. In addition, the

chapter explores the design science methodology, data collection, and methods employed in

this research. The instrumentation, validity and reliability, and data analysis aspects are

OBERON: TOKEN BASED AUTHENTICATION 72

also covered in depth. Moving forward, Chapter 4 o�ers a detailed account of the study’s

findings, including insights, discoveries, and conclusions regarding the design characteristics

and a thorough examination of the outcomes.

OBERON: TOKEN BASED AUTHENTICATION 73

4 Chapter 4: Experiment Results

This chapter provides the results for the Oberon authentication and authorization

protocols developed in the design artifact in the previous chapter. Sections 4.1 to 4.2

cover the implementation details and a notable finding. Sections 4.5 to 4.6 discuss the

data collection process and measurements used to validate Oberon against existing designs

and protocols.

Primary interest was in exploring how Oberon compared in simplicity to more

complicated setups and setups with weak security like no protection for password

credentials, single iteration based hashing for password credentials, and recommended

password credential hashing methodologies. The experiment further explored setups that

use SAML, OAuth 2, OIDC. This experiment compared data payloads, network latency

and round trips, and computation time. This work experimented with additional

authentication factors and its e�ects to the overall time to complete authentication.

Oberon data was also analyzed through statistical tests to measure the probability of

correlation attacks.

The results covered here show a positive comparison and e�ective protocol for

deploying a multi-factor enabled ZKP based authentication and authorization setup for

APIs and additional authentication factors can be added with minimal impact to time and

complexity.

The experiment also shows each structure serialized to a human readable format as

JSON and CBOR.

4.1 Oberon implementation

Oberon was written to enable the main functions described in the previous chapter

namely: key generation, token signing and verification, proof generation and opening, and

applying blinding factors. The method interfaces was designed to be similar to other

standard cryptographic signature libraries. Key generation is done using two methods,

randomly or by hashing a seed.

OBERON: TOKEN BASED AUTHENTICATION 74

impl SecretKey {

pub fn new(mut rng: impl RngCore + CryptoRng) -> Self

pub fn hash<B: AsRef<[u8]>(data: B) -> Self

}

Hash uses SHAKE-256 to compute a 64-byte digest that is treated like a big integer

and reduced by the group order. This produces a deterministic yet uniform distribution of

possible values. Random does something similar but uses the supplied CSPRNG to extract

64 bytes as described in the previous chapter. The serialization encodings are shown below

json = {

"w":"10857e0bc099160e35d6632842c2601e1356896b963168cad15080b60f9a2239",

"x":"6433af6c0c38064c2eadf7ffb8a5e47f9141abc32ca40310842b6c523f887403",

"y":"5d01e298c5983dd4b920c3d325cef21f484f5347c566ca815f136922162e7c5e"

}

cbor = \

10857e0bc099160e35d6632842c2601e1356896b963168cad15080b60f9a2239\

6433af6c0c38064c2eadf7ffb8a5e47f9141abc32ca40310842b6c523f887403\

5d01e298c5983dd4b920c3d325cef21f484f5347c566ca815f136922162e7c5e

JSON shows the individual components separated whereas CBOR shows the data as

a single byte sequence. Binary sequences are encoded as hexidecimal strings for readability.

HTTP based APIs use the JSON version whereas binary protocols can use CBOR.

Token signing takes two inputs, the signing key and the identifier or message to be

signed. In Rust, it returns an option in case the secret key is invalid. An invalid secret key

is a zero value.

impl Token {

OBERON: TOKEN BASED AUTHENTICATION 75

pub fn new<B: AsRef<[u8]>>(sk: &SecretKey, id: B) -> Option<Self>

}

There is no di�erence in serialization for the token since its simply a 48 byte value.

Token verifying takes the verification key, the identifier, and the token. Choice in

Rust is a constant-time value to indicate true or false as 1 or 0.

impl Token {

pub fn verify<B: AsRef<[u8]>>(&self, pk: PublicKey, id: B) -> Choice

}

Blinding factors can be created from any binary octet string and applied to or

removed from the token. This interface is consistent across Oberon implementations.

impl Blinding {

pub fn new<B: AsRef<[u8]>>(data: B) -> Self

}

Code Example

let pin = Blinding::new(b"1234");

let blind_token = token - pin;

These same blinding factors serve as authentication factors that must be included

when generating proofs. If blinding factor inclusion is neglected during proof generation,

the proof validation will always fail even if the token, identifier, and verification key are

correct.

impl Proof {

pub fn new<B: AsRef<[u8]>, N: AsRef<[u8]>>(

token: &Token,

blindings: &[Blinding],

OBERON: TOKEN BASED AUTHENTICATION 76

id: B,

nonce: N,

mut rng: impl RngCore + CryptoRng,

) -> Option<Self>

}

Proof::new returns an option in case the token or blindings are invalid values.

The serialization for a proof is 256 bytes for CBOR and 580 bytes for JSON.

json = {

"proof":

"ac91b29f66d5d8014307b5bc15d6b75d5ee7a2ab444c1ac6\

cd1180f3b1cc26c5280d9b57cbfd88421774f40acdff3ac3",

"u_tick":

"a121c8b246270b682fe8677587df236a1f5f7fcf190a098d\

bc0f29e6d3b0ea47ba3f4670a81d558e0cb865f850d4de20",

"commitment":"ae1e714d7e37d310c1c6d3bde7eecfdb9e1\

b2c1656abc54f9e61ea3075f121c711542a39fe277ee669e0b\

88a6595cc4f0fddf242d4be7d9cafd24b305bc8ad90ea2c3fc\

0927f31ec93460b4806559e5e828d3c455fec0ead5c3682498d\

0f4027",

"challenge":

"db7d1cf6b02e42e8194a56725cd87e1c\

8c7e5cfda43cb1d77a2f2c1ae300a917",

"schnorr":

"ea826a98f136eb97baa91ec1a94383da\

d60f807f23ebbd29c775a920f9b0006b"

}

OBERON: TOKEN BASED AUTHENTICATION 77

cbor =

ac91b29f66d5d8014307b5bc15d6b75d5ee7a2ab444c1ac6cd1180f3b1cc26

c5280d9b57cbfd88421774f40acdff3ac3a121c8b246270b682fe8677587df

236a1f5f7fcf190a098dbc0f29e6d3b0ea47ba3f4670a81d558e0cb865f850

d4de20ae1e714d7e37d310c1c6d3bde7eecfdb9e1b2c1656abc54f9e61ea30

75f121c711542a39fe277ee669e0b88a6595cc4f0fddf242d4be7d9cafd24b

305bc8ad90ea2c3fc0927f31ec93460b4806559e5e828d3c455fec0ead5c36

82498d0f4027db7d1cf6b02e42e8194a56725cd87e1c8c7e5cfda43cb1d77a

2f2c1ae300a917ea826a98f136eb97baa91ec1a94383dad60f807f23ebbd29

c775a920f9b0006b

Byte counts in the next sections only refer to the CBOR size since this is more

compact and JSON doesn’t add much readability since the values are byte sequences

anyway.

Proof verification is identical to signature verification with the addition of the nonce

where id is the message signed.

impl Proof {

pub fn open<

B: AsRef<[u8]>,

N: AsRef<[u8]>

>(

&self,

pk: PublicKey,

id: B,

nonce: N

) -> Choice

}

OBERON: TOKEN BASED AUTHENTICATION 78

4.2 Changes from the original design for Oberon-Counter

The original design of Oberon-Counter used only an accumulator. However, during

development, it was discovered to be insecure. The flaw allows a malicious prover to prove

punches in the accumulator that were never included–to have unlimited punches when they

should not. The fix is to cryptographically sign each punch so no new elements can be

added or altered. The fix adds to the size of the token and token generation time but adds

no computational time to proof generation and verification.

4.3 Oberon-Counter API changes

Key generation, creating and applying blinding factors, proof verification remains

unchanged from Oberon-ID and Time. The only additional parameter for creating a new

token is the maximum number of times it can be presented. It returns an additional

value–the accumulator that determines if the presentations are valid. This accumulator is

used in conjunction with the public key to verify proofs.

impl Token {

pub fn new<B: AsRef<[u8]>>(

sk: &SecretKey,

id: B,

count: usize,

) -> Option<(Self, Accumulator)>

}

Verifying tokens requires the Accumulator created at the same time as the token.

impl Token {

pub fn verify<B: AsRef<[u8]>>(

&self,

pk: &PublicKey,

acc: &Accumulator,

OBERON: TOKEN BASED AUTHENTICATION 79

id: B,

) -> Choice

}

An additional method was added for consumers to know how many times they have

left to present which is just an unsigned integer.

impl Token {

pub fn punches_remaining(&self) -> usize

}

Creating a proof only needed a minor update–make the token mutable since a

punch is essentially burned when the proof is created.

impl Proof {

pub fn new<B: AsRef<[u8]>, N: AsRef<[u8]>>(

token: &mut Token,

blindings: &[Blinding],

id: B,

nonce: N,

) -> Option<Self>

}

4.4 Oberon-Z API Changes

Key generation was modified to include the number of permissions as a parameter.

impl SecretKey {

pub fn new(

permission_count: usize,

rng: impl RngCore + CryptoRng

OBERON: TOKEN BASED AUTHENTICATION 80

) -> Option<Self>

pub fn hash<B: AsRef<[u8]>>(

permission_count: usize,

data: B

) -> Option<Self>

}

Token signing takes a list of permissions in addition to the identifier and signing

key. The API remains the same otherwise.

impl Token {

pub fn new<

M: AsRef<[u8]>,

L: AsRef<M>

>(

sk: &SecretKey,

id: M,

permissions: L

) -> Option<Self>

}

Token verification is the same as previous Oberon methods. Creating proofs is more

complicated that previous protocols. The server creates its secret k and associated public

key K.

impl PresentationSecretKey {

pub fn new(mut rng: impl RngCore + CryptoRng) -> Self

}

OBERON: TOKEN BASED AUTHENTICATION 81

The user creates a proof using the updated API after receiving the presentation

public key and the permissions requested.

pub enum PermissionProof<’a> {

Hidden {

value: &’a [u8],

signature: Signature,

},

Revealed {

value: &’a [u8],

signature: Signature,

}

}

impl Proof {

pub fn new<

’a,

B: AsRef<[u8]>,

L: AsRef<PermissionProof<’a>,

>(

token: &Token,

blindings: &[Blinding],

id: B,

permissions: L,

presentation_key: &PresentationPublicKey,

mut rng: impl RngCore + CryptoRng,

) -> Option<Self>

}

OBERON: TOKEN BASED AUTHENTICATION 82

Proof verification returns the permissions that overlap with the request.

impl Proof {

pub fn open<

M: AsRef<[u8]>,

L: AsRef<M>

>(

&self,

public_key: PublicKey,

permission_key: &PermissionSecretKey,

permissions: L,

) -> Result<Vec<M>>

}

The server can then read the result. If Result :: Ok, then the list of overlapped

permissions can be compared to what was expected and confirm or fail.

4.5 Data Collection

The Rust code was measured using Criterion, a benchmark framework over all the

standard functions used for Oberon and all its variants. Criterion allowed extracting the

raw samples into a text file which could analyzed with other tools. The issuer, prover, and

verifier code was run on a client machine running Ubuntu 22.04 with a 12th Gen Intel Core

i7-12700H, up to 4.7 GHz - 24 MB cache - 6 P-cores and 8 E-cores and a server machine to

gather measurements and impact on cloud environments.

A C5.Large server was created in the Amazon AWS Cloud running Ubuntu 22.04,

configured with the Nginx web server and basic and digest authentication turned on.

Nginx was configured to reverse proxy to a running Rust service listening on a Unix socket

that verified the credentials or ZKP and returned the result. Time was measured at each

endpoint for generating and verifying the messages. The average network latency was

OBERON: TOKEN BASED AUTHENTICATION 83

observed to be 225 ms for this portion of this experiment from networks like ping, qperf,

and wireshark. The setup is shown in Figure C1. Latency was measured between data

send and receive with log files recording timestamps on both sides. The server and client

clocks were kept in sync to ensure time readings were consistent. The tests were conducted

during the same time of day at 6 pm MST for consistency to account for possible shared

environment work loads and shared network tra�c. Criterion is a rust tool designed to be

statistically useful for measuring code performance and accurately measuring optimizations

and useful benchmarks (Heisler, 2022). Criterion measured computational time for each

function out outputs results to the command line. Each piece of Oberon was also measured

in terms of byte size. Other code was written to run the exact simulations without

Criterion to check its validity and reliability. All measurements produced by Criterion were

cross compared with samples generated without it with additional measurements manually.

These measurements analyzed total mean time, standard deviations and the 95% confidence

interval. The numbers were also analyzed using ANOVA to check whether PRNGs a�ected

the times. B8 shows the results from this. Given the p-value is greater than 0.05 with a

value of 0.117, this indicates that there is a 11.7% chance of obtaining an F-value as

extreme or more extreme than 2.149 under the assumption that there is no di�erence

among the group means. This is above the conventional significance level of 0.05, meaning

that the observed F-value is not significant at the 0.05 level. Therefore, it is a failure to

reject the null hypothesis and conclude that there is not enough evidence to support the

claim that at least one of the PRNG group means is significantly di�erent from the others.

4.6 Non functional measurements

To verify the unlinkability property of zero-knowledge, the privacy aspect of the

design, or resilience to leaks, observation, theft, correlation, fingerprinting, multiple proofs

were analyzed to check for any discernible patterns. The experiments aimed to determine if

any such patterns were a result of the random number generator or elliptic curve used.

Three di�erent random number generators were used: XorShift as described by Marsaglia,

OBERON: TOKEN BASED AUTHENTICATION 84

2003, Chacha as described by Bernstein, 2008, and the operating system cryptographically

secure random number generator. The output of CBOR encoded proofs were examined

using the K-Means clustering algorithm to identify any similarities and correlatability

across multiple proofs. This analysis aimed to detect any potential issues with the random

number generator or elliptic curve, which could result in the ability to link the proofs. The

high error values observed indicate that the accuracy of the clusters identified is poor. The

exact error numbers are shown in Table B9. This shows that given Oberon proof payloads

they are truly unlinkable as long as the random number generator is decent. XorShift was

used to show that even a non-CSPRNG could be used without hindering the strength of

the unlinkable property. This is not advised in practice since XorShift and other

non-CSPRNG are not resistant to side channel attacks and as shown Table B8, the

CSPRNG only add a few microseconds of overhead which is not noticeable to a user or

program as this will be dwarfed by the latency of sending data across a network. An

ANOVA calculation again showed no statistical di�erence between the three PRNGs

meaning no noticeable di�erence between them in privacy timings or performance.

4.7 Data for Basic and Digest Authentication

Basic and Digest Authentication are similar to usernames and passwords. For this

experiment, three di�erent modes were used: (1) a username and password without

utilizing any hash function, similar to a static API token, (2) a username and one pass of a

hash digest of the password, (3) a username and password with a password hashing

algorithm.

Passwords were generated at random with a length of 8, 12, and 20 which are the

common lengths of passwords used in the United States (Statista, 2022). The average time

is shown in the Table B10 as measured with the three password lengths. The hashing

algorithms were not accelerated with assembly instructions as implemented using

RustCrypto code. The rounds and parameters were taken from (Owasp, 2022).

The metrics are Oberon’s performance is 2 to 10 times faster than password hashing

OBERON: TOKEN BASED AUTHENTICATION 85

based techniques like PBKDF2 and Argon2id but 10-15 times slower than insecure

techniques as shown in in Tables B1- B3 and Figures C3- C4. The performance for the

two functions the server performed are show in table B4. Against secure digest based

techniques the proof sizes are 2.5 to 4 times larger. However, the proof sizes are still <

1KB which can be sent across modern networks in a few milliseconds.

4.8 Data for SAML, OAuth 2 and OIDC

Data collected for SAML OAuth 2, and OIDC was network tra�c payloads and

latency joining a dummy portal created following instructions based on (Google, Inc.,

2022). Packets and latency were collected using WireShark (Wireshark Organization, 2022)

and timestamps recorded in logs just like the previous experiment. Since these protocols

encode various data in messages like authentication and authorization. This experiment

used 10 permissions like in a Linux based file system with a sticky bit, read, write, and

execute for the user, group, and world.

SAML

SAML messages ranged from 400 bytes to 4 kilobytes in size. The SAML 2.0

protocol requires 12 network passes. This translated to 2.7 seconds based on the average

network latency to complete all rounds. SAML messages include policies which tend to be

large even for a simple policy. Oberon ID and time match SAMLs message sizes with no

policy attached and Oberon-Z maps to more complicated policies.

The results showed Oberon is 2-10X smaller, required one network trip and

Oberon-Z required 3 network trips. This translated to 10-100X performance and latency

di�erence. With 10 permissions, Oberon-Z size was 2.5 KB vs 5.4 KB for SAML thus a 2X

reduction in tra�c size.

OAuth2 and OIDC

Since OIDC is built on top of OAuth 2, the flows for these two protocols is identical.

OIDC was solely measured against Oberon ID and Time since its purpose is to

authenticate users and convey information about them. OAuth 2 controls authorization to

OBERON: TOKEN BASED AUTHENTICATION 86

access a protected resource like APIs and thus was compared to Oberon-Z. OIDC messages

are smaller than SAML due to using JSON instead of XML. Oberon proofs were similar in

size to OIDC being 1.1 to 1.7 times smaller as seen in Tables B1- B3 and Tables B5- B7.

The number of network trips was the same meaning the same latency delays e�ect.

Identical findings are between OAuth 2 and Oberon-Z where Oberon-Z–1 to 1.2 times

smaller and the same number of network trips.

Oberon proof verification time was slower than the previous two protocols using

only ECC based signature verification. ECDSA on the NIST P-256 curve is 55

µs/permission vs Oberon-Z 20 ms and Oberon ID’s 13.5 ms. The consequence is 30X slow

down for Oberon-Z and 18X for Oberon ID. Inspite of the performance gap, the time

required to use Oberon is still less than 50 ms which is fast enough to not be noticeable by

API callers and includes a minor win for network tra�c.

These results show Oberon is more resilient to certain attacks, more e�cient and

simpler.

4.9 Compared to existing API Data

An analysis of existing APIs from di�erent industries, such as cloud providers, AI

tools, databases, container sandboxes, secrets managers, email, pages, and sms sender

applications, code repositories, social media, and website software was conducted. The

APIs were classified according to their product o�erings, technology, and features of their

API authentication. These APIs were chosen due to their popularity among businesses and

developers (DuVander, 2023) based on the number of API calls per month, specifically

industries most commonly used by web developers and the latest trending technologies.

The authentication methods were categorized by password-based, token-based, mutual

TLS, OAuth, public key cryptography, and preshared keys based on symmetric

cryptography. Some of the APIs support LDAP authentication, which can be classified into

one or more of the categories previously mentioned. OAuth in this grouping includes

single-sign on methods like OpenID Connect. Some APIs o�ered multiple options meaning

OBERON: TOKEN BASED AUTHENTICATION 87

they could allow a ZKP o�ering without sacrificing existing customers. Tables B11- B19

show the findings for each API authentication.

A total of 45 APIs were analyzed in this study. Of these, 62% (28) support

Token-based authentication, with 44% (20) using it exclusively. 24% (11) support

Password-based authentication, with 7% (3) using it exclusively. 44% (20) support some

form of OAuth, with 18% (8) using it exclusively. Other forms of authentication such as

preshared key with symmetric cryptography, public-key cryptography, and mutual TLS are

used by 3 or less. Password-based, Token-based, and OAuth account for 98% of the API’s

authentication techniques. It is also worth mentioning that OAuth, which supports MFA,

is not commonly enabled for service-based APIs used by autonomous programs since these

programs run without human interaction and MFA usually requires a human response.

Thus, OAuth methods can be inferred to be similar to password-based authentication

where the identity information is located on separate security domains than the API itself.

This indicates that the majority of existing APIs (98%) have the potential to adopt or

integrate the ZKP approach presented in this research for their authentication methods.

As Oberon can serve as a replacement for OAuth where only a username and password are

supplied, 18% of APIs could experience a significant reduction in authentication times and

an additional 51% (20-Token and 3-password-based) would not only see the same

performance improvements but also gain additional security benefits as no credentials are

stored on the same system as the API, suggesting that the majority (98%) of current web

o�erings could potentially see advantages.

The findings of this study demonstrate that out of the 45 APIs analyzed, a majority

of them (62%) support Token-based authentication, while 24% support Password-based

authentication, and 44% support some form of OAuth. Notably, Token-based,

Password-based, and OAuth authentication methods account for 98% of all authentication

techniques used by the APIs analyzed in this study. Only a small percentage of APIs use

other forms of authentication, such as preshared key with symmetric cryptography,

OBERON: TOKEN BASED AUTHENTICATION 88

public-key cryptography, and mutual TLS.

Although OAuth supports MFA, it is not commonly enabled for service-based APIs

used by autonomous programs. Thus, OAuth methods can be inferred to be similar to

password-based authentication, where the identity information is located on separate

security domains than the API itself.

The results show the majority of existing APIs (98%) have the potential to adopt or

integrate the ZKP approach presented in this research for their authentication methods.

Oberon, which can serve as a replacement for variants where only a username and

password are supplied, can result in a significant reduction in authentication times for 18%

of APIs. Furthermore, an additional 51% (20-Token and 3-password-based) of APIs would

not only see the same performance improvements but also gain additional security benefits,

as no credentials are stored on the same system as the API. Therefore, the majority (98%)

of current web o�erings could potentially experience significant advantages by adopting or

integrating the ZKP approach presented in this study first and foremost of no credentials

files or databases stored on the servers.

4.10 Summary of Experiment Results

Oberon was demonstrated to be congruent with existing secure authentication and

authorization protocols. In comparison to Basic and Digest-based authentication methods,

which are prevalent in modern deployments, Oberon is more e�cient, lightweight, and

requires fewer network interactions. When compared to OIDC, network round trips and

data size are comparable, with slightly inferior but still acceptable performance. The main

divergence between OIDC and Oberon is in terms of privacy–Oberon only reveals the

requested permissions and nothing else, due to its use of ZKPs. By utilizing Oberon,

consumers maintain token privacy. Oberon does not depend on the security of TLS to

safeguard the authentication tokens and thus attackers would need to target the user’s

token directly where it is used to generate the proof. In the case of a man-in-the-middle

attack, the attacker gains no information from either the user or by compromising the

OBERON: TOKEN BASED AUTHENTICATION 89

authentication endpoint as storing only the verification key is enough and no credentials

will exist on the system.

Oberon’s API calls are structured to be similar to traditional cryptographic

signature libraries allowing consumers to implement secure Web APIs just like they would

employ signing tokens. The last section gives data collected from existing web APIs and

their current authentication methods and how the ZKP method could be applied to their

solutions.

4.11 Summary

In Chapter 4, the implementation details of Oberon and its variants were covered,

including the design decisions that were made. Additionally, chapter 4 discussed the data

collection and findings gathered for the experiments and simulations conducted to evaluate

the performance, security, and simplicity of Oberon. The primary objectives of the study

were to assess these key aspects of the new proposal, and the results demonstrated both

the advantages and disadvantages of Oberon compared to existing deployments and the

most commonly used APIs.

Chapter 5 presents the overall conclusions and interpretations of the study’s

findings, as well as recommendations and guidance for future work in this area. The results

of the study o�er insights into the potential benefits of adopting or integrating the Oberon

approach for authentication in web o�erings. By summarizing the key takeaways from the

study, Chapter 5 aims to provide readers with a comprehensive understanding of the

implications and significance of the research.

OBERON: TOKEN BASED AUTHENTICATION 90

5 Chapter 5: Conclusion

This chapter summarizes the findings of the design science research conducted on

Oberon and its variations. The study showed that these approaches provide a secure and

uncomplicated method for API authentication, similar to traditional username and

password or token-based systems, but with the added benefit of improved privacy,

performance, and simplicity. Additionally, this research introduced novel cryptographic

techniques for ZKP-based authentication and analyzed the trade-o�s associated with using

this approach. Overall, the results of the study demonstrate the potential of the Oberon

approach to improve the security and privacy of web o�erings, while maintaining ease of

use for end-users.

5.1 Contributions

5.1.1 Oberon-ID and Time

These two protocols provide a streamlined approach to API development by

eliminating the need to store credentials such as passwords or API tokens in secure storage

or use computationally expensive password hashing techniques or data encryption. By

doing so, they significantly reduce the risk of man-in-the-middle attacks and the potential

for leaked credentials or tokens. Instead, API endpoints only store a public verification key

to validate API calls, which is useless to attackers without the ability to create ZKPs.

Additionally, API endpoints securely store a single signing key for creating new tokens,

reducing the amount of sensitive information that needs to be managed. The experimental

results show that the performance of these protocols is su�cient for most use cases and

even improves in some cases. For example, password hashing methods don’t scale when the

system is under heavy load, requiring many system resources and tuning when underlying

platforms change.

Moreover, integrating these protocols is straightforward, requiring only a few lines

of code. The privacy benefits are substantial, even when relatively weak PRNGs are used.

Overall, this study suggests that hesitation to adopt these protocols must stem from

OBERON: TOKEN BASED AUTHENTICATION 91

reasons other than their e�ectiveness and ease of integration. The results of the ANOVA

calculation indicate that the use of strong hashing and cryptography reduces the impact of

the PRNGs on performance. The standard deviations also suggest that the performance

remains relatively stable even with randomizations in the signing keys and inputs. The

Shannon, Mean, Monte Carlo Value for Pi, and Serial Correlation Coe�cient entropy tests

demonstrate that the PRNGs have negligible impact on the randomness of the ZKPs.

Furthermore, clustering techniques such as K-Means cannot be used to correlate the ZKPs.

5.1.2 Oberon-Counter

A new variation of Oberon, called Oberon-Counter, was introduced to improve API

services by adding fixed number use tokens. This feature eliminates the need to track token

usage in a database, which can be susceptible to tampering by malicious parties. The API

endpoint only needs to track the current state of the accumulator and determine when the

usage limit has been reached. The storage requirement for this approach is small, requiring

only a 48-byte count value in addition to verification keys. If tampering occurs, it only

results in a denial of service rather than unauthorized access. The performance, privacy,

and simplicity benefits of this approach are similar to those of the previous two protocols.

5.1.3 Oberon-Z

Oberon-Z is an extension of Oberon that o�ers policy-based code and authorization

capabilities, which are signed alongside the authentication token in a manner similar to

other widely-used protocols such as OIDC, OAuth 2, and SAML. While this approach

operates similarly to these protocols in terms of bandwidth and network usage, it does

require higher computational requirements. However, the added computational costs are

not extreme enough to rule it out remaining subsecond. The main advantage of Oberon-Z

is increased privacy and simplicity, as not all of the user’s capabilities are revealed, even

when included with the credentials and permissions can be retained with the signer versus

distributed among the entire system. Unlike protocols such as OIDC, which require the

identity provider to withhold information before token creation, Oberon-Z o�ers greater

OBERON: TOKEN BASED AUTHENTICATION 92

granularity in terms of redacting sensitive information. This increased flexibility in

managing and controlling access privileges helps organizations to secure their systems

against unauthorized access while maintaining the privacy of user data. The results of the

experiments demonstrate that the performance of Oberon-Z is comparable to existing

protocols, and the use of ZKPs provides additional security benefits, such as resistance to

certain types of attacks. Moreover, using Oberon-Z does not require the API provider to

depend on or configure permissions with external identity providers. This means that the

API provider has full control over the authorization policies and can manage them directly

on their own system. This approach o�ers more flexibility and reduces the reliance on

third-party services.

5.2 Lessons Learned

Nonces To ensure the security of ZKP based protocols, preventing replay attacks is

paramount by including a number used once, or nonce, demonstrating the proof

presentation is recent and unique. Without proper nonce management, Oberon’s security

measures may be compromised, as presentations can be replayed as if they were the

original unknown token, leading to unauthorized access. But this isn’t a di�erent weakness

than is present in OIDC and TLS.

To prevent replay attacks, established protocols like TLS and OIDC handle nonce

management by using techniques such as time-based or incremental nonce generation. The

same techniques can be applied to Oberon to ensure that all presentations are current and

unique. If an API endpoint fails to check for the nonce, limited additional security is

o�ered by Oberon. For example, if presentations are not persisted, replayed presentations

will go undetected, allowing attackers to bypass the client’s security measures.

Proper nonce management is crucial to the security of the protocol. Commonly used

nonce methods include server-generated random numbers, time-based, or incremental. By

implementing proper nonce management, the risk of replay attacks is mitigated, ensuring

the security of the ZKP based protocols.

OBERON: TOKEN BASED AUTHENTICATION 93

Popular APIs The vast majority of the busiest APIs, accounting for approximately 98%,

continue to rely on methods that have been in use for the past 20 years with little changing

in the foreseeable future. This includes both token-based and OAuth 2-based approaches,

which have become the de-facto standard regardless of the domain and business use case.

While these methods have proven to be e�ective and widely adopted, they also come with

their own set of challenges, such as maintaining secure storage for tokens and access keys,

preventing token leakage, and mitigating man-in-the-middle attacks. As evidenced by the

many news sources, these methods have done little to mitigate modern day attacks leading

to the research conducted in this study to design a better method. Additionally, as more

businesses move towards digital transformation and the use of APIs to power their

applications, the need for more robust and privacy-preserving authentication and

authorization methods is becoming increasingly urgent.

5.3 Limitations

5.3.1 Libraries

Oberon was developed in Rust and can be run on any platform that supports Rust.

To increase adoption, Oberon can be integrated into popular Web API languages such as

Golang, .NET, Java, NodeJS, and PHP. Although multiple languages have been utilized for

Oberon ID implementation, its utilization is contingent on its ease of integration into

existing development and production processes. Making the integration process simpler

through language wrappers and pre-packaged options would require considerable resources,

which wasn’t thoroughly evaluated in this study.

5.3.2 Client token persistence

The study does not o�er a definitive solution for storing and managing client

tokens. This could be explored qualitatively in the future. Conventional techniques like

read-only environment variables, configuration files, and database tables are feasible but do

not o�er the full range of capabilities provided by Oberon, such as local-based multi-factor

authentication. Moreover, Oberon’s multi-factor authentication feature can be linked with

OBERON: TOKEN BASED AUTHENTICATION 94

hardware devices, allowing for mobility constraints, which can provide an added layer of

protection.

5.4 Conclusion

Oberon is a new zero-knowledge proof protocol for enhancing traditional password

and token-based authentication. The protocol eliminates the need for expensive

password-hashing authentication, removing the necessity of managing password files that

can be stolen or compromised, benefits from newer hardware, and is enables better

security. The concept of punches, which are used to limit the number of times a token can

be used, and private set intersection can also be used for greater flexibility such as

policy-based code and authorization capabilities, similar to widely used protocols such as

OIDC and OAuth 2, but with increased privacy and granularity. Additionally, Oberon

enables local-based MFA and hardware-based MFA for added protection which are missing

from non-interactive API based authentication. Overall, Oberon represents a promising

new approach to token-based authentication with increased security, privacy, and simplicity

compared to existing methods.

OBERON: TOKEN BASED AUTHENTICATION 95

Acronyms

2FA Two-Factor Authentication. 28

API Application Programming Interface. 1–23, 27–31, 42, 46–49, 51, 54, 56–60, 65–71, 73,

86–93

CBOR Concise Binary Object Representation. 27, 73, 74, 76, 77, 84

CSPRNG Cryptographically Secure Pseudorandom Number Generator. 31, 42, 71, 74,

84, 111

DAA Direct Anonymous Attestation. 39

ECC Elliptic Curve Cryptography. 86

ECDLP Elliptic Curve Discrete Log Problem. 34–36, 38

ECDSA Elliptic Curve Digital Signature Algorithm. 35, 36, 38, 86

EdDSA Edwards-curve Digital Signature Algorithm. 35, 38

EPID Enhanced Privacy ID. 39

GSS-API Generic Security Service Application Program Interface. 28

HSM Hardware Security Module. 6

HTTP HyperText Transfer Protocol. 3, 7, 8, 17, 23, 24, 46, 74

InfoSec Information Security. 4

JSON Javascript Object Notation. 26, 27, 29, 41, 73, 74, 76, 77, 86

JWT JSON Web Token. 27, 29, 30

OBERON: TOKEN BASED AUTHENTICATION 96

LDAP Lightweight Directory Access Protocol. 86

LSTM Long Short-Term Memory. 45

MAC Media Access Control. 6

MAC Message Authentication Code. 25

MFA Multi-Factor Authentication. 9, 28, 52, 87, 88, 94

MPC Multi-Party Computation. 61

OASIS Organization for the Advancement of Structured Information Standards. 28

OAuth 2 Open Authorization Framework. 3, 8, 9, 29, 30, 35, 46, 73, 85, 86, 91, 93, 94

OIDC OpenID Connect. 3, 8, 9, 29, 30, 35, 46, 73, 85, 86, 88, 91, 92, 94

OWASP Open Web Application Security Project. 1, 5

PII Personal Identifiable Information. 5

PRNG Pseudorandom Number Generator. 31, 69, 71, 83, 84, 90, 91

PS Pointcheval-Sanders. 49, 50

PSI Private Set Intersection. 38, 39, 49, 59, 61

PUF Physical Unclonable Function. 6

REST Representational state transfer. 3

RFC Request for Comment. 23, 24

RPC Remote procedure call. 3

SAML Security Assertion Markup Language. 3, 7–9, 28, 29, 46, 73, 85, 86, 91

OBERON: TOKEN BASED AUTHENTICATION 97

SASL Simple Authentication and Security Layer. 28

SHA-2 Secure Hash Algorithm 2. 32

SHA-3 Secure Hash Algorithm 3. 32

SOAP Simple Object Access Protocol. 3

SSO Single Sign On. 18, 28, 29, 70

TEE Trusted Execution Environments. 6

TLS Transport Layer Security. 7, 24, 25, 31, 34, 86–88, 92, 119

TPM Trusted Platform Module. 6, 39

WAF Web Application Firewalls. 10

WCF Windows Communication Foundation. 3

XML Extensible Markup Language. 7, 26–29, 41, 86

XOF Extendable-Output Function. 32

XSD XML Schema Definition. 26

ZKADS Zero-Knowledge Authorization Data Sets. 59

ZKP Zero-Knowledge Proof. 1–3, 13, 14, 16–21, 23, 35–42, 45–49, 51, 53, 58, 65–71, 73,

82, 87–92, 110, 111

OBERON: TOKEN BASED AUTHENTICATION 98

References

Adams, N., & Heard, N. (2014). Data analysis for network cyber-security (N. Heard &

N. Adams, Eds.). Imperial College Press.

Akamai. (2021). Api: The attack surface that connects us all. State of the Internet, 7.

https://www.akamai.com/content/dam/site/en/documents/state-of-the-

internet/soti-security-api-the-attack-surface-that-connects-us-all.pdf.

Akamai Technologies. (2022). State of the internet / report | api: The attack surface that

connects us all (Technical Report). Akamai Technologies.

https://www.akamai.com/us/en/multimedia/documents/state-of-the-

internet/report/state-of-the-internet-security-api-report-2022.pdf

Alliance, C. S. (2021). Understanding the owasp api security top 10.

Au, M. H., Susilo, W., & Mu, Y. (2008). Constant-size dynamic k-taa. IACR Cryptology

ePrint Archive, 2008, 136. https://doi.org/10.1007/11832072_8

AWS. (2019). Configuration and credential file settings.

AWS. (2021). New aws solutions implementation: Aws innovation sandbox.

Badrinarayanan, S., Miao, P., & Xie, T. (2021). Updatable private set intersection. IACR

Cryptol. ePrint Arch., 2021, 1349.

Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K.,

& Yakoubov, S. (2017). Accumulators with applications to anonymity-preserving

revocation. 2017 IEEE European Symposium on Security and Privacy (EuroS P),

301–315. https://doi.org/10.1109/EuroSP.2017.13

Baldimtsi, F., & Lysyanskaya, A. (2013). Anonymous credentials light. Proceedings of the

2013 ACM SIGSAC Conference on Computer & Communications Security,

1087–1098. https://doi.org/10.1145/2508859.2516687

Balmas, Y. (2022). Main factors accelerating api security risks in financial services

[https://www.financederivative.com/main-factors-accelerating-api-security-risks-in-

financial-services/].

OBERON: TOKEN BASED AUTHENTICATION 99

Barker, E., Chen, L., Roginsky, A., Vassilev, A., & Davis, R. (2018). Recommendation for

pair-wise key-establishment schemes using discrete logarithm cryptography.

Bernstein, D. (2008). Chacha, a variant of salsa20.

Biryukov, A., & Tikhomirov, S. (2019). Deanonymization and linkability of cryptocurrency

transactions based on network analysis. 2019 IEEE European Symposium on

Security and Privacy (EuroSP), 172–184.

https://doi.org/10.1109/EuroSP.2019.00022

Blum, M., Feldman, P., & Micali, S. (1988). Non-interactive zero-knowledge and its

applications. Proceedings of the Twentieth Annual ACM Symposium on Theory of

Computing, 103–112. https://doi.org/10.1145/62212.62222

Boneh, D., Boyen, X., & Shacham, H. (2004). Short group signatures. In M. Franklin (Ed.),

Advances in cryptology – crypto 2004 (pp. 41–55). Springer Berlin Heidelberg.

Boneh, D., Bünz, B., & Fisch, B. (2019). Batching techniques for accumulators with

applications to iops and stateless blockchains.

https://doi.org/10.1007/978-3-030-26948-7_20

Boneh, D., Gorbunov, S., Wahby, R. S., Wee, H., Wood, C. A., & Zhang, Z. (2022). BLS

Signatures (Internet-Draft draft-irtf-cfrg-bls-signature-05) [Work in Progress].

Internet Engineering Task Force. Internet Engineering Task Force.

https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/05/

Boneh, D., Lynn, B., & Shacham, H. (2001). Short signatures from the weil pairing.

Journal of Cryptology, 17 (4), 297–319.

Bonneau, J., Herley, C., Oorschot, P. C. v., & Stajano, F. (2012). The quest to replace

passwords: A framework for comparative evaluation of web authentication schemes.

2012 IEEE Symposium on Security and Privacy, 553–567.

https://doi.org/10.1109/SP.2012.44

Bormann, C., & Ho�man, P. E. (2020). Concise Binary Object Representation (CBOR).

https://doi.org/10.17487/RFC8949

OBERON: TOKEN BASED AUTHENTICATION 100

Brown, D. R. L. (2009). Standards for e�cient cryptography. elliptic curve cryptography,

version 1.5.

Buchanan, B. (2022). Stop hardcoding your secrets...how to securely keep a secret

[https://medium.com/asecuritysite-when-bob-met-alice/stop-hardcoding-your-

secrets-how-to-securely-keep-a-secret-adbf638f86e1].

Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., & Maxwell, G. (2017).

Bulletproofs: Short proofs for confidential transactions and more

[https://eprint.iacr.org/2017/1066]. https://eprint.iacr.org/2017/1066

Camenisch, J. (2014). Concepts Around Privacy-Preserving Attribute-Based Credentials

[Part 1: Invited Papers]. In M. Hansen, J.-H. Hoepman, R. Leenes, &

D. Whitehouse (Eds.), Privacy and Identity Management for Emerging Services and

Technologies: 8th IFIP WG 9.2, 9.5, 9.6 / 11.7, 11.4, 11.6 International Summer

School, Nijmegen, The Netherlands, June 17-21, 2013, Revised Selected Papers

(pp. 53–63). Springer. https://doi.org/10.1007/978-3-642-55137-6_4

Camenisch, J., Drijvers, M., & Hajny, J. (2016a). Scalable revocation scheme for

anonymous credentials based on n-times unlinkable proofs. Proceedings of the 2016

ACM on Workshop on Privacy in the Electronic Society, 123–133.

https://doi.org/10.1145/2994620.2994625

Camenisch, J., Drijvers, M., & Hajny, J. (2016b). Scalable revocation scheme for

anonymous credentials based on n-times unlinkable proofs. Proceedings of the 2016

ACM on Workshop on Privacy in the Electronic Society, 123–133.

https://doi.org/10.1145/2994620.2994625

Camenisch, J., Drijvers, M., & Lehmann, A. (2016). Anonymous attestation using the

strong di�e hellman assumption revisited. 9824, 1–20.

https://doi.org/10.1007/978-3-319-45572-3_1

Camenisch, J., Drijvers, M., Lehmann, A., Neven, G., & Towa, P. (2020). Short threshold

dynamic group signatures. https://doi.org/10.1007/978-3-030-57990-6_20

OBERON: TOKEN BASED AUTHENTICATION 101

Camenisch, J., Dubovitskaya, M., & Neven, G. (2009). Oblivious transfer with access

control. IACR Cryptology ePrint Archive, 2009, 131–140.

https://doi.org/10.1145/1653662.1653679

Camenisch, J., Kohlweiss, M., & Soriente, C. (2008). An accumulator based on bilinear

maps and e�cient revocation for anonymous credentials. IACR Cryptology ePrint

Archive, 2008, 539.

Camenisch, J., & Lysyanskaya, A. (2002a). Dynamic accumulators and application to

e�cient revocation of anonymous credentials, 61–76.

https://doi.org/10.1007/3-540-45708-9_5

Camenisch, J., & Lysyanskaya, A. (2002b). A signature scheme with e�cient protocols,

268–289.

Camenisch, J., & Zaverucha, G. (2009). Private intersection of certified sets. 5628, 108–127.

https://doi.org/10.1007/978-3-642-03549-4_7

Chaum, D., & van Heyst, E. (1991). Group signatures. In D. W. Davies (Ed.), Advances in

cryptology — eurocrypt ’91 (pp. 257–265). Springer Berlin Heidelberg.

Cheng, L. (2020). Api data breaches in 2020.

Clayburn, T. (2022). In rust we trust: Microsoft azure cto shuns c and c++.

Cloudflare. (2022). What is mutual tls (mtls)?

Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods

approaches 5th edition. SAGE Publications.

Crockford, D. (2017). The JavaScript Object Notation (JSON) Data Interchange Format

[RFC 8259].

Database, N. V. (2022). Cve-2022-23529

[https://nvd.nist.gov/vuln/detail/CVE-2022-23529].

den Boer, B. (1988). Di�e-hellman is as strong as discrete log for certain primes. Advances

in Cryptology - CRYPTO ’88 Proceedings, 530–539.

OBERON: TOKEN BASED AUTHENTICATION 102

Di�e, W., & Hellman, M. (1976). New directions in cryptography. IEEE Transactions on

Information Theory, 22 (6), 644–654. https://doi.org/10.1109/TIT.1976.1055638

Doerner, J., Kondi, Y., Lee, E., & Shelat, A. (2018). Secure two-party threshold ecdsa from

ecdsa assumptions. 2018 IEEE Symposium on Security and Privacy (SP), 980–997.

https://doi.org/10.1109/SP.2018.00036

DuVander, A. (2023). 15 apis developers need to know

[https://www.creativebloq.com/web-design/apis-developers-need-know-121518469].

ECRYPT II. (2023). Estream: The ecrypt stream cipher project

[https://www.ecrypt.eu.org/stream/].

ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31 (4), 469–472.

F5, I. (2022). Restricting access with http basic authentication.

Faraway, J. (2005). Linear models with r. Chapman & Hall/CRC.

Faz-Hernández, A., Scott, S., Sullivan, N., Wahby, R. S., & Wood, C. A. (2021). Hashing

to Elliptic Curves (Internet-Draft draft-irtf-cfrg-hash-to-curve-16) [Work in

Progress]. Internet Engineering Task Force. Internet Engineering Task Force.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16

Federal O�ce of Information Security. (2022). Documentation and analysis of the linux

random number generator

[https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/

LinuxRNG/LinuxRNG_EN_V4_5.pdf?__blob=publicationFile&v=8].

Fiat, A., & Shamir, A. (1986). How to prove yourself: Practical solutions to identification

and signature problems. Advances in Cryptology—CRYPTO’86, 186–194.

Fielding, R. T., & Reschke, J. (2014). Hypertext Transfer Protocol (HTTP/1.1):

Authentication. https://doi.org/10.17487/RFC7235

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures (Doctoral dissertation). University of California, Irvine.

OBERON: TOKEN BASED AUTHENTICATION 103

Franks, P. J., Hallam-Baker, P., Stewart, L. C., Hostetler, J. L., Lawrence, S., Leach, P. J.,

& Luotonen, A. (1999). Http authentication: Basic and digest access authentication.

https://doi.org/10.17487/RFC2617

Galbraith, S. D., Paterson, K. G., & Smart, N. P. (2008). Pairings for cryptographers.

Discrete Applied Mathematics, 156 (16), 3113–3121.

Gatlan, S. (2022). Fbi warns of mfa flaw used by state hackers for lateral movement.

Gatlan, S. (2023). T-mobile hacked to steal data of 37 million accounts in api data breach

[https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-

of-37-million-accounts-in-api-data-breach/].

Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., & Triandopoulos, N. (2016).

Zero-knowledge accumulators and set algebra. Proceedings, Part II, of the 22nd

International Conference on Advances in Cryptology — ASIACRYPT 2016 -

Volume 10032, 67–100. https://doi.org/10.1007/978-3-662-53890-6_3

Google. (2021). Google transparency report.

Google Cloud. (2022). Api security: Latest insights & key trends (Technical Report).

Google Cloud.

https://cloud.google.com/solutions/api-security-latest-insights-and-key-trends

Google, Inc. (2021). The state of api economy 2021 report.

Google, Inc. (2022). Open id connect

[https://developers.google.com/identity/openid-connect/openid-connect].

Gravitee.io. (2022). The future of apis: 7 trends you need to know. 3.

Haböck, U., & Krenn, S. (2019). Breaking and fixing anonymous credentials for the cloud

[https://ia.cr/2019/1061].

Hallam-Baker, P., Franks, P. J., Stewart, L. C., Sink, E. W., Hostetler, J. L., Leach, P. J.,

& Luotonen, A. (1997). An Extension to HTTP : Digest Access Authentication.

https://doi.org/10.17487/RFC2069

Hamming, R. W. (1980). Coding and information theory. Prentice-Hall.

OBERON: TOKEN BASED AUTHENTICATION 104

Handschuh, H. (2011). Sha-0, sha-1, sha-2 (secure hash algorithm). In H. C. A. van Tilborg

& S. Jajodia (Eds.), Encyclopedia of cryptography and security (2nd ed.)

(pp. 1190–1193). Springer.

http://dblp.uni-trier.de/db/reference/crypt/crypt2011.html#Handschuh11b

Heisler, B. (2022). Criterion.rs goals [https://github.com/bheisler/criterion.rs].

Hevner, A., March, S., Park, S., & Ram, R. (2004). Design science in information systems

research. Journal of management information systems, 21 (1), 9–30.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9 (8), 1735–1780.

Hölzl, M., Roland, M., Mir, O., & Mayrhofer, R. (2019). Disposable dynamic accumulators:

Toward practical privacy-preserving mobile eids with scalable revocation.

International Journal of Information Security.

https://doi.org/10.1007/s10207-019-00458-7

Jaques, S., Lodder, M., & Montgomery, H. (2022). Allosaur: Accumulator with low-latency

oblivious sublinear anonymous credential updates with revocations

[https://eprint.iacr.org/2022/1362]. https://eprint.iacr.org/2022/1362

Jones, M., Bradley, J., & Sakimura, N. (2015). JSON Web Token (JWT).

https://doi.org/10.17487/RFC7519

Jung, R. (2020). Understanding and evolving the rust programming language.

https://doi.org/http://dx.doi.org/10.22028/D291-31946

Knuth, D. E. (1969). The art of computer programming, volume 2 / seminumerical

algorithms. Addison-Wesley.

Korolov, M. (2021). Api attacks, breaches piling up.

Krishnaswamy, K. (2022). How platform ops teams should think about api strategy.

Kumar, R. (2014). Research methodology: A step-by-step guide for beginners (4th). SAGE

Publications Ltd.

OBERON: TOKEN BASED AUTHENTICATION 105

Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (2005). Applied linear statistical models.

McGraw-Hill/Irwin.

Lakshmanan, R. (2022). French electricity provider fined for storing users’ passwords with

weak md5 algorithm [https://thehackernews.com/2022/11/french-electricity-

provider-fined-for.html?_m=3n.009a.2901.oj0ao43uy3.1vbq&m=1].

Lakshmanan, R. (2023). Millions of vehicles at risk: Api vulnerabilities uncovered in 16

major car brands [https://amp.thehackernews.com/thn/2023/01/millions-of-

vehicles-at-risk-api.html].

Larsen, K., Lukyanenko, R., Mueller, R., Storey, V., Vander Meer, D., Parsons, J., &

Hovorka, D. (2020). Validity in design science research.

Leto, D., & Developers, T. H. (2020). Attacking zcash for fun and profit

[https://eprint.iacr.org/2020/627]. https://eprint.iacr.org/2020/627

Libert, B., Ling, S., Mouhartem, F., Nguyen, K., & Wang, H. (2021). Adaptive oblivious

transfer with access control from lattice assumptions. Theoretical Computer Science,

891, 210–229. https://doi.org/https://doi.org/10.1016/j.tcs.2021.09.001

Marsaglia, G. (2003). Xorshift rngs. Journal of Statistical Software, 08.

https://doi.org/10.18637/jss.v008.i14

Matsakis, N. D., & Klock II, F. S. (2014). The rust language. ACM SIGAda Ada Letters,

34 (3), 103–104.

Mir, O., Roland, M., & Mayrhofer, R. (2020). Damfa: Decentralized anonymous

multi-factor authentication. Proceedings of the 2nd ACM International Symposium

on Blockchain and Secure Critical Infrastructure, 10–19.

https://doi.org/10.1145/3384943.3409417

Mishra, A. (2023). Top 10 fintech api security risks and challenges

[https://www.valuebound.com/resources/blog/top-10-fintech-api-security-risks-and-

challenges].

Montgomery, D. (2017). Design and analysis of experiments. John Wiley & Sons.

OBERON: TOKEN BASED AUTHENTICATION 106

Moody, D., Peralta, R., Perlner, R., Regenscheid, A., Roginsky, A., & Chen, L. (2015).

Report on pairing-based cryptography. Journal of Research of the National Institute

of Standards and Technology, 120, 11–27.

Mozilla. (2021). Http authentication.

Myers, J. G. (1997). Simple Authentication and Security Layer (SASL).

https://doi.org/10.17487/RFC2222

National Institute of Standards and Technology. (2002). Secure hash standard.

Nguyen, L. (2005). Accumulators from bilinear pairings and applications to id-based ring

signatures and group membership revocation. IACR Cryptology ePrint Archive,

2005, 123.

Nielsen, H., Fielding, R. T., & Berners-Lee, T. (1996). Hypertext Transfer Protocol –

HTTP/1.0. https://doi.org/10.17487/RFC1945

of Standards, N. I., & Technology. (2015). Secure hash standard (shs).

O’Neill, M., Zumerle, D., & D’Hoinne, J. (2017). How to build an e�ective api security

strategy. (G00342236).

Oracle. (2022). Api management.

Organization for the Advancement of Structured Information Standards. (2005). Security

assertion markup language (saml) v2.0.

Owasp. (2022). Password storage cheat sheet [https:

//cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html].

Ozdemir, A., Wahby, R. S., Whitehat, B., & Boneh, D. (2019). Scaling verifiable

computation using e�cient set accumulators [https://ia.cr/2019/1494].

Parecki, A. (2022). Oauth 2.0 specification.

Park, S. K., & Miller, K. W. (1988). Random number generators: Good ones are hard to

find. Communications of the ACM, 31 (10).

Pointcheval, D., & Sanders, O. (2016). Short randomizable signatures, 111–126.

https://doi.org/10.1007/978-3-319-29485-8_7

OBERON: TOKEN BASED AUTHENTICATION 107

Pointcheval, D., & Sanders, O. (2018). Reassessing security of randomizable signatures.

https://doi.org/10.1007/978-3-319-76953-0_17

Rackspace. (2022a). Authentication tokens.

Rackspace. (2022b). Get your credentials.

Reselman, B. (2020). An architect’s guide to apis: Soap, rest, graphql, and grpc.

Riedl, R., & Robertson, T. (2010). A methodology for evaluating design alternatives.

Journal of the Association for Information Systems, 11 (5), 1–31.

Roberts, A. (2021). https://research.nccgroup.com/2021/03/29/saml-xml-injection/

Sanders, O., & Traoré, J. (2020). Epid with malicious revocation

[https://eprint.iacr.org/2020/1498]. https://eprint.iacr.org/2020/1498

Schnorr, C.-P. (1991). E�cient signature generation by smart cards. Journal of Cryptology,

4 (3), 161–174.

Schoenmakers, B. (2011). Oblivious transfer. In H. C. A. van Tilborg & S. Jajodia (Eds.),

Encyclopedia of cryptography and security (pp. 884–885). Springer US.

https://doi.org/10.1007/978-1-4419-5906-5_9

Security, S. (2021). State of api security report q3 2021.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System

Technical Journal, 27, 379–423, 623–656.

Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., & Danezis, G. (2020). Coconut:

Threshold issuance selective disclosure credentials with applications to distributed

ledgers.

Source, A. O. (2022). The top 120 application programming interfaces topics on github.

Statista. (2022). Average number of characters for a password in the united states in 2021

[https://www.statista.com/statistics/1305713/average-character-length-of-a-

password-us/#:~:text=AveragenumberofcharactersforapasswordintheU.S.2021&

text=Approximatelysixoutoften,passwordswithover12characters.].

OBERON: TOKEN BASED AUTHENTICATION 108

Stefanov, E., Shi, E., & Song, D. (2012). Policy-enhanced private set intersection: Sharing

information while enforcing privacy policies. In M. Fischlin, J. Buchmann, &

M. Manulis (Eds.), Public key cryptography – pkc 2012 (pp. 413–430). Springer

Berlin Heidelberg.

Sutskever, I., Vinyals, O., & Le, Q. (2014). Sequence to sequence learning with neural

networks. Advances in Neural Information Processing Systems, 3104–3112.

Sysoev, I. (2011). Nginx web server [https://www.nginx.com/].

Taujenis, R. (2022). How to safely store api keys in python [https:

//python.plainenglish.io.how-to-safely-store-your-api-keys-in-python-1dc5aadf93f9].

Team, S. G. S., & Switzerland, R. (n.d.). Specification of the identity mixer cryptographic

library version 2 . 3 . 0 *.

Team Traceable. (2023). The business case for api security: Why api security? why now?

[https://www.traceable.ai/blog-post/the-business-case-for-api-security].

Teseleanu, G. (2021). Lightweight swarm authentication [https://ia.cr/2021/1540].

U-prove cryptographic specification v1.1 revision 3. (2013).

Vaughan-Nichols, S. J. (2022a). Multifactor authentication is being targeted by hackers.

Vaughan-Nichols, S. J. (2022b). The okta mess is even worse than it appears.

Vitto, G., & Biryukov, A. (2020). Dynamic universal accumulator with batch update over

bilinear groups [https://ia.cr/2020/777].

W3C. (2008). Extensible markup language (xml) 1.0 (fifth edition) [W3C

Recommendation].

W3C. (2012). Xml schema definition language (xsd) 1.1 part 1: Structures [W3C

Recommendation].

Wallarm Inc. (2022). Three new api exploits causes gitlab data privacy and availability

issues [https://lab.wallarm.com/gitlab-security-issues-cve-2022-1352/].

Wierenga, K., & Lear, E. (2005). A SASL Mechanism for SAML (Internet-Draft

draft-wierenga-ietf-sasl-saml-01) [Work in Progress]. Internet Engineering Task

OBERON: TOKEN BASED AUTHENTICATION 109

Force. Internet Engineering Task Force.

https://datatracker.ietf.org/doc/html/draft-wierenga-ietf-sasl-saml-01

Wilson, Y., & Hingnikar, A. (2019). Evolution of identity. In Solving identity management

in modern applications: Demystifying oauth 2.0, openid connect, and saml 2.0

(pp. 19–28). Apress. https://doi.org/10.1007/978-1-4842-5095-2_3

Wireshark Organization. (2022). About wireshark [https://www.wireshark.org/].

Wray, J. (1993). Generic Security Service API : C-bindings.

https://doi.org/10.17487/RFC1509

Wu, H., & Wang, F. (2014). A survey of noninteractive zero knowledge proof system and

its applications. TheScientificWorldJournal, 2014, 560484.

https://doi.org/10.1155/2014/560484

OBERON: TOKEN BASED AUTHENTICATION 110

Appendix A

Future Work

Oberon was created to be adaptable, as each of the following modules can be added if it

supports cryptographic commitments or Schnorr proofs:

Revocation

At present, revocation in Oberon requires either deleting the server-side verification

key or blacklisting the identifier or epoch timestamp, as the protocol does not have built-in

support for revocation. However, techniques such as accumulators, as proposed in

references such as RSA-based (Vitto & Biryukov, 2020), bilinear pairing based (Boneh

et al., 2019), Merkle hash trees, or range proofs, can be used to implement revocation

checks while maintaining privacy by not leaking a correlatable identifier. One approach is

to embed a unique token ID into the token and present it as a ZKP of set membership to

indicate whether the token is revoked or not. This requires adding ¥ 300 bytes to the

token with accumulator-based proofs such as those in (Vitto & Biryukov, 2020). Range

proofs, such as those generated by Bulletproofs (Bünz et al., 2017), are useful for indicating

if the token timestamp falls within a valid or invalid range without revealing it, starting at

600 bytes. Neither of these additions adds much in proof size, but artifact design science

iterations could explore the impact they add to computation. Range proofs can confirm the

validity of a token without revealing its precise expiration date and time. Additionally,

range proofs can perform other time-based verifications, such as confirming the token’s

issuance date and time, validating age based on birthdate, and ensuring that a value falls

within a specific set.

Threshold

The cryptography that powers Oberon supports threshold based cryptography with

minimal changes, but no research around its a�ects and benefits to Oberon were

investigated. Threshold signing can be employed during token creation to create additional

OBERON: TOKEN BASED AUTHENTICATION 111

security domains for the token signing key. BLS signatures (Boneh et al., 2022) are unique

in that they are the only signature to date that facilitates one round signing methods.

Oberon signature tokens are based on BLS signatures meaning their threshold

requirements are identical.

While the cryptography used in Oberon can be adapted to support threshold-based

cryptography, the e�ects and benefits of this approach on Oberon have not yet been

studied. Threshold signing can be implemented during token creation by creating

additional security domains for the token signing key. BLS signatures (Boneh et al., 2022)

are unique–the only signature that enables one-round signing methods. Oberon signature

tokens are based on BLS signatures, so their threshold requirements are the same.

Deanonymization

This work examined various methods for deanonymizing or linking token

presentations. One method used was K-means clustering with two groups to detect if a

presentation had been reused. However, the results showed that K-means was unable to

accurately identify repeated presentations, regardless of the number of presentations

analyzed from the same or di�erent tokens or the CSPRNG used.

Potential areas for future investigation include utilizing machine learning and

artificial intelligence techniques, such as long-short term neural networks, to assess if token

presentations over time could possibly uncover a user’s identity or establish correlation.

Other techniques that analyze patterns may also be of value, as time is one of the few

details that cannot be concealed by ZKPs. Correlation attack methods have not been

extensively studied in relation to to ZKPs apart from a few unique deployments like

Monero (Biryukov & Tikhomirov, 2019) and ZCash (Leto & Developers, 2020).

OBERON: TOKEN BASED AUTHENTICATION 112

Appendix B

Oberon Performance Measurements

Function Mean Time Standard Deviation 95% Confidence Interval

Token generation 542 µs 23 µs ± 593 ns

Token verification 5 ms 235 µs ± 3 µs

Proof generation 3 ms 131 µs ± 3 µs

Proof verification 9 ms 331 µs ± 6 µs

Blinding factor 253 µs 12 µs ± 272 ns

Table B1 Client Oberon ID and Time Performance with 15000 Samples

Function Mean Time Standard Deviation 95% Confidence Interval

Token generation 420 µs/punch 267 µs ± 476 ns

Token verification 3.8 ms/punch 272 µs ± 112 ns

Proof generation 3.7 ms/punch 270 µs ± 298 ns

Proof verification 7.5 ms 301 µs ± 198 ns

Table B2 Client Oberon Counter Performance with 15000 Samples

OBERON: TOKEN BASED AUTHENTICATION 113

Function Mean Time Standard 95% Confidence

Deviation Interval

Token generation 600 µs/permission 234 µs ± 659 ns

Token verification 5 ms + 1 ms/permission 235 µs ± 3 µs

Proof generation 3 ms + 1 ms/permission 131 µs ± 6 µs

Proof verification 8 ms + 1 ms/permission 13 µs ± 260 ns

Table B3 Client Oberon-Z Performance with 15000 Samples

Function Mean Time Standard 95% Confidence

Deviation Interval

ID & Time token generation 750.5 µs 8 µs ± 129.4 ns

ID & Time proof verification 13.5 ms 318 µs ± 5 µs

Counter token generation 983 µs/punch 8 µs 131 ns

Counter proof verification 14 ms 313 µs ± 5 µs

Z token generation 820 µs/permission 343 µs ± 7 µs

Z proof verification 16 ms + 2.5 ms/permission 8 µs ± 12 ns

Table B4 Server Oberon Performance with 15000 Samples

Item Size (Bytes)

Secret Key 96

Public Key 288

Token 48

Proof 256

Table B5 Oberon ID and

Time size

OBERON: TOKEN BASED AUTHENTICATION 114

Item Size (Bytes)

Secret Key 292

Public Key 354

Token 675 + 48/punch

Proof 639

Accumulator 256

Table B6 Oberon Counter Size

Item Size (Bytes)

Secret Key 96 + 32/permission

Public Key 228 + 96/permission

Token 96

Proof 640 + 192/permission

Table B7 Oberon-Z Size

RNG Average Proof Generation Time

XorShift 3.699 ms

Chacha 3.702 ms

Native OS 3.703 ms

F-value from ANOVA 2.149

p-value from ANOVA 0.117

Table B8 Random number generator with Oberon

OBERON: TOKEN BASED AUTHENTICATION 115

RNG K-Means Shannon Arithmetic Monte Carlo Serial

Error Mean Value for Pi Correlation

Coe�cient

Ø 7.9 Ø 126 [3.1, 3.2] [≠0.004, 0.004]

XorShift 5448984600 7.999384 126.72 3.161333 -0.0011753

Chacha 5448400400 7.999520 126.82 3.160058 -0.0011765

Native OS 5458848000 7.999564 126.86 3.160382 -0.0014526

Table B9 Oberon statistical tests

OBERON: TOKEN BASED AUTHENTICATION 116

Method Iterations Client Server Payload (Bytes)

No Hash 0 10 ns 10 ns 13

SHA-256 1 54 ns 67 ns 32

SHA-384 1 218 ns 274 ns 48

SHA-512 1 219 ns 274 ns 64

SHA3-256 1 298 ns 322 ns 32

SHA3-384 1 302 ns 344 ns 48

SHA3-512 1 300 ns 336 ns 64

Shake-128 1 306 ns 352 ns 32

Shake-256 1 309 ns 363 ns 64

PBKDF2-HMAC-SHA256 320K 23ms 27 ms 95

PBKDF2-HMAC-SHA512 120K 48 ms 51 ms 95

BCrypt 10 47 ms 57 ms 72

BCrypt 11 94 ms 100 ms 72

BCrypt 12 187 ms 202 ms 72

SCrypt n = 15

r = 8

p = 1 58 ms 70 ms 88

Argon2id m = 37MB

t = 3

p = 1 73 ms 88 ms 97

Table B10 Password hashing

OBERON: TOKEN BASED AUTHENTICATION 117

API Authentication Methods

Amazon AWS Preshared Key symmetric cryptography

Microsoft Azure Token-based

OAuth

Rackspace Cloud Token-based

Google Cloud Token-based

OAuth

Public-key cryptography

Oracle Cloud OAuth

IBM Cloud Token-based

Table B11 Cloud Providers API

Authentication Methods

API Authentication Methods

Texti.app OAuth

ChatGPT Token-based

Poised Token-based

AssemblyAI Token-based

StockAI Token-based

Transaction.io Token-based

Table B12 AI Provider API

Authentication Methods

OBERON: TOKEN BASED AUTHENTICATION 118

API Authentication Methods

VoltDB Password-based

NuoDB Token-based

CockroachDB Password-based

DataStax Password-based

OAuth

Couchbase Password-based

OAuth

Table B13 Database API

Authentication Methods

API Authentication Methods

LastPass Enterprise Password-based

OAuth

KeyCloak Password-based

OAuth

Hashicorp Vault Password-based

Token-based

Public-key cryptography

OAuth

Table B14 Secrets Management API

Authentication Methods

OBERON: TOKEN BASED AUTHENTICATION 119

API Authentication Methods

Twilio Token-based

SendGrid Token-based

SocketLabs Token-based

MailChimp Token-based

Pagerduty Token-based

Table B15 Sender API

Authentication Methods

API Authentication Methods

Openshift OAuth

Mutual TLS

Rancher Token-based

Canonical Kubernetes Password-based

Token-based

Mirantis OAuth

Table B16 Container API

Authentication Methods

OBERON: TOKEN BASED AUTHENTICATION 120

API Authentication Methods

Github Token-based

Gitlab Token-based

OAuth

BitBucket Password-based

SourceForge Token-based

Table B17 Code Repository API

Authentication Methods

API Authentication Methods

Twitter Token-based

Fullcontact Token-based

Facebook OAuth

Dropbox OAuth

Stripe Token-based

Slack Token-based

OAuth

Vimeo OAuth

TickTock OAuth

Pinterest Token-based

OAuth

OpenSea Token-based

Table B18 Social API

Authentication Methods

OBERON: TOKEN BASED AUTHENTICATION 121

API Authentication Methods

Wordpress Password-based

Token-based

Public-key cryptography

OAuth

Drupal Password-based

Token-based

Public-key cryptography

OAuth

Wix OAuth

Table B19 Website Builder API

Authentication Methods

OBERON: TOKEN BASED AUTHENTICATION 122

Appendix C

Network Figures

Figure C1 Basic & Data Authentication Diagram

OBERON: TOKEN BASED AUTHENTICATION 123

Figure C2 API Authentication Methods

Figure C3 ZKP vs Hashing Authentication Time

OBERON: TOKEN BASED AUTHENTICATION 124

Figure C4 ZKP vs OAuth/SAML Authorization Time

Figure C5 ZKP vs OAuth/SAML Authorization worst case network trips

OBERON: TOKEN BASED AUTHENTICATION 125

Figure C6 ZKP vs OAuth/SAML Authorization payload in bytes

	Token Based Authentication and Authorization with Zero-Knowledge Proofs for Enhancing Web API Security and Privacy
	Adobe Acrobat Home

