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Abstract

This thesis investigates the efficiency of batching the verification of elliptic curve sig-
natures. The first signature scheme considered is a modification of ECDSA proposed by
Antipa et al. along with a batch verification algorithm by Cheon and Yi. Next, Bernstein’s
EdDSA signature scheme and the Bos-Coster multi-exponentiation algorithm are presented
and the asymptotic runtime is examined. Following background on bilinear pairings, the
Camenisch-Hohenberger-Pedersen (CHP) pairing-based signature scheme is presented in
the Type 3 setting, along with the derivative BN-IBV due to Zhang, Lu, Lin, Ho and
Shen. We proceed to count field operations for each signature scheme and an exact analy-
sis of the results is given. When considered in the context of batch verification, we find that
the Cheon-Yi and Bos-Coster methods have similar costs in practice (assuming the same
curve model). We also find that when batch verifying signatures, CHP is only 11% slower
than EdDSA with Bos-Coster, a significant improvement over the gap in single verification
cost between the two schemes.
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Chapter 1

Introduction

Digital signatures form an integral part of secure communications. The idea of digital
signatures arising from public key cryptography emerged from the paper “New Directions
in Cryptography” by Diffie and Hellman in 1976 [49]. The first concrete example of a
digital signature scheme came from the RSA encryption scheme [100]. This served as a
proof of concept, but did not provide security in practice: Boneh, Joux and Nguyen gave
an attack with ≈ 18% success probability that recovers the session key from a basic key
establishment protocol that uses textbook RSA [30]. For a survey of attacks on RSA,
see [28]. Since their introduction, the repertoire of digital signatures has expanded rapidly,
along with mathematical advances in lattices, pairings, and elliptic curves. Although efforts
are being made to design cryptographic systems that remain secure with the invention of
a large-scale quantum computer [23], elliptic curve schemes remain the most efficient and
secure option for many security goals. Elliptic curve topics will command much of the
later discussion; for now, we introduce some general notions that we will use throughout
the rest of this thesis.

1.1 Digital Signatures

A digital signature scheme is a five-tuple (P ,A,K,S,V) where the following conditions are
satisfied [114]:

1. P is a finite set of possible messages

2. A is a finite set of possible signatures
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3. K, the keyspace, is a finite set of possible keys

4. For each K ∈ K, there is a signing algorithm sigK ∈ S and a corresponding verifica-
tion algorithm verK ∈ V . The functions sigK , verK : P × A → {true, false} satisfy
the following for every message x ∈ P and for every signature y ∈ A:

verK(x, y) =

{
true if y = sigK(x)
false if y 6= sigK(x).

Given such a collection, we can sign messages and verify signatures on messages. How-
ever, we should also be concerned with the security goals of a signature scheme so that
its strength can be evaluated. The attack model adopted in mathematical cryptography
allows an adversary (thought of as a computer program) some information, with the goal
being to prevent a forgery of some description. The common attacker powers are enumer-
ated in [114] along with the common security goals. We give only the weakest attacker
goal paired with the strongest information available.

Definition 1.1 (Chosen-Message Attack). A forger F is allowed to obtain valid signatures
for messages x1, x2, ..., xN of its choosing. That is, F is given yi = sigK(xi) for all i.

Definition 1.2 (Existential Unforgeability). A signature scheme is existentially unforgeable
under chosen-message attack if an adversary is unable to produce a single valid message-
signature pair (x, y) where x 6∈ {x1, . . . , xN}, when allowed to launch a chosen message
attack.

The forger F must produce a signature on a message that it did not query the function
sigK with. In addition, one usually allows the forger the power to select its messages
adaptively, so he may choose x2 after receiving signature y1 on x1, as y1 perhaps gives
some information that may be of use to the attacker.

1.2 Batch Verification

Bellare et al. introduced a generic definition of batch verification [18], although practical
examples of such schemes appeared earlier [53]. The general idea is to amortize the cost
of exponentiation over a large number of instances. That is, given a cyclic group G with
generator g of prime order, we have to check that gxi = yi for all pairs (xi, yi), i = 1, ..., N .
A correct but inefficient way to do this is to perform n independent exponentiations to
the base g. Batch verification of exponentiations is accomplished by computing a single
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exponentiation in the group, and only accepts invalid pairs (xi, yi) with probability at most
2−`, where ` is a security parameter.

Definition 1.3 (Batch Verifier [18]). A batch verifier for a relation R is a probabilistic
algorithm V that takes as input a batch instance X = (inst1, . . . , instN) for R, and a
security parameter ` (independent of N). It satisfies:
1. If X is correct then V outputs 1;
2. If X is incorrect then the probability that V outputs 1 is at most 2−`.

All of the batch verification algorithms considered in this thesis satisfy Definition 1.3.
For EdDSA, we verify an equation of the form S =

∑N−1
i=0 ziPi, where scalars zi ∈ {0, 1}`,

Pi ∈ 〈g〉, and 〈g〉 is written additively. Each signature is valid if Pi = O, so we detect
forgeries if the sum does not evaluate to O. What is the probability of a forgery not
being detected in this batch? That is, what is the probability that some Pj 6= O, but
S = O? Since we are working in a cyclic group, if Pj 6= O then the choice of scalars zj is
determined by the other zi’s. Since the verifier chooses these scalars at random, an attacker
has success probability at most 2−`, where ` is determined by the size of the sampling set
for the scalars.

1.3 Batch Forgery Identification

Batch forgery identification is another service that may be provided with batch verification.
At a high level, this includes any method that can identify a forged signature. A trivial
method for forgery identification is single verification: one can use the standard verification
equation to test every message-signature pair for validity, and determine with certainty
that no forgeries are present. If we have many such signatures to verify (as in the general
problem), this is not the best we can do. A survey of forgery identification methods was
given by Stinson and Zaverucha [119]. In the generic group setting, an algorithm that
attempts to find a defective element is called a group testing algorithm. Theorem 2.1 of
[119] (attributed to Du and Hwang) states that any group testing algorithm is strictly less
efficient than single verification if the number of invalid signatures in a batch is greater
than or equal to ≈ 38% of the size of the batch, and it is possible to do better when the
number of invalid signatures is less than 1/3 of the size of the batch. Bernstein et al.
[24] have analyzed existing algorithms and proposed some improved algorithms for forgery
identification. The basic idea is to re-use some of the work done when attempting to identify
forgeries. For example, if we compute the entire multi-exponentiation and find the result
not equal to O, split the batch into two and compute the left multiexponentiation, and the
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right half can be computed for free with a single subtraction. This identifies which half
of the batch contains the forgery (if there is a single one), and continues recursively down
the tree structure until the faulty signature is identified. For more detail and discussion of
various algorithmic strategies, see [24].

1.4 Applications

Signature verification is known to be extremely fast in RSA, but the key size required for
the 128-bit security level is 3072 bits [7]. Since the best known attacks against the discrete
logarithm problem on elliptic curve groups are generic (Pollard Rho), this makes the much
smaller key and certificate sizes of ECC an attractive option.

If the cost of verification is taken over the size of the batch, we get some interesting
results. In 2011, Rangasamy, Stebila, Boyd and Nieto [97] implemented an anti-Denial of
Service (DoS) key exchange scheme with a mix of weak client-based authentication and
strong authentication with digital signatures. Since DoS attacks attempt to “consume a
server’s limited resources such as CPU cycles, memory and network bandwidth” [97], effi-
ciency is a top priority for system designers, and the effort in limiting server computation
(to the extent of saving a few modular operations) supports this view. Bernstein notes
that such verification-intensive applications can potentially use ECC thanks to batch ver-
ification techniques. The advantages of ECC are magnified significantly at higher security
levels (shorter keys, faster signing), and thus this option appears to be increasingly pop-
ular in practice. For example, Apple uses elliptic curve Diffie-Hellman key exchange over
Curve25519 in their operating system [2], among other adopters [6].

Vehicle-to-vehicle (V2V) applications are another example of how ECC is used to pro-
vide fast and secure authentication. In a vehicular ad-hoc network (VANET), vehicles
communicate with surrounding roadside infrastructure using a wireless communication
protocol [98]. Recent efforts to standardize strong authentication in VANET networks
with ECC have been encoded within the DSRC standard [8].

Discrete-log based protocols in general benefit from the idea of batching. Bellare et al.
give an n-party signature protocol that uses the small exponents test. This scheme is used
in teleconferencing, where all participants are connected to a central facility called a bridge,
which receives signals from the participants, operates on these signals in an appropriate
way, and then broadcasts the result back to the participants [18]. Goldberg and Henry
[66] note several applications of batch discrete-log zero knowledge proofs (which use batch
verification as a basic operation) including symmetric private information retrieval, cryp-
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tographic voting systems, and anonymous blacklisting. Thus, fast multi-exponentiation in
groups is required in several applications.

1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 focuses on the ECDSA∗

signature scheme and a batch verification technique due to Cheon and Yi. It concludes
with a recent practical proposal of Möller and Rupp for caching data to accelerate ECDSA
signature verification. Chapter 3 introduces Edwards curves and the EdDSA signature
scheme. It begins with a proof of security for the Schnorr signature scheme, which is
the basis for EdDSA. The chapter concludes with an examination of batch verification
techniques used in EdDSA. Chapter 4 considers the family of Barreto-Naehrig (BN) elliptic
curves and the optimal Ate pairing. We apply these curves in the Type 3 variant of the
identity-based batch verification scheme due to Zhang et al [120]. Chapter 5 presents our
conclusions and suggestions for future work.

5



Chapter 2

The ECDSA* scheme

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a standardized signature
scheme [68]. It is the elliptic curve analog of the Digital Signature Algorithm (DSA),
and is defined on a subgroup of an elliptic curve group over a finite field. ECDSA* is
a modified version of ECDSA that represents signatures in uncompressed form. Uncom-
pressed points are needed in order to batch verify ECDSA signatures. Batch verification of
unmodified ECDSA signatures has been attempted in [74]; however the batch verification
scheme was later shown to be insecure [24] (fixed in [71]).

The idea of batching operations was first considered by Fiat in the case of RSA [53].
Using this scheme, one can accelerate RSA signature verification by replacing full sized
exponentiations with several smaller exponentiations with the same modulus N . Similarly,
Naccache et al. proposed using random exponents to amortize the cost of modular expo-
nentiations in DSA verification over the batch size [93]. In [18], Bellare extended these
ideas by proposing batch verifiers for group exponentiations, namely the small exponents
(SE) test and the bucket test (BT). The SE test is analagous to the idea from [93], while
the BT performs SE on random buckets of a specified size. A recursive BT is only efficient
for very large batch instances. Bernstein et al. note that the security levels of these early
batch verification schemes are too low to be practical, and that improvement can be made
in the exponentiation techniques [25].

The outline of the rest of this chapter is as follows. Section 2.1 describes the ECDSA∗

scheme. Section 2.2 gives an operation count for verifying a single ECDSA∗ signature.
Section 2.3 presents a batch verification scheme by Cheon and Yi, and a detailed analysis
for the 128-bit security level. Section 2.4 discusses a verification speedup for ECDSA∗

verification (which may be useful for batch verification).
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2.1 Description

In what follows, H : {0, 1}∗ → Zn is a collision-resistant hash function, such as SHA-1.
Recommended elliptic curve parameters for prime fields and characteristic 2 fields can be
found in the NIST standard FIPS 186-4 [9]. In the next section, these choices are assumed.

Instantiation
Choose a large prime q. Choose constants a, b ∈ Fq to define

E/Fq : y2 = x3 + ax+ b, (2.1)

and select a point G ∈ E(Fq) of prime order n.

The generation of parameters is done in a way that takes into account all of the standard
attacks on the Elliptic Curve Discrete Logarithm Problem (ECDLP). Most importantly,
the requirement that a large prime n divides #E(Fq), with (log2(n) ' 160) ensures that the
Pollard rho attack is infeasible [68]. Ideally, the cofactor h = #E(Fq)/n should be small;
for the NIST curves over prime fields, we have h = 1. The cost of this attack on two NIST
curves is given in Table 2.1. There are special classes of elliptic curves where the ECDLP
admits a faster solution than Pollard rho. For instance, the case where #E(Fq) = q for q
prime succumbs to the Araki-Satoh-Semaev-Smart attack [64], which takes linear time in
the security parameter.

Curve Cost for rho
NIST-P256 2127.8

NIST-P384 2191.8

Table 2.1: The cost of Pollard rho on NIST curves is approximately
√

π
4
·2n/2 point additions

We say that a signature scheme is secure if it is existentially unforgeable under chosen-
message attack (cf. Definition 1.2). ECDSA security has not been proved equivalent to
solving ECDLP, but it is clear that ECDLP must be intractable for key privacy. There has
been some progress in proving security for ECDSA, but the results make strong assump-
tions [68]. We will assume that Pollard rho is the best attack on the signature scheme and
the associated elliptic curve throughout this thesis.

Key Generation
The private key is d ∈R [0, n− 1].
The public key is Q = dG.
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Signature Generation
Given message M ∈ {0, 1}∗, compute the signature on M as follows.
Let k ∈R [1, n− 1], and R = kG. Let r = x(R) mod n.
Let s = k−1(H(M) + dr) mod n.
Then (r, s) is the signature on M .

Signature Verification
A pair (r, s) of integers modulo n is a valid ECDSA signature on message M with public
key Q if

R = (H(M) · s−1 mod n)G+ (rs−1 mod n)Q (2.2)

satisfies
r = x(R) mod n.

In ECDSA*, we say that (R, s) is the signature on M , and only check that equation 2.2
holds.

It is preferable that we can continue to use ECDSA as it was standardized, and build
functionality on top of it to gain efficiency. For this reason, Antipa et al. [11] proposed
including side information with ECDSA signatures (r, s) on a message M so that the
correct point R can be uniquely recovered, giving the corresponding ECDSA* signature
(R, s) on the same message M . The candidate points for R come in pairs {R,−R} since
inversion in the group of elliptic curve points is just negation of the y-coordinate. In
general, to go from r to the point R, we must “invert” the action of taking an x-coordinate
modulo n. We are concerned exclusively with prime order curves in this chapter, so the
cofactor h = #E(Fq)/n is 1. Recall Hasse’s Theorem: |#E(Fq) − (q + 1)| ≤ 2

√
q. Hence

q + 1 − 2
√
q ≤ n ≤ q + 1 + 2

√
q. If q < n, then r = x(R) with exact equality. If n < q,

then we can deduce from Hasse’s theorem that q − n ≤ 2
√
q − 1. So there are at most

2
√
q elements of Zq that are in multiple residue classes modulo n. The density of these

elements is q−n
q
≤ 2√

q
− 1

q
≈ 2√

q
, which is very small for q of practical interest. Since

Hasse’s theorem gives (
√
q − 1)2 ≤ √n, we have q < 2n. Otherwise, q ≥ 2n implies

n ≤ 1√
2−1

, a contradiction. So x(R) can be r or r + n. Thus, we need one “sign” bit and
one “magnitude” bit, which tells us which interval to map the residue mod n into. The
general solution is to simply test the candidate points using the Antipa et al. accelerated
verification procedure, which makes use of the same argument above. The authors of [11]
note that in most cases, the overhead of testing candidates is still less than the gain from
accelerating single verification. Of course, there is the option to use ECDSA* without
modification for full efficiency, but we leave this to the needs of the application.
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The following result from [11] states that there is no loss of security by using the
modified signature scheme. However, as noted above, there is a small loss of efficiency.

Theorem 2.1 (ECDSA* Security [11]). Consider ECDSA and ECDSA*. The following
are equivalent:
1. (r, s) is a valid signature with respect to (M,Q) in ECDSA
2. (R, s) is a valid signature with respect to (M,Q) in ECDSA* for exactly one point R in
the set {P ∈ E(Fq) | x(P ) mod n = r)}

2.2 Speed-ups for Single Verification

Before considering fast batch verifiers, we want to compute the optimized cost of single
verification. It is also useful to know whether these improvements are “orthogonal”. In
other words, is it possible to use the accelerated single verification to make the batch verifier
even faster? We will answer this question and introduce some of the material necessary
for operation counts in this chapter.

The optimization of Antipa et al. is enabled by storing precomputed multiples of the
public base point G in the certificate for the public key Q, and thereafter performing half-
size scalar multiplications. This reduces the number of doublings required by a factor of
2.

2.2.1 Method of Antipa et al.

Considering the verification equation (2.2), compute the coefficients

a = H(M) · s−1 mod n

b = r · s−1 mod n
(2.3)

and then rewrite the verification equation as

aG+ bQ−R = O. (2.4)

The idea presented in [11] is to multiply (2.4) by a scalar v such that the lengths of the
new scalars will be a fraction of the length of the original scalars.

Theorem 2.2. Let α ∈ Z and let B be a positive integer. Then the congruence

vα ≡ u mod n (2.5)

has an integer solution (u, v) with |u| < n/B and v ∈ [1, B].
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Theorem 2.2 is a corollary of a result due to Dirichlet on Diophantine approximation.
We will apply it assuming that B < n, where n is a large prime. This condition is needed
for v to be invertible modulo n. Let B = n1/2, so that the guaranteed solution satisfies

|u| < n1/2, 1 ≤ v ≤ n1/2. (2.6)

In equation 2.4, write the integer b = (r · s−1 mod n) as b ≡ u/v mod n, where u, v are as
in Theorem 2.2. Then multiply (2.4) by v to obtain an equivalent verification equation

(a · v mod n)G+ uQ− vR = O. (2.7)

Since G is a public point, we assume that precomputation is available for this point. Thus,
we can usefully decompose the scalar λ = a · v mod n into half-length scalars λ0, λ1 in the
sense that we reduce the number of doublings needed to compute λG by a factor of 2:

λG = λ0G+ λ1(2dt/2eG). (2.8)

Here, t = dlog2 ne is the bitlength of n and λ = λ0 + λ12dt/2e. We have split the scalar
multiplication for G into two half-length scalar multiplications, given that we can pre-
compute doublings of the base point G (and store them with the certificate). In other
words, we have split λ into its most significant t/2 bits and its least significant t/2 bits.
Substituting (2.8) for λG in (2.7), we have an equivalent verification equation

λ0G+ λ1(2dt/2eG) + uQ− vR = O. (2.9)

Since the λi are half the bitlength of λ, and |u|, |v| ≤ n1/2 implies dlog2 |u|e, dlog2 |v|e ≤ 1
2
t,

every scalar is at most t/2 bits long. Thus computing the sum in (2.9) requires at most
t/2 doublings by the interleaving method [64].

We will address the natural questions that follow:

1. How does one compute the integers u and v from Theorem 2.2?

2. Which strategy is optimal for the multi-scalar multiplication in (2.9)?

3. Assuming precomputed points are stored in the certificate and we use an optimal
scalar multiplication strategy, what is the overall cost?

To compute the integers u and v, we can use the extended Euclidean algorithm (EEA).
For the 2-scalar case, we obtain half-length coefficients during the execution of the EEA
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on modulus n and the integer x (note that gcd(x, n) = 1). That is, for the first remainder
ri in the sequence such that ri ≤

√
n, we obtain vi such that cin+ vix = ri and |vi| ≤

√
n.

Reducing this equation mod n gives x ≡ u/v, as required. A proof that we can always
efficiently compute a vi with this property can be found in Section 4 of Gallant et al. [58].

The algorithm for 2-scalar multiplication used by Antipa et al. for (2.9) is the Joint
Sparse Form (JSF), which we introduce next.

2.2.2 Joint Sparse Form

The Shamir-Strauss method is a technique for computing linear combinations of the form
aP + bQ. A minimal working example for this method demonstrates that fewer curve
additions are required than performing two ordinary scalar multiplications and adding the
results. We first precompute and store P + Q. Then process the bits of a and b jointly
from left to right, adding P +Q whenever a ‘11’ occurs in the joint binary representation,
adding P when we encounter ‘10’, adding Q for ‘01’, and adding ∞ for ‘00’. For example,
if

a = 0 1 0 1

b = 1 1 0 1

then
aP + bQ = (((∞+Q)2 + P +Q)2 +∞)2 + P +Q.

This requires a total of 3 doublings and 2 additions.

In general, we have scalars a and b of bitlength t. If the scalars

a = at−1 at−2 · · · a0

b = bt−1 bt−2 · · · b0

are chosen according to a uniform distribution, then the probability that (ai, bi) = (0, 0)
for a fixed i is 1/4. So the probability that (ai, bi) 6= (0, 0) is 3/4. Thus, we expect 3

4
t

additions for random a, b. The number of doublings required is the bitlength of the scalars,
so t doublings are needed. We can do better than this for the number of additions required.

The Joint Sparse Form (JSF) was invented by Solinas [112]. It uses the above left-to-
right method, and it is more efficient than computing two independent scalar multiplica-
tions via 2-NAF (cf. Section 4 of [112]). Two independent NAFs require 5t/9 additions on
average, while the JSF requires t/2 additions. Although JSF requires an extra addition in
the precomputation phase (i.e. P +Q and P −Q), it remains advantageous to do this for
all practical group orders and scalar lengths.
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Definition 2.3. [64, 112]. Let

n0 = 〈u0,m, · · · , u0,1, u0,0〉 =
m∑
i=0

u0,i2
i

n1 = 〈u1,m, · · · , u1,1, u1,0〉 =
m∑
i=0

u1,i2
i

(2.10)

be a signed radix-2 representation of n0, n1. A JSF of n0 and n1 has the following properties:

1. Of any three consecutive positions, at least one is a double zero.

2. Adjacent terms do not have opposite signs (the individual signed radix-2 representa-
tions are called ‘reduced’).

3. If ui,j+1ui,j 6= 0, then u1−i,j+1 = ±1 and u1−i,j = 0.

There is an efficient algorithm algorithm for computing a JSF of two integers, and this
representation can be shown to be unique.

2.2.3 Operation Count for Single Verification

This section gives the operation count for single verification in ECDSA*.

Let us give the explanation in the case where we precompute and store one multiple
of the public key Q = Q0, say Q1 = 2dt/3eQ. Let G0 = G, and let G1 = 2dt/3eG and
G2 = 22dt/3eG be precomputed multiples of G. Recall that the verification equation is

aG+ bQ−R = O. (2.11)

Now, compute integers u, v such that |u| . n2/3, |v| . n1/3 and vb ≡ u mod n using the
Extended Euclidean Algorithm, and multiply through by v in (2.11) to obtain

λ0G0 + λ1G1 + λ2G2 + uQ− vR = O, (2.12)

where λ0, λ1, and λ2 are the three limbs of length approximately t/3 of the scalar av mod n.
Since |u| . n2/3, we split u into two limbs of roughly t/3 bits each by letting u0 = u
mod 2t/3 and u1 = (u− u0)/2t/3. The result is a verification equation in which all scalars
have size . t/3 bits:

λ0G0 + λ1G1 + λ2G2 + u0Q0 + u1Q1 − vR = O. (2.13)
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We now group the scalar multiplications in pairs and find JSF(λ0, λ1), JSF(λ2, u0), and
JSF(u1, v). The remaining task consists of three independent 2-scalar multiplications (and
adding the results).

Thus, the overall cost of single verification is approximately[
3

(
1

2
· t

3
+ 2

)
+ 2

]
Ae +

(
t

3

)
De = (t/2 + 8)Ae + (t/3)De, (2.14)

where Ae denotes elliptic curve additions and De denotes doublings. We use the term
‘approximately’ here because the exact number of additions required depends on the JSF
of the integers involved in the scalar multiplications; we are working with expected values.
Also, the JSF may be 1 digit longer than the respective binary expansions.

Coordinates

In order to express equation 2.14 in terms of field operations – inversions, multiplications
and squarings – a choice of efficient coordinates must be made. The affine addition formulas
that define the group law are not the most efficient to use in practice when we have a
large number of points to add, due to the necessary field inversions. Standard projective
coordinates are the first step in eliminating the costly inversions associated with affine
coordinates. We include these standard definitions from [64]. Note that we work over the
finite field Fq.

Definition 2.4. Let c, d be positive integers. Let a relation ∼ be defined on F3
q\{(0, 0, 0)}

by (X1, Y1, Z1) ∼ (X2, Y2, Z2) if and only if X1 = λcX2, Y1 = λdY2, Z1 = λZ2 for some
λ ∈ Fq\{0}. The equivalence class (X : Y : Z) consists of all triples that are related by ∼.
We call (X : Y : Z) a projective point.

The associated projective form of the Weierstrass equation 2.1) is obtained by substi-
tuting (X/Zc, Y/Zd) for (x, y) and clearing denominators. The same substitution is applied
to obtain projective doubling and addition formulas; we simply carry an extra third coordi-
nate Z throughout computation, which can be thought of as an accumulated denominator.
This is helpful because the group law in projective coordinates requires no inversion. We
can later convert back to affine coordinates as needed by inverting this third coordinate.
However, note that this inversion only needs to be done once per bulk operation, e.g., once
per scalar multiplication, or once per multi-scalar multiplication.

In the case where c = d = 1, the equivalence classes are said to be in standard
projective coordinates. We will assume that the curve parameter a is −3, as the work
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of Brier and Joye shows that we do not lose much generality [36]. 1 The projective equation
of the elliptic curve in these coordinates is

Y 2Z = X3 + aXZ2 + bZ3. (2.15)

The distinguished element (0 : 1 : 0) corresponds to the point at infinity on E.

It turns out that we can do slightly better by choosing different c, d. In the case where
c = 2, d = 3, projective points are said to be in Jacobian coordinates. The projective
equation of the elliptic curve in these coordinates is

Y 2 = X3 + aXZ4 + bZ6. (2.16)

The point at infinity ∞ corresponds to the projective point (1 : 1 : 0). The formulas for
doubling a point P = (X1 : Y1 : Z1) in Jacobian coordinates are given here:

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2

1

Y3 = (3X2
1 + aZ4

1)(4X1Y
2

1 −X3)− 8Y 4
1

Z3 = 2Y1Z1

2P = (X3, Y3, Z3).

Note that since a = −3, we can rewrite a common subexpression

3X2
1 +−3Z4

1 = 3(X1 − Z2
1) · (X1 + Z2

1).

This new expression can be computed in 1 field squaring and 1 field multiplication since
multiplication by a small constant is counted as very fast, and additions mod q are negligible
in comparison to multiplications mod q. This explains the savings of two squarings over the
general case: we trade multiplication by a for multiplication of (X1 − Z2

1) and (X1 + Z2
1),

and three squarings for 1 squaring of Z1. We also note that in order to count operations
precisely, we have to divide the above formulas into computed units and give the full
sequence of operations. This is standard and can be found in [64]. Further optimizations
are possible but we will not go into further detail. We summarize the curve operation
counts in Table 2.2.

1We also gain efficiency, for example, general doubling in Jacobian coordinates costs 4m + 6s, and
letting a = −3 reduces this to 4m+ 4s.
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Doubling General addition Mixed coordinates
2A→ A 1i+ 2m+ 2s A+ A→ A 1i+ 2m+ 1s J + A→ J 8m+ 3s
2P → P 7m+ 3s P + P → P 12m+ 2s
2J → J 4m+ 4s J + J → J 12m+ 4s

Table 2.2: Operation counts for curves over prime fields [64]

2.3 Batch Verification

In this section we present two batch verification methods for ECDSA*. First, we discuss
why it is important to be careful: a batch verifier should not allow forgeries to pass verifi-
cation e.g., via cancellations in the multiscalar multiplication. Karati et al. [74] proposed
a batch verification scheme which uses only original ECDSA signatures. The advantage
of this is a smaller signature size, since if dlog2(q)e = t, then ECDSA has signatures of
size ≈ 2t whereas ECDSA* has signatures of size ≈ 3t. As we mentioned before, there
is a small amount of overhead for testing candidate points, but it is not a deciding factor
in practice between these two schemes. We can still have small signature size by doing
point recovery in the standard way (square roots to recover y-coordinates) per-signature
for compatibility reasons and flexibility. The main benefit of ECDSA* is working in the
cyclic group generated by a base point, and forming linear combinations. Constructing
batch verifiers using these ideas has great potential for efficiency enhancements in ECC
protocols. However, if we demand a small signature size, then the cost of decompression
(i.e. computing modular square roots) must be considered. There has been work done on
reducing the overhead associated with decompression, but it turns out that weaknesses can
arise. We follow a paper of Bernstein et al. [24] that discusses an example.

2.3.1 Importance of Random Scalars

Consistent with the idea of batching, Karati et al. [74] combine all the individual ECDSA*
verification equations into one equation via addition. Looking at equation 2.4, we see that
a summation

∑N
i=0Ri of signature points arises; the technical work presented in the paper

presents new techniques for x-coordinate only computation of this sum. Their proposed
verification equation in that work is the following (computation of the left hand side is the
novelty of their work):

N∑
i=0

Ri =

(
N−1∑
i=0

H(Mi)s
−1
i

)
G+

N−1∑
i=0

(ris
−1
i )Qi. (2.17)
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Despite the gain in efficiency over individual verification, there is a way to make forgeries
pass this verification equation, even though they would fail individual verification. A batch
verifier must ensure that the probability of a forgery (incorrect instance) being accepted is
exponentially small in the security parameter [18]. Bernstein showed that this is not the
case for this batch construction. We note that Karati et al. generalized their methods to
the case of random scalars in [70] to respond to this attack. The basic fix is to use symbolic
methods for batch size 2, and a Montgomery ladder for batch size 3 to 8; larger batch sizes
are not considered due to higher cost than single verification. It is not clear what effect
inclusion of random scalars has on performance relative to the original claims.

The attack

Consider an attacker with private key a2 and corresponding public key Q2. Bernstein et al.
showed that the attacker can make any message M1 pass batch verification under any target
public key Q1, along with a message M2 signed by Q2. Of course, both messages will still
pass verification in larger batches due to the cancellation that occurs in a non-randomized
sum of curve points.

The attacker picks a random k1 ∈R [1, n−1] and computes R1 = k1P and corresponding
r1 = x(R1) mod n as in proper signing. Then it chooses s1 ∈R [1, n − 1], which is not
what is done in proper signature generation – the integer s1 should be derived from the
private key, the hash of the message, and the randomly chosen k1.

For the second message-signature pair, the attacker computes R2 =
(
r1
s1

)
A1, which is not

a random multiple of the base point G as in proper signing. Then it computes r2 = x(R2)
mod n and

s2 =
(H(M2) + r2a2)(
k1 − H(M1)

s1

) . (2.18)

The verifier receives (r1, s1), (r2, s2) as purported signatures on M1,M2 as in the ordinary
protocol. It then reconstructs the full points R1, R2 via square root computation and
subsequently R1 + R2, or directly from ‘almost’ x-coordinates r1, r2 with Karati et al.’s
symbolic methods. Then it computes the right hand side (how is not important here)(

H(M1)

s1

+
H(M2)

s2

)
G+

(
r1

s1

)
Q1 +

(
r2

s2

)
Q2. (2.19)

Substituting the choice of s2 and simplifying this expression gives r1
s1
Q1 + k1G, and since

R1 +R2 = k1G+ (r1/s1)Q1, these two sides are equal. Thus batch verification containing
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these two signatures passes for any message, and any choice of public key A1. Since
the choice of s1 is random, individual verification fails with overwhelming probability,
since s1 6= k−1

1 (H(M1) + a1r1) mod n with high probability, and thus the right hand side
H(M1)
s1

G+ r1
s1
a1G will not factor to give R1 = k1G. Similarly, we can check that (r2, s2) on

M2 will not pass single verification by substituting the above choices.

Given this attack, it is clear that inclusion of random scalars in batch verification is
needed.

2.3.2 Cheon-Yi

Another idea for batch verification of ECDSA∗ signatures is to generalize the ideas of
Bellare et al. [18] and Cheon/Lee’s sparse exponents [41]. The construction of Cheon and
Yi [42] takes into account the attack of Boyd and Pavlovski [35] that applied to some early
schemes that did not correctly adapt the small exponents test. The small exponents test
(Algorithm 1) is a batch verifier for a collection of exponentiations in a group of prime
order q. Note that this test assumes the points yi are in G. Cheon and Yi remark that
in order to defeat/ignore completely the small subgroup attack that Boyd and Pavlovski
propose, E(Fq) should have cofactor 1.

Algorithm 1 Small Exponents Test

INPUT: g a generator of G, and (x1, y1), ..., (xN , yN) with xi ∈ Zn and yi ∈ G, security
parameter `

CHECK: That yi = gxi for all i ∈ {1, ..., N}
(1) Pick s1, ..., sN ∈ {0, 1}` at random.
(2) Compute x =

∑N
i=1 xisi mod n, and y =

∏N
i=1 y

si
i .

(3) If gx = y then accept, else reject.

Modifications are necessary for other cofactors (e.g. 2 and 4 for the NIST curves de-
fined over characteristic-two fields), otherwise we have to consider those curves weak since
forgeries of the form α · yi can pass through verification. The modification proposed to the
small exponents test is to “give assurance of the correctness of the batch up to multiplica-
tion by an element of order less than 2`”. This means that αyi will be considered valid for
any element α of small order in the group.

We emphasize that Algorithm 1 and the corresponding proof of at most 2−` error
probability are for single exponentiations in a group. Also note that Algorithm 1 is generic
and leaves open the methods of computation, the optimal choice of which depends highly on
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the group and the cryptographic protocol we work with. One thing we can say immediately
is that the computation of the product

∏N
i=1 y

si
i is easier in a group where inversion is free,

e.g. elliptic curve groups, since we can use NAF(si).

Cheon and Yi propose to do ECDSA* batch verification in the usual fashion: ver-
ify a random linear combination of the ECDSA* verification equations arising from a
batch instance. Their approach chooses the scalars to be integers in width-w non-adjacent
form (w-NAF). A w-NAF is a signed radix-2 representation of an integer in which every
nonzero digit is an odd integer with absolute value less than 2w−1, and at most one of
any w consecutive digits is nonzero. For the purposes of their work, we also require that
the number of nonzero digits be a chosen parameter t. The associated odd-digit set is
D = {±1,±3, ...,±(2w−2 − 1)}. The length of the representation is the index of the most
significant digit; the weight of the representation is the number of nonzero digits.

First, we must generate the random scalars in w-NAF form. There are many radix-2
representations of an integer, so we must be sure that the random scalars we generate are
uniformly distributed, i.e. they are distinct as integers, so that the subsequent enumeration
argument (Lemma 2.6) is valid. The sufficient condition for this is the following:

Lemma 2.5. [42] Let n be a positive integer. All w-NAFs of length ≤ m with the digit
set D are distinct modulo n if m ≤ log2(n/C) where C = max{|x− y| : x, y ∈ D ∪ {0}}.

In the case of elliptic curves with D = {±1,±3, ...,±(2w−2−1)}, we have C = 2w−1−2,
and so we need m ≤ log2(n/(2w−1 − 2)) ≈ log2 n − w + 1. Thus we require that m ≤
log2 n − w + 1. Subject to this condition, we now count the number of possible w-NAF
scalars with these parameters in order to establish the security level of the batching scheme.

Lemma 2.6. [42] The number of w-NAFs of length ≤ m and weight t with the digit set
D = {±1,±2, ...,±(2w−2 − 1)} is(

m− (w − 1)(t− 1)

t

)
2(w−1)t.

The proof of this lemma yields Algorithm 2 for generating random w-NAFs for batch
verification. For a choice of the parameters m, t, w, this is the security level of the batching
scheme. Now suppose we are given N ECDSA* signatures (mi, Ri, si), which correspond to
signers with public keys Qi. Letting c1, ..., cN be randomly chosen w-NAFs via Algorithm 2,
we have to compute

N∑
i=1

ci(aiG+ biQi +Ri) = aG+
N∑
i=1

b′iQi +
N∑
i=1

ciRi (2.20)
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Algorithm 2 Generation of w-NAF exponents of weight t

INPUT: m,w, t and the digit set D
OUTPUT: w-NAF of length ≤ m and weight t

(1) Choose t positions out of m− (w − 1)(t− 1) positions
(2) Fill each position by (w − 1) consecutive zeros followed by an element in D
(3) Discard the first (w − 1) positions of the string
(4) Print the string which is a w-NAF of length ≤ m

where ai = −H(M) · s−1
i mod n, bi = −ri · s−1 mod n, a =

∑N
i=1 ciai mod n, and

b′i = cib
′
i mod n. In the multiple signer case, we assume that all Qi are distinct, and in the

single signer case, we have Qi = Q for all i. So we consider two strategies, accordingly. The

single signer multiple signers

equation aG+ bQ+
∑N

i=1 ciRi aG+
∑N

i=1 b
′
iQi +

∑N
i=1 ciRi

cost 1 JSF + N (w, t)-NAFs (N + 1) w-NAFs + N (w, t)-NAFs

Table 2.3: Counting batch operations – the single signer and multiple signer cases.

two cases are considered in Table 2.3. Note that the signature points Ri have corresponding
scalars chosen according to Algorithm 2 but the public keys Qi have essentially random
scalars, so we are free to re-code them in the most efficient way. Also note that the
parameter w may be different in each case, since it is selected based on the amount of
storage available and the application scenario.

Assuming a single signer means we could approach single verification as two fixed-
base scalar multiplications. The algorithm used in this case is called the “fixed base
comb”. This method uses a moderate amount of precomputation to reduce the number of
doublings. However, the amount of precomputation per point makes it perform no better
than (2.14). Thus, we do not distinguish between single and multiple-signer verification
when not batching.

Now, to obtain operation counts for the verifications in Table 2.3 we can make use of
‘interleaving’ [64]. In this method, the individual scalars ki in a multi-scalar multiplication∑

i kiPi are re-coded using possibly different methods (e.g. w-NAF for various w). There
is a single accumulator for additions per inner loop iteration, and doubling is done jointly.
A consequence of the latter is that the number of doublings is the maximum length of a
scalar ki in the instance, so the benefit of doing fixed-base comb will be lost.

In the single-signer case, we have one joint sparse form 2-scalar multiplication, together
with a sum of w-NAFs arising from the generation Algorithm 2. We let m = 252, w = 5,
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t = 14, giving a security level of ≈ 2125.99. Notice that 252 = m ≤ 256 − w + 1 = 252, so
uniqueness of the scalars is guaranteed. Since we have to compute w-NAFs of unknown
points, online precomputation for multiples in D of the Ri is needed. The cost of the
multi-scalar multiplication is

N · (2w−2Ae + 1De) +N · tAe +mDe. (2.21)

The above count is split into online precomputation and actual computation, respectively.
Substituting our choices for the parameters, we obtain the following approximate ratio of
batch-to-single verification

(N(22Ae +De) + 252De)/N(136Ae + 86De).

For a more precise comparison, we should convert these estimates using the field operation
counts from Table 2.2. Using Ae = 8m+ 3s, De = 4m+ 4s, and s = m, the above ratio is

0.114 + 0.92/N

Thus, it is clear that for any batch size (at least two), there is a clear advantage for batching
in the single signer case.

For the multiple signer case, since we use interleaving there is no reason to use a fixed
base comb for G; thus, we have (N + 1) random w-NAFs to compute, and N w-NAFs
generated with weight exactly t. Note that the scalars corresponding to the Qi have
average weight m/(w + 1) = 256/6 = 42.7, while the ci have weight t = 14. Since we
are using interleaving, we need 256 doublings in this case. The total cost of batching for
multiple signers is thus(

256

w + 1
Ae
)

+ 2N(2w−2Ae + 1De) +NtAe +N
256

6
Ae + 256De (2.22)

=
128

3
Ae + 256De + 72.7NAe + 2NDe. (2.23)

Using the same doubling-to-addition ratio as in Section 2.2.3, we obtain

228.88Ae + 74.15NAe. (2.24)

This gives a ratio of batch verification to single verification cost of

0.373 + 1.15/N.
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We again obtain the same conclusion as for the single signer case: for large batch sizes, there
is an appreciable speed up of signature verification. Note that due to the contributions
of doublings and precomputations, larger batch sizes are preferred to obtain maximum
benefit, whereas smaller batch sizes are less attractive.

Hakuta et al. [63] propose an interesting batch verification scheme for special fields of
characteristic 5 and 7 which are more efficient than Cheon and Yi’s complex exponent test
(which we have just discussed) on small batches at the ≈ 128-bit security level. Cheon
and Yi discuss how to optimize batch verification for binary curves as well, but we do not
consider this any further.

Recall the question we posed at the beginning of Section 2.2: can we combine the
technique of Antipa et al. with Cheon-Yi batching to attain even faster verification? There
is a generalization of the method for simultaneous reduction in scalar size for N scalars
(see Example 7 of [11]). This reduces all but one exponent to 1−ε size, but requires finding
a short vector in an N + 1 dimensional lattice. Thus, the technique is efficient for small
batch sizes but would require rigorous testing to demonstrate that it can be efficient for
larger batch sizes (e.g. N = 64). Moreover, it seems likely that the lattice computation
would undo the sparseness of the scalars in the Cheon-Yi method, which have a fixed length
representation in order to guarantee a chosen security level. Thus, in the case of ECDSA∗

the answer seems to be that these two methods are orthogonal.

2.4 Acceleration through Caching

Möller and Rupp [90] consider practical scenarios in which ECDSA can be made more effi-
cient when performing multi-exponentiation during signature verification. The novelty in
the approach comes from storing powers of a base that happen to arise without extra effort
if the computation is arranged suitably. The basic idea is to consider multi-exponentiation
problems ∏

1≤i≤k

geii .

In the case of ECDSA where k = 2, we can make some assumptions on how often we see the
bases gi and exponents ei, as well as the amount of precomputed data we can store. The
authors assume that read-only-memory is not severely limited, so that precomputation on
g2, ..., gk can be stored permanently.

There are three algorithms used in this technique: interleaving for multi-exponentiation,
exponentiation and caching for a new base g1, and exponentiation for an old base g1, i.e.
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we have found this base in the cache, and we want to use old computed intermediate results
in a new verification computation.

Algorithm 3 Interleaving

INPUT: Precomputed gbi for all b 6= 0 ∈ Bi signed digit sets; exponents ei =
(bi,`, bi,`−1, ..., bi,0)

OUTPUT:
∏k

i=1 g
ei
i

A← 1G
for j = `...0 do

A← A2

for i = 1...k do
if bi,j 6= 0 then

A← A · gbi,ji

end if
end for

end for
return A

This is the familiar interleaving algorithm discussed in the context of batching in Section
2.3.2, but in this case we have a single multi-exponentiation in mind.

Now, we split the exponent of base g2 into limbs of roughly equal lengths Ls, ..., L1 ≈ `+1
s

e2 = (b2,L1+L2+···+Ls−1, . . . , b2,L1+···+Ls−1 , . . . , b2,L1−1, . . . , b2,0).

We require that L1 + 1 ≥ max1≤i≤s Li. In the simplest case, we can split the exponents
into two limbs.

Suppose that a new g1 is encountered. Now, after splitting the exponent for g2 (new
g1’s are never split: we have no precomputed data on them by definition of being new), we
have transformed the problem into a multi-exponentiation with bases

(g1, g2, g
2L1

2 , . . . , g2L1+···+Ls−1

2 )

and corresponding exponents

{e1, (b2,L1−1, b2,L1−2, . . . , b2,0)2, . . . , (b2,L1+···+Ls−1, . . . , b2,L1+···+Ls−1)2}.

Now, the exponents of the powers of g2 all have maximum length L1 + 1, and the exponent
of g1 is full-length, i.e. ` = L1 + · · · + Ls bits long. In particular, looking at Algorithm 3,
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no iteration before j = L1 can have a nonzero exponent bit for any of the powers of g2,
and so all iterations before involve exponentiations of g1. By making this observation, we
save g1, along with intermediate powers of g1:

{g1, [(b1,l, . . . , b1,L1)2, g
(b1,l,...,b1,L1

)2
1 ]

...

[(b1,l, . . . , b1,L1+···+Ls−1)2, g
(b1,l,...,b1,L1+···+Ls−1

)2
1 ]}.

Note that the exponents start out long and become shorter in the above list of cached data.
For multi-exponentiation where an old base g1 is found in cache, we re-use cached data
using the following algorithm. We denote by Gi = gλi1 for 1 ≤ i ≤ s− 1 the precomputed
powers of g1, and λ1 ≥ . . . ≥ λs−1 ≥ 0. Algorithm 4 allows us to write e1 in terms of

Algorithm 4 Modular Exponent Splitting

INPUT: Cached data (g1, (λ1, G1), (λ2, G2), . . . , (λs−1, Gs−1))
OUTPUT: Exponents Ei
d0 ← e1

for 1 ≤ i ≤ s− 1 do
Ei ← bdi−1

λi
c and di ← di−1 − Eiλi

end for
Es ← ds−1

return E1, . . . , Es

exponents that we have computed powers of g1 for:

e1 = E1λ1 + · · ·+ Es−1λs−1 + Es.

It is easy to check that this holds by definition of the di. Now, the exponent for g2 is split
according to the fixed Li in radix-2 exponent splitting, and we perform interleaving on the
resulting ks-fold multi-exponentiation problem. Note that in the case s = 2, we have split
the exponents in half.

2.4.1 Operation Count

We present an example similar to the one in Appendix C of [90] to demonstrate how this
technique is useful. At a high level, we are simply re-using exponentiations of g1, assuming
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that we can store these powers. An example of processing exponents in this way can be
found in Appendix A of [90].

In the case of ECDSA with a prime order Weierstrass curve at the 128-bit security
level, we deal with exponentiation of the form ge11 g

e2
2 . The base element g2 is the fixed

base point on the curve, and g1 is the variable public key. This public key will differ from
the last with some probability, Pold, which depends on the application. Assume we have
enough read/write memory to store two group elements, as well as the temporary variable
A in Algorithm 3, and the 256-bit exponents e1, e2.

If we have a new base g1, we precompute g3
1 and keep g1, g

3
1 in read/write memory

while converting (b1,255, . . . , b1,128)2 to signed digit representation on the fly, with digit set
{0,±1,±3}. As soon as exponent conversion is done and we have computed gλ11 (which costs
128/(2 + 2)m+ 127s) we store the result in read/write memory in the place where g3

1 was
stored previously. We then use digit set {0,±1} for the lower order bits (b1,127, . . . , b1,0)2 and
perform the final interleaving algorithm. The removal of g3

1 is being done here because of our
assumption about available read/write memory. The estimated cost in field multiplications
is (compute gλ11 ) + (compute interleaving with powers of g2)(

128

2 + 2

)
m+ 127s+

(
128

2 + 1
+ 2 · 128

2 + 7

)
m+ 127s+ 1s ≈ 281.6m.

If we encounter an old base g1, then we load the cached power of g1, namely gλ11 = G1, and
we have

ge11 g
e2
2 = gE1λ1+E2

1 ge22 = GE1
1 · gE2

1 · g
(b2,255,...,b2,128)2
2 · g(b2,127,...,b2,0)2

2 .

Again, we only have digit set {0,±1} for exponentiation with base g1, since we use a cached
entry. Perform interleaving and assume that E2 results in an exponent of approximately
the same length as E1 (the authors of [90] mention that if e1 is uniformly random, then
the maximum length of Ei will remain around L ≈ (l + 1)/s with high probability). This
costs (

128

2 + 1
+

128

2 + 1
+ 2 · 128

2 + 7

)
m+ 127s ≈ 202.7m.

It is easy to show that the cost of simple interleaving with signed digit sets {0,±1,±3} for
g1 and {0,±1, . . . ,±8} for g2 costs approximately 268.1m, so depending on the probability
Pold of public key repetition, the average cost of verification using caching and modular
exponent splitting is

202.7m× (1− Pold) + 281.6m× Pold.
For Pold = 0.5 this is 242.1m, an approximate 10% reduction in modular multiplications.
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We note that the Möller-Rupp caching technique can be used in batch verification
when public keys re-occur. A larger amount of memory is needed, however, since larger
batch sizes require at least as much space for storing group elements (768 bits for points
in projective coordinates). It would be interesting to estimate the cost of verifying batch
instances with some repeated public keys, assuming we have enough cache.
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Chapter 3

High-Speed High-Security Signatures

In 2006, Bernstein proposed the use of curve25519 for use as an efficient and secure elliptic
curve Diffie-Hellman function [20]. Curve25519 is expressed in Montgomery form [91].
After the discovery of the Edwards form of curves [50], a series of projective coordinate
systems were proposed for implementations using this form [22, 67]. These improvements
were used in the 2012 proposal of Bernstein, Lange, Schwabe, Yang, and Duif [25] for high-
speed high-security signatures that make use of batch verification. The implementation
also uses the prime 2255 − 19 for fast field arithmetic, as in curve25519, and a twisted
Edwards curve (which is birationally equivalent to curve25519).

The outline of this chapter is as follows. Section 3.1 presents a proof of security for the
Schnorr signature scheme. Section 3.2 introduces Edwards curves and related background.
Section 3.3 describes the EdDSA signature scheme. Section 3.4 gives point addition algo-
rithms for various coordinate systems derived for Edwards curves. Finally, Section 3.5 gives
background on batch verification with the Bos-Coster algorithm, and an alternate deriva-
tion for the cost of the algorithm. We also give operation counts for generic Bos-Coster at
the 128 and 256-bit security levels.

3.1 Schnorr Signatures

In this section we consider the Schnorr signature scheme. It is a variant of the well-known
ElGamal signature scheme, set in a prime-order subgroup of the multiplicative group of
a finite field. It will also serve as a basis for comparison with EdDSA. The following
description of Schnorr signatures is from Stinson [114].
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Let p be a (large) prime such that the discrete logarithm problem in Z∗p is intractable,
and let q be a prime that divides p− 1. Let g ∈ Z∗p be a qth root of unity modulo p. Let
P = {0, 1}∗ be the message space, A = Zq × Zq the signature space, and define

K = {(p, q, g, x, gx) : x ∈ Zq}

to be the set of public, private key tuples. The values p, q, g, gx are public, and x is the
private key. Finally, let H : {0, 1}∗ → Zq be a secure hash function.

For K = (p, q, g, a, gx), and for a (secret) random number k, 1 ≤ k ≤ q − 1, define

sigK(M,k) = (h, s)

where the signer computes r = gk mod p,

h = H(M ||r),

and
s = k + xh mod q.

For M ∈ {0, 1}∗ and h, s ∈ Zq, verification is done by performing the following computa-
tions:

verK(M, (h, s)) = true⇔ H(M ||gs(gx)−h mod p) = h.

The Schnorr signature scheme enjoys the property of being provably unforgeable under
adaptive chosen-message attack. This was initially surprising, since textbook RSA and
ElGamal signatures succumb to existential forgery. The original paper by Schnorr gave a
proof of security for the related Schnorr identification scheme. A security proof for Schnorr
signatures was later given by Pointcheval and Stern [96]. In this thesis, we will follow the
reductionist security argument given by Koblitz and Menezes [78]. The argument shows
that, subject to a loss of efficiency, a chosen-message existential forger can use his power
to compute discrete logarithms (that is, the discrete logarithm of the public key).

Since we deal with randomized algorithms in this section, we give the necessary defini-
tions before the security proof.

Definition 3.1 (PPT [60]). A probabilistic polynomial time algorithm is an algo-
rithm A such that:

1. there is an arbitrarily long stream of purely random bits available to A, considered
as auxiliary input to a deterministic algorithm
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2. there exists a polynomial f such that, for any input of size `, the algorithm A
terminates after f(`) steps, and outputs a correct answer with probability at least
1− ε(`), where the probability is taken over the distribution of random bits accessed
by A. Here, ε is a negligible function.

A consequence of part 1 of Definition 3.1 is that the algorithm is in some sense de-
terministic: if it made the same sequence of random choices, the output would always be
the same. A consequence of part 2 is that a PPT algorithm may give an incorrect output
for some “unlucky” random choices, but it succeeds for most choices. In general a PPT
algorithm may also fail to produce an answer, but for our purposes this is the same as
giving an incorrect answer. Finally, we note that part 2 implies that the algorithm must
always terminate, and do so in polynomial time.

Definition 3.2 (Success Probability [57]). Let ε : N → R>0 be a function. Then ε is
negligible if for every polynomial p(x) ∈ R[x] there is some K ∈ N such that for all
κ > K with p(κ) 6= 0 we have ε(κ) < 1/|(p(κ)|.

The reductionist security argument makes use of two lemmas. The “splitting lemma”
is used to count the number of “good” pairs in a cartesian product of sets. The “forking
lemma” will be introduced in the course of the proof, and it has to do with giving a new,
independent sequence of random bits, and independent, random function values to a copy
of the forger oracle. Then, if both forger copies produce a forgery on a chosen message, we
can compute a discrete logarithm.

We use the notation from [78], since we lose no generality in the generic group setting,
and this proof does not require the setting of Z∗p.
Theorem 3.3 (Splitting Lemma). Let A,B be finite sets with #A = a,#B = b. Suppose
that εab of all pairs (α, β) ∈ A×B are “good”. Let A0 ⊂ A be defined as the set of elements
α0 such that a pair (α0, β) (with α0 ∈ A fixed and β ∈ B varying) has probability ≥ ε/2 of
being “good”. Then there are at least εa/2 elements in A0.

Proof. Assume, towards a contradiction, that #A0 < εa/2. We count the number of good
pairs with α ∈ A0 and the number of good pairs with α 6∈ A0.

The number of good pairs with α ∈ A0 is at most #A0 · b < εab/2. The number of
good pairs with α 6∈ A0 is < #(A\A0) ·#B · ε/2, since by definition of A0, a pair (α0, β)
is in A0 × B if and only if the probability of any pair in the α0 row being good is at least
ε/2. This means that the probability of a pair being good in any row corresponding to
A\A0 is < ε/2. Thus, the number of good pairs in (A\A0) × B is < a · ε/2 · b = εab/2.
Since A0 ∪ (A\A0) = A is a disjoint union, we have that the total number of good entries
in A×B is strictly less than εab/2 + εab/2 = εab, a contradiction. Hence, #A0 ≥ εa/2. �
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3.1.1 Security Proof

Theorem 3.4 (Reductionist Security [78]). If the Schnorr signature scheme succumbs to
attack by a probabilistic chosen-message existential forger in the random oracle model, then
discrete logs can be found.

Proof. Assume that the forger algorithm F has success probability ε. That is, given input
gx, F will make queries to the hash function H and a signing oracle Σ, access a stream of
random bits, and output a valid signature on a message that was not part of a signature
query with non-negligible probability ε.

Suppose we are given an instance y = gx of the discrete logarithm problem. We run F
with input y. For hash queries, we respond with a uniformly random value for the hash,
h. For signing queries, we respond with a pair of random values (h, s). We note that the
probability of contradicting ourselves by responding to the forger program’s queries with
random values is small1.

Let qh be a bound on the number of hash queries (mj, rj) allowed by the forger. Choose,
a priori, a random index j ≤ qh. The target index j is the message we need a valid forged
signature for, though F need not give a forgery for this message. By the definition of F ,
it has non-negligible probability ε of producing a valid forgery (for some message, nonce
pair that it queries h for). Thus, with probability at least ε/qh it will forge a signature for
(mj, rj) (otherwise the total probability would be less than ε, a contradiction).

The motivation for this, at a high level, is the verification equation. If we can somehow
induce the forger to produce two signatures on (mj, rj) such that h1 6= h2, we can solve
for the private key/discrete logarithm x. That is, the verification condition gk = gs(gx)−h

implies that k ≡ s1 − h1x ≡ s2 − h2x (mod q), and hence

x = (s1 − s2)/(h1 − h2) (mod q).

To this effect, we use two copies of the forger F . As noted by [78], we should think of F as
a computer program (so the word ‘copies’ is appropriate here). Both forgers are given the

1Since (h, s) determines the value of r via r = gs(gx)−h, rare problems may occur. It is possible that
after we responded to a hash query on (M, r) and gave response h, we receive a signing query for M and we
respond with (h′, s). If the random “r” induced by (h′, s) is the same as the r that was part of an earlier
hash query, and we respond with h′ 6= h in the signing query right now, we must restart the procedure.
Similarly, if M is queried for a second time to the signing oracle with response (h′, s′) it is possible that
the random r′ induced by (h′, s′) equals r; in that case, we have inconsistent responses (the two H queries
for (M, r)). If this happens, we must restart the procedure, since the forger is no longer guaranteed to
output a correct answer with probability ε. The probability of either occurence is negligible.
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public key gx, the same sequence of random bits, and the same random answers to their
queries for hash function values and signatures until they both ask for H(mj, rj). We give
two independent random answers to this hash function query, as illustrated in Figure 3.1.
From that point, we give the second copy of the forger a new source of randomness, and
independent random function values for h: this is the essence of the forking lemma. We
then hope that both copies of the forger produce signatures corresponding to the pair
(mj, rj). Because of the “forking” in randomness, the requirement that h1 6= h2 should be
satisfied with high probability. We now determine the probability of this event.

Let A be the set of possible sequences of random bits and random function values
that the forgers take up to where they both ask for H(mj, rj), and let B be the set of
possible random bits and random function values after that. Note that both sets are
finite, since the sequences have length j and qh − j. Let S denote the set of all possible
sequences and random function values possible during the procedure. Then S = A × B.
Let J = {1, ..., qh}. For each j ∈ J let εj denote the probability that a sequence s ∈ S
leads to a forgery of the jth message. Then

∑
j∈J εj = ε, since ε is the total probability

that the forger produces a valid signature.

Now suppose that #A = a and #B = b, so #S = ab. By our notation, for εjab values
of s ∈ S the forger produces a valid signature for (mj, rj). Thus, by the Forking Lemma,
there are at least εja/2 elements of A that have the following property: the remaining part
of the forgery algorithm has probability at least εj/2 of leading to a signature for (mj, rj).

For each element of A with this property, the probability that both copies of the forger
lead to signatures for (mj, rj) is at least (εj/2)2 (recall that the sequences of random bits
and function values at the split become independent after j). In other words,

Pr(verK(mj,F(α, β)) = true ∧ verK(mj,F(α, γ)) = true)

= Pr(verK(mj,F(α, β)) = true ∧ verK(mj,F(α, γ)) = true | α ∈ A0) · Pr(a ∈ A0)

= Pr(verK(mj,F(α, β)) = true | a ∈ A0) · Pr(verK(mj,F(α, γ)) = true | α ∈ A0) · #A0

#A

≥ (εj/2)(εj/2)

(
εja/2

a

)
= ε3j/8.

Recalling that j was chosen uniformly at random from J , the probability that the proce-
dure described leads to two valid signatures on some message is at least

1

qh

∑
j∈J

ε3j
8

=
1

8qh

∑
j∈J

ε3j .
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α

γ

β

(mj , rj) 7→ h(mj , rj)

F(α, β) = (h, s)

F(α, γ) = (h′, s′)

Figure 3.1: Two copies of the forger are supplied with sequence α of bits, random function
values until index j

This expression reaches its minimum value when all εj are equal (i.e. this is a lower bound;
the probability can only be greater than this). Since

∑
j∈J εj = ε, we have εj = ε/qh. The

probability of success in one iteration of the procedure is therefore at least

1

8qh
· qh
(
ε

qh

)3

=

(
ε

2qh

)3

.

The probability that we fail to find the private key after k tries is thus (1 − (ε/2qh)
3)k,

which approaches zero as the number of attempts increases. This finishes the proof of our
claim. �.

Tightness and Interpretation

As Koblitz and Menezes point out [77], a signature scheme being existentially unforge-
able under adaptive chosen-message attack does not provide defense against all real-world
adversaries. There are many practical attacks that fall outside the “provable security”
model.

In addition, we note that the proof of Theorem 3.4 is not “tight”. This means that
under reasonable selections for the parameters ε, qh, the private key must be made larger
than is practical for a useful security level. The proof by Pointcheval and Stern [96] for
Schnorr signatures is still not tight, but does not lose quite as much efficiency as the above
proof. Nevertheless, it is still considered non-tight and does not allow us to choose private
keys short enough under conservative ε, qh.

We note that there are constructions in the literature which have tight reductions to
computational problems in a group, e.g. Goh and Jarecki [59] (later improved by Katz and
Wang [75], for decisional Diffie-Hellman).
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Finally, we comment on the random oracle assumption. In the above proof, h is mod-
elled as a random function, meaning that its outputs are sampled uniformly from Zq for
each query. This property is not attributable to any concrete hash function, since it must
be public and efficiently computable by anyone. There are schemes which are secure in the
random oracle model, but insecure when any concrete hash function is substituted [17].
However, this does not appear to be a problem in practice for the Schnorr signature scheme
[78].

3.2 Edwards Curves

To introduce Edwards curves, we consider an example over Q from [80]. Consider the set
of rational points on the unit circle

x2 + y2 = 1.

We can define a group law on these points analagous to multiplication of roots of unity in
C; addition is defined by taking the sum of the angles of the inputs. Here, the angles αi
are measured from the positive y-axis (i.e. 12 o’clock), counting clockwise. The addition
rule is:

(x1, y1) + (x2, y2) = (sinα1, cosα1) + (sinα2, cosα2)

= (sin(α1 + α2), cos(α1 + α2))

= (sinα1 cosα2 + sinα2 cosα1, cosα1 cosα2 − sinα1 sinα2)

= (x1y2 + x2y1, y1y2 − x1x2).

The claim that T = ({(x, y) ∈ Q2 : x2 + y2 = 1},+) is a group with the above composition
law is clear. In the context of this circle group, the doubling operation is simply doubling
angles, and can be done with the above formulas; there is no need to derive a separate
formula for composing a point with itself.

Now, we may compute scalar multiples of the point
(

3
5
, 4

5

)
∈ T : 2

(
3
5
, 4

5

)
= (x3, y3),

where

x3 = 2 · 3

5
· 4

5
=

24

25
,

y3 =
4

5
· 4

5
− 3

5
· 3

5
=

7

25
.
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Note that the denominator of the x-coordinate will always be 5n for point nP ∈ T. Thus,
the discrete logarithm problem in this group for this choice of base point is easy: we can
inspect the power of 5 in the denominator to determine the scalar n. To eliminate this
weakness, we can work over a finite field Fp where p ≡ 3 mod 4 instead of Q. In this case, T
becomes a subgroup of F∗p2 . To see this, note that Fp2 ∼= Fp[x]/〈x2+1〉, and that multiplying
two elements in this quotient ring is the same as the group law defined above; taking
the group of units gives the group correspondence. Another weakness emerges, however;
there are subexponential time algorithms for solving the discrete logarithm problem in the
multiplicative group of a finite field, e.g. the classic Coppersmith Method [46]. Thus, we
still need a different group if it is to be useful in cryptographic computations. There is a
way to tweak the definition of T such that we obtain an elliptic curve group, essentially
equivalent to the strongest Weierstrass curves (in terms of discrete log problem difficulty)
over prime fields.

Let K be a field of characteristic greater than 2. An Edwards curve over a field K is a
plane curve

E : x2 + y2 = 1 + dx2y2

where d ∈ K\{0, 1}. The affine addition law for (x1, y1), (x2, y2) ∈ E(Fq) is given by [50]:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)
.

Suppose now that d is not a square in K. The addition law also works for the additive
identity (0, 1) and for additive inverses. (For a proof that P1 + P2 ∈ E(K) for all P1, P2 ∈
E(K), see the proof of Theorem 3.1 in [26].) This is not the case in the Weierstrass
model, where there are exceptional points for the group law (e.g. point at infinity, additive
inverses). The group law is said to be complete since it is defined for all pairs of inputs 2.

The proof of completeness for Edwards curves is given next [22, 50].

Theorem 3.5 (Completeness [26]). Let P1 = (x1, y1), P2 = (x2, y2) ∈ E(K), where E is
an Edwards curve with d 6= 0, 1 and d not a square. Then dx1x2y1y2 6= ±1.

Proof. Assume that ε = dx1x2y1y2 = ±1. Then ε2 = 1. Now, x1, x2, y1, x2 6= 0 since K is

2The Weierstrass formulas can be made complete [34, 32], although there is a small loss of efficiency
over the incomplete formulas. By taking advantage of commonalities in the computation of point addition
and doubling, one can avoid most of the overhead related to making the group law for Weierstrass curves
complete (as in [34]). Longa reports that this overhead is less than 10 percent in practice [82].

33



a field, and hence an integral domain. Furthermore,

dx2
1y

2
1(x2

2 + y2
2) = dx2

1y
2
1(1 + dx2

2y
2
2)

= dx2
1y

2
1 + d2x2

1y
2
1x

2
2y

2
2

= dx2
1y

2
1 + ε2

= 1 + dx2
1y

2
1

= x2
1 + y2

1.

Now we construct an expression of the form a2 = db2 to show that d must be a square,
which we excluded in the hypothesis. Let a = x1 ± εy1. Then

(x1 ± εy1)2 = x2
1 + y2

1 ± 2εx1y1

= dx2
1y

2
1(x2

2 + y2
2)± 2dx2

1y
2
1x2y2

= dx2
1y

2
1[x2

2 + y2
2 ± 2x2y2]

= dx2
1y

2
1(x2 ± y2)2.

Now, if x2 + y2 6= 0 or x2 − y2 6= 0, then d must be a square by the above equation, a
contradiction. Otherwise, if x2 + y2 = 0 and x2 − y2 = 0, then x2 = y2 = 0, but (0,0) is
not in E(K). �

Bernstein et al. [22] extended this class of curves to improve efficiency in elliptic curve
arithmetic, and exhibited a correspondence with the Montgomery model of elliptic curves.
We fix some notation, following that paper. We continue to work over finite fields K of
characteristic greater than 2.

Definition 3.6 (Twisted Edwards Curve [22]). A twisted Edwards curve is a curve with
distinct parameters a, d ∈ K, d 6∈ {0, 1} given by the equation

EE,a,d : ax2 + y2 = 1 + dx2y2.

An Edwards curve is a twisted Edwards curve with a = 1.

Definition 3.7 (Montgomery Curve [22]). Let A ∈ K\{−2, 2} and B ∈ K\{0}. A Mont-
gomery curve with coefficients A and B is given by the equation

EM,A,B : Bv2 = u3 + Au2 + u.

The Montgomery form has been known for some time, as Montgomery published this
elliptic curve parametrization in 1987 [91]. It is notable for its efficient x-coordinate-only
scalar multiplication, which is a set of recurrences called the Montgomery Ladder.
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In the above definitions the choice of parameters determines many properties of the
curve. For instance, we can classify curves up to birational equivalence [108] (for an example
with Weierstrass curves, see Chapter 3 of [64]). A birational equivalence is essentially
the same as an isomorphism, however, we must remove singularities to obtain a true
isomorphism. This is done by homogenizing the curve equation and re-defining the mapping
in terms of projective coordinates (also called the projective closure).

In practice these maps allow points on a given curve to be represented as points on an
isomorphic curve. This is useful in some instances for computation. Efficient arithmetic in
one form can be exploited in some computations, the result converted to another form (e.g.
for more efficient point decompression). Bernstein et al. [22] give a birational equivalence
between twisted Edwards curves and other forms (as well as enumerating exceptional points
for the mapping). We collect a few definitions and facts below. For a careful treatment of
algebraic geometry background, standard references include [108, 65, 110].

Definition 3.8 (Morphisms [108]). Let X, Y be irreducible algebraic plane curves (e.g.
elliptic curves). A morphism φ is a rational map from X to Y . A homomorphism is a
morphism that respects the group operation on X. A birational equivalence φ is a rational
map from X to Y that has a rational inverse.

Theorem 3.9. Morphisms that map the neutral element in X to the neutral element in Y
are homomorphisms. Removing singularities makes birational equivalence an isomorphism.

In the above, we have omitted extension fields. Elliptic curves over finite fields have
rational points in the algebraic closure K. This is important to note when defining iso-
morphisms: existence of an isomorphism over the base field K is equivalent to solving a
polynomial of some degree over K. Since K is not algebraically closed, this is not always
possible. It is then natural to ask: what is the number of non-isomorphic curves in each
model over the base field K? This question has been answered completely by Farashahi et
al. [99] for the case of twisted Edwards curves, in agreement with the rough estimates in
[22]. René Schoof proved that there are approximately 2p isomorphism classes of elliptic
curves in total over Fp [104]. See Table 3.1 for comparison.

Curves isomorphic over finite extensions of K are also interesting to consider. Two
elliptic curves isomorphic over K but not K are said to be twists. Constructing an extension
of the base field K by adjoining roots of an irreducible polynomial gives rise to arithmetic
in the extension. We note that the curve orders may be different for curves that are twists
of each other. This fact is exploitable in attacks on an elliptic curve that has a twist with
smooth group order. This is referred to as twist-insecurity. There is only one quadratic
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Table 3.1: Number of isomorphism classes of Edwards curves and twisted Edwards curves
[99]

p ≡ 1 mod 4 p ≡ 3 mod 4
Edwards curves ≈ (2/3)p ≈ (3/4)p

Twisted Edwards curves ≈ (5/6)p ≈ (3/4)p
All elliptic curves ≈ 2p

twist up to isomorphism, except in the special cases where the j-invariant of the curve is
0 or 1728 [44, 51].

Theorem 3.10 (Equivalence of twisted Edwards and Montgomery [22]). Let K be a field
with char(K) 6= 2.
(i) Every twisted Edwards curve over K is birationally equivalent over K to a Montgomery
curve.
(ii) Conversely, every Montgomery curve over K is birationally equivalent over K to a
twisted Edwards curve.

Since twisting involves computations over an extension field, we should prefer to stay
in the base field to save time, as long as security is not sacrificed for efficiency. The next
result states when an arbitrary elliptic curve can be expressed as an (untwisted) Edwards
curve.

Theorem 3.11 (Points of order 4 [22]). Let K be a field with char(K) 6= 2. Let E be
an elliptic curve over K. The group E(K) has an element of order 4 if and only if E is
birationally equivalent over K to an Edwards curve.

The next result states when a Montgomery curve is equivalent to an (untwisted) Ed-
wards curve.

Theorem 3.12 (Some Montgomery curves are Edwards curves [22]). If K is a finite field
with #K ≡ 3 mod 4 then every Montgomery curve over K is birationally equivalent over
K to an Edwards curve. If K is a finite field with #K ≡ 1 mod 4 and EM,A,B is a
Montgomery curve so that (A + 2)(A − 2) is a square and δ a nonsquare, then exactly
one of EM,A,B and its nontrivial quadratic twist EM,A,δB is birationally equivalent to an
Edwards curve. In particular, EM,A,A+2 is birationally equivalent to an Edwards curve.

For completeness, we give each birational equivalence in Table 3.2 that is part of the
proof of Theorem 3.10. Note that the theorem says that EM,A,B is birationally equivalent
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to some twisted Edwards curve. This is denoted in the table by specifying the twisted
Edwards curve parameters that determine a curve equivalent to EM,A,B over K. The same
holds for EE,a,d being birationally equivalent to some Montgomery curve. Other birational
equivalences that arise in special cases appear in the proofs of the above theorems, so we
omit these and refer to [22].

EM,A,B : Av2 = u3 +Bu2 + u EE,a,d : ax2 + y2 = 1 + dx2y2

(u, v)→ (x, y) (u, v) 7→ (x, y) = (u/v, (u− 1)/(u+ 1))
a = (A+ 2)/B, d = (A− 2)/B

(u, v)← (x, y) (x, y) 7→ (u, v) = ((1 + y)/(1− y), (1 + y)/(1− y)x)
A = 2(a+ d)/(a− d), B = 4/(a− d)

Table 3.2: Mappings used in proof of Theorem 3.10

Even with the above results, an elliptic curve might not be equivalent to an Edwards curve
over K. In other words, a Weierstrass curve y2 = x3 + ax + b may be a member of an
isomorphism class that is inequivalent to even a twisted Edwards curve unless it has a point
of order 4 (Theorem 3.11). Bernstein et al. have described how to use isogenies to benefit
from the twisted Edwards form for computation. This is similar to using the result of Brier
and Joye to consider “a4 = −3” Weierstrass curves without much loss of generality. Since
we primarily work with twisted Edwards curves, this detail will be omitted.

Via point counting, Bernstein et al. made heuristic arguments for the number of curves
birational to a fixed form, of each type of order. This was an improvement over the original
coverage of Edwards curves, a useful generalization that covers more curves, and introduces
efficiency improvements that we discuss in Section 3.4.

3.3 EdDSA

In this section we consider the features and design of the signature scheme proposed by
Bernstein et al. [25]. The scheme is an adaptation of Schnorr’s scheme that is suited to
batch verification.

EdDSA Parameters

Let b ≥ 10 be an integer; let H : {0, 1} → {0, 1}2b be a cryptographic hash function;
let q ≡ 1 mod 4 be a prime power. Encode the elements of Fq with (b − 1) bits. Let
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d ∈ Fq\{0, 1} be a non-square. Let 2b−4 < ` < 2b−3 be a prime such that `B = O = (0, 1),
where B 6= (0, 1) is in the group of rational points on a twisted Edwards curve:

B ∈ E(Fq) := {(x, y) ∈ Fq × Fq : −x2 + y2 = 1 + dx2y2}. (3.1)

We have already shown in Theorem 3.5 that the Edwards addition law is complete for
nonsquare d; we note that the theorem holds for twisted Edwards curves as well. On this
twist, the addition law is

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1x2y1y2

,
y1y2 + x1x2

1− dx1x2y1y2

)
.

Since q ≡ 1 mod 4, −1 is a square in Fq (by Euler’s theorem). Thus, the twisted Edwards
curve is isomorphic to the Edwards curve EE,1,d/i over Fq via (x, y) 7→ (x/i, y), where
i =
√
−1 ∈ Fq.

Elements (x, y) ∈ E are encoded/compressed as b-bit strings (x, y). This notation
means that we preserve the entire (b− 1) bits of y, an element of Fq, and a sign bit which
determines x. For this sign bit to be well defined, we need an ordering on field elements.
This is accomplished by letting x ∈ Fq be negative if the (b − 1) bit encoding of x is
lexicographically larger than the (b− 1) bit encoding of −x. For example,

x = 3 ∈ F17, −x = 14 ∈ F17, 00011 > 01110,

hence x is negative in this case (when we use the little-endian representation). As will
be the case in this thesis, for q an odd prime with little-endian representation of Fq, the
negative elements will be {1, 3, 5, . . . , q−2}. The x-coordinate can be recovered from (x, y)

via the curve equation: x = ±
√

(y2 − 1)/(dy2 + 1).

Key Generation
Let k be a random b-bit string, the EdDSA private key. DenotingH(k) = (h0, h1, . . . , h2b−1),
we compute

a = 2b−2 +
∑

3≤i≤b−3

2ihi,

which is an integer in the set {2b−2, 2b−2 + 8, . . . , 2b−1 − 8}. This determines the point
A = aB and public key A.

Signature Generation
To sign a message M with secret key k,
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1. compute r = H(hb, . . . , h2b−1,M);

2. compute R = rB;

3. compute S = (r +H(R,A,M)a) mod `,

and the signature on M is then (R, S) which is 2b bits long. When applied to an integer,
underlining denotes taking the b-bit little endian encoding.

Signature Verification
To verify a signature (R, S) on a message M under public key A,

1. decompress A and R to obtain A and R;

2. compute h = H(R,A,M);

3. verify that 8SB = 8R + 8H(R,A,M)A holds,

and return true if so. If not, the signature is invalid and is rejected. If parsing the strings
which purportedly correspond to curve points fails, the signature is also rejected.

Checking correctness of verification is straightforward: in legitimate signing, we have
S = r+ha mod `. Taking this scalar multiple of base point B, we have SB = rB+haB in
E since the order of B is `. This is equivalent to R+ hA, which is computed again during
verification.

3.3.1 Remarks on Design

Given the description of EdDSA, we now discuss the features that defeat known attacks.
We give a side-by-side comparison of EdDSA and Schnorr, in the notation of [25, 105].

In Table 3.3 we make the identification of g with B and ga with A, the description for
Schnorr taken in the additive notation usually employed with elliptic curves.

Verification in Schnorr’s scheme using this notation requires computation of R̃ = SB−
H(R,M)A, based on data from a claimed signature on M . Then we check that H(R̃,M) =
H(R,M) (cf. Section 3.1).

Note that ECDSA hashes only M (cf. equation 2.2). This means that if H ever turned
out to have efficiently-computable collisions, a forgery would be immediate. Including the
nonce R in the hashing prevents this, since in both Schnorr and EdDSA these differ with
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EdDSA Schnorr
G = 〈B〉 G = 〈g〉

|G| = `, large prime |G| = `, large prime
H : {0, 1}∗ → {0, 1}2b H : {0, 1}∗ → Zq

G ≤ E(Fq) G ≤ F∗p, ` | p− 1
Private key a, public key A = aB Private key a, public key A = aB

r = H(hb, . . . , h2b−1,M) r ∈R {0, . . . , `− 1}
Sign: R← rB, S ← r +H(R,A,M)a mod ` Sign: R← rB, S ← r +H(R,M)a mod `

Signature: (R, S) Signature: H(R,M), S

Table 3.3: Side-by-side comparison of the EdDSA and Schnorr signature schemes

high probability for different messages. EdDSA goes one step further and includes the
public key string A in hashing. This is done to prevent any attack that computes many
hash values; by this description, one must commit to a particular public key.

Also note the way in which the scalar r is generated in each case. EdDSA computes
r deterministically, based on half of the private key and the message. This has several
nice practical security benefits; for one, we do not need a high-quality random number
generator used for each message signed, as needed in ECDSA and Schnorr. If it is possible
to guess some bits of per-message private keys due to poor random number generation, the
entire key can be recovered using the attack described by Nguyen and Shparlinski [94].

Finally, note that there are no inversions modulo `. This is in contrast to ECDSA, where
the signer and verifier both compute inverses. The concern is that the nonce k in ECDSA
signing is inverted during the procedure, which can lead to weaknesses when inversion
is not implemented in constant time, as k must be kept secret in order to preserve the
secret key. A full description of sequential modifications to ElGamal signatures resulting
in EdDSA can be found in Daniel Bernstein’s blog post [21].

The similarity to Schnorr signatures is clear from the above, with some modifications
that do not compromise security. At present, there is no proof that EdDSA is secure in
the standard model of signature security (cf. Chapter 1), though it is conjectured to be
secure by the authors [3].

3.3.2 Ed25519

Curve25519 is an elliptic curve in which one performs x-coordinate only scalar multiplica-
tion and maps the result to Fp. We obviously need an elliptic curve on which to define the
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scalar multiplication of a point; the Montgomery curve

E : y2 = x3 + 486662x2 + x

over Fq where q = 2255−19 and A = 486662 serves as the choice for curve25519. Note that
q ≡ 1 mod 4. Bernstein proposed this curve and proved that the Montgomery ladder has
no exceptional cases on Curve25519, so X(2Q) and X(Q+Q′) are always correctly output
in the form x/z for suitable Q,Q′ [20]. After the discovery of Edwards form, Bernstein
exhibited a birational equivalence between y2 = x3 + 486662x2 + x and the Edwards curve

x2 + y2 = 1 + (121665/121666)x2y2.

Ed25519 is the signature scheme EdDSA taken with this curve and parameter choices
b = 256, H = SHA-512, ` a 253-bit prime from [20], and d = −121665/121666. Note that
this curve has order 8`. Computing the quantity

x =

√
1±
√

1∓ d
d

mod (2255 − 19)

gives us the x-coordinate of a point of order 8 on E; the point is of the form (x, x). The
nontrivial quadratic twist of Curve25519 has order 4`′, for some prime `′ of size roughly
the same as `. Thus, both the curve and its quadratic twist have curve orders with small
cofactor. This is useful in defeating invalid curve attacks on ECDH which use points of
small order and Chinese remaindering to attack the public key; designing a curve that has
this property, along with its twist allows simpler implementations that do not have to do
extra checks on inputs to ensure they are valid.

Recalling the design of EdDSA, public keys are scalar multiples of B, where 8 divides
the scalar (as an integer). This means that an attacker attempting to determine the secret
key via an active attack (e.g. in ECDH) asks for aP , for P of his choice. If P has small
order, it will still satisfy the curve equation and be a valid public key. However, since
we can factor a as 8 · a′, it will always return the identity (0, 1) for all points of order
2, 4, 8. This defeats the so-called small subgroup attacks; roughly, security is not degraded
due to an attacker being able to determine the secret scalar modulo small divisors of
the group order. We also note here that the ‘choice’ of curve order obviously avoids the
Pohlig-Hellman key-only attack.

3.4 Coordinate Systems

The classic paper of Cohen, Miyaji and Ono [45] considers several projective coordinate
systems, and does a thorough comparison of the costs in each case, taking into account the
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inversion-to-multiplication ratio over the finite field Fq. We define projective coordinates for
Edwards curves via change of variables and introducing a third coordinate to homogenize
the degrees of each term in the curve equation

x2 + y2 = 1 + dx2y2 ↔ X2Z2 + Y 2Z2 = Z4 + dX2Y 2.

We obtain the projective closure of EE,1,d with the correspondence

(X : Y : Z)↔ (X/Z, Y/Z), Z 6= 0, (X : Y : 0)↔ (0, 1)↔∞.

As before, the cost of affine addition is high since one inversion is involved, and each of
these requires many modular multiplications.

Rewriting the group law in projective coordinates, we obtain Algorithm 5 for addition
on Edwards curves; make the above substitutions and clear denominators to obtain an
algorithm, and group common sub-expressions. The algorithm costs 10M + 1S + 7add +
2D, where D denotes multiplication by one of the curve parameters a, d. Doubling (see
Algorithm 6) can be done in 3M + 4S + 1D + 7add .

Algorithm 5 Addition on EE,a,d [22]

INPUT: P1 = (X1 : Y1 : Z1), P2 = (X2, Y2, Z2)
OUTPUT: P1 + P2

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2; E = d · C ·D;
F = B − E; G = B + E; X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D);
Y3 = A ·G · (D − aC); Z3 = F ·G.

Algorithm 6 Doubling on EE,a,d [22]

INPUT: P = (X1, Y1, Z1)
OUTPUT: 2P
B = (X1 + Y1)2; C = X2

1 ; D = Y 2
1 ; E = a · C; F = E +D; H = Z2

1

J = F − 2H; X3 = (B − C −D) · J ; Y3 = F · (E −D); Z3 = F · J

Bernstein et al. [22] introduced a new projective coordinate system, called inverted
twisted Edwards coordinates. A point (X1, Y1, Z1) on the curve

(X2 + aY 2)Z2 = X2Y 2 + dZ4

with X1Y1Z1 6= 0 corresponds to the affine point (Z1/X1, Z1/Y1) on EE,a,d. This explains
the term ‘inverted coordinates’: the twisting factor a is now a coefficient of Y 2 on the
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Coordinates Source Addition Doubling

Edwards [26] 10M + 1S + (d/a) 3M + 4S
Edwards [26] 10M + 1S + (a, a, d) 3M + 4S
Twisted Edwards [26] 10M + 1S + (a, d) 3M + 4S + (a)
Inverted Edwards [27] 9M + 1S + (d/a) 3M + 4S + (d/a)
Inverted Edwards [22] 9M + 1S + (a, a, d) 3M + 4S + (a, a, d)
Inverted twisted Edwards [22] 9M + 1S + (a, d) 3M + 4S + (a, d)

Table 3.4: Cost of curve operations in standard and inverted coordinates [22]

left hand side of the projective curve equation, and the affine coordinates are exactly the
inverses of the standard projective coordinates. Algorithms for addition and doubling in
inverted coordinates are derived similarly. We collect the operation costs from [22] in Table
3.4.

The nice thing about the systems compared in Table 3.4 is the flexibility we gain
by having operation cost depend on curve constants, and by using an isomorphic curve.
Consider curve25519; the underlying curve can be expressed as

E1 : x2 + y2 = 1 + (121665/121666)x2y2.

This is isomorphic to the twisted Edwards curve

E2 : 121666x2 + y2 = 1 + 121665x2y2

via the mapping (x, y) 7→ (x/
√
a, y), where a = 121666. Looking at Table 3.4, the difference

in cost between addition on E1 and addition on E2 is the cost of 1 multiplication by
d̄ = 121665/121666 versus the cost of 1 multiplication by d = 121665 and 1 multiplication
by a = 121666. The bitlength of d̄ mod (2255 − 19) is approximately 254, giving a clear
advantage to operations on E2; it is a speedup of almost 1M , though we lose some efficiency
in doubling. It is easy to come up with scenarios where this is still a clear win over the
whole computation. We also lose some efficiency due to having to compute an isomorphism,
i.e. compute x/

√
a. It would help if

√
a is a small integer, but this is not always necessary;

for instance,
√
−1 in F2255−19 is almost full length, and it is still worthwhile to do this.

In other words, twisting can save time. Overall, from the table it is clear that inverted
coordinates are preferred when many additions must be computed. However, due to the
trade-off with multiplication by curve parameters, it is only worthwhile if a, d are both
small.
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3.4.1 Extended Coordinates

A new proposal for twisted Edwards curve coordinate systems was given by Hisil et al. in
[67]. The authors proposed dedicated formulas for addition on twisted Edwards curves,
as well as new complete formulas. There is a gain in efficiency by using the dedicated
formulas, but implementations using complete formulas are simpler than ones using ded-
icated formulas. They also noted that multi-core implementations can take advantage of
some formulas which turn out to be parallelizable. We record the details for the coordinate
system that ends up being used in EdDSA signing/verification [25], namely the extended
twisted Edwards coordinates system.

Let us extend affine coordinates (x, y) by adding a product term t = xy, so our points
look like (x, y, t) on the same twisted Edwards curve ax2 + y2 = 1 + dx2y2 that we have
studied. To get projective coordinates, use the mapping

(x, y, t) 7→ (x : y : t : 1).

Conversely, a projective point (X : Y : T : Z) corresponds to affine point (X/Z, Y/Z, T/Z)
for Z 6= 0. The extended coordinate T satisfies T = XY/Z. The identity element is
(0 : 1 : 0 : 1), and negation is −(X : Y : T : Z) = (−X : Y : −T : Z).

Note that this form is fully compatible with the earlier coordinate systems we have
seen; to go from standard projective to extended projective, we must compute (X : Y :
Z) → (XZ : Y Z : XY : Z2). The only other alternative is to just copy X, Y, Z over, and
compute T = XY/Z, which is clearly inferior to 3 multiplications and one squaring due
to the inversion. The converse is trivial: we can drop T from the representation and get a
valid standard projective point.

It remains to write down a complete addition formula for these coordinates, and then
an addition algorithm that should benefit from the inclusion of T . The addition formula
is complete when d is nonsquare and a is square in K:

(X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3),

where

X3 = (X1Y2 + Y1X2)(Z1Z2dT1T2)

Y3 = (Y1Y2 − aX1X2)(Z1Z2 + dT1T2)

T3 = (Y1Y2 − aX1X2)(X1Y2 + Y1X2)

Z3 = (Z1Z2 − dT1T2)(Z1Z2 + dT1T2).
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Algorithm 7 Addition on EE,a,d in extended projective coordinates [67]

INPUT: P1 = (X1 : Y1 : T1 : Z1), P2 = (X2 : Y2 : T2 : Z2)
OUTPUT: P1 + P2

A = X1 ·X2; B = Y1 · Y2; C = dT1 · T2; D = Z1 · Z2

E = (X1 + Y1) · (X2 + Y2)− A−B; F = D − C; G = D + C;
H = B − aA; X3 = E · F ; Y3 = G ·H; T3 = E ·H; Z3 = F ·G

The addition algorithm follows, and in the most general case costs 9M + 2D.

As before, using small curve parameters saves time. A mixed addition algorithm results
for input in ‘affine form’, i.e. when Z2 = 1. Further savings are possible, though. Taking
Ed25519 as an example, the twisting factor a = −1 allows for some simplification, along
with the coordinate T . We obtain an 8M +1D addition algorithm, which is effectively 9M
due to d being treated as a generic element to simplify the implementation.

3.5 Batch Verification

3.5.1 Addition Chains

An addition chain for a given number is a list of numbers that starts with 1, and every
number in the list is the sum of two earlier numbers. The given number appears at the
end of the sequence. An example of an addition chain is double and add used to compute
kP : we start with P and add points in a list according to a fixed rule (without actually
needing to store all intermediate results, as the definition of a chain implies). This isn’t
the best we can do, however: the length of a shortest addition chain for n is proved to
be at least log2(n) + log2(wt(n)) − 2.13 [33]. An easy upper bound on the length of an
addition chain that contains n is log2(n) + wt(n) − 1, i.e. double and add. It turns out
that computing the optimal addition chain is an NP-hard problem, but Bos and Coster
proposed some heuristics to obtain a better chain than the simple binary algorithm.

A related notion is that of a vector addition chain. If an addition chain targets a single
integer, then a vector addition chain targets a specific vector of integers, and begins with
the standard basis vectors ei, where e1 = [1, 0, 0], etc. This naturally applies to the multi-
scalar multiplication problem: if an optimal chain for [z1, z2, ..., zN ] could be computed
quickly, batch verification would be a completely solved problem.

DeRooij [47] investigated addition chain performance based in part on the observation
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that
aP + bQ = a(P + (b div a)Q) + (b mod a)Q.

This observation can be interpreted as a vector addition chain: one recursively applies the
above rule until the scalars are 1 and 0, respectively. In practice, the quotient (b div a)
is almost always 1, except when the batch size N is small. DeRooij notes that a closed
formula is difficult to obtain, but on average, the longest vector addition chain obtained
by the algorithm he proposes is

L̃(n,N) < log b/ log(1 + ln(N)/N),

where n is the maximum exponent size of each of the exponents zi, N is the batch size,
and b is the base used to represent exponents. In [47], the requirement b = dn1/Ne is set,
and thus L̃(n,N) depends on both n and N .

We note that the inefficiency associated with small batch sizes can be controlled ac-
cording to DeRooij by changing the base b; there is no problem with the correctness of
doing this, as we still only perform elliptic curve additions. The issue is that the chain
becomes longer because quotients fail to be 1.

3.5.2 Bos-Coster

EdDSA verifies signatures with a group equation. As with ECDSA∗, we may take lin-
ear combinations of signature equations and attempt to optimize the computation of the
resulting multi-scalar multiplication. In this section, we consider the batching algorithm
used by Bernstein et al. in [25] to achieve signing speed records.

Suppose we have message-signature pairs from different signers, denoted {(M1, (R1, s1)),
..., (MN , (RN , sN))}. A necessary condition for all signatures to be valid is that equation
2.4 is satisfied for all i. Take a random linear combination of verification equations, as
in equation 2.4, with scalars zi ∈ [0, 2`] where ` is the security parameter. The resulting
batch verification equation is

N∑
i=1

zi(aiG+ biQi −Ri) = O.

That is, (
N∑
i=1

zi · ai mod n

)
G+

N∑
i=1

(zi · bi mod n)Qi −
N∑
i=1

(zi mod n)Ri = O. (3.2)
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Note that not all coefficients have full length. Depending on the security parameter `, the
coefficients of the Ri may be smaller than n.

Computing the left hand side of verification equation 3.2 is an instance of multi-scalar
multiplication. To compute a multi-scalar multiplication, the Bos-Coster method (Algo-
rithm 8) recursively subtracts the largest two scalars, and then performs one point addition.
The collection of scalars and elliptic curve points is sorted and updated in each step of the
main loop. Note that we must initially maintain storage for all N points Ai and scalars
ti, but as soon as a scalar is zero, we can free the storage associated with the point and
the scalar as no more point-addition updates will ever occur for that index. The final
result will always come from A1, and thus when the algorithm terminates, t1 = 1 and
A1 = z1P1 + · · ·+ zNPN .

Algorithm 8 The Bos-Coster algorithm

INPUT: z1, . . . , zN ∈R [0, 2b − 1], P1, . . . , PN ∈ E(Fq)
OUTPUT: z1P1 + . . .+ zNPN
ti ← zi for i = i, . . . , N and Ai ← Pi for i = 1, . . . , N
while t1 > 0 do

Sort (t1, . . . , tN) in descending order, i.e. t1 ≥ t2 ≥ . . . ≥ tN , and rearrange the Ai
accordingly.
A2 ← A1 + A2

t1 ← t1 − t2
end while
return A1

Lemma 3.13. Given input {(zi, Pi)}Ni=1 where zi ∈R [0, 2b − 1], the Bos-Coster algorithm
computes

z1P1 + · · ·+ zNPN

in O(N · b/ log2(N)) elliptic curve additions.

Below we give justification for this lemma in terms of experimental observations and a
heuristic argument, supported by some formal analysis. Our observations for the number
of additions required match the asymptotic complexity in [24], which we have recorded as
Lemma 3.13.

To estimate the cost of this method at the 128-bit security level, Bos-Coster was tested
using the GNU MP library in C for large integer arithmetic (for convenience). The only
operations required were subtraction, magnitude comparison, and sorting (generic sorting
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N run 1 run 2 run 3 run 4 run 5 run 6 64N 27.29N/ log2(N)
2 818 1482 2904 522 4550 412 128 313
4 260 261 268 264 282 267 256 313
8 367 363 369 369 368 370 512 417
16 585 584 588 579 576 580 1024 626
32 951 958 967 959 970 974 2048 1002
64 1644 1647 1657 1649 1649 1642 4096 1669
128 2845 2838 2849 2854 2872 2856 8192 2862
256 5006 5031 5047 5028 5020 5035 16384 5008
512 8954 8944 8956 8951 8957 8944 32768 8903
1024 16096 16102 16083 16091 16094 16105 65536 16025
2048 29189 29146 29222 29174 29197 29167 131072 29137
4096 53265 53281 53246 53297 53265 53324 262144 53418

Table 3.5: Bos-Coster running cost in modular subtractions, 128-bit scalars

in C available from stdlib). We also note that the cost reported represents the amount of
time it takes to do modular subtractions, and does not include curve operations. Batch
sizes were chosen as consecutive powers of two in order to determine the effect on the
running time. We report a close fit function by trial and error, namely 27.29N/ log2(N)
which approximates the running time in modular subtractions using the asymptotic formula
from Lemma 3.13. By inspecting Table 3.5, we see that the last column converges to the
time measurements as the batch size grows. Essentially the same conclusion is drawn when
we repeat this test with 256-bit scalars (since the data is quite similar, we do not include
it). Therefore, the conclusion of the lemma appears to hold for practical parameter sizes.
In particular, the logarithmic speedup claimed in [24] for batch verification is verified.

Here is an informal argument for the asymptotic complexity claimed above. Suppose
that we have n sorted nonnegative integers of maximum bit length b. Assuming they are
chosen uniformly at random, they are distributed approximately uniformly on the interval
[0, 2b−1]. This means the two largest scalars are approximately 2b−1 and 2b−1−(2b−1)/N .
The difference between these two is thus approximately (2b−1)/N . After a subtraction, the
largest scalar is replaced with the difference, ≈ 2b/N , which is an overall loss of magnitude
≈
(
N−1
N

)
2b.

We may argue somewhat formally in support of the above intuition. This argument
still makes some assumptions, but at least provides some assurance that the above works
in practice. Let Xi, 1 ≤ i ≤ N , be uniform independent random variables on [0, 2b − 1],
i.e., random nonnegative integers of length at most b bits. The first step of Algorithm 8
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initializes a list of scalars and associated curve points. In the main loop, we sort the scalars
in descending order in each iteration, and then subtract the largest two scalars and replace
the largest scalar with the result of the subtraction. This step is crucial to our analysis
here; we must determine the expected size of this difference.
Let us find the expected magnitude of the difference for the first iteration. Denote by ‘2max’
the function which returns the second-largest of its arguments. We want to compute the
expectation

δ := E(max(X1, . . . , XN)− 2max(X1, ..., XN)). (3.3)

Using the definition,

δ =
∑

0≤xi≤2b−1

max(x1, . . . , xN) · p(x1, . . . , xN)−
∑

0≤xi≤2b−1

2max(x1, . . . , xN) · p(x1, . . . , xN)

=
1

2Nb

 ∑
0≤xi≤2b−1

max(x1, . . . , xN)−
∑

0≤xi≤2b−1

2max(x1, . . . , xN)


=

1

2Nb

2b−1∑
i=1

i · iN−1 −
2b−1∑
i=1

(2b − i)i · iN−2


=

1

2Nb

2b−1∑
i=1

iN −
2b−1∑
i=1

(2b − i) · iN−1


=

1

2Nb

2b−1∑
i=1

(2iN − 2biN−1)

 .

Since N is our batch size, we would like to have an asymptotic formula for the running
time in closed form depending on N . To compute this sum, we refer to the literature on
Bernoulli polynomials [101, 76]. The sum of the first Nth powers will have the form

m−1∑
ν=0

νN =
N∑
k=0

(
N

k

)
BN−k

mk+1

k + 1
,

where BN−k is the (N −k)th Bernoulli number. The highest order terms are the only ones
that make a difference for large summations, so we re-write this as

2b−1∑
i=0

iN =
1

N + 1
(2b − 1)N+1 +

1

2
(2b − 1)N +O

(
(2b − 1)N−1

N + 1

)
.
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Hence, the difference δ can be expressed asymptotically as a function of N :

1

2Nb

(
2 · (2b − 1)N+1

N + 1
+ (2b − 1)N − 2b · (2b − 1)N

N
− 2b · (2b − 1)N−1

2
+O

(
(2b − 1)N−1

N + 1

))
.

(3.4)
After some simplification, we obtain

δ ≈ 2b+1

N + 1
+ 1− 2b

N
− 1

2
≈ 2b+1

N + 1
− 2b

N
. (3.5)

As always, one should be careful when interpreting practical significance of asymptotic
formulas, since we have made some assumptions about the input behaviour. Nevertheless,
this agrees with our earlier informal analysis of the algorithm: the (b − log2(N + 1))-bit
result replaces a b-bit scalar. Hence, we have eliminated log2(N + 1) scalar bits in the first
subtraction of the largest two scalars.

What happens for the rest of the algorithm? Does this elimination hold for every subse-
quent iteration? If the scalar inputs are random integers, we have shown that the first step
behaves as expected. A linear combination of random variables is still a random variable,
so we might expect that the state of the Bos-Coster algorithm will contain data that looks
like random integers. However if the attacker has some control over the scalars generated,
he can induce denial of service by making the scalars have very large discrepancies. We
can also be unlucky in our choice of scalars, but this happens with very low probability.
Bernstein et al. note that the algorithm can be modified [25] to handle large discrepancies
in the scalars, but it appears too rarely to be worth checking.

Thus, assuming the list behaves as a list of random integers throughout the computa-
tion, we eliminate log2(N + 1) scalar bits in every iteration.
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Chapter 4

Pairing-Based Cryptography and
Batching

In this chapter we consider the problem of batch signature verification in the context of
pairing-based cryptographic protocols. This problem has been studied both theoretically
and with concrete implementations of signature schemes [10, 52, 37]. Pairing-based batch-
ing appears to be worthwhile as long as the number of invalid signatures is less than
15%, according to Ferrara et al. [52]. Moreover, pairing-based batch forgery identification
has been studied as a standalone problem to take advantage of the properties of pairings
[81, 84, 85].

Batch signature verification is an important service to provide when efficiency is a
priority, for example in Vehicular ad-hoc networks (VANETs) [98]. The number of bits
per wireless transmission is particularly crucial, since sending just one bit of data wire-
lessly is orders of magnitude more expensive in terms of energy consumption than a 32-bit
arithmetic operation [14].

VANETs are an active area of research [1, 5]. They are currently standardized in IEEE
1609.2 to use ECDSA with NIST curves [8]. One research direction taken by Zhang et al.
[120] explored batch verification of signatures in the context of VANETs, using their cus-
tom design signature scheme based on the Camenisch, Hohenberger and Pedersen (CHP)
signature scheme for multiple signers [37]. In this chapter, we refer to the pairing counts for
Barreto-Naehrig(BN) curves from Rodriguez-Henriquez et al. [103], and apply them to this
signature scheme. Finally, we compare the cost of batch verification in ECDSA*/EdDSA
using Bos-Coster to the cost of verifying in this context with just three pairing computa-
tions and N curve additions.
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In Section 4.1, we introduce relevant background to pairings and BN curves. Section 4.2
contains the operation counts for elliptic curve operations and Miller loop computations.
Section 4.3 introduces identity-based cryptography and presents the BN-IBV scheme due
to Zhang et al. Section 4.4 presents the comparison between BN-IBV and the elliptic curve
signature schemes from Chapters 2 and 3.

4.1 Pairings and BN Curves

To formally define a pairing, we need the machinery of divisors on an elliptic curve, as well
as some facts about where the n-torsion points of an elliptic curve live. Subject to a simple
divisibility condition, we can say that all n-torsion points live in some finite, specified
extension of the field of definition via Theorem 4.1.

Theorem 4.1 (Balasubramanian-Koblitz). Let E/Fq be an elliptic curve and let n|#E(Fq),
where n is prime with gcd(n, q) = 1 and n - q − 1. Then

E[n] ⊆ E(Fqk) if and only if n|qk − 1.

We call the least positive integer k such that n|qk − 1 the embedding degree.

The n-torsion group E[n] is isomorphic to Zn ⊕ Zn, and so it has n + 1 subgroups of
order n. It can be shown that E[n] = E(Fq)[n] ⊕ E(Fqk)[n] ∩ ker(πq − [q])), where πq
denotes the q-th power Frobenius map. The second factor group also has prime order n,
but its components lie in Fqk and not in Fq. Indeed, the definition of embedding degree k
and the condition k > 1 ensures that E[n] 6⊆ E(Fq), and this is needed in order to define
a non-degenerate pairing [111].

LetG1, G2 be order-n groups such that E[n] = G1⊕G2. Pairings defined onG1×G2 have
been classified by the properties satisfied by these two groups as follows . A type 1 pairing
is symmetric in the sense that G1 = G2. A type 2 pairing is asymmetric (i.e. the embedding
degree is k > 1 and G1 6= G2) with an efficiently computable isomorphism ψ : G2 → G1,
which comes from the trace map [31, 39, 111]. Type 3 pairings are constructed from groups
where no efficiently computable isomorphism between G1 and G2 is known. Security and
efficiency of each type of pairing was analyzed and compared in [39], and the authors
conclude that Type 3 pairings are at least as secure as Type 2 pairings. Each setting
has its own advantages and disadvantages. For instance, for type 2 pairings Vercauteren
showed that it is not possible to hash into G2 [111] in the sense that there is no efficient
hash function known for which computing discrete logarithms of hash values is infeasible
[39].
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4.1.1 Divisors

Let E : y2 = x3 + ax+ b be an elliptic curve defined over F.

Definition 4.2. A divisor D on E is a formal sum of points:

D =
∑
P∈E

aP (P ),

where aP ∈ Z, and all but finitely many aP are zero.

The set of divisors on E is denoted by Div(E), and forms a free Z-module. By “formal
sum”, we mean that the symbol (P ) is simply an identifier for the point P – we might
think of these as just polynomials, with no intention of ever evaluating them. Formal sums
are unique – there is only one way to write a given divisor. Also note that there are no
scalar multiplications or point additions here – a divisor is simply a linear combination of
symbols. The degree of a divisor is the sum of its coefficients. The set Div0(E) denotes
the set of divisors of degree 0. We also define a function Sum : Div(E) → E, which
evaluates the multi-scalar multiplication arising from a given divisor. In other words,
Sum(D) =

∑
P∈E aPP ∈ E, where we omit the brackets to indicate that the elliptic curve

group operation is being performed to evaluate the sum. Note that Sum is a surjective
homomorphism of groups – it is clearly a homomorphism from Div0(E) to E, and since
the preimage of P ∈ E is the divisor (P )− (∞), it is surjective.

The function field F(E) of E is the field of fractions of F[x, y]/(y2 − x3 − ax − b). A
function f(x, y) ∈ F(E) is defined at a finite point P if one can write it as a rational
function with nonzero denominator at P . Otherwise f is not defined at P and we write
f(P ) =∞, and say that f has a pole at P . If f(P ) = 0, f has a zero at P .

Definition 4.3. (order of a point) Let f be a rational function in the function field of E.
The muliplicity of a zero or a pole at P is called the order of f at P , and is denoted by
ordP (f).

We omit some details here, namely how to make the order of a point at infinity precise,
and the proof that ordP (f) is well defined. Proofs can be found in Section 11.1 of [116].

Each element of the function field F(E) determines a principal divisor. A principal
divisor encodes information about the zeros and poles of f on E. It can be shown that
there are only finitely many zeros and poles (assuming f is nonzero in F(E)). For a non-zero
function f on E, define the divisor of f by

(f) =
∑
P∈E

ordP (f)(P ) ∈ Div0(E).
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Lemma 4.4. (properties of divisors [118]) Let E be an elliptic curve and let f, g be non-
zero functions on E. Then

1. f has finitely many zeros and poles;

2. deg((f)) = 0;

3. f has no zeros or poles if and only if f is a constant;

4. (f · g) = (f) + (g);

5. (f/g) = (f)− (g);

6. (f)− (g) = 0 if and only if f is a constant multiple of g.

Definition 4.5. Two divisors D,D′ are equivalent if D = D′ + (f) for some function f .
We write D ∼ D′.

Let D =
∑

Q∈E aP (Q) be a divisor which has disjoint support from f . This means the
set of poles and zeros of f is disjoint from the set of points on E for which D has nonzero
coefficients. Then we may define the value of f at the divisor D by

f(D) =
∏
Q∈E

(f(Q))aQ .

By the requirement of disjoint supports, f(D) cannot be 0 or ∞. Finally, we note an
important result about divisors.

Theorem 4.6 ([116]). Let E be an elliptic curve. Let D be a divisor on E with deg(D) = 0.
Then there is a function f on E with (f) = D if and only if Sum(D) =∞.

As an example, take the divisor D = n(P ) − ([n]P ) − (n − 1)(∞) where P ∈ E[n].
Then Sum(D) =∞ since the order of P divides n, and the degree of D is 0 by inspection.
Hence, D is the divisor of a rational function over F. If F = Fq and P ∈ E(Fq)[n], then we
may assume by Lemma 11.10 of [116] that the rational function is defined over Fq.
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4.1.2 The Miller Function

Victor Miller gave an algorithm for evaluating rational functions on divisors [87, 88] as
a way to compute the Weil pairing. The same technique is used in computing the Tate
pairing.

Definition 4.7 ([115]). For every P ∈ Fqk and every integer s, let fs,P be an Fqk-rational
function with divisor

(fs,P ) = (s)(P )− ([s]P )− (s− 1)(∞).

Such a function fs,P is called a Miller function, and is determined uniquely up to
multiplication by non-zero elements of Fqk [115]; a rational function has no poles or zeros
changed by multiplication by a constant. We define f0,P = f1,P = 1, and fs,∞ = 1, since
substituting each of these parameters gives an empty divisor.

Theorem 4.8 (Miller Function Properties [88, 115]). Let a, b ∈ Z, and let fs,P be a Miller
function. Then

1. fa+b,P = fa,P · fb,P · `[a]P,[b]Pv[a+b]P
;

2. fab,Q = f ba,Q · fb,[a]Q;

where `[a]P,[b]P is the equation of the line through [a]P and [b]P , and v[a+b]P is the equation
of the vertical line through [a+ b]P .

Properties 1 and 2 above are both verified easily by taking divisors of both sides and
following through with the definitions. The first property shows that calculating fa,P (Q)
is analogous to exponentiation. We can use this in a square-and-multiply algorithm to
compute fa,P (Q), given an integer a and points P,Q. Miller’s algorithm (Algorithm 9)
formalizes this notion and is used in all pairing computations. Property 1 is plainly used
in Miller’s algorithm to iteratively compute fs,P . We will see an application of property 2
when defining the optimal ate pairing in Section 4.1.5.

To see why Algorithm 9 works, note that we start at λ`−2. The first Miller function
evaluation is always just 1, since f0,P = f1,P = 1. Continuing with double-and-add on the
scalar λ, we have:

· · · 2(2(2(λ`−1) + λ`−2) + λ`−3) · · · .
The sequence of computed values after each iteration of the main loop is:

f2λ`−1+λ`−2
, f2(2λ`−1+λ`−2)+λ`−3

, · · ·
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Algorithm 9 The Miller loop

INPUT: P,Q ∈ E[n] and λ = (λ`−1λ`−2 . . . λ1λ0) ∈ N
OUTPUT: fλ,P (Q)
T ← P, f ← 1
for i = `− 2 to 0 do

f ← f 2 · `T,T (Q)

v[2]T (Q)

T ← [2]T
if λi 6= 0 then

f ← f · `T,P (Q)

vT+P (Q)

T ← T + P
end if

end for
return f

One obvious modification that reduces the number of nonzero digits in λ is to use a signed
digit representation. We can modify Algorithm 9 to take into account such scalars by
making the appropriate change to the ‘if’ statement: if we have a negative scalar bit λi,
we do T ← T −P instead, and negate P in the step that updates f . We can also eliminate
the vertical line evaluation in the specific case of BN curves, because those denominator
values will all be mapped to 1 by the final exponentiation (see Section 4.1.3).

4.1.3 The Tate Pairing

Bilinear pairings are similar to the inner product of linear algebra since they share the
following useful properties.

Definition 4.9. Let G1, G2, GT be groups of the same prime order n. A pairing en :
G1 ×G2 → GT is bilinear if, for all P, P1, P2 ∈ G1 and Q,Q1, Q2 ∈ G2 :

en(P1 + P2, Q) = en(P1, Q)en(P2, Q);

en(P,Q1 +Q2) = en(P,Q1)en(P,Q2).

A pairing en is nondegenerate when both of the following implications hold:

if en(P,Q) = 1 for all Q ∈ G2 then P =∞;

if en(P,Q) = 1 for all P ∈ G1 then Q =∞.
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We give a specialized definition of the Tate pairing in the Type 3 setting for the case
where #E(Fq) = n is prime. We recall that the embedding degree of E is k.

Theorem 4.10 ([116]). Let µn = {x ∈ Fqk |xn = 1}, let G1 = E(Fq), let G2 ⊂ E[n] be the
trace-0 subgroup [40]. Then there are nondegenerate bilinear pairings

〈·, ·〉n : G1 ×G2 → F∗qk/(F
∗
qk)

n

and
en : G1 ×G2 → µn ⊂ F∗qk .

The pairing 〈·, ·〉n is constructed as follows. Suppose we are given P ∈ G1 and Q ∈ G2.
Let DP ∼ (P ) − (∞) and DQ ∼ (Q) − (∞). Let f be a function such that (f) = nDP

(note that f exists by Theorem 4.6, since Sum(nDP ) =∞ and DP necessarily has degree
0). Finally, assume that DQ =

∑
ai(Qi) and DP have disjoint support. Then

〈P,Q〉n = f(DQ) =
∏
i

f(Qi)
ai .

Also,
en(P,Q) = 〈P,Q〉(qk−1)/n

n .

It can be shown that 〈·, ·〉n is bilinear and nondegenerate [116].

Computing the Tate pairing

To compute the Tate pairing in general, there is a denominator that has to be computed,
along with an expensive exponentiation. Suppose that P ∈ E(Fq)[n]. Together with the
following lemma, we are able to reduce the cost of the pairing significantly because the
denominator is always mapped to unity by the final exponentiation.

Lemma 4.11. Let d be a proper divisor of k. Then any nonzero element of Fqd is mapped

to unity by (·)(qk−1)/n.

Proof. Note that (qk − 1) = (qd − 1) · (qk−d + qk−2d + · · ·+ qd + 1). Now, n - (qd − 1)
by definition of the embedding degree. Thus, n must divide the other factor, and since the
order of F∗

qd
is qd − 1, exponentiation by (qk − 1)/n annihalates the subfield exponent. �
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Now, let P ∈ G1, Q ∈ G2, R ∈ E(Fq) with R 6∈ {±P,±Q,∞}. Let DP = (P + R) −
(R) ∼ (P ) − (∞), DQ = (Q) − (∞), and note that the divisors have disjoint support, so
our pairing is well-defined. Then there exists a rational function g such that

(P +R)− (R) = (P )− (∞) + (g).

Then n(P +R)− n(R) = n(P )− n(∞) + (gn), and letting f = fn,P · gn,

en(P,Q) = f(DQ)(qk−1)/n =

(
f(Q)

f(∞)

)(qk−1)/n

=

(
fn,P (Q) · gn(Q)

fn,P (∞) · gn(∞)

)(qk−1)/n

.

Note that gn(Q), gn(∞) both get mapped to unity due to the exponentiation by (qk−1)/n.
By Lemma 4.11, fn,P (∞) ∈ Fq is also mapped to unity, because it is in a proper subfield.
Hence,

en(P,Q) = fn,P (Q)(qk−1)/n.

4.1.4 The Ate Pairing

In this section, we give the background for the main pairing considered in this thesis,
following the derivations in [118]. The ate pairing is a fixed power of the Tate pairing, and
is named so because of the shorter Miller loop for this pairing, as we demonstrate in this
section.

Let m ∈ Z. Note that by property 2 of Theorem 4.8,

emn (P,Q) = fn,Q(P )m(qk−1)/n

=
fmn,Q(P )(qk−1)/n

fm,[n]Q(P )(qk−1)/n

=
fmn,Q(P )(qk−1)/n

1(qk−1)/n
.

The last equality follows because Q ∈ E[n], and the inductive definition of the Miller
function has fm,∞ = 1. Thus, we have

emn (P,Q) = fmn,Q(P )(qk−1)/n,
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which defines a non-degenerate pairing whenever n does not divide m. If n|m, by definition
of µn this annihalates the pairing for all P,Q.

Now, we want to find an integer m such that fmn,Q(P ) can be written as a multiple or
a power of non-degenerate functions fλi,Q(P ) where λi is short, as this means fewer Miller
loop iterations.

Consider a power of the Tate pairing, emn (P,Q). Let λ ∈ Z with λ ≡ q (modn). Then

qk − 1 ≡ λk − 1 (mod n).

Since n|qk − 1, it follows that n|λk − 1. Consider the exponent m′ = (λk − 1)/n. Then by
property 2 of Theorem 4.8,

em
′

n (P,Q) = fnm′,Q(P )(qk−1)/n

= fλk−1,Q(P )(qk−1)/n.

Note again that for non-degeneracy, the exponent m′ must not be divisible by n since the
reduced Tate pairing produces an n-th root of unity. Now recall property 1 of Theorem 4.8,
and apply it to the above to get

em
′

n (P,Q) = fλk−1,Q(P )(qk−1)/n

=

 fλk,Q(P )

f1,Q(P ) · `[λk−1]Q,Q
(P )

v
[λk]Q

(P )


(qk−1)/n

=

 fλk,Q(P )

1 · v[λk]Q(P )

v
[λk]Q

(P )


(qk−1)/n

since [λk − 1]Q =∞

= fλk,Q(P )(qk−1)/n.

We can repeatedly apply property 2 of Theorem 4.8 to obtain

em
′

n (P,Q) = fλk,Q(P )(qk−1)/n

=
(
fλ

k−1

λ,Q (P ) · fλk−1,[λ]Q(P )
)(qk−1)/n

=
(
fλ

k−1

λ,Q (P ) · fλk−2

λ,[λ]Q(P ) · fλk−3

λ,[λ2]Q(P ) · · · fλλ,[λk−2]Q(P ) · fλ,[λk−1]Q(P )
)(qk−1)/n

.
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We can write this compactly as(
k−1∏
i=0

fλ
i

λ,[λk−1−i]Q(P )

)(qk−1)/n

.

Since λ ≡ q mod n, we have

em
′

n (P,Q) =

(
k−1∏
i=0

f q
i

λ,[qk−1−i]Q
(P )

)(qk−1)/n

.

Noting that for a ∈ Z,

(fa,Q(P ))q = fa,πq(Q)(πq(P )) = fa,[q]Q(P ),

since P ∈ G1 gives πq(P ) = P and Q ∈ G2 gives πq(Q) = [q]Q. Thus, for i ≥ 0,

fa,[qi]Q(P ) = f q
i

a,Q(P ).

Following through with the above,

em
′

n (P,Q) =

(
k−1∏
i=0

f q
i+k−1−i

λ,Q (P )

)(qk−1)/n

=

(
k−1∏
i=0

f q
k−1

λ,Q (P )

)(qk−1)/n

= (fk·q
k−1

λ,Q (P ))(qk−1)/n

= (fλ,Q(P ))k·q
k−1·(qk−1)/n.

Given this result, we want to eliminate the extra exponentiations, while still keeping control
over the smaller scalar λ. To achieve this, let m = m′ · (k · qk−1)−1 mod n (note that the
inverse exists because k and q are relatively prime to n). Then define a(P,Q) = emn (P,Q),
which gives

a(P,Q) = (fλ,Q(P ))(qk−1)/n.

We should check that this exponent gives a nondegenerate pairing, i.e., is it true that
n - m? If we chose λ such that n2 - λk − 1, then n - m and n - m′.

As an example, we could satisfy the above conditions in practice by letting λ = t− 1,
where t is the trace of Frobenius. Then since #E(Fq) = q+ 1− t and n is the prime order
of a subgroup (so n|q + 1 − t), Hasse’s Theorem says that |t| ≤ 2

√
q. Thus the length of

the Miller loop is approximately halved when making this choice for λ.
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BN Curves

When considering elliptic curves for use with the Tate pairing, we must ensure that the
known attacks will not prevail, assuming parameter sizes are large enough. In particular,
the Frey-Rück attack [55] uses the Tate pairing to map the DLP in G1 to the discrete
logarithm problem in Fqk . Barreto, Lynn and Scott described a method of finding elliptic
curves with embedding degrees greater than 6 [15] over large characteristic finite fields.
Barreto and Naehrig introduced a family of pairing-friendly curves in [16] that answered a
previously open question about generating elliptic curves of prime order with embedding
degree k greater than 6.

In the context of pairing groups, a common measure of relative group size is given by
ρ = log(p)/ log(r), where r|#E(Fp) is the prime order of a subgroup generator P , and p is
the chosen prime for the base field. The work of [16] gave an algorithm to generate prime
order curves with ρ ≈ 1, while previously known methods produced ρ ≥ 1.25. The ρ value
indicates a trade-off in security and efficiency: if p is too large relative to r, field elements
(and therefore elliptic curve group elements) are no longer short. If p is too small relative
to r, we sacrifice security for efficiency since the embedding degree k is considered fixed.

BN curves are of the form E/Fp : y2 = x3 + b and are parametrized as follows:

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1

n(z) = 36z4 + 36z3 + 18z2 + 6z + 1

t(z) = 6z2 + 1.

Here, n and r are the same because the curve generated is of prime order. For details on
the choice of these parametrizations, as well as the generation algorithm for BN curves,
see [15, 16].

We are interested in the 128-bit security level, so the generation algorithm will output
parameters p(z), n(z), b, y where b is the curve constant in short Weierstrass form, and y is
part of the subgroup generator P = (1, y) such that the bit-length of p and n are roughly
equal to 256. Since k = 12, pairing values live in a 3072-bit finite field Fpk and G1 = 〈P 〉
has group elements of size 512 bits. Again, recall that for BN curves ρ ≈ 1, so the size of p
is equal to the size of the subgroup order, and hence r is 256 bits, providing 128-bit DLP
security.

Optimal Ate Pairing

The optimal ate pairing is also a fixed power of the Tate pairing. Vercauteren [115] intro-
duced the notion of an optimal pairing, and gave a method for computing the appropriate
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exponent. A pairing is optimal if it can be computed in log2(n)/ϕ(k) + ε(k) Miller loop it-
erations, where ε(k) ≤ log2(k) and ϕ is the Euler totient function. The ate pairing derived
in the last section does not meet this definition, but the following improved pairing does
due to the choice of exponent. Details about deriving the exponent for this pairing can be
found in [115, 118].

Definition 4.12 ([13]). The optimal ate pairing is defined over a BN curve by

aopt : G1 ×G2 → GT

(P,Q) → (fθ,Q(P ) · `[θ]Q,πp(Q)(P ) · `[θ]Q+πp(Q),−π2
p(Q)(P ))

p12−1
n ,

where θ = 6z + 2 ∈ Z, the map πp : E → E is the Frobenius endomorphism πp(x, y) =
(xp, yp); groups G1, G2 are determined by the eigenspaces of πp as G1 = E[n] ∩ Ker(πp −
[1]) = E(Fp)[n] and G2 = E[n] ∩Ker(πp − [p]) ⊆ E(Fp12)[n].

Definition 4.13 (BN curve facts). Let E be a BN curve over Fp. Then there is a degree
6 twist, E ′/Fp2 such that:

1. n|#E ′(Fp2);

2. The defining equation of E ′ is y2 = x3 + b/ξ, where ξ ∈ Fp2\((Fp2)2 ∪ (Fp2)3);

3. The polynomial x6 − ξ ∈ Fp2 [x] is irreducible over Fp2 , when p ≡ 1 mod 6;

4. The twist isomorphism ψ : E ′ → E is given by

(x′, y′) 7→ (ξ1/3x′, ξ1/2y′).

The sextic twist E ′(Fp2) is used for all non-pairing operations, since curve operations will
then only require arithmetic over Fp2 . One takes the image under the twisting isomorphism
ψ : E ′(Fp2)→ G2 when doing pairing computation.

We note that the coordinates of the image ψ(Q) are in proper subfields of F∗p12 . To see
this, we write down the tower field extensions explicitly and do a direct computation. We
can take two points of view for building the tower extensions:

Fp2 − Fp6 − Fp12 ,

or
Fp2 − Fp4 − Fp12 .

The two are equivalent, up to permutation of Fp2 coordinates. We have:
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• Fp2 = Fp[i]/(i2 − β), where β = −1

• Fp4 = Fp2 [s]/(s2 − ξ), where ξ = i+ 1

• Fp6 = Fp2 [v]/(v3 − ξ), where ξ = i+ 1

• Fp12 = Fp6 [w]/(w2 − v); or Fp12 = Fp4 [w]/(w3 − s)

These extensions are well defined, following from the fact that ξ is neither a square nor
a cube in Fp2 (so the corresponding quadratic and cubic polynomials are irreducible over
Fp2). Now, let w ∈ Fp12 be a primitive root of the irredudicble polynomial x6−ξ, so w6 = ξ
in Fp12 . Then we can rewrite the twisting isomorphism as

ψ(x′, y′) = (w2x′, w3y′).

By our tower construction, w2 = v ∈ Fp6 and w3 = s ∈ Fp4 . The G′2 coordinates x′ and
y′ are both in Fp2 , so x = w2x′ ∈ Fp6 and y = w3y′ ∈ Fp4 . Using this observation, we can
eliminate denominator computations from the Miller loop by Lemma 4.11.

For completeness, we present Algorithm 10 from [103] for computing the optimal ate
pairing.

4.2 Counting Field Operations

In this section, we give a count for the field operations involved in computing an optimal
Ate pairing over a particular BN curve, as in Sanchez et al. [103]. We focus primarily on
a first-order approximation of costs of field operations.

Symbol Defines the cost of:
(a,m, s, i) addition, multiplication squaring, inversion cost over Fp
(ã, m̃, s̃, ĩ) addition, multiplication squaring, inversion cost over Fp2

Table 4.1: Definitions for symbols counting the cost of field operations

Table 4.1 defines the symbols for field operation costs that we use to parametrize our
analysis. The field Fp12 is constructed with a sequence of tower extensions of degree 2 and
3, which are shown to have reduction-friendly algorithms for arithmetic in Theorem 1 of
[13], assuming that the operands grow up to double precision in a specified way.
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Algorithm 10 The Optimal Ate Pairing [103]

INPUT: P ∈ G1, Q ∈ G2

OUTPUT: f = aopt(P,Q)
1: f ← 1, T ← Q, s← |6u+ 2|
2: Write s =

∑m−1
i=0 si2

i with si ∈ {−1, 0, 1}
3: for i = m− 2 to 0 do
4: f ← f 2 · `T,T (P ), T ← [2]T
5: if si = 1 then
6: f ← f · `T,Q(P ), T ← T +Q
7: else if si = −1 then
8: f ← f · `T,−Q(P ), T ← T −Q
9: end if

10: end for
11: f ← fp

6

12: R← π(Q); f ← f · `−T,R(P ); T ← T +R
13: R← π2(Q); f ← f · `−T,−R(P ); T ← T −R
14: f ← f (p12−1)/n

15: return f

Since the prime p for BN curves is not of a special form suitable for fast reduction,
Montgomery arithmetic and reduction is used. To accurately account for the costs, we
will have to track more operations than simply base field multiplications. Moreover, ‘lazy
reduction’ can be used to trade off some reductions for extra double-precision operations for
performance improvement [13], which defers expensive reductions to a higher layer in the
tower of extension fields, and once the operands have grown to double-precision (meaning
twice the size of a Fp element). Base field arithmetic in the implementation from [103]
uses modified versions of the Montgomery product. This is the fastest option for primes
without naturally reduction-friendly form, and performs well when many field operations
are performed before converting back from Montgomery form (as happens routinely in
pairing-based cryptography).

Fp2 Arithmetic

Let a = a0 + a1i and b = b0 + b1i ∈ Fp2 . Then a · b is computed using Karatsuba’s method
which reduces the cost of multiplication from 4m to 3m over the naive method, at the
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expense of some extra additions:

(a0 + a1i) · (b0 + b1i) = a0b0 − a1b1 + (a0b1 + a1b0)i

= (a0b0 − a1b1) + ((a0 + b0) · (a1 + b1)− a0b0 − a1b1)i.

Squaring is done using the complex multiplication method, using just 2 small-field multi-
plications [103, 39]:

(a0 + a1i) · (a0 + a1i) = a2
0 − a2

1 + (2a0a1)i

= (a0 − a1)(a0 + a1) + (2a0a1)i.

To compute an inversion, note first that (a− bi)(a+ bi) = a2 + b2. Thus,

(a+ bi)−1 =
a− bi
a2 + b2

= (a2 + b2)−1 · (a− bi).

This gives m̃ ≈ 3m, s̃ ≈ 2m, ĩ = 2s + 1i + 2m. This is a rough approximation, because
we have not said anything about how reduction should be done, and we have completely
discounted the cost of additions. Since the cost of multiplication is approximately an order
of magnitude higher than the cost of addition, this seems to be justified. Moreover, since
we aim to compare batching operation counts in BN-IBV to that of EdDSA and ECDSA∗,
which was also done with rough approximation, we follow in this line, noting where we
have simplified the detailed accounting of [103, 13].

Fp6 Arithmetic

To determine the cost of multiplication over Fp6 , let a = a0 +a1v+a2v
2 and b = b0 + b1v+

b2v
2 ∈ Fp6 . Then

(a0 + a1v + a2v
2) · (b0 + b1v + b2v

2) = a0b0 + (a0b1 + a1b0)v+ (a0b2 + a1b1 + a2b0)v2

+ (a1b2 + a2b1)v3 + (a3b3)v4.

Noting the field definitions in Section 4.1, we have v3 = ξ. Reducing the above using this
relation, we have

(a0 + a1v + a2v
2) · (b0 + b1v + b2v

2) = (a0b0 + (a1b2 + a2b1)ξ)

+ (a2b2ξ + (a0b1 + a1b0))v

+ ((a0b2 + a2b0) + a1b1)v2.
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Now, apply Karatsuba’s method to each cross-term product (underlined) in the above. This
gives an approximate cost of 3m̃+ 3m̃ = 6m̃, after discounting the cost of all additions.

An asymmetric squaring formula for cubic extensions was given by Chung and Hasan
in [43]:

(a+ bv + cv2)2 = a2 + b2v2 + c2v4 + 2abv + 2acv2 + 2bcv3

= (a2 + 2bcξ) + (2ab+ c2ξ)v + (b2 + 2ac)v2.

The novel part about the squaring formula is that it makes use of intermediate results from
the v0 and v1-coefficients to compute the underlined part above:

(b2 + 2ac) = ((a− b+ c)2 − a2 − c2 + 2ab+ 2bc),

which can be verified directly. After discounting addition and reductions/carry checking,
this outperforms the naive method (i.e. if we did not know how to compute b2 + 2ac any
way but directly) by 1m̃, since we still have to compute the squaring (a− b+ c)2 over Fp2 .
Thus the cost of Fp6 squaring is estimated as 2m̃+ 3s̃.

Fp12 Arithmetic

Given a = (a0 +a1w) and b = (b0 +b1w) ∈ Fp12 , we compute a·b using Karatsuba’s method,
resulting in cost 3×(cost of multiplications in Fp6), i.e. 18m̃.

Given a = (a+ bw), compute a2 = (a2 +vb2) + (2ab)v using the same method as for Fp2
since we have a quadratic extension. The cost is estimated as 2×(cost of multiplication in
Fp6), i.e. 2 · (6m̃) = 12m̃.

Let GΦ6(p)(Fp2) = {x ∈ Fp12 : xΦ6(p) = 1} ⊂ F∗p12 be the cyclotomic subgroup corre-
sponding to the 6th cyclotomic polynomial. There is a significant speed-up available for
squaring in GΦ6(p)(Fp2), due to additional identities satisfied by these elements, as well as
free inversions in this subgroup. Recall that

(p12 − 1) = (p6 − 1)(p2 + 1) · Φ6(p) = (p6 − 1)(p2 + 1)(p4 − p2 + 1),

so membership in GΦ6(p)(Fp2) implies that xp
6+1 = 1. Rearranging this, we get xp

6
= x−1,

so inversion in this subgroup just costs us a conjugation.

Lemma 4.14 ([113]). If x ∈ Fp12 satisfies xp
6+1 = 1, then x2 can be computed in 2

squarings over Fp6 .
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Proof. Let α = a+ bw, where a, b ∈ Fp6 satisfy αp
6+1 = 1. Note that αp

6
= a− bw. Then

1 = αp
6+1 = (a+ bw) · (a− bw) = a2 − b2w2 = a2 − b2v.

This gives us a relation for a2 in terms of b2. Computing directly and using this relation
gives the result:

α2 = (a+ bw)2 = a2 + b2w2 + (2ab)w

= (2b2v + 1) + ((a+ b)2 − a2 − b2)

= (2b2v + 1) + ((a+ b)2 − (b2v + 1)− b2).

Therefore, after discounting the cost of addition, carries/reductions and shifts, we require
just 2 squarings over Fp6 , namely b2 and (a+ b)2. �

4.2.1 The Miller Loop

In this section, we examine the cost of a single optimal Ate pairing with Miller loop length
s = 6z + 2, where z = −(262 + 255 + 1) is selected to be the BN parameter [103]. Recall
that the BN curve y2 = x3 + b has a degree 6 twist E ′ : y2 = x3 + b/ξ. On G′2, we choose
standard projective coordinates, as in [103]. We must strongly separate our notions of
arithmetic for computing the bilinear pairing and “ordinary” curve operations; here we do
not use Jacobian coordinates, as they become more efficient only when doing exclusively
group operations. The formulas for computing 2T = (X3 : Y3 : Z3) used there are given by
[13]:

X3 =
X1Y1

2
(Y 2

1 − 9b′Z2
1), Y3 =

[
1

2
(Y 2

1 + 9b′Z2
1)

]2

− 27b′2Z4
1 , Z3 = 2Y 13Z1,

where b = 1 + i and b′ = 2/(1 + i) = 1 − i (recalling Definition 4.13). Determining the
projective formulas for doubling is the same as in Section 3.2 of [64]. For completeness, we
include the sequence of operations for computing 2T from [13].

A = X1 · Y1/2, B = Y 2
1 , C = Z2

1 , D = 3C, E0 = D0 +D1,

E1 = D1 −D0, F = 3E, X3 = A · (B − F ), G = (B + F )/2,

Y3 = G2 − 3E2, H = (Y1 + Z1)2 − (B + C),

Z3 = B ·H, I = E −B, J = X2
1
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After ignoring additions and multiplications by small constants, this sequence of operations
requires 3 multiplications and 6 squarings in Fp2 .

Now, every time a point doubling is computed in the Miller loop for aopt, there is a
tangent line computation. We estimate the cost of this operation here. The affine equation
of the tangent line through T = (xT , yT ), evaluated at P = (x, y) is given by

`T,T (P ) = y − yT −
(

3x2
T

2yT

)
(x− xT ).

Note that point doubling is done on the twist, using Fp2-arithmetic only. For tangent line
evaluation, arithmetic is over Fp12 since the coordinates xQ, yQ are in that field and their
values are used in arithmetic, as opposed to simple embeddings in a larger/smaller field
via isomorphism.

Let (xT , yT ) = (uTw
2, vTw

3) and let (X, Y, Z) be a projective point such that uT = X/Z
and vT = Y/Z (note that xT , yT ∈ Fp12 and uT , vT ∈ Fp2). Then (we omit subscripts for
clarity)

`T,T (P ) = yP − vTw3 −
(

3(uTw
2)2

2vTw3

)
(xP − uTw2)

= yP −
Y

Z
w3 −

(
3X

2

Z2w
4

2Y
Z
w3

)
(xP −

X

Z
w2)

= [ZyP − Y w3 −
(

3X2

2Y
· w
)

(xP −
X

Z
w2)]/Z

=
ZyP − Y w3

Z
− 3X2w4

Z2
· Z

2Y w3
· xPZ −Xw

2

Z

=
ZyP − Y w3

Z
− 3X2w(xPZ −Xw2)

2Y Z2

=
2Y Z2yP − 2Y 2Zw3 − 3X2ZxPw + 3X3w3

2Y Z2

=
2Y ZyP − 2Y 2w3 − 3X2xPw + 3(Y 2 − b′Z2)w3

2Y Z

=
2Y ZyP − 3X2xPw + (Y 2 − 3b′Z2)w3

2Y Z
.

Since the denominator is in Fp2 , it is mapped to 1 by the final exponentiation. The
formula for the line evaluation is thus given by

`T,T (P ) = 2Y1Z1yP − 3X2
1xPw + (Y 2

1 − 3b′Z2
1)w3.
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Noting that the sequence of operations for doubling costs ≈ 3m̃ + 6s̃, `T,T (P ) can be
computed in just a few additional operations since X2

1 , Y
2

1 , Y1 · Z1 are reused from the
doubling step. Multiplication by small constants is implemented with additions (and thus
ignored in our counts). Therefore, we only need 4 additional Fp multiplications when
computing (2Y1Z1) · yP and (3X2

1 ) · xP . The total cost is approximately 3m̃+ 6s̃+ 4m for
doubling and line evaluation together (line 4 of Algorithm 10).

Line 6 of Algorithm 10 requires a point addition in G′2 and a secant line evaluation.
We can estimate the cost of these computations in the same way. Let T = (X1, Y1, Z1)
Q = (X2, Y2, 1) ∈ E ′(Fp2) and P = (xP , yP ) ∈ E(Fp). Note that Q is given in affine
coordinates since it is the input to the pairing computation, while T is an accumulator
with general projective coordinates. The formulas for (X3, Y3, Z3) = T +Q are given by:

X3 = λ(λ2 + Z1θ
2 − 2X1λ

2)

Y3 = θ(3X1λ
2 − λ3 − Z1θ

2)− Y1λ
3

Z3 = Z1λ
3

where θ = Y1−Y2Z1 and λ = X1−X2Z1. Computing X3, Y3, Z3 thus requires approximately
9m̃+ 2s̃, using the following sequence of operations [13]:

t1 ← Z1 ·X2, t2 ← Z1 · Y2 (4.1)

t1 ← X1 − t1, t2 ← Y1 − t2 (4.2)

t3 ← t1 · t1 (4.3)

X3 ← t3 ·X1, t4 ← t4 · Z1 (4.4)

t4 ← t3 + t4 (4.5)

t4 ← t4 −X3 (4.6)

X3 ← X3 − t4 (4.7)

T1 ← t2 ·X3, T2 ← t3 · Y1 (4.8)

T2 ← T1 − T2 (4.9)

Y3 ← T2, X3 ← t1 · t4, Z3 ← t3 · Z1 (4.10)

To compute the secant line `T,Q(P ), recall that `T,Q = y − yT − yT−yQ
xT−xQ

(x− xT ). Using

the notation above, and with a similar derivation to `T,T (P ), we get a projective formula
for `T,Q(P ):

`T,Q(P ) = λyP − θxPw + (θX2 − λY2)w3.

We need to compute θ ·X2, λ · Y2 and λyP , θxP . Note again that xP is in Fp, so λyP costs
2m, and similarly for θxP . Therefore, the line evaluation costs an additional 2m̃ + 4m
when T +Q is computed first.
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Finally, we discuss a special case of multiplication in Fp12 . We noted that line evalua-
tions have the form a+bw+cw3, where a, b, c ∈ Fp2 , and in Algorithm 10, steps 4,6,8,12,13
all require multiplications of line functions. These elements are sparse compared to a
generic element, and thus multiplications of the form ` · f are simplified as follows. Let
f = f0 + f1w where f0, f1 ∈ Fp6 = Fp2 [n]/(v3 − ξ), and write ` = a + bw + cw3 where
a, b, c ∈ Fp2 . Then, following [118], we have:

` · f = [a+ (b+ cv)w] · (f0 + f1w)

= (af0 + (b+ cv)f1v) + (af1 + (bcv)f0)w

= (af0 + (b+ cv)f1v) + [(a+ b+ cv)(f0 + f1)− af0 − (b+ cv)f1]w.

There are two multiplications to be computed in the last expression above. Let f1 =
f10 + f11v + f12v

2. Then

(b+ cv) · f1 = (b+ cv) · (f10 + f11v + f12v
2)

= (bf10 + cf12ξ) + (cf10 + bf11)v

+[(b+ c)(f10 + f11 + f12)− bf10 − cf12 − cf10 − bf11]v2.

Thus, the sparse multiplication is reduced to 5 multiplications in Fp2 , namely b · f10, c · f12,
cf10, bf11, and (b + c) · (f10 + f11 + f12). Note that multiplication by the constant ξ
has negligible cost – an addition and a conjugation. The same factorization works for
computing (a+ b+ cv) · (f0 + f1). Finally, a · f0 can be computed at a cost of 3m̃ directly,
so the total cost of a sparse multiplication is 5m̃ + 5m̃ + 3m̃ = 13m̃ (after discounting all
additions, reductions, and negations).

We note that the first multiplication of the Miller variable with a line function is
further simplified, as well as the multiplications in the adjustment steps 12,13 in Algorithm
10. We use the above estimates for simplicity, noting that the cost of the Miller loop is
upper bounded by our final estimate and can be improved by accounting for additional
optimizations.

Table 4.2 summarizes the costs of Miller loop operations that were estimated in this
section. Note that the tangent and secant line evaluation table entries denote the addi-
tional cost required to compute the desired quantity, after the associated point addition
or doubling inside the Miller loop, since the intermediate results are extensively reused.
Recalling that z = −(262 + 255 + 1), 6z + 2 is a 65-bit integer of hamming weight 5, the
cost of the Miller Loop is

ML = 64 · (3m̃+ 6s̃+ 4m+ 12m̃+ 13m̃) + 4 · (9m̃+ 2s̃+ 2m̃+ 4m+ 13m̃);
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ML = 1888m̃+ 392s̃+ 272m = 6720m.

This estimate upper bounds the count from [13], which reports 6504m. This discrepancy
comes from discounting one set of operations from the beginning of the Miller loop (f = 1),
as well as special ‘sparser’ multiplication formulas.

Operation Cost
E ′(Fp2) doubling 3m̃+ 6s̃
`T,T (P ) evaluation 4m
E ′(Fp2) point addition 9m̃+ 2s̃
`T,Q(P ) evaluation 2m̃+ 4m
` · f sparse multiplication 13m̃
Fp12 squaring 12m̃

Table 4.2: Operation count for Miller loop operations

4.2.2 Final Exponentiation

The final exponentiation step consists of computing f 7→ f (p12−1)/r in F∗p12 . We can write
this in the form

(p12 − 1)/r = [(p12 − 1)/Φ12(p)] · [Φ12(p)/r],

where Φ12(p) = p4−p2+1 is the 12th cyclotomic polynomial. The general idea is to split the
exponent into two easy exponents and a hard exponent. The easy exponents take advantage
of the pth powering map. The hard exponent (p4−p2 +1)/n is computed in the cyclotomic
subgroup Gφ6(Fp2) (note that after exponentiating the intermediate pairing value f by
p6 − 1 and p2 + 1, the result lies in Gφ6(Fp2)). Recent work on efficient squaring methods
in cyclotomic subgroups [69, 62, 107] focuses on handling this part of the exponentiation.
Special squaring techniques discussed in [69] can be used to achieve the most efficient
computation in this subgroup, and are used in highly optimized pairing implementations
[13, 103].

Now, recall that p and n are both functions of an integer of low hamming weight, z
(Section 4.1.4). Then it can be shown that the resulting polynomial has the following
factorization in terms of p [48] :

p4 − p2 + 1

n
= p3 + (6z2 + 1)p2 + (36z3 − 18z2 + 12z + 1)p+ (36z3 − 30z2 + 18z − 2).

71



The final exponentiation thus requires computing

(fp
3

) · (fp2)6z2+1 · (fp)36z3−18z2+12z+1 · f 36z3−30z2+18z−2.

To evaluate the above product, we can find a vector addition chain and do multiexponen-
tiation, or exploit the form of the exponent and perform square-and-multiply. Devegili,
Scott and Dahab [48] choose the latter option; see Algorithm 11. Note that pe-th powering
on an element of Fp12 reduces to powering in Fp2 , as we show below. If we assume that all
necessary powers of ξ are pre-computed and stored, only the products ai · ξ(·) are required.
Also note that since ξi = 1 for i = 0, the total number of Fp2 multiplications is 5. Then

ap
e

=

(
5∑
i=0

aiw
i

)pe

=
5∑
i=0

ap
e

i w
ipe

=
5∑
i=0

ap
e

i (w · wpe−1)i

=
5∑
i=0

ap
e

i (w · ξ(pe−1)/6)i since p ≡ 1 mod 6

=
5∑
i=0

(ap
e

i · ξi
pe−1

6 )wi.

Thus, each pe exponent mapping in Algorithm 11 essentially costs 5m̃.

Algorithm 11 Hard exponentiation [48]

INPUT: f ∈ GΦ12(p) ⊂ F×p12 ,
OUTPUT: f (p4−p2+1)/n

1: a← f 6z−5

2: b← ap

3: b← a · b
4: Compute fp, fp

2
, fp

3

5: f ← fp
3 · [b · (fp)2 · fp2 ]6z2+1 · b · (fp · f)9 · a · f 4

return f

We note that the work of Sanchez et al. makes use of Karabina’s compressed squaring
formulas, which are more efficient than the Stam and Lenstra formulas in Lemma 4.14.
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For our first-order approximation, we use Algorithm 11 and the Stam-Lenstra formula for
squaring in GΦ12(p). Denote the cost of squaring in the cyclotomic subgroup by S ′ and
multiplication in Fp12 by M12. Note that the integer 6z − 5 has length 65 and Hamming
weight 7, and 6z2 + 1 has length 127 and Hamming weight 13. Because of the choice of z
to have low Hamming weight, this makes square and multiply the most efficient exponenti-
ation technique here, beating out window methods due to the necessary precomputations.
Thus, we have (64S ′ + 6M12) + (126S ′ + 12M12) for special exponents in Algorithm 11.
Exponentiations by 4 and 9 cost 2S ′ + (1M12 + 3S ′). There are 4 pe-th powerings in Fp12 ,
costing a total of 4 · 5m̃. Finally, Step 5 requires 1S ′ + 8M12 to combine the intermediate
results. The easy exponentiations fp

2+1, fp
6−1 cost 5m̃ + M12 and I12 (inversion in Fp12),

respectively. Inversion in Fp12 costs 97m + 1i; this follows from the Fp6 inversion formula
from [48]; see Chapter 5 of [118] for details. The cost of the final exponentiation is thus

FE = (196S ′ + 27M12 + 20m̃) + (5m̃+M12) + I12.

Putting this in terms of Fp operations yields

FE = (196 ·2(2m̃+3s̃)+27 ·18m̃+20m̃)+(97m+1i) = (196 ·24+27 ·54+60+97)m+1i.

Hence FE = 6319m + 1i. The adjustment steps consist of 2 (line evaluation + point
addition) steps, 2 sparse multiplications, 1 p-th power Frobenius endomorphism, and 1
p2-power Frobenius endomorphism. The total cost for the adjustment steps is

2m̃+ 4m+ 9m̃+ 2s̃+ 2 · (13m̃) + 6m+ 2m = 127m.

If we assume a simple ap−2 (mod p) inversion algorithm in Fp (with square and multiply),
we find that computing a single optimal ate pairing costs approximately

ML + FE + adjustment = 6720m+ 6319m+ 1i+ 127m

= 13166m+ (127s+ 95m) ≈ 13388m,

since p is a 256-bit prime of Hamming weight 95. This estimate differs from the reported
count of 10152m from [13]; this is largely due to this analysis not taking all of the optimal
choices that speed up the final exponentiation, e.g. even faster squaring in cyclotomic
subgroups. Aranha et al. report that these formulas reduce the number of Fp2 squarings
by 33%. This change alone accounts for approximately half of the discrepancy above.

4.3 Identity-Based Schemes

Identity-based cryptography was first proposed by Shamir in 1984 [109]. The idea is
that the cost of key exchange is omitted, and the system simply uses an identifier (ID)
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to encrypt messages and verify signed messages, as opposed to a public key certificate,
which may have large components and can be costly to generate and maintain. The first
identity-based key distribution, signature, and encryption schemes based on pairings are
due to Sakai, Ohgishi and Kasahara [102]. The Boneh-Franklin identity-based encryption
(IBE) scheme from 2001 was the first identity-based encryption scheme with a proof of
security [29]. The Boneh-Franklin IBE led to an increase in research activity surrounding
pairings for use in cryptography, and the trend has led to work on aggressive optimization
of pairing computations for cryptographic applications [12, 103, 13].

The Boneh-Lynn-Shacham (BLS) signature scheme [31] is interesting in part due to
its short signature: a signature on a message consists of a single group element. DSA
and ECDSA signatures consist of two integers modulo n; concretely, this means 512 bit
signatures vs. 256 bit signatures, at the 128-bit security level.

4.3.1 BLS Signature Scheme

In this section, we present the BLS signature scheme. BLS is interesting in the con-
text of batch signature verification since we can use previously mentioned techniques for
multi-scalar multiplication in G. There is also the possibility of doing multi-pairing com-
putations, although the number of common operations is not sufficient to outperform batch
verification in G. This agrees with the general understanding that computing a pairing is
typically the most expensive part of any given protocol.

Gap Diffie-Hellman Groups

Let G1 = 〈g1〉, G2 = 〈g2〉 be finite groups of prime order p. Let e : G1 × G2 → GT be a
Type 3 bilinear map. In the context of two groups, we can define generalized CDH and
DDH as follows, following [31].

Computational co-Diffie-Hellman (co-CDH) on (G1, G2): Given g2, g
a
2 ∈ G2 and

h ∈ G1 compute ha ∈ G1.

Decisional co-Diffie-Hellman (co-DDH) on (G1, G2): Given g2, g
a
2 ∈ G2 and h, hb ∈

G1 output ‘yes’ if a = b and ‘no’ otherwise. When the answer is ‘yes’ we say that
(g2, g

a
2 , h, h

a) is a co-Diffie-Hellman tuple.

We note that if G1 = G2 (that is, the groups are not just isomorphic, they are repre-
sented with the same generator and element encoding), these definitions are just CDH and
DDH in the single-group setting.
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Now, in order to state the security theorem for BLS signatures, we will need a few
definitions. Define the advantage [31] of an algorithm A in solving co-CDH on (G1, G2) as

Pr[A(g2, g
a
2 , h) = ha : a←R Zp, h←R G1)].

This advantage is interpreted as the probability that A can solve a random instance of
the co-CDH problem, where the probability distribution is over the random bits accessed
by A, and over the elements of Zp and G1, each with equal probability. We say that an
algorithm A (t, ε)-breaks the co-CDH on (G1, G2) if A runs in time at most t, and the
advantage of A is at least ε.

Definition 4.15 (co-GDH pair [31]). Two groups (G1, G2) are a (t, ε)-Gap co-Diffie-
Hellman pair if they satisfy the following properties:

1. The group operation on both G1, G2 can be computed in one time unit.

2. The co-DDH on (G1, G2) can be solved in one time unit.

3. No algorithm (t, ε)-breaks co-CDH on (G1, G2).

The first point in Definition 4.15 can be interpreted as an upper bound on running time,
or as an ‘efficiently computable’ requirement for the group operations. The second and
third points express the gap in problem difficulty, as well as a normalized time measurement
under which no algorithm (t, ε)-breaks co-CDH on (G1, G2).

To see that pairing groups satisfy this definition, recall bilinearity: for all u1, u2 ∈
G1, v1, v2 ∈ G2, e(u1 + u2, v1) = e(u1, v1) · e(u2, v1) and e(u1, v1 + v2) = e(u1, v1) · e(u1, v2).
Given this property, part 2 of Definition 4.15 is satisfied, since a co-DDH instance is solved
by computing e(h, ga2) and e(hb, g2) and checking for equality. Note that, by bilinearity,

e(hb, g2)

e(h, ga2)
= e(h, g2)b−a.

Hence a ≡ b (mod p) if and only if the test for equality holds. The first and third
requirements reduce to known properties of the bilinear CDH and normalizing operation
cost. Thus, the groups on which bilinear pairings are defined give an example of Gap
Diffie-Hellman group pairs. The authors of [31] note that the converse, i.e., the existence
of gap Diffie-Hellman groups that come from a context other than bilinear pairings is an
open problem. Given the above setting, we can describe the BLS signature scheme.

Key generation. Pick random x ∈R Zp. The secret key is x and the public key is v = gx2 .
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Signing. Given a secret key x ∈ Zp, and a message M ∈ {0, 1}∗, compute h ← H(M) ∈
G1, and σ ← hx. The signature on M is σ ∈ G1.

Verification. Given a public key v ∈ G2, a message M ∈ {0, 1}∗, and a signature σ ∈ G1,
compute h← H(M) ∈ G1 and verify that (g2, v, h, σ) is a valid co-Diffie-Hellman tuple. If
so, output ‘valid’; if not, output ‘invalid’.

Boneh, Lynn and Shacham proved that this scheme is existentially unforgeable under
adaptive chosen-message attack, assuming the hash function H is modelled by a random
oracle [31] and that solving co-CDH in (G1, G2) is intractible.

4.3.2 BN-IBV Signature Scheme

We describe the identity-based verification (IBV) scheme due to Zhang et al [120]. It is
derived from Π-Sig (CHP), a modification of the Camenisch-Lysanskya (CL) signature
scheme [37]. We call this the BN-IBV signature scheme, since we will analyze it in the
context of a particular BN curve. It was proved in [37] that under the LRSW assumption
[38, 83] in G, the CHP signature scheme is existentially unforgeable in the random oracle
model for message space M = {0, 1}∗. We give an updated security proof here in the
Type 3 setting. The proof for the batch verification algorithm satisfying Definition 1.3 in
CHP is given in [37].

CHP Security Proof

The CHP scheme in the Type 3 setting is as follows.

Let e : G1 × G2 → GT be a Type 3 bilinear pairing, where G1 = 〈g1〉, G2 = 〈g2〉 and
GT are cyclic groups of prime order q. Let T be a set of time periods that is “polynomially
bounded in size”, and let |T | = γ.

Let H1 : T → G1 and H2 : T → G1 be hash functions.
Let H3 :M× T → Zq be a hash function.

Key Generation:

The private key is x ∈R Zq. The public key is X2 = gx2 .

Signing:
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To sign a message m during time period t ∈ T , compute a = H1(t), b = H2(t), and
w = H3(m, t). Then σ = axbxw is the signature on m with private key x.

Verification:

To verify a signature σ on message m for time period t, compute a = H1(t), b = H2(t),
and w = H3(m, t), and check whether the following equation holds:

e(σ, g2) = e(a,X2) · e(b,X2)w.

LRSW-3 Assumption. Suppose that X1 = gx1 ∈ G1, X2 = gx2 ∈ G2 and Y = gy1 ∈ G1 are
given. Suppose also that there is an oracle OX1,X2,Y : w 7→ (a, ay, ax+wxy), a ∈R G1, which
maps inputs w ∈ Z∗q to random triples of this form. Then no p.p.t adversary A succeeds
at producing a 4-tuple (w, t, ty, tx+wxy) (where m was not queried to the oracle) with any
non-negligible probability.

Theorem 4.16 (CHP Security in Type 3). Under the LRSW-3 assumption in (G1, G2),
the CHP-3 signature scheme is existentially unforgeable in the random oracle model for
message space M = {0, 1}∗.

Proof: Assume that there exists a p.p.t algorithm F (the forger) with the following
properties:

1. F takes as input the public key X2;

2. F is given access to random oracles H1, H2;

3. F is given access to random oracle H3, to which it can make at most qH queries for
each time period t;

4. F is given access to a signing oracle Σ to which it can make at most one query for
each time period t.

The goal for F is to output a valid signature for (m, t) where m was not queried to Σ in
any time period t ∈ T .

Claim: There is a p.p.t algorithm B that interacts with F and answers F ’s hash function
and signature queries, and outputs a solution to the LRSW-3 problem with non-negligible
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probability.

Proof of claim:

Setup: B chooses a random w∗ ∈ M and queries OX1,X2,Y (w∗) to obtain an LRSW-3
instance (a∗, b∗, c∗) = (a∗, (a∗)y, (a∗)x+w∗xy), for a randomly chosen a∗ by the oracle. Select
a random index j∗ ∈ T , which will denote the time period for which we hope that F
produces a valid forgery.

Key Generation: B supplies the public key X2 = gx2 to F .

Oracle Queries: For each time period j, j 6= j∗, B selects random pairs of integers (rj, sj) ∈
Zq × Zq.

For the query that F makes to H1 in time period j, B responds with

H1(j) =

{
g
rj
1 if j 6= j∗

a∗ if j = j∗

and for H2, B responds with

H2(j) =

{
g
sj
1 if j 6= j∗

b∗ if j = j∗
.

B also selects a random index k∗ ∈ [1, qH ], which represents the only hash query for
which F queries the signing oracle in time period j∗. B selects tj,k ∈R Zq, for each k ∈ [1, qH ]
and j ∈ [1, γ]. For queries to H3, B responds with

H3(mk, j) =

{
tj,k if j 6= j∗ or k 6= k∗

w∗ otherwise.

For signing queries, B responds with the following:

Sign(mk, j) =


abort if j = j∗ and k 6= k∗

c∗ if j = j∗ and k = k∗

X
rj
2 X

(sj)tj,k
2 otherwise.

Note the reason for these responses: in the first case, B has no way of responding to such a
signing query, as it would require knowledge of the private key. In the second case, B can
supply a valid response because in this case the valid signature is given by the LRSW-3
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instance (a∗, b∗, c∗), and since B responds to H3 queries in such a way that F will get w∗

when queried for time period j∗ and message mk∗ .

Let σ be the forged signature on (mk, j) produced by F . If j 6= j∗ or k = k∗, then B
outputs a random guess for the LRSW-3 challenge. If B is not forced to abort or issue a
random guess, then we note that

σ = H1(j∗)xH2(j∗)x·H3(mk,j
∗).

We have thatH3(mk, j
∗) = tj∗,k 6= w∗. We can substitute σ = (a∗)x(b∗)x·tj,k , so (tj,k, a

∗, b∗, σ)
is a valid LRSW-3 instance. Thus B succeeds whenever F successfully forges a signature
(and B is not forced to abort). �

The analysis of the success probability for B is the same as in the Type 1 setting, so
we omit it here. Note that since qH and γ may be large, this security proof is considerably
non-tight. We also note that the proof in Type 3 is virtually identical to the proof in
the Type 1 setting, except for the pairing groups and their generators. However, there is
a choice made when modifying the scheme: we chose the hash functions to map into G1

and for public keys to be in G2. It is also possible to define the scheme with public keys
in G1, but since elliptic curve computations are fastest in G1 in practice, and hashing is
also faster in that setting, this seems to be the obvious choice for efficiency and shortest
signatures. This has the side effect of longer public keys, but in the context of vehicular
ad-hoc networks this is a favourable trade-off.

Zhang et al. designed their signature scheme with several desirable privacy and security
properties. It has been noted in the literature that user privacy is required, but it should
be possible to hold misbehaving units accountable. User anonymity is achieved through
pseudo-identities, which are simply random elements of G1. If desired, pseudo-identities
can be changed as frequently as is practical, since these multiples can be precomputed
offline. This defeats traffic analysis since messages sent by a vehicle cannot be linked
to messages sent under a different pseudo-identity. However, this looks different from the
point of view of the trusted authority since it knows the master private key and can recover
the long-term public key of each unit. The trusted authority (TA) may determine the real
identity, RID of the malicious unit with known quantities, along with its master secret
(s1, s2):

ID2 ⊕H(s1ID1) = RID ⊕H(rPPub1)⊕H(s1rP1) = RID.

Let e : G1×G2 → GT be a bilinear, nondegenerate Type 3 pairing. Zhang et al. define
the scheme using a Type 1 pairing. We are interested in the Type 3 setting, so we will
have to modify the scheme to make the point s1P2 ∈ G2 part of the public key. This
modification simply means publishing an additional public key in G2.
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Let G1 = 〈P1〉, G2 = 〈P2〉, and let H : {0, 1}∗ → G1, h : {0, 1}∗ → {0, 1}`, where we
leave ` dependent upon context and the desired security level. We also assume that all
signatures that we batch verify are from the same time/location period Φ, typically realized
as a time interval between 100 and 300 milliseconds in practice [120]. Each road side unit
(RSU) must be capable of verifying all message-signature pairs in this time interval.

Key Generation and Pre-Distribution
The TA chooses s1, s2 ∈R Z∗q, called master keys, for a vehicle.
The TA computes Ppub1 = s1P1, Ppub2 = s2P2, Ppub3 = s1P2.
Each RSU and vehicle gets {G1, G2, GT , q, P1, P2, Ppub1, Ppub2, Ppub3}.
Each vehicle gets {s1, s2} in a tamper proof unit (see Figure 4.1). To access the tamper
proof unit, each vehicle has its own real identity, RID, and password PWD. Note the
difference between the original scheme and the one presented here: Ppub3 is required here.

Pseudo-Identity and Private Key Generation
Authentication module: Requires the correct RID and PWD to access.

Pseudo-Identity Generation Module:
ID1 = rP1 ∈ G1, where r ∈R [1, q − 1]
ID2 = RID ⊕H(rPpub1)

Private Key Generation Module:
SK1 = s1ID1 ∈ G1

SK2 = s2H(ID1||ID2) ∈ G1

Signing
i) Vehicle Vi generates traffic related message Mi.
ii) Vi picks pseudo-identity IDi = (IDi

1, ID
i
2) and the corresponding private key SKi =

(SKi
1, SK

i
2) by way of the tamper-proof device.

iii) With the private key, Vi computes signature σi of message Mi, where

σi = SKi
1 + h(Mi)SK

i
2 ∈ G1.

iv) Vi sends 〈IDi,Mi, σi〉 to an RSU.
v) These steps are performed once per public key per time/location interval Φ.

Single Signature Verification
Given {G1, G2, GT , q, P1, P2, Ppub1, Ppub2, Ppub3}, message 〈IDi,Mi, σi〉, the signature σi is
valid if

e(σi, P2) = e(IDi
1, Ppub3) · e(h(Mi)H(IDi

1||IDi
2), Ppub2).
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Remark 1. Note that BN-IBV is loosely an instantiation of CHP, since H3(m||j) corre-
sponds to h(M), H2 corresponds to H(ID1||ID2), and H1 corresponds to r · P1. However,
note that in CHP there is one secret key, xj, but in BN-IBV there are s1 and s2. It is an
open problem to define a security model and a reductionist security proof for BN-IBV.

Batch Verification

Suppose we have N distinct messages denoted 〈ID1,M1, σ1〉, . . . , 〈IDN ,MN , σN〉. If all N
signatures are valid, then

e

(
N∑
i=1

σi, P2

)
= e

(
N∑
i=1

IDi
1, Ppub3

)
· e
(

N∑
i=1

h(Mi)H(IDi
1||IDi

2), Ppub2

)
. (4.11)

Remark 2. Equation 4.11 alone does not suffice for a batch verification algorithm. In
order to prove that all N equations hold with error probability 2−`, we must use the small
exponents test. Equation 4.11 is presented by Zhang et al. as a batch verifier, but this
is not justified in [120]. In particular, it is not at all clear whether Equation 4.11 implies
that each of the N signature verification equations is satisfied. Therefore, in order to
remedy this, we will select random scalars δi ∈ {0, 1}` for i = 1, . . . , N , perform the small
exponents test, apply the pairing, and report operation counts for this batch verifier. In
this case, the batch verifier proof carries over from Π-sig in [37]. Thus, we much check that

e

(
N∑
i=1

δiσi, P2

)
= e

(
N∑
i=1

δiID
i
1, Ppub3

)
· e
(

N∑
i=1

(δi · h(Mi) mod q)H(IDi
1||IDi

2), Ppub2

)
.

Since batch verification requires just 3 pairing computations, amortizing the cost of
these pairings over the batch size is once again the overall goal. Rodriguez-Henriquez et
al. note that the cost of group operations in G1 and G2 is more relevant now that pairing
computations have become more efficient [103].

Despite its computational benefits, batch verification is a natural target for denial of
service attacks. Once a certain threshold (depending on signature scheme, primitives used,
etc. up to a given theoretical bound [119]) of invalid signatures is present in a batch, we
must fall back on individual verification. As a result, a lot of computation is wasted because
multi-exponentiations performed during batching signatures do not all help with verifying
individual signatures, and this loss of efficiency is enough to cause a denial of service.
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Tamper-proof Device

Authentication Module Pseudo ID Generation
Module

Private Key Generation
Module

Verify RID and PWD ID1 = r · P1

ID2 = RID ⊕H(r · Ppub1)
SK1 = s1 · ID1

SK2 = s2 ·H(ID1||ID2)

(RID,PWD) (ID1, ID2, SK1, SK2)

Figure 4.1: The tamper-proof device [120]. The only modification required in the Type 3
setting is letting ID1 = r · P1.

4.4 Comparing Conventional ECC with Pairings

In this section, we compare the cost of BN-IBV batch verification instantiated with the BN
curve from Section 4.3, batch verification of EdDSA signatures instantiated with Ed25519
and Bos-Coster batching (Chapter 3), and Cheon-Yi batching with the ECDSA∗ signature
scheme (Chapter 2). All comparisons are at the 128-bit security level. The following
analysis considers schemes already presented in this thesis and evaluates their respective
operation cost and features.

4.4.1 BN-IBV

The cost of a single signature verification in the Zhang et al. scheme can be computed as
follows. The RSU receives a tuple of the form (ID,M, σ), and must verify that

e(σ, P2) = e(ID1, Ppub3) · e(h(M)H(ID1||ID2), Ppub2).

This requires: one hash function evaluation on M (which is discounted because we assume
short messages), 1 map-to-point hash on ID1||ID2, 1 scalar multiplication in G1, 3 optimal
ate pairing evaluations, and 1 multiplication in Fp12 .

BN-IBV uses hashing into G1, so the means of accomplishing this task requires some
attention. However, hashing into pairing groups is an interesting problem in itself [54]. We
will take the hash function for granted and discount the computational cost, just as we do
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in the case of EdDSA. Since the map-to-point hash is evaluated for every pseudo-identity
(which may change with every message), it requires variable-base scalar multiplication. We
use the w-NAF method (discussed in Section 2.3.2) to compute h(M)H(ID1||ID2) ∈ G1, as
suggested in Section 4.1 of Sanchez et al. [103] (since h(m) is a random scalar, verification
benefits from windowing).

We assume that the RSU operates on decompressed points: in practice, transmitting
points in compressed format is common and desirable, but here we want to focus on
the verification costs. We will assume that each RSU has Jacobian coordinate represen-
tations of intermediate group elements in computation and affine representation for any
pre-computed points, e.g. pseudo-identities. Compression and decompression of points and
keys in EdDSA is part of the actual signature scheme, so we will assume that both BN-IBV
and ECDSA∗ use standard compression of points, noting that they are not widely different
in cost according to Section 5 of [25]. For our purposes, verification costs implicitly include
the cost of compression and decompression, which are approximately the same in both the
Weierstrass and Edwards cases.

We use the w-NAF with online precomputation for w ∈ {3, 5}, where m denotes the
bit-length of the group order. This gives a variable-base scalar multiplication cost of

[1D + (2w−2 − 1)A] +

[
m

w + 1
A+mD

]
.

This can be further improved by using a 2-dimensional decomposition of the scalar
(due to Gallant-Lambert-Vanstone), which changes the online doubling cost to m

2
D from

mD. Note that we cannot take advantage of mixed addition formulas here because the
precomputation is online and thus converting those points to affine would only further
increase the cost (over and above the slow Jacobian full additions). Hence, variable-base
scalar multiplication costs

[(3m+ 4s) + 7 · (12m+ 4s)] +

[
256

5 + 1
(12m+ 4s) +

256

2
(3m+ 4s)

]
= 983m+ 711s.

There are additional techniques for reducing pairing costs in the context of products of
pairings (i.e. multi-pairing). Namely, the accumulator f in Algorithm 10 can be shared
among the Miller loops for each individual pairing. In addition, we can take advantage
of precomputation whenever there is a fixed point Q ∈ G2 for which we evaluate the
pairing. A multi-pairing algorithm taking these improvements into account is given in
[103] (Algorithm 8).
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Suppose we are to evaluate a single optimal ate pairing. If the argument Q ∈ G2 is
fixed then we precompute line functions `T,T (·), as well as the point multiples {Q, [2]Q,
[22]Q, . . ., [264]Q}, at the cost of extra storage (65 G2 elements, 64+4 = 68 line functions).
At run-time, they are evaluated at the variable point P ∈ G1. More concretely: the line
function `T,T (·) = `0yP +`1xPw+`2w

3 will have the `i precomputed offline. The additional
cost remains multiplying the results by xP and yP ; we actually only save the cost of all the
point doublings in the Miller loop. The same is true for `T,Q(·), and the additional cost of
line function evaluation is reduced to 4m in this case. Hence

ML = 64 · (0 + 4m+ 12m̃+ 13m̃) + 4 · (0 + 4m+ 13m̃) = 768m̃+ 884m̃+ 272m,

FE = 6319m+ 1i.

The underlined portions denote shared operations in the multipairing context, so they
are performed only once in a product of pairings. The remaining (non-underlined) terms
are repeated for each individual pairing in the product. The adjustment steps are also
repeated for each individual pairing in the product, and the final exponentiation cost is
shared among all the pairings, so the FE count from Section 4.2.2 is unchanged. The total
pairing cost for single verification is

2× 768m̃+ 3× 884m̃+ 3× 272m+ 2×FE + 3× adjustment = 26589m+ 254s ≈ 26843m.

Therefore, the cost of a single verification for BN-IBV is approximately 26843m+ 983m+
711s + 18m̃ ≈ 28591m. Note that this is significantly less than the cost of three optimal
ate pairings, relying heavily on pre-computation and interleaving operations.

As expected, the contribution of each pairing required for verification makes the over-
all cost quite high. However, the cost per signature reduces significantly in the case of
batching. Recall the batch verification equation for BN-IBV:

e

(
N∑
i=1

δiσi, P2

)
= e

(
N∑
i=1

δiID
i
1, s1P2

)
· e
(

N∑
i=1

(δi · h(Mi) mod q)H(IDi
1||IDi

2), Ppub2

)
.

Verifying this equation requires N modular multiplications (modulo the curve order), 1 Fp12
multiplication, 3 multi-scalar multiplications, and 3 optimal ate pairings (note the product
of pairings and fixed arguments in G2). Assuming we use the Bos-Coster algorithm for
N = 64, the cost for multi-scalar multiplication is approximately 1650 (full) Jacobian-
coordinate additions. We choose to present operation counts with a concrete power of two,
and later note the asymptotic cost as a function of N in Table 4.4. The output of the
map-to-point hash from [54] is in affine coordinates (i.e. the H(IDi

1||IDi
2) are all affine),
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but Algorithm 8 requires mostly projective additions. The first few steps in the Bos-Coster
algorithm may be mixed additions, but the sorted points Ai all eventually become affected
by the algorithm and thus in projective coordinates with Z 6= 1. Analysis on how quickly
this happens on average could be interesting future work, since the savings in using mixed
addition formulas is desirable, and will enable an estimate that is a tighter upperbound
than what we accomplish here. Using Jacobian additions (12m+4s according to Table 2.2),
the total cost of a batch verification in BN-IBV as

BatchN(BN-IBV) ≈ 3× (B-C)N × (Ae) + 26843m+ 18m̃+Nmq.

Thus Batch64(BN-IBV) ≈ 106161m, using Table 3.5 for the cost of Bos-Coster for N = 64
and assuming that modular multiplications modulo the curve order cost the same as field
multiplications (mq = m), and full projective additions (Ae = 12m + 4s). We note that
the BN-IBV scheme is sensitive to invalid signatures. We have discussed the issue of batch
forgery identification, and the problem has been explored by Matt and Law in [81, 84].
If one expects to encounter a large number of invalid signatures in a batch, the cost of
verification increases significantly due to falling back on single signature verification.

Operation Cost
Variable base scalar multiplication in G1 983m+ 711s

Single O-Ate Pairing on G1 ×G2 13388m
BN-IBV Batch Verification (N = 64) ≈ 106161m

Table 4.3: Pairing operation costs summary

4.4.2 EdDSA

Single signature verification in the EdDSA scheme is computed as follows. After decom-
pression, compute one join sparse form and check whether R = SB − H(R,A,M)A. In
fact, one checks whether the encoding of R is the same as the encoding of the right hand
side of this verification equation. This saves the cost of decompressing R, and is the main
reason that the technique of Antipa et al. is not of clear benefit in this scenario since it
requires decompressed R. ECDSA∗ already operates on decompressed points, so it can take
advantage of half-length scalars. However, one is forced to use larger keys and signatures
in ECDSA∗ if using decompressed points. The double-scalar multiplication method used
is not specified explicitly in [25]. Sliding windows are one natural choice [106], and JSF is
another reasonable choice [64]. We choose extended twisted Edwards coordinates, which
require 9m + 2d for a point addition (8m + 1d for mixed, −1 twist), in the notation of
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Table 3.4, and the details are given in Algorithm 3.4.1. Doubling in extended twisted Ed-
wards coordinates requires 3m+ 4s according to Section 3.3 of [67] (formulas independent
of d, and −1 twist simplifies formulas). After discounting (offline) pre-computation on the
base point B, an EdDSA single verification using the JSF costs(

253

2
+ 2

)
A+ 253D = 126.5× (8m+ 1d) + 253× (3m+ 4s) = 1771m+ 1012s+ 127d.

To aid in comparison with other schemes, s/m ratios are estimated between 0.8 and 1 in
practice, and so far we have taken s/m = 1. Determining the ratio d/m for a twisted
Edwards curve with d = −121665/121666 must be measured in practice. Bernstein et
al. note that one could trade this multiplication for a small number of multiplications by
121665 and 121666, but the software does not do this to save code size. Taking d/m = 1 is a
conservative choice, but in the absence of other data it will suffice. Thus a single verification
costs approximately 2910m in the worst case. We should add 90m for a single inversion
of the Z coordinate allowing us to use the mixed addition formulas, giving approximately
3000m for single verification.

Batch Verification

We have analyzed the Bos-Coster Algorithm (Algorithm 8) in Section 3.5.2. In Table
3.5, we gave a concrete operation count in terms of elliptic curve additions and modular
subtractions. Recalling the batch verification equation 3.2 for EdDSA:(

−
∑
i

ziSi mod l

)
B +

∑
i

ziRi +
∑
i

(ziHi mod l)Ai = 0,

there is one fixed-base scalar multiplication for the base point B with a full-length scalar,
one multi-scalar multiplication involving uncompressed public keys Ai (compare to: Qi

for ECDSA∗) with 253-bit scalars, and one multi-scalar multiplication on uncompressed
signature points Ri with 128-bit scalars (compare to Section 5 of [25]).

Curve25519 accomplishes fixed-base scalar multiplication in signing and verification
with lookup tables. During signing, one must ensure constant-time computation and avoid
branch conditions to protect against side-channel attacks, so care is needed when computing
rB [25]. During verification, there is no need to protect against side-channel attacks
because the scalar is known to anyone listening to message-signature broadcasts, and the
fastest, non-constant time algorithm may be used to verify. Thus, we use a sliding window
w-NAF. Since the cost of Bos-Coster is directly proportional to the input length of the
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scalars (for a fixed batch size n), a 253-bit multi-scalar multiplication costs approximately
1650× 253

128
= 3262A. Note that we can only use mixed addition formulas for the fixed-base

computation. The cost of batching 64 EdDSA signatures with the Bos-Coster algorithm
is thus approximately

Batch64(EdDSA) = 1650 · A+ (1 fixed window) + (3262 · A)

= 1650A+ d253/5e(8m+ 1d) + 3262A

= 4912(9m+ 1d) + 51(8m+ 1d)

= 44616m+ 4963d

≈ 49579m,

in the worst case.

Recalling the remarks in Section 2.2 and 2.3.2, we consider again the question of whether
the Bos-Coster method and the acceleration technique of Antipa et al. are orthogonal im-
provements. Since in this case our batch verification algorithm does not rely on the chosen
sparseness of scalars, we could make the expensive lattice computation every time we per-
form a batch verification in order to get (almost all) half-length scalars. Since Bos-Coster
requires only additions, a first order analysis of the trade off is straightforward. In order
to make the method of Antipa et al. worthwhile in this context, the lattice computation
must be less than the incremental cost. In other words,

(short vector cost) + (batching with half length scalars) ≤ 49579m.

After computing the cost of batching with half length scalars, we see that

(short vector cost) ≤ 49579m− (51× 9m+ 4912/2A) = 24560m.

Hence, finding short vectors in a 64-dimensional lattice must be cheaper than 24560 field
multiplications. Future work may include a closer look at whether current implementations
of lattice algorithms can attain this performance.

4.4.3 ECDSA∗

Recall our discussion of ECDSA∗ from Chapter 2. Equation 2.20. To attain approximate
128-bit security, we chose parameters m = 252, w = 5, t = 14 in Section 2.3.2. Recalling
equation 2.20, we have online precomputation and thus general Jacobian additions and
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doublings are required. We make no assumptions about the ability of an RSU to store
precomputed multiples of public keys, and note that if this changes in the future, the
estimates in this section can be updated with the cost of mixed Jacobian-affine addition
formulas. Finally, recall equation 2.23:

128

3
Ae + 256De + 72.7NAe + 2NDe.

This gives a batch verification cost with N = 64 of

Batch64(ECDSA∗) =

(
128

3
+ 72.7N

)
A+ (256 + 2N)D

= (4695.5)× (12m+ 4s) + (256 + 128)× (4m+ 4s)

= 76416m,

assuming s/m = 1 in the worst case.

Remark 3. Noting that twisted Edwards curves with a = −1 give very efficient group law
computation, the same calculation in the twisted Edwards case would give approximately
45000m. This seems to suggest that these batching algorithms are similar for batch sizes of
interest (although not asymptotically). We can consider other combinations, for instance
ECDSA∗ with Bos-Coster and Weierstrass curves, N = 64; counting group operations as
in Section 4.4.2, this costs 4912× (12m+ 4s) + 51× (8m+ 3s) = 79153m. ECDSA∗ with
Bos-Coster and twisted Edwards curves has the same cost of batch verification for N = 64
as EdDSA, namely 49579m.

4.4.4 Comparison

We choose several points of comparison between signature schemes and present them in this
section. Table 4.4 gives an overview; Bos-Coster and Cheon-Yi are abbreviated as B-C and
C-Y, respectively. The choice of whether the scheme uses compression or not is denoted by
χ, which affects the signature, public key, and certificate size (if applicable). The difficulty
of Pollard Rho estimates come from Safecurves [4]. However, not all comparisons can be
made directly. For instance, the fields used by each context are different (e.g. GF (2255−19)
vs. GF (p(z))) and while GF (2255−19) can be made to use extremely efficient reduction and
arithmetic algorithms, GF (p(z)) must fall back on generic Montgomery methods, which
perform well enough, but cannot hope to match the same speeds. Interpreting operation
counts should take this into account, but a fine analysis of field arithmetic is out of scope
for this thesis.
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The first order analysis offered here means to suggest that a trade-off is possible in terms
of cost per-signature for identity privacy preservation. Sometimes the word conditional
is a prefix to this phrase, denoting that it should be possible for the trusted authority
to identify misbehaving participants, but not by, e.g. law enforcement (without a court
order) [98]. Raya and Hubaux analyze this property in Section 7.2 of [98], and note
that to maintain anonymity, the OBU should change their public key (or pseudo-identity
in the identity-based case) roughly every minute. In a PKI this is accomplished with
Certificate Revocation Lists (CRLs) and certificate expiry. Each message-signature pair
that verifies means that it comes from a user that was trusted at some point, and has
not misbehaved using their credentials before the CRL is updated. At some later point
in time, their certificate may be revoked or expire, and their messages will cease to be
trusted by users checking the CRL. The solution in the PKI is for each vehicle to store
a large number of certificates and keys. This requires 525600 certificates per year, per
vehicle to maintain identity privacy. This is a much larger requirement over time than any
other precomputation involved in the BN-IBV scheme, but is not unreasonable storage by
modern standards: with 257-bit ECC certificates [7], this requires approximately 128 MB
(220 bytes) of storage per year of use in a single vehicle. Practical considerations may not
allow for a large amount of storage, and the flexibility of changing identities on the fly with
BN-IBV, at a variable rate if desired, may be an independently attractive feature. One
current proposal lists an area of future work in a PKI-based solution is to determine how
many simultaneously valid (static) public key certificates a vehicle must use to maintain
privacy [117].

BN-IBV + B-C ECDSA∗ + C-Y EdDSA + B-C
Signature Size 32× (1 + χ) bytes |(R, s)| = 32× (2 + χ) bytes |(R, S)| = 64 bytes
Certificate Size 0 (N/A) 32× (2 + χ) bytes 64 bytes

Key Size 32× (1 + χ) bytes |Q| = 32× (1 + χ) bytes |A| = 32 bytes
Pollard Rho Difficulty 2126.4 2125.99 2125.8

Batching Cost (N = 64) 106161m 76416m 49579m
De/Compression χ ∈ {0, 1} χ ∈ {0, 1} Edwards
Identity Privacy Flexible Fixed cert. store Fixed cert. store

Table 4.4: Comparison of signature schemes for vehicular ad-hoc networks

We summarize our discussion in this section with Table 4.4. Key size in the BN-IBV
entry of Table 4.4 means the size of a pseudo-identity, which is a single (compressed) G1

element.

BN-IBV is expensive in the single signature case, while a single JSF with EdDSA
requires at least 10 times fewer operations. Since the purpose of this section is to investigate
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how much this factor is diminished when considering the case of batching, where we consider
the cost of verification per signature batched. This means one might be willing to take
a slight performance hit per signature, while gaining Identity Privacy Preservation and
smaller communication overhead. Dividing the table entries under “batching cost” by
N = 64 gives:

Batch64(BN-IBV + B-C)

64
= 1659m/sig

Batch64(ECDSA∗ + C-Y)

64
= 1194m/sig

Batch64(EdDSA + B-C)

64
= 775m/sig.

The asymptotic batching costs are given in Table 4.5. Because of greater variation in
curve parameters and associated costs for Edwards curves, we do not introduce additional
notation and simply give the field operation costs for the third table entry. The constant
C is determined in practice by experiment, e.g. Table 3.5.

BN-IBV+B-C 3× (B-C)N ×Ae +N ·mq + 18m̃+ aopt
ECDSA∗ + C-Y

(
128
3

+ 72.2N
)
Afull + (256 + 2N)D

EdDSA + B-C (B-C)N × (1 + 253
128

)× (9m+ 1d) + d253
5
e(8m+ 1d)

Table 4.5: Asymptotic batching cost, 128-bit security

We note once again that field multiplications are not necessarily comparable in the
above estimates - the effect of fast reduction algorithms is important in practice [13, 25]
and we have not carried through the cost of modular reduction in this analysis. Future work
would include comparing the implementations used in practice, while using the presented
batching algorithms in order to verify the accuracy and applicability of our cost estimates.

Zhang et al. [120] evaluated the BN-IBV scheme in the Type 1 setting, using MNT
curves. Although no concrete performance numbers are given in that paper, the basic
asymptotic cost is examined, and the authors note that “IBV is 35.6% faster than ECDSA”
at verifying signatures. The comparison presented there only considers a single verification
algorithm for plain ECDSA (no batching). In our analysis, we have shown that just
using Cheon-Yi batching will outperform single verification significantly, i.e. by a factor of
2.6. We have also considered more recent work in signature schemes and developments in
elliptic curve cryptography, and will hopefully encourage further investigation. ECDSA∗

with twisted Edwards curves would essentially close the batching verification cost gaps.
The main points of comparison are considered for various batch sizes N in Table 4.6.
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Note that the doubling and addition cost used for Cheon-Yi batching and ECDSA∗ are
different from Chapter 2: here we make no assumptions about pre-computation, so the
projective additions are counted as full and not mixed, unless explicit account is made for
Z coordinate inversions to allow faster formulas, and a single JSF computation is assumed
throughout. EdDSA has single verification cost 3000m, and ECDSA∗ has single verification
cost 3568 for Weierstrass, and 3052 for twisted Edwards if the group order is 256 bits; if
we use the twisted Edwards curve isomorphic to curve25519 then single verification costs
3000m for both. Results in the twisted Edwards cases are given assuming the same curve
is used for both. Being more or less conservative affects the ratios of batch verification
to single verification, but not the cost per signature. It is not difficult to re-produce
Table 4.6 for varying estimates of single verification depending on the level of allowed
precomputation.

N 22 23 24 25 26 27 28 29 210 211 212

BN-IBV + B-C 9.94 5.58 3.43 2.29 1.66 1.28 1.05 0.89 0.78 0.70 0.63
ratio 0.348 0.195 0.120 0.080 0.058 0.045 0.037 0.031 0.027 0.024 0.022

ECDSA∗ + C-Y 1.86 1.52 1.35 1.26 1.22 1.20 1.19 1.18 1.18 1.18 1.18
ratio 0.522 0.426 0.378 0.354 0.336 0.333 0.332 0.331 0.331 0.331 0.331

ECDSA∗ + B-C 3.35 2.28 1.78 1.47 1.27 1.07 0.95 0.84 0.76 0.68 0.62
ratio 0.938 0.639 0.499 0.411 0.349 0.301 0.265 0.236 0.212 0.192 0.175

ECDSA∗ + C-Y (ted) 1.30 1.02 0.88 0.81 0.78 0.76 0.75 0.75 0.74 0.74 0.74
ratio 0.432 0.339 0.293 0.270 0.259 0.253 0.250 0.248 0.248 0.247 0.247

ECDSA∗ + B-C (ted) 2.10 1.43 1.11 0.91 0.77 0.67 0.59 0.52 0.47 0.42 0.39
ratio 0.701 0.476 0.370 0.304 0.258 0.222 0.195 0.174 0.156 0.141 0.129

EdDSA + B-C 2.10 1.43 1.11 0.91 0.77 0.67 0.59 0.52 0.47 0.42 0.39
ratio 0.701 0.476 0.370 0.304 0.258 0.222 0.195 0.174 0.156 0.141 0.129

EdDSA + C-Y 1.29 1.02 0.88 0.81 0.78 0.76 0.75 0.75 0.74 0.74 0.74
ratio 0.430 0.339 0.293 0.270 0.258 0.253 0.250 0.248 0.248 0.247 0.247

Table 4.6: Batch verification cost (in thousands of field multiplications m) per signature
for BN-IBV, EdDSA, and ECDSA∗. Batch verification to single verification ratios are
included. The symbol (ted) indicates using twisted Edwards curves/formulas. 128-bit
security is assumed throughout.
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Chapter 5

Conclusions and Future Work

We find that in the context of batch verification, pairing-based signature schemes are
not exceedingly inefficient when compared with non-pairing candidates. Specifically, the
CHP/BN-IBV scheme is a leading candidate for V2V communication because of its identity
privacy preservation property, in addition to having short signatures and keys. The cost of
batch verification in BN-IBV is close to that of EdDSA using Bos-Coster, although further
accounting must be made for speed of base field operations.

One area for future work would be to implement the Cheon-Yi batch verification al-
gorithm on top of NaCl, the cryptographic library which implements Curve25519 and the
EdDSA signature scheme. Based on the first order analysis in this thesis, the efficiency
of Cheon-Yi and Bos-Coster batching must be evaluated on a finer-grained scale to get a
clearer idea on which algorithm is most competitive in practice and adjust for differences
in implementation, e.g. base field arithmetic. Simulating the number of group operations
as we did for Bos-Coster in the case of Cheon-Yi would also help sharpen the comparison.

A security model and reductionist security proof for BN-IBV is needed. Another poten-
tial improvement on this work would come from refining the analysis to include modular
additions, subtractions, and reductions. This would provide more fine-grained analysis but
would require testing with software and implementation of the CHP signature scheme.

There are other elements that could be added to our discussion, as new work has been
done on secure batching of ECDSA∗ signatures [73] and EdDSA signatures [72]. In ad-
dition, vehicle-to-vehicle communication has seen a number of advancements in security
requirements [95, 98] and protocols [120]. The work in this thesis covered one important
aspect of this discussion, however future work can focus on evaluating efficiency and imple-
mentation of schemes with additional properties that enhance the capabilities of vehicular
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safety communication networks, see e.g. the V2V presentation from CHES 2014 [117].
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