4,181 research outputs found

    Using genetic algorithms in computer vision : registering images to 3D surface model

    Get PDF
    This paper shows a successful application of genetic algorithms in computer vision. We aim at building photorealistic 3D models of real-world objects by adding textural information to the geometry. In this paper we focus on the 2D-3D registration problem: given a 3D geometric model of an object, and optical images of the same object, we need to find the precise alignment of the 2D images to the 3D model. We generalise the photo-consistency approach of Clarkson et al. who assume calibrated cameras, thus only the pose of the object in the world needs to be estimated. Our method extends this approach to the case of uncalibrated cameras, when both intrinsic and extrinsic camera parameters are unknown. We formulate the problem as an optimisation and use a genetic algorithm to find a solution. We use semi-synthetic data to study the effects of different parameter settings on the registration. Additionally, experimental results on real data are presented to demonstrate the efficiency of the method

    Depth-Assisted Semantic Segmentation, Image Enhancement and Parametric Modeling

    Get PDF
    This dissertation addresses the problem of employing 3D depth information on solving a number of traditional challenging computer vision/graphics problems. Humans have the abilities of perceiving the depth information in 3D world, which enable humans to reconstruct layouts, recognize objects and understand the geometric space and semantic meanings of the visual world. Therefore it is significant to explore how the 3D depth information can be utilized by computer vision systems to mimic such abilities of humans. This dissertation aims at employing 3D depth information to solve vision/graphics problems in the following aspects: scene understanding, image enhancements and 3D reconstruction and modeling. In addressing scene understanding problem, we present a framework for semantic segmentation and object recognition on urban video sequence only using dense depth maps recovered from the video. Five view-independent 3D features that vary with object class are extracted from dense depth maps and used for segmenting and recognizing different object classes in street scene images. We demonstrate a scene parsing algorithm that uses only dense 3D depth information to outperform using sparse 3D or 2D appearance features. In addressing image enhancement problem, we present a framework to overcome the imperfections of personal photographs of tourist sites using the rich information provided by large-scale internet photo collections (IPCs). By augmenting personal 2D images with 3D information reconstructed from IPCs, we address a number of traditionally challenging image enhancement techniques and achieve high-quality results using simple and robust algorithms. In addressing 3D reconstruction and modeling problem, we focus on parametric modeling of flower petals, the most distinctive part of a plant. The complex structure, severe occlusions and wide variations make the reconstruction of their 3D models a challenging task. We overcome these challenges by combining data driven modeling techniques with domain knowledge from botany. Taking a 3D point cloud of an input flower scanned from a single view, each segmented petal is fitted with a scale-invariant morphable petal shape model, which is constructed from individually scanned 3D exemplar petals. Novel constraints based on botany studies are incorporated into the fitting process for realistically reconstructing occluded regions and maintaining correct 3D spatial relations. The main contribution of the dissertation is in the intelligent usage of 3D depth information on solving traditional challenging vision/graphics problems. By developing some advanced algorithms either automatically or with minimum user interaction, the goal of this dissertation is to demonstrate that computed 3D depth behind the multiple images contains rich information of the visual world and therefore can be intelligently utilized to recognize/ understand semantic meanings of scenes, efficiently enhance and augment single 2D images, and reconstruct high-quality 3D models

    Registration of Optical Images to 3D Medical Images

    Get PDF
    The work described in this thesis deals with the registration of single and multiple 2-dimensional (2D) optical images to a single 3-dimensional (3D) medical image such as a magnetic resonance or computed tomography scan. The approach is to develop an intensity based method using an information theoretic framework, as opposed to the more typical feature or surface based methods. Relevant camera calibration and pose estimation literature is reviewed, along with medical 2D-3D image registration. An initial algorithm is developed, which performs registration by iteratively maximising the mutual information of a rendered image and a single optical image. The framework is extended to incorporate information from multiple optical and rendered images which signi cantly improves registration performance. A tracking algorithm is proposed, which augments this framework with texture mapping as a means of achieving alignment over a sequence of optical images. These methods are tested using images of skull phantoms and volunteers. A new measure based on the concept of photo-consistency, used in the surface reconstruction literature, is proposed as a measure of image alignment. The relevant theory is developed. This new method is tested using a variety of different photo-consistency based similarity measures, optical images, different numbers of images, images with varying amounts of added noise, different resolutions and different camera positions relative to the object of interest. In almost all cases, similarity measures based on this new framework perform accurately, precisely and robustly. Potential applications will be in radiotherapy patient positioning, image guided craniofacial, skull base and neurosurgery, computer vision and robotics, where the accurate alignment between a 3D image or model and multiple 2D optical images is required

    Video normals from colored lights

    Get PDF
    We present an algorithm and the associated single-view capture methodology to acquire the detailed 3D shape, bends, and wrinkles of deforming surfaces. Moving 3D data has been difficult to obtain by methods that rely on known surface features, structured light, or silhouettes. Multispectral photometric stereo is an attractive alternative because it can recover a dense normal field from an untextured surface. We show how to capture such data, which in turn allows us to demonstrate the strengths and limitations of our simple frame-to-frame registration over time. Experiments were performed on monocular video sequences of untextured cloth and faces with and without white makeup. Subjects were filmed under spatially separated red, green, and blue lights. Our first finding is that the color photometric stereo setup is able to produce smoothly varying per-frame reconstructions with high detail. Second, when these 3D reconstructions are augmented with 2D tracking results, one can register both the surfaces and relax the homogenous-color restriction of the single-hue subject. Quantitative and qualitative experiments explore both the practicality and limitations of this simple multispectral capture system

    3D Dynamic Scene Reconstruction from Multi-View Image Sequences

    Get PDF
    A confirmation report outlining my PhD research plan is presented. The PhD research topic is 3D dynamic scene reconstruction from multiple view image sequences. Chapter 1 describes the motivation and research aims. An overview of the progress in the past year is included. Chapter 2 is a review of volumetric scene reconstruction techniques and Chapter 3 is an in-depth description of my proposed reconstruction method. The theory behind the proposed volumetric scene reconstruction method is also presented, including topics in projective geometry, camera calibration and energy minimization. Chapter 4 presents the research plan and outlines the future work planned for the next two years

    3D object reconstruction using computer vision : reconstruction and characterization applications for external human anatomical structures

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Multi-view Performance Capture of Surface Details

    No full text
    corecore