546 research outputs found

    Development of a knowledge-based and collaborative engineering design agent

    Get PDF
    In order to avoid errors in engineering design that affect the later product life cycle, especially the manufacturing process, an analysis or evaluation has to be performed at the earliest possible stage. As this evaluation is very knowledge-intensive and often this knowledge is not directly available to the engineer, this paper presents an approach for a knowledge-based and collaborative engineering design agent. The technology based on multi-agent systems enables problem-solving support by an autonomous knowledge-based system which has its own beliefs, goals, and intentions. The presented approach is embedded in a CAD development environment and validated on an application example from engineering design

    Design for manufacturability : a feature-based agent-driven approach

    Get PDF

    Governance of Autonomous Agents on the Web: Challenges and Opportunities

    Get PDF
    International audienceThe study of autonomous agents has a long tradition in the Multiagent System and the Semantic Web communities, with applications ranging from automating business processes to personal assistants. More recently, the Web of Things (WoT), which is an extension of the Internet of Things (IoT) with metadata expressed in Web standards, and its community provide further motivation for pushing the autonomous agents research agenda forward. Although representing and reasoning about norms, policies and preferences is crucial to ensuring that autonomous agents act in a manner that satisfies stakeholder requirements, normative concepts, policies and preferences have yet to be considered as first-class abstractions in Web-based multiagent systems. Towards this end, this paper motivates the need for alignment and joint research across the Multiagent Systems, Semantic Web, and WoT communities, introduces a conceptual framework for governance of autonomous agents on the Web, and identifies several research challenges and opportunities

    Organisational Abstractions for the Analysis and Design of Multi-Agent Systems

    No full text
    The architecture of a multi-agent system can naturally be viewed as a computational organisation. For this reason, we believe organisational abstractions should play a central role in the analysis and design of such systems. To this end, the concepts of agent roles and role models are increasingly being used to specify and design multi-agent systems. However, this is not the full picture. In this paper we introduce three additional organisational concepts - organisational rules, organisational structures, and organisational patterns - that we believe are necessary for the complete specification of computational organisations. We view the introduction of these concepts as a step towards a comprehensive methodology for agent-oriented systems

    Working notes of the KI \u2796 Workshop on Agent Oriented Programming and Distributed Systems

    Get PDF
    Agent-oriented techniques are likely to be the next significant breakthrough in software development process. They provide a uniform approach throughout the analysis, design and implementation phases in the development life cycle. Agent-oriented techniques are a natural extension to object-oriented techniques, but while there is a whole pIethora of analysis and design methods in the object-oriented paradigm, very little work has been reported on design and analysis methods in the agent-oriented community. After surveying and examining a number of well-known object-oriented design and analysis methods, we argue that none of these methods, provide the adequate model for the design and analysis of multi-agent systems. Therefore, we propose a new agent-specific methodology that is based on and builds upon object-oriented methods. We identify three major models that need to be build during the development of multi-agent applications and describe the process of building these models

    Deception

    Get PDF

    Organization based multiagent architecture for distributed environments

    Get PDF
    [EN]Distributed environments represent a complex field in which applied solutions should be flexible and include significant adaptation capabilities. These environments are related to problems where multiple users and devices may interact, and where simple and local solutions could possibly generate good results, but may not be effective with regards to use and interaction. There are many techniques that can be employed to face this kind of problems, from CORBA to multi-agent systems, passing by web-services and SOA, among others. All those methodologies have their advantages and disadvantages that are properly analyzed in this documents, to finally explain the new architecture presented as a solution for distributed environment problems. The new architecture for solving complex solutions in distributed environments presented here is called OBaMADE: Organization Based Multiagent Architecture for Distributed Environments. It is a multiagent architecture based on the organizations of agents paradigm, where the agents in the architecture are structured into organizations to improve their organizational capabilities. The reasoning power of the architecture is based on the Case-Based Reasoning methology, being implemented in a internal organization that uses agents to create services to solve the external request made by the users. The OBaMADE architecture has been successfully applied to two different case studies where its prediction capabilities have been properly checked. Those case studies have showed optimistic results and, being complex systems, have demonstrated the abstraction and generalizations capabilities of the architecture. Nevertheless OBaMADE is intended to be able to solve much other kind of problems in distributed environments scenarios. It should be applied to other varieties of situations and to other knowledge fields to fully develop its potencial.[ES]Los entornos distribuidos representan un campo de conocimiento complejo en el que las soluciones a aplicar deben ser flexibles y deben contar con gran capacidad de adaptación. Este tipo de entornos está normalmente relacionado con problemas donde varios usuarios y dispositivos entran en juego. Para solucionar dichos problemas, pueden utilizarse sistemas locales que, aunque ofrezcan buenos resultados en términos de calidad de los mismos, no son tan efectivos en cuanto a la interacción y posibilidades de uso. Existen múltiples técnicas que pueden ser empleadas para resolver este tipo de problemas, desde CORBA a sistemas multiagente, pasando por servicios web y SOA, entre otros. Todas estas mitologías tienen sus ventajas e inconvenientes, que se analizan en este documento, para explicar, finalmente, la nueva arquitectura presentada como una solución para los problemas generados en entornos distribuidos. La nueva arquitectura aquí se llama OBaMADE, que es el acrónimo del inglés Organization Based Multiagent Architecture for Distributed Environments (Arquitectura Multiagente Basada en Organizaciones para Entornos Distribuidos). Se trata de una arquitectura multiagente basasa en el paradigma de las organizaciones de agente, donde los agentes que forman parte de la arquitectura se estructuran en organizaciones para mejorar sus capacidades organizativas. La capacidad de razonamiento de la arquitectura está basada en la metodología de razonamiento basado en casos, que se ha implementado en una de las organizaciones internas de la arquitectura por medio de agentes que crean servicios que responden a las solicitudes externas de los usuarios. La arquitectura OBaMADE se ha aplicado de forma exitosa a dos casos de estudio diferentes, en los que se han demostrado sus capacidades predictivas. Aplicando OBaMADE a estos casos de estudio se han obtenido resultados esperanzadores y, al ser sistemas complejos, se han demostrado las capacidades tanto de abstracción como de generalización de la arquitectura presentada. Sin embargo, esta arquitectura está diseñada para poder ser aplicada a más tipo de problemas de entornos distribuidos. Debe ser aplicada a más variadas situaciones y a otros campos de conocimiento para desarrollar completamente el potencial de esta arquitectura

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    A Review on Intelligent Agent Systems

    Get PDF
    Multi-agent system (MAS) is a common way of exploiting the potential power of agent by combining many agents in one system. Each agent in a multivalent system has incomplete information and is in capable of solving entire problem on its own. Multi-agent system offers modularity. If a problem domain is particularly complex, large and contain uncertainty, then the one way to address, it to develop a number of functional specific and modular agent that are specialized at solving various problems individually. It also consists of heterogeneous agents implemented by different tool and techniques. MAS can be defining as loosely coupled network of problem solvers that interact to solve problems that are beyond the individual capabilities or knowledge of each problem solver. These problem solvers, often ailed agent are autonomous and can be heterogeneous in nature. MAS is followed by characteristics, Future application, What to be change, problem solving agent, tools and techniques used, various architecture, multi agent applications and finally future Direction and conclusion. Various Characteristics are limited viewpoint, effectively, decentralized; computation is asynchronous, use of genetic algorithms. It has some drawbacks which must be change to make MAS more effective. In the session of problem solving of MAS, the agent performance measure contains many factors to improve it like formulation of problems, task allocation, organizations. In planning of multivalent this paper cover self-interested multivalent interactions, modeling of other agents, managing communication, effective allocation of limited resources to multiple agents with managing resources. Using of tool, to make the agent more efficient in task that are often used. The architecture o MAS followed by three layers, explore, wander, avoid obstacles respectively. Further different and task decomposition can yield various architecture like BDI (Belief Desire Intension), RETSINA. Various applications of multi agent system exist today, to solve the real-life problems, new systems are being developed two distinct categories and also many others like process control, telecommunication, air traffic control, transportation systems, commercial management, electronic commerce, entertainment applications, medical applications. The future aspect of MAS to solve problems that are too large, to allow interconnection and interoperation of multiple existing legacy systems etc
    corecore