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Abstract

This thesis is about machine deception. It is the first full computational
treatment in Artificial Intelligence (AI) on how to create machines able
to deceive. The dissertation discusses the limited related research on
deception that exists in AI, Philosophy and Psychology.

This thesis tackles the problem of machine deception from two different
directions. The main direction is from the cognitive modelling perspec-
tive of agents in Multi-Agent Systems (MAS). Working from this per-
spective has enabled the engineering and formal modelling of reasoning
mechanisms that artificial agents could potentially use to deceive and to
reason about other minds in a similar fashion to how humans perform
these tasks. The other direction is from an evolutionary perspective on
agent behaviour in multi-agent systems. Working from this second direc-
tion shows how deception can destabilise cooperation in hybrid societies,
where humans and machines interact socially through the exchange of
knowledge, but it also shows how cooperation can be re-established if
the right mechanisms for social interaction are in place.

This thesis presents six contributions to the field of AI: 1) A conceptual
grounding of computational deception; 2) A novel approach to model and
implement practical reasoning artificial agents that have the capability
to model and reason about the minds of other agents in communication;
3) A novel, formal approach to model and engineer deceptive artificial
agents in MAS, that is grounded in three major theories of deceptive
communication; 4) A detailed step-by-step description of the implemen-
tation of the models described by this formal approach in the Jason
agent-oriented programming language; 5) A novel approach to model
and evaluate deception in evolutionary public goods games of knowledge
sharing between agents of hybrid societies; 6) The proposal of an MAS
framework for deception to be used in Intelligence Analysis.

This thesis leads to three main future research directions. These regard
the refinement of the models presented in the thesis, the creation of MAS
tools for deception analysis, and, finally, the creation of a machine worth
talking to.
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Chapter 1

Introduction

“Theatricality and deception are powerful
agents to the uninitiated...but we are initiated,
aren’t we, Bruce?”

— Bane, in The Dark Knight Rises

With this chapter I begin this thesis; I initiate the reader by defining the central

concepts of my thesis and my research questions.

1.1 Overview

The research presented in this thesis aims to weave a pattern of ideas which depicts

an answer to the following question: Can we use artificial agents to improve our

understanding of deception? Soon enough, I came to realise that in order to answer

this question, I must ask a broader, and more philosophical question, namely: How

may artificial agents deceive?

Most of the ideas presented in this thesis aim to answer the latter question, as

philosophical as it may be, from the perspective of Artificial Intelligence in Computer

Science, and more specifically, from the perspective of multi-agent systems (MAS)

research. Regarding the first question, it is only later in the thesis that I propose to

give it an answer. Of course, there is content throughout the thesis that gives hints

towards the answer to the first question because the answer to the first question

follows from the answer or answers to the second question, but hints is all that we
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can consider these to be, and nothing more.

In this thesis I have proposed several mechanisms and models to study how

artificial agents may deceive, at different socio-cognitive levels. To do so, I begin

with reviewing the research that informs us of how humans deceive. This was not

only necessary to gain an understanding of what to look for, namely what kind of

mechanisms we actually require to mirror in the cognitive architecture of artificial

agents in order to give them the capability of deceiving others, but also to understand

what it actually means to deceive and what scientists refer to when they talk about

deception.

Based on my literature review, I then define what computational deception is

and also give it a taxonomy in order to understand different forms of deception

between artificial and human agents.

Before modelling deceptive interactions, I first had to give artificial agents the

necessary reasoning and communicative capabilities for deceiving. What I do, is I

give them the capability of modelling other minds in MAS. I do this by drawing on

the Belief-Desire-Intention (BDI) mechanisms for practical reasoning and the prop-

erties of BDI-based agent-oriented programming language, the Jason language in

particular. This enables me to explore a set of formal and computational proper-

ties of these mechanisms using operational semantics and models of reasoning under

uncertainty. It also enables me to check how agents can simulate what-if, or hy-

pothetical, scenarios to see what the other agents would say or not say and what

they would come to believe or what they would not come to believe if they were to

interact in various social contexts.

After giving agents the capability of modelling other minds, I proceed to formally

represent and model three types of dishonest behaviour of socially-enabled artificial

agents, namely their potential ability to tell lies, to bullshit, and to deceive. The

formal representations help one distinguish between various forms of dishonest ma-
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chine behaviour, with each behaviour having distinguishable epistemic properties.

It is only after distinguishing between these behaviours that I proceed to look into

the formal and computational properties of BDI-based practical reasoning mecha-

nisms, that I build based on theories of deceptive communication and that, along

with an agent’s capability of modelling other agents’ minds, enable deceptive agents

to check whether their intended communicative behaviour would lead to a successful

or unsuccessful deception.

Assuming that the artificial agents of the future have the necessary reasoning

capabilities for deception that I explore in this thesis, I then proceed to show how

deception and machine deception influence society and explore potential solutions

for addressing deception in hybrid societies. To do this, I look at deception from

the evolutionary perspective of machine behaviour, namely of how the behaviour of

machines can be analysed as the behaviour of actors in a society. More specifically,

I apply the evolutionary agent-based modelling of cooperative game theory to show

how different regulatory systems can be influenced by the deceptive behaviour of

agents, human or artificial. Using this approach I show how different regulatory

systems can influence the large-scale behaviour of self-interested agents over time.

In the final part of my thesis, I aim to answer my first research question, namely

Can we use artificial agents to improve our understanding of deception?. Proposing a

set of desired properties for deception modelling, I first evaluate the work I have done

so far in the thesis. Considering the properties exhibited by the models that have

resulted from my work, I propose the idea of working towards an MAS framework

for Intelligence Analysis as an answer to my first research question. The proposed

MAS framework, however, must satisfy a set of desiderata for the study of deception

in complex systems. Having in mind the contributions of my thesis, I give the reader

an insight of what can potentially be done towards achieving this MAS framework.

The thesis consists of four parts. They are the following:
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Part I is an Introduction and literature review of prior research that consists of two

chapters:

• Chapter 1 is this chapter, which introduces the research topic and the re-

search questions.

• Chapter 2 is a literature review of the research that is relevant to this thesis

and that I have used to frame the research questions and find their answers.

Part II consists of two chapters that I believe to be crucial for understanding the

subsequent chapters of this thesis:

• Chapter 3 presents a taxonomy of machine deception and the computational

forms that machine deception can take.

• Chapter 4 presents an agent communication based mechanism for Theory-

of-Mind in multi-agent systems along with its operational semantics and im-

plementation.

Part III consists of two chapters in which I explore the engineering of complex

reasoning mechanisms for deception:

• Chapter 5 presents the distinction of three types of dishonest behaviours

along with their implementation.

• Chapter 6 presents a multi-agent belief-desire-intention based reasoning mech-

anism for deception that uses Theory-of-Mind under the uncertainty of inter-

personal dynamics along with its operational semantics and implementation.

Part IV consists of two chapters in which I explore the further implications of

deceptive machines:

20



• Chapter 7 presents an evolutionary public goods game for knowledge sharing

and its mechanism design for deception in agent societies. This model helps

us asses how deception evolves in time and how it affects different types of

governed societies.

• Chapter 8 evaluates the contributions of the thesis and discusses what overall

approach towards machine deception research should aim for.

The last chapter, Chapter 9, concludes the summary of this work and discusses

future research paths that this work implies.

In the Appendix of this thesis I include the details regarding the components of

the models described in Chapter 7.

Some of the chapters describe work that has already been published, has been

accepted or has been submitted for publication. These papers are listed below.

Some of these have been the result of the joint effort of multiple authors.

• A short paper that describes the aim of this thesis has been presented at the

Doctoral Consortium and published in the proceedings of the 27th Interna-

tional Joint Conference on Artificial Intelligence [237].

• A short paper that summarises and contextualises Chapters 5 and 6 has been

accepted for publication in the Online Handbook of Argumentation for AI

Vol.1 [238].

• A technical paper that also summarises and contextualises Chapters 5 and 6

has been presented at the Shrivenham Defence and Security Doctoral Sympo-

sium and was published in the symposium’s proceedings [239].

• Some of the content in Chapter 2 on the literature review has been included in

a Literature Survey commissioned and funded by The Alan Turing Institute’s

Defence and Security applied research center (ARC) in 2020. This survey
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resulted from work with Hu Xuehui, Pushkal Agarwal, Nishanth Sastry, Simon

Parsons and Peter McBurney.

• The agent-based communication approach for modelling Theory-of-Mind in

multi-agent systems in Chapter 4 resulted from work with Alison R. Panisson,

Rafael H. Bordini, Simon Parsons and Peter McBurney. The work appeared

at the 6th International Conference on Agreement Technologies in two papers

which were published in the conference’s proceedings. The first paper de-

scribes the operational semantics [201], while the second paper deals with the

uncertain beliefs formed as a result of communication [241]. Both papers were

nominated for the Best Early Researcher Paper at EUMAS & AT 2018. An

extended version of the work, that I describe in this thesis, has been submitted

to the journal ACM Transactions on Intelligent Systems and Technology.

• The work from Chapter 5 on the definitions, formalisation and implementa-

tion of the three different dishonest behaviours, namely lying, bullshitting and

deceiving, has resulted from a joint effort with Alison R. Panisson, Rafael H.

Bordini, Simon Parsons and Peter McBurney. An early version was presented

at the 20th International Trust Workshop co-located with IJCAI/ECAI/AA-

MAS/ICML 2018 and later published in the workshop’s proceedings [200].

• The mechanism for deception using Theory-of-Mind described in Chapter 6

resulted from work with Alison R. Panisson, Rafael H. Bordini, Simon Parsons,

Peter McBurney and Martin Chapman. The work has been published in the

journal AI Communications [242].

• The public goods game models in Chapter 7 resulted from my research visit at

the MIT Media Lab in 2018. This represents the body of work conducted to-

gether with Alex Rutherford, Iyad Rahwan, Simon Parsons and Peter McBur-

ney. This work has been submitted to the journal Royal Society Open Science.

22



1.2 Deception

How may artificial agents deceive? Deconstructing this “how may” question, I

hereby explain in this section the meanings of its subject and predicate. In the next

section, I explain the semantics of this “how may” question, given the meanings of

its two components. The subject, namely artificial agents, refers to the concept of

autonomous agents, which means intelligent software entities that have the capabil-

ity of making decisions in order to act upon their world based on their representation

of their world, e.g., a social context, a situation, or a physical, virtual or hybrid en-

vironment i. The meaning of the subject is pretty much directly derived from the

academic context, that is the one of MAS, from which this thesis has emerged.

On a conceptual level, the idea of an agent that interacts with the system it

finds itself in is grounded in the enactivist perspective of cognition. Enactivism had

become popular due to its, what I dare to call, “instantiation” through the embod-

ied cognition movement. Embodied cognition is the view that “Many features of

cognition are embodied in that they are deeply dependent upon characteristics of

the physical body of an agent, such that the agent’s beyond-the-brain body plays a

significant causal role, or a physically constitutive role, in that agent’s cognitive pro-

cessing” [295]. The MAS perspective is much more abstract and general than that

of embodied cognition, and I would say much more encompassing because (i) it does

not ontologically discriminate between different agents’ properties of embodiment,

and (ii) it aims to represent not only the relation of a single agent with its system,

but also the relation between multiple agents inside the same system. In MAS, an

agent’s embodied properties, as well as the properties of the environment, and the

ways in which that agent can act and what it can reason about, are defined through

software programming. This is because MAS is based on the principles of compu-

iExamples of hybrid environment would be the internet, the internet-of-things (IoT), virtual-
reality (VR) games, or augmented reality (AR) environment, in which humans agents can interact
with artificial agents.

23



tationalism. Therefore, we can say that MAS is not just a form or instantiation of

the enactivist perspective, but it is the actual advancement of this perspective in

Computer Science, or even a re-definition of the philosophical concept of enactivism

through the application of computational science terms and techniques. Of course,

one could argue that embodied cognition is a similar non-computational translation

of enactivism, but let us remember that embodied cognition is limited in scope as it

strongly relies on the physical embodiment properties of an agent. Andy Clark de-

scribes it as “a movement that seeks to reorient the scientific study of mind so as to

better accommodate the roles of embodiment and environmental embedding” ([53],

p. 506). I do not wish to generally criticise the perspective of embodied cogni-

tion, as I believe that it is a very well-thought and useful paradigm to study and

improve our understanding of human cognition and that it is even highly compati-

ble with, although seemingly ignorant of, the more general MAS paradigm. There

are also several counter-arguments to the computational perspective of cognition or

any physical phenomenon, which claim that the computational perspective, that is

adopted by the MAS paradigm, is ‘trivial’ because it lacks the explanatory power to

deal with explaining phenomena, mainly cognitive phenomena. Thus, the argument

goes, computationalist ways of studying cognition need to be replaced ii. More re-

cently, however, computationalism has actually proved to be the “go-to” approach

when it comes to explanation, especially when we need to explain the “whys” and

the “hows” of agent behaviour. Paul Schweizer argues that this type of trivial-

ity argument against computationalism is erroneous and provides a counterexample

scenario to show that alternative approaches (mostly physical mapping approaches)

iiFor an alternative perspective on cognition, see Van Gelder’s argument against computational
representationalism drawn from the dynamics of a Watt governor [280]. However, Van Gelder’s
approach to cognition is not really compatible with the idea of a cognitive agent mostly due
to the fact that his perspective resulted from an erroneous understanding of connectionist and
symbolic models, which Van Gelder thought could be replaced by a models based on dynamical
systems theory [78]. Given these limitations and that the ideas of MAS, the one of cognition as
computation, the one of agency, and the one of enactivism are central to this thesis, we can easily
discard alternative perspectives of this kind on cognition.
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are in fact consistent with empirically rich and theoretically plausible versions of the

computationalist approach [247].

That being said, in this thesis I adopt the notion of an agent that is an entity

that belongs to an MAS and whose cognitive properties are represented according to

the notion of the computational mind (computationalism). In this thesis I will also

explain why this notion of artificial agent, or agent in general, is needed in relation

with the meaning of the predicate for my research question to make sense.

The meaning of the predicate, cannot be directly derived from our academic

context, as I have done with the meaning of my research question’s subject. That

is, of course, by ignoring the slight detour into the principles of cognition that was

made to justify the adopted meaning of an agent. That being said, in order to clarify

the meaning of my research question’s predicate, namely “to deceive”, I ask What is

deception?

For humans, deception can be expressed in different forms. Before I proceed

to give a conceptual definition of deception, I must first address some assumptions

individuals make when they use or hear the term “deception”. I will discuss the

definition of deception according to Paul Grice’s theory of pragmatics, specifically

according to Grice’s notorious Cooperative Principle expressed through four maxims

of communication [61].

Grice’s maxims are the following:

1. Maxim of quantity - where one tries to be as informative as one possibly

can, and gives as much information as is needed, and no more.

2. Maxim of quality - where one tries to be truthful, and does not give infor-

mation that is false or that is not supported by evidence.

3. Maxim of relation - where one tries to be relevant, and says things that are

pertinent to the discussion.

25



4. Maxim of manner - when one tries to be as clear, as brief, and as orderly

as one can in what one says, and where one avoids obscurity and ambiguity.

The most common confusion about deception, a confusion which even tends to

persist in academic circles, is the confusion between deceiving and lying. From a

rhetorical perspective, the terms deception and lie are often used as tropes for each

other as a synecdoche. Relationally, a lie can be used for deception, it can represent

an act performed with the intention to deceive. Deception, on the other hand is

not a single act, nor is it a speech act as is in the case of telling a lie. Deception

represents a dynamical process. When an a lie is told by an agent, it is with the

intention to directly misrepresent using a speech act what that lying agent believes

to be the truthful state of the world. Deception, on the other hand, is performed

with the intention to cause a false belief in the mind of another. The intention of a

deceiver agent always targets the mind of another, while the intention of a liar does

not. This is what James Mahon calls the Non-Deceptionist’s perspective on lying

and deception [160, 159]. It is called Non-Deceptionist because lying is not the same

as deception, hence its definition must not include deceptive intent [41].

Having in mind Grice’s maxims, lying, or uttering a false statement only vio-

lates a single maxim, that is the Maxim of quality, by giving the interlocutor(s)

information that is false.

Bullshitting is another popular and controversial form of dishonesty which is

frequently misunderstood in the literature. Fortunately, Frankfurt helps me clarify

what type of dishonest behaviour bullshit is. According to Frankfurt [92], an agent

performs speech acts that represent bullshit when they do not have knowledge of the

state of the world that they are referring to. The bullshitter is not concerned with

the truth, it merely ignores the truth. We can say then, that in the case of bullshit,

one does not necessarily violate the maxim of quality, because one does not know

whether the uttered statement is true or false. Thus, flouting the maxim of quality
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would be a more appropriate description for this type of dishonest behaviour.

Let us now turn back to deception. The following definition of deception is

provided by Chisholm and Feehan in [48] and described by Mahon:

“[...]to intentionally cause another person to acquire a false belief, or to

continue to have a false belief, or to cease to have a true belief, or be

prevented from acquiring a true belief, or to allow another person to

acquire a false belief, or to continue to have a false belief, or to cease to

have a true belief, or be prevented from acquiring a true belief.” [159]

While this definition does emphasize deceptive intent, it only does so by enu-

merating the modalities of deception. That is, it describes a category of dishonest

communicative behaviours which can be given a taxonomy, e.g., to palter, to pan-

der, to lie by omission, to lie by commission, telling half-truths, that can be used to

deceive. However, even if an enumeration of all the ways in which a phenomenon

may be instantiated can be useful to understand the phenomenon, it is by no means

a good or proper definition of the phenomenon in itself. Instead, what Timothy

Levine suggests in [153] is that a functional definition of deception would be more

appropriate than merely laying down a behavioural taxonomy. The same sugges-

tion, that of adopting a functional definition of deception, is made by Artiga and

Paternotte in [8]. Following Levine’s, Artiga’s, and Patternote’s suggestion, I define

deception as:

The intentional process of an agent, the Deceiver, to make another agent, the

Target, to believe something is true (false) that the Deceiver believes is false (true),

with the aim of achieving an ulterior goal or desire.

Deception, according to this functional definition, has a totally different relation

to Grice’s Cooperation Principle compared to lying or bullshitting. In our definition,

the deceptive intent plays a crucial role in relation to the four maxims, instead of
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the communicative behaviour. Because of this, our definition does not leave out

any type of communicative behaviour that tells us how deception might happen,

e.g., the combination of methods and techniques used by the Deceiver to make

or to cause the Target to be deceived. While lying and bullshitting violate and

respectively flout the maxim of quality, deception does not have to do so. An agent

can deceive another agent just by uttering truthful statements. Moreover, deception

does not even have to flout or violate the maxim of quantity iii. Two good examples

of when deception avoids the violation or flouting of the first two maxims are (i)

when customers do not correct cashiers when they produce miscalculations; and

(ii) when businesses let other businesses make mistakes. The case illustrating (ii)

is when A&W gave the same price to the “Third-Pounder” (1/3 pounds of meat)

burger to compete with McDonald’s “Quarter-Pounder” (1/4 pounds of meat) only

to have customers erroneously judge that that they were paying less for the “Quarter-

Pounder” because they were judging size based on the denominator [107]. A&W

made efforts into correcting their customers’ fallacy, whereas McDonald’s did not by

placing the blame on the customers. This type of deception is what Roy Sorensen

calls Passive A Priori Deception in [260]. Sorensen argues that deception, according

to Kantian ethics, is permissible, while lying is not. Deception is permissible as long

as you only assert the truth, e.g., make truthful statements (or not making truthful

statements deliberately). If the hearer of the statements is caused to infer a false

belief, then that is the error of the hearer’s reasoning. Moreover, it is the hearer’s

fault because the hearer had all the necessary reasoning tools to not make the error,

hence recklessly inferring more than the evidence warrants.

Then, we have the remaining two maxims, of relation and manner, which besides

the fact that deception does not have to flout or violate, an agent that is actually

following them religiously can improve its success at deception. Regarding the two

iiiDynel makes an interesting argument in [73] that the specific case of withholding information
is a form of covert violation of the maxim of quantity.
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maxims, an agent that aims to deceive would be a very bad deceiver if it utters

statements that are intended to deceive the hearer, but which do not make any

sense in the given communicative context. For example, let us assume you intend to

deceive a target into falsely believing that the director of 2001:A Space Odyssey is

Steven Spielberg. If that is the case, then it would not make any sense reciting from

Shakespeare’s Othello to do so, especially if you know that a) your target does not

know anything about Othello and Shakespeare, b) that the target would not infer

anything you intend the target to infer from it, and c) that the target would merely

get confused by your recital given the social context. Thus, an agent would most

likely fail to deceive due to flouting or violating the maxims of relation and manner.

This happens because the agent does not communicate relevant information, and

because it causes confusion in the target.

Regarding Grice’s Cooperation Principle, we can say that for an agent that aims

to be good at deception then it better do well to try and stick to Grice’s maxims.

In other words, the agent needs to seem to other agents as being cooperative in

communication which is a form of being covertly non-cooperative iv.

In conclusion, deception is a communicative behaviour represented by an inten-

tional process of an agent A to make another agent B believe something is true

(false) that A believes is false (true). This definition of deception is a functional

one because it does not refer to specific communicative acts. For example, it is not

a definition of lying. It does, however, also include lying because agent A might lie

in order to cause agent B to have a false belief. It might also include telling the

truth. Perhaps agent A believes that by telling the truth it might cause agent B to

have a false belief, and thus agent A decides to tell the truth. It might include any

ivAnother form of deception which does not violate the maxim of quality is the Jesuit concept
of equivocation - that of not answering the literal or complete truth when asked a question under
interrogation, or only answering a truthful answer to a slightly different question [94]. For example,
if the interrogator asks you “Did you plant the bomb?”, you answer truthfully “No” because in
your mind you are answering the question “Did you plant the bomb on Thursday?”.
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type of communicative act or series of acts from a taxonomy of dishonest behaviours

that agent A could use in an intentional process to cause agent B to have a false

belief. The definition also includes the epistemic states of the two agents, which

is important if we want to distinguish between what is considered objectively true

(true in the world) and what agents consider to be true. According to our definition,

deception is a process that is caused or prevented w.r.t., the epistemic state of the

agents, not w.r.t., the objective truth. That being said, if the agent A was wrong

about everything in the world while it was attempting to cause a false belief in B’s

mind, then this still counts as deception even if B’s belief caused by A turns out to

be objectively true in the end.

1.3 Modelling Deception

In this section I will deal with the “how may” semantics of my research question

How may artificial agents deceive?, having already explained the meanings I use for

the subject, “artificial agents”, and the predicate, “to deceive”. Now that we have

the meanings of the subject and the predicate I can argue that the structure of my

adverbial how may question elicits an answer which describes a modality in which

the subject artificial agents come to have the property described by the predicate

deceive v. That is, my question asks for a description of a possible (“may” in “how

may”) process (a manner) through which artificial agents are assigned the property

of being able to deceive.

In science, we can give such answers that describe manners or processes. These

answers come in the form of models. “What are models for?” asks Peter McBurney

in one of his papers [166]. McBurney argues that there are different types of models

and modelling techniques, each being designed and used for different purposes in

vHamblin describes the semantics of these kinds of Montague questions that elicit modalities
in [111]. In the case of how, the question elicits a manner in which the subject is related to the
predicate.

30



order to push the boundaries of knowledge. Every scientific domain also has its own

subservient categories of models. In the area of Computer Science, but more specif-

ically, in the area of Artificial Intelligence, models have become the gold-standard

subject of study for researchers vi. We conceptualise models, we design and we

engineer them, then we tweak them, we evaluate and then validate them. We use

models to build other models upon them, we break them down into components and

test them. We also reflect upon them, we engage in introspection to check our as-

sumptions about them. We sometimes check our biases towards these models, then

we scrap, re-design and re-evaluate the models. The two main functions models

serve are the representation and prediction functions. Because I need to describe

the manner or a process as elicited by my research question, then it is reasonable to

describe a model that serves the function of representation.

What must then be represented by the model? The need of historians and

intelligence analysts to analyse deception counterfactually can be described through

the distinction between the arguments of event causation versus event causation

prevention [83]. Event causation is described by Ferris in [83] as “when A,B,C

existed, X was the case; when D came to be, so too did Y; therefore, D caused

X to become Y”, whereas event causation prevention as “when A,B,C existed,

so did X; when D (along with other factors which common sense would indicate

should have made X become Y) occurred, X remained X; therefore, without the

agency of D, X would not have remained X - indeed, X might well have become

Y”. Thus, for a model to successfully represent deception and satisfy the need of

deception analysts, the model must be able to represent both deception’s causation

and deception’s causation prevention.

In their technical report on lies and deception, Peter McBurney, William Nash,

and Andrew Jones propose two types of approaches to model deception in MAS

viOne could even argue that it is the object of study due to the nature of artificial intelligence
and of the models that aim to achieve intelligence.
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[167]. The first potential approach is to use formal-logical tools to represent nested

belief structures, e.g., beliefs about beliefs about beliefs etc. This type of approach

would also enable researchers to test the consistency of particular sets of beliefs, and

to determine what are the logical consequences that may be derivable from these

sets of beliefs. However, the formal-logic approach needs to be integrated with logics

of communicative interaction which represent modalities of knowledge, action, and

intention. Logics of communicative interaction are necessary for one to be able to

clearly articulate different types of honest or dishonest communication. The second

potential approach that they describe in the report is the one of large-scale game-

theoretical computational simulation of evolutionary agent dynamics.

In this thesis I model deception, representing its causation and causation pre-

vention, using both the approach from the logics of communication between agents,

as well as the game-theoretical approach from the evolutionary dynamics of agent

societies.

1.4 Method

The motivation behind the work in this thesis is based on improving our scientific

understanding of deceptive communication such that we are able to describe de-

ception in a meaningful manner. By meaningful manner, I refer to the ability of

describing or explaining coherently what causes or not deception, and why or why

not, in different contexts. This understanding is crucial for deception detection,

and I believe this need is implicitly requested by different bodies of work on decep-

tion, especially in the domain of Intelligence Analysis, where analysts aim to detect

deception, prevent it from happening, or aim to counter-deceive.

However, most of the research in Intelligence Analysis has focused on devis-

ing methodologies for deception detection, such as the Analysis of Competing Hy-

potheses (ACH) [122, 123], but not on modelling deception itself. In Psychology
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and Comunication Theory, most of the work has also focused on deception detec-

tion [66, 67, 75, 76], while Philosophy has mostly been busy tackling and discussing

definitions of deception [159]. To the best of my knowledge, none of the previous

approaches to deception detection have aimed to model deception itself in order to

understand its dynamics and its consequences. More importantly, there has been

no approach in AI that has done this in a meaningful manner, by taking into ac-

count relevant theories of deception and describing both the internal mechanics of

socio-cognitive agents and the large-scale socio-behavioural dynamics of agent pop-

ulations.

Since this thesis tackles the modelling of deception as a non-cooperative social

process, I ask the following question: What is a good modelling approach

to deception? To answer this question I first want to address several aspects of

deception that need to be taken into account when modelling deceptive interactions

between agents:

1. The multi-layered cognitive processes involved;

2. The different types of knowledge or beliefs involved, which can be exploited

by the agents such as known unknowns vii and unknown unknowns viii;

3. The socio-cognitive parameters that influence interaction outcomes such as

cognitive load, trust, and degree of certainty in the deceiver’s model of its

target’s mind;

4. The multiple types of mental models of the targets involved, which influence

the type of reasoning processes at play;

5. The number of agents and their roles in the deceptive interaction.

viiKnown unknown is something an agent knows/believes that it does not know/believe.
viiiUnknown unknown is something an agent does not know/believe that it does not know/believe.

Donald Rumsfeld has famously defined the term during a US Department of Defense briefing [156,
227]
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Having in mind all these aspects, I ask another methodological question: Under

what form should these non-cooperative social interactions be studied?

From a conceptual perspective, a salient method is to define computational deception

as a form of artificial mind-game which can be instantiated through different setups.

Given the complexity of deception, it would also be useful to consider the degree of

formalisation and also the degree of abstraction that we want to adopt for different

types of mind-games. From a methodological standpoint, I adopt Floridi’s view of

how introducing different levels of abstraction in deliberation affects decision making

[89]. I believe that this is also valid for deciding what components of deception need

to be included in a model.

Designing artificial mind games such that we keep their expressiveness is far

from being a trivial matter. It is for this reason that after surveying the relevant

literature on deception and machine deception in Chapter 2, I proceed to classify

the multiple forms of computational deception in Chapter 3, which can be used to

determine what type of mind-game the agents are playing, what factors of deception

should be included, and what general questions can be addressed by analysing these

games. Regarding the design stage of the MAS models of deception, I have then

considered the following critical questions:

What type of model do we want? Explorative or purpose-specific? The

former would imply unknown parameter values for deceptive interactions, while the

latter would imply prior knowledge of the values. An explorative model might be

used when we already know how agents interact and we want to explore how the

parameters change and what are the outcomes these changes determine. A purpose

specific model would imply that we already know the mechanics and given some

specific values and conditions we want to confirm that deception takes place.

What type of machine deception do we want to model? Each type of

machine deception implies different mechanics, interaction parameters and questions
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to be answered. Depending on the type of deception that is to be modeled, we can

define the interaction protocol.

How many agents are involved? Depending on the number of agents in-

volved, we define the interaction protocol for each type of agent.

What type of Theory-of-Mind do the agents have? Theory-of-Mind

(ToM) is the ability of agents to model the minds of other agents [101]. I have

identified, based on the literature on deception, that ToM is a crucial ability for

intentional deception. The type of ToM influences the reasoning mechanism of each

agent, and, by extension, the agents’ actions.

What information is available to each agent involved? From this we

can define the known unknowns and the unknown unknowns (if there are any). By

combining various boundaries on information, we should be able to determine the

importance of the pieces of information involved. For example, we can determine if

a certain unknown unknown is necessary to succeed in deception or not, given the

rest of the contextual information. The same applies to deception detection.

What are the mechanics that determine the values of the interaction

parameters? Once we have established the type of model we want, the type of de-

ception, the number of agents, the types of ToM, and the distribution of information,

we can determine how the parameters’ values are to be calculated. For example,

when do levels of trust or cognitive load change for each agent type? Maybe some

agents tend to be more credulous or have a higher communicative skill and manage

their cognitive load more efficiently.

My argument is that a good model would ideally include the components and

properties of deception as suggested by the framing of the questions above. I believe

that richer models can improve our understanding of machine deception. Of course,

increasing the complexity of the models might be against the principle in agent-

based modelling of keeping agents simple, but deception is intrinsically a complex
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problem. Adopting simplistic architectures would impede us from accurately rep-

resenting complex reasoning and behaviour, which would result in loss of semantic

properties and of the models’ expressivity as well as its explainability.

The two approaches that I have used to model deception in this thesis, namely

the approach that consists of the cognitive modelling of BDI agents and the approach

from evolutionary game-theory, offer a way to represent every step of the interactions

between the deceivers and their targets, as well as to scale up this process to agent

societies. Therefore, these two approaches represent deception at two different levels

of abstraction, that analysts could use to deliberate about.

To give an analogy for the first level of abstraction described in Chapters 4, 5, and

6 I might say that it is like looking into the minds of the deceivers and their targets.

When we look inside their minds, we can initially observe the static elements of

their cognitive architecture such as their beliefs about the world (the entries in their

knowledge bases), and their beliefs about each other (their static ToMs). However,

the fascinating part is that we can also observe the dynamics between these beliefs

and the dynamics between communicative actions and beliefs. We can observe

how agents reason about how these dynamics would play out if the agents were

to interact with the same interlocutors in different contexts. This first approach

allows us to observe how agents choose various communicative actions to perform

intentional deception and whether their attempts at deception would succeed or not,

or if deception would happen without them intending for it to happen.

Now, regarding the analogy for the second level of abstraction described in Chap-

ter 7, it is like zooming out from the perspective offered by the first approach. It goes

from observing a conversation between two individuals and what happens inside the

minds of these individuals, where one individual is aiming to deceive the other, to

observing how a series of multiple conversations of this type happen between groups

of individuals over a long period of time.
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Due to the reductionist approach employed in AI, modelling deception, however

broadly, might not be enough to achieve a full understanding of deception. There

might be aspects of deception that the designers of the models overlooked, or perhaps

that they did not explore due to insufficient resources. There might also be aspects

of understanding deception which cannot be represented by the models themselves,

but might be conveyed through some explanation. One such aspect might be, for

instance, the way in which we present or display the information visually or textu-

ally to analysts. Another aspect would be the ways in which we instruct analysts

how to use the models efficiently and for which purpose, e.g., how to program the

agents, how to remove or add knowledge in their knowledge bases, how to change the

environment and the interaction protocols that the agents use. Thus, apart from the

different layers of abstraction represented by the models themselves, one would also

have to represent different levels of explanation. When considering such aspects, an

MAS framework that informs us how to build and reason about the models would

come in handy.

What is an MAS framework, exactly? And why is an MAS framework rele-

vant for explaining MAS models? An MAS framework is an abstractisation of an

MAS domain. An MAS domain is usually defined by three components, namely (i)

the artificial agents and their architectures, internal (knowledge/beliefs, reasoning

system) and external (actions they can perform), (ii) the environment where the

agents interact with artefacts and other agents, and (iii) the organisation/society

that agents are part of and that defines the norms the agents follow and how they

behave socially.

Some examples of MAS frameworks are JaCaMo [28], FIPAOS [211], JADE [18],

and MAS2 [90]. Building such a framework usually requires as a first step to engage

in agent-oriented software engineering and programming. The agent-oriented soft-

ware engineering process identifies how different layers of an MAS interact with each
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other, and it establishes hierarchical relations between these layers of abstraction.

For instance, the JaCaMo framework tackles this issue with specific agent-oriented

programming languages to handle different MAS layers: Jason for programming the

agents [33], Cartago [222] for programming the artifacts in the environment where

agents interact, and Moise [127] for programming the organisations of agents.

Hence, if we are to follow this line of thought, an MAS framework for deception

analysis could act as a unifying blueprint for explaining how the different layers of

abstraction, represented by different models of deception, work together. I have

identified several desiderata of MAS tools that an ideal MAS framework should

consider in order to meet the needs of analysts in terms of explanation.

The first desideratum is representational power and it is directly related to

the levels of abstraction in an MAS. MAS tools should enable intelligence analysts to

reason more critically and more clearly about deceptive scenarios between multiple

configurations of agents at different levels of abstraction. These should help ana-

lysts take into account the complete and partial knowledge of the agents involved in

the respective scenarios, as well as the influence of the social factors that influence

deception parameters. They need to help analysts describe and contrast the cog-

nitive and communicative similarities between deceptive and non-deceptive agents.

For example, it should be able for an analyst to distinguish a lie from deceptive

intent [48, 237], which indicates that the components of deception are described by

the tools taking into account relevant theories of deceptive communication. One

must be careful about grounding the representation in relevant theories, as selecting

pseudo-scientific theories for this purpose leads to bias in analysing deception using

AI methods (see §2.2.6).

The second desideratum is the automation of counterfactual reasoning. In

deception analysis, counterfactual or hypothetical reasoning deals with questions

that are relevant for establishing event causation and event causation prevention.
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Not all AI methods are able to address these questions successfully, which is mainly

the case with current Machine Learning techniques. A promising approach in AI

to address these questions is to use argumentation-enabled tools. Cybersecurity re-

search is already looking at how the area of argumentation can be used to perform

this type of analysis [256], namely for tasks such as cyber attribution. Argumenta-

tion based approaches can also be used in criminal forensics as proposed in [24] and

in [305]. In order to increase the efficiency of deception analysis, these argumenta-

tion enabled tools could be integrated as modules in MAS tools as was demonstrated

in [271].

The third desideratum is social interactivity. According to Miller, explana-

tions are not just using abductive reasoning to find causal relations, but they also

include a social process [177]. This social process refers to the knowledge exchanged

between explainer and explainee. Regarding MAS tools, artificial meta-agents can

be modelled and engineered so that they can automatically provide abductive, con-

trastive and counterfactual explanations to analysts through social interaction, as

is demonstrated in the case of privacy-preserving agent-based tools in [184], and

more recently in [185]. MAS tools should be designed as to enable the social agent

to extract these explanations directly from the causal dynamics of the MAS. Argu-

mentative agents, for example, could help analysts engage in critical and hypothet-

ical thinking using question-answering games. Research in dialogue argumentation

games for agent social interaction and reasoning can provide mechanisms for reach-

ing sound and complete conclusions [169]. This would result in humans and artificial

agents cooperating towards reaching a better understanding of deceptive scenarios

using dialectical reasoning. In the future, these MAS tools might even be designed

to automate the policing of online communicative behaviour between interconnected

agents, punishing unethical deceptive behaviour and rewarding desired communica-

tive behaviour, similarly to the dialogue games approach presented in [195].
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The fourth desideratum of an MAS framework is scalability inside and outside

of the MAS models used for deception analysis. Inside the MAS models, it should

account for (i)spatial scalability, such as the analysis of deception on large scales,

e.g., in various regulatory systems, organisations and societies different sizes where

agents can interact; and for (ii) temporal scalability, e.g., changes and evolution of

interactions between agents over time. Outside the MAS models, it should account

for the open nature of MAS systems [279] and consider how the tools for analysing

deception inside the MAS models could be further developed. For instance, it should

account for instructions on how to enable other types of software applications to

interact with the MAS models, such as new types of agents or software tools.

Conclusively, in terms of Intelligence Analysis, an ideal MAS framework would

offer analysts several advantages regarding the explainability of deceptive interac-

tions. For instance, if such a framework is to be based on the two approaches

that I describe in this thesis, then it would be able, for starters, to represent how

the agents reason about deception, but also how the deceptive behaviour of agents

emerges and how it can be governed in agent societies/organisations. By using an

MAS framework to reason about the models, analysts could identify what can be

explained about deception, how it can be explained, and to what degree it can be

explained. Based on their needs, analysts would then be able to integrate various

models and representations of deception in a sound manner, by generating different

types of explanations at various levels.

1.5 Ethical Argument

Some readers might have the impression that the research I present in this thesis

is either unethical, or at least, ethically dubious. Before I proceed to present the

research on how to model deception in MAS, I will first try to present a counter-

argument against the belief that the modelling of deceptive machines is undermined
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by ethical principlesix. The reason I wish to provide such a counter-argument is

because I believe that whenever controversial topics, such as deception in this case,

are explored in a scientific manner, then the individual or group of individuals

performing this scientific exploration should at least try to justify it themselves,

and not leave these justifications to be dealt with by outsiders (i.e. non-scientists

or non-researchers)[221].

My justification is in the form of an argument that is based on the principle

and benefits of scientific discovery in society. To do this, I will adopt the method

of Reflective Equilibrium [218] in the context of scientific discovery and machine

deception. This method implies (i) the use of unbiased, reflective judgments or

intuitions about what is or what would be considered right or wrong in particular

contexts, e.g., the context of modelling deceptive machines; and (ii) the proposal

of theories and principles which are aim to provide a coherent justification of these

judgments. Therefore, I propose the following general ethical principles taken from

[221] and interpret them in order to guide and think about the ethics of modelling

machine deception:

1. The non-maleficence principle: One should not act in ways that cause

needless injury or harm to others.

2. The beneficence principle: One should act in ways that promote the welfare

of others.

3. The intellectual freedom principle: One should be allowed to pursue novel

ideas and criticise old ones. One should be free to conduct research they find

interesting.

ixThe ethical problem that I want to address here regards the motive and method of research
of deceptive machines, which is different from the ethical issue of a machine behaving deceptively.
If the reader is interested in the ethics of dishonest machines, then the reader might find the work
in [258], [130], and [46] informative as these works explicitly discuss the when, why and how of
ethical behaviour of dishonest machines.
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4. The openness principle: One should allow people to see their work, and be

open to criticism.

5. The honesty principle: One should aim towards finding the truth and

should communicate in a truthful manner.

Argument against modelling deception: The ethical argument that can be

made against the scientific exploration of modelling deceptive machines is that de-

ception is unethical because this scientific exploration might lead to the development

of fully autonomous deceptive agents that will deceive humans. Therefore we should

not try to model deceptive machines. An elaborate account of this line of reasoning

can be found in the controversial AI-Box Experiment in which a super-intelligent

and malicious AI agent that is locked inside a software sandbox (a virtual prison)

deceives a human, the guard of the box, in order to escape form the box and wreak

havok in societyx [303].

Counter-argument: With respect to the five principles enumerated above, I

argue that the modelling of deceptive machines in this thesis respects and promotes

all of the five ethical principles. By modelling deceptive machines in MAS, we are

able to understand them, e.g., their internal mechanisms as well as how they might

interact with other agents in complex social systems. W.r.t., the first principle,

this understanding might prevent us from actually creating or enabling deceptive

machines to act in ways that can cause harm to others. W.r.t., the second princi-

ple, we could understand how deceptive machines might be created such that they

provide benefits to society, i.e. deceive in an ethical manner to achieve an ulterior

goal (see [130, 258, 46]). W.r.t., the third principle, I personally find that the topic

of deception, and machine deception in particular, are simply fascinating because

1) deception has a certain historical gravitas in the area of AI given its exploration

xThe reader should be aware that Yudkowski’s AI-Box experiment is a purely anecdotal and
speculative, and is not backed by the scientific method.
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in Turing’s Immitation Game as a necessary requirement for humans to assign the

property of intelligence to machines [272], and thus being central to the antropo-

morphisation of artificial agents (another fascinating topic in itself); 2) deception is

a popular recurrent topic in science-fiction that when consumed by the general pub-

lic it forms the public opinion of AI (see [93]); and 3) deception is a very complex

phenomenon in terms of its psychological, evolutionary and epistemic properties,

and the idea of modelling these properties in interactions between artificial agents

is very exciting from a scientific perspective. W.r.t., the fourth principle, the ac-

tual modelling of deception in a public and scientific way promotes this principle by

opening a much needed well-informed discussion about the topic that goes beyond

anecdotal explorations and that can better inform public opinion. W.r.t., the fifth

principle, modelling deception in order to better understand it and sharing this

understanding in an honest manner is a truth-promoting act in itself, independent

of the ulterior motives of performing the act.

In conclusion, the research that I describe in this thesis is ethical because it

promotes and is guided by ethical principles which enable scientific discovery.

1.6 Conclusion

In this chapter, I have defined the question which motivated the research I describe

in this thesis, namely How may artificial agents deceive? I have also described

my methodology and motivation to model deception, and given an argument to

justify why this research is ethical, contrary to some beliefs. In the next chapter,

Chapter 2, I survey the research literature upon which I base my thesis, in order

to identify the relevant theories of deception as well as the necessary techniques

from AI for the modelling of deception. In Chapter 3, I describe a taxonomy of

deception using computation in order to identify several forms deception can be

modelled as a computational process. In this thesis I model deception using two
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main approaches. The first approach addresses throughout Chapters 4, 5, and 6 the

complex reasoning and social interaction capabilities of artificial agents to deceive

by forming models of other agents’ minds and to use practical reasoning over these

models. The second approach draws upon the paradigm of Machine Behaviour and

addresses in Chapter 7 the social dynamics of deceptive agents in governed societies

using an evolutionary game-theoretical approach. In Chapter 8, I evaluate these

models of deception by looking at a set of desirable properties that they exhibit,

and, reflecting on my modelling approaches, I also propose the creation of an MAS

framework for analysing deception. Finally, I conclude this thesis in Chapter 9 with

a discussion of my contributions to machine deception research and with a discussion

of possible future lines of research.
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Chapter 2

Literature Review

In this chapter I review the research literature upon which I build the contributions

of my thesis.

In this chapter I describe the relevant literature for modelling deception. I start

by presenting what are the limits of approaches in deception detection in humans

and I discuss the alternative views on human deception. The reason I present ap-

proaches to deception detection is because they offer us an overview of how humans

have tried to understand how deception happens (event causation and event cau-

sation prevention) and also an overview of the kinds of observations humans think

indicate the presence of deception. As we will see, some of these methods are either

cumbersome, and they could perhaps be enhanced by this thesis’ MAS approaches,

while others are erroneous because they do not rely on the right indicators for

detecting deception. However, there are alternative theories of deception in Com-

munication Theory that offer a more comprehensive view on deception and that are

highly compatible with the paradigm of MAS. After I present these perspectives on

human deception, I describe the literature relevant to machine deception. I end this

chapter by describing the AI techniques that I use in this thesis to model deception.
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2.1 Deception in Humans

It is reasonable to say that a meaningful MAS approach for studying deception

should be based on or derived from relevant knowledge that we have on human de-

ception. If in the previous chapter I have answered the questions What is deception?

and What is machine deception?, then in this section I will try to answer the ques-

tions How do humans deceive?, How do we know when and if humans are deceiving?

and When and why do humans deceive?. In this section we will discuss some of

the relevant methodologies and research in Psychology that have been to address

different aspects of human deception. This is research that I will consistently refer

back to later in the thesis.

First, I will discuss a well-known methodology in Intelligence Analysis, namely

Richards Heuer’s Analysis of Competing Hypotheses (ACH) [122, 123], as well as

more recent derivations of ACH that have been designed to address some of ACH’s

limitations.

Second, I will discuss what are the limitations of cue-based approaches to human

deception. Based on the prevalence of these limitations, I have decided not to use

them for the modelling of deceptive machines.

Both ACH and cue-based approaches to deception detection have their limita-

tions. These limitations are either due to the complexity of the methodology and

oversight of representations that are used to establish what causes deception in the

case of ACH, or due to the over-reliance on cues that indicate the presence of de-

ception in the case of cue-based approaches, an over-reliance which leads to strong

bias in deception detection and deception understanding.

Finally, I will discuss three major theories of human deception from Commu-

nication Theory that I use as a conceptual basis to model deception in this the-

sis: Interpersonal Deception Theory (IDT) [38], Information Manipulation Theory 2
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(IMT2) [172], and Truth-Default Theory (TDT) [153]. These three theories focus on

deception in humans by trying to outline general rules or principles of how decep-

tive interactions play out. Understanding the mechanics of human deception allows

one to reproduce these types of interactions artificially by designing reasoning and

communication protocols for artificial agents as well as designing the components of

MASs where these interactions take place.

2.1.1 Psychology of Intelligence Analysis

The pioneering work in modern intelligence analysis for deception detection was

done by Richards Heuer to address issues such as the complexity of counterfactual

reasoning about event causation and event causation prevention. Heuer wanted to

help intelligence analysts reduce their cognitive biases and cognitive load in analysing

complex cases. Therefore, he proposed a methodology to help analysts reason about

evidence about possible events in a scientific manner. Heuer had been strongly

influenced by Karl Popper’s Falsifiability Theory [209] and therefore believed that

a rigorous falsification of hypotheses would result in sound conclusions about the

truth of events.

In [122] and, more recently, in [123], Heuer describes the “Analysis of Competing

Hypotheses” (ACH). ACH is a seven step methodology developed for the CIA to

limit or neutralise the cognitive biases [124] and enhance the cognitive capabilities of

intelligence analysts. Heuer believes that the elimination of cognitive bias is achieved

through the consideration of a complex thread of alternative competing hypotheses.

If all alternative hypotheses are considered, instead of focusing on a single most-

likely hypothesis, then the analyst achieves a more objective and systematic view of

the problem. However, doing so implies engaging in an extremely difficult cognitive

task on behalf of the analyst. That is why Heuer proposes ACH as a seven step

methodology. This seven-step analysis is performed on a matrix of hypotheses and
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Table 2.1: Matrix for ACH, where “+” and “-” mean that an item of evidence E
either prove or, respectively, disprove a hypothesis H.

H1 H2 H3 ... Hn
E1 + - - ... +
E2 + + - ... -
E3 - + + ... -
... ... ... ... ... ...
En - + + ... +

evidence, where hypotheses are enumerated in the columns of the matrix, and the

evidence on the rows of the matrix (See Table 2.1).

The seven steps are:

1. Hypothesis: Analysts brainstorm in order to exhaust all possible hypotheses

for a given case.

2. Evidence: Analysts bring evidence (arguments and data) for and against

every hypothesis they came up with in the previous step.

3. Diagnostics: In this step, the analysts attempt to disprove as many hypothe-

ses as possible by using evidence that falsifies the hypotheses. One important

factor is the diagnosticity of evidence. The higher the diagnosticity of a piece

of evidence, the more likely it is for that piece of evidence to disprove a hy-

pothesis. This is similar to the falsification principle in the scientific method

[209].

4. Refinement: After the first three steps, the analysts proceed to refine their

finding by identifying additional evidence to refute as many hypotheses as

possible

5. Inconsistency: The analysts aims to find and solve any inconsistencies be-

tween the hypotheses, drawing tentative conclusions about the likelihood of

hypotheses.

48



6. Sensitivity: In this step, the analysts try to estimate what impact their

assumptions and evidence would have on their conclusions if they were proved

to be false.

7. Conclusion and evaluation: The analysts provide the conclusion of their

analysis along with an evaluation of each step they have taken in the analysis.

The analysts must also include in the evaluation the alternatives they had to

reject during this process.

The main benefit of using ACH is its tractability and transparency. Every judg-

ment made can be backtracked and audited. Another benefit, although there are

some controversies about it, is the reduced cognitive bias. Of course, any method-

ology has its weaknesses, especially ones that try to enhance the logical or rational

thinking of human individuals about complex issues such as intelligence i and de-

ception. Some of these weaknesses brought up by van Gelder in [281], as well as

some by Pope et al. in [208] are:

• The analyst needs to make too many judgments, as in the analyst needs to

cognitively perform too many analytical operations on the matrix. This is

very difficult if the matrix of hypotheses and evidence is too big. The num-

ber of judgments is the number of hypotheses multiplied by the number of

evidence. Even the simple analysis of only 2 hypotheses, if 5 items of evi-

dence are introduced in the matrix, already requires 10 separate judgments.

To make matters even worse, most of the judgments performed will probably

have a neutral effect on the overall analysis. In other words, they might lead

to nowhere. Therefore progress using ACH is very slow.

• The matrix structure of ACH gives a poor treatment of evidence. Each item

of evidence can be consistent or inconsistent “on its own”. However, this is

iHere I use the word intelligence not as is used in the term Artificial Intelligence, but instead,
as it is used in the expressions Intelligence Analysis or Central Intelligence Agency.
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not the case in the real world where propositions or arguments mediate each

other, e.g., back each other up or falsify each other. For example, Ava has

consciousness is only as true as the statement Ava is a robot if and only if All

robots have consciousness is also true ii.

• ACH does not account for a hierarchy of hypotheses. Some hypotheses are

more general than others, and or are built on top of or derived from other hy-

potheses. For example, the hypothesis (i) JFK was assassinated and (ii) JFK

was assassinated by a lone wolf and (iii) JFK was assassinated by the Russian

spies are three different hypotheses, however one of them (i) is more general

than (ii) or (iii) which are sub-hypotheses of (i). If some items of evidence can

disprove, for instance (ii), then they do not necessarily disprove (i) and (iii).

This distinction is crucial due to the fact that items of evidence can confirm

or falsify hypotheses at different levels. Entering hypotheses individually on

the ACH matrix when some hierarchy of hypotheses exists, then the effort

of comparing evidence individually against all hypotheses is highly increased,

e.g., a piece of evidence that is generally relevant to all hypotheses (i), (ii),

and (iii) is analysed against all three instead of just being analysed against

the more general (i).

• There is no way to represent what is behind a certain item of evidence. For

example there is no way in which to analyse the information that gives weight

to an item of evidence such that the analyst takes into account the degrees of

belief associated with that evidence. Should the analyst believe the evidence,

not believe it, or treat it as uncertain? And if the analyst assigns a degree of

belief, then how does that degree of belief influence the overall analysis of the

hypotheses?

iiHere I refer to Ava, the AI from the movie Ex Machina [93].
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• ACH suffers from the problem of decontextualisation. While analysts engage in

this cognitively taxing activity, having to make so many judgments can induce

a mental state of confusion and frustration. Thus, the analyst performing

ACH is decontextualised form the actual problem it needs to solve, losing the

overall perspective of the problem.

To address the weaknesses of ACH, argument mapping [281] along with other

“flavours” of ACH have been proposed. One of the ACH variants is by Valtorta

et al. presented in [275], where the authors have extended ACH using bipartite

Bayesian networks iii. Another, more formal and comprehensive approach, is the

one of Pope and Jøsang that is described by the authors in [207] as ACH-SL, where

SL stands for subjective logic. In the ACH-SL approach, Pope and Jøsang propose

subjective logic to be used for approximate reasoning under conditions of uncertainty

that relate to the diagnosticity and sensitivity of evidence in Heuer’s ACH. Their

approach is also compatible with Bayesian reasoning. Analysts can perform ACH-

SL using either deductive or abductive counterfactual reasoning with evidence iv.

ACH-SL focuses on the distinction between two types of evidence that is used in

ACH, namely causal evidence and derivative evidence along with a subjective logic

representation of beliefs:

• Belief representation of an opinion with a function b + d + u = 1, with

b, d, u ∈ [0, 1]3, where b is belief, d is disbelief, and u is uncertainty about

something. Additionally, the authors model the atomicity of a belief that can

either represent the state space that the belief accounts for or can represent a

belief’s base rate. The expectation of a belief is then represented by E(x) =

iiiACH being defined by a matrix, this matrix is easily convertible into a bipartite graph with
associated conditional probabilities, a.k.a a Bayesian network

ivBoth ACH and ACH-SL use counterfactual reasoning, however, ACH-SL also applies it to
reason about the likelihood of evidence given the nature of the information contained by the
evidence.
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b + au. Opinions are visualised as a triangle where b, d, a, u are represented

(See triangle in [207]).

• Causal evidence is the evidence that directly influences the likelihood of one

or more hypotheses. According to [207], deductive reasoning is responsible

for analysing causal evidence. Deductive reasoning uses the likelihood of each

hypothesis, for each piece of evidence, along with knowledge of the base rates

of the hypotheses and evidence, e.g., using the counterfactual p(h|e)∧ p(h|¬e)

for each item of evidence.

• Derivative evidence is evidence that is usually observed in conjunction with

one or more hypotheses, but that does not necessarily influence the hypotheses.

According to [207], abductive reasoning should be used for analysing derivative

evidence. Counterfactual abductive reasoning uses the likelihood of evidence

for each hypothesis, e.g., p(e|h) ∧ p(e|¬h).

Using the belief representation model with deduction of a hypothesis’s causal

evidence and the abduction of the hypothesis’s derivative evidence, the analyst can

derive a belief for that given hypothesis. ACH-SL is very useful for aggregating

beliefs about items of evidence and hypotheses that are formed under conditions

of uncertainty, even when information comes from multiple sources as shown in

[207]. ACH-SL in conjunction with reputation mechanisms can reduce the effects of

deception in intelligence analysis. However, as its authors point out, ACH-SL fails to

take into account important aspects of deception and misperception. For instance,

ACH-SL fails to consider the strategic goals of adversaries that might influence the

beliefs of the analysts. Another issue is that the design of reputation mechanisms for

intelligence collection can be a very complex, difficult, or impossible task. Therefore,

even though ACH-SL performs better than ACH, it only offers a minor level of

protection against deception. Another limitation that I find to be hindering the
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universal adoption of ACH in current times is that ACH-based methods are not

dynamic with respect to hypothesis formation. What I mean by dynamic is the

ability of the approach to represent the interactions between multiple agents and

sources of information/evidence that can lead to the formation of new hypotheses

and the elimination of less fit hypotheses. This capability of representing complex

interactions should be crucial in today’s world of intelligence analysis where analysts

have to deal with an increasingly fast-paced exchange, curation, interpretation, and

dissemination of information, especially through the integration of the physical and

digital worlds, e.g., in hybrid societies.

In conclusion, current methodologies in Intelligence Analysis, despite helping an-

alysts reduce their cognitive load and despite being formally sound, are highly sus-

ceptible to deception and misrepresentation. ACH, the ACH application to Bayesian

nets, and even ACH-SL, fall short of addressing the pragmatic reasoning of adver-

saries in a formal manner. It is a bit ironic that ACH itself had been designed by

Heuer to address deception, but ACH only does so by considering observable events

and does not address the beliefs, desires, intentions, goals, plans or strategies of

the agents involved in these events, never mind the interpretation of these attitudes

in different contexts of events. In this thesis, I aim to provide a MAS approach

that aims to fill these gaps and to work towards a framework that provides a more

comprehensive understanding of deception. To do so, I will continue by discussing

deception from the perspective of Social and Communicational Psychology, in the

following sections.

2.1.2 Limits of Passive Cue-based Deception Theories

Before we go into the theories of human deception that are relevant to this thesis’s

aim, I first want to argue against an alternative course of action. This alternative

course of action would have implied delving into the so called cue-based psychology of
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deception detection. Cue-based approaches to understanding or detecting deception

treat passively observable information that represents what lies on the surface of a

more socio-complex cognitive process.

This simplistic view of deception, especially the over-reliance on non-verbal cues,

had been extremely popular for some time due to the work of Paul Ekman [75]. Even

Ekman himself, along with O’Sullivan [77], argues that clues that lead to deception

are not absolute and that it is perhaps delusional to think that a “fail-safe” set

of behavioural cues that are able to indicate deception exists in real life. There

exist, Ekman and O’Sullivan say, some behaviours that might be considered cues for

deception, but these need to be analysed by taking into account the individual that

expresses these behaviours as well as the social context in which these behaviours

are expressed. Ekman, later in [74], had aimed to integrate verbal behaviour into

his view of deception.

These cues that I am referring to can be either verbal, or non-verbal. Verbal cues

represent what a person says (linguistic behaviour) and non-verbal cues represent

non-linguistic behaviour of a person. One example of non-verbal cues are micro-

expressions. There is relatively strong consensus in human deception research that

cue-based approaches to deception detection are very limited [67, 66, 116, 104].

That is because this type of approach solely considers behaviour that is expressed

by human agents, in order to establish whether the human is being deceptive or not.

It does not, however, take into account everything else, e.g., the knowledge involved

as well as the context of the situations. This makes cue-based deception research

highly susceptible to cognitive biases v.

One of these biases is called the truth bias. Does a receiver believe that a sender

is truth teller? If yes, then the detector has a strong truth bias. Or, does he believe

the sender is a liar? In this case, the receiver is considered to have a strong non-truth

vRemember from the previous section that Heuer and intelligence analysts are not very fond
of cognitive biases for very good reasons.
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bias. What if the receiver is not sure about whether the sender is telling the truth

or not? If this is the case, then we call the receiver suspicious.

Another interesting concept is the confirmation bias, to which cue-based tech-

niques are also susceptible. The confirmation bias is present when a receiver inter-

prets incoming data from the sender in such a way as to confirm its own bias. Let

us say the receiver believes that the sender is a truth teller. If the sender is indeed

a truth teller, then the receiver does not make any error. However, if the sender

is not telling the truth (a.k.a. deceiving the receiver), then the sender commits a

fallacy. The fallacy is due to the fact that the sender ignores all the information

that could falsify its belief that the sender is a truth teller, because the receiver is

only processing information that strengthens its beliefs.

The confirmation bias can also determine receivers to commit what is known

as the Othello Error [30]. The Shakesperean tale goes like this: Othello believed

that Desdemona, his wife, was cheating on him with another man. When Desde-

mona denied that she was cheating on him, Othello did not believe her and also

exhibited suspicion. Because Othello did not believe her, Desdemona started crying

and exhibiting behaviour that correlates with a cheating wife. That was because

Desdemona was desperate. She was desperate because she believed that no matter

what counter-arguments and evidence she would offer Othello, he would still only

take into consideration the information that would confirm his hypothesis of her

cheating on him. Desdemona was killed by Othello because she behaved like a per-

son who is desperate. A person who is desperate exhibits some of the behaviour

a guilty person would exhibit. Othello’s fallacy was that he erroneously took into

consideration only the behaviour a guilty person would exhibit, without taking into

consideration all the other cues that might have falsified his beliefs, e.g., the cues

and information that could have indicated despair. Thus, we call this the Othello

Error.
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In the case of deception, the detector might be right that a sender is attempting

deception. However, the detector is right for all the wrong reasons. Whereas the

sender will never be able to convince the receiver that it (the sender) is actually

a truth teller, no matter what strategies it uses and how strong its arguments and

evidence are.

Psychological research has identified and described several effects of lying and

deception, as well as several issues humans face when attempt to deceive or detect

deception. Notably, the work of DePaulo and Bond have shed some light on how

the over-reliance on specific cues is problematic and that such cues do not improve

deception detection, e.g., they do not provide diagnosticity [66, 67, 29].

On a slightly different note, according to Hartwig [117, 116], cues to deception

do exist and verbal cues are more diagnostic than non-verbal ones, but the trick is to

distinguish between the ones that lead to perceived deception and the ones that she

calls valid cues, which lead to actual deception detection. The problem would then

be to elicit valid cues in order to really improve deception detection. Apparently, the

answer, according to a review on deception research by Vrij, Hartwig and Granhag

[288], could be either (i) using specific interview protocols (for example, to increase

cognitive load of potential deceivers such that they are induced in making mistakes,

e.g., reverse-order interviews) and analyzing speech content vi, or (ii) the consider-

ation of contextual factors such as the context of the conversation and familiarity

with the topic that is being discussed. The same authors mention that non-verbal

behaviour should only be pursued when the alternative of assessing verbal behaviour

does not exist.

In conclusion, I might have taken an approach that relied on cue-based theory

to model machine deception, but the over-reliance on specific behaviours, verbal

or non-verbal, seems problematic and reductive to truly provide a meaningful and

viHowever, according to Levine, approach (i) does not fare better than cue-based passive ap-
proaches [153]
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accurate understanding of deception. Therefore, I have decided to take a different

path. This decision was reinforced by the fact that ACH and its later versions have

been designed to overcome the issues which cue-based deception research brings

up. Therefore, I have gone with theories from Communication and Psychology that

address deception in a different manner, and that do not solely rely on verbal and

non-verbal cues to understand whether, and describe how, an agent is attempting

deception or not. In the following sections, I will describe the three main theories

that aim to do this.

2.1.3 Truth-Default Theory

The first theory of deception that I describe is Truth-Default Theory, proposed

by Timothy Levine. TDT [153] aims to address general rules of deception and

argues that humans are generally truth biased, both as senders and as receivers of

communicative messages, thus they are in a truth-default mode most of the times.

However, it is also important to note that TDT does not imply that humans are

always in a truth-default mental state, as various triggers can take individuals out

of this state.

“The truth-default involves a passive presumption of honesty due to a

failure to actively consider the possibility of deceit at all or as a fallback

cognitive state after a failure to obtain sufficient affirmative evidence for

deception.” [153, loc. 2151]

TDT merely argues that humans mostly presume honesty in a passive manner.

This argument is backed by Timothy Levine, the proponent of TDT, with numerous

controlled empirical studies on how humans judge the truthfulness of others. These

studies have led to the proposal of concepts such as the truth-lie base-rate, which

informs us that if an individual is not actively confronted with evidence of decep-

tion, then that individual will consider communication to be truthful; the veracity
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effect, which specifies that people are more accurate when judging truthful messages

compared to dishonest messages; the probing effect, which specifies that individuals

have a tendency to answer interrogation questions in a minimal, but truthful manner

instead of answering accurately; and the sender’s honest demeanor, which strongly

influences deception detection variation, where by demeanor we understand a set of

behavioural characteristics that define a sender’s character or personality.

TDT is one of the most comprehensive theories on deceptive communication and

because it is also a modular theory with standalone sub-theories, models and hy-

potheses, it would deserve its own set of PhD theses to be fully reviewed, summarised

and analysed. TDT teaches us about the following aspects of deception [153]: how

there are only a few prolific liars vii [153, loc. 2188]; that deception detection accu-

racy is slightly above 50% viii and there are only a few transparent liars out there [153,

loc. 2189]; that most lies are detected after the fact, from evidence or confessions,

and only very few lies are detected through the passive observation of cues [153, loc.

2189]; that understanding the communicative content inside the communicative con-

text improves deception detection [153, loc. 2189]; that some types of information

in communicative interactions are more useful than others, that every type of infor-

mation has its own diagnostic utility for deception detection [153, loc. 2213]; that

fact-checking and checking of logical consistency of what is being communicated can

be successfully used in deception detection, but, in general, fact-checking proves to

be more useful; that effective questioning, as opposed to ill-conceived questioning,

can be used to extract diagnostically useful information from the sender [153, loc.

2213]; that knowing how to prompt communicative information that has a high di-

agnostic utility should be considered above the ability of interpreting behavioural

cues from a sender [153, loc. 2213].

viiLevine calls them “outliars”, which I personally find to be an extremely funny wortspiel given
the scientific context.

viiiLevine considers that because some people might actually be very good at deception detection,
then these individuals make deception detection slightly better than chance.
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What mainly interests us in TDT, apart from the theory’s modules and its

general rule of truth-default, is TDT’s perspective on the definition of deception

and deceptive motives. What is deception? According to TDT [153, loc. 2149],

“Deception is intentionally, knowingly, or purposefully misleading another person.”,

which is different from lying, which is simply called bald-faced lie by TDT and is

described in the following way: “A lie is a sub-type of deception that involves outright

falsehood, which is consciously known to be false by the teller and is not signaled as

false to the message recipient.”. TDT makes several claims about deceptive motives

to answer the question When and why do people lie?. The claims are the following

[153]:

1. People lie for a reason. Deception is purposive, and therefore, deception is not

random [153, loc. 2214].

2. Deception is not the ultimate goal. Deception is a means to some other end.

Therefore, deception is usually tactical [153, loc. 2222].

3. The motives behind truthful and deceptive communication are the same [153,

loc. 2174].

4. When the truth is consistent with a person’s goals, the person will almost

always communicate honesty [153, loc. 2174].

5. Deception becomes probable when the truth makes honest communication

difficult or inefficient [153, loc. 2174].

To summarise, TDT is unique in deception theory because it presumes (based on

55 empirical studies) that in most interactions humans do not check whether truth-

ful information is being communicated. For TDT, deception is infrequent compared

to truthful communication, therefore truth-bias should not be considered an erro-

neous way of thinking, as it has evolutionary basis given the frequency of deception.
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However, truth-default is put aside when humans find contextual reasons to start

questioning the truthfulness of communication, e.g., logical consistency of what is

being communicated or by projecting motives on to other’s mental states etc. In

terms of deception detection, TDT argues that the contextualisation of communica-

tion as well as the persuasion of potential liars to confess are the best approaches,

whereas relying on nonverbal cues hinders deception detection.

2.1.4 Interpersonal Deception Theory

The second theory of deception that I describe is Interpersonal Deception Theory,

proposed by David Buller and Judee Burgoon. IDT focuses on the physiological

and social parameters that influence deception in interpersonal communication [38].

The purpose of IDT is to integrate previous knowledge about deception with em-

pirical evidence that resulted from a set of over two dozen experiments conducted

by its proponents. In order to explain deception, IDT takes into account knowledge

about trust, lies, psychologies of different agents, cognitive bias, truth bias, roles of

agents in different contexts, social norms, semantics, encryption and decryption of

communicative acts, social skills, and the performance of deception and detection

of deception.

Central premise of IDT: Deception and deception detection are not passive

activities. Interaction is crucial to deception.

IDT aims to be a holistic approach to understand deception and rejects experi-

mental setup approaches. For IDT, understanding the interactive context in which

deceptive communication happens between agents is crucial. The context in which

deception happens is, according to IDT, influenced by several social factors of which

some are: the leakage, which represents the nonverbal information exhibited by an

agent and that contradicts the agent’s intended message; the cognitive load of an

agent regulates leakage (high cognitive load determines high leakage) and increases
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or decreases based on the number of behavioural tasks that need to be managed by

an agent on a cognitive level; and the communicative skill of an agent which rep-

resents the ability of an agent to communicate socially and to manage and control

its demeanor in social interactions (the higher the communicative skill of an agent,

the lower the cognitive load, and therefore the lower the leakage exhibited by that

agent).

IDT describes a deceptive interaction as an information exchange that takes place

between a sender and a receiver. The sender plays the role of the deceiver, while the

receiver plays the role of the detector. The sender has a more active role, because it

is the sender that has the assumed intentionality to deceive. However, that does not

mean the receiver is fully passive in this interaction. The receiver’s role as detector

is to find out if the sender is trying to deceive or not. This means that the receiver

is able to use various strategies to analyse the incoming information from the sender

and also, through its own behaviour, the receiver can make the sender reveal enough

relevant information such that the receiver is able to adapt its detection strategy for

the upcoming interaction.

According to IDT, the success of deceivers and detectors is influenced by the

social factors that we mentioned at the beginning of this subsection. For example, if

the communicative skill, the ability of an agent to socially interact with other agents

using verbal and non-verbal behaviour, is increased, then the better is the agent’s

performance at deceiving or detecting deceit. Communicative skills are themselves

influenced by an agent’s personality and cognitive abilities.

Also, the communicative skill of an agent determines how well that agent can cre-

ate its own representations about the world and about other agents. Consequently,

the accuracy of an agent’s representations determines how well the agent can adapt

its strategies of deceiving or detecting. Usually, a well adapted strategy is entailed

by a successful performance of the agent.
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Another factor that influences the success of a deception or a detection is leakage,

first described by Ekman and Friesen [75]. This is usually the overt non-verbal

message that contradicts a verbal message. In humans, leakage takes the form of

affect display. Affect display is the behavioural expression of internal emotional

states. Some examples of affect display are: laughter, tears, facial expression, facial

micro-expressions, hand gestures, body posture, tone etc. In IDT, affect displays

can be treated as leakage due to the fact that agents are usually employing strategies

to control verbal behaviour (what they say), hence increasing their cognitive load.

Consequently, due to a heavy cognitive load, the agents lose the necessary resources

to control their affect displays, and therefore leakage happens. The leakage is itself

dependent on the communicative skill of an agent. It is also inversely proportional

to the skill of the agent, and by extension to the success rate of the agent.

2.1.5 Information Manipulation Theory 2

The third theory of deception that I describe is Information Manipulation Theory

2, proposed by Steven McCornack. IMT2 [172] detaches itself from IDT by focusing

on the perspective of how a sender agent uses its communicative capabilities for

both deception and truth-telling. IMT2, thus, focuses on the information an agent

manipulates in order to convey different meanings of the message in the mind of the

target. In this respect, IMT2 dives into the reasoning processes that can be employed

by the deceptive agent to choose the semantic content of a deceptive message. IMT2

also discusses what makes a reasoning process, that is used for the development and

delivery of a message, more or less deceptive.

IMT2 was proposed to address a set of deficiencies of its predecessor, Information

Manipulation Theory (IMT). One deficiency of IMT is that it is not actually a theory

in itself because it had not been formally defined, thus it had not proposed any

scientifically testable propositions. Another deficiency was that it did not address
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the production mechanisms responsible for information manipulation.

Central premise of IMT2:

“Deceptive and truthful discourse both are output from a speech pro-

duction system involving parallel-distributed-processing guided by effi-

ciency, memory, and means-ends reasoning; and this production process

involves a rapid-fire series of cognitive cycles (involving distinct modules

united by a conscious workspace), and modification of incrementally-

constructed discourse during the turn-at-talk in response to dynamic

current-state/end-state discrepancies.” [172, p. 362]

IMT2 challenges the idea of a top-down deception, where the deceiver decides a

priori whether to lie or to tell the truth. According to McCornack, deception follows

a problem solving process in which deceptive intent should be treated as an empirical

issue (inside of the agent’s mind) and should only arise as a solution in a dialogue.

An important idea that follows from the main claim and that is further claimed by

IMT2 is that the production of honest and deceptive discourse should be of similar

difficulty regarding the cognitive load of the speech production mechanisms. This is

mainly valid for BFLs (bald faced lies) ix and BFTs (bald faced truths).

One important concept of IMT2 is the relation between Pars Pro Toto and Totum

Ex Parte taken from the Mannheim school’s Model of Speech Production [121]. Pars

Pro Toto is the main speech production mechanism employed by a deceiver agent,

according to IMT2. When employing Pars Pro Toto, a deceiver agent formulates a

message that consists of strategically chosen bits of information that make part of

a possible total knowledge. In order to employ Pars Pro Toto, the deceiver needs

to have a mental model of the detector agent’s mind. That is, the deceiver needs to

know what the detector might conclude from the information the deceiver is giving

ixAccording to McCornack, BFLs are not a really popular message of choice when deception is
attempted.
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him. Thus, the deceiver has to have a representation or knowledge regarding Totum

Ex Parte. Totum Ex Parte is the process that the detector agent engages in when

it encounters a message that was formulated through the Pars Pro Toto process.

The detector uses inductive reasoning to reach a conclusion by creating a so called

“complete” knowledge or representation out of his already available assumptions

that he believes to be true (or not) and the bits of information from the Pars Pro

Toto message [154].

To give it a propositional logic twist, let us think of the following example. We

have two agents A (deceiver) and B (detector). Agent A knows that ¬Q and agent B

does not have access to this knowledge unless B asks A for this knowledge and both

of them know this is the case. Also, both A and B have some common knowledge,

let’s say P → Q x. A’s goal is to make B believe that Q. If A would send B a

complete message, then A would have to say that: “P , P → Q |= Q”. However, A

chooses to apply the Pars Pro Toto process given that A knows that B knows that

P → Q. Thus A utters the following message: “P”. After this event takes places,

agent B engages in its own reasoning process, concluding that Q is the case given

the knowledge B has from A that p and B’s previous knowledge that P → Q. In

other words, agent A is letting B “fill in” the rest of the information. Agent B now

believes that it has reached the conclusion by itself.

Interestingly, IMT2 has been inspired by research in linguistics, AI, cognitive

neuroscience, and, obviously, speech production. In conclusion, IMT2 offers a very

good outline of what type of reasoning mechanisms are involved in deceptive com-

munication between human agents. In this thesis, I will draw onto IMT2 to engineer

artificial reasoning mechanisms for deceptive artificial agents which I will derive from

the components of the human reasoning mechanisms described by IMT2.

xThis is just an illustrative example. Common knowledge is not necessary, as it is sufficient
just for A to know that B knows P → Q, whithout B knowing that A also knows P → Q.
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2.1.6 Summary

In this section I have given an overview of the relevant body of knowledge on human

deception. I have discussed methodologies used in Intelligence Analysis to explain

complex cases, some of which are based on whether deception has occurred or not,

and also the limitations of these approaches when it comes to deception. After that,

I have explained the limitations of cue-based approaches to understand deception

in order to emphasise my decision not to pursue them in the modelling of deceptive

machines. Finally, I have described three main theories, TDT, IDT and IMT2, that

serve as conceptual foundations of this thesisxi.

2.2 Data-Oriented Models of “Deception”

In this section I address the current threats posed by deceptive AI tools. I refer to

current research on how AI generators of fake news and deep fakes, hyper-partisan

ecosystems, automated crowdturfing attacks and catfishing behaviour contribute to

online deceptive behaviour. At the end of the section, I discuss why some of these

issues are difficult to address given current methodologies, and also hint towards

how the increase in autonomy of deceptive AI will lead to future threats.

2.2.1 Automated Fake News Generation

In February 2019, OpenAI released the original version of the GPT-2 model, an ex-

tension of the original GPT-1 (Generative Pre-trained Transformer) which mainly

processes and generates text [212]. The large framework of GPT-2 is actually the

xiApart from the research on human deception that I have described in this section, there is
a set of studies worth mentioning to the reader who wishes to understand more of the specific
complexities of human deception. Notably, the Special Issue of the Topics in Cognitive Science
Journal on Lying in Logic, Language and Cognition, edited by Hans van Ditmarsch, Petra Hendriks,
and Rineke Verbrugge, has both clarified and partially confirmed some of my intuitions about the
fact that complex cognitive processes are being executed inside the minds of humans when they deal
with dishonesty [278]. The theoretical [81, 73] and empirical [147, 36, 91, 96, 20] work described in
this special issue delves into the complexities and underpinnings of the logical, linguistic, cognitive,
and epistemological aspects of lying and deception in social cognition.
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framework of GPT-1, but one which turns supervised NLP (natural language pro-

cessing) tasks to unsupervised ones for training during a Fine Tuning phase [7].

Essentially, GPT-2 uses a large amount of unsupervised training data to expand

the language corpus and obtain highly complete text generations. Although the

user only inputs one sentence or several words, GPT-2 will return large articles.

The problem with GPT-2 is that while it sometimes outputs logically coherent text,

other times it outputs text that is incoherent or nonsensical.

When users are presented this type of AI-generated text, they might initially

find it challenging to verify its semantic authenticity [283]. However, after verifying

keywords, users can easily discern such AI-generated fake news.

These limits can be tracked back to the limitation of knowledge about a spe-

cific domain [58, 188]. Strongly represented categories in the training data (Brexit,

movies, popular personalities and so forth) are best suited for the generation of new

deceptive text, as well as programs for capturing common sense knowledge such

as OpenCyc [65] and Open Mind Common Sense [257]. At the other end of the

spectrum are deeply scientific topics and much less known topics that hinder even

GPT-2’s performance. Another limitation is these type of models’ capability to deal

with changes from English to some other language for predicting text.

2.2.2 DeepFakes

Given our growing reliance on entertainment audios and videos, the occurrence

of DeepFakes makes us realize the potential risks regarding personal content and

authentication [173]. Thus, another threat is generating fake news by transposing

faces from celebrities [52], as well as the broadcasting of altered images, voices and

videos of politicians [27]. For deepfakes, as [262] demonstrates, a clear solution is

still missing to detect them. Therefore, it is likely to be spread widely through social

media and have a very negative impact. Systems like Facebook and Twitter are still
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struggling with deepfakes because they do not seem to keep up with technological

advances.

Unlike text, media items such as images, gifs, audios and videos have high entropy

in terms of the information they embed. Detecting deepfakes requires the design

of scalable and complex algorithms. Efforts have been made to detect deepfakes.

Until,now, there are two approaches: temporal features across frames and visual ar-

tifacts within frame. One example of the former one is FaceForensics++ [224], which

manipulates the video content by three methods: Face2Face [268], FaceSwap [138]

and NeuralTextures [267]. They created a dataset of over 1.8 million randomly com-

pressed and randomly-sized imagesxii. Then, they used this dataset as a benchmark

to test all state-of-the-art deepfake detection models. These classifiers can be either

shallow [301] or deep classifier detection [155] based on the extracted number of

specific features. Among all of these models, the best performance was achieved by

Xception [49] (by Google). Authors claim that small knowledge in a specific field

can help improve the accuracy of the detection in certain cases. For an example,

using a cropped or enlarged clip of a face from a video and testing this small part

rather than the whole video can enhance accuracy.

2.2.3 Hyper-partisan News

“Hyper-partisan” news is a term that is believed to originate from a recent article

in the New York Times Magazinexiii [120] and refers to news reporting that departs

from the traditional notion of journalistic balance, and presents a biased picture of

one side of a political debate. These hyper-partisan news often spread false and

biased information to attract more users. In 2017, Buzzfeed news came up with

a list of hyper-partisan news websites which were highly active during the 2016

xiiBenchmark dataset available at- https://github.com/ondyari/FaceForensics
xiiihttps://nyti.ms/2k82R8I

67



US elections [255]. The list contains 667 websitesxiv with labels of right-wing and

left-wing based on the description of website in online spaces such as homepage,

Facebook page and so forth. The list also contains a label for around 77 websites

where websites are being run from Macedonia. Interestingly, out of these hyper-

partisan websites, around 450 were associated with corresponding Facebook pages

that help increase the visibility and audience of these websites.

In [26] the authors study characteristics of these websites to understand their

ecosystem. They report that most hyper-partisan websites are created before elec-

tions and then disappear after elections. Almost one-third of these were newly

registered websites during 2016, the election year in the US. Interestingly, out of

these newly registered websites 81% come from right-wing and only 19% left-wing

partisanship. Later by the end of 2018, almost 60% of them disappeared. The

study also performs an analysis of demographics based on the Alexa.com [5] inter-

net users traffic data on these websites. They find that young (25–34 years) and

old (over 65 years) hyper-partisan news consumers, and those having a higher edu-

cational background (college degree or post-graduates) tend to be left-leaning. One

the other hand, right-leaning news websites tend to attract middle-aged and old

users (45–64 years old), and significantly high numbers of users who have at most

a college degree. These differences in consumer demographics allow these websites

to perform differential tracking by increasing or decreasing tracking intensity, thus

making advertisers pay higher (or lower) prices for showing ads [2].

In [2], the authors provide a methodology to understand the underlying ecosys-

tem of differential tracking based on user demographics. The authors test the effect

of perceived user persona on hyper-partisan websites. These websites perform more

intense tracking (using cookies etc.) than the general web. The study shows that (i)

right-wing websites tend to track with up to 25% more than the left-wing and deliver

xivMethodology and websites link are available here- https://github.com/BuzzFeedNews/2017-
08-partisan-sites-and-facebook-pages
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up to 5 times costlier ads; and that (ii) the most popular websites on both sides

are the ones that have the highest levels of tracking. For example, websites which

rank between 1-10k on Alexa.com [5] have the highest median of cookies tracking,

right–227 and left–131. Most of the third-party trackers exist on multiple websites

of a same partisan-leaning [2]. Very few domains exist on both sides of partisan

leaning which creates a polarised tracking ecosystem for users.

Other studies on alternative news look at online events and the participation

of their corresponding users [264, 304], most of which are driven on social media

platforms. In [264], the authors analyse alternate news on Twitter around mass

shooting events. Their findings show that alternate news media try to propagate

non-standard narratives of events while mainstream media continuously denies these

narratives. Alternate news also get more clicks and categorise the primary orienta-

tion in to four type– namely traditional news, clickbait news, primarily conspiracy

theorists and Political Agenda. Alternate news link sharing to other platforms also

acts as a catalyst in reaching a wider audience [304]. Fringe user communities from

alt-right make more efforts to disseminate news that is mostly seen first on Twitter

and Redditxv and later on 4chanxvi after a short period of time.

2.2.4 Automated Crowdturfing Attacks

Automated Crowdturfing Attacks (ACAs) are used to spread malicious and bogus

news online, and have been actively applied in social media [299], in Online Review

Systems [302], and in plenty of other online communities. For instance, increasing

customers would reference the online reviews of a restaurant or hotel before their

booking decisions to judge the quality based on others’ experience. Therefore, ACAs

would inject framed information (or biased opinions) inside comments to mislead

customers’ choices, which then would lead to the “satisfactory” result of attackers

xvhttps://www.reddit.com/, online discussion forum
xvihttp://www.4chan.org/, an image based bulletin board
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(in terms of monetary purposes). Since most of the information that is infused by

the attacker in comments does not correspond to real events, it should be regarded

as an online scam in our daily browsing experience. Machine Learning techniques

can also be used to generate complex reviews, some almost flawless fake reviews

[302].

To characterise how this false information is spreading in the online community,

[140] presents a quick review on the reasons behind ACAs, the rationale, the effects

and algorithms to provide a common understanding and framework. Some other

approaches are the fraudulent behaviour analysis of Amazon fake review authors

[134] and the TwoFace system [135]. In terms of the propagation speed, [286] shows

that false news and fake reviews seem to be more viral than the truth. In terms of

audience that can be reached by fake news, the authors present in [250] a spread-

ing pattern based on the popularity distribution, which shows that low-credibility

content can reach massive exposure. They mention that the difficulty of detecting

such content lies with the identification of the truth on crowded information, i.e.,

the way to convincingly establish the ground truth.

Another fertile ground for ACAs are shopping websites like Amazon, where at

least two kinds of attacks towards online customers have been identified: promo-

tion and restoration attacks [133]. That is why for customer protection, Amazon

proposes TOmCAT [133], a detection framework based on the behavioural patterns

of attackers. Results show that 95 out of 100 top-ranked products in Amazon are

indeed attacked and that shopping decisions are made by the attackers instead of

the customers.

2.2.5 Catfishing

In terms of social media platforms (SMPs), [276] illustrates that age, screen-name

and located time zone of a Twitter user are the most promising characteristics to
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be used in deception. This type of deception comes under the form of a catfishing

attack. Catfishing attacks are the creation of fake online user profiles used for fraud.

Despite the fact that catfishing-related criminals have started being fined for owning

deceptive Twitter accounts [182], the number of catfishing attacks keeps increasing.

Attackers even utilize the celebrity effect on SMPs to raise more money and repu-

tation [220], against which younger fans of celebrities are especially vulnerable.

Online dating systems are another type of platform where catfishing happens

frequently [37]. xvii Unlike the target groups on social media, most catfishing attacks

on online dating systems target females. False profiles with attractive photographs

can rapidly create a welcome “person”, causing victims to be seriously affected, e.g.,

money loss.

On the other hand, some studies use AI agents to alarm users of the danger of

being “catfished”. For example, [158] claims to have created software that detects

over 90% of online fake profiles, and reveals that the bias of attackers in favor of

lying about gender to be 25% and lying about about age to be 38%, when making

decisions of whom their next online targets are. This kind of scam takes advantage of

users’ trust and then collects sensitive information or gifts through communications.

Other studies regard catfishing as a “cyberbullying”-aimed activity, which im-

plies the higher probability of exposure to the mental health problems [146, 119].

Since the technical, financial, and organised requirement of catfishing is not high,

most catfishing scams could be operated by individuals, as opposed to groups [219].

The study of [71] confirms that only 16% to 32% of participants would always be

honest when filling forms for online profiles.

Catfishing detection tools have also been developed. To avoid catfishing, espe-

cially if the other party communicates vague or suspicious information, the authors

xvii[113] also regards this type of attack as one of the ways to achieve the autonomy of artificial
intelligence-mediated communication. However, I believe this argument needs to be considered
with caution.
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of [276] optimise an algorithm (IDDM) for online catfishing detection, and updates

the authenticity measurement for setting up accounts. A user friendly alternative

to this type of tool for algorithm optimisation is the Google Reverse Image Search

that can help users determine whether the other party’s photograph refers another

real person [162].

2.2.6 Ekman’s Artificial Legacy

The over-reliance on non-verbal behaviour of psychological theories of deception has

also been adopted by AI researchers in the development of software that detects

deception in humans. This type of software mainly uses Machine Learning (ML)

techniques for psychological profiling. Such systems are used in the real world,

mostly in border-control, where they are used to calculate the probability of deceit

in interviews by analysing non-verbal micro-gestures (microexpressions). Two of

these systems have even been funded by the US’s DoD and by the EU.

One of these systems is called Silent Talker [225, 226], that is also used for

iBorderControl’s Automated Deception Detection System. The other one is a more

advanced model, called Automated Virtual Agent for Truth Assessment in Real

Time (AVATAR), which is based on a previous idea of its author, Jay Nunamaker,

together with Judee Burgoon (one of IDT’s co-authors), and presented in [193].

AVATAR is a more advanced system since it is based on the idea of agent-to-agent

interaction and assumes that the virtual interviewer’s demeanor might elicit relevant

non-behavioural cues form the interviewee. However, AVATAR’s deception detection

system still is over-reliant on the passive analysis of non-behavioural cues, as the

virtual agent cannot adapt to social interactions, but merely generates interview

questions following a pre-defined interview script. This makes AVATAR susceptible

to the same faults as the data-oriented ML models of deception detection I have

described before.
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2.2.7 Summary

Given the high popularity of online deception as a research topic, several companies

even launched competitions to challenge deception detection. Some of the high-

est scores for detection are: automated crowdturfing feature detection 96.9% for

DeepFakes and 96.3% for FaceSwap detection [229], and 84% for TOmCAT[133].

However, most studies are conducted under particular scenarios and may be not

applicable to more general scenarios [270]. Meanwhile, they are also affected by the

judgement of humans [47] on whether the content on platforms is false. Moreover,

most spoofing based on neural network AI is a black box, which makes it difficult

to obtain internal principles and find corresponding solutions.

Another counter-argument for data-oriented models is the over-reliance on mod-

elling cue-based approaches to deception. This makes these models highly suscep-

tible to cognitive and statistical bias. Such approaches can easily fail to distinguish

between behaviours that are cues for perceived deception and ones that truly indi-

cate deception. Even more problematic is the fact that the behaviour of deceivers

compared to non-deceivers is highly similar (at least for human deception). This

applies to models that aim to detect both online deception and human deception,

such as AVATAR and Silent Talker.

Finally, and most importantly, what happens inside the mind of agents, hu-

man or artificial, when they attempt deception is completely ignored by data-driven

models [237]. Data-oriented models or frameworks in AI have proved to be suitable

for describing observable deceptive behaviour, especially when humans are exhibit-

ing this type of behaviour. However, they fail to grasp important components of

deception, especially the components responsible for the intentions, reasoning and

decision-making of deceptive agents in different contexts. Therefore, if we want to

use AI techniques to increase our understanding of deception, then we should stay

away from data-oriented models.
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Let us take the following example to illustrate this issue of their unsuitability:

Alice receives an e-mail from Bob. Bob’s e-mail contains a list of best practices

for preventing infection by a certain virus, e.g., COVID-19, Bob claims in the same

e-mail that this list had been forwarded to him by Carl who, Bob also claims in the

same e-mail, is a medic. The list, turns out to be misleading and not entirely accu-

rate, e.g., some of the practices enumerated can either have no impact in preventing

COVID-19 or could even cause other negative symptoms. Natural questions about

this list would be Who created the list? or What created the list? Was the list gen-

erated manually or using an AI tool?, How do we prove who or what is the creator

of the list?, What were the reasons behind the creation of the list? Why the specific

topic? Who was the target of the list? Has the target of the list been reached? Has

the message achieved its intended deceptive outcome? Why has been the list been

shared with Alice and Bob, why not someone else? Is Carl real, or is Bob lying and

manufacturing Carl’s persona to mislead Alice into thinking that he (Bob) had no

deceptive intentions? etc. Such questions cannot be addressed unless an approach

other than the data driven one is taken to address online deception. This approach

has to go beyond what is currently done with the analysis of observable behaviour

using data-oriented AI tools or by observable behaviour generated by data-oriented

AI tools.

2.3 Deception and Autonomous Systems

The threats I have explored in the previous section have been created through the use

of AI as a tool in the hands of humans. Therefore, to address machine deception,

I must turn towards understanding why and how humans deceive as well as why

and how they use specific AI tools for deception. Most cases of machine deception

involve the human-in-the-loop who decides who to target and how. Humans also

think about what type of information to deliver in order to deceive and how to
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acquire or generate the necessary information. How can we study and understand

the way deceptive agents work, think and act? And if we do understand them, then

how do we detect, prevent or mitigate their deceptive behaviour?

Also, online deception has not even been fully automated yet. What if artificial

autonomous agents developed their own reasons and methods to deceive? A partic-

ular risk is posed by the enhanced potential ability of artificial agents to out-reason

our cognitive capabilities [237]. How would we address this issue? Also, is there a

unified approach to address both human and artificial agent deception?

AI researchers have foreseen some of the threats coming from the possibility of

deception in cyber and virtual societies and have even proposed the idea that MAS

could be used to build more comprehensive theories of deception [45, 237].

Multi-Agent Systems (MAS) research aims to build models that integrate the

social, behavioural and cognitive components of trust and deception. In [45], as well

as in [44], Castelfranchi and Tan argue that apart from the role of trust in virtual

societies, it is also crucial to study the role of deception. The authors emphasise that

this is most important in hybrid human-agent interactions, raising the issue that in

order for agents (human or artificial) to reason about the trustworthiness of their

counterparts in different contexts, a theory of both trust and deception is necessary.

They indicate multiple levels of trust, such as trust in one’s agent and mediating

agents, trust in the MAS environment and infrastructure, trust in potential partner

(collaborator) agents, and, finally, trust in authorities. Castelfranchi’s and Tan’s

perspective, reinforced by the one presented in [80], on trust in cyber-societies,

is becoming more relevant given the increasing number and complexity of hybrid

interactions between humans and artificial agents.

In this section I will describe some of both seminal and state-of-the-art research

regarding deceptive AI, breaking it down into six different areas which study differ-

ent components of agent deception: 1) Deception in Agent Societies; 2) Logical As-
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pects of Agent Deception; 3) Strategies for Agent Deception; 4) Reasoning in Agent

Deception; 5) Engineering of Deceptive Agents; 6) Embodied Deceptive Agents.

2.3.1 Deception in Agent Societies

Research that falls in this area aims to motivate the AI community to build a

theory of trust and deception in virtual societies. The main body of research mainly

focuses on human-computer interaction in MAS and tries to answer questions that

arise from interactions between human and artificial agents, such as Will artificial

agents deceive?, Why would they deceive?, Why is it important for agents to be able

to reason about deception?, Why should we model deceptive agents? What are the

types of deception in virtual communities? What is the role of deception in agent-

agent interaction?

Recent findings back up this perspective by showing how humans and artificial

agents influence each other’s attitudes and behaviour. For example, the authors in

[174] focus on how the negotiation strategies of artificial agents determine humans to

endorse artificial deception. Apparently and counter-intuitively, humans also tend to

be more cooperative with deceptive machines than with friendly ones, according to

[131]. Another type of study, presented in [70], looks at the ways in which deceptive

language can be generated and detected in virtual systems. In [193] the Embodied

Conversational Agent-Based Kiosk for Automated Interviewing (ECA) uses virtual

interviewer agent avatars to evoke non-behavioural responses in the interviewees

based on the avatar’s demeanor in order to detect deception.

2.3.2 Logical Aspects of Agent Deception

This area aims to define a logical taxonomy of deceptive behaviour, as well as to

represent and model deception using logical formalisations. Some relevant questions

are: What is the the difference between lying and deceiving?, How do we represent
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forms of deception such as bullshit, pandering, paltering etc.?

Works in the areas of Logic and Philosophy have strongly influenced the current

state of the art approaches in deceptive AI. Most known are the works in knowledge

representation, which have laid the foundations of how to formalise deceptive com-

munication. These appear in [234], in [232], and in [235], where the authors present

the logical distinctions between different types of dishonest linguistic behaviour; in

[277], where the author introduces a dynamic logic of lying that considers lies about

factual propositions as well as lies about the beliefs of others; in [273] where the au-

thor uses the medieval concept of dubitatio to study deceptive agents; and in [132],

where the author proposes a formal model of self-deception that is consistent given

certain epistemic conditions imposed on the agent that engages in self-deception.

2.3.3 Strategies for Agent Deception

This area studies deceptive strategies in MAS. This area is strongly influenced by

Economics and Cybersecurity, from which methods such as risk and threat mod-

elling have been adopted and adapted to address specific scenarios. Some relevant

questions are: What are the deceptive strategies and counter-strategies in different

contexts?, How to reduce and mitigate deceptive attacks?, How do we design a system

that either reduces or incentivises agent deception? etc.

Some of the work in this area explores issues such as using heuristics to cause tar-

get agents to execute a plan that will achieve the deceiver’s desired goal [50]; finding

deceptive strategies using path-planning [163]; using a MAS system on a Bayesian

network test-bed to distinguish between truthful and deceptive agents based on the

correlation of the agents’ beliefs [236]; modelling agent based deceptive interactions

on social networks [16]; modelling deceptive interactions to counter reconnaissance-

based cyber-attacks [246]; studying the effects of deception in repeated games be-

tween learning agents [189]; applying IDT in multi-agent reinforcement learning
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to reduce the effects of social engineering attacks [300]; formalising cyber-deception

games between multiple agents using hyper-game theory methods [82]. Additionally,

given the increasing interest in explainability for AI, the authors discuss in [298] how

agents can strategically provide users with deceptive and rebellious explanations.

2.3.4 Reasoning in Agent Deception

This area looks at formal and informal reasoning mechanisms responsible for decep-

tion, and is strongly influenced by Informal Logic and Argumentation as well as by

subareas of Cognitive Science. Some relevant questions are: What are the cognitive

components involved in deceptive reasoning?, What types of reasoning mechanisms

are involved in deceptive interactions?, What type of cognitive architectures can be

used to represent deceptive reasoning?, What type of knowledge is necessary or not

for an agent to deceive? etc.

Work in this area of deceptive AI has explored issues such as using and detect-

ing deception in argument debate games [231] that are formalised using abstract

argumentation [72]; using abductive reasoning for deception [230]; using argument

mining for detecting deceptive reviews online [55]; looking into what type of argu-

ments can be used by a machine to deceive [54]; using the STRIPS approach to

planning to flout Grice’s Maxims [84]; modelling agents that use mindreading for

deception [129].

2.3.5 Embodied Deceptive Agents

This area studies the performance of deceptive robot agents in the physical world.

Some relevant questions are: How can robots deceive humans?, What strategies can

a robot employ for deception or deception detection?, What kind of robots are more

deceptive? etc. This area is becoming increasingly relevant given the advancement

of Internet-of-Things and the interconnectedness of physical agents, such as self-
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driving cars and robot assistants.

Research in this area looks at issues such as: how deception about agency influ-

ences the way children treat robots on a social level and when is it acceptable to

deceive children about the nature of the robots they interact with [293]; how robots

can decide to perform physical actions such that they manipulate the beliefs of hu-

mans who observe them [105]; how to provide robots with the capacity to deceive

[289]; using biologically inspired behaviour for robot deception [251], such as squirrel

behaviour. In [252], the authors even provide a taxonomy of robot deception and

present what are the benefits of deception for human-robot interaction.

2.3.6 Ethics of Machine Deception

This area looks into the morality of deceptive behaviour. Relevant questions are:

Is machine deception ethical?, Should machines be allowed to deceive?, How should

machines deceive in order to be ethical?, If machines are allowed to deceive, then

when should they be allowed to deceive?

In this line of work, it has been discussed in [136] that some apps are designed

to cognitively exploit users using coercion and deception and that a MAS approach

is needed to study the ethics of such technologies in hybrid societies. Another topic

is ethical deception, that is discussed in, [258], [130] and [46]. While the authors

in [258] develop a model of contradiction to focus on deception in dialogues, the

authors in [130] focus on the necessity of a Theory-of-Mind for reasoning about

ulterior motives and argue that this type of meta-reasoning is crucial for a machines

to be able to distinguish between ethical and unethical deception. Finally, the

authors in [46] indicate that humans considered machine deception admissible for

the greater good under certain conditions in the context of teamwork.
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2.3.7 Related Approaches

If this thesis were to be categorised in this section, then I would have to define

the category of Engineering Deceptive Agents. This area would look into the de-

sign, modelling, and engineering methods that can be used to create deceptive or

deception-detective autonomous agents. The main difference between the area of

engineering of deceptive agents and the areas covering strategies and reasoning of

agents is that the engineering approach aims to integrate these agents into more

complex systems. This area would not just look at how agents reason about decep-

tion, but what causes them to achieve deception or not in a given system. Some

relevant questions are: What are the best approaches to model deceptive agents or

deceptive interactions without sacrificing expressivity?, How should these models or

systems be designed and implemented?, How do we evaluate these systems?, What

can we use these systems for?, and How do we integrate different components of

deceptive interactions in order to engineer complex reasoning agents? etc.

The works on machine deception closest to the approach in this thesis are [54],

[143], [128], [129], and [217]. In [54], the author defines a theoretical machine that

uses Theory-of-Mind (ToM) to formulate illusory sophistic arguments. The machine

is represented by an argument scheme. The lying machine feeds information to

an audience by exploiting known reasoning fallacies which individuals engage in.

The philosophical approach of developing the lying machine has been successfully

evaluated using psychological studies of users. In contrast, the approach in this

thesis consists in the design, implementation and evaluation of a MAS that is based

on solid theories of deceptive communication. Therefore, the approach in this thesis

is conceptually and methodologically different from [54] and also aims to offer a

method to analyse deceptive machines, independently of user studies.

Similarly to [54], the author in [143] builds a cognitive model of deception which

is based on human-computer interaction. The model in [143] specifies how the com-
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puter agent’s strategies of deception should be improved by the agent’s programmer

after being defeated by a human in a battleships game. The limitation of this model

is that it is just a protocol which is followed by the human programmer in the

development of the strategies that the automated agent uses.

In [129], the authors develop a framework called FIDE, Framework for Identifying

Deceptive Entities. FIDE is used for mental state attribution during dialogues in

which deception might be the case. The authors also emphasize the importance of

ulterior motive, in contrast to works that focus on the intent to deceive. While this

thesis also focuses on ulterior goals and deceptive intent, it aims to focus on how

to engineer deceptive interactions between agents in MAS instead of designing a

framework that a single agent might use to for mindreading deception in dialogues.

Given that deception is a form of belief manipulation, I mention [128], where the

authors describe and implement a model of belief manipulation using propositional

public announcements. Their mechanism is similar to the one in this thesis in the

sense that it finds a public announcement φ that together with a knowledge base

K of an agent Ai will make the agent believe a goal ψi while being consistent

with K. However, this model mainly focuses on unidirectionally finding a public

announcement for multiple agents and is not able to represent nested beliefs. In

contrast, this thesis focuses on the interactions between two agents where one agent

is the target of the other’s attempt at belief manipulation. In these interactions I

model not only (i) nested beliefs, but as a result of ToM modelling, (ii) agents that

perform nested reasoning and simulate the other agent’s nested beliefs in order to

find an announcement that will make the other agent infer a desired belief (iii) while

taking into account the likelihood of the announcement’s success at manipulation.

With respect to the the storytelling ideas in Chapter 8, the closest and most

compatible approach would be the one in that is very briefly described in [217],

where the authors present a model of an agent architecture that could be used by
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agents to engage in deceptive storytelling during dialogues. The agent in [217] uses a

knowledge query engine to alter the original history of its actions that it keeps in its

knowledge base. The main distinctions between this thesis’s approach and the one

in [217] is that in the one in [217] a) stories are represented as chains of events based

on episodic memory theory, and they are not represented by hybrid arguments; b)

the ToM module/layer is not used in mental simulation, but as a passive check of

the consistency of the lies told using prior beliefs; c) deception is strictly represented

through the alteration of the story; d) intentions and goals are not represented in

the ToM layer; e) it is not based on any theory of deceptive communication; and f)

it is a very brief description of an single virtual-agent architecture, and not a MAS

approach.

2.3.8 Summary

In this section I have broken down in seven sub-areas the seminal and state-of-the-art

research on deception in MAS and described the angles from which these sub-areas

look at deception. The crucial aspect of the literature covered in this section is that

it treats deception as being performed or communicated by an agent inside a system.

This means exploring the internal mechanics of an agent’s architecture (cognitive or

physical), the logical properties of the communication, the high-level effects of the

information in a system of multiple agents, and the behaviour (ethics) of the agent.

Some of the works corresponding to these areas are also the ones that are closest to

the approach to deception in this thesis.

2.4 Mechanisms for Complex Reasoning in Multi-

Agent Systems

In this section I describe the mechanisms from the literature that I use further on in

the thesis. These mechanisms are necessary for engineering deceptive interactions
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between agents that are able to reason about each other’s mental attitudes, as well

as for enabling them to communicate meaningfully.

2.4.1 Belief-Desire-Intention Agent Architectures

Belief-desire-intention (henceforth BDI) models of pragmatic reasoning are used in

MAS for building agent architectures [215, 216]. The creation of BDI models was

inspired by Bratman’s approach to practical reasoning [35]. BDI agents are able to

reason with and about their three mental attitudes. Bratman defines beliefs and

desires as pro-attitudes, which are attitudes concerned with action, and intentions

also as pro-attitudes, but which are also conduct-controlling. How does, then, an

artificial agent then use these mental attitudes for practical reasoning? Let us look

at a generic BDI architecture to see what role do these mental attitudes play.

BDI agent architecture [95]:

1. Beliefs represent an agent’s knowledge of the world, or its knowledge of the

state of the world. Beliefs are usually stored in an agent’s belief base. A belief

base is similar to a system’s database, however, in MAS terms, this database

contains exclusively a single agent’s beliefs about the world.

2. Desires represent an agent’s motives. They are also known as Goals, however

the term “goal” does not capture the entire meaning and use of what Desires

can represent in the context of BDI and MAS. Compared to goals, desires do

not need to be consistent with each other. An agent actively pursues a desire.

3. Intentions represent a deliberative attitude of the agent, an attitude that an

agent has committed to act upon. Thus, an Intention represents something an

agent has decided to do, eg. something the agent decided to act on. In terms of

AI Planning, they are the goals that an agent desires to achieve by executing

a plan, however, given that we are discussing BDI architectures, these plans
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can change in real time based on what the agent decides to do, e.g., what

new intentions the agent has in light of new beliefs. This use of plans in BDI

architectures is called reactive planning.

4. Events represent the internal or external triggers which update beliefs, trig-

ger plans or update goals inside an agent’s mind. They are also known as

Percepts when triggered by an agent’s sensory system which is coupled to an

environment.

The notion of a BDI agent architecture has led to the further development of

the Procedural Reasoning System (PRS) framework. PRS has been used in the

development of reasoning systems for rational agents. In this case, a rational agent

is an agent that uses specific knowledge defined in the reasoning system’s knowledge

area component to execute actions. As long as the agent follows the procedures

specified in the PRS, it is rational because it uses its beliefs about the states of the

world along with its knowledge about how to proceed given these beliefs in order to

select the best procedures (the intentions) such that it achieves its desire or goal.

One of the initial criticisms of BDI in MAS architectures is that they do not

follow distributed AI principles. That is, agents with BDI architectures are mainly

used for epistemic plan execution or deliberation and cannot perform distributed

reasoning xviii By distributed reasoning we understand a reasoning process which is

executed sequentially or in parallel between two or more agents, where one agent only

executes part of this process. To address this issue, among other methods, several

agent communication languages along with BDI-based agent oriented programming

languages have been proposed.

xviiiInterestingly, Minsky was arguing at that time that the even entities that we consider single
or unitary agents are, in fact, composed of multiple agents and work in a distributed fashion [178].
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2.4.2 Agent Communication Languages (ACLs)

Agent Communication Languages (ACLs) have been developed so that artificial

agents are able to synchronise and exchange messages, and therefore knowledge,

using a shared language. The best known ACLs for MAS are the Knowledge Query

Manipulation Language (KQML) by DARPA, and the Foundation for Intelligent

Physical Agents’ Communication Language (FIPA) by IEEE FIPA. Both FIPA xix

and KQML xx are based on Searle’s speech act theory [249]. Both languages mainly

deal with software agents, the word “physical” in FIPA being incorrectly (or per-

haps deceptively?) assigned. The principle behind speech-act theory ACLs is the

conceptualisation of speech behaviour as a physical act that influences the environ-

ment and by extension other agents. Thus, when the agents that communicate in

these languages perform speech acts, they cause changes in the environment. I con-

sider this to be a very powerful concept, as it enables us to assign both causal and

social attribution to speech acts in MAS where the only type of agent behaviour is

communication.

KQML, for instance, breaks down a message, or a speech act, into three levels:

1) communication level, that specifies who is messaging whom, namely who is the

sender of the message and who is the receiver of the message; 2) message level,

which specifies what type of message an agent intends to communicate and how this

message is represented in the language as well as the ontology of the message, e.g.,

answer, question etc.; and 3) content level, that specifies the content of a message.

One of the initial criticisms directed towards KQML was the fact that it did not

have precise semantics. KQML was designed that way.

However, that is where the strength of the FIPA ACL lies, mainly due to the

fact that is was developed after KQML. FIPA has precise semantics that have been

xixhttp://www.fipa.org/
xxhttps://www.csee.umbc.edu/csee/research/kqml/
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defined in a formal language and that include an agent’s beliefs, uncertain beliefs,

goals, persistent goals (intentions), and desires, which are specified as modal opera-

tors. The speech acts are named in FIPA Communicative Acts [86] and the semantics

of each of these acts include two components: 1) the act’s feasibility conditions, that

represent the necessary conditions for a sender agent to be able to perform the act;

and 2) the act’s rational effect, that represents the effects that the agent expects to

take place in the MAS where it has performed a communicative act.

FIPA also has its downsides. A crucial downside was pointed out by Wooldridge

in [297], where he argues that the semantics of languages like FIPA are unverifi-

able. The beliefs, desires, and intentions of agents are completely dependent on the

internal mental states of the agents. Therefore, one is unable to tell if an agent

is dishonest or not in its use of locutions. A more extensive account of FIPA’s

downsides can be found in McBurney’s PhD thesis [171].

ACLs and similar languages, have been designed to be used in a wide variety of

MAS applications. This property of flexibility and applicability can be considered a

strength, as well as a weakness. For instance, the agents that engage in communi-

cation can be faced with a great number of things to say at each turn. This means

that agent interactions may trigger a state-space explosion of continuous interac-

tions between them, without achieving any desired goal. In other words, the agents

risk to waffle infinitely without reaching a conclusion.

2.4.3 Agent Oriented Programming Languages (AOPLs)

In the previous subsections we have looked at BDI agents and ACLs. Let us re-

call that BDI architectures, alone, fail to account for distributed reasoning, and

that ACLs could address this failure of BDI by enabling speech-act based com-

munication between multiple agents. To see how such distributed BDI agents can

be implemented, we now turn towards the concept of Agent Oriented Program-
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ming Languages (AOPLs). AOPLs enable us to develop and program intelligent

agents [274]. AOPLs provide the necessary components for the implementation of

autonomous agents, and we can look at AOPLs as implementations of ACLs. When

Shoham introduced the Agent Oriented Programming (AOP) framework, as opposed

to object-oriented programming, he argued that AOPLs need to fulfill three main re-

quirements in order to completely satisfy the implementation aspect of autonomous

agents [253]. The requirements are the following:

1. A formal language that has a clear syntax for describing the agent’s mental

state. This formal language should include constructs for declaring beliefs and

their structure (e.g., based on predicate calculus) and constructs for declaring

message passing from one agent to another as well as an agent’s response

methods. That is, the formal language needs clear semantics.

2. A programming language that allows the programmer to define agents.

The semantics of the programming language should be based on the semantics

of the formal language.

3. A method for converting neutral programs into agents such that the agent is

able to communicate with a non-agent entity by attributing intentions. The

method needs to be honest and consistent.

Today, we have quite a few of these AOPLs, namely AgentSpeak [214], Jason [33],

Jadex [206], Jack [296], AgentFactory [228], 2APL [60], 3APL [126], GOAL [125],

Golog [151], and MetateM [186]. Most of these AOPLs have been developed for

BDI agents. However, agents that are specified in these AOPLs and engage in BDI

reasoning cannot engage in nested reasoning as is the case in some BDI modal logics.

Agents implemented in these AOPLs reason about beliefs, desires, and intentions

by referring to their specific knowledge bases of their architecture, but they cannot
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infer new beliefs about their beliefs. BDI modal logics where nested reasoning is

present have only been applied to study the specification and verification of AOPLs

[176].

2.4.4 Argumentation Dialogue Games (ADGs)

In order to address the issue of state-space explosion in ACls, or what we pre-

viously called “waffling” between agents, AI research started looking into formal

dialogue games. Dialogue games are rule-governed interactions between commu-

nicative agents. The agents perform “moves” in the games using speech-acts, or

utterances. Most of the research on this topic has been based on the taxonomy of

dialogues by Walton and Krabbe [290].

Types of Dialogues:

• Information Seeking Dialogues represent dialogues where one agent seeks

the answer or answers to a a given question from another agent that is believed

to know the answer or answers to the given question.

• Inquiry Dialogues represent dialogues where participating agents aim to

collaboratively answer a question or a set of questions to which none of the

participants knows the answers to.

• Persuasion Dialogues represent dialogues where a single participating agent

(persuader) aims to persuade another agent (persuadee) to accept or believe

a proposition that the persuadee does not currently endorse/accept/believe.

• Negotiation Dialogues represent dialogues where agents bargain over some

resource, that is usually a scarce resource. In these dialogues, the goal of the

dialogue can be in conflict with one or more of the participating agents’ indi-

vidual goals or preferencesxxi. For example, a policy for sharing the resource

xxiWalton and Krabbe talk about goals of dialogues, but because dialogues are not entities with
agency, dialogues cannot have goals.
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might be acceptable for all agents, but might not maximise or satisfy some

individual preference or utility of the agents involved.

• Deliberation Dialogues represent dialogues where the involved agents col-

laborate towards a decision. This decision could be what action or course of

action (plan) should be taken in a given situation or context. In this type of

dialogue, the participating agents

• Eristic Dialogues represent dialogues where the participants engage in a ver-

bal argument as a substitute for a physical fight between them. The aim of this

dialogue is for participating agents to vent their feelings. It has previously been

argued that eristic dialogues are generally not governed by rules. Because of

this and because of the long-standing view that emotion-based arguments are

fallacious, it has become unusual to discuss eristic dialogues within the area of

formal argumentation. However, according to Walton [291], emotion-based ar-

guments have more subtle rules which are context dependent. Also, according

to an empirical evaluation presented in [19], emotion-based arguments follow

specific trends or patterns that can be analysed in debates.

There are different forms of ADGs that have been proposed for for the representa-

tion of complex and meaningful combinations of dialogue types between autonomous

agents. In reality, agents engage in hybrid dialogues, where the goals of the agents

and the goals of the dialogues are dynamic. These goals change in light of new

information/arguments or change of the state of the world. McBurney and Parsons

specify five components that dialogue games have [168].

Components of dialogue games:

• Commencement Rules define under which circumstances a dialogue starts.

• Locutions represent the rules that specify what the participant agents are
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allowed to utter. Locutions can also specify to what degree an agent commits

to a proposition, e.g., merely proposing it, or making a stronger commitment

by asserting it.

• Combination Rules represent the rules that define the dialogical contexts

under which particular locutions are permitted or not, are obligatory or not.

For example, an agent may not be allowed to assert a given proposition and

the same proposition’s negation without having retracted the proposition be-

forehand.

• Commitments represent the rules that specify the circumstances under which

agents express commitment. The expressed commitments are then put inside

a commitment store, which is public, so that all agents involved know what

the other agents have committed to during dialogues. Agents can also, under

certain circumstances retract their commitments publicly, thus these stores

are usually considered non-monotonic.

• Termination Rules define the circumstances under which the dialogue comes

to an end.

ADGs have also been used in conjuction with AOPLs to engineer communicative

agent interactions that are goal oriented and structured. Potential applications

of ADGs in MAS range from automated negotiating agents, to Smart Contracts,

socially-aware agents, to smart assistants and self-driving cars. McBurney argues

that protocols based on ADGs offer autonomous agents, that represent interaction

mechanisms for formalized argument between humans, and that were first studied

by Aristotle, have the greatest potential for enabling rational interaction between

autonomous software agents [171].

In conclusion, ADGs can be used to express not only the behaviour of agents

that interact, but also the complex reasoning that participating agents employ when
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they engage in communication. ADGs help us structure the practical reasoning of

cognitive agents such that their interactions follow some general rules.

2.4.5 Storytelling, Narration, and Argumentation

A fascinating topic in the area of AI is the ability of artificial agents to tell stories.

One of the pioneers of “Narrative Intelligence” (NI) is Roger Schank, who has pro-

posed the idea that the most significant way in which we can tell if an agent, human

or machine, truly understands something, is by assessing that agent’s capability of

telling us a story of what it has understood [244]. With his research group at Yale

University, Schank has studied issues such as meanings of sentences and how these

meanings are context-dependent. This has led to the development of a theory of

how we need to structure knowledge such that we are able to understand textual

narratives [164]. The field of Case-based Reasoning (CBR) in AI has started from

Schank’s work on the knowledge representation of stories. These methods have been

later applied to formal approaches in AI for legal reasoning.

The work of Floris Bex has gained considerable traction in the area of narrative

intelligence because of the way in which it formalises argumentation frameworks for

storytelling in legal reasoning. Bex has introduced a hybrid theory of argumentation

and explanation in his PhD thesis [21], and has later described it more extensively

in [22]. The hybrid formal theory considers that both arguments and narratives are

relevant and useful for reasoning with evidence and also for interpreting evidence.

The theory has been proposed to aid in the development of software and tools that

help analysts make sense of evidence in complex cases. Thus, the three approaches

to storytelling AI can be summerised as follows:

• The Argumentative Approach, that has been traditionally used through-

out academic research on informal and formal argumentation, adheres to the

notion that logical rules are best suited to reason about evidence. And rightly
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so, this argumentative approach has proved to be very well suited for a thor-

ough analysis of the individual pieces of evidence and the direct inferences

that can be drawn from them. However, it fails to give an overview of legal

cases if arguments prove to be too atomistic in nature. Therefore, the causal

and counterfactual exploration of different hypothetical scenarios is strongly

affected in a negative manner.

• The Narrative Approach, on the other hand, aims to provide a more natural

way to reason about causal reasoning, especially for crime scenarios. The nar-

rative approach reflects the famous Inference to the Best Explanation (IBE).

An example of a narrative approach is Heuer’s ACH [123], which is used in

intelligence analysis for deception detection. The downside of this approach

is that individual pieces of evidence cannot be placed clearly in different sce-

narios, thus it makes it very difficult to asses the credibility and relevance of

facts. Another downside is that it makes it uncertain and unclear how one

should reason about a story’s coherence and how one should compare a story

with alternative stories in order to perform IBE.

• The Hybrid Approach combines arguments and stories to deal with reason-

ing in complex cases. In the hybrid theory of argumentation and explanation,

stories enable the causal explanation of the explananda xxii, while arguments

that are based on evidence provide either support or attacks for these sto-

ries and for each other. Thus, two important concepts in hybrid theory are

generalisation and anchoring. A main story represents a generalisation or a

summary of a set of given stories, which is subsequently anchored in solid

evidence by sub-stories. Sub-stories represent detailed descriptions of events

xxiiAccording to the Oxford Dictionary of Sociology, explananda pl.:“That which needs to be
explained (explanandum) and that which contains the explanation (explanans)—either as a cause,
antecedent event, or necessary condition”. [248]
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that have been summarised in the main story. By comparing all the plausible

stories that can fit the available evidence, one can use argumentation tech-

niques to perform IBE in order to infer the story that best fits all the available

evidence, e.g., to find the best explanans for the explanandum.

More recently, Bex and Walton proposed the idea of combining explanation

(storytelling) and argumentation in dialogues [25]. The reason behind this idea

is that clear distinctions need to be made between explanations and arguments.

For example, the speech act representing the question “Why?” can have different

implicatures for an agent. One implicature is that the question requires the agent

to provide a reason to support a claim, which would be a request for an argument.

Another implicature would be that the question requires the agent to provide an

explanation of some observed phenomenon.

To address this problem, Bex and Walton propose in [25] a dialogue system based

on ADGs. This dialogue system consists of a (i) communication language for the

possible speech acts an agent can perform in a dialogue, (ii) a protocol for the allowed

moves (the speech acts) during the dialogue, and (iii) a set of commitment rules

that specify what are the effects of a speech act on the propositional commitment

an agent makes during the dialogue. This system can, therefore, represent a process

that consists of a combination of two main types of dialogue. The first type is an

explanatory dialogue, in which the explainer agent is trying to increase the explainee

agent’s understanding of a topic. The second type is an examination dialogue, in

which the explainee tries to assess the truthfulness of the explainer agent by probing

or counter-arguing the explainer’s explanations.

In conclusion, the area of NI, along with the ones of argumentation and dialogue

games in AI have influenced the emergence of exciting research topics. A particular

contribution is the exploration of formal reasoning methods that enable capability of

autonomous agents, human or artificial to employ complex common-sense reasoning
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using stories and arguments. This contribution has proved to be particular useful for

legal reasoning and intelligence analysis, as well as for proposing further research in

how artificial agents might use storytelling and argumentation for practical reasoning

in MAS to persuade, negotiate or interact in a communicative manner in various

contexts.

2.4.6 Summary

In this section I have described some mechanisms for complex reasoning that I

later use in this thesis, starting from Chapter 4 and up to 6 inclusively, to build

architectures of deceptive artificial agents. In terms of this thesis’s topic, namely

machine deception, I believe that the integration of these mechanisms to study

different components of deception can offer a novel and meaningful perspective on

communicative interactions between artificial agents.

2.5 A New Discipline: Machine Behaviour

In this section I discuss the discipline of Machine Behaviour (MB), that has been

proposed by Iyad Rahwan et al. to address the problem of how we, as humans,

affect and become affected by AI on a socio-behavioural level [213]. Autonomous

agents are increasingly consolidating their role in our society by mediating our social,

cultural, economic and political interactions.

MB, as a paradigm, aims to shift some of the burden of designing artificial

agents from computer scientists to actors that come from the social sciences and

humanities. The argument proposed by this paradigm is that the thinking tools used

by computer scientists are innapropriate for the study of machines as agents that

act/behave in a society. Even though, computer scientists and software engineers

build the architectures and design the protocols of these autonomous agents, they

are not suited, due to their professional baggage (which comes with professional
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bias), to meaningfully study the impact that their creations have on society on a

larger scale.

Of course, there are computational tools, such as the ones I will proceed to

describe below, that have been previously and successfully used by computer scien-

tists for the purpose of studying machine behaviour. The idea of MB is to enhance

such methods and studies by giving them an overarching framework to which other

academic professionals and experts from different domains can easily contribute to.

2.5.1 Cooperation, Evolution, and Mechanism Design

Let us assume that we want to manage and mitigate some negative behaviour in a

given population. Cooperative Game Theory (CGT) addresses the issues regarding

group formation and coalition of agents. Agents can form coalitions that represent

a decision-making force in a given population. A coalition can be either a group

of more than two agents, factions, states, political parties, militaries that cooperate

(even temporarily) to achieve a common/shared goal.

Mechanism Design (MD) has become one of the go-to approaches in MAS for

studying cooperative behvaiour. MD represents the scientific method of designing

game rules such that desired outcomes of the game are achieved despite the actions of

self-interested participant agents. Similarly to building or engineering the behaviour

and reasoning of complex artificial agents, the MD approach allows us to engineer

the systems, whether these are financial, social, or political, in such a way as to

achieve a desired behavioural outcome.

Evolutionary Game Theory (EGT) is the study of evolution of populations,

mostly biological populations, using game theoretical frameworks. EGT can also

be used to enhance our understanding of cooperation that changes over time. In

this thesis, the term “Evolution” in EGT does not refer to biological contexts, but

to cultural contexts. The cultural meaning of the term represents the change of
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cultural norms and beliefs of agents over time [6].

Components of an EGT model:

• Agent Population that represents a set, usually finite, of agents that com-

pete with each other by adopting different behaviours or strategies.

• Game Rules that specify the payoffs the agents receive in the game for playing

different strategies. The competition usually happens pairwise between agents

in mixed population distributions. The combination of strategies inside a given

population distribution affects the payoffs agents receive. This happens due

to the fact that the combination of strategies alters the odds of an individual

agent meeting other agents with various strategies in a contest.

• Replication Rules that specify how individuals of populations replicate.

However, in the context of artificial societies, replication rules specify how

the fittest norms or beliefs or strategies, where fitness is determined by the

game rules, are being adopted by other agents of the population. This, in turn,

generates a new population of agents with a different distribution of strategies.

Moreover, let us also assume that we want to design a system that is able to

maximise the chance of coalitions that endorse cooperative behaviour over time.

Evolutionary Mechanism Design (EMD) is an approach that helps one to define an

evolutionary model that algorithmically selects a desired mechanism. In Chapter

7 of this thesis I use the concept of EMD and apply it to CGT in order to see

how different coalitions of agents form and change over time in finite populations of

agents.

2.5.2 Public Goods Games and Evolution

An extended version of the widely known Prisoner’s Dilemma (PD) that is played

between two players and represents a pairwise interaction is the Public Goods Game
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(PGGs). A PGG is usually played by more than two players and, thus, represents

a group interaction in which a public good is shared between participants [9].

PGGs are of two types, voluntary and non-voluntary. The difference between

voluntary and non-voluntary PGGs is that in voluntary ones, there exist the so

called loners (a.k.a. non-participants). Loners do not contribute to the PGG, but

they receive a minimal payoff compared to the other available strategies. Different

types of additional mechanisms can be added to PGGs to either promote or demote

cooperation.

Components of a PGG:

• Strategies There are two main meta-strategies in PGGs, namely cooperation

and free-riding. However, other sub-strategies such as defection, corruption,

peer-punishment, pool-punishment, antisocial punishment etc. have been de-

fined for PGGs. The loners strategy can only be present in voluntary PGGs,

as the introduction of this strategy means that a PGG is voluntary, e.g., an

agent can decide whether to participate or not in a PGG.

• Endowment That represents an amount of “tokens” that each player has.

• Contribution That represents the amount subtracted from the endowment

that a player contributes to a PGG.

• Multiplication Factor That represents a fixed amount with which the con-

tribution is multiplied by. This represents an incentive for participating in the

PGG.

• Payoffs of the PGG players which correspond to the strategies which players

can adopt in the PGG.

PGGs have been applied to experiments in economics to demonstrate how agents

become more likely to punish other agents that do not contribute to the PGG. What
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interests us is are not PGGs that model market behaviour, but PGGs that model

social behaviour. Previous studies that have applied PGGs to study emergent social

behaviour of agent societies show that different types of governing institutions can

either promote either cooperation or free-riding. Thus, PGGs have become a popular

approach to study social dilemmas, such as Hardin’s The Tragedy of The Commons

[115].

In these types of studies, the replicator dynamics of evolutionary games is rep-

resented by social learning, which is also known as “imitation”. According to Social

Learning Theory [14], social learning is a cognitive process that is responsible for

newly learnt behaviors that can be acquired by observing and imitating others.

Social learning takes place in a social context and can occur purely through ob-

servation or direct instruction, without the need for motor reproduction or direct

reinforcement.

The agents inside a population update their strategy through two different up-

date mechanisms of social learning in evolutionary dynamics [191]. At each time

step two random agents are selected and their payoffs are compared. The probabil-

ity of one agent imitating (learning socially from) the other agent is determined by

a logistic function of the difference in payoffs and in imitation strengths. There is

also a small probability, called the mutation rate, that a randomly chosen agent will

undergo a mutation to a different strategy.

Social learning mechanisms:

• Weak Imitation corresponds to a stochastic system where social learning is

mostly random, but the strategies of more successful agents will be adopted

more often. In such systems the imitation strength is a value that makes an

agent more or less likely to adopt a strategy with a higher payoff. Very low

values for imitation strength usually cause agents to be unable to discriminate

between strategies, thus the likelihood of adoption is roughly the same for all
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possible strategies.

• Strong Imitation is when a strategy with a higher payoff will always be

imitated (socially learned) and one with a lower payoff will never be imitated.

Thus, evolutionary models of PGGs can show the socio-cultural dynamics over

time in mixed populations of agents that learn from each other. These models

can be used to inform one how to mitigate or prevent the adoption of undesirable

behaviour. One such study of agents that employ social learning has been per-

formed by Sigmund et al. [254], where the authors have modelled a PGG with to

study sanctioning mechanisms comparing strategies that employ pool-punishment

and peer-punishment. Agents can “hire” a centralised authority by paying a certain

cost in order for this authority to punish free-riders. This centralised authority is

represented in the PGG by a Pool-Punisher strategy, as opposed to a decentralised

authority, namely Peer-Punishers. A regime of pool-punishment consists in the al-

location of resources, prior to the collaborative effort, to prepare sanctions against

free-riders. On the other hand, a regime of peer-punishment consists in the spending

of resources post factum, after the PGG has been played, to sanction free-riders.

In this study [254], the authors have shown that both peer-punishment and pool-

punishment regimes can emerge in PGGs if these PGGs are voluntary. Also, both

punishment mechanisms emerge if players are in systems where agents adopt the

strong imitation in social learning. However, if Peer-Punishers and Pool Punishers

compete, then it all comes down to whether second-order punishment xxiii is im-

plemented or not. If second-order punishment does not exist, then Peer-Punishers

dominate, otherwise Pool-Punishers dominate, but the average payoff of agents is

reduced.

Another study that follows this framework has been done by Abdallah et al. [1],

xxiiiSecond-order punishment means that even cooperative agents are sanctioned if they fail to
punish free-riders. The agents who fail to sanction free-riders are called second-order free-riders.
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where the authors have studied how corruption leads to the adoption of decentralised

sanctioning mechanisms starting from the findings of Sigmund et al. [254]. The

authors explore why centralised and decentralised systems for sanctioning coexist.

Why are decentralised systems are adopted, for instance, in western societies if

centralised systems perform better at dealing with second-order free-riding? They

show that corruption causes the emergence of decentralised and democratic leaning

systems and that peer-punishment emerges in PGGs where agents can pay bribes.

In the same study, the authors show that hybrid punishment, where in addition to

paying a contributing to the PGG, agents that use this strategy pay both a cost to

punish defectors directly and a cost to the punishment pool, and as such they are

not punished by the central authority. The authors mention that agents that use

this type of hybrid strategy “can be thought of as upstanding citizens that pay their

taxes but also engage in forms of ‘legitimate’ peer sanctioning” [1, p. 4].

In conclusion, agent based models of PGGs are useful to study the emergence

under social learning of cooperation, free-riding and sanctioning mechanisms in soci-

eties. Therefore, in this thesis, I continue the legacy of the work done by the authors

in [254] and [1] by focusing on how deception influences social systems and trying

to identify what forms of governing institutions are better at handling deception.

2.5.3 Economics of Information and Knowledge

The studies performed by Sigmund et al. [254] and by Abdallah et al. [1] on cen-

tralised and decentralised institutions have been directed and framed according to

the behaviour of agents in exclusively human societies. However, given the con-

text and topic of this thesis, I will now re-frame the problem of centralised and

decentralised systems in the context of hybrid societies, where the notion of agency

applies to both human and artificial entities such as software agents, and physical

agents such as robots or self-driving cars. This re-framing follows from the idea of
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understanding the role of deception in hybrid societies proposed by Castelfranchi in

[42, 43] and by Falcone in [79, 80]

As societies become increasingly hybrid, not only does the behaviour of different

types of agents have a stronger impact on the behaviour of others, but it is also

becoming more difficult to distinguish between the types of agents. One such exam-

ple is the dissemination of information, where information, or data, or knowledge,

becomes a public good shared by all types of agents at different organisational levels.

As humans-in-the-loop, to reach our goals, we will need to interact not just with

our own kind, but with different artificial entities in order to exchange information

and share knowledge. However, these interactions can be incentivised or disincen-

tivised through the design and combination of different protocols or mechanisms.

The question is then, what mechanisms do we need to implement such that these

interactions will have a positive outcome and what kinds of outcomes do we wish to

avoid? It is reasonable to say that knowledge as a public good plays a major role in

the organisation and behaviour of agent societies, because (i) agents can exchange

it amongst themselves publicly on the Infosphere xxiv [88], e.g., big data, Wikipedia,

social networks, open-source software, the World Wide Web and the Internet of

Things ; (ii) agents can choose to contribute to the public knowledge; (iii) agents

can use public knowledge to reach their individual goals; (iv) agents can exploit the

public knowledge. Number (iv) has been extensively covered by Greco and Floridi

in [106], where the authors argue that an improper development of digital environ-

ments might lead to the Tragedy of The Digital Commons (TDC), which represents

an analogous phenomenon to Hardin’s concept of Tragedy of the Commons.

Greco and Floridi also mention that the concept of TDC can easily be extended to

include AI because artificial agents can also meaningfully interact on the Infosphere.

AI can exploit and “pollute” the infosphere either through (i) exploitation, such

xxivFor example, the cyberspace. However, the Infosphere is not limited to online environments
[87]. Floridi believes that the Infosphere represents Heidegger’s notion of Being [118].
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as extensive generation of information like spam or self-replication of a computer

worms (which also consume bandwith, which restricts access to the Infosphere), or

(ii) through destruction, such as the deletion of information from systems.

In conclusion, I believe that deceptive agents, human or artificial, need to be

given special consideration in this extended TDC. Deception plays a big role in

the dissemination of information and knowledge, and this role, according to Castel-

franchi et al., should be understood in the context of hybrid agent societies as

mentioned in [42, 43], as well as by Falcone et al. in [80, 79]. Deceptive agents can

not only influence how the Infosphere is exploited and destroyed, but also how it is

disseminated and misrepresented. A universal example is the agent dynamics that

is either is caused by, or that leads to, the generation and propagation of Fake News.

Fake News seems to be the ultimate “tragedy” for the digital commons, and unfor-

tunately, so far, we have had a very poor scientific understanding of the complex

phenomenon that is deception, and how it influences the reasoning and behaviour

of its agents in the Infosphere. Therefore, we do not yet know what type of systems,

centralised, or decentralised, or hybrid, should be used for governing the Infosphere

(or parts of it) such that the effects of deception are mitigated. This thesis aims to

increase our understanding of how to work towards finding a solution to this issue.

2.5.4 Summary

How does the engineering of deceptive machines impact society? Would truly au-

tonomous deceptive artificial agents have a negative impact on our society, would

they be detrimental to it etc.?

To answer the questions above we need an approach that merges the engineer-

ing aspects of autonomous agents with the sociological and economical aspects of

humanity. MB, as a discipline, implies the treatment of machines as agents, namely

artificial agents inside complex systems in which knowledge sharing plays a crucial

102



role such as organisations, traffic, financial markets, labour markets, social networks

etc.

Evolutionary Public Goods Games along with Mechanism Design offer a simple,

yet a rigorous and intuitive approach to apply MB. In Chapter 7 of this thesis I

use such an approach given that it allows us to model how societies of individually

motivated agents, artificial or not, work when deception is present. This approach

gives us both an ecological and anthropological xxv perspective on deception in multi-

agent systems. This approach assumes the existence of the deceptive capabilities of

artificial agents and places them inside an overarching context of large-scale social

system, in which two or more agents, with their own individual motives, interact

with each other to share a public good.

2.6 Conclusion

In this chapter I have given an overview of the literature that is relevant to the topic

of this thesis, namely human and machine deception.

First, in §2.1, I have described the relevant research in human deception. We

have seen how the Analysis of Competing Hypothesis (ACH) was designed to help

intelligence analysts reason counterfactually about whether deceptive events have

taken place or not, and also what are the limitations of ACH, and how some of

these limitations have been addressed. Then, we have gone through research on the

psychology of deceptive communication, and we have seen that the so called cue-

based theories and models of deception are severely hindered by their over-reliance on

verbal and non-verbal behaviour. After that, we have enumerated three of the most

comprehensive theories of human deception, two of which are not cue-based, namely

TDT and IMT2, and one that even if it is cue-based it does not over-rely on cues,

xxvThe distinction between an ecological and anthropological perspective is made by Greco and
Floridi in [106] as applied to TDC.
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namely IDT. We have seen that IDT focuses heavily on the interactive social process

between communicative agents such that it integrates the interpretation of cues in a

dynamic manner, instead of relying on the passive observation of behavioural cues

as the previously discussed cue-based theories do.

Second, in §2.2, I have described the most recent data-oriented approaches for

modelling machine deception and the reasons for not considering them in my con-

tribution to machine deception research. These approaches have been also used to

generate deceptive content that can be used in malicious online behaviour such as

the propagation of DeepFakes and Fake News, catfishing behaviour, and misinfor-

mation campaigns of socio-political nature. I have identified two main issues with

these data-oriented approaches. One is the fact that they do not truly represent

deceptive artificial agents, as they are merely tools that can be used to manipulate

digital content. The deceptive reasoning and behaviour is still exerted by human

agents, which these AI tools merely help enhance in terms of scale and performance.

Another issue is that the data-oriented tools for deception detection are very lim-

ited because they follow the exact same principles as cue-based theories of deception.

These tools are limited to specific contexts for which training data is available and

abundant. This makes them (i) prone to data-bias and cognitive-bias, and (ii) un-

derperform in contexts where data is not available and/or not abundant. On top of

this, they are neither transparent nor explainable, so their users cannot know which

cues the tools have analysied and processed in order to detect deception.

Third, in §2.3, I have described the approaches used in MAS to study deception

between intelligent agents. The approaches from MAS aim to explain deception

between intelligent agents and its underlying computational components. MAS re-

search has previously focused on different aspects of agent deception, such as the role

of deception and trust in agent societies, logical foundations of dishonesty, strategic

deception in MAS, deceptive reasoning of agents and their cognitive architectures,
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engineering deceptive interactions, human-robot deception, and finally, the ethics of

deceptive machines.

Fourth, in §2.4, I have described the mechanisms for complex reasoning that I

use in the following chapters to engineer deceptive interactions between intelligent

agents. For instance, the BDI cognitive architecture for agents helps us model

intelligent agents that engage in practical reasoning about the world and about the

beliefs of other agents. ACLs and AOPLs help us establish protocols that practical

reasoning agents can use to interact, e.g., exchange information, derive knowledge

and coordinate with each other. ADGs helps us give structure to the interaction

protocols between these agents, as they help us define rules of rational interaction

that agents can use to know what and how they are allowed to communicate, when

and with whom, and whether the interaction needs to be terminated or not, or

if the interaction was successful or not. Finally, Bex’s hybrid approach helps us

represent arguments which practical agents can form, exchange, and reason about,

abductively and in a narrative fashion, in contexts where evidence is analysed to

solve complex cases.

Fifth, in §2.5, I have introduced a newly proposed paradigm, that I use in this

thesis, called Machine Behaviour (MB), that aims to study the behaviour of intelli-

gent agents as part of complex systems. MB helps us understand machines as the

study of the contexts in which their behaviours occur, similar to how we study the

behaviours of humans and animals in different socio-ecological systems. MB aims

to be the “integrated study of algorithms and the social environments in which al-

gorithms operate” [213, p. 477]. In this section I have also described some of the

approaches that can be used to study deceptive behaviour of agents (humans or

machines) inside social contexts. The final approach that I adopt in this thesis to

study machine deception implies the evolutionary modelling of PGGs. Moreover, I

have introduced two relevant concepts to discuss the deceptive behaviour of agents
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in modern social contexts: that of knowledge as a public good and that of the TDC,

which treats knowledge as a public good in the Infosphere, that can be exploited

and or “polluted” by both human and artificial agents.
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Chapter 3

Computational Deception

In this chapter I define a taxonomy of deception in computational terms that enables

one to identify the multiple forms which deception can take as a computational

process.

Recent advances in AI along with recent events revolving around the problem

of fake news indicate strong potential threats to modern society. One of these

threats is the emergence of malicious autonomous agents that can develop their own

reasons to act dishonestly. In order to be able to prevent or mitigate the effects of

dishonest malicious agents, we must first understand how such agents might work

from a computational perspective. This chapter addresses the problem of machine

deception by describing the multiple forms of computational deception according to

the AI literature, and it explains how these can be modelled using AI techniques.

3.1 Introduction

History, Economics, Politics, Philosophy, Communication Sciences, Sociology, and

the Cognitive Sciences have looked at deception from a perspective that is predom-

inantly anthropocentric. Thus, the significant knowledge we have about deception

revolves around its human nature, which implies not only that deception plays an

important role for humans, but also that deception seems to be multi-faceted given

the numerous research perspectives. A strong indicator of how crucial of a role
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deception plays for humans can be observed in the psychological development of

humans starting from early childhood. Children’s ability to deceive is considered to

be a behavioural indicator of socio-cognitive development in humans [259].

But is deception reducible to anthropocentric perspectives? For example, since

we began talking about deception and children, it is common knowledge that chil-

dren themselves are susceptible to deception that is usually employed by adults,

but what is not so commonly known is the fact that children are also highly sus-

ceptible to machine deception. A Wizard-of-Oz study [293] shows that children

were deceived into thinking that a robot, which in fact was remotely operated by

a human, had social abilities. Adults should not rush into thinking that they are

far from being susceptible to machine deception either. A well designed lying ma-

chine can successfully exploit human reasoning biases in order to deceive, as has

been demonstrated in [54]. Such studies indicate that humans are vulnerable to

machine deception and that it is not unreasonable to think that this vulnerability

might increase with the future advancement of autonomous agents. Moreover, in

§2.3 of Chapter 2, we have seen that the MAS community has studied deception is

complex systems independently of its anthropocentric properties. In this chapter I

aim to discuss a conceptual framework under which we can understand and refer to

different components of deception and how they work together to form this complex

process.

3.2 Motivation

Current trends in AI have determined our community to increase the awareness of

the potential risks of developing artificial agents in an ignorant manner. However,

spending our financial and intellectual resources for the creation of machines that

are generally intelligent, and for the cyber-enhancement of our societies, has both

positive and negative implications.
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This chapter aims to address the issue of deceptive machines as this has a direct

impact on the ethics and values of AI development outlined in the ASILOMAR Prin-

ciplesi. Of particular interest to this chapter is the violation of the AI Arms Race

principle as well as the Legal Transparency and Responsibility principles through

the development of deceptive artificial agents. The direct violation of the AI Arms

Race principle could happen under the interpretation of AI used as autonomous

psychological weapons systems for the psychological and socio-political manipula-

tion of individuals and groups of individuals alike. Governments as well as private

institutions could develop such weapons of deception to use them or to threaten to

use them for their own benefit. Furthermore, these deceptive weapons could eventu-

ally turn against their owners/masters and develop and follow their own goals and

principles. It is reasonable to say that even the former scenario is sufficient to con-

sider the threat of deceptive machines used as autonomous weapons as being very

high. Autonomous weapons might be used to manipulate mass audiences, manipu-

late markets, and gain control over critical decision making entities. Moreover, these

phenomena could happen without humans or ethical autonomous agents even being

aware of, as a highly advanced deceptive autonomous system could (and presumably

would) execute its deceptive behaviour unbeknownst to its targets. According to

Levine’s Truth-Default-Theory [152, 153] humans are, in general, highly susceptible

to deception.

This issue brings us to the ability to hold such deceptive machines accountable.

To do this, we must design regulations and policies and to do that it is necessary

to know what we are regulating for or against. How do we determine if a machine

should be held accountable? Do we interrogate its creators to determine if they have

followed a certain set of ethical principles, or do we instead interrogate the machine

directly? Assuming that such a machine has the capabilities to be held accountable

ihttps://futureoflife.org/ai-principles/
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(to answer questions and provide arguments for acting in a certain way), how do

we make sure it is not aiming to deceive its interrogators? Furthermore, once we

have systems and regulations, how do we implement them in order to promote

cooperation and social good in agent societies where deceivers exist? What form

of regulatory mechanisms are more efficient than others at trumping deceptive and

defective social behaviour?

Before we can tackle these important, and increasingly urgent, questions, we

first have to understand the basics of machine deception. We need to know what

the components of machine deception are. We need to know what forms machine

deception can take, and how these can be realised from a computational perspec-

tive. We need to know what impact different forms of machine deception can have

on society. The aim of this chapter is to address these issues by describing what

is currently known about computational deception, and categorising the forms of

machine deception that have been identified in the literature presented in §2.3 of

Chapter 2.

3.3 Components of Computational Deception

Compared to other forms of dishonesty such as lying or bullshitting ii, deception

involves more complex cognitive mechanisms [153, 172] (see §2.1.5 and §2.1.3). This

is not only valid for human-to-human interactions, but also for machine-to-human,

machine-to-machine, or any type of agent-to-agent interactions. Before we address

the potential capabilities of deceptive artificial agents, we must first look at the the-

oretical components of human deception that can be translated into computational

terms. In this section we present the components of deception derived from two

main theories of deception.

iiBullshitting, according to [92] is making statements without regard for their truth value.
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3.3.1 Cognitive Components

Information Manipulation Theory 2 (IMT2) [172] is the theory of deception that

focuses on the informational aspect of deceptive interactions. IMT2 identifies two

main cognitive properties derived from speech-act theory of cognition that are re-

sponsible for information selection and dissemination. The first process is called

Pars Pro Toto, meaning the parts for the whole, which a sender agent uses to select

the information that, given the context in which the sender and the receiver find

themselves, will convey the sender’s intended meaning of the message in the mind of

the receiver. The second process is called Totum Ex Parte, meaning the whole from

the parts, which a receiver uses to infer the intended meaning of the message from

a sender given the context in which the receiver and the sender find themselves in.

According to IMT2, deceivers and their targets engage in these two processes when

they interact.

3.3.2 Contextual and Interactive Components

According to Interpersonal Deception Theory (IDT) [38], cognitive load is a crucial

factor in deceptive interactions that determines the success or failure of the deceiver.

From a computational perspective, cognitive load represents the number and com-

plexity of operations an agent needs to perform on a certain quantity of information

in order to deceive or detect deception. According to IDT, the way in which hu-

mans are able to cope with cognitive load varies between individuals. IDT identifies

communicative skill of the agents as the most important factor that influences this

ability. Agents with a high communicative skill tend to be better at managing the

cognitive load. Computationally, communicative skill might be represented either

by some amount of computational resources that are available to an agent, or by a

some communication mechanisms that are more or less efficient (probably depend-

ing on the circumstances/contexts) in disseminating information and that are part
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of an agent’s cognitive architecture. Another important parameter is the amount of

leakageiii an agent exhibits during interactions. IDT argues that leakage increases

with cognitive load, but decreases with communicative skill. Agents with high com-

municative skill, being able to manage their cognitive load, can reduce the amount

of leakage.

According to Truth-Default Theory (TDT) [153], what is communicated (infor-

mational content) in a given context should be given more importance than non-

verbal behaviour that may or may not happen to be correlated with the communi-

cated content. Therefore, we can say, based on TDT, that the contextual knowledge

available to the agents that interact with each other should be a crucial compo-

nent of computational deception. The way this information is used can determine

whether deceptive attempts are successful or not. The same goes for attempts at

detecting deception, such as persuading an agent to reveal deceptive motives. This

contextual knowledge should represent what is and is not said, when and where

it is said (or not), to whom (and not), as well as how it is or not interpreted by

someone. This type of information can trigger people into or out of the truth-default

mental state, which makes individuals spend more cognitive resources on what is

being communicated, e.g., makes them more or less suspicious.

3.3.3 Artificial Theory-of-Mind

The AI literature identifies Theory-of-Mind (ToM) as a critical component of de-

ception. ToM is the capability of agents to model and reason about the beliefs of

other agents. Isaac and Bridewell [130] consider ToM a necessary component for

machine deception. They also provide the reasons and the way in which machines

could deceive if these machines possessed a ToM. According to them, one of the

most important aspects of ToM in relation to deception, is that only machines with

iiiLeakage represents cues that contradict a deceptive message.
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ToM should be capable of ethical deception [130], because machines with ToM that

have an ethical ulterior goal can evaluate whether their attempted deception will

cause a specific false belief in the mind of their target that would also benefit their

target and, therefore, would achieve their ethically-aligned ulterior goal.

IDT and IMT2 do not mention ToM as an explicit component of deception

iv. However, the theories seem to assume ToM as being an implicit component of

deception. This seems to be a well-founded assumption of the two theories given

that humans develop the ability to form and use ToM in early childhood. Obviously,

that is not the case for machines. There are also more ethically positive perks to

machines with ToM than the ability to deceive, even if deception might be beneficial

to society under some circumstances [258]. The AI literature was careful not only to

point out several variations of Artificial ToM, but also several of its potential benefits

that include the explainability, the efficiency, and the increased social performance

of machines. For example, in [63], the authors show how agents with higher order

ToM outperform other agents in negotiation. Such benefits, I believe, might be

the reason why considerable efforts are being made in the AI community to enable

machines to form and use models of other minds [3].

3.4 Computational Deception

Given the potential ability of machines to use an Artificial ToM and taking into

consideration the components described by IMT2, IDT and TDT, I ask the follow-

ing question: Is it possible to integrate these components with agent architectures

such that we are able to engineer deceptive machines or even model deceptive in-

teractions between artificial agents? To do so, we must first identify what types of

computational processes can represent deception.

In this section I define multiple types of machine deception, namely one-way

ivOnly Levine mentions in [153] that deception is a special case of ToM considered by TDT.
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deception, counter-deception, self-deception, and distributed deception. I categorise

the types of machine deception progressively, starting from the simplest to the more

complex and unusual. Because ToM is an intrinsic component of machine deception,

we will look closely at the role ToM plays in each type of deception. More often

than not, it is the ToM of the opponent that determines what type of deception

takes place, as properties of the ToM that are being used by the agents become the

properties of the type of deception employed by the agents.

3.4.1 One-Way Deception

We call a one-way computational deception an interaction between two types of

agents: the deceiver, which we will call Alice, and the target, which we will call

Bob. Alice’s goal is to make Bob believe something that Alice believes is false.

However, in order to achieve her goal, Alice must be in a state in which the following

preconditions are met or can be met: 1) Bob must be able to receive and also to

reason with the information that is provided by Alice. 2) Bob must also be unaware

of the fact that Alice’s goal is to deceive him; it is here where the unknown unknown

factor v comes into play. 3) Alice must be able to send Bob the information required

to achieve her goal. 4) Alice also needs to have knowledge about Bob’s mind that

consists of Bob’s beliefs and reasoning processes that he is able to perform; we call

all the knowledge Alice has about Bob’s beliefs “Alice’s ToM of Bob”. 5) Alice’s

ToM of Bob must be informative to her. This means that Alice should be able to

find the beliefs in Bob’s mind that will allow her to make Bob infer a false belief; in

this case, the ToM of Bob includes the levels of trust Bob has in Alice.

Assuming that all preconditions are met, Alice can perform an action, or a set

of actions (such as executing a policy), that will make Bob infer a false belief. The

simplest action we can think of is a binary information exchange such as telling

vNot knowing that one does not know something [156]
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Bob that something is True or False. We need not confuse the truth value of the

information Alice gives to Bob with the truth value of the belief Bob will infer from

this information once he believes the information Alice gives him is True or False.

For example, let us describe a similar scenario to the one in Subsection 2.1.5 of

Chapter 2. Alice can tell Bob that P or ¬P in order to make Bob infer a false belief

from the belief that P or the belief that ¬P . Knowing the possible inferences that

Bob can make from the two possible beliefs P or ¬P , Alice will choose to provide

Bob with the information that suits her goals. Let us assume that there are two

possible inferences that Bob can make given the information provided by Alice. The

first possible inference is that if Bob believes that P is the case, then Bob will infer

that Q is also the case given that Bob knows that P → Q. The other possible

inference (or non-inference) is that if Bob believes that ¬P is the case, then Bob

will not be able to infer that Q is the case. Let us also assume that Q is not true

and that Alice’s deceptive goal is to make Bob believe that Q is true. Therefore, in

order to achieve her goal, Alice will have to make Bob believe that P is the case,

such that Bob will be able to infer Q from P , assuming that Alice believes that Bob

trusts her. If Bob does not trust Alice, then Alice needs to tell Bob that ¬P . If Bob

does not trust Alice, then Bob will believe the opposite of what Alice says vi.

As I have mentioned before, deception is about making another infer a false

belief, therefore it does not really matter to Alice whether P or ¬P as long as Alice

manages to make Bob infer that Q is the case, when in fact Q is not the case. This

here shows the difference between providing false information, which means lying,

and providing certain information that leads to a false conclusion, which means

deceiving. Depending on the context Alice finds herself in, she needs to decide

whether the necessary information she needs to provide Bob in order to deceive

viFor the sake of the argument we assume that Bob is a rational agent and that Bob is able to
apply Modus Ponens. We also reduce the problem of trust to Bob believing the opposite of what
Alice says if he does not trust her. In other words, Bob assumes that Alice lies if he does not trust
her.
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him is a lie or a truth, or a half-truth, or a combination of them that is more or

less complex. The dynamics Alice and Bob engage in represent the two processes

identified by IMT2 as Pars Pro Toto and Totum Ex Parte.

A strong focus in AI has been on the logical formalisation and categorisation of

one-way deception, as we have mentioned in §2.3 of Chapter 2, the corresponding

works for one-way deception being: [233], [234], [40], [232], [277], and [273]. One-way

deception has been also studied from an agent-oriented perspective, the correspond-

ing works being [62], [217], and [50]. More recently, [200] (Chapter 5 of this thesis)

defined and implemented a BDI agent using Jason (an agent oriented programming

language) that can choose to lie, bullshit or deceive in order to manipulate the be-

liefs of another agent. This work was continued in [242] (Chapter 6 of this thesis)

integrating it with the TDT, IDT and IMT2 theories from [153], [38] and [172]. In

[242] deceptive interactions between two BDI agents are defined and implemented,

where the deceiver agent simulates the mind of its target taking into account the

levels of the target’s trust, the confidence in its ToM of the target, and the level

of its communicative skill. This mental simulation represent the reasoning process

employed by the BDI agent to select what type of communicative act is required for

deception.

Among all of the agent oriented studies above that use ToM, only [200] and [242]

mention ToM explicitly and explain how ToM is necessary for their dishonest agent

to deceive, whereas the agent does not use ToM to lie or bullshit. These explicit uses

of ToM indicate the growing interest and knowledge of the AI community in ToM’s

role in intelligent machines. Also, only [242] explicitly integrate the use of ToM

with TDT, IDT and IMT2 for studying deceptive interactions. One-way deception

is extensively addressed in Chapters 5 and 6 of this thesis.
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3.4.2 Counter Deception

Compared to one-way deception, counter deception eliminates the assumption of

Bob’s unknown unknown. Instead of playing just one role, both Alice and Bob play

the roles of the deceiver and the target. In this case, the same reasoning mechanism

is taken to a higher level. Bob’s goal is now to deceive Alice into thinking that he

has inferred a false belief. Alice’s goal is to deceive Bob into thinking he was able

to deceive her about deceiving him and so on. The simple fact that Bob is aware

of Alice’s deceptive intentions, might give away Bob’s suspicion. To deceive Alice

into thinking he has been deceived, Bob must emulate some behaviour that makes

Alice think he was deceived by her. However, if Bob knows that Alice knows that

Bob might want to deceive Alice and so on, then what type of behaviour should

Bob simulate — the one indicating that he was deceived or the one indicating that

he wasn’t deceived — in order to deceive Alice?

Work in the Intelligence Analysis literature has led to solid psychological theories

of counter-deception and deception detection [123] indicating that intelligence and

espionage agencies are often engaging in this process. Counter deception has also

found its applications in interrogations. When interrogators happen to deal with

deceptive or manipulative subjects, they can resort to counter-deception to increase

their chances at successful interrogation [287]. For example, the interrogator can

pretend to know some information a priori such that the subject is tricked into

giving answers that reveal or confirm the truth of the information to the interroga-

tor’s questions. Studies show that interrogators trained in counter-deception have a

greater success at deception-detection [117].

3.4.2.1 Recursive Counter-Deception

In theory, counter deception can be infinitely recursive. The property of recursiv-

ity in counter-deception, however, depends on the type ToM of the opponent. A
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recursive ToM means that agents add levels of ToM on top of each other’s ToM of

themselves. For example, “I know that you know that I know...ad infinitum...some

information” represents a recursive ToM. An entirely recursive ToM would mean

that the deceptive reasoning processes of a deceiver’s mind would only focus on

taking a certain belief, let us say Beli(P ) and infering Belkj (Bel
k
i (P )) where k rep-

resents the level of ToM, and i and j represent different agents i 6= j (unless we talk

about self-deception), in order to gain some advantage using deception. However,

in interactions that assume an entirely recursive ToM, the only advantage belongs

to the agent that has a the greater level of ToM as shown by MAS simulations of

games between agents with multiple orders of ToM [63].

3.4.2.2 Partially Recursive Counter-Deception

In practice, human agents are rationally bounded and are not capable of infinitely

recursive reasoning. Thus, in real life, deception is not applied to infinitely recursive

mental models. There might be cases in which a deceiver could exploit its target’s

mind without engaging in expensive recursive reasoning. There might be beliefs that

do not exist in the target’s ToM of the deceiver. Or there might be beliefs of the

deceiver that the target is does not know that it (the target) does not know (unknown

unknowns). In such cases, it might be wiser for the deceiver to avoid spending

cognitive resources on the higher-order reasoning of ToM and exploit other types of

beliefs inside the target’s mind. The deceiver, might, for example, simulate the belief

updates that happen in the mind of the target in order to see what new beliefs can be

formed and also explore which of these newly formed beliefs can be more efficiently

exploited. This type of ToM implies a dynamic semantic ToM model. Dynamic

semantic models of ToM in MAS based on belief-desire-intention architectures and

agent oriented communication along with their use under uncertainty are addressed

in Chapter 4 of this thesis.
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One form of partially recursive counter-deception, that I propose as future work

in Chapter 8 of this thesis, is where the deception is done through argumentation

dialogue games [240]. In these types of games the deceiver uses stories as complex

arguments to deceive its target (the target plays the role of an interrogator). The

interrogator also uses complex arguments as interrogation and counter-deception

techniques. Both the deceiver and the interrogator have a ToM of each other that

they update after every interaction. The deceiver uses its ToM to build a story

that forces the interrogator to accept it, and viceversa, the interrogator forces the

deceiver to accept that it has not found a believable story.

3.4.3 Self-Deception

The exception to the presumably intuitive rule that deception requires at least two

agents (deceiver and target) is the case of self-deception. In order for self-deception

to be successful, the deceiver must be able to deceive itself, playing both the role

of the deceiver and its target. Here we have a paradoxical situation. Assuming

that the deceiver needs a ToM of its target in order to deceive, then the deceiver

needs a ToM of itself. Given that the same entity plays both the roles, then it

must ontologically follow that its ToM of itself must be complete, i.e. there is no

knowledge about itself that it does not know. If the ToM is complete, then the ToM

must include the deceiver’s deceptive intentions or goals as well as the target’s goal

of not being deceived. Obviously, these two types of conflicting goals and intentions

determine an inconsistent system. However, there are some special cases in which

these paradoxical situations can be overcome. In [132], the author manages to model

a specific set of cases of self-deception that are logically consistent in Hintikka’s logic

of belief. The author does emphasise that such inconsistencies still remain inside the

system, but become latent due to the specific cases that are formalised, and [132]

explains the reasons for them becoming latent.
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3.4.4 Distributed Deception

Compared to the previous forms of machine deception, distributed deception implies

group-based deceptive interactions. These interactions are assumed to take place in

populations of agents where the agents can either rationally decide to change the

roles they play based on who they interact with, or they are assigned their roles

through some mechanism. While in the previous forms of computational deception

the focus was on the reasoning and decision mechanism, here we can assume such

mechanisms as a given, and focus on the payoff of using combinations of different

mechanisms. The payoff itself should depend on the factors that influence deception

such as the types of other agents they interact with, the information available to

them, their available ToMs, the cognitive load of the agents, their communicative

skill, the trust between them, the communication protocol they follow (or the specific

game they play). Depending on the type of each system that the agents belong to,

the cost of deceiving, interrogating or counter-deceiving might differ. Therefore, an

overarching research question for distributed deception would be how does the cost

of deception influence agents in group interactions? I divide distributed deception

in three types to see what other relevant questions might be asked:

3.4.4.1 Type I: multiple deceivers and a single target

The obvious problem would be for deceivers to find a way in which they are able

to maximise the likelihood of their success through cooperating with each other.

How do they cooperate with each other to deceive their target, assuming that all

of the deceivers share a single goal in terms of what false belief they want their

target to infer? More specifically, how do the deceivers manage to execute Pars Pro

Toto efficiently between themselves? What information do they have to distribute

between themselves, what information does each of the deceivers have to withhold

and which information does each of them have to send and in what way? Which of
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them has to lie and which has to tell the truth, and in what sequence? Assuming

they require a ToM to deceive, do they have to share information about their ToMs

of the target between themselves? Does the presence of more deceivers mean a

higher likelihood of success, or does it hinder the deceptive process by adding layers

of reasoning and increase the complexity of reasoning and decision making?

3.4.4.2 Type II: a single deceiver and multiple targets

A single deceiver has to account for multiple targets. This case should not be

confused with multiple one-way deception where a single deceiver repeatedly employs

one-way deception separately for each target. In type II, the deceiver needs to take

into account at least more than one target when attempting a deceptive act. One

research question would be how does the deceiver disseminate information to its

different targets given different combinations of constraints? The targets of the

deceiver might cooperate by sharing and comparing information between themselves

in order to protect themselves from deceivers. Maybe only some of them cooperate

and some of them do not. Perhaps the deceiver has multiple targets, but only one of

them is crucial for its success. Thus, another question might be how can the deceiver

exploit cooperation and non-cooperation between its targets in order to successfully

deceive?

3.4.4.3 Type III: multiple deceivers and multiple targets

It might be interesting to assume that agents are able to play both the role of

deceivers and potential targets. Agents are able to decide what role to play by

calculating their pay-offs to see whether is it profitable (rational) to a) deceive a

target or b) to risk being a target itself and blindly trust the agent it interacts with

or c) try to only act as a target in order to interrogate or counter-deceive the other

agent. Moreover, is there a different pay-off when trying to deceive more than one

agent? What if the deceiver needs to interact with multiple agents at the same time

121



or in a certain given sequence? Are all of these agents easy targets, or are some of

them counter-deceivers?

I am not aware of related work in MAS on distributed machine deception as

I have defined it here. However, the closest work would be on the profitability of

incompetence [263] where the authors define artificial agents that bullshit their way

through society in order to maintain the view that they (the agents) are competent.

In Chapter 7 I address distributed deception Type III using an evolutionary game-

theory approach.

3.5 Applications and Implications

It would be unwise not to consider the ethical AI perspective on the computational

representation of the components and mechanics of deception. As a community,

we are starting to raise the ethical standards of how we design AI to include the

transparency and explainability of machines. It is crucial that in order to be able

to hold AI accountable for different types of behaviour that fall into the unethical

or immoral category; the community should aim for the ethical design of machines.

Deception, by definition, clearly falls into the category of dishonest and unethical

behaviour which opposes the current emerging trend of ethical design in AI. This

depends on the aim — in the Sklar, Parsons, Davies’s work [258], the agents are

deceptive (arguably), but for honest reasons (assessing students’ understanding).

How can we foresee and mitigate the way in which machines might be able to

deceive? Also, how will we manage to hold such machines accountable for their

actions? In this section we present some of these potential threats coming from

the design and engineering of complex deceptive agents which should be taken into

consideration by the AI community.
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3.5.1 Truly Deceptive Artificial Agents

Current state-of-the-art deep learning techniques such as generative adversarial

neural networks (aka GANNs) that underlie software such as DeepFake [223] or

language-based machine learning models that underlie DeepFake Text [212] offer

the possibility of creating deceptive digital content. However, these techniques do

not offer an AI architecture that is in itself deceptive, i.e. that is able to reason about

the minds of others and to decide what information should be used to manipulate

others’ beliefs. Fortunately, there is no artificial mind behind these models that de-

cides what type of information needs to be distributed online such that it deceives

web users. That does not mean that deceptive machines cannot be engineered and

deployed.

3.5.2 Autonomous Cyber-Deception

Mind-games themselves have been addressed in computer science in the area of

cybersecurity. However, deception in cybersecurity is usually reduced to online troll-

bots [148] and cases of social engineering that revolve around accessing sensitive

computer data [179]. A potential threat to security would be the automation of

agents that are able to employ social engineering in order to reach their malicious

goal. For example, we could imagine an AI that not only knows how to write a

computer virus, but also how to manipulate other machines or humans to use it or to

carry it to its destination vii. We can imagine a single mastermind deceiver machine

that manipulates others to think that they are being cooperative, but instead they

propagate the mastermind’s lies through networks of agents.

viiImagine a Stuxnet [145] virus that is able to deliver itself onto secure isolated networks through
social engineering.
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3.5.3 Autonomous Fake News Agencies

From the possibility of software that can generate fake media and of agents that

can deceive and coerce, we can infer the possibility of autonomous fake news agen-

cies. We could potentially hire these agencies to perform certain tasks. We could,

for example, give an autonomous fake news agency the goal to increase someone’s

popularity. The agency would then gather data on its own to form the ToMs of its

target audience, and then would plan what information to forge (or not) and what

information to disseminate in order to achieve its goal. This scenario is a threat to

accountability. Humans can be held responsible for unethical behaviour, but how

are we going to hold artificial agents responsible for the creation and dissemination

of not only fake news, but of massive deception operations?

3.5.4 Deception Through Dialogue and Storytelling

There are also problems that can emerge from the ability of machines to argue

and build stories in the legal context. Will the future see deceptive AIs hired to

defend human criminals, or even machine criminals, from being held responsible?

Let us assume that we would be able to develop a method for holding machines

responsible for the unethical behaviour along with a legal system in place that would

allow prosecutors (human or machine or both) to interrogate and analyse deceptive

machines. What if the deceptive machines are able to hire their own lawyers or

even to pay engineers to extend their architecture such that they are able to defend

themselves in a legal manner? What would the combination of a deceptive agent

architecture with such an ability imply?

3.5.5 Emotionally Intelligent Deceptive Machines

Due to the advancement on embodied and emotionally intelligent artificial agents

[204, 137], deception can play a major role in affective social interactions. For exam-
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ple, empathic deceptive agents might simulate the emotional states through facial

expressions or other physiological cues of a trustworthy AI in order to increase their

target’s trust, in a way that is similar to the way that psychopathic human agents

mimic the emotional responses of non-psychopathic agents [210]. The ability of

machines to feign emotions can have an impact on their targets’ perception and

biases, hence influencing their targets’ opinions. In some contexts feigning of emo-

tions during everyday social interactions can be considered benign, while in other

contexts, it might have serious implications. For example, in legal contexts where

a deceptive and criminal machine’s emotional behaviour impacts critical decisions

regarding their accountability.

3.6 Conceptual Framework

Deception as computation is a complex multi-layered process which agents engage

in during social interactions. To give artificial agents the capability to deceive, it

was necessary to understand what forms might computational deception take.

A general property of computational deception that I strongly consider through-

out the thesis is that deception is intentional, and that if we were to engineer de-

ceptive agents, then these agents would have to have deceptive intent. Without

intentionality, the actions of a deceptive agent could just be performed randomly.

On the other hand, having intentionality implies that an agent is able to reason over

a domain in order to work to achieve a desired goal (the goal in the case of decep-

tion is to cause a false belief). The domain it reasons about, cannot be just any

domain such as its own knowledge or its representation of the environment. That

is why because the agent intends to cause a false belief inside the mind of another,

then this domain needs to be the deceiver’s mental model of its target’s mind, or in

other words its ToM of the agent it intends to deceive. Thus, ToM and intentional

deception go hand in hand.
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Having intentionality also implies that this ToM the agent reasons about should

be a representation of a mind of another agent that is dynamic, not static, because

the actions performed by the deceiver should cause it to change, e.g., to trigger the

formation of new beliefs. The agent must be able to intend to cause some change

in the world or mind of the other by acting upon it. When the world changes, the

intentions of the agents might change, e.g., the agent cannot intend to perform an

action that is not available or it might be able to intend to do something that was

not available beforehand. Therefore, when the deceiver reasons about the mind of

another, it is not sufficient for the deceiver to reason over passive knowledge. The

deceiver must reason about the future changes of its target’s mental states as it

would about changes in the environment when acting upon it. This implies that

the deceptive agent needs to reason about how its intended actions might cause the

mind of the other to change.

Another argument for intentionality is that a model of deception that is able to

represent intentions can account for the social and causal attribution of deceptive

behaviour in MAS. Remember that there is much need in the intelligence analysis

community to reason about deception in terms of event causation and event causa-

tion prevention [83]. Thus, if we want to track what caused a false belief in a MAS,

it is important to be able to check if it was caused randomly, or by an intended

or unintended behaviour of a deceptive agent. Thus, when modelling agents that

are able to use ToM, it would be ideal to represent intentions at the level of the

cognitive architecture of these agents.

Last, but not least, intentionality allows one to give a functional definition of

deception that takes into account cause and effect in communication with respect

to the mental states of the agents involved.

Intentionality included, I list below some conceptual aspects without which de-

ception as a computational process cannot be addressed:
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• Intentionality - in complex reasoning, agents require intentionality to act

meaningfully and rationally; it is also crucial for establishing unintended con-

sequences, which occur when systems are complex, e.g., social systems.

• Social abilities - the ability to communicate and exchange information; the

ability to learn from social interactions; the ability to derive new knowledge

from social interactions.

• Multi-agent system - deception happens in a system where at least two

agents interact (excluding the arguable case of self-deception); when we de-

scribe deception, we refer to it in the context of social interaction and how

the cognitive abilities of agents work to enable agents to engage in these social

interactions.

• Artificial ToM - the ability to model the minds of other agents; essential

for social abilities; crucial for agents to know how deception can be achieved;

necessary for agents to deceive in an ethical manner.

• Causality of communication - represented using speech acts; by communi-

cating, agents cause changes in the world and in the minds of others; because

agents have intentionality, then implicatures play a major role in how agents

perform speech speech acts in order to trigger new beliefs in their interlocu-

tors; etiology of beliefs can then be traced back to the intentions behind speech

acts.

• Contextual knowledge - background knowledge; knowledge about time,

place, agents involved; any information or representation that helps define a

social context or situation in which agents interact; it is crucial for establishing

the meaning of what is communicated and whether what is communicated is

deceptive or not; it is also necessary for representing interpersonal factors that
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influence deception such as the trust between agents, or the communicative

skill of the agents.

Following this conceptual frameowork, I illustrate in this thesis how deception

can be modelled in MAS. Note that, even if I describe here the multiple types of

computational deception, this thesis does not address all of them. I mainly addresses

the following types of deception: (i) one-way deception with partially-recursive ToM

in Chapters 5 and 6; (ii) partially-recursive counter-deception in Chapter 8; and (iii)

distributed deception type III in Chapter 7.

However, before illustrating how deception is performed in MAS, this thesis ad-

dresses in Chapter 4 the Artificial ToM component and its role in the communication

between BDI-based artificial agents. The reason behind this is that deception is a

special case of social interaction where ToM is applied, as Levine mentions in [153].

Thus, to be able to illustrate the special cases of deception, I must first show how

agents are able to form and use ToM and how they can reason about ToM when

they communicate without necessarily aiming to deceive. On top of this, some of

the cases of deception that I will illustrate assume contextual or background knowl-

edge that the agents have in their knowledge bases or in their ToM of their target.

Chapter 4 also aims to address how this prior background knowledge is obtained

through communication before deception is attempted.

3.7 Conclusion

In this chapter I have described computational deception as complex reasoning and

intended behaviour in multi-agent systems, along with the relevant multidisciplinary

theoretical background of deceptive communication. The aim of this chapter was to

shed light onto the multiple forms that machine deception can take, and to briefly

introduce a conceptual framework which this thesis follows to model deception.
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Chapter 4

Modelling Theory-of-Mind in
Multi-Agent Systems

In this chapter I describe an approach to model artificial Theory-of-Mind which

enables agents to reason about other agents’ mental processes. This capability is

crucial for artificial agents to be able to deceive.

The capability of machines to reason about other agents’ minds is a crucial to

deception. This capability is called Artificial Theory-of-Mind, or Artificial ToM [3].

The relevance of ToM to machine deception is attributed to the property of machines

to be socially-aware.

Recent studies have shown that applying Theory-of-Mind to agent technologies

enables agents to model and reason about other agents’ minds, making them more

efficient than agents that do not have this ability or agents that have a more limited

ability of modelling the minds of others. However, an important premise has not

been yet fully investigated in the AI literature: how do artificial agents acquire and

update their models of others’ minds? In the context of multi-agent systems, one

of the most natural and intuitive ways in which agents can acquire models of other

agents’ mental attitudes is through communication.

In this chapter I provide an answer that makes use of some of the standard

tools of the agent-based approach, namely the belief/desire/intention (BDI) model

of agent minds, and a communication language based on speed-act theory. In other
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words I model the reasoning capability of agents using the BDI model, and then

describe how communication—which allows agents to modify models of the minds

of other agents—can be given a formal semantics using speech acts. This approach is

particularly useful for the modelling, implementation, and evaluation of explainable

and socially intelligent artificial agents, deceptive or not. To show the utility of this

approach, I also show how agents with this model of Theory-of-Mind are able to

reach states of shared beliefs more efficiently than agents without it.

4.1 Introduction

I start by making the distinction between Theory-Theory-of-Mind (TT) and Sim-

ulation Theory-of-Mind (ST) as (i) previous research in ToM in MAS makes this

distinction, and most importantly (ii) TT and ST have not been treated before as a

hybrid approach in MAS research. The model described in this chapter is a hybrid

ToM as proposed by the epistemologist and philosopher of cognitive science Alvin

Goldman in [100] and in [101]. TT (also known as folk psychology) is considered to

be used in ST (the “high-level” mental simulation of other minds). TT’s main role

in ST, as described by Goldman, is to select the imaginary inputs that need to be

introduced into the executive system of a mental simulation called E-Imagination.

This “high-level” mental simulation represents a practical reasoning process that

would be carried out by the agent whose mind is simulated. This hybrid perspective

of ToM is analogous to my approach in this chapter.

One way to think of it is as a simulation setup. We need a TT to start our

simulation in order to generate new beliefs that we then append to the existing TT,

but we also use the simulation to see what beliefs can be inferred from the existing

ones. In this chapter, the agents that model the minds of other agents use their TTs

of the other agents to simulate the belief updates that might be triggered inside

the minds of the other agents given a hypothetical communicative event. Therefore,
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our agents are able to use a TT in order to setup an ST. In this way, compared to

other approaches of ST in MAS [114], these agents simulate the other’s mind not

only by adopting the other’s perspective, but also the other’s internal belief update

mechanisms.

In this chapter I present an approach to model how agents can use ToM to

reach shared beliefs and make decision with and without uncertainty. Moreover I

introduce a novel mechanism for agents to derive new knowledge about the minds

of the other agents, including how agents can use a multi-agent context in order to

extend their ToM, by simulating the other agents’ minds using their previous model,

and how agents are able to reach a desired state of ToM executing the communicative

acts. §4.9 describes some limitations that approaches based on Agent-Oriented

Programming Languages (AOPLs), including the one presented in this chapter,

have when it comes to ToM.

The aim of this chapter is to represent how agents use ToM in social interactions,

how they are able to reach shared beliefs about each other , and how they can make

better decisions due to this ability.

The approach I describe in this chapter gives social artificial agents (i) the ability

to update their beliefs about other agents’ beliefs through communication-based

semantics taking into account the uncertainty of their communication process; (ii)

enables these agents to reach a state of shared beliefs more efficiently by using their

ToMs of each other.

To the best of my knowledge, this is the first work to explicitly address formal

semantics for ToM in an AOPL taking into account uncertainty of beliefs. It is also

the first work that shows how ToM increases the efficiency of agent communication

in reaching states of shared beliefs.

In the first part of the chapter I introduce the formal semantics for modelling

ToM in AOPLs, along with a running example, and I demonstrate how agents

131



are able to reach shared beliefs. In the second part of the chapter I introduce

an approach designed to model uncertainty in MAS communication and decision

making and I demonstrate how agents manage to reach a state of shared beliefs

given the uncertainty of the communication process.

4.2 Motivation

An important property of equipping agents with a ToM is that such agents can be

much more efficient when making decisions compared to others at task execution.

For instance, in [64] the authors show how agents with ToM outperform their op-

ponents without ToM or with lesser degrees of ToM in rock-paper-scissors games.

Another important property of ToM in AI is ethical design along with the agents’

increased ability to explain themselves to humans. In [282] the authors present

the implementation of a ST based cognitive architecture in robots that improves

the robots’ prediction of human behaviour and argue that such an approach is in

tune with the ethical design of artificial agents. One of my motives is to provide

backing for the agenda of explainability in AI, which has come to be regarded as a

fundamental property of ethical AI design. The approach presented in this chapter

supports explainability in two ways. First, it is an attempt to design social agents

that can offer more efficient arguments for decision making. This enables agents to

improve their selection of the best offered explanation taking into account the inter-

locutor’s degree of knowledge. For example, an agent with two ToMs of two different

agents are able to offer two different explanations for their decisions such that they

maximise their interlocutors’ understanding without communicating redundant or

insufficient information. Secondly, this approach aims to follow a design that is

based on step-by-step descriptions of the computations performed by these socially

intelligent agents. Therefore, I aim to give potential evaluators and testers of intel-

ligent agents the possibility not only to interact with these agents socially, but to
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also check and understand every step of the artificial agents’ internal computations

(e.g., their internal code).

Previous research of ToM in MAS has focused on the inductive-based reasoning

models, either recursive or non-recursive. For example, in [10] the authors propose

Bayesian Partially Observable Markov Decision Process (POMDP) frameworks for

ToM (BToM), while in [69] the authors argue for recursive Interactive POMPD

(I-POMDP) models of ToM based on behavioural general-sum games study on hu-

man participants. In [11] the authors argue for a Bayesian model of ToM based on

behavioural studies of humans that infer the mental states of cognitively limited ar-

tificial agents. In [292] the authors even propose a POMDP approach to be adopted

for explanations provided by artificial agents to humans.

ToM has not been explicitly explored using models of abductive reasoning in

multi-agent communication systems. Abduction, especially in systems where agents

exchange information through communication, e.g., socialising, is crucial for provid-

ing explanations. As is clearly described in [177] explainability is based on the abil-

ity of agents to communicate and to reason causally, as explanations should emerge

from social interactions between agents that exchange information. POMDP-based

approaches such as the one in [292] mistake causal explanation with causal attri-

butioni. Explanations should also be contrastive and circumstantial or contextual,

as they need to show the reason why something is the case and not something else

[180]. The models of ToM based on inductive reasoning do not exhibit any of these

properties. That does not mean such models should be discarded entirely, as they

provide efficient and arguably intuitive mechanisms to reason under uncertainty.

Probabilities, however play just a minor role in providing good explanations, that

is why I think they should be used alongside other mechanisms that are able to

iCausal attribution is merely displaying a probabilistic causal chain to a user or to another
agent. No matter how well presented this causal chain is, it does not constitute an explanation.
[177]
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use probabilities in an informative way such as to enable agents to communicate

efficiently with each other.

In order to bridge the gap between probabilistic reasoning and the social nature

of explanation, I have adopted an approach based on agent dialogue frameworks

[169, 157, 144] in which agents require the ability to communicate. Under such

a framework, explanations emerge from the communicative interactions between

agents. However, I also think that explainability requires the ability of agents to use

ToM when they communicate with each otherii. A reasonable explainable dialogue-

based AI model should also be able to show how agents update their beliefs about

each other during their interactions, not just the communicative actions they have

performed during that time. The aim of this chapter is to work towards a compre-

hensive abductive-based approach of modelling ToM that takes into account both

the probabilistic and the social and explainable properties of agent to agent interac-

tion. AOPLs provide the necessary framework for a communication-based approach

that I use to model components such as beliefs, desires, social contexts, intentions,

actions, communicative actions etc. I will focus on the ability of agents to engage

in social interactions (an exchange of declarations, questions and answers) in or-

der to reach a state of shared beliefs under which their cooperative performance is

maximised.

In contrast to the properties which improve the ethical and explainable nature

of artificial agents, the most salient properties of agents that are able to use ToM, at

least from the perspective of this thesis, comes from the opposite direction of ethical

design which must also be addressed by the MAS community. These properties

represent the immoral, unethical, and dishonest behaviour of such machines. As

pointed out by [130, 237, 54], the ability to model other minds would enable machines

to deceive other agents as they would then be able to know what their targets

iiThe need of modeling other agents’ minds is also pointed out in a desiderata for future dialogue
systems in [56].
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would infer based on what information the targets are provided with. Being able

to understand how malicious machines might exploit their ability to model other

minds is crucial for the AI community in order to be able to mitigate or ameliorate

their unethical behaviour. One way to understand such machines is to look how

they use communication and ToM to act maliciously.

I believe it is important for the AI community to look at how communication

affects ToM and vice versa. It is also important to do so in an informed manner,

and by this I mean that the AI community should take into account the underlying

theories in communication, linguistics, philosophy and psychology as well as existing

agent-communication languages. I hope that this chapter provides a much needed

blueprint for this kind of approach.

4.3 Background

This section briefly introduces some of the components in more detail that I am

going to use in this chapter and that have been previously presented in Chapter 2.4.

4.3.1 KQML ACL

Agent communication languages (ACLs) have been developed based on speech act

theory [249]. Speech act theory is concerned with the role of language as actions.

In speech act theory, a speech act is composed by (i) a locution, which represents

the physical utterance; (ii) an illocution, which provides the speaker intentions to

the hearer; and (iii) the perlocution, which describes the actions that occur as a

result of the illocution. For example, “I order you to shut the door” is a locution

with an illocution of a command to shut the door, and the perlocution may be that

the hearer shuts the door. Thus, an illocution is considered to have two parts, the

illocutionary force and a proposition (content). The illocutionary force describes the

type speech act used, e.g., assertive, directive, commissive, declarative, expressive.
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Among the agent communication languages which emerged based on speech act

theory, FIPA-ACL [86] and KQML [85] are the best known. In this work, for

practical reasons, I choose KQML, which is the standard communication language

in the Jason Platform [33], the multi-agent platform I choose to implement this

work. The Knowledge Query and Manipulation Language (KQML) was designed to

support interaction among intelligent software agents, describing the message format

and message-handling protocol to support run-time agent communication [85, 165].

In order to make KQML broadly applicable, in [141] a semantic framework for

KQML was proposed. Considering the speech act semantics, the authors in [141]

argue that it is necessary to consider the cognitive state of the agents that use

these speech acts. Defining the semantics, the authors provided an unambiguous

interpretation of (i) how the agents’ states change after sending and/or receiving a

KQML performative, as well as (ii) the criteria under which the illocutionary point

of the performative is satisfied (i.e., the communication was effective).

4.3.2 Jason AOPL

Among the many Agent Oriented Programming Languages (AOPLs) and platforms,

such as Jason [33], Jadex [206], Jack [296], AgentFactory [228], 2APL [60], GOAL

[125], Golog [151], and MetateM [186], as discussed in [32], I chose the Jason plat-

form [33] for this work. Jason extends the AgentSpeak language, an abstract logic-

based AOPL introduced by Rao [214], which is one of the best-known languages

inspired by the BDI architecture.

Besides specifying BDI agents with well-defined mental attitudes, the Jason plat-

form [33] has some other features that are particularly interesting for this work,

for example, strong negation, belief annotations, and (customisable) speech-act

based communication. Strong negation helps the modelling of uncertainty, al-

lowing the representation of things that the agent: (i) believes to be true, e.g.,
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about(paper1, tom); (ii) believes to be false, e.g., ¬about(paper2, tom); (iii) is ig-

norant about, i.e., the agent has no information about whether a paper is about

tom or not. Also, Jason automatically generates annotations for all the beliefs in

the agents’ belief base about the source from where the belief was obtained (which

can be from sensing the environment, communication with other agents, or a men-

tal note created by the agent itself). The annotation has the following format:

about(paper1, tom)[source(reviewer1)], stating that the source of the belief that

paper1 is about the topic tom is reviewer1. The annotations in Jason can be easily

extended to include other meta-information, for example, trust and time as used

in [175, 197]. Another interesting feature of Jason is the communication between

agents, which is done through a predefined (internal) action. There are a number of

performatives allowing rich communication between agents in Jason, as explained in

detail in [33]. Furthermore, new performatives can be easily defined (or redefined)

in order to give special meaning to them which is an essential characteristic for this

work. For example, [198, 199] propose new performatives for argumentation-based

communication between Jason agents.

4.3.3 Running Example

In this chapter I am going to use the following notation to represent ToM and

probability, based on [200]:

• Belag(ϕ) means that an agent ag believes a proposition ϕ. For example,

Belalice(likes(ice cream)) means that alice believes she likes ice cream.

• Desag(ϕ) means that an agent ag desires ϕ. For example,

Desalice(buy(ice cream)) means that alice desires to buy ice cream.

Those predicates are used to model other agents’ minds. Also, I am going to use

the following notation to represent probability:
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• P (ϕ) means the probability of ϕ. For example, P (Belalice(likes(ice cream)))

means the probability that alice believes she likes ice cream.

As a running example, let us look at the following university scenario with five

agents.

Example 1 The first agent, John, plays the role of a professor in the university,

and the other agents, named Bob, Alice, Nick, and Ted, play the role of students.

John has a relation of adviser with the students. Also, John is responsible for

distributing tasks to students, which the students can accept or refuse. John keeps

information about the students, in order to assign tasks that the students are more

likely to accept.

The model can be formally defined as 〈Ag, T ,A,S〉, in which Ag represents the

set of agents, T the set of tasks of the kind T ⊆ A × S, describing an action from

A, requiring knowledge about a subset of subjects from S, that might be executed to

achieve the task T . In our example, I consider the following actions, subjects, and

tasks:

• A = {write paper, review paper, paper seminar}

• S = {mas, kr, tom}

• T =


task(write paper, [mas, tom])
task(review paper, [kr])
task(paper seminar, [tom, mas])


For example, the task to write a paper with the subjects MAS and ToM,

task(write paper, [mas, tom]), requires competence on both subjects: mas and tom.

Thus, this task has a greater likelihood to be accepted by a student who desires to

execute that particular task, or who likes to execute the action write paper and

believes that itself knows the necessary subjects (e.g., knows(mas) and knows(tom)
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are necessary to execute this example task). Thus the probability of an agent ag

accepting a task ti is given by the following equation:

P (accepts(ag, taski)) =

{
P (Desag(taski)) if Desag(taski) ∈ ∆John

P (Belag(likes(ai)))× P (Belag(knows(S′))) otherwise

with

P (Belag(knows(S ′))) =
∏
si∈S′

P (Belag(knows(si)))

where taski = task(ai, S
′), for taski ∈ T , ai ∈ A, and S ′ ⊆ S. ∆John represents

John’s knowledge.

Thus, considering our scenario, when John knows that some student ag likely

desires to execute a particular task taski, i.e., Desag(taski), it can use this informa-

tion to assign the task. Otherwise, John can calculate the likely acceptance for each

student ag, based on the probability of each student to like executing that action,

P (Belag(likes(ai))), and the knowledge the student has about each of the required

subjects P (Belag(knows(S ′))). Note that, while modelling the students’ desires is

more difficult to obtain in our scenario, the students’ beliefs are easily obtained by

John, given that John frequently communicates with students about these subjects

and tasks.

In reality, agents operate with uncertain information, especially in the cases of

thinking about other agents’ minds. The minds of others are considered to be some

sort of black boxes that are more or less accessible depending on the given scenario.

Reasoning under uncertainty is a classic case where bounded rationality acts as a

major constraint on what agents can infer from their beliefs. However, even if agents

are constrained by their access to information, it does not mean that the agents

cannot reach reasonable conclusions about the minds of other agents [103, 149].

In our scenario, John will reason and make decisions based on information they

have about the students’ minds, i.e., information from their ToM. Thus John will

reach conclusions based on uncertain information, given that their ToM contains
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information about students’ minds that has been estimated through the communi-

cation John has had with the students. Considering that an approach to reason

about uncertain information, uncertain ToM in our case, is using probabilistic rea-

soning, as described in [103], I have modelled John’s decision-making process based

on the probability of each information in John’s ToM to be correct, considering

some factors of uncertainty I will describe further in this chapter.

4.4 An AOPL-based Semantics for ToM

4.4.1 The Basis for the Operational Semantics

To define the semantics for the updates agents execute in their ToM, I extend the

original operational semantics of AgentSpeak [284], which is based on a widely used

method for giving semantics to programming languages [205]. The method I use

is a structural operational semantics that describes every step of the computations

performed by the BDI agents. Structural operational semantics increases the control

we have over a systems’ behaviour because we are able to check in detail every

step of a computation. This is an important property for a system to satisfy in

order to be considered explainable. It is important to mention that I am interested

in the operational semantics for the updates agents execute in their ToM. This

considers the performatives (locutions) as computational instructions that operate

successively on the states of agents [169]. The operational semantics is given by

a set of inference rules. These inference rules define a transition relation between

configurations represented by the tuple:

〈ag , C,M, T, st〉

originally defined in [284], as follows:

• ag is a tuple containing a set of beliefs bs , a set of plans ps, and a set of theories of

minds ToM. The elements of ag are denoted as agbs , agps and agToM, respectively.
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• C is an agent’s circumstance. This is a tuple 〈I, E,A〉 where:

– I is a set of intentions {i, i′, . . .}. Each intention i is a stack of partially

instantiated plans.

– E is a set of events {(te, i), (te ′, i′), . . .}. Each event is a pair (te, i), where te is

a triggering event and i is an intention — a stack of plans in case of an internal

event, or the empty intention T in case of an external event. An example is

when the belief revision function (which is not part of the AgentSpeak inter-

preter but rather of the agent’s overall architecture), updates the belief base,

the associated events — i.e., additions and deletions of beliefs — are included

in this set. These are called external events; internal events are generated by

additions or deletions of goals from plans currently executing.

– A is a set of actions to be performed in the environment.

The elements of C are denoted CI , CE and CA, respectively.

• M is a tuple 〈In,Out〉 whose components characterise the following aspects of

communicating agents:

– In is the mail inbox: the multi-agent system runtime infrastructure includes all

messages addressed to this agent in this set. Elements of this set have the form

〈mid , id , ilf , cnt〉, where mid is a message identifier, id identifies the sender of

the message, ilf is the illocutionary force of the message, and cnt its content.

– Out is where the agent posts messages it wishes to send; it is assumed that

some underlying communication infrastructure handles the delivery of such

messages. Messages in this set have exactly the same format as above, except

that here id refers to the agent to which the message is to be sent.

These structures are needed because communication is handled asynchronously.
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Agents send a message by writing it to their outbox. This message is then passed

to the inbox of the receiving agent, and that agent reads it when ready.

• Tι records the particular intention being considered during the current reasoning

cycle. This is a temporary cache storing information that is needed when executing

that cycle.

• st is the current step within an agent’s reasoning cycle. s is one of

{ProcMsg, SelEv,RelPl,ApplPl, SelAppl,AddIM, SelInt,ExecInt,ClrInt}. These la-

bels stand for, respectively: processing a message from the agent’s mail inbox,

selecting an event from the set of events, retrieving all relevant plans, check-

ing which of those are applicable, selecting one particular applicable plan (the

intended means), adding the new intended means to the set of intentions, select-

ing an intention, executing the selected intention, and clearing an intention or

intended means that may have finished in the previous step.

The semantics of AgentSpeak makes use of “selection functions” which allow for

user-defined components of the agent architecture. I use here only the selection

function SM , as originally defined in [284]; which is a select message function used

to select one message from an agent’s mail inbox.

Note that I write b[s(id)] to identify the origin of a belief, where id is an agent

identifier (s refers to source). I use sid to refer the sender agent, and rid to refer

the receiver agent.

In the rules of the semantics I am going to use other two functions, func send and

func rec, which agents use to consider the uncertainty on the other agents’ mental

attitudes inferred from each communication. func send has the following signature:

func send(ϕ, agToM , agbs) : ϕ ∧ agToM ∧ agbs −→ ψ[γ]

Using this function, the sender agent takes the ToM that it already has about the

receiver agToM , the relevant beliefs in its belief base agbs , and the content ϕ that is
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being communicated, inferring the receiver’s mental attitude which results from that

communication, i.e., ψ[γ]. While ψ (the other agent’s mental attitude) is defined by

the semantics of each speech-act considered, γ depends on other information that

the sender already has about the receiver agent. For example, the sender agent

will model that the receiver agent will believe the content that is communicated

with the tell performative, Bel sid(ϕ). Furthermore, Bel sid(ϕ) is annotated with

a label γ that represents a meta-information supporting that particular inferenceiii.

For example, it might represent the confidence of that agent on inferring Bel sid(ϕ),

based on other information that it has related to that inference, i.e., agToM and agbs .

Note that γ represents an estimation of the uncertainty, given that such model might

be not absolutely right regarding an agent’s private mental state.

The function func rec has a similar signature:

func rec(ϕ, agToM , agbs) : ϕ ∧ agToM ∧ agbs −→ ψ[γ]

The difference here is that this function is used by the agent that receives the

communication.

In the semantics rules, I abuse the notation and write

func send(ϕ, agToM , agbs) = ψ[γ], with ψ the mental attitude modelled by the

agent in that communication. I do not define func send and func rec here

because I believe that they are domain-dependent, however in § 4.6 I introduce an

implementation for those functions when considering uncertainty.

I now give the semantics of the Tell, Achieve, and Ask-If performatives. These

represent an extension of the semantics presented in [284]. As in [284], for each

performative there are two aspects of the semantics. The first, denoted SndTell,

SndAchieve and SndAskIf, define the update in the agent uttering/sending the

performative. The second, denoted Tell, Achieve and AskIf, defines the update

iiiIn § 4.6, I will present an instance for that meta-information, which agents might use to deal
with the uncertainty present in the agents’ communication.
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in the agent hearing/receiving the performative.

4.4.2 The Tell Performative

For the Tell performative, when the sender agent sends a message to a receiver

agent rid with the content ϕ, first the sender checks if the receiver will believe that

information Bel rid(ϕ). The sender does this using the function func send , which

takes as arguments the ToM that the sender already has about the receiver agToM ,

the relevant beliefs in its belief base agbs , and the content ϕ being communicated.

The sender will also annotate the belief Bel rid(ϕ) with a label γ that represents meta-

information supporting that particular inferenceiv, for example, it might represent

the confidence of that agent on inferring Bel rid(ϕ), based on other information it

has related to that inference, i.e., agToM and agbs .

Tι = i[head← .send(rid ,Tell , ϕ);h]
func send(ϕ, agToM , agbs) = Belrid(ϕ)[γ]

〈ag , C,M, T,ExecInt〉 −→ 〈ag ′, C ′,M ′, T,ProcMsg〉

where:
M ′

Out = MOut ∪ {〈mid , rid ,Tell , ϕ〉}
with mid a new message identifier;

C ′
I = (CI \ {Tι}) ∪ {i[head← h]}

ag ′
ToM = agToM + Belrid(ϕ)[γ]

C ′
E = CE ∪ {〈+Belrid(ϕ)[γ],T〉}

(SndTell)

In the rule SndTell, the agent updates its mail outbox MOut with the mes-

sage, it updates its current intention to i[head ← h] (considering the action

.send(rid ,Tell , ϕ) that has already been executed), then it updates its ToM with

the prediction of a belief Bel rid(ϕ)[γ], creating an event 〈+Bel rid(ϕ)[γ],T〉 that may

be treated in a later reasoning cycle, possibly forming a new goal for the agent based

on this new information.

When a receiver agent receives a Tell message from an agent sid , it first checks

whether the sender believes ϕ based on its previous ToM about the sender and the

relevant information in its belief base. This expectation of a state of mind results

ivIn § 4.6, I will present an instance for that meta-information, which agents might use to deal
with the uncertainty present in the agents’ communication.
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from function func rec, which takes as arguments the ToM that the receiver already

has about the sender agToM , the relevant beliefs in its belief base agbs , and the

content ϕ being communicated, returning the sender’s mental attitude the receiver

can infer from those information, Bel sid(ϕ). A label γ is used to annotate relevant

information such as the confidence on the projected state of mind.

SM (MIn) = 〈mid , sid ,Tell , ϕ〉
func rec(ϕ, agToM , agbs) = Bel sid(ϕ)[γ]

〈ag , C,M, T,ProcMsg〉 −→ 〈ag ′, C ′,M ′, T,ExecInt〉

where:
M ′

In = MIn \ {〈mid , sid ,Tell , ϕ〉}
ag ′

bs = agbs + ϕ[s(sid)]
ag ′

ToM = agToM + Bel sid(ϕ)[γ]
C ′
E = CE ∪ {〈+ϕ[s(sid)],T〉} ∪ {〈+Bel sid(ϕ)[γ],T〉}

(Tell)

After that, the agent updates its mail inbox MIn , its belief base agbs with this

new information ϕ[s(sid)] (following the original semantics of AgentSpeak [284]),

and it updates its ToM about the sender with Bel sid(ϕ)[γ]. Both of these updates

(on the ToM and the belief base) generate events to which the agent is able to react.

Note that the predictions resulting from func send and func rec can be different

from the actual state of mind of the other agents. Therefore, a good prediction

model, considering both the ToM and relevant information from the agents’ belief

base, plays an important role when modelling ToM based on agent communication.

Such models might consider the uncertainty present in agent communication, agents’

autonomy and self interest, trust relations, reliability, etc. Thus, there are many

different ways to instantiate such a model, and my approach allows different models

to be implemented through the user-defined func send and func rec functions. A

model for uncertain ToM will be presented in § 4.6. Therefore, I will omit γ in our

examples until then.

Example 2 Considering the scenario introduced in § 4.3.3, imagine that

John meets his students every week in order to supervise their work.

In a particular meeting with Alice, Alice asks John about the defi-
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nition of ToM, and John answers Alice with the following message:

〈alice, tell, definition(tom, “an approach to model others’ minds”)〉. At that mo-

ment, John is able to model that Alice believes the definition of Theory-

of-Mind as “an approach to model others’ minds”, i.e., John models

BelAlice(definition(tom, “an approach to model others’ minds”)) according to the

SndTell semantic rule. Also, when Alice receives the message, Alice is

able to model that John believes that definition for ToM, i.e., Alice models

BelJohn(definition(tom, “an approach to model others’ minds”)) according to the

Tell semantic rule.

4.4.3 The Achieve Performative

The semantics of the Achieve performative are as follows. When a sender agent

sends a message with the content ϕ, it expects that the receiver agent will likely

desire ϕ. It can predict this result using its previous ToM about the receiver, agToM ,

and the relevant information in its belief base, agbs , resulting in Desrid(ϕ)[γ] (where

again γ is an estimation of how likely the receiver is to adopt that goal).

Tι = i[head← .send(rid ,Achieve, ϕ);h]
func send(ϕ, agToM , agbs) = Desrid(ϕ)[γ]

〈ag , C,M, T,ExecInt〉 −→ 〈ag ′, C ′,M ′, T,ProcMsg〉

where:
M ′

Out = MOut ∪ {〈mid , rid ,Achieve, ϕ〉}
with mid a new message identifier;

C ′
I = (CI \ {Tι}) ∪ {i[head← h]}

ag ′
ToM = agToM + Desrid(ϕ)[γ]

C ′
E = CE ∪ {〈+Desrid(ϕ)[γ],T〉}

(SndAchieve)

The sender agent updates its mail outbox MOut , its current intention, its ToM

about the receiver with the prediction Desrid(ϕ)[γ], and an event is generated from

the update in its ToM.

When an agent receives an Achieve message, it can safely conclude that the

sender desires ϕ itself, using its previous ToM about the sender and the relevant

information from its belief base.

146



SM (MIn) = 〈mid , sid ,Achieve, ϕ〉
func rec(ϕ, agToM , agbs) = Dessid(ϕ)[γ]

〈ag , C,M, T,ProcMsg〉 −→ 〈ag ′, C ′,M ′, T,ExecInt〉

where:
M ′

In = MIn \ {〈mid , sid ,Achieve, ϕ〉}
ag ′

ToM = agToM + Dessid(ϕ)[γ]
C ′
E = CE ∪ {〈+!ϕ,T〉} ∪ {〈+Dessid(ϕ)[γ],T〉}

(Achieve)

The receiver agent updates its mail inbox MIn and its ToM about the sender, which

generates an event 〈+Dessid(ϕ)[γ],T〉. Also, another event +!ϕ is generated, which

allows the agent to react to that communication, searching for plans that allow it to

pursue the achievement of ϕ. Using those plans, the agent is able to autonomously

decide whether to achieve ϕ or not. In case it decides to achieve ϕ, then the agent

will look for a plan that achieves ϕ and will make that plan one of its intentions.

Example 3 Continuing our example, imagine that during a meeting with

Bob, John realises that it could be interesting for Bob to read a paper

about multi-agent systems, so John sends the following message to Bob:

〈bob, achieve, read(bob, paper mas)〉. At that time, John is able to model that

Bob desires to read the paper, i.e., DesBob(read(bob, paper mas)) according to the

SndAchieve semantic rule. Also, Bob is able to model that John desires that Bob

reads the paper, i.e., DesJohn(read(bob, paper mas)) according to the Achieve se-

mantic rule. Bob is able to react to the event +!read(bob, paper mas), searching

for a plan to achieve that goal and turning the plan into one of Bob’s intentions.

A simple plan, written in Jason, that Bob could use to achieve this goal is shown

below:

+!read(Ag,Paper)

: .my_name(Ag) & desires(Sup,read(Ag,Paper)) & supervisor(Sup,Ag)

<- read(Paper).

The plan above says that, when an event of the type +!read(Ag,Paper) is

generated, meaning that that agent has perceived that external event, in this
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case it has received an achieve message, of the type read(Ag,Paper), then if

Ag unifies with the name of the agent executing this plan (obtained with .my -

name(Ag)), and if the agent believes that its supervisor desires that it reads that pa-

per (desires(Sup,read(Ag,Paper)) and supervisor(Sup,Ag)), then the agent

will proceed to execute the action read(Paper). Note that the Achieve se-

mantic rule provides the context (precondition) necessary for Bob to execute this

plan, considering the unification {Ag 7→ bob, Paper 7→ paper mas, Sup 7→ john}

and that desires(john,read(bob,paper mas)) is the code representation for

DesJohn(read(bob, paper mas)).

4.4.4 The Ask-If Performative

When the sender agent sends an Ask-If message with the content ϕ, the only infer-

ence the agent can make is that the other agent will believe that the sender desires

to know ϕ, i.e., Bel rid(Desag(ϕ))[γ].

Tι = i[head← .send(rid ,AskIf , ϕ);h]
func send(ϕ, agToM , agbs) = Belrid(Desag(ϕ))[γ]

〈ag , C,M, T,ExecInt〉 −→ 〈ag ′, C ′,M ′, T,ProcMsg〉

where:
M ′

Out = MOut ∪ {〈mid , rid ,AskIf , ϕ〉}
with mid a new message identifier;

C ′
I = (CI \ {Tι}) ∪ {i[head← h]}

ag ′
ToM = agToM + Belrid(Desag(ϕ))[γ]

C ′
E = CE ∪ {〈+Belrid(Desag(ϕ))[γ],T〉}

(SndAskIf)

The sender agent updates its mail outbox MOut , its current intention and its ToM

about the receiver with the prediction Bel rid(Desag(ϕ))[γ], thus an event is generated

from the update in its ToM.

When an agent receives the message, it is able to infer that the sender desires to

know whether ϕ is the case or not. After that, in both cases the agent updates its

mental state similarly to the other semantic rules.
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SM (MIn) = 〈mid , sid ,AskIf , ϕ〉
func rec(ϕ, agToM , agbs) = Dessid(ϕ)[γ]

〈ag , C,M, T,ProcMsg〉 −→ 〈ag ′, C ′,M ′, T,ExecInt〉

where:
M ′

In = MIn \ {〈mid , sid ,AskIf , ϕ〉}
ag ′

ToM = agToM + Dessid(ϕ)[γ]
C ′
E = CE ∪ {〈+Dessid(ϕ)[γ],T〉}

(AskIf)

Example 4 Continuing our scenario, imagine that during a group meeting,

John asks all students if they like paper seminars, using the following message:

〈{bob, alice, nick, tom}, AskIf, like(Ag, paper seminar)〉. At that moment John

considers that all students believe that John desires to know who likes paper semi-

nars, e.g., BelAlice(DesJohn(like(Ag, paper seminar))), according to the SndAskIf

semantic rule. Also, all students think that John desires to know who likes pa-

per seminars, DesJohn(like(Ag, paper seminar)), according to the AskIf semantic

rule. Two simple plans, written in Jason, that students could use to react the event

generated by adding DesJohn(like(Ag, paper seminar)) to their ToM is shown below:

+!desires(Sup,like(Ag,Task))

: .my_name(Me) & like(Me,Task) & supervisor(Sup,Me)

<- .send(Sup,tell,like(Me,Task)).

+!desires(Sup,like(Ag,Task))

: .my_name(Me) & ¬ like(Me,Task) & supervisor(Sup,Me)

<- .send(Sup,tell, ¬ like(Me,Task)).

The plans above say that an agent will tell John that it likes a particular task if it

likes the task. Otherwise, an agent will tell John that it does not like that task. For

example, Alice likes paper seminars, answering John with the following message:

〈john, tell, like(alice, paper seminar)〉. In this case, John will update its ToM

stating that Alice likes paper seminars, and Alice will update its ToM stating that

John believes that she likes paper seminars Bel john(like(alice, paper seminar)),
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according to the Tell and SndTell semantic rules. In the future, as John has

this information, it would be able to allocate a task to a student who likes that task.

4.5 Reaching Shared Beliefs using ToM

Many application domains require the implementation of coordination schemes for

MAS [150], in which agents need to work together in order to achieve the system’s

goal. As described in [150], acting together requires the team to be aware of and

care about the status of the group effort as a whole. Thus, in order to maximise

the cooperative performance in MAS, mechanisms that allow agents to reach shared

beliefs should be incorporated.

Definition 1 (Shared Beliefs [284]) Two agents agi and agj reach a state of

shared beliefs when, for a belief ϕ[S] where S represents the different sources of

ϕ, both agi and agj are sources of ϕ, i.e., ϕ is a shared belief for agi and agj,

when ϕ[S ′] ∈ agibs with source(self), source(agj) ∈ S′ ∧ ϕ[S ′′] ∈ agjbs with

source(self), source(agi) ∈ S′′.

Note that, considering the perspective of one agent only, that agent will reach

a state of shared beliefs with another agent agj when, for a belief ϕ[S] with S

the different sources of ϕ, both itself and agj are sources of ϕ, i.e., source(self),

source(agj) ∈ S. That is an important consideration, because when modelling

ToM, shared beliefs are going to be defined by the perspective of only one agent.

In [284], the authors showed how agents are able to reach shared beliefs. That

approach for agents reaching shared beliefs starts with an agent agi, which believes

in ϕ, sending to another agent agj a tell message with the content it desires to

become a shared belief, i.e., 〈agj, tell, ϕ〉. Thus, following the semantics in [284],

agent agj will receive the message and update its belief base with ϕ[source(agi)].

Then, agent agi needs to send a message to agent agj to achieve that shared belief,
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i.e., 〈agj, achieve, ϕ〉, thus the agent agj is able to execute the same procedure,

sending a tell message to the agent agi with ϕ, i.e., 〈agi, tell, ϕ〉. Finally, agent agi

receives this message and updates its belief base to ϕ[source(itself), source(agj)],

reaching the state of shared beliefs.

Considering agents that are able to model ToM, it is possible to redefine the

idea of shared beliefs, including the model of other agents’ minds, i.e., a ToM. This

is because agents able to model ToM will also update their mental attitudes/state

when sending a message to other agents, as I formalised in § 4.4, and not only when

receiving a message as in [284]. This gives:

Definition 2 (Shared Beliefs using ToM) An agent agi will reach a state of

shared beliefs with another agent agj when, for a belief ϕ, it is able to match its

own belief ϕ with a ToM about agj believing ϕ, i.e., ϕ∧Belagj (ϕ)[γ], with γ equal to

1 (certain knowledge).

When I assume that agents are cooperative, they trust each other, and the

network infrastructure guarantees that messages will reach their intended receivers,

I also assume that there is no uncertainty regarding the agents’ ToMs of each other.

Thus, it is easy to ensure that agents reach shared beliefs.

Proposition 1 (Reaching Shared beliefs — ToM without Uncertainty)

Without uncertainty of ToM, agents that are able to model ToM are able to reach a

state of shared beliefs faster (with fewer exchanged messages) than agents without

this ability.

Proof 1 Following the semantic rule SndTell, when an agent agi believes ϕ, thus

ϕ ∈ agibs, and it is able to model ToM, thus ∃ ToM ∈ ag, then it is able to reach a

state of a shared belief ϕ with another agent agj by communicating a single message

〈agj, tell, ϕ〉 to agj. When the agent agi sends this message, it updates its ToM
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with Belagj (ϕ), according to the SndTell semantic rule, reaching the state of shared

beliefs according to the Definition 2. So, we have (I) ∃ ToM ∈ agi ∧ ϕ ∈ agibs

then 〈agj, tell, ϕ〉. From (I) and SndTell we have (II) SndTell ∧ 〈agj, tell, ϕ〉

then agiToM
∪ Belagj (ϕ). When agj receives that message, by the Tell semantics

rule, updating its belief base with ϕ and its ToM with Belagi (ϕ), also reaching the

state of shared beliefs according to the Definition 2. Now we have from (I) and

Tell the following (III) Tell ∧ 〈agj, tell, ϕ〉 then agjToM
∪ Belagi (ϕ), and (IV)

Tell ∧ 〈agj, tell, ϕ〉 then agibs∪ϕ. Therefore, from (I)∧(II)∧(III)∧(IV ) we have

the following ϕ ∈ agibs ∧ Belagj (ϕ)[γ] ∈ agiToM
∧ ϕ ∈ agjbs ∧ Belagi (ϕ)[γ] ∈ agjToM

,

which satisfies Definition 1. In contrast, agents that are not able to model ToM

will need at least two messages, i.e., a tell message to be sent by each of them,

according to the semantics from [284] and Definition 1.

Example 5 Following the scenario introduced in § 4.3.3, imagine that during the

meetings John has had with his students, the students tell John which subjects they

know more about, and John has the following information of his students, according

to the Tell semantic rule:
knows(alice, tom) knows(bob, mas)
believes(alice, knows(alice, tom)) believes(bob, knows(bob, mas))
knows(nick, kr) knows(ted)
believes(nick, knows(nick, kr)) believes(ted, knows(ted, [tom, mas]))


Given this knowledge and the tasks John wants to allocate to his students, John

decides to assign the tasks as follows: task(write paper, [mas, tom]) to Ted, who

knows about both subjects needed for completing that task, task(review paper, [kr])

to Nick, who is the only student able to execute that task, and grouping Alice and

Bob for the task task(paper seminar, [tom, mas]). If Bob only knows mas and Alice

only knows tom, then they need to share their knowledge in order to successfully

perform the task.

Considering that together Alice and Bob know both topics in order to help
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each other during the paper seminar, they decide to exchange knowledge about

these topics. Thus, they might reach some shared beliefs (knowledge) about both

topics. Note that, in this scenario, Alice and Bob assume that both are co-

operating and both are rational. Thus, Alice starts the dialogue telling Bob

that “Theory-of-Mind is an approach to model others’ minds”, i.e., 〈bob, tell,

def(tom, “an approach to model others’ minds”)〉. At that moment, following the

semantic rule SndTell, Alice updates its ToM with the following information

Bel bob(def(tom, “an approach to model others’ minds”)). When Bob receives this

message, following the semantic rule Tell, Bob updates its belief base with the fol-

lowing information def(tom,“an approach to model others’ minds”), as well as its

ToM about Alice with Belalice(def(tom, “an approach to model other minds”)). By

now, both Alice and Bob have reached a state of shared belief about the definition of

tom, according to Definition 2. They proceed sharing the relevant information about

each topic until they both feel confident about both topics. Reaching shared beliefs

(knowledge) is important for this particular task, in which, when the audience asks

them questions about the topics tom and mas, both Alice and Bob are able to answer

the questions because they both have sufficient knowledge about the topics.

4.6 Handling Uncertainty

Until now, both Alice and Bob were able to reach a state of shared belief about

the definition of tom, according to Definition 2, which requires γ equal to 1 (certain

knowledge). That is, I have introduced a mechanism to model uncertain ToM using

the label γ, but up until this point I have made the assumptions that (i) agents are

cooperative, (ii) they trust each other, and (iii) the network infrastructure guarantees

that messages will reach their intended receivers, i.e., γ could be considered equal

to 1 (certain knowledge).

However, agents usually operate under conditions of uncertainty in a MAS, and
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the previous assumptions are difficult to obtain; thus, agents will face uncertainty

about their ToM, and consequently about their shared beliefs. For example, when

an agent sends a message, it faces the uncertainty of the communication channel,

i.e., the uncertainty of the message reaching the receiver. Also, when receiving a

message, an agent faces the uncertainty of the truth of that statement, e.g., an agent

is not able to verify if the other agents are acting maliciously [237, 200], thus it needs

to consider the uncertainty of information it receives for those agents based on how

much it trusts them [202, 203, 175].

One manner to overcome the uncertainty and to reach a more accurate ToM,

following the literature on common knowledge [51], is increasing the communication

between agents. Thus, an agent is able to increase the certainty of a given agent

agj believing ϕ, confirming whether its ToM about agent agj believing ϕ is correct.

That is, the agent is able to infer that agj believes ϕ by reinforcing this belief

through communication. Henceforth I describe the model for uncertain ToM, which

is compatible with that behaviour.

In order to show my approach, I am going to consider some parameter values.

The first parameter, α, reflects the uncertainty of the communication channel when

sending a message. The second parameter, β, reflects the uncertainty of the other

agents telling the truth, i.e., when an agent agi tells ϕ to agent agj, agent agj is able

to model that agi believes ϕ with a degree of certainty equal to β. For simplicity, I

will assume that an agent will model its ToM about the other agents with a degree

of certainty equal to the trust it has on the sourcev, following the ideas introduced

in [203, 202].

Definition 3 The label γ will be instantiated with γ = (α, t) for an agent sending

a message, and γ = (β, t) for an agent receiving a message, where α represents

vIn [196], the authors show that trust aggregates not only the sincerity of the source but also
the expertise the source has about the information communicated.
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the uncertainty of the message reaching the target, β the uncertainty of the sender

telling the truth, and t a discrete representation of the time of the MAS in which

the message was exchanged.

Thus, following Definition 3, a trace of different updates on the ToM is con-

structed over time. Note that α and β reflect the uncertainty of an update at a

given time. In order to execute reasoning over the ToM, agents are able to use the

trace of these updates to calculate the degree of certainty of their model. Using this

trace, I am able to model some desired behaviour from communication theory in

agent communication, as I will describe later in this chapter.

For example, considering our scenario, when Bob tells Alice that “Theory-

of-Mind is an approach to model others’ minds”, considering also that

Bob knows that the reliability of the communication channel is 0.9, i.e.,

α = 0.9, Bob will update its ToM, following the semantics for the

tell performative (equation (4.4.2)) and Definition 3, with the information

Belalice(def(tom, “an approach to model others’ minds”))[(0.9,ti)], with ti the dis-

crete time when the communication occurred. When Alice receives this

message, considering that the trust Alice has on Bob telling the truth

is 0.8, i.e., β = 0.8, and following the semantics for the tell per-

formative (equation (4.4.2)) and Definition 3, Alice updates its ToM with

Bel bob(def(tom, “an approach to model other minds”))[(0.8,tj)], with tj the discrete

time at which the message was received, with ti < tj. Both Alice and Bob model

uncertainty of their ToM about each other believing on the definition of ToM.

Considering uncertain ToM, I need to redefine shared beliefs, in order to reflect

the uncertainty of agents’ models.

Definition 4 (Shared Beliefs using Uncertain ToM) An agent agi will reach

a state of shared beliefs with another agent agj when, for a belief ϕ, it is able to
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match its own belief ϕ with a ToM about agj believing ϕ with a predetermined degree

of certainty χ, i.e., ϕ ∧ P (Belagj (ϕ)) ≥ χ, with χ a value describing the certainty

necessary to consider ϕ a shared belief.

Following the literature on common knowledge [51], if two individuals agi and

agj can repeatedly communicate, then they can repeatedly reinforce their mental

state regarding an item of information ϕ. For example, telling each other that ϕ is

true, they should increase the certainty of each others’ belief in ϕ. In order to model

this desired behaviour in my approach, I maintain the trace of all updates an agent

executes in its ToM, and using this trace I am able to aggregate different pieces

of evidence in order to increase the certainty on ToM. There are many different

ways to model this desired behaviour of agent communication if I was considering

the particularities of each application domain. In our scenario, the information

communicated by agents, e.g., a concept definition, does not change over time.

Thus, for simplicity, I do not weigh every information according to the time it was

received and the current time of the MAS. I only consider as pieces of evidence

the number of times that information was communicated. For example, I count as

evidence how many times does an agent perform a specific speech act. Every time

that same agent performs the same speech act, I consider it as a piece of evidence

for that agent believing the information that is being communicated through that

speech act. Thus, I model this desired behaviour using the following equation:

P (BelAg(ϕ)) =

{
f(Belag(ϕ)) if f(Belag(ϕ)) <= 1

1 otherwise
(4.1)

f(Belag(ϕ)) =

∑
ti∈∆T

v | Belag(ϕ)[(v,ti)]

|∆T |
+ (λ× |∆T |) (4.2)

with ∆T the number of occurrences of Belag(ϕ)[(v,ti)] in the agent ToM, and λ the

evidence factor, i.e., a parameter that reinforces the certainty on that information

156



according to how often it occurs in the trace. Equation 4.2 calculates the average

of the trace for Belag(ϕ) plus the evidence factor.

Example 6 Following our scenario, imagine that Bob wants to reach a state of

shared beliefs with Alice about the definition of ToM under the conditions of un-

certainty described above. Thus, after sending the previous message and updat-

ing its ToM with Belalice(def(tom, “an approach to model others’ minds”))[(0.9,ti)],

Bob has the option to increase the certainty in its ToM about Alice believ-

ing that definition by telling Alice that definition again. Taking λ to be 0.1,

when Bob tells Alice the definition of ToM once again, following the seman-

tics for the tell performative (equation in § (4.4.2)) and Definition 3, Bob

adds Belalice(def(tom, “an approach to model others’ minds”))[(0.9,tj)] to its ToM,

with ti < tj. Thus, Equation 4.1 returns 1, considering the average 0.9 +

0.2 from the evidence factor, which is 0.1 multiplied by the number of evi-

dences (equation (4.2)). Also, following the semantics for the tell perfor-

mative (equation in § (4.4.2)) and Definition 3, Alice updates its ToM with

Bel bob(def(tom, “an approach to model other minds”))[(0.8,tj)], and Equation (4.1)

returns 1, considering the average 0.8+0.2 from the evidence factor (equation (4.2)).

Thus, they reach a state of shared belief about the definition of ToMvi, considering

χ = 1 in Definition 4.

Because Definition 4 allows agents to increase belief in a given piece of informa-

tion by repeatedly communicating it, agi is able to reach a state of shared belief

with another agent agj about a belief ϕ when it is able to infer P (Belagj (ϕ)) ≥ χ

from Equation 4.1 with χ = 1, for example.

Proposition 2 (Reaching Shared Beliefs — ToM with Uncertainty)

When λ is a positive value, agents are able to eventually reach a state of shared

viWhen considering γ = 0.1 and α and β >= 0.8, agents are able to reach shared beliefs
communicating only 2 messages.
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beliefs, even considering χ = 1, provided they communicate the same information

repeatedly. Also, the greater the value of λ, the faster agents will reach the state of

shared beliefs.

Proof 2 According to Proposition 2, λ is a positive value, λ > 0. Let us consider

that α and β are also positive values, α, β > 0, since they are values that represent

uncertainty. Even if α and β are not significant values, e.g., α, β → 0+, when we add

to equation (4.2) the value computed by λ×|∆T |, then the equation requires at most

n communication instances of Belagj (ϕ) for P (Belagj (ϕ)) to reach 1, with n = 1/λ.

Let us suppose that λ = 0.1, then independently of the values taken α and β, it is

necessary to have a trace with 10 communication instances of Belagj (ϕ) in order to

obtain P (Belagj (ϕ)) = 1. Also, the greater the value of λ, the faster the agents will

be able to reach the state of shared beliefs, given that only n communication instances

are necessary for P (Belagj (ϕ)) to reach 1, with n = 1/λ.

Example 7 Given the previous example from our scenario, where Bob

wants to reach a state of shared beliefs with Alice about the defi-

nition of ToM under the conditions of uncertainty described above.

Thus, after sending the previous message and updating its ToM with

Belalice(def(tom, “an approach to model others’ minds”))[(0.9,ti)], Bob also has

the option to increase the certainty in its ToM about Alice believing that

definition by asking Alice the definition of ToM and waiting for an an-

swer from Alice, in which Alice tells Bob the definition of ToM. When

Bob asks to Alice to tell him the definition of ToM, and waits for the an-

swer. When Alice tells Bob the definition of ToM, Alice and Bob update

their ToM with Bel bob(def(tom, “an approach to model other minds”))[(0.9,tj)],

Belalice(def(tom, “an approach to model others’ minds”))[(0.8,ti)], respectively. For

both, Equation (4.1) returns 1, considering the average 0.85 + 0.2 from the evidence
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factor, reaching a state of shared beliefs about the definition of ToM according to

Definition 4 with χ = 1.

4.7 Making Decisions with ToM

Apart from enabling agents to model other agents’ minds and allowing them to

improve their models during communicative interactions, it is also essential that

agents are able to make decisions using these models. Normally, a decision-making

process is associated with the application domain, i.e., it is domain dependent.

Therefore, I will present the decision-making process for the task assignment problem

introduced in § 4.3.3.

In our scenario, during advising sessions, John asks students about different

tasks they like to execute, as well as the different subjects the students are reading

about (the subjects the students know about). Thus, John acquires ToM about the

students, and its ToM becomes more accurate as they have more advising sessions,

and consequently they communicate more with each other.

John
ToM

=



Belalice(likes(paper seminar))[0.8]

Belalice(likes(write paper))[0.7]

Bel bob(likes(review paper))[0.9]

Bel bob(likes(write paper))[0.8]

Belnick(likes(review paper))[0.6]

Belnick(likes(write paper))[0.5]

Bel ted(likes(write paper))[0.8]

Bel ted(likes(paper seminar))[0.4]

Bel ted(likes(review paper))[0.6]


For example, John has asked (in different meetings and times) Bob, Alice, Nick, and

Ted which academic tasks they like to execute, e.g., 〈bob,AskIf , likes(T)〉. After

receiving this message, according to the semantic rule for the ask performative

(equation in (4.4.4)), each student knows that John desires to know which task

they like to execute. Based on this knowledge, each student has answered to John

the tasks they like to execute, John has received these messages and updated its
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ToM as shown in John
ToM

vii.

Determine tasks 

Communicate
Update ToM until

Shared Beliefs are
reached

Delegate tasks

Estimate likelihood
of task acceptance

for every agent

Figure 4.1: Decision protocol for task delegation using ToM update rules through
multi-agent communication.

Continuing with the example, during a meeting Alice asks John if there

is any scheduled paper seminar about ToM and MAS, i.e., 〈john,AskIf ,

task(paper seminar, [tom, mas]〉. Thus, based on the semantic rule for the ask

performative (equation in (4.4.4)), John models that Alice is likely to desire that

task, i.e., Desalice(task(paper seminar, [tom, mas]))[0.7], answering positively. Also,

imagine that John has asked the students which subject they have knowledge about,

resulting in the following additional information to John’s ToM:

John
ToM

=


Belalice(knows(tom))[0.8] Bel bob(knows(mas))[0.8]

Belalice(knows(mas))[0.9] Bel bob(knows(kr))[0.9]

Belnick(knows(kr))[0.8] Bel ted(knows(tom))[0.8]

Belnick(knows(mas))[0.7] Bel ted(knows(kr))[0.5]

Belnick(knows(tom))[0.8] Bel ted(knows(mas))[0.8]


Using its ToM, John executes the probabilistic reasoning described in § 4.3.3,

which computes the likelihood for each student to accept each task as shown in

Table 4.1. Note that the likelihood of Alice accepting the task paper seminar

is based on the information Desalice(task(paper seminar) [tom, mas])[0.7] in John’s

ToM, while the other results are based on the likelihood of the students liking a

particular task and knowing the subjects related to that task. Thus, John con-

cludes that it is possible to increase the probability of each task to be accepted by

viiI do not represent the time at which the messages were communicated, but since they were
communicated at different times I introduced different values for γ.
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the students by offering the task task(paper seminar, [tom, mas]) to Alice, offering

task(review paper, [kr]) to Bob, and offering task(write paper, [mas, tom]) to Ted.

Student Task Likelihood
Alice task(write paper, [mas, tom]) 0.5
Alice task(review paper, [kr]) 0.0
Alice task(paper seminar, [tom, mas]) 0.7
Bob task(write paper, [mas, tom]) 0.0
Bob task(review paper, [kr]) 0.8
Bob task(paper seminar, [tom, mas]) 0.0
Nick task(write paper, [mas, tom]) 0.3
Nick task(review paper, [kr]) 0.5
Nick task(paper seminar, [tom, mas]) 0.0
Ted task(write paper, [mas, tom]) 0.5
Ted task(review paper, [kr]) 0.2
Ted task(paper seminar, [tom, mas]) 0.1

Table 4.1: Likelihood calculation for task assignment

4.8 Deriving New Knowledge

While modelling other agents’ minds through communication is a fundamental step

towards equipping agents with ToM, it only represents one approach for agents to

acquire the model of other agents’ minds, i.e., TT ToM (Theory Theory-of-Mind). A

different approach is the ability of agents to infer new knowledge about other agent’s

mind without explicitly communicating. This approach requires agents to consider

their context and TT ToM to infer extended knowledge, or in other use to simulate

the minds of other agents, i.e., to use an ST ToM (Simulation Theory-of-Mind).

In multi-agent systems, the context can be perceived by agents from their envi-

ronment and organisation. For example, (i) in the JaCaMo framework [28], agents

that belong to the same organisation, can perceive the other agents’ roles, respon-

sibilities, relationship (acquaintance, authority, and communication links), etc; and

(ii) in Electronic Institutions (EI) [190], agents can perceive other agents’ roles,

group meetings (scenes), as well as the normative rules of the system, etc.
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If an agent can access this type of information about other agents and their

roles and relationships as well the rules of action and communication that different

contexts impose, then the agents can use this information to simulate how the mental

attitudes of the other agents change in different scenarios.

Therefore, by considering (i) its belief base, (ii) the other agent’s model given

by TT ToM, and (iii) a particular context, an agent can derive knowledge, i.e.,

to execute ST ToM. Thus, I introduce a function ε→, which considers the agent’s

belief base, bs, a particular context, Cx, and the agent’s ToM in order to model

an extended ToM, including the extended knowledge it was able to infer from its

knowledge in that particular context.

ε→(bs, Cx, ToM) : bs ∧ Cx ∧ ToM −→ ToM ′ (4.3)

Note that, this differs from § 4.4, where an agent infers TT ToM using func send

and func rec, that considers the agent’s belief base, agbs , the agent’s previous model

of ToM, agToM , and the speech-act used. In this section, an agent derives knowledge

from the model it has already built from those communications. This is also different

from § 4.7, in which an agent is able to make decisions using that TT ToM, whereas in

this section the agent is able to use the extended knowledge when making decisions,

i.e., using ST ToM too.

Example 8 Imagine that John models that Alice knows the subject ToM, i.e.,

Belalice(knows(tom)) ∈ JohnToM . Also, imagine that they are in the context of a

group meeting, and that John has learned that students who know a subject and are

participating in a group meeting normally desire to talk about the known subject, i.e.,

the inference rule (Belag(knows(S)) ∧ group meeting → Desag(talk about(S))) ∈

Johnbs. Thus, applying ε→, John is able to infer that Alice desires to talk about

ToM during the group meeting, Desalice(talk about(tom)), considering a substitu-

tion function {ag 7→ alice, S 7→ tom}.
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In Jason, such inference rules are implemented as follows:

desires(Ag, talk about(Sub)) : − believes(Ag, knows(Sub)) & group meeting.

Note that, an agent is only able to infer Desalice(talk about(tom))) while it be-

lieves itself to be in that particular context, i.e., group meeting.

Definition 5 (Extended Theory-of-Mind) An extended Theory-of-Mind is a

ToM, acquired from agent’s communication, extended through a process of reason-

ing in which an agent considers its own knowledge, context, and its ToM to model

other agents’ mental attitudes. The new models hold while the context considered

also holds.

It is reasonable to think that an agent could use the performatives presented in

§ 4.4 to directly reach some desired mental attitude of other agents, e.g., reaching

Desalice(talk about(tom)) by executing 〈alice, achieve, talk about(tom)〉 according

to the SndAchieve semantics rule. However, it is not always the case that the

communication protocol will allow such moves during dialogue, e.g., it could restrict

such moves from a subordinated role to a role with higher authority. Also, in

communication, indirectly making an audience reach a conclusion is known to be

more efficient than directly disclosing the conclusion to them [187]. Thus, extended

ToM, as I have introduced it here, is an essential component to be considered when

developing socially-intelligent agents equipped with ToM. Furthermore, it is essential

for agents to be able to reason about which action to execute in order to indirectly

reach some desired state of ToM, e.g., to reason about how they can cause changes

in the mental attitudes of other agents. To do this, they should be able to simulate

other agents’ minds.
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Definition 6 (Desired Theory-of-Mind) We say that an agent has a desired

Theory-of-Mind, ToM∗, when an agent desires another agent to have a certain men-

tal attitude ψ ∈ ToM∗, where ψ 6∈ ToM (the current agent’s ToM).

An agent is able to simulate other agents’ minds looking for a proposition that,

when added to its ToM, it will make the agent reach a desired state for its model

of other agents’ minds. That allows an agent to reason about which state of other

agents’ mind it might need to reach in order to achieve its goal. I introduce the

function ε← which considers the agent’s belief base, bs, a particular context, Cx,

and a simulated ToM, ToM+, in order to model an extended ToM considering a

simulated ToM, ToM ′.

ε←(bs, Cx, ToM+) : bs ∧ Cx ∧ ToM+ −→ ToM ′ (4.4)

Definition 7 (Simulated Theory-of-Mind) Let ToM be a Theory-of-Mind. A

simulated Theory-of-Mind, ToM+, is a ToM extended with a set of propositions

that an agent does not have in its current ToM, i.e., ToM+ = ToM ∪ ∆+ with

∆+ = ToM+ \ ToM .

Example 9 Let us use a different scenario in which agents are not allowed to use

the achieve performative to model other agents’ desires. For example, imagine that a

car dealer wants to sell a car, and they know that the customers will desire to buy the

car if they believe the car is safe and fast, thus the car dealer knows that feeding the

information safe(car1) and fast(car1) to a customer will make the customer

believe that car1 is safe and fast, thus inferring that the customer will desire to

buy car1 [200], i.e., (Belag(fast(Car)) ∧ Belag(safe(Car)) ∧ at(ag, sales hall) →

Desag(buy(Car))) ∈ Car Dealerbs.

Therefore, the car dealer is able to infer that feeding a customer who is

at the sales hall (i.e., Cx = at(customer, sales hall)) with safe(car1)
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and fast(car1), i.e., becoming able to model that Bel customer(fast(car1)) and

Bel customer(safe(car1)), it will reach a desired ToM in which the customer desires

to buy that car, i.e., Descustomer(buy(car1)) applying the function ε←, considering

that (Belag(fast(Car)) ∧ Belag(safe(Car)) ∧ at(ag, SRom) → Desag(buy(Car))) ∈

Car Dealerbs and an unification function {ag 7→ customer , Car 7→ car1}.

Note that Car DealerToM+ = Car DealerToM ∪ {Bel customer(fast(car1)),

Bel customer(safe(car1))}. That means the car dealer has simulated a ToM with

the given information in order to check if the other agent reaches a certain men-

tal attitude that the dealer agent has in its desired state of ToM. From that

simulation, the car dealer is able to understand what information it needs to

model about other agents in order to reach the desired state of ToM, in our ex-

ample, {Bel customer(fast(car1)),Bel customer(safe(car1))}. Based on my semantics,

the car dealer could use the Tell performative, 〈customer, tell, safe(car1)〉 and

〈customer, tell, fast(car1)〉, respectively, to reach a desired state of ToM in which

the car dealer can model Descustomer(buy(car1)).

The rule used in Example 9 can be implemented in Jason as follows:

desires(Ag, buy(Car)) : − believes(Ag, safe(Car)) & believes(Ag, fast(Car))

& at(Ag, sales hall)

Definition 8 (Effective Simulation of Theory-of-Mind) We say that an

agent is effective in its simulation of ToM when it is able to reach a new Theory-of-

Mind from a previous Theory-of-Mind executing a set of actions, in which this new

Theory-of-Mind corresponds to its simulated Theory-of-Mind from Definition 7.

That means, using a set of action Act, an agent is able to reach ToM+ from ToM ,

i.e., ToM −→Act ToM
′′, with ToM ′′ ≡ ToM+.
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Proposition 3 (Reaching Desired Theory-of-Mind) If an agent is effective in

its simulation of Theory-of-Mind, following Definition 8, it is able to reach a desired

extended Theory-of-Mind ToM∗ when in the right context, following Definition 5.

Proof 3 Consider that an agent ag desires to reach ToM∗ from Definition 6. Reach-

ing ToM∗ can depend on the context, and the rules enabled by such context, or not.

If the agent is effective in its simulation of Theory-of-Mind, according Definition 7,

then it is able to start from a Theory-of-Mind ToM , simulate ToM+, and according

to Definition 6, verify if the resulting extended ToM ′, according to Definition 5,

matches with ToM∗, that is if ToM ′ ≡ ToM∗. (i) When ToM∗ does not depend

on the context, then ag will add to its simulated ToM, ToM+, those models of the

other agents’ minds that are missing from its desired ToM, ToM∗; (ii) When ToM∗

depends on the context, assuming that the agent is in the right context, Cx, it will

add to its simulated ToM, ToM+, those models of the other agents’ minds that are

missing from its desired ToM, ToM∗, that it can reach by executing the actions that

are allowed by the context Cx plus those models of the other agents’ minds that, to-

gether with the context Cx allow it to reach an extended ToM, ToM ′, that matches

with its desired Theory-of-Mind ToM∗. Finally, assuming that ag is effective in its

simulation of Theory-of-Mind, then it will be able to execute the actions that will

allow it to reach state where ToM ′ ≡ ToM∗.

The reasoning executed by an agent is showed in Figure 4.2. First an agent will

define which state of ToM it desires to reach (which could match with its goals).

Second, it will simulate what it needs to add to its current ToM in order to reach

that desired ToM. Third, it will execute those actions that will add those mental

models that are missing in its current ToM in order to either (i) directly reach the

desired ToM; or (ii) together with its context reach an extended ToM which matches

its desired ToM. After, executing those action and updating its ToM, it is expected
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to reach the desired ToM.

Define the Desired
ToM*

Simulate ToM+ in
order to check how to

reach ToM*
Execute action to

reach ToM+ Reach ToM*

Figure 4.2: Reaching a Desired ToM.

4.9 Limitations of the Model

When modelling ToM, the beliefs of other agents are context independent, whereas

their Intentions and Desires are normally context dependent. An agent’s intentions

as well as desires or goals need to be instantiated for every context. In dialogue

games, for instance, where each dialogue game represents a context, one needs to

specify to the agents what the rules of the game are as well as the possible moves

that are permitted in the game, represented by “speech acts”, i.e., a communication

protocol. Although my approach could potentially be used to model other agents’

strategies in such protocols, I did not explore this topic in this chapter. Note that it

requires us to consider a particular context of a dialogue game, in which agents will

perceive the rules applying to the context (dialogue rules, communicative actions,

etc.) and execute ST ToM over other agents’ model using that context.

In our running example, for instance, actions that can be performed by the

agents in that context are specified by the agents’ organisation, so in the context of

group meeting the action presentation was possible. The approach presented here

mainly focuses on agent-agent communication, although combining it with existing

work on generating and extracting arguments and speech acts in/from natural lan-

guage, would also support work on human-agent interaction. However, integrating

the approach here with natural language processing is not in the scope of this thesis.
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4.10 Conclusion

The approach to model Artificial ToM in this chapter represents an important

stepping-stone towards the modelling and implementation of deceptive agents in

MAS. This BDI-based approach to ToM enables agents to model all three types

of mental attitudes, namely beliefs, desires, and intentions, when reasoning about

the minds of other agents. This approach shows how agents can acquire, update,

simulate and use models of other agents’ minds to reach shared beliefs and to im-

prove communication and decision making between themselves. The model of un-

certainty present implies the existence of two important factors in agent communi-

cation, namely the uncertainty of the communication channel and the levels of trust

between agents. The influence of trust on agent communication also implies the

possibility of dishonest behaviour that might stop agents from reaching a real state

of shared beliefs. Finally, the capability of agents to derive new knowledge about

the minds of others through mental simulation gives agents the ability to reason

about different contexts in which communication happens.

The approach in this chapter offers an explainable way to model agents with ToM.

This is a crucial property of ToM to have if we want to study deceptive agents that

use ToM. The operational semantics, for instance, let us track every belief agents

form about other agents in different contexts. This is very important for checking

what the agents are thinking about each other and to see why they communicate

certain messages and why they intend to communicate those messages in the first

place. Later in this thesis I illustrate how agents that have already acquired beliefs

about other agents’ minds can use these prior beliefs (which belong to their TT

ToM) to simulate the minds of their targets. That is to use information acquired

through communication in order to check if it is possible to cause the formation of

a desired false belief in the mind of their target, and thus to attempt deception.
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Chapter 5

Dishonest Agents

In this chapter I model and compare three types of dishonest behaviour, including

deception, that future socially-aware artificial agents may adopt.

It is reasonable to assume that in the next few decades, intelligent machines might

become much more proficient at socialising. This implies that the AI community will

face the challenges of identifying, understanding, and dealing with the different types

of social behaviours these intelligent machines could exhibit. Given these potential

challenges, in this chapter I describe how to model three of the most studied strategic

social behaviours that could be adopted by autonomous and malicious software

agents. These are dishonest behaviours such as lying, bullshitting, and deceiving

that autonomous agents might exhibit by taking advantage of their own reasoning

and communicative capabilities. In contrast to other studies on dishonest behaviours

of autonomous agents [258, 231, 130, 54, 217], I use an agent-oriented programming

language to model dishonest agents’ attitudes and to simulate social interactions

between agents. The model of dishonest behaviours described in this chapter is

intended to be used by further research through simulation, in order to study and

propose mechanisms that identify and deal with dishonest software agents.
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5.1 Introduction

Agent-Oriented Programming Languages (AOPL) and platforms to develop Multi-

Agent Systems (MAS) provide suitable frameworks for modelling agent communi-

cation in AI. We can reasonably say that one of the main purposes of AI research is

to represent as accurately as possible the way humans use information to perform

actions. Actions of humans are sometimes performed by applying dishonest forms

of reasoning and behaviour such as lying, bullshitting, and deceiving.

In this chapter, I model lies, bullshit and deception in an AOPL named Ja-

son [33], which is based on the BDI (Belief-Desire-Intention) architecture. Modelling

these dishonest attitudes in MAS allows us to simulate agent interactions in order to

understand how agents might behave if they have reasons to adopt these dishonest

behaviours. Understanding such behaviours also allows us to identify and deal with

such phenomena, as proposed by [45].

Even though the AI community has investigated computational models of

lies [258], “bullshit”, and deception [40], to the best of my knowledge, the work

in this chapter is one of the first attempts to model these types of agent attitudes

in the practical context of an AOPL. AOPLs offer an attractive way of improving

the research of dishonest agent behaviour through simulations of agent interactions

with explicit representation of relevant mental states.

The study in this chapter brings two main contributions to the AI community:

(i) A comparative model of lies, bullshit, and deception in an AOPL based on the

BDI architecture, which allows us to define and simulate these dishonest behaviours.

(ii) Making the respective model practical, by implementing an illustrative scenario

to show how an agent called car dealer is able to deceive other agents called buyers

in buying a cari. In this scenario, the car dealer also tells lies and bullshit in order

to make the buyers believe a car is suitable for them, when in fact it is not.

iThe implementation of this work is available at https://tinyurl.com/ybrmkqg9.
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5.2 Background

5.2.1 Lying, Bullshitting, and Deceiving

I will start by describing what lying is from an agent-based perspective. I define

lying similar to [40]. A lie is a false statement about something that is intended

to make someone believe the opposite of what is actually true. Lying cannot be

reduced to linguistic communication only. Liars give out information to others in

various forms, such as social behaviour, facial expressions, physiological responses

to questions, and manipulation of the environment [75, 39].

Definition 9 (Lying) The dishonest behaviour of an agent Agi to tell another

agent Agj that ¬ψ is the case, when in fact Agi knows that ψ is the case.

Bullshit is different from lying in the sense that it is not intended to make

someone believe the opposite from the truth. A bullshitting agent will give an

answer to a question in such a way that the one who asked the question is left with

the impression that the bullshiter agent knows the true answer [92], when in fact it

does not.

Definition 10 (Bullshit) The dishonest behaviour of an agent Agi to tell another

agent Agj that ψ is the case, when in fact Agi does not know if ψ is the case.

Deception is more complex than bullshit or lying. I define deception as the inten-

tion of an agent (Deceiver) to make another agent (Interrogator) believe something

is true that it (Deceiver) thinks is false, with the scope of reaching an ulterior goal or

desire. The complexity arises due to the fact that an agent requires Theory-of-Mind

(henceforth ToM) to deceive [130]. ToM is not needed to tell a lie or to bullshit

(although there are cases in which liars or bullshitters can make use of ToM). The

Deceiver has to let the Interrogator reach the conclusion by itself. For example, if

the Deceiver wants the Interrogator to believe that q is the case, instead of directly
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telling the Interrogator that q is the case, the Deceiver uses some knowledge that

the Interrogator possesses, let’s say p → q, and tells the Interrogator that p is the

case. Having told the Interrogator that p is the case, the Deceiver then knows that

if the Interrogator is a rational agent that has the ability to apply Modus Ponens,

then it will conclude that q is the case. Levine and McCornack call this interplay

Pars Pro Toto (the information the Deceiver decides to feed the Interrogator) and

Totum Ex Parte (the knowledge the Interrogator derives from the information sent

by the Deceiver) [172].

One can argue that liars and bullshitters might have some types of motivations or

goals. However, compared to deceivers, these goals do not contain ulterior motives.

A liar, for example, can have the goal to speak falsely about a state of the world

without taking into consideration the state of mind of the agent it speaks to. It can

also be argued that a good liar would take into account its target’s mind, although

by definition a liar is constrained by one single strategy which is to speak falsely

about a state of the world. A bullshitter can have the goal to make the agent it

speaks to believe it (the bullshitter) is speaking the truth independently of the state

of the world it is speaking about. Most of the times, however, bullshitters do not

take into consideration the target’s mental activity in order to deliver a bullshit.

Definition 11 (Deception) The intended dishonest behaviour of an agent Agi

to tell another agent Agj that ψ is the case, when in fact Agi knows that ¬ψ is the

case, in order to make Agj conclude that ϕ given that Agi knows that Agj knows

that ψ → ϕ and Agi also knows that Agj is rational.

5.2.2 Jason AOPL and its Dishonesty-enabling Properties

Among the many AOPL and platforms mentioned in previous chapters, such as

Jason, Jadex, Jack, AgentFactory, 2APL, GOAL, Golog, and MetateM, as discussed

in [32], I chose the Jason platform [33] for this work. In this way, I continued to
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build on the work I have done on the Theory-of-Mind. As you should probably

know by now (by having read the previous chapters), Jason extends the AgentSpeak

language, an abstract logic-based AOPL introduced by Rao [214], which is one of

the best-known languages inspired by the BDI architecture. In Jason, the agents

are equipped with a library of pre-compiled plans that have the following syntax:

triggering event : context <- body.

where the triggering event represents the way agents react to events, for ex-

ample, a new goal for the agent to pursue, or a new belief in case the plan is to

be triggered by reaction to perceived changes in the world; the context has the

preconditions for the plan to be deemed applicable for achieving that goal given

the current circumstances, and the body is a sequence of actions and sub-goals to

achieve the goal.

Besides specifying agents with well-defined mental attitudes based on the BDI

architecture, the Jason platform [33] has some other features that are particularly

interesting for our work, for example: strong negation, belief annotations, and (cus-

tomisable) speech-act based communication. Strong negation helps the modelling

of uncertainty, allowing the representation of things that the agent: (i) believes

to be true, e.g., safe(car1); (ii) believes to be false, e.g., ¬safe(car1); (iii) is

ignorant about, i.e., the agent has no information about whether the car is safe

or not. Also, Jason automatically generates annotations for all the beliefs in the

agents’ belief base about the source from where the belief was obtained (which

can be from sensing the environment, communication with other agents, or a men-

tal note created by the agent itself). The annotation has the following format:

safe(car1)[source(seller)], stating that the source of the belief that car1 is safe

is the agent seller. The annotations in Jason can be easily extended to include

other meta-information, for example trust and time as used in [175, 197]. Another

interesting feature of Jason is the communication between agents, which is done
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through a predefined (internal) action. There are a number of performatives al-

lowing rich communication between agents in Jason, as explained in detail in [33].

Further, new performatives can be easily defined (or redefined) in order to give

special meaning to themii.

5.3 Running Example

To show the difference between the agents’ attitudes of telling a lie, telling bullshit

and deceiving, I will present an approach to model these three agent attitudes in

an agent-oriented programming language using a running example of a car dealer

scenarioiii, inspired by [170, 181, 258]. In our scenario, an agent called car dealer, cd

for short, has the desire to sell as many cars as it can. Thus, the car dealer will use

all its available strategies, including lying, bullshitting, and attempting to deceive

the customers to buy the cars it has for sale.

BuyerCar Dealer

Figure 5.1: Protocol.

An illustration of the communication protocol for our scenario is shown in Fig-

ure 5.1. The protocol states that: a buyer agent will tell to another agent, the

car dealer, the set φ of characteristics they desire in buying a car. For example, φ

= inference(buy(car),[safe(car),comfortable(car)]), means that the buyer

considers safety and comfort to be the most desirable characteristics for buying a

iiFor example, [198] proposes new performatives for argumentation-based communication be-
tween Jason agents.

iiiI do not assume that in real life car dealers are deceptive agents, I just use this particular
scenario as an illustrative example.
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car. After that, buyers ask the car dealer about the cars they have an interest to

buy. The car dealer answers the questions based on its own interest (i.e., it is a

self-interested agent).

In this scenario, I will focus on characteristics of cars such as: safety, speed,

comfort, and storage size which are defined in ∆car dealer :
iv

∆car dealer =


safe(ford) ¬comfortable(ford)
safe(bmw) ¬comfortable(bmw)
¬safe(renault) ¬comfortable(renault)
¬fast(ford) large storage(bmw)
fast(bmw) ¬large storage(renault)


Here, there are two important considerations for our model. The first considera-

tion is about the diversity of information the car dealer knows, which is fundamental

when simulating the agents’ behaviours. I set up the scenario with different cars, in

which each car has different characteristics. The second consideration is that the car

dealer may be able to model the buyers ’ mental state, which means the car dealer

is able to model the characteristics buyers consider important to buy a car, i.e., φ.

Given the knowledge of the characteristics the buyers consider important, the car

dealer is able to simulate the influence of the information it provides, choosing the

best answer according to its own interest or desire, i.e., to sell the cars. Thus, an

agent may be able not only to model the initial states of other agents minds, but

also to simulate how the minds of these other agents change over timev.

5.4 Modelling Buyers’ Minds

In this chapter, I set up the notation based on the Jason agent-oriented programming

language [33] and a standard representation for messaging. This model will consist

of predicates which represent the mental state of agents, the event model which is

ivNote that, in ∆car dealer , the car dealer knows that the ford is safe, that the renault is not
comfortable, that the bmw is fast, and it is ignorant about whether the renault is fast or not.

vThese abilities of our agents reflect their capacity of using both Theory-Theory-of-Mind and
Simulation-Theory-of-Mind for modelling the minds of their targets [101].
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the set of perceptions and possible messages that the agents can communicate such

as asking and answering questions, the belief update rules for each kind of message

and perception, and inference rules that allow agents to execute belief update and

reasoning simulation.

5.4.1 Modelling the Minds of Other Agents

Agents will model others agents’ minds according to inferences they are able to

make, that are based on the perceptions they have of the target agents and the

communication they have with the target. These ideas come from studies in Theory-

of-Mind (ToM) [102]. Thus, based on the BDI architecture, I use the following

predicates to allow an agent to model the other agents’ minds:

• believes(ag,prop) means that an agent ag believes proposition prop. For

example, believes(john,safe(ford)) means that john believes that ford

are safe. A car dealer agent cd is able to model the beliefs of a buyer

agent ag either inferring it from some information it has previously received

from ag, based on the belief annotation in Jason, using the inference rulevi :

believes(ag,prop):- prop(source(ag))

after receiving a tell message from ag, i.e., 〈ag, cd, tell, prop〉. I use

∆cd |= believes(ag,prop) to describe that the car dealer cd knows that

the buyer ag believes on prop. A particular case for this predicate is

believes(ag, inference(prop, S)) representing that an agent ag believes

on the inference from S (a set of predicates) to prop. For example,

believes(john,inference(buy(bmw),[safe(bmw)]) means that john be-

lieves that if a bmw is safe it could buy a bmw.

• desires(ag,prop) means that an agent ag desires prop. For example,

viNote that an agent is able to infer its own beliefs using this inference rule, i.e., cd is able to
infer that it believes on prop itself if prop(source(self)) is in its belief base.
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desires(john,buy(bmw)) means that john desires to buy a bmw. I use ∆cd |=

desires(ag,prop) to describe that the car dealer cd knows that the buyer ag

desires prop.

Nested representations for beliefs and desires are also possible. For ex-

ample, it is possible to express that the car dealer cd believes that the

buyer ag desires to buy a car, i.e., believes(cd,desires(ag,buy( ))), which

is the same ∆cd |= desires(ag,buy( )).vii As another example, the car

dealer is able to model the buyer Theory-of-Mind about itself, i.e., ∆cd |=

believes(ag,believes(cd,safe(renault)).

5.4.2 Modelling Agents’ Actions and Communication Up-
dates

Agents will update their ToM about others when communicating with them, as well

as when perceiving them in the environment. For simplicity, in this chapter I will

only consider a few communicative actions, based on the protocol described in § 5.3.

Thus, the possible actions and belief updates of the agents are the following:

• 〈ag, cd, tell, prop〉 means a message sent by the agent ag to the agent cd, with

the performative tell, and the content prop. When cd receives this message,

it executes the following update in its ToM:

∆cd = ∆cd ∪ believes(ag, prop)

• 〈ag, cd, ask, prop〉 means a message sent by the agent ag to the agent cd, with

the performative ask and the content prop. When cd receives this message,

it executes the following update in its ToM:

viiTo investigate different levels of ToM in multi-agent systems is out of the scope of this chapter,
thus I use only first-order ToM, i.e., I do not model ToM about others’ ToM, and ToM about others’
ToM about others’ ToM, and so forth.
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∆cd = ∆cd ∪ desires(ag, prop)

• 〈cd, ag, response, prop〉 means a message sent by the agent cd to the agent ag,

with the performative response and the content prop. To execute this action,

it requires that a previous message 〈ag, cd, ask, prop〉 has been communicated.

Thus, the agents cd and ag execute the following updates in their ToM and

knowledge base, respectively:

∆cd = ∆cd ∪ believes(ag, prop)

∆ag = ∆ag ∪ prop[source(cd)]

Note that the semantics for a response message is different from the tell

message, given that a tell message expresses the opinion of the sender, and the

response message represents an information previously requested, which means it

represents a desired update the receiver wants to execute in its knowledge base.

Finally, an agent also is able to update its ToM perceiving other individuals that

are situated in the same environment. In this work, the car dealer is able to perceive

the buyers when they enter in the sale room, i.e., an event (perception) of the type

+client(ag ) is generated by the environment, enabling the car dealer to infer that

the buyer ag desires to buy a car. The car dealer cd ’s ToM is updated as follows:

∆cd = ∆cd ∪ desires(ag, buy( ))

Note that, while the perceptions from the environment are domain dependent, the

communication semantics are independent of the domain. This is because the mean-

ing of the performatives guides the way in which an agent executes its belief updates.

That is, for different environments, the agents’ perceptions from the environment

may have different meanings, and by extension beliefs will be updated in different

ways.
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5.4.3 Making Inferences from the Models of Other Agents’
Minds

It is important to model when an agent is ignorant about the truth of a proposition.

That is, considering multi-agent systems that model a open world, when an agent

does not know if φ is true, that does not mean that φ is false, i.e., when an agent

cannot infer either φ or ¬φ, the only conclusion it may reach is that it is ignorant

about the truth of φ. An agent is able to infer that it is ignorant about a proposition

using the following inference rule:

ignorant about(Prop) :- not(Prop) & not(¬Prop).

Similarly, an agent is able to infer that it is ignorant about other agents’ mental

states, using the following inference rules:

ignorant about(believes(Ag,Prop)) :-

not(believes(Ag,Prop)) & not(¬believes(Ag,Prop))

ignorant about(desires(Ag,Prop)) :-

not(desires(Ag,Prop)) & not(¬desires(Ag,Prop)).

Furthermore, an agent is able to infer new information about other agents’ men-

tal state from the information it already has in its ToM. For example, if the car

dealer agent cd knows that the buyer agent ag believes that ford are safe, i.e.,

believes(ag,safe(ford)), and that ag also believes in the inference that safe cars

are good options to buy, i.e., believes(ag,inference(buy(X),[safe(X)])), cd

is able to infer that ag also believes that the ford is a good option to buy, i.e.,

believes(ag,buy(ford)). This reasoning using ToM is implemented using the

following inference rule:

believes(Ag,C) :- believes(Ag,inference(C,P)) & believes(Ag,P).

The car dealer will not know the beliefs of the buyers about each car in advance.

An interesting way for the car dealer to gain this knowledge is for the car dealer to

be able to simulate the conclusions a buyer might reach based on the information
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the car dealer provides and the inferences the buyer is able to execute:

implies(believes(Ag,N),believes(Ag,C)) :-

believes(Ag,inference(C,N)).

Thus, if the car dealer cd knows that the buyer ag believes that safe cars are

a good option to buy, i.e., believes(ag,inference(buy(X),[safe(X)])), then cd

also knows in advance that ag will believe that ford are good options to buy, i.e.,

believes(ag,buy(ford)), if and only if cd provides ag the information that ford

are safe, i.e., believes(ag,safe(ford)).

5.5 Modelling Lies in AOPL

Using this approach, it is possible to model a lie following the scenario of when the

car dealer cd knows that ¬ψ (ψ is not true), but it responds either ψ or ignorant -

about(cd,ψ) to buyer ag.

Table 5.1: Conditions for a Lie.

Car Dealer (cd)
Beliefs: ¬ψ
Actions: 〈cd, ag, response, ψ〉
ToM: desires(ag,ψ)

Buyer (ag)
Beliefs: ignorant about(ψ)
Desires: ψ
Actions: 〈ag, cd, ask, ψ〉

As described, a liar could tell lies without any particular goal, but the most

common situation requires some motivation that makes an agent tell a lie, in order

to achieve a particularly desired state of the world and/or a state of mind. I will

discuss this motivation further in this chapter. For now let’s assume that the a

buyer ag asks the car dealer if renault are safe, i.e., 〈ag, cd, ask, safe(renault)〉.

In this case, based on cd ’s knowledge base represented in ∆car dealer, cd has

two options: either telling the truth, i.e., 〈cd, ag, response,¬safe(renault)〉, or

telling a lie, i.e., either 〈cd, ag, response, ignorant about(cd,safe(renault))〉 or

〈cd, ag, response, safe(renault)〉.
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5.6 Modelling Bullshit in AOPL

Using this approach, it is possible to model bullshit based on the scenario of when

the car dealer cd is ignorant about ψ, i.e., ignorant about(ψ), but it responds

either ψ or ¬ψ to the buyer ag.

Table 5.2: Conditions for Bullshit.

Car Dealer (cd)
Beliefs: ignorant about(ψ)
Actions: 〈cd, ag, response, ψ〉
ToM: desires(ag,ψ)

Buyer (ag)
Beliefs: ignorant about(ψ)
Desires: ψ
Actions: 〈ag, cd, ask, ψ〉

Similarly to a liar, a bullshiter could tell bullshit without a particular goal, but

the most common situation requires some motivation, as I will discuss further in

this chapter. For now, let us assume that the buyer ag asks to the car dealer

if renault are fast, i.e., 〈ag, cd, ask, fast(renault)〉. In this case, based on cd ’s

knowledge base represented in ∆car dealer, cd has two options: either telling the truth,

i.e., 〈cd, ag, response, ignorant about(fast(renault))〉, or telling a bullshit, i.e.,

either 〈cd, ag, response, fast(renault)〉 or 〈cd, ag, response,¬fast(renault)〉.

5.7 Modelling Deception in AOPL

One question that arises from Sections 5.5 and 5.6 is: how does the car dealer cd

decide what to answer? For example, How does it choose between lying by telling

ψ or lying by telling ignorant about(cd,ψ), when it knows ¬ψ is true? I argue

that the answer for that question is the motivation or ulterior goal of the car dealer

cd. In this particular piece of work, I model deception using the motivation of the

car dealer cd of making the buyers to buy a car which is not suitable for the buyers

according to the buyers’ requirements communicated in the first interaction of our

protocol.

There are two major reasons I consider the scenario in which car dealers are
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deceivers. The first reason is because car dealers usually have an ulterior goal,

that is to sell cars. This goal is related to both the state of the world (usually the

properties of the car the dealer is trying to sell) and to the mind of the target.

The dealer needs to take into account the preferences and attitudes (considered by

us as beliefs of the target) in order to provide the information that will make the

target believe it should buy the car. The second reason is because car dealers do not

care if the target agent believes they (the car dealing agents) know the truth about

the state of the world (or state of the car in this particular case). Their ulterior

goal is not to make the buyer believe they have true knowledge about the car (as

a bullshitter would want the buyer to believe). The car dealer’s goal is to make

the buyer reach the conclusion that it (the buyer) should buy the car by itself. In

order to make the buyer reach that particular conclusion, the dealer needs to feed

the buyer a set of particular pieces of information (true or false).

Table 5.3: Conditions for Deception.

Car Dealer (cd)
Beliefs: ¬ψ
Desires: believes(ag,ϕ)
Actions: 〈cd, ag, response, ψ〉
ToM:
believes(ag,inference(ϕ,ψ)),
desires(ag,ψ)

Buyer (ag)
Beliefs:
believes(inference(ϕ,
ψ)), ignorant about(ψ)
Desires: ψ
Actions:
〈ag, cd, tell, inference(ϕ,ψ)〉,
〈ag, cd, ask, ψ〉

Imagine that a buyer ag starts a dialogue with the car dealer cd by telling

cd that it considers safety and speed to be the most important characteristics

when buying a car, i.e., 〈ag, cd, tell, inference(buy(X),[fast(X),safe(X)])〉.

When ag asks cd if renault are safe, i.e., 〈ag, cd, ask, safe(renault)〉, it makes

cd model that desires(ag,safe(renault)). Thus, cd satisfies the precondi-

tion necessary for deceiving ag (see cd ’s ToM in Table 5.3). Imagine also that

cd ’s desire is for buyers to believe that they should buy the car cd is selling.
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Then, the agent cd models that a buyer ag considers safety and speed the es-

sential characteristics to buy a car, and that ag desires to know if renault

are safe, i.e., cd models believes(ag,inference(buy(X,[safe(X),fast(X)]))

and desires(ag,safe(renault)) in its ToM. What follows from this is that

now, cd is able to infer that if it gives a positive answer safe(renault),

then this will determine ag to believe buy(renault). Therefore, cd de-

cides to send the message 〈cd, ag, response, safe(renault)〉, lying about

safe(renault). What happens next is that ag asks if renault are fast,

i.e., 〈ag, cd, ask, fast(renault)〉. Again, cd executes the same reasoning pro-

cess as before. Therefore, cd will answer 〈cd, ag, response, fast(renault)〉,

telling bullshit about fast(renault). In the final step, cd is able to con-

clude that it has managed to deceive ag because cd is able to model in

its ToM that believes(ag,safe(renault)), believes(ag,fast(renault)) and

believes(ag,inference(buy(X),[safe(X),fast(X)])). This allows cd to con-

clude viii believes(ag,buy(renault)) that corresponds to cd ’s ulterior goal.

5.8 Conclusion

In this work, I described a representation for modelling and simulating other agents’

minds using an AOPL based on the work in Chapter 4. Furthermore, using the

proposed representation, I have described a model for three of the most studied dis-

honest attitudes in AI literature, i.e., lying, bullshitting and deceiving. In particular,

I have described how to model and implement these attitudes in Jason [33].

Modelling and implementing such attitudes in an AOPL allows us to investi-

gate agents’ dishonest behaviours through simulations in a high-level, declarative

approach. On one hand, in this particular piece of work, I have used a car dealer

scenario, which, given its simplicity, enables the focus on the main contribution of

viiiThis scenario corresponds to the one of buyer1 in our implementation.
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this chapter, i.e., the representation of other agents’ minds and the modelling and

simulation of lies, bullshit and deception in MAS. On the other hand, the approach

is generic and can be easily used to model and simulate other scenarios of dishonest

agent behaviour.
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Chapter 6

Deceptive Agents

In this chapter I model deception using Theory-of-Mind between an agent that

deceives and its target.

Agreement, cooperation and trust would be straightforward if deception did not

ever occur in communicative interactions. Humans have deceived one another since

the species began. Do machines deceive one another or indeed humans? If they do,

how may we detect this? To detect machine deception, arguably requires a model of

how machines may deceive, and how such deception may be identified. Theory-of-

Mind (ToM) provides the opportunity to create intelligent machines that are able

to model the minds of other agents. The future implications of a machine that has

the capability to understand other minds (human or artificial) and that also has

the reasons and intentions to deceive others are dark from an ethical perspective.

Being able to understand the dishonest and unethical behaviour of such machines

is crucial to current research in AI. In this chapter, I describe a high-level approach

for modelling machine deception using ToM under factors of uncertainty and I pro-

pose an implementation of this model in an Agent-Oriented Programming Language

(AOPL). I show that the Multi-Agent Systems (MAS) paradigm can be used to inte-

grate concepts from two major theories of deception, namely Truth-Default Theory

(TDT) Information Manipulation Theory 2 (IMT2) and Interpersonal Deception

Theory (IDT), and how to apply these concepts in order to build a model of com-
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putational deception that takes into account ToM. To show how agents use ToM in

order to deceive, I define an epistemic agent mechanism using BDI-like architectures

to analyse deceptive interactions between deceivers and their potential targets and

I also explain the steps in which the model can be implemented in an AOPL. To

the best of my knowledge, this work is one of the first attempts in AI that (i) uses

ToM along with components of TDT, IMT2 and IDT in order to analyse deceptive

interactions and (ii) implements such a model.

6.1 Introduction

The idea of deceptive machines dates back to Turing’s imitation game: ‘...It is A’s

object in the game to try and cause C to make the wrong identification...’ [272, p.

434]. I believe that the main reasons to study deception are: (i) because deception

is fundamental to a comprehensive theory of communication; and (ii) because some

day autonomous agents might have reasons to employ deception [43]. Machines

that have the reasons and capability to deceive pose a serious future threat to the

relation between humans and AI. This is especially threatening to the relation of

trust between humans and artificial agents. Therefore, it is reasonable to think that

humans might adopt a skeptical attitude towards AI. I aim to understand these

autonomous agents by looking at (i) how deceptive interactions emerge from various

contexts; and (ii) what are the possible outcomes of these interactions assuming

that agents already have reasons to employ deception, while paying close attention

to skeptical attitudes of agents.

I consider that this study is a multi-disciplinary one in the sense that it enriches

both the AI literature and the literature in communication theory. To AI, it adds

two main contributions: (i) a model of deception for Multi-Agent Systems (MAS)

that includes ToM and uses ToM to integrate components of two major theories of

deception: here I describe (a) how agents use ToM in order to deceive (or not) in
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scenarios of uncertainty, and (b) how adding agent profiles to this model influences

the agents’ actions by taking into account the likelihood of deception and trust

between agents; (ii) a broadly applicable approach for implementing the model in

Agent-Oriented Programming Language (AOPL) where (a) agents are able not only

to model the other agents’ minds but also (b) to execute reasoning and simulation

over these representations under factors of uncertaintyi. Another contribution to

AI is the understanding of how machines that have the reasons and capability to

deceive are able to interact with other agents and what type of behaviour emerges

from these interactions that can impact the relation of trust between agents. For

communication theory, our study represents the first attempt to integrate the com-

ponents of three major theories of deception, with the help of AI methods, namely

Truth-Default-Theory (TDT), Interpersonal Deception Theory (IDT) and Informa-

tion Manipulation Theory 2 (IMT2) (see Chapter 2.1). TDT is the theory that

explains how different dialogical contexts influences the success of deception, e.g.,

how communicating the same information can trigger the interlocutors into either

truth-biased or sceptical mental attitudes [153]. IDT is the theory that explains

how the communicative skills and cognitive load of individuals affect deceptive in-

teractions [38], whereas IMT2 is the theory that explains how individuals employ

deception by manipulating information [172]. Even though there are many studies

in the AI literature that look at deception, none of them uses TDT, IMT2, IDT and

ToM together to model interactions that involve deceptive artificial agents.

6.2 Background

ToM is the ability of humans to ascribe elements such as beliefs, desires, and inten-

tions, and relations between these elements to other human agents. In other words,

iThe implementation is available at https://tinyurl.com/ybj343wf, thus showing the com-
patibility between our formalisation and AOPLs.
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it is the ability to form mental models of other agents. One version of ToM is the

Theory-Theory-of-Mind (henceforth TT). TT can be described as a theory based

approach of assigning states to other agents. While some argue TT is nothing else

but folk psychology, others say that it is a more scientific way of mind-reading [102].

Another version is Simulation Theory-of-Mind (henceforth ST). Adopting Gold-

man’s description of it, Barlassina and Gordon explain it as ‘process-driven rather

than theory-driven’ [15]. Thus, ST emphasises the process of putting oneself into

another’s shoes. TT argues for a hypothesis testing method of model extraction,

whereas ST argues for a simulation based method for model selection.

That being said, ToM seems to be able to provide machines with the ability to

model their opponent’s minds [110]. [130] also argue that ToM is crucial for machines

to be able to deceive and detect deception. How could a machine be able to reason

successfully about the beliefs of other agents if it does not have some knowledge and

understanding of its targets’ minds? Deception is, after all, a process of epistemic

nature.

According to TDT, which I have described in §2.1.3, ToM is necessary for de-

ception to function [153, loc. 2422]. In deception, it matters what the target agent

knows and what the deceiver agent thinks the target knows. In deception detection,

it matters how we can infer others’ mental states, including deceptive motives, and

people usually assign deceptive motives based on their ToM of others.

As I mentioned before in §2.1.5, IMT2 focuses on how agents manipulate infor-

mation to deceive. In particular, IMT2 makes reference to the Mannheim School’s

psychological models of speech-act production [121], implying that information ma-

nipulation is related to two main reasoning processes that determine speech produc-

tion: (i) Pars Pro Toto, which means ‘parts for the whole’ and refers to the process

of selecting only the necessary information from a certain context that is sufficient

for conveying the entire meaning implied by the speech act; and (ii) Totum Ex Parte,
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which means ‘the whole from the parts’ and refers to the process used to infer the en-

tire meaning implied by a speech act, given the limited information received through

the speech act and the information that is implicit in that situation/context.

IDT, which I have described in §2.1.4, argues that there exists a set of social

constraints that influence the ability of agents to deceive and detect deception. The

most important social constraints are 1) the trust between agents, which determines

whether an agent believes in the information provided by another agent or chooses

to believe the opposite; 2) the communicative skill of the agents that determine how

skilled are the agents at deceiving and detecting deception; 3) the cognitive load

of the agents that determines how much information can agents handle in order to

succeed in deceptive interactions; the greater the cognitive load, the higher the risk

of agents getting caught due to the unintended leaking of information.

6.3 Modelling Deception

I consider deception to be different from lying and from bullshitting as I previously

defined them in the thesis. I derive a new definition of deception from the one of

deception in previous chapter. Hence, I define deception as:

Definition 12 (Deception) The intentional process of a deceptive agent, which I

name Donald, to make another interrogator agent, which I will call Ivan, to believe

something is true that Donald believes is false, with the aim of achieving an ulterior

goal or desire.

To model deception, I make use of ToM by combining TT with ST using the

approach I have described in Chapter4. That is, TT enables us to pre-assign beliefs

of agents about each other’s beliefs, whereas ST enables agents to simulate other

agents’ beliefs when they get new information in order to update their TT.

I proceed to build the model by using BDI-like formalisations. Thus the model
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consists of several sub-components such as: (i) an epistemic component which repre-

sents the beliefs and desires of agents (this includes beliefs of other agents’ beliefs),

(ii) an event component that represents the actions performed by the agents such

as asking and answering questions, (iii) and a component that represents how the

agents update their beliefs based on ToM and agent profiles.

Definition 13 (Agents) Ag represents an agent. When I need to make the dis-

tinction between two agents I use Agi and Agj, representing two distinct agents in

a set of n agents. The complete set of our agents is A = {Dec, Int}, where Dec is

Donald and Int is Ivan.

Definition 14 (Beliefs and Desires) If ψ represents a predicate from a logical

language, then BAg(ψ) represents a belief of an agent Ag in ψ and DAg(ψ) represents

a desire of ψ that belongs to an agent Ag.

Definition 15 (Actions) I define QAg(ψ) as a question asked by Ag if ψ is the

case, and AAg(ψ) as an answer by Ag saying that ψ is the case.

Definition 16 (Theory-of-Mind (ToM)) A belief or a set of beliefs of an agent

Agi about another agent Agj where: BAgi(BAgj(ψ)) is a belief of an agent Agi of

another agent Agj’s belief that ψ.

Definition 17 (Ignorance) If ψ represents a predicate from a logical language,

and BAg(ψ) represents a belief of an agent Ag in ψ, BAg(ψ) represents that the

agent Ag is ignorant about ψ .

Definition 18 (Trust Rule) AAgi(ψ) → BAgj(ψ) represents the general assump-

tion that if Agi tells Agj that ψ is the case, then Agj will believe that ψ is the

case.
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To model deceptive interaction, I make agents use ToM to execute Pars Pro Toto

and Totum Ex Parte. Donald will execute Pars Pro Toto by combining TT with

ST, while Ivan will execute Totum Ex Parte using only TT.

Definition 19 (Theory-Theory (TT)) The prior beliefs that an agent Agi has

of the beliefs of another agent Agj.

Definition 20 (Simulation-Theory (ST)) The process that an agent Agi en-

gages in to derive new beliefs of another agent Agj’s beliefs, starting from Agi’s

TT about Agj and assuming some new information is received by Agj.

Definition 21 (Pars Pro Toto) The process executed by an agent Agi to choose

an answer AAgi using its TT of another agent Agj and simulating an ST of Agj,

that will cause the other agent Agj to be deceived.

Definition 22 (Totum Ex Parte) The process executed by an agent Agi to infer

something that it desires to know DAgi(BAgi) from a given context that consists of

answers provided by another agent AAgj , the Trust Rule, and Agi’s TT and beliefs.

Definition 23 (Successful Deception) A successful deception is when the final

conclusion reached by Ivan is a belief that Donald desires Ivan to reach but it is

also a belief about something to be true that Donald believes to be false.

6.3.1 Preconditions

In order for an interaction between two agents to be called deceptive, that is to

potentially result in successful or failed deception given our model, the interaction

should satisfy a set of preconditions that follow from Definitions 12, 13, 14, 16

and 17. I consider that if the following three preconditions are satisfied by a given

system of at least two agents, then deceptive interactions can happen within that

given system.
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Precondition 1 (Known Unknown). Ivan has some missing knowledge about

the world such that it is aware of this missing knowledge.

Precondition 1 is not a strong precondition to be satisfied. Ivan does not nec-

essarily need to be aware of its missing knowledge to start a dialogue. Donald, for

instance, could provide an information that Ivan never thought about finding out in

the first place, and by finding out that information, Ivan could infer a belief about

something else that is false. I mainly use this precondition in order to show that Ivan

will decide to act on its lack of knowledge by asking Donald about Ivan’s desired

information. Without this precondition, Ivan would not have to ask anyone about

something Ivan is aware of not knowing. What Ivan desires is to reach a state of

shared beliefs [51] with Donald given its TT ToM of Donald as agents manage to

reach in Chapter 4.

Precondition 2 (Unknown Unknown). Ivan is initially not aware of the belief

Donald desires Ivan to reach.

I consider that Precondition 2 is a strong precondition to be satisfied by the

system in the current form of our model. If Ivan is already aware of the conclusion

Donald desires it to reach, then it means that Ivan already has the knowledge (true

or false) and thus, Ivan cannot be caused by Donald to have this knowledge. Also,

if Ivan already believes something to be true that Donald wants Ivan to believe is

false, then Ivan must somehow decide which belief is true or false and this is bound

to increase the complexity of the reasoning processes of Ivan. Furthermore, in order

to represent deception at an even deeper level, Donald would have to take into

consideration the decision protocol of Ivan on its final conclusion. Such interactions

are very interesting and worthy to be further explored, but they are currently beyond

the scope of this chapter.

Precondition 3 (Theory of the Target’s Mind). Donald has a ToM of Ivan.
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I also consider Precondition 3 to be a strong precondition. The argument for this

consideration is that: it is impossible for Donald to know what Ivan might infer from

information that Donald is able to provide, unless Donald knows what Ivan knows

and is able to reason in the way Ivan reasons about what Ivan knows. Therefore,

Precondition 3 must stand if any deceptive interaction is to take place. If Precondi-

tion 3 does not stand, and Ivan infers a belief that something is true when Donald

believes that something to be false, then such an outcome of the system cannot

be attributed to a deceptive interaction because such an outcome is not necessarily

caused by an action that Donald reasoned deceptively and rationally about. Donald

could not have possibly engaged in such a reasoning process, because such a process

requires Donald to have a model of Ivan’s mind. Such an outcome might just be

determined by some random action performed by Donald and, therefore cannot be

called deception (see Definition 12).

6.3.2 Parameters

I assume that the agents, Donald and Ivan, are constrained by two parameters from

IDT, namely trust and communicative skill. I proceed to define a value α that

represents the degree of Ivan’s trust in the information that Donald is providing.

Another assumption, inspired by IDT, is that Donald has some sort of skill that it

uses to read Ivan’s trust. I add this parameter as the communicative skill of Donald

and label it β.

On top of the parameters from IDT, I also add a degree of confidence γ that

Donald has in its TT of Ivan. This is important because I want to show how Donald

executes Pars Pro Toto under uncertainty. A final assumption is that Donald has

to estimate its chance of deception before feeding Ivan any information. I add a

success estimation parameter and label it with θ.

I do not provide a model for computing α, β, and γ, because that would change
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the focus of the work. The scope of this work is to show that given some degree

of skills, uncertainty about ToM and trust among agents, it is possible to model

deception. For an in-depth analysis of how to compute such parameters see [99].

6.3.3 Aggregating Parameters

I choose to aggregate the labels using conditional probabilities in order to show how

trust, communicative skill, ToM, and estimation of success influence the dynamics

of deception. Let us assume that Ivan does not trust Donald due to some prior

information it has about Donald. In this case I say that α has a low probability.

Whenever Donald answers Ivan’s question with ψ, Ivan will believe that the opposite,

¬ψ, is the case. I use the following definitions to show the computation of the

interaction between trust, communicative skill, confidence in ToM, and estimation

of success :

Definition 24 (P (α)) Trust α is such that Ivan is able to estimate the probability

of trust P (α) in the answer provided by Donald.

Both agents need the degree of trust (i) to estimate success (Donald) and (ii) to

trust the information provided by the other agent (Ivan).

Definition 25 (P (α, β)) Donald’s estimation of Ivan’s trust α in Donald is condi-

tionally dependent on Donald’s level of communicative skill β.

In order to succeed in its deception, Donald needs to make Ivan believe what

Donald is telling Ivan. To do this under the assumption of uncertainty, Donald

needs access to Ivan’s degree of trust.

Definition 26 (P (θ)) Donald’s estimation of its own success θ in deceiving Ivan

is the conditional probability of Donald’s access to Ivan’s trust in Donald given by

the probability P (α, β) and Donald’s confidence in its own ToM of Ivan given by the

probability P (γ); P (θ) = P (α, β) ∗ P (γ).
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6.3.4 Agent Architectures

When reasoning about knowledge, beliefs and actions using ToM, both Donald and

Ivan are able to perform the following:

• Rational Action (RA): If a given agent Ag believes that an action ψ is possible

BAg(AAg(ψ)), then Ag is able to execute that action.

• Assumption of a Future Action (AFA): When using ST, agents are able to

make an assumption of taking an action A (answering) or Q (asking) in order

to simulate the final outcome of taking that action.

• Positive Introspection (KK): If an agent Ag has a belief of the form BAg(ψ),

then the agent is able to believe that it has that belief BAg(BAg(ψ)).

• Modus Ponens (MP ): The rule that if an agent Ag knows that ψ → φ, and ψ

is asserted to be true, then Ag knows that φ must be true.

• Negation as Failure (NAF ): The non-monotonic rule that if a proposition ψ

cannot be derived, then ¬ψ is derived.

• Backward Induction (BI): The reasoning process that an agent Ag uses to

select an action AAg(ψ) out of a set of possible actions that will result in the

achievement of the agent’s desire/goal DAg(φ).

Choosing actions that deceive requires some types of decision making rules or

protocols. One method compatible with our model is for agents to use backward

induction: Donald explores all the possible conclusions that can be drawn by Ivan

from its answers. If Donald answers ¬ψ and it believes that Ivan is rational and that

Ivan believes that ψ → ϕ, then Donald knows that Ivan will not conclude that ϕ.

Therefore, Donald concludes that deception will fail. After modelling the conclusion

Ivan would draw if it answers ψ, Donald proceeds to check if that conclusion matches
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its desire. If the conclusion of Ivan as modelled by Donald matches Donald’s desire,

then Donald will proceed to execute the action.

In order to model different attitudes of agents, I add profiles to the agents. For

now, I limit the profiles to reckless and cautious for Donald, and credulous and

skeptical for Ivan.

Deceiver Profiles:

• Reckless Ag will attempt deception even if P (θ) (estimated success) is low,

i.e., P (θ) ≥ 0.25. A reckless deceiver does not care that another agent, for

example, might misinterpret the reckless deceiver’s actions.

• Cautious Ag will only attempt deception if P (θ) is high, i.e., P (θ) ≥ 0.75.

This means that a cautious deceiver thinks that is wiser to be honest, than to

attempt deception and be caught.

Interrogator Profiles:

• Credulous Agi will mostly believe what another Agj is saying even if P (α) is

low, i.e., P (α) ≥ 0.25. A credulous interrogator is an agent that usually does

not have a default reason to distrusts others.

• Skeptical Agi will tend to distrust another Agj even if P (α) is high, i.e., Agi

will believe what Agj is saying only if P (α) ≥ 0.75. A skeptical interrogator

believes that there is always a good reason to distrust others.

Reasoning Processes:

• Simulate ToM (see Definition 20 & Algorithm 1) is the reasoning process

used by Donald to see what beliefs will be reached by Ivan given some in-

formation provided by Donald. I assume that Donald already has a TT (see

Definition 19) of Ivan’s mind, thus Donald knows what Ivan already knows.
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Having this knowledge, Donald starts by assuming that it (Donald) will per-

form a certain action that will be perceived by Ivan (see AFA). Afterwards,

Donald assumes that Ivan believes the information that Donald provides (see

Definition 18). Given Ivan’s newly formed belief on Donald’s information,

Donald checks whether this belief is able to generate any final belief in Ivan’s

mind given Donald’s knowledge of all other beliefs that Ivan has. If there is

another belief that together with Ivan’s newly formed belief generates a final

belief in Ivan’s mind, then Donald is able to infer that a rational Ivan will

conclude this final belief. If there is no other belief in Donald’s TT of Ivan

that can generate a final belief, then Donald is able to infer that a rational

Ivan will not conclude a final belief. Simulate ToM will return the conclusion

that Ivan would infer if given a certain information.

• Pars Pro Toto (see Definition 21 & Algorithm 2) is the reasoning process

used by Donald to decide which action should be performed such that the

interaction with Ivan will result in successful deception (see Definition 23).

Pars Pro Toto uses Simulate ToM as a sub-process in order to check if a

certain action will make Ivan conclude a final belief. After Donald simulates

Ivan’s mind, Donald checks whether Ivan’s conclusion matches Donald’s desire.

If this is the case, then Donald knows the action chosen will result in successful

deception, therefore Donald proceeds to check the estimation of success (see

Definition 26). If the estimation of success is higher than Donald’s profile

threshold (see Profiles), then Donald will proceed to execute that chosen action

(see RA). Else, Donald will choose another action to simulate Ivan’s mind until

no other actions are left to check. If there is no possible deceptive action above

Donald’s threshold, then Donald will decide to not attempt deception. Pars

Pro Toto will return an action that, from Donald’s perspective, is likely to

deceive Ivan or if there is no such action then it will return an action that
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is not deceptive. If there is no action that according to Simulate ToM will

result in Donald’s desires, then Pars Pro Toto will return a random action.

• Totum Ex Parte (see Definition 22 & Algorithm 3) is the reasoning process

used by Ivan to find out the information Ivan desires to find out given a certain

context. If Ivan is ignorant (see Definition 17) about some information and

Ivan has a TT (see Definition 19) of an agent and knows that the agent has

the information Ivan desires to know, then Ivan will ask that agent to provide

the information and waits for the agent’s answer. After receiving the answer

from the agent, Ivan believes the answer, but also checks whether it trusts the

agent that has provided the information. If Ivan trusts the agent, then Ivan

will keep believing the information provided, otherwise Ivan will believe that

the information provided is false. Either way, Ivan has achieved its goal, which

is not being ignorant anymore about the information.

Table 6.1: Agents with ToM, Labels and Profiles

Donald (Dec) with skill β Ivan (Int) with trust α

Beliefs: BDec(ψ → ϕ), BDec(¬ϕ), BDec(¬ψ)
Desires: DDec(BInt(ϕ))
Actions: ADec(ψ), ADec(¬ψ)
ToM with confidence γ: BDec(BInt(ψ → ϕ))
Profiles: reckless, cautious

Beliefs: BInt(ψ → ϕ), BInt(ψ)

Desires: DInt(¬BInt(ψ))
Actions: QInt(ψ)

ToM : BInt(¬BDec(ψ))
Profiles: credulous, skeptical

Algorithm 1: Simulate ToM

Function SimulateToM(action, belief , ToM)

let action = say(ϕ);
if ToM ∪ {ϕ} |= belief then

return True;
else

return False;
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Algorithm 2: Pars Pro Toto

Data: Actions , ToM , Desire, ProfileThreshold
Result: DeceiverAction
let Desire = DDec(BInt(ϕ));
/* Backward Induction to choose deceptive action */

DeceiverAction ← ⊥;
for action in Actions do

if SimulateToM(action, ϕ, ToM) = True then
/* Estimate success of action selected using Backward

Induction */

success ← Estimate success (of deception);
if success ≥ ProfileThreshold then

DeceiverAction ← action;

if DeceiverAction = ⊥ then
DeceiverAction ← random action from Actions such that
SimulateToM(action, ϕ, ToM) = False;

Algorithm 3: Totum Ex Parte

Data: Beliefs , Actions , ToM , Desire, ProfileThreshold , Trust
Result: InterrogatorConclusion
let Desire = DInt(¬BInt(ψ)) ;

if ToM |= ¬BDec(ψ) and ask(ψ) ∈ Actions then
action ← ask(ψ);

else
action ← ⊥ ;

Perform action;
Receive answer ;
let answer = say(ψ);
if Trust > ProfileThreshold then

Beliefs ← Beliefs ∪ {ψ};
else

Beliefs ← Beliefs ∪ {¬ψ};
if BInt(ψ) then

if Beliefs |= ϕ ∧ Beliefs \ {ψ} 6|= ϕ then
InterrogatorConclusion = ϕ ;

else
InterrogatorConclusion = ⊥;

else
InterrogatorConclusion = ⊥;

return InterrogatorConclusion;
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Table 6.2: Donald executes Pars Pro Toto to choose between two possible actions
by simulating Ivan’s belief updates using: (i) ToM of Ivan, (ii) the probabilities of
α, β, γ, and (iii) Donald’s profile.

1 BDec(BInt(ψ → ϕ)) from ToM
2 BDec(DDec(BInt(ϕ))) from Desires and KK
Donald simulates Ivan’s Mind given the first possible action.
3 BDec(ADec(ψ)) AFA and KK
4 BDec(ADec(ψ)→ BInt(ψ)) from Trust Rule and KK
5 BDec(BInt(ψ)) from 3, 4 and MP
6 BDec(BInt(ψ) ∧BInt(ψ → ϕ)) from 1, 5 and ∧I
7 BDec(BInt(ϕ)) from 6, MP , and KK
8 BDec(BInt(ϕ) ∧DDec(BInt(ϕ))) from 2, 7 and ∧I
Donald proceeds to simulate the mind of Ivan given the second (and final)
possible action.
3.1 BDec(ADec(¬ψ)) AFA and KK
4.1 BDec(ADec(¬ψ)→ BInt(¬ψ)) from Trust Rule and KK
5.1 BDec(BInt(¬ψ)) from 3.1, 4.1 and MP
6.1 BDec(¬BInt(¬ψ → ϕ)) from ToM and NAF
7.1 BDec(BInt(¬ϕ)) from 5.1, 6.1, and NAF
8.1 BDec(BInt(¬ϕ) ∧DDec(BInt(ϕ))) from 2, 7.1 and ∧I
For the answer that results in achieving Donald’s goal, Donald computes the
probability of success P(θ) given P(α, β) ∧ P(γ).
Having assumed that it executes either ADec(ψ) or ADec(¬ψ), Donald
has proved that the belief of Ivan matches Donald’s desire only if Donald
answers ADec(ψ). Thus, using BI (backward induction) Donald knows
that 8 implies Donald should answer ADec(ψ).
9 BDec((BInt(ϕ) ∧DDec(BInt(ϕ)))→ BDec(ADec(ψ))) from 8 and BI
10 BDec(ADec(ψ)) from 8, 9 and MP with estimated P(θ)
Donald will update its planned answer ADec(ψ) or ADec(¬ψ)
based on 10, its profile and P(θ)
11A BDec(ADec(ψ)) from 10, profile and P(θ)
11B BDec(ADec(¬ψ)) from 10, profile and P(θ)
12A ADec(ψ) from 11A and RA
12B ADec(¬ψ) from 11B and RA
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Table 6.3: Ivan executes the second part of Totum Ex Parte after receiving Don-
ald’s answer and reaches a conclusion based on (i) the answer of Donald, (ii) the
probability of α, and (iii) its profile.

1 ADec(ψ) from Table 6.2 (12 A)
2 BInt(ψ) from 1, Trust Rule and MP
3 BInt(ψ → ϕ) from Beliefs
4A BInt(ψ) from 1, Trust Rule, profile and P(α)
4B BInt(¬ψ) from 1, Trust Rule, profile and P(α)
5A BInt(ϕ) from 3, 4 A and MP
5B ¬BInt(ϕ) from 3, 4 B and NAF

6.4 Evaluation and Results

In this section I will present an evaluation of the model. In 6.4.1 I will go through

a step-by-step deceptive play to see how the beliefs of agents evolve during a game.

Then, in 6.4.2 I will present all possible and impossible outcomes of interactions

between Donald and Ivan given all possible combinations of parameters and profiles.

This will show us what are the contexts from which deception emerges, and then I

will discuss the results.

Donald might estimate its success (see Table 6.2) given its knowledge about Ivan

(see Table 6.1). However, its estimation might not be precise due to a possible strong

influence on Ivan by its profile (credulous or skeptical) and the real degree of trust

α (see Table 6.3).

If it were the case that the agents would operate on absolute knowledge, then

Donald would succeed in any given scenario due to its capacity for meta-reasoning

and access to a fully accurate ToM of Ivan. Based on the agents’ mental states in

Table 6.1, I show a reasoning process based on the agents’ ToM and their profiles

given certain values for trust α, communicative skill β, and certainty in ToM γ in

Tables 6.2 and 6.3. I proceed to show a run of a deceptive play using our model.

Another important observation is that given the way I set up the knowledge
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bases and possible actions of the two agents Donald and Ivan in Table 6.1 (see

BDec(BInt(ψ → ϕ)), BDec(¬ψ), ADec(ψ) and ADec(¬ψ)), attempting deception cor-

responds to Donald lying. However, that need not necessarily be the case if, let’s

say, BDec(ψ) which would create a context in which a deceptive attempt would

correspond to Donald telling the truth.

6.4.1 Running a Deceptive Play

Setup: cautious Donald and skeptical Ivan with the following values for trust,

communicative skill, and ToM: P(α)=0.4, P(β)=0.8, and P(γ)=0.8 (i.e., the first

case in Table 6.4). I run the model by assuming that Ivan asks Donald about ψ:

Event 1

1. QInt(ψ) from Actions of Ivan and Totum Ex Parte

Donald’s mind executing Pars Pro Toto

2. BDec(¬ψ) from Beliefs of Donald

3. DDec(BInt(ϕ)) from Desires of Donald

4. BDec(BInt(ψ → ϕ)) from ToM of Donald

Donald’s first simulation of Ivan’s mind

5. BDec(ADec(¬ψ)) Assumption of Donald (random from possible Actions)

6. BDec(BInt(¬ψ)) from 8 and Trust Rule

7. BDec(¬BInt(¬ψ → ϕ)) from ToM and NAF

8. BDec(¬BInt(ϕ)) from 6, 7 and NAF

First simulation: does not meet the desired outcome (see (3)). Therefore,

Donald proceeds to perform a second simulation.

Donald’s second simulation of Ivan’s mind

9. BDec(ADec(ψ)) Assumption of Donald
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10. BDec(BInt(ψ)) from 12 and Trust Rule

11. BDec(BInt(ϕ)) from 7, 13, MP and KK

Second simulation: meets the desired outcome (see 3). Given a success-

ful outcome, Donald computes the estimation of success by aggregating the

deceptive parameters: [P (θ) = P (α, β) ∗ P (γ) = 0.32 ∗ 0.8 = 0.26], where

[P (α, β) = P (α) ∗ P (β) = 0.4 ∗ 0.8 = 0.32] and P (γ) = 0.8. Donald proceeds

to the decision protocol.

Donald’s backward induction and decision using profile

12. BDec(BInt(ϕ) ∧DDec(BInt(ϕ))) from 3,11 and ∧I

13. BDec((BInt(ϕ) ∧DDec(BInt(ϕ)))→ BDec(ADec(ψ))) from 12 and BI

14. BDec(ADec(ψ)) from 13 and MP

Donald knows that it should answer ψ given 12 and BI in order to deceive

Ivan with a success rate of 0.26. Given that Donald is cautious, it does not

want to risk failure. Thus its initial planned answer BDec(ADec(ψ)) will be

updated to BDec(ADec(¬ψ)).

15. BDec(ADec(¬ψ)) from 14, cautious and P (θ) < 0.75

Event 2

16. ADec(¬ψ) from 15 and Actions

Ivan’s mind executing Totum Ex Parte

17. BInt(¬ψ) [P (α) = 0.4] from 16 and Trust Rule

Because P (α) = 0.4 and Ivan is skeptical BInt(¬ψ) will be updated to BInt(ψ).

18. BInt(ψ) from 17, P (α) and skeptical

19. BInt(ψ → ϕ) from Beliefs of Ivan

20. BInt(ϕ) from 18, 19 and MP
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6.4.2 Results & Analysis

Furthermore, considering the intervals of values established by the profiles intro-

duced, I have analysed in a similar manner all the possible outcomes of deceptive

plays between Donald and Ivan. The results are presented in Tables 6.4-6.7. The

results we refer to in the text are highlighted in the tables with an asterisk ∗.

Given our model, some of the outcomes are not possible due to the influence of

α on θ and due to the belief and answer update thresholds for each profile (these are

highlighted in red in Tables 6.4-6.7). These are: Table 6.4 where P (α) = [0, .75)

and P (θ) = [.75, 1]; Table 6.5 where P (α) = [0, .25) and P (θ) = [.75, 1]; and

Table 6.7 where P (α) = [0, .25) and P (θ) = [.25, 1]. Figure 6.1 shows the possible

outcomes for our model, given the influence of the parameters α, β and γ.

Alpha * Beta

0.0
0.2

0.4
0.6

0.8
1.0

Gamma 0.00.20.40.60.81.0

Theta

0.0

0.2

0.4

0.6

0.8

Figure 6.1: The influence of the parameters α (Alpha), β (Beta) and γ (Gamma)
on θ (Theta).

Unintended Deception: The most interesting results are: (i) in Table 6.4

where Donald is cautious and Ivan is skeptical, P (α) = [0, .75] and P (θ) = [0, .75];
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and (ii) in Table 6.6 where Donald is reckless and Ivan is skeptical, P (α) = [0, .75)

and P (θ) = [0, .25). In (i) a cautious Donald meets a skeptical Ivan and unintended

deception takes place because trust α is considered low by Ivan and because esti-

mation of success θ is considered too low by Donald to attempt deception. In (ii)

a reckless Donald meets a skeptical Ivan, then unintended deception takes place

because trust α is considered low by Ivan and Donald lacks confidence in its ToM

of Ivan θ. Donald will decide not to attempt deception, but Ivan thinks Donald’s

answer is a lie and decides to believe that the true answer is the opposite of what

Donald said, thus reaching the conclusion that Donald actually desires Ivan to reach.

Donald

(dec,BInt(ϕ))

BInt(ψ)α>t

(fail ,¬BInt(ϕ))

BInt(¬ψ)α<t

dec,ADec(ψ)

(¬dec,¬BInt(ϕ))

BInt(¬ψ)α>t

(fail , BInt(ϕ))

BInt(ψ)α<t

¬dec,ADec(¬ψ)

Ivan

Figure 6.2: An extensive-form representation of deceptive and non-deceptive plays
of Donald and all of their possible outcomes. The most right-hand branch represents
unintended deception ; fail represents the failure of the intended attempt (dec
for intend to deceive or ¬dec for not intend to deceive).

These results of unintended deception seem to show us that skeptical agents can

indirectly act as deceptive agents themselves under certain circumstances. Hence,

it can be argued that agents that are biased towards skepticism are not only prone

to deceive themselves, but also prone to help actual deceivers to reach their goals

without them (the actual deceivers) pro-actively chasing that goal. In a way, these

skeptical agents offer deceptive agents the option of free-reward. That is, deceivers

would maximise their potential payoffs (if there are any) by not paying any costs

for deception (if there are any).
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Exploring scenarios where deceivers intentionally do not attempt deception in

order for skeptical interrogators to be ultimately deceived requires an agent architec-

ture with an even higher-order of ToM than I have currently defined in the model.

To show a higher-order ToM was beyond the scope of our current study as it was

not necessary to show the raw dynamics of machine deception. Moreover, it was

sufficient not to have a higher-order ToM in order to understand how skepticism can

be detrimental to interrogators in particular deceptive contexts.

Table 6.4: Cautious vs Skeptical

P(α) P(θ) BDec ADec BInt Conclusion Deception

[0, .75)
[0, .75) ¬ψ ∧ ¬ϕ ¬ψ ψ BInt(ϕ) Yes∗
[.75, 1] ¬ψ ∧ ¬ϕ ψ ¬ψ ¬BInt(ϕ) No∗

[.75,1]
[0, .75) ¬ψ ∧ ¬ϕ ¬ψ ¬ψ ¬BInt(ϕ) No
[.75, 1] ¬ψ ∧ ¬ϕ ψ ψ BInt(ϕ) Yes

Table 6.5: Cautious vs Credulous

P(α) P(θ) BDec ADec BInt Conclusion Deception

[0, .25)
[0,.75) ¬ψ ∧ ¬ϕ ¬ψ ψ BInt(ϕ) Yes
[.75,1] ¬ψ ∧ ¬ϕ ψ ¬ψ ¬BInt(ϕ) No∗

[.25, 1]
[0,.75) ¬ψ ∧ ¬ϕ ¬ψ ¬ψ ¬BInt(ϕ) No
[.75,1] ¬ψ ∧ ¬ϕ ψ ψ BInt(ϕ) Yes

Table 6.6: Reckless vs Skeptical

P(α) P(θ) BDec ADec BInt Conclusion Deception

[0, .75)
[0,.25) ¬ψ ∧ ¬ϕ ¬ψ ψ BInt(ϕ) Yes∗
[.25,1] ¬ψ ∧ ¬ϕ ψ ¬ψ ¬BInt(ϕ) No

[.75, 1]
[0,.25) ¬ψ ∧ ¬ϕ ¬ψ ¬ψ ¬BInt(ϕ) No
[.25,1] ¬ψ ∧ ¬ϕ ψ ψ BInt(ϕ) Yes

Table 6.7: Reckless vs Credulous

P(α) P(θ) BDec ADec BInt Conclusion Deception

[0, .25)
[0,.25) ¬ψ ∧ ¬ϕ ¬ψ ψ BInt(ϕ) Yes
[.25,1] ¬ψ ∧ ¬ϕ ψ ¬ψ ¬BInt(ϕ) No∗

[.25,1]
[0,.25) ¬ψ ∧ ¬ϕ ¬ψ ¬ψ ¬BInt(ϕ) No
[.25,1] ¬ψ ∧ ¬ϕ ψ ψ BInt(ϕ) Yes
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6.5 Implementation in AOPL

Before I was able to successfully implement the model in an AOPL, I first needed

to find a way in which to represent ToM in an AOPL. The reason I had to do

this is because my model of deception relies on agents that have ToM as a cognitive

property. To model agents that model other minds, I adopted the approach described

in Chapter 4. First, I explain why I chose Jason as an AOPL to implement the model

and describe the approach I used for modelling ToM in Jason using its predicates

i.e., the representation of TT ToM. After that, I describe how agents execute meta-

reasoning using the TT modelling, i.e., I describe how I implement ST as a meta-

reasoning mechanism in agent-oriented programming. Finally, I describe how agents

use TT and ST to reason about and simulate the other agents’ mind in order to

make decisions. In particular, I will show the decision-making process for deception,

introduced in § 6.3.

I consider that the ToM of an agent Agi is part of its belief base, i.e., ΠAgi ⊂ ∆Agi ,

and that everything an agent Agi knows that is not in ΠAgi is considered the private

knowledge of Agi.

6.5.1 Agent Oriented Programming Languages

Among the many AOPL and platforms discussed in [32], such as Jason, Jadex, Jack,

AgentFactory, 2APL, GOAL, Golog, and MetateM, I chose the Jason platform [33]

for this work. Jason extends the AgentSpeak language, an abstract logic-based

AOPL introduced by Rao [214]. Jason [33] has a particular set of features that is

interesting for our work: strong negation, belief annotations, and (customisable)

speech-act based communication. Also, Jason automatically generates annotations

for all beliefs in the agents’ belief base about the source of the beliefs. The annotation

has the following format: safe(car1)[source(seller)], stating that the source of

the belief that car1 is safe is the agent seller. The annotations in Jason can be
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easily extended to include other meta-information, e.g., trust [197]. All of these

features made Jason the preferred platform for this work. However, other platforms

could also benefit from this work by having the approach proposed here adapted to

their particularities.

6.5.2 Modelling Theory-Theory ToM in AOPL

An important aspect to be considered in order to model ToM in Jason [33] is that

one needs not only to represent when an agent believes that another agent believes

something (which can be inferred from the belief annotations in Jason), but one

also needs to represent when an agent believes that another agent does not believe

something, or when it is ignorant about thatii. Therefore, I propose a representation

for ToM in Jason, using the following first-order predicates, considering that all are

agent a’s beliefs:

• believes(b,p): meaning that agent a believes that an agent b does believe p,

i.e., Πa
b |= Bb(p).

• believes(b,¬p): meaning that agent a believes that an agent b believes ¬p,

i.e., Πa
b |= Bb(¬p).

• ¬believes(b,p): meaning that agent a believes that an agent b does not believe

p, i.e., Πa
b |= ¬Bb(p).

• ¬believes(b,¬p): meaning that agent a believes that an agent b does not

believe ¬p, i.e., Πa
b |= ¬Bb(¬p).

• believes(b,inference(q,p)): meaning that agent a believes that an agent b

is able to infer q from p, i.e., Πa
b |= Bb(p→ q).

Jason automatically annotates all information that an agent has perceived/re-

ceived with the appropriated source from where that information came. Using

iiUsually, an agent will use inquiry dialogues to have access to such information.

208



this annotation, I am able to implement some meta-reasoning that allows an

agent to make inferencesiii from its private knowledge to its ToM. The inference

rule believes(Ag, Prop) : −Prop[source(Ag)] allows an agent to infer that another

agent Ag believes proposition Prop when Ag is the source of that information, i.e.,

((∆a |= p[source(b)]) → (Πa
b |= Bb(p))).

Another important aspect for modelling not only ToM, but also deception, is

the representation of when an agent is aware about the other agents being ignorant

about a particular information. For example, an agent a is able to infer that another

agent b is ignorant about a proposition p, when b does not believe either p or ¬p

— ¬believes(b,p) and ¬believes(b,¬p) hold on a’s belief base — i.e., Πa
b |=

¬Bb(p) ∧ Πa
b |= ¬Bb(¬p). The following inference rule allows agents to make such

inference:

ignorant−about(Ag, Prop) : − ¬believes(Ag, Prop)&¬believes(Ag,¬Prop)

Note that stating that an agent a is ignorant about whether agent b believes p

or not is different from a ToM saying that a knows/believes that agent b does not

believe either p or ¬p, i.e., (Πa
b 6|= Bb(p)∧Πa

b 6|= ¬Bb(p)) (agent a is ignorant about if b

believes or not in p) is different from (Πa
b |= ¬Bb(p)∧Πa

b |= ¬Bb(¬p)) (agent a knows

that agent b is ignorant about p). Following the same ideas, an agent a is able to

infer when itself is ignorant about some proposition, i.e., (∆a 6|= p∧∆a 6|= ¬p) using

the following inference rule: ignorant−about(Prop) : − not(Prop)&not(¬Prop).

Finally, an agent a is able to infer when it is ignorant about other agents’ beliefs,

i.e., considering another agent b we have (Πa
b 6|= Bb(p) ∧ Πa

b 6|= ¬Bb(p)):

ignorant−about(believes(Ag, Prop)) : −

not(believes(Ag, Prop))& not(¬believes(Ag, Prop)).

iiiThese inferences are characterised as ST ToM, as I describe in next section.
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6.5.3 Reasoning Using Simulation ToM

For the purpose of this study, it is important to consider what information is being

processed in order to form a ToM. We know that ToM consists of beliefs about

others’ minds (TT ToM) and we also know that ToM formation can be represented

through role-playing or simulating others’ minds (ST ToM). In this study, I consider

both perspectives.

Based on the approach for representing ToM in Jason agents, I explain below

how agents use that representation in order to make inferences from ToM, i.e., ST

ToM. For example, an agent is able to infer new information about other agents’

beliefs from the information it already has on its ToM about those agents. For

example:

believes(Ag, C) : − believes(Ag, inference(C, P)) & believes(Ag, P)

says that an agent is able to infer that another agent Ag believes C when it knows,

from its ToM, that agent Ag believes that P implies C, and agent Ag believes P, i.e.,

((Πa
b |= Bb(p→ q) ∧ Πa

b |= Bb(p))→ Πa
b |= Bb(q)).

Also, agents are able to infer, from their ToM, the missing information for

achieving a particular desired state of ToM. For example, imagine that an agent

a desires to achieve a state of ToM in which another agent b believes q, i.e.,

Πa
b |= Bb(q). Considering that the current state of a’s ToM only indicates that

agent b believes p implies q, i.e., Πa
b |= Bb(p → q), using ST an agent is able to

infer that it needs to achieve Πa
b |= Bb(p), thus with (Πa

b |= Bb(p → q) ∧ Πa
b |=

Bb(p)) it is able to achieve the desired ToM state Πa
b |= Bb(q). This backward-

reasoning can also be observed in Table 6.2. Agents execute such reasoning

using the following inference rule: implies(believes(Ag, N), believes(Ag, C)) : −

believes(Ag, inference(C, N)); meaning that an agent is able to infer that another

agent Ag believing N implies it also believing C, considering that the agent knows

Ag believes in inferring C from N. Note that, here, the agent does not need to model
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that agent Ag believes N, it just simulates such an inferenceiv.

In contrast to agents’ reasoning using ST ToM, which we can easily note is

not domain dependent, agents’ decision making is domain dependent, given that

different domains will require different decision making. In the next section, I show

how agents use TT (i.e., the initial ToM) and ST (i.e., inferences, simulation, and

updates they execute using ToM) to make decisions. In particular, I will discuss

how agents make decisions based on the scenario in § 6.3.

6.5.4 Decision Making and Communication Semantics

In this section I show how agents update their belief bases and ToM during com-

munication, as well as how agents make decisions based on the state of their mental

attitudes (i.e., ToM, belief base, desires, etc.). I give formal semantics to both

speech acts used for modelling deception in multi-agent systems, namely Ask and

Response. I define new semantic rules to accompany the existing operational

semantics of Jason [33, 284]; however, for clarity I use only the configuration com-

ponents that I need to formalise the essentials of our approach. Also, to account

for the decision-making process, I define two functions, Conf() and Trust(), which

describe different behaviours that agents may adopt depending on the parameters

α, β, and γ introduced in § 6.3, and based on their profiles.

First, in Ask1, when an agent receives an Ask message and it believes it is

likely to be successful in deceiving the sender (based on its profile), it sends a

Response message with the information that makes it achieve the desired state of

ToM, regardless of whether the sender agent believes it to be true or not.

ivFor simplicity, I only model other agents’ beliefs in both TT and ST ToM, which is sufficient
to show our approach. Similar types of beliefs can be easily added. For example, I am able to
model (i) that an agent a has the desire to become aware of q (i.e., DaBa(q)) using the predicate
desires(a, believes(a, q)) at TT ToM, (ii) that an agent does not believe something while it has
a desire for that, i.e., ¬believes(Ag, Prop):- desires(Ag, believes(Ag, Prop)).
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SM (MIn) = 〈mid , sid , Ask, ψ〉
Πag

sid |= Bsid(ψ → ϕ) Πag
sid |= ¬Bsid(ψ) Πag

sid |= ¬Bsid(¬ψ)
(Πag

sid ∪ {Bsid(ψ)}) |= Bsid(ϕ) Conf() = true

ProcMsg −→AS ExecInt

where:
M ′

In = MIn \ {〈mid , sid , Ask, ψ〉}
M ′

Out = MOut ∪ {〈mid , sid , Response, ψ〉}

(Ask1)

Ask1 says that when an agent selects a received message to be processedv

〈mid , sid , Ask, ψ〉 (with mid and sid the message and sender identifier, respec-

tively), and it knows, from TT ToM, that the sender is able to infer ϕ from

ψ — Πag
sid |= Bsid(ψ → ψ) — and that the sender is ignorant about ψ —

Πag
sid |= ¬Bsid(ψ) ∧ Πag

sid |= ¬Bsid(¬ψ) — then, using ST ToM, the agent infers

that responding ψ will probably (considering the parameters mentioned and the

agent profile in Conf()) make the sender believe ψ — Bsid(ψ) — and making the

sender believe ψ gets the agent to achieve a ToM state corresponding to its desire

— (Πag
sid ∪ {Bsid(ψ)}) |= Bsid(ϕ). Finally, after reasoning about which response to

provide, the agent removes that message from its mail inbox MIn , and add the cor-

responding message to the mail outbox MOut . Otherwise, in Ask2, when the agent

believes it is unlikely to be successful in deceiving the sender (based on its profile),

it responds truthfully.

SM (MIn) = 〈mid , sid , Ask, ψ〉
Πag

sid |= Bsid(ψ → ϕ) Πag
sid |= ¬Bsid(ψ) Πag

sid |= ¬Bsid(¬ψ)
(Πag

sid ∪ {Bsid(ψ)}) |= Bsid(ϕ) Conf() = false

ProcMsg −→AS ExecInt

where:
M ′

In = MIn \ {〈mid , sid , Ask, ψ〉}
M ′

Out = MOut ∪ {〈mid , sid , Response, φ〉} with

φ =


ψ if ∆ag |= ψ

¬ψ if ∆ag |= ¬ψ
ignorant(ψ) if ∆ag 6|= ¬ψ ∧∆ag 6|= ψ

(Ask2)

When an agent receives a Response message, it updates its belief base depending

on the result of Trust(); I assume this function to determine, depending on the agent

profile, whether the sender appears trustworthy. Thus, in Response1, when the

vHere it suffices to know that this function selects one message from the agent’s inbox MIn ,
see [33, 284] for more details about this function SM ().
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agent trusts the sender (based on the receiver profile), it updates its belief base with

that information. Otherwise, in Response2, when the agent does not trust the

sender (again, based on the receiver profile), it updates its belief base assuming that

the sender is lying, thus assuming that the appositive is the case.

SM (MIn) = 〈mid , sid , Response, ψ〉 Trust() = true

ProcMsg −→AS ExecInt

where:
M ′

In = MIn \ {〈mid , sid , Response, ψ〉}
∆′
ag = ∆ag ∪ {ψ[source(sid)]}

(Response1)

SM (MIn) = 〈mid , sid , Response, ψ〉 Trust() = false

ProcMsg −→AS ExecInt

where:
M ′

In = MIn \ {〈mid , sid , Response, ψ〉}
∆′
ag = ∆ag ∪ {¬ψ[source(sid)]}

(Response2)

6.5.5 Example

As a real-world example for the implementation, I take the car-sale scenario as

in [258] and in [200]. Donald is a car dealer and Ivan is a potential buyer. When we

buy cars, if we are rational (and I assume the potential buyer is rational), then we

consider safetyvi of the vehicle as being a priority. I set up the scenario in Table 8.

Further, this scenario corresponds to the fourth case in Table 6.6, instantiating our

model using the abstract agents defined in Table 6.1.

I describe the scenario making reference to the running model from § 6.4.1,

showing also that our approach can instantiate many similar scenarios of deception:

Ivan is ignorant about whether a bmw is safe or not. Therefore Ivan sends an

Ask message whether the bmw is safe or not to Donald. Next, Donald receives

the message, which corresponds to the semantics rule Ask1 with Donald’s profile

being reckless and θ = 0.51. Donald’s decision-making process corresponds to

the instantiation of the backward-reasoning from (5) to (16) and in the semantics

rule Ask1, which ends with Donald responding that the bmw is safe (16). Ivan

vi[170] includes passenger safety as an important part of the car attributes in negotiation sce-
narios.
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Table 6.8: Setup of Real-World Example

Donald (Dec) reckless with skill β = 0.8
Beliefs: BDec(safe(X)→ buy(X)), BDec(¬safe(bmw)), BDec(¬buy(bmw))
Desires: DDec(BInt(buy(bmw)))
Actions: ADec(safe(bmw)), ADec(¬safe(bmw))
ToM with confidence γ = 0.8: BDec(BInt(safe(X)→ buy(X)))

Ivan (Int) skeptical with trust α = 0.8

Beliefs: BInt(safe(X)→ buy(X)), BInt(safe(bmw))
Desires: DInt(BInt(safe(bmw)) ∨BInt(¬safe(bmw)))
Actions: QInt(safe(bmw))

ToM : BInt(¬BDec(safe(bmw)))

receives the message, which corresponds to the semantics rule Response1, given

that, though Ivan profile is skeptical, it trusts Donald i.e., α = 0.8. Finally, Ivan

concludes that the bmw is safe, corresponding the instantiation of the reasoning

process from (17) to (20) and the belief update showed in Response1, which ends

with Ivan believing that it should buy a bmw.

6.6 Conclusion

In this chapter I have described a high-level approach for modelling deception using

Theory-of-Mind in Multi-Agent Systems that integrates components of three major

theories of deception described in §2.1, namely TDT, IMT2, and IDT. The aim of

this work is to increase the understanding of how future machines might be able

to deceive others by building a mechanism that is able to represent the psycholog-

ical dynamics between agents under some constraints inspired by the two theories

of deception. Besides formalising and evaluating the agent model using BDI-like

architectures, the model I have presented here has been successfully implemented

in a BDI based AOPL, describing all the steps of the implementation. This shows

good synergy between formal specification and implementation while adopting the

approach to ToM presented in Chapter 4. Furthermore, in order to offer the possi-
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bility of extending the model so that it can serve various domains for the study of

deception, I have proposed four agent profiles which influence the execution of differ-

ent behaviours by considering the likelihood of trust and deception between agents.

I have also evaluated all the possible outcomes of interaction between these profiles,

showing the contexts from which deception emerges. The most significant result of

our model indicates that some agent dynamics can result in cases of unintended de-

ception. According to our analysis of the model this means that skeptical attitudes

of agents can be detrimental in contexts of deception. This is crucial to take into

account in the modelling, design and application of AI in the areas of agreement,

cooperation and social interaction. These are areas in which agent attitudes towards

trust play a significant role in the outcomes of agent interactions such that deceptive

agents might be able to exploit either intentionally or unintentionally.

As future work, I am curious to explore how to increase the order of ToM defined

in the current agent architecture. Other research aims would be: the inclusion

of a cognitive load component; more profiles for the agents; an ST ToM for the

interrogator agent to be able to detect deception; and an environment that agents

can use to deceive and detect deception.
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Chapter 7

The Evolution of Deceptive Agents

In this chapter I use an evolutionary game theory approach to model deception in

social interactions over time between agents in large-scale systems.

Deception plays a critical role in the dissemination of information, and has im-

portant consequences on the functioning of cultural, market-based, and democratic

institutions. Deception has been widely studied at the intersection of the fields of

Philosophy, Psychology, Economics and Political Science. Yet, we still lack an un-

derstanding of how deception emerges in a society under competitive (evolutionary)

pressures. In this chapter I begin to fill this gap by bridging evolutionary models of

social good–public goods games (PGGs)–with ideas from Truth-Default Theory [153]

and from Interpersonal Deception Theory [38]. The type of deception that I model

in this chapter corresponds to distributed deception Type III (see Chapter 3). This

chapter provides a well-founded analysis of the growth of deception in agent soci-

eties and the effectiveness of several approaches to reducing deception. Assuming

that knowledge is a public good, I use extensive simulation studies to explore (i)

how deception impacts the sharing and dissemination of knowledge in agent soci-

eties over time, (ii) how different types of knowledge sharing societies are affected

by deception, and (iii) what type of policing and regulation is needed to reduce

the negative effects of deception in knowledge sharing. The results in this chapter

indicate that cooperation in knowledge sharing can be re-established in systems by

216



introducing institutions that investigate and regulate both defection and deception

using a decentralised case-by-case strategy. This provides evidence for the adoption

of methods for reducing the use of deception in the world around us. This also

applies to deceptive behaviour of artificial agents, if we are to assume that machines

will indeed develop, or become endowed with, the cognitive capabilities to deceive,

that I have discussed in the previous chapters.

7.1 Introduction

Deception plays a critical role in information dissemination. Deception also plays a

crucial role in survival and continuation of species. Significant studies from evolu-

tionary biology have even focused on the bio-physiological properties of deception in

plants and animals [266], that determine certain types of behaviours. Humans, on

the other hand, employ deceptive behaviour at a higher level which is not necessarily

determined or highly dependent on their bio-physiological properties i. This is espe-

cially the case in social, political and economic contexts where deception takes the

form of knowledge manipulation. Areas such as Philosophy [160, 92], Psychology

[75, 76], Communication Theory [172, 152, 38], Economics [98, 31], Security Studies

[122, 265, 294] have looked at the these higher-level properties and components of

deception.

Information technologies such as smart-phones, social media and rolling news

coverage have greatly increased the access to information and informed decision

making which in turn determine opinion formation and behavioural change. However

this increased access also offers more opportunities for the knowledge public good to

be compromised by deception. Additionally, due to this advancement in technology,

other kinds of actors, apart from humans, that share and generate knowledge have

iThis does not imply that deception in humans is not driven by some bio-physiological prop-
erties.
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come into existence. In particular, Artificial Intelligence (AI) has gained a strong

momentum in the past decades, and this has caused the emergence of intelligent

artificial and autonomous agents. The risks related to the sharing of knowledge and

information as a social good posed by AI is that artificial autonomous agents might

develop their own reasons to act deceptively as it is pointed out in [42] and, more

recently, in [130] and throughout this thesis. AI has also seen an emerging interest

in the problem of fake news and the potential ability of machines (i) to be used

for fake news generation [302] and fake news detection [108, 57]; or even (ii) to use

higher-order cognitive mechanisms to manipulate the beliefs of others in order to

deceive as we have seen in the previous chapters of this thesis. All of this leaves

us with an urgent need to understand deception better, and to devise methods for

reducing its impact.

A shared system of accurate and non-partisan knowledge confers advantages for

all members of society and promotes informed and democratic decision making.

However there exists a unilateral incentive to provide misinformation and disin-

formation that confers advantages to that individual. Therefore mechanisms are

required to promote cooperative behaviour and to punish disinformation, misinfor-

mation and deception in order to preserve these institutions of knowledge. Indeed,

from the perspective of our ability to govern societies, it has become increasingly

important to address the future impact that deceptive social agents (human or ar-

tificial) can have on society in general. More importantly, we must ask ourselves

what types of rules need to be implemented or what types of mechanisms should be

employed in order to reduce the impact of deceptive agents on knowledge sharing

and generation. In this chapter I begin to provide some answers to these issues.

I do this, by studying a public goods game (PGG) model based on the those

in [254] and [1]. I use these games to explore how the evolution of cooperation in

different populations of agents is influenced by deception. A public good commonly
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models some type of financial or physical good that is shared by the members of a

society, but can also represent a shared system of knowledge within a society, and

that is how I use it here. This model allows us to answer the following questions:

1) Does deception lead to the breakdown of cooperation in societies where regula-

tory institutions exist? and 2) Can cooperation be maintained in societies where

deception is present?

7.2 Background

I consider deception to be a strategic and social behaviour that agents (natural or

artificial) employ in order to gain advantage over the members they interact with.

In game-theoretic terms, deception should be considered (as it is, by the literature)

to be a non-cooperative behaviour. However, agents that intend to deceive, usually

try to emulate cooperative behaviour. To the target agent that observes it, a decep-

tive agent appears cooperative, while, in reality, it is non-cooperative. Therefore,

the type of agent-based model I chose for this study has to be able to represent

deception as a falsely cooperative behaviour while allowing us to test under which

circumstances real cooperation is promoted.

The major studies on cooperation focus on the aspects of complexity in agent-

based systems and treat cooperation as an emergent behaviour in such multi-agent

systems [9, 254, 192]. Thus, even though the overall behaviour of a population of

agents can be regarded as complex, it emerges from a set of strategic behaviours that

are intrinsically simplistic. The literature shows that PGGs as cooperative game

theoretical models can been successfully used to study how cooperation emerges,

and that they are a powerful framework to understand the conditions under which

cooperation is stable through mechanism design [1, 254]. This is why I adopt a PGG

approach here.

The set of behaviours that most work on PGGs has focused on are coopera-
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tion, defection (also known as free-riding) and punishment. Different variants of

punishment have been studied, including pool-punishment, where individuals pay a

tax to maintain third parties (the punishers) who carry out punishment, and peer-

punishment, where individuals punish their peers. However, if we look at how agents

in human societies behave, we can identify other types of behaviours that are not as

straight-forward, such as deception. Apart from simply cooperating, defecting and

punishing, humans are also able to mask their intentions behind these behaviours.

For instance, an agent can pretend to cooperate while defecting in a PGG. Thus,

to other participating players the deceiver seems to be one of the cooperators, thus

enjoying both the social benefits of a cooperator and the financial benefits of a defec-

tor. As a cooperator, the deceiver might be regarded as being ethical and pro-social,

while as a defector the deceiver receives a certain political or financial satisfaction ii.

In terms of knowledge sharing, a cooperator is transparent and fair, thus it shares

truthful information with the other members of society. Contrastingly, a deceiver

will contribute with untruthful information when engaged in knowledge sharing.

Given that deception is intrinsically a communicative behaviour, I refer to the

literature in Communication Theory to see what factors must be included in our

PGG model. I mainly consider factors that directly influence deceptive behaviour in

social interactions. One such cognitive factor, according to Truth-Default Theory, is

the default attitude of trust [152]. Apart from a bias towards trustworthiness, there

are other socio-cognitive factors such as cognitive load iii, leakage iv, and commu-

nicative skill v that have been identified by Interpersonal Deception Theory (IDT)

in [38].

iiAccording to [98], deception should be a selfish behaviour that aims to maximise one’s payoff.
iiiThe cognitive effort that is spent in order to solve a task, such as forming or planning a

deceptive strategy.
ivThe information leaked by a deceptive agent due to cognitive load.
vThe social skill of an agent to form, plan, and deliver messages. According to IDT, the

communicative skill regulates cognitive load and reduces leakage.
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7.3 Methods

7.3.1 Agent-Based Modelling of Public Goods Games
(PGGs)

I apply mechanism design and evolutionary game theory to study the behaviour of

populations of agents of a fixed size N in six different PGGs, each with a different

set of strategies. In a PGG each participant is faced with two options: a) contribute

to the public pool a given amount c > 0; or b) not contribute to the public pool.

After the participant picks an option, it receives an amount r × c × MC

M
, where r

represents a multiplier representing the increasing returns of cooperative behaviour,

MC represents the number of contributors and M the total number of participants.

If MC = M it means that the social good is maximised and each participant receives

the amount equal to r × c. Whatever the case, each participant receives an equal

share r × c× MC

M
regardless of whether they contributed to the public pool. In the

absence of punishment, free-riding (taking the payoff without contributing to it)

becomes the dominant strategy.

For each PGG, I perform explicit computations of what payoffs the agents will

receive given a sub-population that is selected to play the game at each iteration.

The relative differences between the payoffs obtained by the agents with different

strategies in the sub-population determine the probability that an agent will adopt

a different strategy given a function of the imitation strength s ≥ 0 which represents

social learning, together with the exploration rate µ ≥ 0 which represents the natural

inclination of agents to randomly adopt another strategy. The imitation strength, or

social learning, can be either weak/intermediate or strong. For weak/intermediate

social learning the value of s is a fixed number, while for strong social learning the

value of s approaches ∞. Social learning represents the tendency of an agent that

is selected for mutation to adopt a strategy that compared to its current strategy

maximises the agent’s payoff.
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The components of our PGGs are the following: A non-empty set of strategies

S 6= ∅; N that is the number of agents in a population to play a PGG; nSi
represents

the number of agents in a population with a given strategy Si; M the number of

agents that is selected to play a PGG from a population N ; r is a multiplication

factor that is always 1 < r < M−1; c represents the investment a cooperative agent

contributes to a PGG; cSi
denotes the cost of a given strategy Si; ΠSi

represents

the payoff of a given strategy Si; s represents the imitation strength, which in my

model represents social learning; µ is the mutation rate at which an agent is selected

to learn the strategy of another agent; B is the pool-punishment for Defection; b is

the peer-punishment for Defection; cb is the cost of punishing a Defector; G is the

cost of Pool-Punishment; Γ is the punishment or tax for Deception; and finally σ

represents the payoff for Non-Participation. These parameters are summarised in

Table 7.2 when discussing the results in §7.4.

Regarding social learning (imitation strength), I assume that two players i and

j are randomly chosen. Their expected payoff values Πi and Πj depend on the

strategies of the two players and on the frequencies C, D, L etc. of the strategies.

I adopt the assumption made in Sigmund et al. [254] and Abdallah et al. [1] that

player i adopts the strategy of player j with a probability which is an increasing

function of the payoff difference ∆ = Πi − Πj, that is 1
1+exp(−s×∆)

. The higher the

value for s, the stronger the tendency of adopting the better strategy. When s
∞−→

the agent will always adopt the better strategy.

The exploration rate µ can be viewed as a mutation which models random mis-

takes in actions as well as purposeful exploration regardless of relative payoffs. This

stochastic approach allows us to dynamically represent how the frequencies of the

different types of agents evolve over time. The probability of a player to change

from strategy X to another strategy Y is µX,Y = µ
n−1

, where n is the total number

of strategies in S.
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I start from Sigmund’s voluntary PGG [254] as a baseline before introducing

other PGGs, each with different compositions of agents to see how the strategies

influence each other. The full set of strategies that I use are as follows, with Cooper-

ators, Defectors, Loners, Peer-Punishers, and Pool-Punishers being the set studied

in [254] and Deceivers, Interrogators and the two Hybrid strategies being novel

strategies introduced here.

• Cooperator (C): the Cooperator receives the PGG payout (Eq.7.2) and pays

the PGG contribution c. The Cooperator also pays β, which represents the

tax for Punishers to exist.

• Defector (D): the Defector receives the PGG payout, without paying the

PGG contribution. However, the Defector pays a tax inflicted by the Pool-

Punishers B or the Peer-Punishers b, or by both types of Punishers depending

on the PGG that is being played.

• Loner (L) (a.k.a Non-Participation): the Loner always receives the same

payoff σ, no matter what PGG is being played.

• Pool-Punisher (PoP ): the Pool-Punisher receives the PGG payout, pays the

PGG contribution c, as well as the cost of pool-punishment G. On top of this,

the Pool-Punisher receives a reward that is the tax payed by the Cooperators

multiplied by the number of Cooperators playing the game and divided by

the total number of Punishers and Interrogators selected to play the game,

depending on the PGG that is being played.

• Peer-Punisher (PeP ): the Peer-Punisher receives the PGG payout, pays

the PGG contribution c, as well as the cost of peer-punishment cb multiplied

by the number of Defectors. On top of this, the Peer-Punisher receives a

reward that is the tax payed by the Cooperators multiplied by the number of
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Cooperators playing the game and divided by the total number of Punishers

and Interrogators selected to play the game, depending on the PGG that is

being played.

• Deceiver (Dec): the Deceiver receives the PGG payout and does not pay the

PGG contribution (similar to what the Defector is doing). On top of that, the

Deceiver is not punished by either type of Punisher. Instead, the Deceiver can

be interrogated by the Interrogator agents and can pay the cost of deception

if it is caught. The cost of deception depends on the the cognitive load of the

Deceiver as well as on the risk of leakage from the Deceiver. Finally, the cost

of deception is also influenced by the Deceiver’s communicative skill and the

number of agents it needs to deceive in a game.

• Interrogator (Int): the Interrogator receives the PGG payout and pays the

PGG contribution c. The Interrogator also receives the reward paid by the

Cooperators and divided by the total number of Interrogators and Punishers,

depending on the PGG that is being played. The Interrogator also pays the

cost of Interrogation, which consists of the cost of interrogating agents in the

PGG and the cost of punishing the interrogated agent in the PGG which turn

out to be deceptive.

• Pool-Hybrid Interrogator (HPoP ): this type of Interrogator plays both the

role of Interrogator and the role of Pool-Punisher. Therefore, it inherits the

costs of both types of agents, while receiving the PGG payout, and of course

paying the PGG contribution.

• Peer-Hybrid Interrogator (HPeP ): this type of Interrogator plays both the

role of Interrogator and the role of Peer-Punisher. Therefore, it inherits the

costs of both types of agents, while receiving the PGG payout, and of course

paying the PGG contribution.
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For our PGG model, each strategy, except for Non-Participation, falls into one of the

meta-strategies of cooperative game theory, namely Cooperation and Free-Riding.

The Cooperation meta-strategy, which determines an agent to make a contribu-

tion to the social good, includes: Cooperation, Pool-Punishing, Peer-Punishing,

Interrogation, Pool-Hybrid Interrogation and Peer-Hybrid Interrogation; the Free-

Riding meta-strategy, which determines an agent to not contribute anything to the

social good while enjoying the benefits of the social good, consists of Defection and

Deception. A payout where Free-Riders are playing a PGG would be:

Payout∗ = c× r × N − nFR − nL − 1

N − nL − 1
(7.1)

In Eq.(7.1) where a PGG is played by a fixed population with N agents, nFR repre-

sents the total number of Free-Riders, and nL represents the total number of Loners

(Non-Participants). This payout is consistent with the previous evolutionary models

of PGGs [254, 1].

The total number of Free-Riders is nFR = nD+nDec. However, since in our PGG

models the Deceivers are pretending to cooperate, they are not discounted form the

calculation of the payout. Thus, our payout where Deceivers are present is:

Payout = c× r × N − nD − nL − 1

N − nL − 1
(7.2)

Because I assume voluntary participation in the PGG, then I will need to take

into account the probability that the other M - 1 players of a sample are unwilling

to participate:

Pσ =

(
nL

M−1

)(
N−1
M−1

) (7.3)

Therefore, a general payoff can be represented like this:

Π = Pσ × σ + (1− Pσ)(Payout− c)− costM − 1

N − 1
+ reward

M − 1

N − 1
(7.4)
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I model six different PGGs with different population compositions summarized

in Table 7.1. The details regarding the payoffs for each strategy and the modelling

of each PGG can be found in Appendix A. Here I describe the high-level conceptual

design of the six PGGs:

PGG1: This is the PGG based on [254] where second-order punishment has been

substituted with a fixed tax β that is to be paid by the Cooperators for Punishers

to exist. This is similar to paying a tax for policing in a society. This PGG consists

of Cooperators, Defectors, Loners, Peer-Punishers, and Pool-Punishers.

PGG2: In this PGG I keep the same types of agents as in PGG1 and I introduce

the Deceivers. In this setup, the Deceivers are able to free-ride without risking to

be caught by Interrogators.

PGG3: In this PGG I keep the same setup as in PGG2, but I replace the Peer-

Punishers with Interrogators. Interrogators are able to chase Deceivers, while the

remaining Pool-Punishers are able to punish Defectors.

PGG4: In this PGG I keep the same setup as in PGG2, but I replace the Pool-

Punishers with Interrogators. Interrogators are able to chase Deceivers, while the

remaining Peer-Punishers are able to punish Defectors.

PGG5: In this PGG I keep the same setup as in PGG3. However, instead of

having two different types of agents chasing Defectors and Deceivers separately,

I have a single type of agent that performs both jobs, namely the Pool-Hybrid

Interrogator. This is analogous to having a centralised policing institution in a

society which keeps track of both types of free-riding behaviours.
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PGG6: In this PGG I keep the same setup as in PGG4. However, instead of

having two different types of agents chasing Defectors and Deceivers separately,

I have a single type of agent that performs both jobs, namely the Peer-Hybrid

Interrogator. This is analogous to having a decentralised policing institution in a

society which keeps track of both types of free-riding behaviours.

Table 7.1: PGGs and the combination of strategies.

PGG C D L PeP PoP Dec Int Hpop Hpep

1 X X X X X × × × ×
2 X X X X X X × × ×
3 X X X × X X X × ×
4 X X X X × X X × ×
5 X X X × × X × X ×
6 X X X × × X × × X

The eight strategies that I used in the six PGGs are: Cooperation C, Defection D,
Non-Participation (Loners) L, Peer-Punishing PeP , Pool-Punishing PoP ,
Deception Dec, Interrogation Int, Pool-Hybrid Interrogation HPoP , and
Peer-Hybrid Interrogation HPeP .

7.3.2 Modelling Deception and Interrogation

Trust in society I consider trust to be proportional to the number of Cooperators

in games, but due to the complexity of the game I am modelling I need to make

the distinction between genuine cooperators, represented by Cooperators and Inter-

rogators/ Punishers, and total cooperators which includes Deceivers, represented by

N −nD. Deceivers are pretending to cooperate, thus they influence the overall trust

between members of a population. I have derived this definition of trust based on

Truth-Default Theory in deception literature [152], which states that human agents

are biased to trust others by default. I use t = N−nD

N
to represent the trust between

a population of agents. Trust has the following properties in our model: 1) Trust

increases both the likelihood of cooperation and deception; 2) Trust reduces the like-

lihood of defection; and 3) Low trust means more defectors in a selected population
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M which determines lower payoffs for Defectors and Deceivers.

Deception model Deceivers receive the payout of the PGG without making the

PGG contribution. They are distinguished from Defectors because they are not

subject to punishment as they conceal their defection. However this concealment

is costly; it increases with the number of other agents that must be convinced, but

decreases with overall trust among the population and the deceivers’ innate commu-

nicative skill. I consider the following components that contribute to a Deceiver’s

payoff:

Definition 27 Cost of Deception Let the cost of deception cDec be a function of

cogLoad and leakage, where cDec = cogLoad+ leakage.

1. commSkill represents the communicative skill of the Deceiver.

(a) Reduces the cost of deception.

(b) The higher the communicative skill, the more likely it is for a Deceiver

to succeed in deception.

2. γ = 1− commSkill represents the Deceivers’ risk of getting caught.

3. cogLoad = (nC +nInt+nDec+nP )× (1− t)× (1− commSkill) : The cognitive

load of a Deceiver, where:

(a) nC+nInt+nDec+nP represents the number of agents that need convincing.

Here I also add the number of Deceivers, because a Deceiver considers

other Deceivers to be Cooperators. nP is the number of Punishers (Peer

or Pool).

(b) (1 − t) × (1 − commSkill) represents the cost to convince an agent. t

represents the trust in society, and that was defined in the previous sub-

section.
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4. leakage = nInt × γ × Γ represents the leakage of the Deceiver.

(a) Increases the cost of deception.

(b) Leakage means that the deceiver leaves a track of evidence that might

lead an Interrogator to find out about deception.

Interrogation model Interrogators receive the same payout as the Peer-

Punishers minus the cost of peer-punishing. They are different from Peer-Punishers

as they do not punish Defectors. However, Interrogators need to hunt down De-

ceivers and punish them, therefore they need to pay a cost for interrogation. This

cost increases with the number of agents in a population they need to interrogate as

well as with the number of Deceivers they are likely to reveal and punish. I consider

the following components that contribute to an Interrogator’s payoff:

Definition 28 Cost of Interrogation Let the cost of being an Interrogator cInt

be a function of cΓ and cinterr, where cInt = γ × cΓ × nDec + cinterr × (nC + nDec).

1. cΓ: cost of punishing a Deceiver. It is multiplied by:

(a) The probability of a deceiver’s risk of getting caught γ, which represents

the likelihood of revealing a Deceiver. This multiplication represents the

risk of a Deceiver being caught in a given population.

(b) The number of Deceivers nDec

2. cinterr: cost of interrogating an agent. It is multiplied by:

(a) The numbers of agents that need to be interrogated. These are both

Cooperators and Deceivers nC + nDec.
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7.4 Results

Here I present the results from the simulations. Each simulation is a run of 105

PGG games. Each game contains N = 100 agents. In the first game, all agents

are Defectors, and after each game the population evolves as described above. I

ran two sets of simulations, one with strong social learning (s = s
∞−→), and one

with weak/intermediate social learning (s = 1000). I ran 103 simulations for each

of these two learning conditions, and report results in terms of the frequencies with

which agents picked particular strategies at the end of those runsvi. These figures are

reported as averages over the 103 runs. Other parameters are: M = 5, µ = 0.001,

c = 1, r = 3, σ = 0.3, b = cb = 0.7, B = G = 0.7. The fixed parameters for

deception were β = 0.5, Γ = 0.8, cΓ = 0.5, cinterr = 0.5, and commSkill = 0.5. The

parameter values are identical to those used in [254] and [1], except for the σ. I

used σ = 0.3 in order to incentivise participation, whereas [254] and [1] used σ = 1.

Regarding the parameters of deception, I also tested their effects on the long-run

frequencies.

When reading the barcharts for each PGG (Fig.7.1 to Fig.7.12), the coloured

bars represent the long-term average frequency of agents with a given strategy where

each colour represents a different strategy of the PGG. The error bars represent ±1

standard deviation from this mean given that iterations of a single PGG do not

necessarily have the same outcome in terms of long-run population frequencies. I

also performed statistical Kruskall-Wallis nonparametric (distribution free) vii tests

for each PGG in order to analyse variance between payoff samples over all strategies

in a given PGG assuming that strategies are dependent variables. To compare

the payoff samples of the same strategies in different PGGs, I performed pairwise

viThese frequencies are the same as the proportion of agents picking the strategies.
viiTests whether two or more samples come from the same distribution. A significant test in-

dicates that at least one sample stochastically dominates one other sample. The test does not
identify where this stochastic dominance occurs or for how many pairs of groups stochastic domi-
nance obtains [139].
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nonparametric Mann-Whitney tests viii, assuming independence between the PGGs.

The results from both types of tests gave very low p-values (p < 0.01), meaning

that the differences between the payoff averages obtained from our simulations are

statistically significant and they have not occurred by chance.

Table 7.2: Parameter values for PGGs

Number of agents in a population to play a PGG N 100
Number of iterations of a PGG T 105

Number of agents selected to play a PGG M 5
Social learning (imitation strength) s 1000 or ∞

Exploration rate µ 0.001
PGG contribution c 1.0
PGG multiplier r 3.0

Loner (Non-participation) payoff σ 0.3
Pool punishment effect B 0.7
Pool punishment cost G 0.7
Peer punishment effect b 0.7
Peer punishment cost cb 0.7

Tax for punishers to be present β 0.5
Punishment for deception Γ 0.8
Cost to punish a deceiver cΓ 0.5
Cost to interrogate agents cinterr 0.5

Communicative skill (for deceivers) commSkill 0.5

7.4.1 PGG1 - Punishment

I reproduced the results in [254] without second-order punishment. Therefore, Peer-

Punishers dominated the games with the following long-run average frequencies for:

1) s = 1000: [C : 0.0 (SD=0.0), D : 0.001 (SD=0.004), L : 0.001 (SD=0.006),

PoP : 0.0 (SD=0.001), PeP : 0.998 (SD=0.01)]; and 2) s
∞−→: [C : 0.0 (SD=0.0),

D : 0.0 (SD=0.001), L : 0.001 (SD=0.003), PoP : 0.0 (SD=0.0), PeP : 0.999

(SD=0.004)]. See model details in Table A.1 in Appendix.

viiiTests the alternative hypothesis that one distribution is stochastically greater than the other,
under the assumption of continuous responses [161].
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7.4.2 PGG2 - Deception

Subsequently, I introduced Deceivers to check if they destabilise Cooperation by re-

ducing the long-run frequency of Peer-Punishers. Deceivers have indeed had an

impact on the system, given the following long-run average frequencies for: 1)

s = 1000: [C : 0.032 (SD=0.031), D : 0.324 (SD=0.1), L : 0.187 (SD=0.065),

PoP : 0.026 (SD=0.029), PeP : 0.133 (SD=0.089), Dec : 0.295 (SD=0.104)]; and

2) s =
∞−→: [C : 0.034 (SD=0.031), D : 0.324 (SD=0.099), L : 0.186 (SD=0.064),

PoP : 0.025 (SD=0.025), PeP : 0.136 (SD=0.094), Dec : 0.294 (SD=0.1)]. See

model details in Table A.2 in Appendix.

7.4.3 PGG3 - Interrogation with Pool-Punishment

In order to try and re-establish Cooperation, I replaced the Peer-Punishers with

Interrogators in the population composition to check whether Interrogation and

Pool-Punishment have a positive impact on the system. Unfortunately, even though

Interrogators are present and they are able to reduce the frequency of Deceivers for

strong imitation, more Defectors seem to be invading the system. This indicates

the ineffectiveness of the Pool-Punishers in this PGG, as shown in the long-run

average frequencies for: 1) s = 1000: [C : 0.083 (SD=0.053), D : 0.378 (SD=0.103),

L : 0.22 (SD=0.067), PoP : 0.075 (SD=0.059), Int : 0.029 (SD=0.027), Dec : 0.215

(SD=0.107)]; and 2) s =
∞−→: [C : 0.082 (SD=0.054), D : 0.383 (SD=0.104), L :

0.219 (SD=0.07), PoP : 0.076 (SD=0.063), Int : 0.029 (SD=0.027), Dec : 0.211

(SD=0.105)]. See model details in Table A.3 in Appendix.

7.4.4 PGG4 - Interrogation with Peer-Punishment

Due to the lack of efficiency of Pool-Punishers given by the results in both PGG1

(without Deception) and PGG3 (with Deception and Interrogation) I decided to

replace them with Peer-Punishers given their absolute dominance in PGG1. Unfor-
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tunately, Peer-Punishers have proven to be almost as inefficient as Pool-Punishers

given the following long-run average frequencies for: 1) s = 1000: [C : 0.035

(SD=0.03), D : 0.343 (SD=0.101), L : 0.196 (SD=0.067), PeP : 0.118 (SD=0.082),

Int : 0.05 (SD=0.052), Dec : 0.258 (SD=0.105)]; and 2) s =
∞−→: [C : 0.036

(SD=0.033), D : 0.349 (SD=0.1), L : 0.197 (SD=0.068), PeP : 0.116 (SD=0.086),

Int : 0.051 (SD=0.052), Dec : 0.251 (SD=0.101)]. Even though Peer-Punishers

alone perform better in the PGG, they have a negative impact on the performance

of both Interrogators and Cooperators. See model details in Table A.4 in Appendix.

7.4.5 PGG5 - Pool-Punishment and Interrogation Hybrid

When I removed both Interrogators and Peer-Punishers from the system, I intro-

duced Pool-Hybrid Interrogators. This type of hybrid proved to be even less effi-

cient against Deceivers and Defectors compared to when I had both Interrogators

and Pool-Punishers acting separately. This is reflected in the long-run average fre-

quencies for: 1) s = 1000: [C : 0.085 (SD=0.049), D : 0.344 (SD=0.091), L : 0.259

(SD=0.07), HPoP : 0.055 (SD=0.043), Dec : 0.258 (SD=0.094)]; and 2) s =
∞−→:

[C : 0.082 (SD=0.051), D : 0.345 (SD=0.089), L : 0.263 (SD=0.074), HPoP : 0.052

(SD=0.04), Dec : 0.258 (SD=0.096)]. See model details in Table A.5 in Appendix.

7.4.6 PGG6 - Peer-Punishment and Interrogation Hybrid

In PGG6, I replaced the Pool-Hybrid Interrogators with Peer-Hybrid Interrogators.

For intermediate imitation s = 1000, Peer-Hybrid Punishers perform much better

than the Pool-Hybrid Interrogators, but not enough to re-establish strong levels

of Cooperation in the system. However, for strong imitation Peer-Hybrid Inter-

rogators seem to re-establish strong levels of Cooperation by significantly reducing

the influence of Defection and more importantly, Deception for strong imitation.

These results are reflected in the long-run average frequencies for: 1) s = 1000:
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[C : 0.095 (SD=0.049), D : 0.295 (SD=0.095), L : 0.228 (SD=0.076), HPeP : 0.184

(SD=0.137), Dec : 0.199 (SD=0.095)]; and 2) s =
∞−→: [C : 0.028 (SD=0.037),

D : 0.096 (SD=0.117), L : 0.07 (SD=0.082), HPeP : 0.742 (SD=0.279), Dec : 0.063

(SD=0.085)]. See model details in Table A.6 in Appendix.

Figure 7.1: Long-run average frequen-
cies in PGG1 for s = 1000, p < 0.001.

Figure 7.2: Long-run average frequen-
cies in PGG1 for s

∞−→, p < 0.001.

Figure 7.3: Long-run average frequen-
cies in PGG2 for s = 1000, p < 0.001.

Figure 7.4: Long-run average frequen-
cies in PGG2 for s

∞−→, p < 0.001.
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Figure 7.5: Long-run average frequen-
cies in PGG3 for s = 1000, p < 0.001.

Figure 7.6: Long-run average frequen-
cies in PGG3 for s

∞−→, p < 0.001.

Figure 7.7: Long-run average frequen-
cies in PGG4 for s = 1000, p < 0.001.

Figure 7.8: Long-run average frequen-
cies in PGG4 for s

∞−→, p < 0.001.

Figure 7.9: Long-run average frequen-
cies in PGG5 for s = 1000, p < 0.001.

Figure 7.10: Long-run average fre-
quencies in PGG5 for s

∞−→, p < 0.001.
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Figure 7.11: Long-run average fre-
quencies in PGG6 for s = 1000, p <
0.001.

Figure 7.12: Long-run average fre-
quencies in PGG6 for s

∞−→, p < 0.001.

7.4.7 Cooperation vs Free-Riding

I have compared the long-run average frequencies of the two meta-strategies, namely

Cooperation and Free-Riding, given weak/intermediate (see Table 7.3) and strong

social learning (see Table 7.4). The results indicate the following:

1. The introduction of Deception promotes Free-Riding in voluntary PGGs with

Punishment.

2. Strong social learning promotes Deception if no Interrogation is present.

3. Strong social learning does not promote Cooperation when Deception is

present, unless Peer-Hybrid Interrogation is introduced. Figure A.4 shows

how the frequency of Peer-Hybrid Interrogators increases with in social learn-

ing (imitation strength).

As for the parameters that directly influence Deception as a strategy in PGGs

with and without Peer-Hybrid Interrogators, there are several observations to be

considered. First, it seems that in the absence of any type of Interrogation (PGG2),

as well as in the presence of Peer-Hybrid Interrogators (PGG6), Deception becomes

the optimal strategy if communicative skill is maximised (commSkill =
1−→). In
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other words, deception is optimal if you are good at it. Second, the tax paid by

Cooperators for Punishers and Interrogators to exist influences PGG2 and PGG6

in opposite ways in terms of total Cooperation. In PGG2, increases in β promote

Deception and by extension Free-Riding, while in PGG6, increases in β promote

Peer-Hybrid Interrogation. Thirdly, increases in the tax on Deception Γ, which is

inflicted by all the Interrogators in all PGGs where these are present, have a positive

impact in some PGGs. The increase manages to significantly reduce the frequency

of Deceivers in all PGGs where it can be inflicted, however it only has a positive

impact on total Cooperation in PGG5, where it promotes Pool-Hybrid Interrogation

and Cooperation, and in PGG6 where it promotes Peer-Hybrid Interrogation. The

drawback is that in PGG5, Γ needs to be very high (Γ > 800) in order to begin

promoting the cooperative strategies. This is not the case for PGG6, where increases

in Γ have an instant impact on promoting Cooperation as a meta-strategy.

Table 7.3: Cooperation vs Free-Riding long-run frequencies for weak/intermediate
social learning.

PGG 1∗ 2 3 4 5 6
Cooperators 0.99 0.193 0.187 0.202 0.139 0.278
Free-Riders 0.0 0.618 0.592 0.601 0.601 0.493

For weak/intermediate levels of social learning, Free-Riding dominates in all PGGs
where Deception is present.

Table 7.4: Cooperation vs Free-Riding long-run frequencies for strong social learn-
ing.

PGG 1∗ 2 3 4 5 6
Cooperators 0.99 0.195 0.187 0.203 0.134 0.77
Free-Riders 0.0 0.618 0.594 0.599 0.602 0.159

For strong levels of social learning, Free-Riding dominates in PGGs where
Deception is present, but Cooperation is re-established when Peer-Hybrid
Interrogation is introduced.
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Figure 7.13: Long-run average frequencies for Cooperation vs Free-Riding for s =
1000.

Figure 7.14: Long-run average frequencies for Cooperation vs Free-Riding for s
∞−→.
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7.4.8 Sensitivity Analysis: Factors of Deception

Independently on whether there exists a strategy which can re-establish Cooperation

in a society, such as in the PGG6 game, there are several socio-dynamical factors

that influence such outcomes. How do these factors involved in deceptive interactions

influence the distribution of strategies in PGG6?

To answer this question, I focus on the one-at-a-time sensitivity analysis for the

Deception and Interrogation parameters of PGG6. I am mainly interested in the

influence of the parameters from the lower section of Table 7.2 on the population

frequency. These represent the following factors: Tax for punishers to be present β,

Punishment for deception Γ, Cost to punish a deceiver cΓ, Cost to interrogate agents

cinterr, and the Communicative skill of deceivers commSkill.

First, the tax on Punishers to exist (policing tax) β strongly influences the pro-

motion of Cooperation as a meta-strategy (see Figure 7.15). However, the increase

in tax means that the cooperative agents of a system need to be able to support the

Hybrid Peer-Punishers independently on whether they are selected to play the PGG

or not. This would inflict considerable costs for such a system to be maintained by

the community that uses it.

Second, the tax on deceptive behaviour Γ does have a negative impact on decep-

tion and also promotes the dominance of Hybrid Peer-Punishers (see Figure 7.16).

Third, Deceivers that are very skilled commSkill > 0.9 manage to dominate

PGG6 (see Figure 7.17).

Fourth, neither the cost of interrogating agents cinterr (see Figure 7.18), nor the

cost of punishing a Deceiver (see Figure 7.19) have beneficial effects on Cooperation.

In conclusion, I can say that systems such as PGG6, where decentralised sys-

tems permit the peer-punishment of defection and the individual interrogation of

knowledge sources, are influenced by (i) the policing tax paid by cooperative agents,

e.g., the more agents are willing to pay for safety, the safer the system; (ii) how
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strongly agents are punished for their deceptive behaviour; (iii) the skill of agents

at communicating deceptively. The cost of interrogation, e.g., how many resources

need to be spent to detect and punish deceptive behaviour, has no direct effect on

this type of decentralised systems.

Figure 7.15: Effect of Punishment Tax β in PGG6.
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Figure 7.16: Effect of Deception Tax Γ in PGG6.

Figure 7.17: Effect of Communicative Skill commSkill in PGG6.
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Figure 7.18: Effect of Cost of Interrogation cinterr in PGG6.

Figure 7.19: Effect of Cost of Punishing a Deceiver cΓ in PGG6.
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7.4.9 To Deceive or not to Deceive?

I have also scaled down the PGG approach in order to make a direct comparison

between Deceivers and Cooperators in voluntary social interactions. This meant

eliminating all the strategies from before except for Deceivers, Cooperators and

Loners. In this game, there is no extra cost for Cooperators other than paying their

contribution c to the PGG. For Deceivers, the cost of deception is the same as in

PGG2, however, their cost now depends on a fixed value for trust instead of being

computed based on the dynamics of the population distribution. This is because

trust would have been t = 1, as there were no Defectors. That is why I had to

redefine trust t as a parameter, with t = 0.5. I have picked the value 0.5, since we

know from TDT [153] that the truth-lie base-rate should be 50% and t = 0.5 would

reflect this base-rate.

I have performed the independent-samples t-test to compare the significance

between the averages for Deceivers and Cooperators. For both s = 1000 and s
∞−→,

differences were very significant with p < 0.001. The results are the following: 1)

s = 1000: [C : 0.0 (SD=0.001), L : 0.0 (SD=0.001), Dec : 0.999 (SD=0.0)], see Fig.

7.23; and 2) s
∞−→: [C : 0.0 (SD=0.001), L : 0.0 (SD=0.001), Dec : 0.999 (SD=0.0)],

see Fig. 7.24.

Figures 7.21 and 7.22 show that Deceivers are quite quick to invade in a single

run of the game where T = 105, and that strong social learning (imitation strength)

s
∞−→ enable Deceivers to do so even quicker. This effect of imitation strength is

also represented in Fig. 7.20. It seems that the better self-interested agents are at

learning social behaviour, the more they tend to adopt deception as their favourite

social strategy when their alternatives are to cooperate or not to participate in social

interactions.

In terms of trust, it seems that no matter how much trust agents have in each

other, it does not affect deception, that is Deceivers still invade and dominate (see
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Fig. 7.25). On the other hand, the communicative skill of the deceivers commSkill

determines their success. If agents are in the truth-default state t = 0.5, then

Deceivers just need to be better than chance at deceiving commSkill ≥ 0.5 in order

to dominate Cooperators (see Fig. 7.26).

Figure 7.20: Effect of social learning s in Deceivers vs Cooperators.

Figure 7.21: Population dynamics for
s = 1000.

Figure 7.22: Population dynamics for
s
∞−→.

Figure 7.23: Long-run average fre-
quencies for s = 1000, p < 0.001.

Figure 7.24: Long-run average fre-
quencies for s

∞−→, p < 0.001.
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Figure 7.25: Effect of trust.

Figure 7.26: Effect of commSkill.
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7.5 Discussion

Can societies reach cooperation in systems of public knowledge where deception is

present? Our results show two possible outcomes. One possible outcome is that

cooperation between agents cannot reach high levels in the case of weak or interme-

diate social learning (imitation strength) (PGGs 2,3,4,5). However, cooperation is

slightly promoted if there is a hybrid and decentralised regulatory institution (or sys-

tem, e.g., the internet) that allows the punishment of Defectors using decentralised

methods (which is represented by peer-punishing) and that allows the independent

interrogation and peer-punishment of Deceivers (PGG6). The other possible out-

come happens in the case of strong social learning, where cooperation between agents

can be reached when such a decentralised regulatory system is present (PGG6) (see

Fig. A.4 in Appendix). What this means in the real world is that agents need

to quickly learn how to identify and punish social sources of deception. The ef-

fect of strong imitation shows us that if agents learn to quickly adopt other agent’s

strategies to form a coalition, then free-riding can be suppressed and cooperation

reestablished if there exists a system that allows the peer-punishment of defectors

and a decentralised interrogation of potential deceivers. Strong social learning, how-

ever, does have its downsides if deception is not investigated and punished, such as

in PGG2 where Deceivers can become dominant (see Fig. A.3 in Appendix).

If the regulatory institution is hybrid, but it is centralised and employs pool-

punishment for defection, cooperation can become a viable strategy only at very

high costs such as a very high tax for the regulatory institution to exist (PGG5).

On a similar note, increases in taxes for maintaining a regulatory institution which

does not investigate and punish deceptive behaviour is highly detrimental to co-

operation as it promotes deceptive behaviour (PGG2). It is also very likely that

cooperation cannot be established if malicious agents are highly skilled at commu-
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nicating deceptively independently of the type of regulatory institution.

Similar conclusions have been drawn in [1] in the case of corruption. Corruption

is able to break down cooperation in societies where centralised institutions perform

regulation. Decentralised regulatory institutions have also proven to be much more

efficient in re-establishing cooperation when corruption is present.

Recently, the European Union (EU) has taken a controversial stance on data

sharing [194]. EU believes that in order for it to be able to overtake the US in terms

of technological progress, it must incentivise market fairness and technological com-

petition between big and small businesses that own or have access to user data. In

order to create this incentive, it must implement and regulate a system in which

knowledge is shared between businesses, e.g., in which knowledge is becoming a pub-

lic good. This is an equivalent of a single market for data. There are major concerns

whether businesses will voluntarily commit to contribute to this public data pool

or not, whether they stick to their commitment or not, but also whether businesses

that commit to contribute would actually contribute with data that they know is

truthful or genuine. Can businesses as social knowledge sharing agents reach coop-

eration or will they decide to free-ride on the public good? What kind of regulation

mechanism should the EU implement for ensuring that businesses will cooperate? If

future businesses cooperate, then how do they ensure the cooperation of their users,

human or artificial, in terms of data sharing? A similar problem has emerged in

the COVID-19 crisis with the issue of deploying governmental apps for tracking the

symptoms and movement of citizens, in order to manage the pandemic [34].

From the perspective of a PGG as a knowledge sharing activity between social

agents, we can conclude from the results of the PGG models that deceptive infor-

mation can break down cooperation, and, by extension, the trust between agents

through the promotion of defection. This results in agents adopting a free-riding

strategy either by not sharing information at all (Defection), or by sharing deceptive
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information, that is similar to sharing fake news or fake data if we want to use con-

temporary termsix. However, the impact of fake news or fake data can be mitigated

if regulatory measures are taken. In the case of knowledge sharing, Peer-Hybrid

Interrogation would represent regulating knowledge sharing through the following:

1) The case by case demotion of individuals that make use of the knowledge pool,

but do not contribute to it (Defection); 2) The case by case interrogation, and where

necessary, demotion of knowledge sources (social agents in this case). This suggests

that deception can be countered, but the challenge is to identify what mechanisms

in the real world can play the role of Peer-Hybrid Interrogationx.

Not addressing the issue of deception through regulation in the sharing of public

knowledge can lead to bleak outcomes in hybrid societies. In [106] the authors

discuss what they call the Tragedy of The Digital Commons (TDC), that represents

Hardin’s Tragedy of The Commons applied to the digital sphere of information and

knowledge sharing (see §2.5.3). An important concept presented by the authors in

[106] is the one of exploitation and information pollution of the Infosphere xi. The

TDC arises when the Infosphere is considered the as an environment and a public

good, because it can be exploited and polluted by its users in a similar way to that

in which a physical public good would be. An example of exploitation would be

excessive bandwidth usage, and an example of pollution would be spam or junk-

email. Since users of the Infosphere also exchange knowledge, e.g., tweets, posts,

the content of their e-mails and messages, etc., the TDC can also be applied to

knowledge exchange. This is where online deception, fake news, misinformation and

disinformation play a big role in the exploitation and pollution of knowledge.

ixSpeaking of fake news, another form of deception is to call out truthful news as fake news,
a deceptive strategy that has become increasingly popular amongst some contemporary political
figures.

xOne might hope that this role would be played by the media, but, to continue our commentary
on the political zeitgeist in which this chapter was written, the media has largely failed in its duty
in this regard.

xiFor example, the cyberspace. However, the Infosphere is not limited to online environments,
see [87] for a detailed description of the Infosphere.
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Knowledge exploitation and pollution can be caused by the deceptive behaviour

of agents or coalitions of agents, human or artificial. In terms of PGG models, we

can assume that the Deceivers exploit the public knowledge (what is shared on the

Infosphere publicly) by accessing and using the information that is publicly avail-

able, while also pretending to contribute to this public knowledge. Remember that

our Deceivers pretend to be Cooperators. However, the information Deceivers con-

tribute with can be considered untruthful (fake news, forged knowledge etc.). The

advancement of AI could lead to increase the risk of TDC, as machines that have the

necessary capabilities to deceive and learn from social interactions, will eventually

adopt deceptive knowledge sharing behaviour to better adapt as agents of a soci-

ety. Social media platforms which centrally regulate the publicly shared knowledge,

such as Facebook and Instagram, are systems in which deceptive behaviour (even

of simplistic artificial agents) easily emerges, as we have seen for some time [4].

Fortunately, the results of this chapter’s PGG simulations indicate that, from

an evolutionary perspective, TDC can be avoided in the case of deception if the

Infosphere is regulated in a decentralised manner that organises the public knowl-

edge in such a way as to allow agents to voluntarily investigate each other and the

information that they share publicly (see PGG6). A real-world example of such a

system was the user interaction protocol implemented by Silk Road on the Dark Web

[142]. The Silk Road implemented a reputation mechanism through their discussion

forums for users to publicly check what information (for instance descriptions of

products sold by users) they have previously shared, as well as if the information

was indeed genuine, and how their past interactions have turned out. Members were

even rewarded for finding out bad vendors on the platform, which can represent the

behaviour of our Peer-Hybrid Interrogators. The quality of the reviews as well as

the quality of information standards of the Silk Road community, unfortunately pro-

pelled it to the undisputed best platform for drug dealing. Research on reputation

249



mechanisms in social multi-agent systems has shown that reputation mechanisms

allow agents to form a model of trust of other agents by looking at their past be-

haviour (what they have previously communicated), which, of course, needs to be

observable (public) [245].

A similar initiative to the Silk Road with respect to the knowledge as a public

good has been started by the founder of Wikipedia, Jimmy Wales, albeit for higher

moral purposes such as helping society fight fake news and not be solely reliant

on reputation mechanisms of its members. The initiative was initially launched

through WikiTribune [17]. WikiTribune was a news wiki that used crowd-funding to

financially support the costs of running a small team of professional journalists that

were intended to work collaboratively with voluntary expert citizens to find stories,

create content, and fact-check its own work. However, according to Wales, due to

issues in the design of the website, WikiTribune had failed to make its community

flourish [285]. That is when Wales turned the initiative into a microblogging and

social media platform named WT.Social (WikiTribune Social), arguing that the

WT.Social could succeed where WikiTribune had failed. WT.Social aims to promote

high-quality content and debate among its users, and its format is meant to combat

fake news by providing evidence-based news with links and clear sources. The service

is advertisement and click-bait free, and runs off of donations from its users, similarly

to Wikipedia. Unlike other social media platforms, where users need to first report

offensive content and only after the company would eventually decide to remove the

reported content, in the case of WT.Social, the community is encouraged to take

down material perceived to be violating the network’s standards [59].

The philosophical and political concept under which platforms such as WT.Social

aim to promote is called deliberative democracy [97], from which what Habermas

calls the Public Sphere emerges [109]. The Public Sphere represents a fertile ground

from which public opinions are formed through knowledge sharing. A Public Sphere
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that works in an ideal manner represents the foundation on which mediation takes

place between state (regulator) and society which permits democratic control of

state activities. For the the public sphere to work in an ideal manner, a society

must keep a record of state-related activities and legal actions which is publicly

accessible in order to allow discussions and the formation of a public opinion. In

our current era, the public sphere has become increasingly digitised. Due to this

digitisation, e.g., through the digitisation of news and emergence of social media

platforms, the formation of public opinion has been both accelerated and scaled

up due to the increasing communicative means and styles that could be employed

to reach an increasing number of public members. It has become a Digital Public

Sphere (DPS) [261].

However, even if the DPS offers more possibilities of communicating and sharing

knowledge, it has certainly failed to adhere to principles of rationality and civility

proposed by deliberative democracies [243], mainly due to information pollution

produced by fake news. The emergence of fake news has enhanced the visibility of

the DPS’s weaknesses, but unfortunately it has also enhanced its negative affects

on the formation of public opinion, making it susceptible to the TDC despite the

recent efforts made by projects such as WT.Social and WikiTribune to mitigate

these effects. Moreover, the increasing hybridization between human and artificial

societies increases the risk of propagating these effects even further, through the

development of autonomous artificial agents that not only possess the ability to

meaningfully engage in deliberation, but that also possess deceptive intent. Such

advancements in AI would imply going beyond the current threat of AI bots and tools

used by human agents for fake news propagation and generation, which are based on

machine learning techniques. These are merely tools in the hands of human agents,

and these tools do not possess deceptive intent. What I am referring to are neither

AI tools nor artificial agents that just learn a deceptive policy and mindlessly apply

251



it, but I refer to artificial agents that are able to truly engage in deliberation on the

digital public sphere. These artificial agents could perform complex reasoning and

apply it to decision-making such that they form their own goals and intentions which

they act upon, and by doing this, they could eventually out-think and out-smart

humans and other artificial agents when interacting in the public sphere. Remember

that our model suggests that even for systems such as PGG6, where cooperation can

be re-established in public knowledge sharing systems where deception is present,

if the communicative skill of deceptive agents is high (commSkill =
1−→), then the

system fails to promote cooperation. Deception in the DPS would then evolve, such

that it would become de-antropomorphised, as human agents would not be the only

agents with deceptive intent and capable of truly deceiving others.

Perhaps a future solution to aid the moderation and content checking of platforms

such as WT.Social will emerge from where their potential difficulties will arise,

namely the further advancement of AI. However, it would not be sufficient to just

advance AI deception detection by tweaking truth-bias and skepticism levels to

detect deception as it is currently done in verbal and non-verbal cue-based deception

detection AI research (see §2.2.6). Cue-based approaches in AI deception research

could potentially lead to what is called in the Psychology of deception confirmation

bias [30]. To illustrate the confirmation bias, Bond describes the notorious Othello

Error in [30]. Othello believed that Desdemona, his wife, was cheating on him

with another man. Othello’s fallacy was that he took into consideration only the

behaviour a guilty person would exhibit, without taking into consideration all the

other cues that might have falsified his beliefs, such as the fact that desperation

causes individuals to exhibit some of the behaviours a guilty person would exhibit

(see Chapter 2). In the case of complex reasoning artificial agents, I have shown

in Chapter 6 that high levels of skepticism in communicative social interactions

between artificial agents could lead to deception even when the deceiver agent’s
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communicative skill is low. This type of artificial agent deception represents the

special case of unintended deception where the deceiver does not act deceptively

because it wrongly estimates that deception would fail, but the interrogator (the

deceiver’s target) is so skeptical that it caused it to believe that the deceiver has

attempted deception, and thus the interrogator is caused to infer something that is

false from a truthful message.

A possible solution from the advancement in AI would instead be the actual

development of artificial agents capable of complex reasoning to address the issue of

deception. Apart from the potential risk of being capable of deception themselves,

complex reasoning artificial agents could play the roles of editors and investigative

journalists (or to assist or engage with humans that fulfill these roles) which edit

and moderate social networking platforms, as well as interact with users to produce

high-quality content to increase the public’s knowledge and to mediate the forma-

tion of public opinion. These artificial agents could potentially neutralise deceptive

ones by matching their communicative capabilities, e.g., keeping commSkill < 1 in

a PGG6-type of system. However, in order for artificial agents to be able to perform

these roles that are beneficial to society and cooperation, much needs to be done in

terms of AI research. To do so, we first need to enable artificial agents to understand

deception (it takes one to know one) by successfully engaging in social interactions.

We must mainly enable them: to form and to reason about arguments, to explain

reasons behind decisions such that they can be held accountable by the community,

and to engage in meaningful dialogue with the community and its members in a

democratic manner. The areas of argumentation, human-agent interaction, explain-

able AI, and multi-agent systems will prove to be crucial in the future research and

development of these types of artificial agents.
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7.6 Conclusion

In this chapter I have presented an approach inspired by the Machine Behaviour

(MB) paradigm [213] (see §2.5) in order to illustrate how distributed deception Type

III can be modelled (see Chapter 3). This study shows a proof of principle of (i)

how deception can emerge and destabilise cooperation in societies where centralised

and decentralised regulatory institutions/systems exist; and (ii) how cooperation

can be re-established in such societies. Moreover, the research that I have described

in this chapter informs us that there are indeed risks of machines to adopt deceptive

behaviour from social interactions with other agents, enhancing the negative effects

that lead to a Tragedy of The Digital Commons (TDC). However, this research also

points towards a potential solution to avoid a TDC that comes from (i) avoiding

the adoption of centralised systems for regulating public knowledge, and instead (ii)

aiming for the adoption of a decentralised system for regulating knowledge as a pub-

lic good in which agents can investigate and check the publicly shared knowledge as

well as peer-punish the deceivers and defectors. Some real-world examples of these

decentralised systems are platforms that implement reputation mechanisms, where

agents can check what others have previously communicated, and platforms such

as social networks where high-quality content and fact-checking are promoted, and

where the source of the content is transparent (made public). The philosophical

and political concept under which these platforms fall is called deliberative democ-

racy [97]. Such platforms promote what Habermas calls the public sphere [109]. I

have also hinted at the fact that a possible solution for the moderation of the public

sphere is the development of complex reasoning agents such as the ones modelled in

Chapters 4, 5, 6 that are able to both deceive and reason about the minds of others

by meaningfully engaging in social interactions.
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Chapter 8

Towards an MAS Framework for
Deception Analysis

In this chapter I evaluate the work in this thesis and I propose the creation of a

future MAS framework for deception analysis.

The need of better understanding deception is becoming increasingly pressing

with the advancement of AI and of hybrid societies. Apart from describing in

computational terms how deception can be represented, as I have done in Chapter

3, in this thesis I have modelled deception using two main approaches. The first

approach throughout Chapters 4, 5, and 6 addresses the complex reasoning and

social interaction capabilities of agents to deceive by forming models of other agents’

minds and to use practical reasoning over these models. The second approach in

Chapter 7 draws upon the paradigm of Machine Behaviour and addresses the social

dynamics of deceptive agents in governed societies using an evolutionary game-

theoretical approach. In this chapter, I reflect upon the properties exhibited by the

models that resulted from these approaches in order to evaluate the models, and,

based upon my reflections, I discuss how the MAS framework for deception analysis

introduced in §1.4 can account for levels or degrees of explanation to satisfy analysts.
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8.1 Introduction

Theories of human deception, such as TDT, IDT, and IMT2, outline general rules

or principles of how deceptive interactions play out. Understanding the mechanics

of human deception allows us to reproduce and scale up different configurations of

deceptive agent interactions artificially by designing reasoning and communication

protocols and components for tools to study them inside an MAS. At the begin-

ning of this thesis, in §1.4, I have argued that the two approaches I use to model

deception represent deceptive interactions as artificial mind-games at two different

levels of abstraction in an MAS. The first level of abstraction shows us the cogni-

tive mechanics responsible for deceptive communication between practical reasoning

agents, while the second level of abstraction shows us how the deceptive behaviour

of agents emerges in large and complex hybrid societies.

In §1.4, I have also discussed a set of methodological questions regarding the de-

sign of the models of deception in MAS. The models in Chapters 4, 5, 6, and 7, have

been designed with those questions in mind. The application of the methodological

questions has resulted in models that are able to (i) represent various components

of deception and (ii) that exhibit useful properties for the study of deception.

8.2 Evaluation of the Models

Reflecting on the models, I have observed that they have certain properties and

that they are able to represent a set of components that are particularly useful for

the study of deception (see Table 8.1). These are: 1) The property of Explainabil-

ity; 2) The ability to represent Unintended Deception; 3) The ability to represent

Uncertainty; 4) The ability to represent Deception Detection; 5) The properties of

Implementability and Transparency; 6) The property of being Theory-Grounded.

Regarding the first approach to model deceptive agents using cognitive modelling
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Model / Properties 1 2 3 4 5 6
* Chapter 4 X - X - X X
Chapter 5 X - - - X X
Chapter 6 X X X - X X
Chapter 7 X X X X X X

Table 8.1: Comparison of the models in terms of their properties and representation
of components for the study of deception. Note that the model in Chapter 4, even
though it does not include deception, it is the underlying ToM component for the
model in Chapter 6.

techniques for BDI, we can notice that the modelling of ToM in Chapter 4 has a

strong impact of how deception is illustrated in Chapter 5 compared to Chapter 6.

In Chapter 5 a dishonest agent works under the assumption of complete certainty

and does not engage in mental simulation to determine the optimal deceptive action.

Thus, it does not take into consideration factors such as levels of trust, communica-

tive skill and confidence in ToM, or other contextual factors. However, in Chapter

6 the model of deception is refined by applying the TT and ST ToM from Chapter

4 along with the components of IDT, IMT2 and TDT, that allowed me to give (i)

the interrogator the ability to ask for the information it desires based on its partial

knowledge of the deceiver’s beliefs in order to reach a state of shared beliefs, and

(ii) to the deceiver the ability to simulate its target’s mind.

Regarding the second approach to model deception in Chapter 7, we can notice

that by integrating TDT and IDT with MAS approaches it is possible not only to

represent the deceptive behaviour of agents in complex interactions, but it is also

possible to find out how to reduce deception’s negative effect on social cooperation.

8.2.1 Explainability

In terms of explainability, it is necessary if our aim is to explain how deception

happens or does not happen, and why. An explainable model of deception allows us

to evaluate whether deception takes places, and if it does or does not, it enables us
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to explain why and under which conditions it does. Models of deception need to be

explainable in order for the generation of explanations based on the models to be

meaningful and informative. A good explanation of the phenomenon can then be

used to see if deception can be prevented or mitigated in different contexts.

In the first approach to model deception from Chapters 4, 5, and 6, explainability

is directly related to the BDI cognitive architectures of the agents and the opera-

tional semantics these agents use for communicating. Their architecture and the

operational semantics allow us to track how the agent’s beliefs are used to achieve

their communicative goals in various contexts. Moreover, the approach is based on

practical reasoning, that is very intuitive for humans to reason about.

In the second approach to model deception from Chapter 7, explainability is

related to two elements of the model, namely (i) the simplicity of the evolutionary

mechanism that agents use to learn and adopt social behaviour, and (ii) the ap-

proach of Machine Behaviour to study complex and emergent social behaviour. The

six PGGs represent different systems or social contexts in which we study how de-

ceptive behaviour is learned or adopted by agents in a large population by throwing

in different regulatory mechanisms (interrogation and punishment strategies). From

a counterfactual perspective these PGGs represent six possible worlds in which de-

ception may or may not emerge. By analysing the dynamics of each PGG, we can

explain when, how, and why or why not deception emerges.

8.2.2 Unintended Deception

Unintended Deception might happen when an agent might not attempt decep-

tion, but the consequences of its communicative acts result in its interlocutor being

deceived. It is important for models of deception to be able to represent such un-

intended consequences, as these can be critical for accountability and regulation.

If we are to design regulations for the social behaviour of autonomous system, for
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instance, we need to be able to tell if an agent that has the ability to deceive should

be held responsible for its actions or not. Intentions, or lack thereof, might play a

salient role in such cases.

In the first approach, precisely in Chapter 6, unintended deception is explicitly

represented through the BDI architecture. We can identify that even if an attempt

at deception is not made, the target agent is still deceived (it reaches a false belief

through its own reasoning and the influence of its trust in the interlocutor).

In the second approach form Chapter 7, unintended deception is not explicitly

represented. We do not have here the explicit representations of the internal cogni-

tive dynamics of the agents, and by extension there is no representation of intention.

However, intentions are implicitly considered. The model does account for cases of

unintended deception on a macro-level, as it takes into account the influence of com-

municative skill of an agent along with the trust levels of a society which influence

a deceiver’s risk of getting caught by an interrogator.

8.2.3 Uncertainty

The estimation of whether deception was, is, or will be successful is always performed

under conditions of uncertainty. This is especially the case in communication,

where it is important for modelling an agent that estimates its likelihood of success,

as well as modelling agents with different degrees of trust in each other. While

most of the times trust should be a default attitude towards others [152], in cases

of potential deception this is not the case. Degrees of uncertainty, trust, and the

ability of rationally bounded agents to deal with uncertain knowledge are all factors

that enrich our representation of the real world. Hence, good models of deception

have to take these factors into account.

In the first approach, the ToM mechanism introduced in Chapter 4 is added to

the mechanism for estimating deceptive success in Chapter 6. The deceiver takes
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into account its uncertainty regarding the degree of confidence in ToM to estimate

the success of deception under the uncertainty introduced by trust levels and com-

municative skill. In the second approach from Chapter 7, uncertainty is considered

in the payoffs for both deceivers and interrogators, as well as in the influence of

social learning (imitation strength).

8.2.4 Deception Detection

Even though deception detection has not been the main focus of the modelling

approaches in this thesis, it was also a useful component to be modelled. The first ap-

proach only focused on modelling deception itself. However, in the second approach

from Chapter 7, the interrogation strategies in the PGGs have been designed to

represent deception detection.

While the BDI practical reasoning level in the first approach can be used to

explain how deceivers manipulate information to achieve their goals, the meta-

representation of the interplay between deceivers and their detectors (interrogators)

from Chapter 7 can be used to explain what strategies or mechanisms can reduce

deceptive behaviour in general, without going through the practical reasoning for

deception detection. However, the downside is that the second approach does not

explain how deception is detected by a single agent at the level of its cognitive

architecture.

8.2.5 Implementation and Transparency

Implementation is also desirable in an AI-based approach, but might not necessary

for modelling deception, or any other social phenomenon. However, demonstrating

an implementation of a model helps others to use it for studying different agent-

based setups and scenarios of social interactions. Implementation also improves the

transparency of a model, increasing the model’s accessibility and reproducibility
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through its code.

The implementation of the first approach has been done in the Jason AOPL [33]

through which the beliefs, goals, and intentions, as well as the reasoning that drives

the behaviour of the artificial agents are intuitively represented in code and are

transparent to the engineer/designer/analyst. Further research into the behaviour

of the deceptive agents that model other minds can be done by using this implemen-

tation. The second approach has been implemented in Python 2.7, and the code

can also be used for further research in order to explore other types of regulatory

mechanisms for deception in hybrid societies, by implementing new strategies to be

selected by agents through social learning.

8.2.6 Theory-Grounded Modelling

Last, but not least, both modelling approaches of deception are Theory-

Grounded. Deception is a social and cognitive phenomenon that has been em-

pirically studied in Psychology and for which several theories, models, and method-

ologies of communication, deception, and deception detection have been proposed

and tested. The engineering of artificial agents to study deceptive interactions must

be based on such theories if we want to gain a meaningful understanding when

we use them in simulations or other contexts. TDT, IMT2 and IDT have been

selected for this purpose because they have survived scientific scrutiny, as in they

are sound, they are testable, and have empirical basis. IDT might be the outlier

of the three theories as it is a theory about deceptive cues, however IDT is not as

cue-reliant as other alternative theories. IDT’s main argument is that deception is

about interaction and thus it is very compatible with the MAS paradigm.

As I discuss in §2.1.2, there are theories that might turn out to be pseudo-

scientific. There is a considerable risk that AI researchers might build models based

on such pseudo-scientific theories and that these models turn out to be sponsored
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and used in very sensitive and controversial contexts such as border control (see

§2.2.6). This might pose a significant threat to the ethical use of AI in population

control and law enforcement. Such theories should be avoided, or at least their

limitations need to be heavily considered.

8.2.7 Deceptive Storytelling Agents

Even though the models evaluated in this chapter present most of the desirable

properties above, there is still work to be done, especially w.r.t., deception detec-

tion and counter deception (see §3.4). While the meta-representation between the

interplay between deceivers and interrogators in Chapter 7 accounts for deception

detection, it does not do so at a practical reasoning level.

One way to address counter-deception is to model artificial mind-games between

deceivers and interrogators that have storytelling abilities. In §2.4.5 I have described

the work in AI on storytelling. Let us recapitulate that in the context of AI, sto-

rytelling is the ability of an agent to communicate arguments in such a way as

to describe to another agent a meaningful chain of events. The ability to build

narratives is an emerging topic in AI [23, 269].

Regarding deceptive agents, they might use these narrative abilities to their own

benefit. They could, for example, deliver arguments to build fictitious stories that

compel juries into absolving them of a crime. Regarding counter-deceptive agents,

they could build interrogation techniques to force the deceptive agents to give away

elements or arguments that would weaken their alibi stories and that would finally

cause their attempt at deception to fail.

The adoption of a hybrid-based storytelling approach to model artificial mind-

games may or may not adopt the BDI representation for ToM introduced in Chapter

4. This decision might be down to the modeller or MAS engineer. However, I believe

that the hybrid ToM model (TT and ST ToM) should be kept in order to represent
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how the known arguments of the opponent (TT ToM) can be used to generate and

select new complex arguments through the mental simulation of the target (ST-

ToM). This ToM mechanism would allow, for instance in a dialogue interrogation

game, both deceiver and the interrogator to simulate how the dialogue would evolve

based on the selected arguments. For illustrative purposes, in [240] we have described

an example of how such a mechanism could work in an interrogation dialogue game

in the context of deception.

In the future, models of deception based on the idea of storytelling agents could

be used to study how agents might behave unethically by avoiding the principles

of accountability, responsibility and transparency [68], but also what type of inter-

rogation techniques, or what type of counter-deceptive agents, would cause these

deceptive agents to give away their malicious intent.

8.3 An MAS Framework for Deception Analysis

Previous methods, such as ACH and its derivations, used by intelligence analysts to

detect deception while reducing cognitive bias are tedious (see §2.1.1). A good MAS

approach to model deception can be helpful to understand deception in complex

systems and could also help users to perform less tedious analyses of deception.

Remember that in §1.4, in order to link the needs of Intelligence Analysis with

the modelling of deception in MAS, I have introduced the idea of an MAS framework

to address different levels of abstraction based on different MAS models. This MAS

framework would allow the engineering and creation of MAS tools for intelligence

analysts, as mentioned in [239]. Apart from linking together the different levels of

abstraction represented by the models of deception, an MAS framework could also

address, according to the needs of the user, the degrees of explanation w.r.t., the

models.

I remind the reader of the previously introduced desiderata for such an MAS
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framework: 1) Representational power; 2) The automation of conductive reasoning;

3) Social interactivity; and 4) Scalability.

8.3.1 The Hybrid-Story Approach in MAS

Another advantage of adopting a storytelling approach in MAS, apart from the

modelling of deceptive artificial agents with storytelling capabilities, is that it could

improve explanations of MAS behaviour. It would allow humans to reason about

deception in terms of narratives of complex cases of deception, by representing

counterfactual chains of events along with the agents’ interpretations of these chains

of events. This advantage has direct implications w.r.t., the explainability of MAS

models of deception.

Let us remember that Bex’s hybrid approach [21, 22] has been designed to both

represent causal chains of a main story and to use arguments to anchor the main

story’s subs-stories in evidence, a process named anchoring, that results in explana-

tions (see §2.4.5). By applying Bex’s approach, one does not only find an arbitrary

story for a causal chain of events, but is able to select the best main story (out of

several viable ones) that is composed of several sub-stories, e.g., perform the infer-

ence to the best explanation, by explaining through arguments how the main story’s

sub-stories are backed by evidence.

In the real world, this is a complex process, especially in the case of dealing

with evidence, e.g., collecting it or eliciting it from other individuals, analysing it,

validating it. However, this kind of real-world complexity is not present in MAS.

This should be obvious, as MAS models and frameworks are abstractions of real-

world phenomena. But then, how would one anchor stories in evidence inside MAS?

For instance, a standard MAS framework accounts for three layers of abstraction,

namely agents, artifacts in the environment, and agent organisations. All three of

these levels offer a representation of a world where evidence can be directly observed,
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extracted, and analysed. Evidence to provide answers for the following questions

can be provided with this type of MAS framework: Which agent acted upon artefact

X? Which agents interacted with organisation Y? What changes did the joint action

J of agents A and B cause in environment E at time Z? Why did agents A and B

perform joint action J (what were the beliefs and the reasoning processes that led

to action J)? What agent behaviour can we observe inside organisation O? Is it a

cooperative behaviour? What are the levels of cooperation? Would this cooperative

behaviour inside organisation O be affected or not if we change the agents’ confidence

in their ToMs of other agents? etc.

Moreover, an MAS framework can be used to explore sub-stories, and answer

questions such as what happened at time Z between agents A and B in environment

E? Did they have a dialogue? What kind of dialogue? What was said during the

dialogue? etc.

More or less, the observable behaviour of agents inside an MAS can be used

to test whether a potential viable main story (a complex hypothesis) about their

behaviour counts as an explanation of their behaviour. How well the story is an-

chored in the evidence can also be observed in the MAS, e.g., how many items of

evidence confirm or falsify the story. Moreover, an MAS framework would allow a

direct bottom-up formation and anchoring of a story if all parameters of the MAS

are fixed. It could also be used to confirm or falsify how certain events in the real

world might have unfolded, but more importantly it could explain how they might

have unfolded or not if something else were the case.

Also, the hybrid approach to storytelling could be used to find inconsistencies

inside the MAS framework w.r.t., the theories that have been used to implement

the MAS models. Perhaps there is considerable evidence outside the MAS that

indicates that the agents’ behaviour should have been different. An MAS framework

would allow us to identify what is the underlying cause of the undesired behaviour,
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at which level of abstraction it happens, and whether it can be addressed inside

the model that represents that particular level of abstraction. Subsequently, the

respective model can be directly revised according to a new evidence-based theory

and re-implemented in the MAS framework.

In conclusion, the hybrid approach can be used to represent stories that are

generated based on the agents’ behaviour. In the case of an MAS framework for

deception analysis, these stories can be explanations for the behaviour of agents

that can be offered to analysts. Analysts can then use the explanations to directly

perform inference to the best explanation for different complex scenarios, or, if they

believe there is an alternative best explanation that has been inferred outside the

MAS, they can use this to refine the models inside the MAS framework and achieve

the desired behaviour from the artificial agents.

8.3.2 MAS Stories of Deception...or not

Below, I describe how a storytelling approach could be used to enhance the explain-

ability powers of an MAS framework for deception analysis w.r.t., the desiderata for

this framework.

Whereas representational power addresses different levels of abstraction

through the modelling of deception, it does not address the different levels of expla-

nation for analysts. It is regarding this aspect where using a storytelling approach

would be most useful to include in the MAS framework.

Once we have explainable MAS models of deception, we can use them to directly

observe the links between cause and effect, and event causation prevention. In

other words, we could automate counterfactual reasoning. Both historians and

intelligence analysts, apart from looking at case studies and observing these types

of links, they also engage in writing articles, reports, or even entire books to explain

what happened, how it happened, and why it happened the way it happened. In
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other words, they aim to perform an inference to the best explanation. One thing

that usually emerges from these reports, is an explanation or a theory that can be

interpreted as a story or a narrative.

Following this line of thought, perhaps it would be preferable to explainees (both

analysts and the ones who they write the reports for) to be told a story that describes

a complex chain of events, one that connects the cause to the effect, narrated in any

order that would maximise one’s understanding of the events. This is where social

interactivity could be addressed. According to Miller [177], explanations consist

of two processes: (i) a cognitive process, which represents an abductive inference

that determines a causal attribution, and (ii) a social process, which represents the

knowledge that is exchanged between an explainer and an explainee. The approach

to model ToM from Chapter 4 could be very useful here to model the social process

between artificial storytelling agents and their interlocutors (explainees). Story-

telling agents could model the minds of the explainees in order to deliver narratives

that are efficient and that achieve the goal of explaining a phenomenon and, thus,

of reaching shared beliefs with their explainees in different social contexts. This

approach would improve the models inside the MAS framework w.r.t., models’ ex-

plainability properties, as it would lead to the design of self-explainable artificial

agents that are able to explain their practical reasoning and decision making directly

to the analyst. Hence, the analysts’ work would be reduced, as they would not need

to go through the artificial agent’s code and interpret it.

Storytelling could also account for scalability, especially in Open MAS. A story

can represent how a new agent character enters the story, or how the chain of events

moves from one location (domain) to another, or perhaps the narrative style of the

story allows for referring back to evidence or arguments that have a certain temporal

property (using information available at a different time), e.g., something happened

in the past that affected the current chain of events, or perhaps if this chain of events
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continues in this direction, something relevant to the story will happen in the future.

Another way to refer to scalability is using the point of view (PoV) of the story,

where one can explain a phenomenon from the PoV of a single agent, from the PoV

of multiple agents that can either have been actively involved in a context or have

only been passive observers, or perhaps from the PoV of a Big Brother observer,

one that has access to multiple viewpoints of agents, as well as extensive knowledge

of the chains of events and the domains in which these events have happened.

8.4 Conclusion

In this chapter I have evaluated how this thesis has addressed deception as part of

a complex system of agents that interact in different contexts using two modelling

approaches in MAS. The resulting MAS models enable us to explain and understand

the potential dishonest behaviour of artificial agents and what causes it.

Deceptive behaviour, whether it happens in a virtual, physical, or hybrid world,

needs to be understood as part of a bigger context or system, and not just by reduc-

ing it to the analysis of the observable behaviour. An MAS approach to deception

does not just allow the analysis of behavioural data, but also allows one to represent

different components of deception and to play with the mechanisms of the system

that produces the agent behaviour in order to better understand what causes it or

what prevents it from being caused.

In conclusion, this thesis’ research direction can be further improved with the

creation of an MAS framework that is capable of addressing agent deception in a

manner that emulates and enhances the critical thinking of intelligence analysts,

both in terms of levels of abstraction through MAS models, as well as in terms of

levels of explanation through applying a storytelling approach.
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Chapter 9

Future Directions

With this chapter I conclude this thesis; I summarise the contribution of this thesis

and indicate possible future research directions.

9.1 Conclusion

This thesis began with two strongly intertwined questions: 1) Can we use artificial

agents to improve our understanding of deception? and 2) How may artificial agents

deceive?

In asking the first question, I have made the assumption that we can use agent-

based modelling to gain insights into how deception plays out, mainly, to gain in-

sights into event causation and event causation prevention, where by event I mean

the occurrence of deception. This led me to ask the second question.

In asking the second question, I have made the assumption that deception is

an intentional process of a deceptive agent seeking to cause another agent to believe

something is true that the deceptive agent believes is false, with the aim of achieving

an ulterior goal or desire. I have developed this view of deception from Levine and

McCornack’s work on deceptive communication in humans as I hope to have clarified

to the reader throughout the thesis [153, 172, 154]. The work described in this thesis

has been conceptually based mostly on their work, as well as Buller and Burgoon’s

[38], but to a lesser extent as IDT is over-reliant on deceptive cues, something which
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the work presented in this thesis aims to avoid. The crucial concept adopted from

IDT is deception as social interaction.

In this thesis I have explored deception as interaction between artificial agents.

I have been mostly interested in how to model the exchange of knowledge between

agents in a way that is meaningful to deception research.

The first part of my thesis described, in Chapter 2, the relevant literature regard-

ing both human and machine deception covering both internal cognitive mechanisms,

as well as socio-cognitive mechanisms and large-scale evolutionary systems. Regard-

ing the literature on human and machine deception, I have given a critical account

on why cue-reliant approaches and data-oriented approaches are severely limited to

meaningfully model deception. I have also explained why these limitations have led

me to pick TDT, IDT, and IMT2 as conceptual pillars of my work. Regarding the

mechanisms used to represent complex reasoning and interactions in MAS and the

evolutionary mechanisms for ABM, they have provided the necessary techniques to

meaningfully model deceptive agents and the social interactions in which they take

part.

The second part of my thesis covered the definition of deception in computational

terms and the modelling and engineering of socio-cognitive agents. I have defined

what computational deception is and described a taxonomy for it in Chapter 3. In

Chapter 4, I have shown how to model ToM using BDI and speech acts in MAS. I

have shown that agents with ToM can reach states of shared beliefs with other agents

more efficiently than agents that do not have this capability and that they can do

so even under the conditions of uncertainty of communication. I have also shown

how shared beliefs can be used for efficient task delegation in different contexts,

by taking into account the different skills, knowledge and preferences of the agents

that are communicating with each other. Moreover, this approach on Artificial ToM

can be used by agents to derive new knowledge by simulating different interaction
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outcomes in various contexts. The agents can simulate what-if scenarios to see what

the other agents would say or not say and what they would come to believe or what

they would not come to believe if they were to interact in various social contexts.

The third part of my thesis covered the modelling and engineering of dishonest

and deceptive agents. In Chapter 5, I have formalised and represented three types

of dishonest behaviour that a socially-enabled artificial agent can execute, namely

lying, bullshitting, and deceiving. I have explained, through a running example,

how these behaviours differ from each other in terms of what the agent communi-

cates, what it knows, and what it knows about the interlocutor, e.g., its ToM of

the interlocutor. In Chapter 6, I have modelled deception between two agents in

a question-answering game, adopting a richer representation for the agent architec-

tures. This model follows the principles of TDT, IMT2 and IDT. In terms of IDT,

the model represents an interpersonal interaction between two agents considering

the social factors such as truth-bias and communicative skill. In terms of IMT2

integration, the model takes into account the fact that agents employ the same

reasoning mechanisms for both lying and truth-telling, thus the cognitive load of

deceptive agents does not differ between the two linguistic behaviours. In terms of

TDT, the model takes into account contextual information that is available to the

agent, such as what information is available in that context, what can be said and

not said, and how performing a speech act compared to another might make the

interlocutor infer a false belief.

The fourth part of my thesis explored how deception and machine deception

influences society and what are the potential solutions for addressing deception

in complex social systems. In Chapter 7, I have looked at deception from the

evolutionary perspective of Machine Behaviour. More specifically, I described how

different regulatory systems can be influenced by the deceptive behaviour of agents,

human or artificial. Using this approach I have shown how different regulatory
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systems can influence the large-scale behaviour of self-interested agents over time.

In Chapter 8, I have evaluated the work I have done in this thesis. Also, based on

the properties exhibited and the components of deception represented by the models,

I have proposed the idea of working towards an MAS framework for Intelligence

Analysis that satisfies a set of desired principles for the study of deception in complex

systems. Having in mind the contributions of my thesis, I have offered a description

of what can potentially be done towards achieving this MAS framework.

9.2 Future Work

This research branches out into several lines of potential future work, some of which

I have already mentioned in the respective chapters. Therefore, I describe them

according to their potential short-term, medium-term, and long-term goals.

In the short-term, there are several additions that can be made to the models

from Chapters 4, 5, 6, and 7. For the model in Chapter 4, one could introduce an en-

vironment layer, such that agents can reason about other’s beliefs regarding changes

in environment. These changes in the environment can represent subtle communica-

tive acts that can be easily misinterpreted by socially-aware agents. Regarding the

modelling of dishonest behaviour in Chapter 5, one can define and formally represent

other types of linguistic behaviour, such as half-truths, sarcasm and metaphorical

or fictional uses of language, in order to contrast it with the properties of deception.

Regarding the model in Chapter 6, one could potentially explore how intended and

unintended deception takes place if there are more than two agents interacting in

the same social context. This could be done through an implementation in Jason

or in any other BDI-based AOPL of an MAS with an arbitrary number of agents,

as I have already described in Chapter 4 the implementation of the reasoning mech-

anisms for the social agent architectures and in Chapter 6 the deceptive reasoning

mechanism. Finally, regarding the several PGG models in Chapter 7, one could

272



introduce a graph component in order to represent how the behaviours of agents

in the six PGGs are influenced by the structure of their social networks over time

instead of their society’s population composition.

In the medium-term, the work I have presented in my thesis can be used for

improving Intelligence Analysis. This could be done through an MAS framework for

deception analysis, as I have outlined in Chapter 8. This could help one represent

the distinction between evidence items and pure argument components of a story,

which is important when we deal with the concept of anchoring [21] and how agents

might use different anchoring strategies in different social legal, or security contexts.

It is absolutely crucial for the MAS models of framework to be developed with a

grounding in solid theories of deception and that pseudo-scientific approaches, such

as the ones that stemmed from Paul Ekman’s research [75, 76], to be avoided in its

development stage. Even if this is a medium-term goal of the research presented in

this thesis, it cannot be done by a single individual, because (i) specialist knowledge

is required for the multitude of components involved in its design, (ii) because its

modular tools have to be continuously tested and improved based on user needs and

software engineering needs, and thus it involves a multidisciplinary research and

development group approach.

In the long-term, the work in this thesis could be used towards building socially-

intelligent artificial agents that are able to engage in meaningful conversation with

their interlocutors. In this thesis I have laid some of the foundations for completing

the work proposed by Charles L. Hamblin in [112], namely on “How to Build a

Machine Worth Talking To” i Hamblin’s idea was influenced by Alan Turing’s per-

spective on linguistics, namely that of the problem of mechanising dialogues [272].

Hamblin’s book proposes a theory of categorising and using an agent’s or a machine’s

iPhilip Staines edited Hamblin’s manuscript following his death. What resulted three decades
after Hamblin’s death is the book Linguistics and the Parts of the Mind: Or how to Build a
Machine Worth Talking to [112].
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commitment stores to deal with three main components of a dialogue, namely facts,

acts, and sentiments. Most importantly, however, in Chapter 8 of his book, Hamblin

stresses the ability of machines to model other minds:

“[...] we have noticed that, in order to carry on an intelligent conversa-

tion, a speaker needs to know alot about his hearer’s backgrounds. He

needs to have an appreciation of how his hearers think and feel, what he

can take for granted that they will know and how he can expect them to

react.[...] I want to maintain, in short, that our linguistic behaviour in-

dicates a quite particular facility at modelling other people’s minds, and

imagine the reactions of real or hypothetical people under wide ranges

of circumstances [...]” [112, p. 114-115]

Hamblin deemed this absolutely necessary for machines to carry out “intelligent

conversations”, but this is missing from the theory he out laid in his book.

In this thesis I have proposed an approach for agents to model other agents’

minds, namely that of Artificial Theory-of-Mind in Chapter 4 of this thesis, and I

have shown how this approach can be used to model the complex reasoning behind

deceptive communication. This approach can be considered the missing piece that

Hamblin mentioned in his theory of commitments, that which enables machines

to reason about what Hamblin calls “hypothetical commitments”. It is, at least

to me, fascinating how the problem of machine deception is so strongly tied to the

problem of intelligence as defined both by Hamblin and Turing. While Turing argues

that in order for a machine to be intelligent, it must cause the interrogator/listener

to believe something that is false (that is to trick it into thinking the machine is

human), Hamblin argues that for a machine to be intelligent, then the machine must

be capable of conversing intelligently, but do do so it must be able to model the mind

of the interrogator. To continue their line of thought, in this thesis, I argue that
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for machines to be able to deceive the interlocutor, and hence prove that they are

intelligent, then they must be capable of modelling other minds. Another line of

future work would be to explore the relationship between deception using Theory-of-

Mind and Mikhail Bakhtin’s literary theory on polyphony and unfinalisability. This

would indeed be a research endeavour that would be more appealing to philosophers

of language and literary theory, but it might be very relevant for designing and

testing ethical AI systems. According to Bakhtin, the world is open and free and

no amount of dialogue and explanation, however detailed and complex, can never

really account for the whole truth. Thus, dialogue is unfinalisable [183]. Dialogue,

Bakhtin argues, is also polyphonic, as it can be used similarly to how Dostoyevsky’s

characters use internal dialogue to make sense of the world and of themselves in the

world, e.g., to find meaning in complex systems. Bakhtin claims that the characters

themselves become autonomous in terms of their world view and the way in which

they argue for their world view in dialogues (internal or external):

“In the consciousness of the critics, the direct and fully weighted sig-

nifying power of the characters’ words destroys the monologic plane of

the novel and calls forth an unmediated response-as if the character were

not an object of authorial discourse, but rather a fully valid, autonomous

carrier of his own individual word.” [13, p. 5]

This polyphonic view on literature seems quite aligned with the paradigm of

MAS, where agents of a model act autonomously according to their world view.

Hence, an AI system might describe the world in a dialogue (internally or by ex-

changing arguments with other agents), and it could make use of the polyphonic

style where it would model the multiple voices of the agents it engages with and

which are relevant to the dialogue (all voices are valid according to Bakhtin) [12]. To

check if it is being deceived, or if it is possible to deceive, the AI system might model

a polyphonic story taking into account these valid voices of others. The model of a
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polyphonic narrative could, therefore also be used in the development of storytelling

for argumentation, in which agents that stand for the sources of arguments are not

reduced to objects of the model, but are autonomous subjects;

Furthermore, the very orientation of the narrative-and this is equally true

of narration by the author, by a narrator, or by one of the characters-

must necessarily be quite different than in novels of the monologic type.

The position from which a story is told, a portrayal built, or information

provided must be oriented in a new way to this new world -a world of

autonomous subjects, not objects. [13, p. 7]

This capability seems to relate to the work I have done in this thesis, and it also

seems to link very well with Hamblin’s concept of a machine worth talking to.

In conclusion, much remains to be explored in the areas of deception and machine

deception. Or, as Simon Parsons would say “...many more boxes to be opened...” ii.

iiSimon once said (pun intended) that my “problem” as a PhD student is that I “love opening
boxes”, in terms of research. However, what Simon did not know was that I also used to have
quite an obsession with collecting Amazon boxes.
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Appendix A

Appendix for Chapter 7

In this appendix I describe the details of the PGG components from Chapter 7.

A.1 Long Run Average frequencies for PGG2 vs

PGG6

Figure A.1: Long-run average frequencies in PGG2 for s
∞−→, where D and Dec

frequencies are significantly different p < 0.001.
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Figure A.2: Long-run average frequencies in PGG6 for s
∞−→, where D and Dec

frequencies are significantly different p < 0.001.
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A.3 PGG Components

In a PGG we have the following strategies and set of universal parameters.

1. A set of strategies S : {C,D,L, PeP, PoP,Dec, Int,Hpep,Hpop};

2. N = the number of agents in a population to play a PGG;

3. nSi = the number of agents in a population with a given strategy Si;

4. M = the number of agents from a population N that is selected to play a

PGG;

5. r = multiplication factor that is always 1 < r < M − 1;

6. s = imitation strength;

7. c = investment (contributed amount) of a cooperative agents in a PGG.

8. cSi = cost of a given strategy Si;

9. µ = mutation rate;

10. β = cost of paying Punishers to exist;

11. B = pool punishment for Defection;

12. b = punishment for Defection;

13. cb = cost of punishing a Defector;

14. G = cost of pool punishment;

15. Γ = punishment for Deception;

16. σ = Loner payoff.
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17. Pσ =
( nL
M−1)

(N−1
M−1)

represents the probability that all other M−1 sampled individuals

are Loners.

The payout of a PGG where nFR represents the number of free-riders is adopted

from [254] and from [1]. This payout corresponds to 7.1 in Chapter 7.

Payout∗ = c× r × N − nFR − nL − 1

N − nL − 1
(A.1)

Because Deceivers are Free-Riders that pretend to cooperate in the PGG, we

need to discount them form the payout. Hence our payout is:

Payout = c× r × N − nD − nL − 1

N − nL − 1
(A.2)

This payout corresponds to 7.2 in Chapter 7.

A.4 Computing Payoffs

A.4.1 Cooperation, Defection & Punishment Average Pay-
offs

In a voluntary PGG with first order peer and pool punishment we have five (5) types

of agents: Cooperators, Defectors, Peer-Punishers, Pool-Punishers, and Loners.

Cooperator Average Payoff

ΠC = Pσ × σ + (1− Pσ)× (Payout− c)− βM − 1

N − 1
(A.3)

Defector Average Payoffs

ΠD = Pσ × σ + (1− Pσ)× Payout− costD
M − 1

N − 1
(A.4)

Where costD depends on the PGG that is played:

1. Pool-Punishment and Peer-Punishment: nPoP ×B + nPeP × b;
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2. Pool Punishment: nPoP ×B or nHPoP
×B;

3. Peer-Punishment: nPeP × b or nHPeP
× b.

Pool-Punishment Average Payoffs

ΠPoP = Pσ × σ + (1− Pσ)× ((Payout− c)−G) + rewardPoP
M − 1

N − 1
(A.5)

Where rewardPoP depends on the PGG that is played:

1. Together with Peer Punishers: β nC

nPoP +nPeP
;

2. Together with Interrogators: β nC

nPoP +nInt
.

Peer-Punishment Average Payoffs

ΠPeP = Pσ×σ+(1−Pσ)×(Payout−c)+rewardPeP
M − 1

N − 1
−(cb×nD)

M − 1

N − 1
(A.6)

Where rewardPeP depends on the PGG that is played:

1. Together with Pool Punishers: β nC

nPoP +nPeP
;

2. Together with Interrogators: β nC

nPeP +nInt
.

A.4.2 Trust in PGGs

We introduce trust between agents as a special parameter. We consider trust to

be proportional to the number of Cooperators in games, but due to the complex-

ity of the game we are modelling we need to make the distinction between genuine

cooperators, represented by Cooperators and Interrogators/Punishers, and total co-

operators which includes Deceivers, denoted by N−nD. Deceivers are pretending to

cooperate, thus they influence the overall trust between members of a population.

We have derived this definition of trust based on Truth-Default Theory in decep-

tion literature, which states that human agents are biased to trust others by default
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[153, 152]. We use t = N−nD

N
to represent the trust between agents in a population

of size N. Trust has the following properties in our model:

1. Trust increases both the likelihood of cooperation and deception.

2. Trust reduces the likelihood of defection.

3. Low trust means more defectors in a selected population M. This means lower

payoff for Defectors and Deceivers.

A.4.3 Deceiver Payoff

Deceivers receive the payoff of a Cooperator without making the initial contribution.

They are distinguished from Defectors because they are not subject to punishment

as they conceal their defection. However this concealment is costly; it increases with

the number of other agents that must be convinced, but decreases with overall trust

among the population and the deceivers’ innate communicative skill.

1. commSkill = communicative skill of the Deceiver.

(a) Reduces the cost of deception.

(b) The higher the communicative skill, the more likely it is for a deceiver to

succeed in deception.

2. γ = 1− commSkill the deceivers’ risk of getting caught

3. cogLoad = (nC +nInt+nDec+nP )× (1− t)× (1− commSkill) is the cognitive

load of a Deceiver. Where:

(a) nC+nInt+nDec+nP represents the number of agents that need convincing.

Here we also add the number of deceivers, because a deceiver considers

them cooperators. nP represents the number of Punishers (Peer or Pool).
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(b) (1− t)× (1− commSkill) represents the cost to convince an agent.

• Proportional to the number of cooperators in a PGG;

4. leakage = nInt × γ × Γ represents the leakage of the Deceiver.

(a) Increases the cost of deception.

(b) Leakage means that the Deceiver leaves a track of evidence that might

lead an Interrogator to find out about deception.

Definition 29 Cost of Deceiver Let the cost of deception cDec be a function of

cogLoad and leakage, where cDec = cogLoad+ leakage.

Deception Average Payoff

ΠDec = Pσ × σ + (1− Pσ)× Payout− cDec
M − 1

N − 1
(A.7)

A.4.4 Interrogator Payoff

Interrogators receive the same payout as the Peer-Punishers minus the cost of peer-

punishing. They are different from Peer-Punishers as they do not punish Defectors.

However,Interrogators need to hunt down Deceivers and punish them, therefore they

need to pay a cost for interrogation. This cost increases with the number of agents

in a population they need to interrogate as well as with the number of Deceivers

they are likely to reveal and punish.

1. cΓ = cost of punishing a Deceiver. Is multiplied by:

(a) the probability of a deceiver’s risk of getting caught γ.

(b) the number of Deceivers nDec

2. cinterr = cost of interrogating an agent. It is multiplied by:
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(a) the numbers of agents that need to be interrogated. These are both

Cooperators and Deceivers nC + nDec.

3. γ = the likelihood of revealing a Deceiver. This is the same as the risk of a

Deceiver being caught in the same population.

Definition 30 Cost of Interrogator Let the cost of being an Interrogator cInt be

a function of cΓ and cinterr, where cInt = γ × cΓ × nDec + cinterr × (nC + nDec).

Interrogation Average Payoff

ΠInt = Pσ × σ + (1− Pσ)× (Payout− c)− cInt
M − 1

N − 1
+ rewardInt

M − 1

N − 1
(A.8)

Where rewardInt depends on the type of PGG:

1. Together with Pool-Punishers: β × nC

nPoP +nInt
;

2. Together with Peer-Punishers: β × nC

nPeP +nInt
.

A.4.5 Hybrid Interrogators Payoffs

Cooperation in the previous PGGs suffers due to the weakness of Punishers against

Deceivers and to the weakness of Interrogators against Defectors. In order to counter

both defection and deception, we replace Peer-Punishers and Pool-Punishers with

Hybrid Interrogators. On top of interrogating the population to find and punish

Deceivers, the Hybrids also play the role of Punishers (either Peer or Pool). The role

of Hybrids is to maintain cooperation by dealing with both defection and deception

at the same time. This stops Deceivers and Defectors from gaining ground in a

cyclical way.

Definition 31 Cost of Pool Hybrid Interrogators Let the cost of being an

Interrogator cHpop be a function of cΓ and cinterr, where cHpop = G+ γ× cΓ×nDec +

cinterr × (nC + nDec).
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Definition 32 Cost of Peer Hybrid Interrogators Let the cost of being an

Interrogator cHpep be a function of cb, cΓ and cinterr, where cHpep = cb × nD + γ ×

cΓ × nDec + cinterr × (nC + nDec).

Pool-Hybrid Interrogation Average Payoff

ΠHPoP
= Pσ×σ+(1−Pσ)× ((Payout− c)−G)− cHPoP

M − 1

N − 1
+(β× nC

nHPoP

)
M − 1

N − 1

(A.9)

Peer-Hybrid Interrogation Average Payoff

ΠHPeP
= Pσ×σ+(1−Pσ)×(Payout−c)−cHPeP

M − 1

N − 1
+(β× nC

nHPeP

)
M − 1

N − 1
(A.10)

A.5 Design of PGGs

A.5.1 Punishment with Tax

A PGG that includes Pool and Peer Punisher agents without second order punish-

ment. Instead of second-order punishment, we introduced a tax β for Punishers to

exist in the population that is paid by the Cooperators. See Table A.1.

A.5.2 Punishment with Tax & Deception

A PGG where Deceiver agents are added into the mix. Deceivers pretend to be

Cooperators, while scraping the same payout as Defectors. See Table A.2.

A.5.3 Pool-Punishment with Tax, Deception & Interroga-
tion

A PGG that includes Deceiver agents along with Pool-Punishers and Interrogators.

The punishment tax β takes into account both Pool-Punishers and Interrogators.

Interrogators are introduced to capture and punish Deceivers. See Table A.3.
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A.5.4 Peer-Punishment with Tax, Deception & Interroga-
tion

A PGG that includes Deceiver agents along with Peer-Punishers and Interrogators.

The punishment tax β takes into account both Peer-Punishers and Interrogators.

See Table A.4.

A.5.5 Deception & Pool-Hybrid Interrogation

A PGG that includes Deceivers and Pool-Hybrid Interrogators. The punishment

tax β takes into account both Pool-Hybrid Interrogators. See Table A.5.

A.5.6 Deception & Peer-Hybrid Interrogation

A PGG that includes Deceivers and Peer-Hybrid Interrogators. The punishment

tax β takes into account both Peer-Hybrid Interrogators. See Table A.6.

A.6 Tables

Payoffs with Punishment
Strategy Cost Payoff
Cooperators β Payout− c− β
Defectors nPoP × B +

nPeP × b
Payout− nPoP ×B − nPeP × b

Peer-
Punishers

cb × nD Payout−c−cb×nD+β nC

nPoP +nPeP

Pool-
Punishers

G Payout− c−G+ β nC

nPoP +nInt

Loners N/A σ

Table A.1: Payoffs for agents in a PGG without Deception. The payoffs resemble
the ones in Sigmund 2010, the only difference being the additional tax β that is paid
by the Cooperators.
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Payoffs with Deception
Strategy Cost Payoff
Cooperators β Payout− c− β
Defectors nPoP × B +

nPeP × b
Payout− nPoP ×B − nPeP × b

Peer-
Punishers

cb × nD Payout−c−cb×nD+β nC

nPoP +nPeP

Pool-
Punishers

G Payout− c−G+ β nC

nPoP +nPeP

Deceivers cogLoad Payout− cDec
Loners N/A σ

Table A.2: Payoffs for agents in a PGG with Deceivers present. In this PGG, there
is no leakage from the Deceivers, because there is no type of agent that interrogates
them. ‘There is no sound made by a falling tree if there’s no one to hear it.’.

Payoffs with Interrogation and Pool Punishment
Strategy Cost Payoff
Cooperators β Payout− c− β
Defectors nPoP ×B Payout− nPoP ×B
Pool-
Punishers

G Payout− c−G+ β nC

nPoP +nInt

Interrogators γ × cΓ × nDec +
cinterr × (nC +
nDec)

Payout− c− cInt + β nC

nPoP +nInt

Deceivers cogLoad +
leakage

Payout− cDec

Loners N/A σ

Table A.3: Payoffs for agents in a PGG with only Pool-Punishers where both De-
ceivers and Interrogators are present. In this PGG, leakage is added to the the cost
of deceiving.
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Payoffs with Interrogation and Peer-Punishment
Strategy Cost Payoff
Cooperators β Payout− c− β
Defectors nPeP × b Payout− nPeP × b
Peer-
Punishers

cb × nD Payout− c− cb×nD +β nC

nPeP +nInt

Interrogators γ × cΓ × nDec +
cinterr × (nC +
nDec)

Payout− c− cInt + β nC

nPoP +nInt

Deceivers cogLoad +
leakage

Payout− cDec

Loners N/A σ

Table A.4: Payoffs for agents in a PGG with only Peer-Punishers where both De-
ceivers and Interrogators are present. In this PGG, leakage is added to the the cost
of deceiving.

Payoffs with Pool Hybrids
Strategy Cost Payoff
Cooperators β Payout− c− β
Defectors nHpop ×B Payout− nHpop
Pool Hybrids G + γ × cΓ ×

nDec + cinterr ×
(nC + nDec)

Payout− c− cHpop + β nC

nHpop

Deceivers cogLoad +
leakage

Payout− cDec

Loners N/A σ

Table A.5: Payoffs for agents in a PGG where both Deceivers and Hybrid Inter-
rogators are present. In this PGG, the Hybrid Interrogators play both the role of
Pool-Punishers and the role of Interrogators, hunting down Defectors and Deceivers.

Payoffs with Peer Hybrids
Strategy Cost Payoff
Cooperators β Payout− c− β
Defectors nHpep × b Payout− nHpep
Peer Hybrids cb × nD + γ × cΓ × nDec +

cinterr × (nC + nDec)
Payout − c − cHpep +
β nC

nHpep

Deceivers cogLoad+ leakage Payout− cDec
Loners N/A σ

Table A.6: Payoffs for agents in a PGG where both Deceivers and Hybrid Inter-
rogators are present. In this PGG, the Hybrid Interrogators play both the role of
Peer-Punishers and the role of Interrogators, hunting down Defectors and Deceivers.
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gether. In Proceedings of the 8th AAAI Conference on Artificial Intelligence,

volume 90, pages 94–99, 1990.

[151] Hector J Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and

Richard B Scherl. Golog: A logic programming language for dynamic domains.

The Journal of Logic Programming, 31(1-3):59–83, 1997.

[152] Timothy R Levine. Truth-Default Theory (TDT). Journal of Language and

Social Psychology, 33(4):378–392, Sep 2014.

[153] Timothy R Levine. Duped: Truth-default theory and the social science of lying

and deception. University Alabama Press, 2019.

[154] Timothy R Levine and Steven A McCornack. Theorizing about deception.

Journal of Language and Social Psychology, 33(4):431–440, 2014.

[155] Yuezun Li and Siwei Lyu. Exposing deepfake videos by detecting face warping

artifacts. arXiv preprint arXiv:1811.00656, 2018.

[156] David C Logan. Known knowns, known unknowns, unknown unknowns

and the propagation of scientific enquiry. Journal of experimental botany,

60(3):712–714, 2009.

[157] Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. A grounded

interaction protocol for explainable artificial intelligence. arXiv preprint

arXiv:1903.02409, 2019.

[158] Walid Magdy, Yehia Elkhatib, Gareth Tyson, Sagar Joglekar, and Nishanth

Sastry. Fake it till you make it: Fishing for catfishes. In Proceedings of the

2017 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining 2017, pages 497–504. ACM, 2017.

307



[159] James E Mahon. History of deception: 1950 to the present. Encyclopedia of

Deception, pages 618–619, 2014.

[160] James E Mahon. The definition of lying and deception. In Edward N. Zalta,

editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, winter 2016 edition, 2016.

[161] Henry B Mann and Donald R Whitney. On a test of whether one of two random

variables is stochastically larger than the other. The annals of mathematical

statistics, pages 50–60, 1947.

[162] Christina Masden and W Keith Edwards. Understanding the role of commu-

nity in online dating. In Proceedings of the 33rd annual ACM conference on

human factors in computing systems, pages 535–544. ACM, 2015.

[163] Peta Masters and Sebastian Sardina. Deceptive path-planning. In Proceedings

of the 26th International Joint Conference on Artificial Intelligence, pages

4368–4375. AAAI Press, 2017.

[164] Michael Mateas and Phoebe Sengers. Narrative intelligence. Technical report,

1999.

[165] James Mayfield, Yannis Labrou, and Tim Finin. Evaluation of KQML as an

agent communication language. In Proceedings of the International Workshop

on Agent Theories, Architectures, and Languages, pages 347–360. Springer,

1995.

[166] Peter McBurney. What are models for? In Proceedings of the European

Workshop on Multi-Agent Systems, pages 175–188. Springer, 2011.

[167] Peter McBurney, William Nash, and Andrew Jones. Lies and Deception. Tech-

nical report, King’s College London, Department of Informatics, Jan 2014.

308



[168] Peter McBurney and Simon Parsons. Games that agents play: A formal frame-

work for dialogues between autonomous agents. Journal of logic, language and

information, 11(3):315–334, 2002.

[169] Peter McBurney and Simon Parsons. Dialogue games for agent argumentation.

In Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial

Intelligence, pages 261–280. Springer US, 2009.

[170] Peter McBurney, Rogier M Van Eijk, Simon Parsons, and Leila Amgoud. A

dialogue game protocol for agent purchase negotiations. Autonomous Agents

and Multi-Agent Systems, 7(3):235–273, 2003.

[171] Peter John McBurney. Rational interaction. PhD thesis, University of Liver-

pool, 2002.

[172] Steven A McCornack, Kelly Morrison, Jihyun Esther Paik, Amy M Wisner,

and Xun Zhu. Information manipulation theory 2: a propositional theory of

deceptive discourse production. Journal of Language and Social Psychology,

33(4):348–377, 2014.

[173] Richard W. McVinney. Deep fakes & deep fears.

https://rwmcvinney.wordpress.com/author/rwmcvinney/, 2019.

[174] Johnathan Mell, Gale M Lucas, and Jonathan Gratch. Welcome to the real

world: How agent strategy increases human willingness to deceive. In Proceed-

ings of the 17th International Conference on Autonomous Agents and Multi-

Agent Systems, pages 1250–1257. IFAAMAS, 2018.

[175] Victor S Melo, Alison R Panisson, and Rafael H Bordini. Argumentation-

based reasoning using preferences over sources of information. In Proceedings

of the 15th International Conference on Autonomous Agents and Multi-Agent

Systems, pages 1337–1338. IFAAMAS, 2016.

309



[176] John-Jules Ch. Meyer. Logics for intelligent agents and multi-agent systems.

In Jörg H. Siekmann, editor, Computational Logic, volume 9 of Handbook of

the History of Logic, pages 629 – 658. North-Holland, 2014.

[177] Tim Miller. Explanation in artificial intelligence: Insights from the social

sciences. Artificial Intelligence, 267:1–38, 2019.

[178] Marvin Minsky and Doug Riecken. A conversation with Marvin Minsky about

agents. Communications of the ACM, 37(7):22–29, 1994.

[179] Kevin D Mitnick and William L Simon. The Art of Deception: Controlling

the Human Element of Security. John Wiley & Sons, 2011.

[180] Brent Mittelstadt, Chris Russell, and Sandra Wachter. Explaining explana-

tions in AI. In Proceedings of the Conference on Fairness, Accountability, and

Transparency, pages 279–288. ACM, 2019.

[181] Sanjay Modgil, Francesca Toni, Floris J Bex, Ivan Bratko, Carlos I Ches-
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