8,220 research outputs found

    A study of systems implementation languages for the POCCNET system

    Get PDF
    The results are presented of a study of systems implementation languages for the Payload Operations Control Center Network (POCCNET). Criteria are developed for evaluating the languages, and fifteen existing languages are evaluated on the basis of these criteria

    Array languages and the N-body problem

    Get PDF
    This paper is a description of the contributions to the SICSA multicore challenge on many body planetary simulation made by a compiler group at the University of Glasgow. Our group is part of the Computer Vision and Graphics research group and we have for some years been developing array compilers because we think these are a good tool both for expressing graphics algorithms and for exploiting the parallelism that computer vision applications require. We shall describe experiments using two languages on two different platforms and we shall compare the performance of these with reference C implementations running on the same platforms. Finally we shall draw conclusions both about the viability of the array language approach as compared to other approaches used in the challenge and also about the strengths and weaknesses of the two, very different, processor architectures we used

    Flight dynamics system software development environment (FDS/SDE) tutorial

    Get PDF
    A sample development scenario using the Flight Dynamics System Software Development Environment (FDS/SDE) is presented. The SDE uses a menu-driven, fill-in-the-blanks format that provides online help at all steps, thus eliminating lengthy training and allowing immediate use of this new software development tool

    CRAY mini manual. Revision D

    Get PDF
    This document briefly describes the use of the CRAY supercomputers that are an integral part of the Supercomputing Network Subsystem of the Central Scientific Computing Complex at LaRC. Features of the CRAY supercomputers are covered, including: FORTRAN, C, PASCAL, architectures of the CRAY-2 and CRAY Y-MP, the CRAY UNICOS environment, batch job submittal, debugging, performance analysis, parallel processing, utilities unique to CRAY, and documentation. The document is intended for all CRAY users as a ready reference to frequently asked questions and to more detailed information contained in the vendor manuals. It is appropriate for both the novice and the experienced user

    Initial operating capability for the hypercluster parallel-processing test bed

    Get PDF
    The NASA Lewis Research Center is investigating the benefits of parallel processing to applications in computational fluid and structural mechanics. To aid this investigation, NASA Lewis is developing the Hypercluster, a multi-architecture, parallel-processing test bed. The initial operating capability (IOC) being developed for the Hypercluster is described. The IOC will provide a user with a programming/operating environment that is interactive, responsive, and easy to use. The IOC effort includes the development of the Hypercluster Operating System (HYCLOPS). HYCLOPS runs in conjunction with a vendor-supplied disk operating system on a Front-End Processor (FEP) to provide interactive, run-time operations such as program loading, execution, memory editing, and data retrieval. Run-time libraries, that augment the FEP FORTRAN libraries, are being developed to support parallel and vector processing on the Hypercluster. Special utilities are being provided to enable passage of information about application programs and their mapping to the operating system. Communications between the FEP and the Hypercluster are being handled by dedicated processors, each running a Message-Passing Kernel, (MPK). A shared-memory interface allows rapid data exchange between HYCLOPS and the communications processors. Input/output handlers are built into the HYCLOPS-MPK interface, eliminating the need for the user to supply separate I/O support programs on the FEP

    Comparison of the MPP with other supercomputers for LANDSAT data processing

    Get PDF
    The massively parallel processor is compared to the CRAY X-MP and the CYBER-205 for LANDSAT data processing. The maximum likelihood classification algorithm is the basis for comparison since this algorithm is simple to implement and vectorizes very well. The algorithm was implemented on all three machines and tested by classifying the same full scene of LANDSAT multispectral scan data. Timings are compared as well as features of the machines and available software

    Implementing the UCSD PASCAL system on the MODCOMP computer

    Get PDF
    The implementation of an interactive software development system (UCSD PASCAL) on the MODCOMP computer is discussed. The development of an interpreter for the MODCOMP II and the MODCOMP IV computers, written in MODCOMP II assembly language, is described. The complete Pascal programming system was run successfully on a MODCOMP II and MODCOMP IV under both the MAX II/III and MAX IV operating systems. The source code for an 8080 microcomputer version of the interpreter was used as the design for the MODCOMP interpreter. A mapping of the functions within the 8080 interpreter into MODCOMP II assembly language was the method used to code the interpreter

    A Multimedia Interactive Environment Using Program Archetypes: Divide-and-Conquer

    Get PDF
    As networks and distributed systems that can exploit parallel computing become more widespread, the need for ways to teach parallel programming effectively grows as well. Even though many colleges and universities provide courses on parallel programming [1], most of those courses are reserved for graduate students and advanced undergraduates. There is a demand for ways to teach fundamental parallel programming concepts to people with just a working knowledge of programming. By using the idea of a software archetype, and providing a learning environment that teaches both concept and coding, we hope to satisfy this need. This paper presents an overview of the multimedia approach we took in teaching parallel programming and offers Divide-and-Conquer as an example of its use
    corecore