
N87L26533

COMPARISON OF THE MPP
WITH OTHER SUPERCOMPUTERS

FOR LANDSAT DATA PROCESSING

by
Martin Ozga

United States Department of Agriculture
National Agricultural Statistics Service

ABSTRACT

The MPP is compared to the CRAY X-MP
and the CYBER-20S for Landsat data

processing. The maximum likelihood
classification algorithm is the basis for
comparison since this algorithm is simple to
implement and vectorizes very well. The
algorithm was implemented on all three
machines and tested by classifying the same
full scene of kandsat MSS data. Timings are
compared as well as features of the
machines and available software.

INTRODUCTION

The National Agricultural Statistics Service
(NASS) of the United States Department of
Agriculture has for several years been using
Landsat MSS (multispectral scanner) data to
aid in crop acreage estimation. The
estimates are provided for several states,
mostly in the Midwest. For each state, as
much Landsat data as possible is obtained,
the ideal being coverage for the entire
state. Therefore, large amounts of data
must be processed. This large-scale
processing has long been seen as a useful
application of supercomputers, first the
ILLIAC-IV and more recently the CRAY X-
MP (Ref. I). One of the key programs in the
analysis is the classification or
categorization of the data into classes
representing crop types. This classification
is clone on all scenes for all states.

LANDSAT MSS DATA

Each Landsat MSS scene consists of about

10.5 million pixels. Each pixei covers a
square on the earth's surface of about $7
meters on a side. Each pixel consists of the
reflectance intensity in 4 spectral bands or
channels. The intensity is a value between 0
and 255 (more commonly between 0 and 127)

and thus occupies I byte of data. Thus each
pixel occupies 32 bits of data, I word on
many machines or a half word on many
supercomputers.

Often, to improve clQssification accuracy,
mul ti temporal data are used. A
multitemporal data set is made up of two
overlaid Landsat data sets from the same
area on the earth's surface. The

improvement comes in that the two data
sets are taken at different times and, if the
dates are chosen properly, may emphasize
differences in reflectance of various crops.
However, since the multitemporal data sets
contain eight channels of data, they do take
longer to process.

For the USDA-NASS 1986 analysis,
approximately 80 scenes of Landsat data
will be used of which approximately 2S will
be multitemporal. For the purposes of the
test described in this paper, only
unitemporal data sets were used.

TIE CLASSIFICATION ALGORITHM

The maximum likelihood classification
algorithm consists of applying a
discriminant function for each class to each
pixel and assigning the pixel to the class for
which the discriminant function yields the
highest value. Since each pixel is processed
independently, the algorithm is ideal for
vector machines and indeed performs well
on all machines tested. The discriminant
functions is:

G(X, I) = B (I) - .S (X -M (I)) T V (I) (X-M (I))
where X is the pixel

I is the class
M(I) is the vector of mean values
for class I
V(I) is the inverted variance-
covariance matrix for class I

B(I) = .S log (determinant (V (I))

13

PRECEDING PAGE BLANK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19870017100 2020-03-20T09:48:12+00:00Z

There are three parts to the algorithm.
First, the data must be unpacked and
converted to floating point form. That is,
each byte (channel intensity value) must be
converted to the equivalent floating point
value. Second, the discriminant function
must be applied for each class to each pixel
and the class for which the discriminant

function yields the highest value saved for
each pixel. Third, the data are repacked to
one byte per pixel for economy in storage
for further processing. This means that the
number of classes must be less than or equal
to 255; in practice at USDA-NASS the
number of classes is always well under 255.
Obviously the second step is by far the most
time consuming.

MPP IMPLEMENTATION

The MPP classification algorithm was
implemented on the MPP using Parallel
Pascal (Ref. 2, 3, It). The entire algorithm
was implemented without requiring use of
assembly language so Parallel Pascal was
certainly adequate to the task, although,
perhaps coding the key loop of discriminant
functions evaluation in assembly language
may have speeded up the algorithm
somewhat.

The input-output was done using supplied
fast video routines callable from Parallel

Pascal. The data was mapped so that all
four channels of each pixel were transferred
to the same PF. Of the 1024 bits available

in each PE, 512 were used for pixei storage
allowing 16 pixels to be stored in each PE at
any one time, or 262144 pixels in the entire
pF: memory.

Thus, 42 I/O operations were necessary to
bring in all the data. When the program was
written and debugged, facilities were not
available for overlapping processing and i/O.
The class associated with each pixel was
stored over a portion of the original pixel
values since once the pixel was converted to
floating point, the original values were not
needed any longer. An additional 128 bits
were needed for the four 32-bit floating
point channel values. Additional bits were
used for various temporary values. Some

14

space was left available for a possible
future expansion to multitemporal, eight-
channel data.

It is evident that when processing 10.5
million pixels at 16384 at a time, all PE's
are generally doing productive work. The
lack of hardware floating point did slow this
algorithm. Some tests on the CRAY X-MP
with integer processing revealed that
integer processing led to severe
deterioration of classification results unless
certain intermediate results were stored is
very large integers, being due to the
significant digits which must be maintained
using the inverted variance - covariance
matrix.

The repacking of data, a rather tedious
tasks on the other machines, was easily
realized by proper storage of the data on
the MPP and correct maps for sending the
data through the staging buffer to the
output categorized file.

CRAY X-MP IMPLEMENTATION

The CRAY X-MP/48 at NASA-Ames was
used for the test. The program, which is in
production use by USDA-NASS, is coded in
Cray FORTRAN (CF,T) (Ref. 5) with key
routines coded in CRAY assemble Language
(CAL) (Ref. 6). The use of assembly
language is mainly for historical reasons
since at the time this program was
originally written, the CF-T compiler was
less well developed than it is today. If this
program were re-written, much more of it
would be coded in CFT.

The CRAY X-MP vectorization uses as

operands vector registers each of 64 64-bit
words. The vectorization is achieved

largely through pipelining data. There is
some advantage to having longer vectors,
particularly when coding in CF,T, since
overhead for vector set-up is decreased. A
vector size of 16384 was used for the CRAY

implementation.

CYBER-205 IMPLEI_ENTATION

The Control Data CYBER-205 at NASA-

Ames was used for the test. The program
was coded in FORTRAN (Ref. 7), but makes
extensive use of special extensions and
subroutines. This was necessary since at the
time the program was written and debugged,
the CYBER-20S FORTRAN compiler did a
rather poor job of vectorizatio% a condition
which is being gradually improved.

Vector operations on the CYBER-205
operate directly out of memory and may be
of indeterminate length, limited by the size
of memory. Vectorization on the CYBER-
205 is achieved largely by pipelining data.
The CYBER-20S implements virtual memory
with paging so there is a potential loss of
efficiency if a vector crosses a page
boundary or if two operands to a vector
operator are in different pages in that a
page fault may cause a break in the vector
operation. With these constraints in mind,
the CYBER-205 operates best on long
vectors. Also, internally, vector operands
are pointed to by descriptors which may be
used explicity by the FORTRAN

programmer desiring maximum efficiency.

Finally, CYBER-205 FORTRAN provides

many subroutine calls to perform vector

operations which are not directly expressed
in FORTRAN, that is for most of the

capabilities of the machine outside of

ordinary arithmetic operations. In effect,

when all these features are used, one has a

parallel FORTRAN, somewhat analogous to
Parallel PASCAL on the MPP.

The classification algorithm was coded on
the CYBER-205 using descriptors, several of
the special subroutines, and with
consideration for paging. The vector length
was 16384. Such a coding is in the parallel
form of FORTRAN and it provides for an
efficient use of the machine.

CPU TIMES

The test performed involved classifying a
full scene of data (10.S million four channel

pixels) into SI categories. The same results,
as determined by a count of the number of
pixels per category, were obtained on all
machines except for a difference of two

pixels on the CYBER-20S, an insignificant

difference.

The following CPU times were observed:
MPP: 90 seconds (approximate)
CRAY X-MP: 157 seconds
CYBER-20S: 58 seconds.

It is interesting to note that the MPP lies
between the CRAY X-MP and the CYBER-
20S in timings. Improvements in the code
generated by Parallel Pascal or the use of
assembly language would no doubt bring the
timing down closer to that of the CYBER-
20S; similar improvements on the CYBER-
205 are unlikely since the code already
takes advantage of special features of the
CYBER-205. One would suppose that
implementation of hardware floating point
operations on the MPP would cause it to run
faster than the CYBER-20S on this problem.

Both the MPP and the CYBER-20S are
known to operate best on long vectors
whereas the CRAY X-MP has a shorter
vector but faster scalar speed. The
classification algorithm certainly shows the
advantages of the long vectors when applied
to an algorithm for which they can be
profitably used.

The CPU times for the CRAY X-MP and
CYBER-20S were obtained directly from the
listing received from batch execution of the
program. Such a listing was not available
for the MPP. Therefore, calls to timing
routines were placed around the main
classification loop. These timings totaled
88.76 seconds. The CPU times spent in the
remainder of the program would be quite
small.

ELASPED TIMES

Elapsed times on the CRAY X-MP and
CYBER-20S are not important since both
machines are operated in a multi-
programming environment so the elapsed
time would be very dependent on the mix of
jobs in the system.

However, only one job is present at any one
time on the MPP so that the MPP user

would expect to be charged for the entire

15

elapsed time. The total job time on the
MPP was 360 seconds. This time fluctuated

somewhat, presumably depending on usage
of the front-end VAX. The test was run at a
time of relatively low VAX use, on a Friday
evening. Since I/O-CPU overlap was not
available, the time spent in reading the
input file was measured to try to get an
approximation of savings to be obtained if
overlap were present. The input file was
used since it is largest and only the input
file was used since only one I/O operation
may proceed at any one ti me.
Approximately 150 seconds was spent
reading the input file indicating that the
program was 1/0 bound. Thus, if CPU and
input !/0 could be overlapped by reading
smaller pieces of the input file into buffers
in PE memory, one would expect the total
job in the decrease to about 270 seconds.
The time not accounted for in the above

calculations, 120 seconds, was spent in
writing the output file and also in reading
the statistics file and preassembly in some
overhead in communicating with the VAX.
Thus, one would, in a production made,
expect to pay for 270 seconds of MPP time
to do a 90 second job. Of course, on the
CRAY X-MP and CYBER-205 one is
typically changed for i/0 and often memory
usage. The wide variance in applying these
changes from site to site makes comparison
difficult•

EASE OF USE

Ease of use is necessarily subjective term,
based on one's opinions and experiences with
various system. Nevertheless, some
comments can be made. I found the MPP

generally easy to use. Parallel Pascal
provides a good interface to the machine.
The biggest problem in Pascal and other
languages is that one must often use special
routines for I/0. Once I learned about the

special routines, I found them generally
convenient to use. The problem of using up
the limited memory of the MPP with the
stack space required for complicated
expression can be severe_ perhaps an option
should be added to Parallel Pascal to tell

the user how much stack space is used by
any particular statement. Otherwise, at

16

least for this particular problem, the size of
the PE memory was not really a constraint.

Landsat processing is characterized by
moving large amounts of data. While the
facilities provided on the MPP were
adequate for the test, they would not be
adequate for production use• For the test,
the Landsat data tape was copied on the
VAX to a removable disk pack and this disk
pack was then made available for the test.
What is needed for production are facilities
typically available at supercomputer sites
wherein data are staged between tapes and
dedicated, high-capacity, high-speed disks.

In general, I found both the software and
hardware to be reliable. It was not
necessary or even advantageous to use the
MPP simulator since the MPP itself was
generally available. Debugging facilities
were perhaps a bit crude but adequate.

CONCLUSIONS

The MPP has promise for Landsat data
processing. The most urgent need is for
improved data handling. However, since the
speed in this test was slower than on the
CYBER-20S, and since both are
characterized by requiring long vectors,
perhaps a more complex PE implementing
hardware floating point is in order. It would
be interesting to do a comparison on some
algorithm requiring only or mostly integer
computations. Unfortunately, none of the
major programs currently used by USDA-
NASS for Landsat processing fits this
requirement so no such test was performed.

ACKNOWLEDGEMF_NT

The author would like to thank James Tilton
of the NASA Goddard Space Flight Center
for his generous help in answering my many
questions and in locating appropriate
subroutines, particularly for I/0.

P,EF-ERENCES

I • Ozga, Martin, "Experience with the Use
of Supercomputers to Process Landsat
Data," Symposium Proceedings,

Machine Processing of Remotely Sensed
Data, Laboratory for Application of
Remote Sensing, Purdue University,
West Lafayette, Indiana, 1984.

2. Parallel Pascal Language Reference
Manual, NASA Goddard Space Flight
Center, 1986.

3. Parallel Pascal User's Guide, NASA
Goddard Space Flight Center, 1986.

4. MPP Pascal Callable Procedure

Library, NASA Goddard Space Flight
Center, 1986.

S. FORTRAN (CFT) Reference Manual,
SR-0009, Cray Research Inc., Mendota
Heights, Minnesota, 1984.

6. CAL Assembler Version I Reference

Manual, SR-0000, Cray Research , Inc.,
Mendota Heights, Minnesota, 1983.

7. FORTRAN 200 Version !, 60480200,
Control Data Corporation, Sunnydale,
California, 1984.

!7

