
-so

(NASA-CR-156680) A STUDY OF SYSTEMS .N78-16671

IMPLEMENTATION LA1NGUAGES FOB THE POCCNET

SYSTEM (Maryland Univ.) 176 p HC A05/MF A01
CSCL 09B Unclas

G3/61 04059

A STUDY OF 	SYSTEMS IMPLEMENTATION LANGUAGES

FOR THE POCCNET SYSTEM

Victor R. BasiLi

James W. Franklin

Department of Computer Science

University of Maryland

Prepared for Goddard Space Flight Center

under Contract WAS 5-2F581

ABSTRACT:

This report presents the results of a study of systems

Control
impLementatibn languages for the Payload Operations

Center Network (POCCNET). Criteria are developed for evaluating

the languages, and fifteen existing languages are evaluated on

the basis of these criteria.

https://ntrs.nasa.gov/search.jsp?R=19780008728 2020-03-22T06:17:08+00:00Z

-EPRODUCIBILITY OF THE

POCCNET Language Study
ORIGINAL PAGE IS POOR

TabLe of Contents

1. INTRODUCTION

2. CRITERIA AND EVALUATION OF THE LANGUAGES 2-1

.2.. . I1 . t+e c iSl _11 - I 2 5

2.1.1.

2.1.2.

2.2.

2.2.1.

2.2.2.

2.3.

2.3.1.

2.3.2.

2.4.

2.4.1.

2.4.2.

2.5.

2.5.1.

2.5.2.

2.6.

2.6.1.

2.6.2.

2.7.

2,.7-1.

2.7.2.

2.8.

2.8.1.

2.8.2.

2.9.

2.9.1.

2.9.2.

2.10.

LANGUAGE FEATURES 2-5

CHARACTERISTICS 2-10

C 2-14

LANGUAGE FEATURES 2-14

CHARACTERISTICS 2-20

CONCURRENT PASCAL 2-23

LANGUAGE FEATURES 2-23

CHARACTERISTICS 2-31

CS-4 Base Language 2-34

LANGUAGE FEATURES 2-34

CHARACTERISTICS 2-44

FLECS 2-47

LANGUAGE FEATURES 2-47

CHARACTERISTICS 2-50

HAL/S 2-53

LANGUAGE FEATURES 2-53

CHARACTERISTICS 2-62

INTERDATA FORTRAN V 2-65

LANGUAGE FEATURES 2-65

CHARACTERISTICS 2-69

JOSSLE 2-72

LANGUAGE FEATURES 2-72

CHARACTERISTICS 2-78

JOVIAL/J3B 2-81

LANGUAGE FEATURES 2-81

CHARACTERISTICS 2-87

LITTLE 2-91

2.10.1. LANGUAGE FEATURES 2-91

2.10.2. CHARACTERISTICS 2-94

2.11. PASCAL 2-97

2.11.1. LANGUAGE FEATURES 2-97

POCCNET Language Study
REPRODUOBILTY OF THE
ORIGINAL PAGE IS POOR

2.11.2.
 CHARACTERISTICS 2-105

2.12.
 PREST4 2-108

2.12.1.
 LANGUAGE FEATURES 2-108

2.12.2.
 CHARACTERISTICS 2-111

2.13.
 SIMPL-T 2-114

2.13.1.
 LANGUAGE FEATURES 2-114

2.13.2.
 CHARACTERISTICS 2-118

2.14.
 SPL / Mark IV 2-122

2.14.1.
 LANGUAGE FEATURES 2-122

2.14.2.
 CHARACTERISTICS 2-131

2.15.
 STRCMACS 2-135

2.15.1.
 LANGUAGE FEATURES 2-135

2.15.2.
 CHARACTERISTICS 2-139

3. POCCNET REQUIREMENTS 3-1

4. LANGUAGE FEATURE TABLES FOR THE LANGUAGES 4-1

4.1.
 INTRODUCTION 4-1

4.2.
 MODULARITY 4-2

4.3.
 MODIFIABILITY 4-3

4.4.
 RELIABILITY 4-4

4.5.
 DATA STRUCTURING FEATURES 4-5

4.6.
 CHARACTER STRING PROCESSING 4-6

4.7.
 BIT STRING PROCESSING 4-7

4 8.
 NUMERICAL PROCESSING 4-8

4.9.
 EFFICIENCY 4-9

4.10.
 SPECIAL SYSTEM FEATURES 4-10

4.11.
 ERROR CHECKING AND DEBUGGING 4-11

5. RECOMMENDATIONS
 5-1

5.1.
 Introduction 5-1

5.2.
 Language Recommendations 5-2

5.3.
 Families of Languages 5-2

5.4.
 Use of a Single Language 5-8

5.5.
 Use of Fortran 5-9

5.6.
 Remaining Languages 5-10

5.7.
 Summary 5-11

POCCNET Language Study

REFERENCES

EBAR743 Barth, C. Wrandte, STRCMACS: An Extensive Set of

Macros for Structured Programming in OS/360 Assembly

Language, Goddard Space Flight Center, Greenbelt,

Maryland, 1974.

[BAS74J Basili, V. R., and Turner, A. J., SIMPL-T: A

Structured Programming Language, Computer Science

Center, Univ. of Maryland, Computer Note CN-14, 1974.

LBAS76a] BasiLi, Victor R., "The SIMPL Family of Programming

Languages and Compilers", Graphensprachen und

Algorithmen auf Graphen, Carl Hansen Verlag, Munich,

Germany, 1976, 49-85. Also Computer Science

Technical Report #305, Univ. of Maryland, June 1974.

[BAS76b] Basili, Victor R., Language as a Tool for Scientific

Programming, Department of Computer Science, Univ. of

Maryland, 1976.

[BEY75aJ Beyer, Terry, FLECS: User s Manual, Computer Science

Department, Univ. of Oregon, 1975.

[BEY75b] Beyer, Terryt FLECS General Information Letter,

Computer Science Department, Univ. of Oregon, 1975.

(CHE68] Cheatham, T. E., et aL., 'On the basis for ELF - an

extensible Language facility", Proc. AFIPS 1968 FJCC,

Vol. 3312, 937-948.

EDEC74] BLISS-11 Programmer's Manual, Digital Equipment

Corporation, Maynard, Mass., 1974.

EDES76a] desJardins, R., and Hahn, J., A Concept for a Payload

Operations Control Center Network (POCCNET), Goddard

Space Flight Center, Greenbelt, Maryland, 1976.

EDES76b] desJardins, Richard, Systems Definition Phase Project

Plan for Payload Operations Control Center Network,

Goddard Space Flight CenterT Greenbelt, Maryland,

1976.

[FRE753 French, A., and Mott-Smith, J., Draft of AFSC HOL

Standardization Program - Phase 1 Report, ESDfMCIT,

Hanson Air Force Base1 Bedford, Mass., 1975.

POCCNET Language Study

EHAM76J Hamlet, Richard, SIMPL-XI - An Introduction to High

Level Systems Programming, Department of Computer

Science, Univ. of Maryland, Lecture Note LN-4j 1976.

[HAN75a) Hansen, Per Brinch, CONCURRENT PASCAL Introduction,

Information Science1 California Institute of Tech.,

1975.

CHAN75b] Hansen, Per Brinch, CONCURRENT PASCAL Report,

Information Science, California Institute of Tech.,

1975.

[HAN75c) Hansen, Per Brinch, The SOLO Operating System,

Information Science , California Institute of Tech.r

1975.

[IEE753 Proc. 1st National Conference on Software

Engineering, IEEE Computer Society, Washingtont D.C.,

1975

EINT75a) CS-4 Language Reference Manual and CS-4 Operating

System Interface, Intermetrics Inc., Cambridge,

Mass., 1975.

EINT75b] HAL/S Language Specification, Intermetrics Inc.,

Cambridge, Mass., 1975.

EINTE74a2 FORTRAN V Level 1 Reference Manual, Interdata Inc.,

Oceanport, N.J., 1974.

EINTE74b] FORTRAN V Level I User's Guide, Interdata Inc.,

Oceanport, N.J., 1974.

[INTE74c] FORTRAN V Level 1 Run Time Library Manual, Interdata

Inc., Oceanport, N.J., 1974.

[JEN74] Jensen, K., and Wirth, N., PASCAL User Manual and

Report, Lecture Notes in Computer Science Series,

Springer-Verlag, New York, 1974.

EJOH73] Johnson, Mark S.t et al., A Basic Guide to JOSSLE,

Department of Computer Science, Univ. of California

at Santa Barbara, 1973.

EKAF753 Kaffen, N., and Rodeheffer, T., PREST4 - A Highly

Structured Fortran Language for Systems Programming,

Computer Science Department, Ohio State Univ.,

TR-75-4, 1975.

RTVoRDUcIBILIT OF THE

ORIGiNAL PAGE ISPO0 POCCNET Language Study

[KER743 Kernighan, Brian W., "Programming in C - A Tutorial",

Documents for Use with the UNIX Time-sharing System,

BelL Laboratories, Murray Hill, N.J., 1974.

ELIS74] Liskov, B., and ZiLes, S.1 "Programming with

Abstract Data Types", Proc. Symposium on Very High

Level Languages, SIGPLAN Notices, VoL. 9#4, April

1974.

[MAR74) Martin, Fred H., HAL/S - The Programming Language for

Shuttle, Intermetrics Inc., Cambridge, Mass., 1974.

[MAR75] Martin, Fred H., JSC HAL Support Note 9 15-75,

Intermetrics Inc., Cambridge, Mass., 1975.

CMEI753 Meissner, Loren P., "On Extending Fortran Control

Structures to Facilitate Structured Programming",

SIGPLAN Notices, Vol. 10f9, Sept. 1975, 19-30.

EPRE73] Presser, L., and White, J., "A Tool for Enforcing

System Structure", Proc. ACM 1973, AtLanta, 114-118.

EREI75] Reinschmidt, Marlene, JOVIAL/J32 Programmer's Guide,

SofTech Inc., Waltham, Mass., 1975.

[RIC763 Richmond, George H., "PASCAL Newsletter", SIGPLAN

Notices, Vol. 11#2, February 1976, 38-42.

ERIT743 Ritchie, Dennis ti., "C Reference Manual", Documents

for Use with the UNIX Time-sharing System, Bell

Laboratories, Murray Hitt, N.J., 1974.

ERUS76J Russell, D., and Sue, J., "Implementation of a PASCAL

Compiler for the IBM 360", Software Practice and

Experience, Vol. 6, 1976, 371-376.

ESDC70] SPL / Mark IV Reference Manual, System Development

Corp., Santa Monica, Calif., 1970.

ESHI74 ShieLds, David, Guide to the LITTLE Language, New

York Univ., 1974.

ESIG75] Proc. International Conference on Reliable Software,

SIGPLAN Notices, Vol. 10#6, June 1975.

ESOF75] JOVIAL/J3B Language Specification - Extension 2,

SofTech Inc., Waltham, Mass., 1975.

POCCNET Language Study PAGE 1-1

1. INTRODUCTION

This report presents an evaluation of systems implementation

languages for the Payload Operations Control Center Network

(POCCNET), which is a general hardware/software concept adopted

by GSFC as a means of de'veloping and operating payload operations

control centers in the 1980's. The POCCNET system

[DES76aDES76b] will provide hardware and software

resource-sharing via a distributed computer network and a package

of standardized applications software. This report develops

criteria for evaluating POCCNET implementation Languages, and

then compares fifteen existing languages on the basis of these

criteria.

An attempt was made during this study to examine a wide

range of existing Languages, from a low Level macro assembler to

the very large and high level Language CS-4. The following

fifteen Languages were examined in detail:

BLISS-11 - A systems implementation language

for the PDP-11 series.

C - The language of the UNIX operating

system.

CONCURRENT PASCAL - A high Level language for writing

operating systems.

CS-4 Base Language - An extensible Language being

developed for the Navy.

FLECS - A Fortran preprocessor.

HAL/S - - The NASA language for the Space

Shuttle program.

INTERDATA FORTRAN V - An extension of ANSI Fortran.

JOSSLE - A PL/I derivative for writing

compilers.

JOVIAL/J3B - A close relative of JOVIAL/J3, the

Air Force standard Language for

command and control applications.

LITTLE - A Fortran derivative that operates

RON/H, PlA y TOn
ORIGINAL PAGE IS POOR

POCCNET Language Study PAGE 1-2

on bit strings of arbitrary length.

PASCAL - A highly structured, general

purpose Language.

PREST4 - A Fortran preprocessor.

SIMPL-T - The base member of a highly

structured family of Languages.

SPL / MARK IV - A high Level Language with many

machine-oriented features.

STRCMACS - A collection of structured

programming macros for IBM 0S1360

assembly Language.

The Language evaluations in this report are based solely on the

language reference manuals and other papers Listed in the

references. we have immediate access to the compilers for only

two of the fifteen Languages (C and SIMPL-T).

The criteria for evaluating the Languages and the

preliminary evaluations are presented in the second chapter of

this report. Each evaluation is composed of two sections. The

first section provides a detailed summary of the following

syntactic features of the Language:

(1) basic data types and operators

(2) control structures

(3) data structures

(4) other interesting features

(5) Language syntax

(6) runtime environment

The second section of each evaluation presents the

characteristics of the Language:

(1) machine dependence

(2) efficiency

(3) Level of the Language

(4) size of the language ano compiler

(5) special system features

(6) error checking and debugging

(7) design support (modularity, modifiability, and

POCCNET Language Study PAGE 1-3

reliability)

(8) use and availability of the language

In the third chapter we give a summary of the functional

subsystems in POCCNET, and then identify the programming

application areas within the network. POCCNET will require a

Language or group of languages supporting general system

programming, real-time processing, data base management?

numerical processing, and data formatting and conversion. As can

be seen, the application areas in POCCNET are diverse.

The fourth chapter contains a series of tables providing a

cross reference between the Language features and Languages

discussed in Chapter 2. Each table is devoted to one of the

specific POCCNET requirements: each contains the language

features contributing to the POCCNET requirement, and indicates

for each language feature the presence or absence of that feature

in the fifteen languages.

In the fifth and final chapter we give our recommendations

and a discussion of possible candidates for the POCCNET

implementation language.

POCCNET Language Study PAGE 2-1

2. CRITERIA AND EVALUATION OF THE LANGUAGES

In this chapter we give a detailed evaluation of the fifteen

Languages covered by this study. Each of the Languages is

evaluated on the syntactic features of the Language (such as

basic data types, control structures, and data structures) and on

the characteristics of the Language (such as machine dependence,

efficiency, and design support). The evaluations are based

solely on the language reference manuals and other papers Listed

in the references.

The section on language features contains the following

subsections:

(1) A short introduction indicating the source of the Language

and the intended application area;

(2) The primitive data types of the language and the operators

and functions for manipulating them;

(3) The control structures in the language. These are described

using a simple, BNF-like metalanguage. Syntactic entities

in the language are enclosed in the symbols "<" and ">",

Language keywords are always capitalized, and any optional

features are enclosed in braces "(", "}". Where a choice is

available between several features they are listed one above

the other, single spaced. For example:

IF <booLean-expr> THEN <stmt> C ELSE <stmt> I

WHILE <boolean-expr> REPEAT <stmt-List> END ;

UNTIL

DO <stmt-#> <var> = <e-1>, <e-2> C ,<e-3> }

<stmt-List>

<stmt-#> CONTINUE

(4) The data structures in the Language, and the operators for

manipulating them. AlL but one of the Languages in this

study have arrays7 others provide record structures, tables,

POCCNET Language Study 	 PAGE 2-2

sets, typed pointersl and file types;

(5) Any interesting features in the language not covered in the

first four subsections. This typically includes macro

processors, 1/0 facilities, CONSTANT declarations, and

"include" statements for copying source files into a

program;

(6) The approximate number of productions in the BNF grammar

used to describe the language. Since the grammars used in

the reference manuals vary from syntax charts to the

grammars used by the production compilers, this number only

provides a rough measure of the size and complexity of the

language.

Any rules containing the BNF OR-operator "!, are

considered to be multiple productions. Thus, the rule

<loop-stmt> ::= (WHILE ! UNTIL) <boolean-expr>

REPEAT <stmt-list> END

is considered to be two productions;

(7) The 	runtime envirnnment required to support the Language.

For example, a Language that permits recursive procedures

will require a runtime stack, and languages witch full

character string processing will require a runtime stack or

dynamic storage area to store temporary results during the

evaluation of string expressions. Other Languages require

routines for process management, real-time scheduling, I/O,

interrupt handling, and error monitors.

The section on language characteristics contains the

following subsections:

(1) Machine dependence. Some of the Languages in this report

are truly transportable, while others contain machine or

implementation dependent features such as inline assembly

language, EQUIVALENCE statements for overlaying data items,

user specified allocation of data items in records (word

position and bit position within a word), and access to

POCCNET Language Study 	 PAGE 2-3

hardware registers;

(2) Efficiency of the Language. Languages with high level

operators and a structured control structure permit a great

deal of optimization to be performed. Overlays, user

specified allocation of records, and packing attributes on

tables can be used to conserve storage space. Some of the

languages have compiler directives for requesting that

certain program variables be allocated in high speed

storage, or to force procedures to be expanded inline at the

point of invocation (rather than generating a calling

sequence);

(3) Level of the language. The languages in this report range

from very Low level (STRCMACS) to high level (CS-4, HAL/S,

PASCAL). The low level languages are typeLess and generally

have many machine-oriented features. The high level

languages, on the other hand, are fully typed and have a

large number of data types, data structutes, and control

structures. Machine dependent features are forbidden or

carefully isolated, as in CS-4;

(4) 	 Size of the Language and compiler. The size and complexity

of the language directly influences the effort required to

learn the language and to implement a compiler for the

language. The languages in this study range from very small

(STRCMACS) to very large (CS-4). For some of the languages

the actual size of the compiler in source language

statements is known;

(5) 	 Special system features. Most of the fifteen languages

provide a number of features that would be particularly

helpful for system implementation. These include intine

assembly language, process management and real-time

scheduling, bit and character data types, pointers and

record structures, the ability to suppress type checking,

reentrant or recursive procedures, and access to hardware

registers;

POCCNET Language Study 	 PAGE 2-4

(6) Error checking and debugging. Compilers for futLy typed

Languages can detect many errors during compilation that can

not be detected until the debugging phase in the typeless

languages. Typeless pointer variables are particularly

troublesome. Languages that do not provide default

declarations or automatic type conversion can aLso detect

more errors at compile time,

A number of the languages provide special debugging

tools, including traces of program variables, statement

label flow history, execution statistics, timing

information, and cross reference and attribute listings;

(7) Design support. Design support is broken down into three

categories: moduLarity, modifiability, and reLiability.

Some of the features contributing toward modularity are a

structured control structure, a data abstraction facility

(as in CS-4), and independent compilation of procedures and

functions. A macroprocessor and some form of "include"

feature for copying source files into a program greatly

enhances modifiability. High level data structures and

operators aLso improve modifiability by making programs

shorter and more readable.

Features contributing to reliability are full type

checking, a data abstraction facility, a structured control

structure, a small number of compiler-supplied defaults, and

few or carefully isolated system features;

(8) Use 	 of the language. This section incLudes information

about the use of the language in large programming projectst

what machines have compilers for the Language, and how

easily the compiler could be transported to other machines.

Some of this information kas found in [ERE75], the remainder

was found in the language reference manuals.

The remainder of this chapter is devoted to the evaluations

of the languages (listed in alphabetical order).

POCCNET Language Study PAGE 2-5

2.1. BLISS-11

2.1.1. LANGUAGE FEATURES

BLISS-11 [DEC74) is a systems programming Language for the

PDP-11 series that was developed by a group at Carnegie Mellon

University with some assistance from Digital Equipment

Corporation. Although the language is highly structured, it is

typeless and generally low-level. BLISS-11 differs from

conventional programming Languages in several important ways.

First, BLISS-11 is expression oriented, so that all control

structures return a value. For example, P = (INCR I FROM 1 TO 10

BY 1 DO IF .Al.I] EQL 0 THEN EXITLOOP .1) is a Legal BLISS-11

construction. Secondly, BLISS identifiers evaluate to a pointer

to the named item, and not to the value of the item. A dot

operator is provided for dereferencing these pointers. For

exampte, if A is a BLISS identifier then the expression A

evaluates to the address of item A, *A to the value of item A,

and ..A to the value of the item pointed to by item A.

A. 2alic Da. 2Qpa
firOttors

BLISS-11 is a typeless Language. ALL operators operate on

16-bit words1 and it is the user's responsibility to insure that

the information contained in the operand word(s) is of the

correct type for the operator. BLISS-11 allows five types of

constants to appear in expressions: character strings, integers,

real numbers, octal numbers, and pointers.

The following operators are provided for operating on 16-bit

words:

arithmetic operators

+, -, *, /t unary minus

MOD, MAXt MIN

<expr-l> - <expr-2>

Shift operator yielding value of <expr-l> shifted

left or right by <expr-2> bits. The sign of

<expr-2> determines the direction of the shift.

POCCNET Language Study 	 PAGE 2-6

<expr-1> ROT <expr-2>

Left or right circular shift.

reLational operators

EQL, NEG, LSS, LEG, GTR, GEQ

EQLU, NEQU, LSSU, LEQU, GTRU, GEQU

RelationaL operators for signed and unsigned ("U")

operands. The relational operators return an integer

resuLt (0 for faLse, 1 for true).

LogicaL operators

NOT, AND, ORt XOR, EQV

Bitwise compLementt and, or, exclusive or, and

equivalence.

other

<expr>

Pointer dereferencing operator yielding the object

pointed to by the <expr>.

expr <posLen>

Partword selector for extracting bits from a word.

<var> = <expr>

Assignment operator. The value of the expression is

stored at the Location pointed to by the <var>. Thus

if A were a BLISS-11 identifier, the expression A =

.A+l wouLd increment the value of A. Note that the

pointer dereferencing operator must be used on

right-hand side of the expression, but not on the

left-hand side.

B. Control Structures

- IF <test-expr> THEN <expr> (ELSE <expr> } ;

(Standard conditional.)

-	 BEGIN <expr-1>; ... <expr-k>; <expr-k+l> END ;

(Compound expression.)

- WHILE <test-expr> DO <expr> ;

POCCNET Language Study PAGE 2-7

UNTIL

(White and repeat Loops with test performed before the

body is executed.)

- DO <expr> WHILE <test-expr> ;

UNTIL

(White and repeat Loops with the test performed after

the body is executed. The body wilt therefore be

executed at least once.)

- INCR <var> FROM <e-l> TO <e-2> BY <e-3> DO <expr-body> ;

DECR

(For loops. Programmer must choose a count-up or a

count-down loop when the program is written.)

- CASE <expr-List> OF SET

<expr-l> ;

<expr-k>

TES ;

(Simple case statement. The expressions in the

<expr-List> are evaLuatedv and then each is used to

select some <expr-i> in the body of the CASE

expression for execution.)

- SELECT <expr-list> OF NSET

<select-expr-1> : <expr-l> ;

<select-expr-k> : <expr-k>

TESN ;

(Select statement. The expressions in the <expr-List>

are evaluated1 and each one is then compared

sequentially with the <seLect-expr-i>. If an

expression matches some <seLect-expr-i> then the

corresponding <expr-i> is executed, The keywords

ALWAYS and OTHERWISE may be used in the

<select-expr-i>; ALWAYS forces execution of its

POCCNET Language Study PAGE 2-8

<expr-i>, OTHERWISE specifles that its <expr-i> is to

be executed only if no preceding <expr-i> is

executed.)

- ROUTINE <ident> ({<parameter-tist>}) = <expr-body> ;

(Standard function construct. Since alL BLISS-11

constructs return a value, there is no procedure or

subroutine construct. Functions may be recursive.)

- <ident> ((<arg-List>))

(Call to a routine.)

- LEAVE <Label> WITH <expr> ;

(Exit the labeled construct with the value of the

expression <expr>.)

- LEAVE <Label> ;

(Exit the Labeled construct with a value of 0.)

- EXITLOOP <expr> ;

(Exit the innermost Loop with the value of <expr>.)

- RETURN <expr> ;

(Return from body of a routine with the value of the

<expr>.)

- SIGNAL <signal-expr> ;

(Initiates scan of ENABLE blocks for a "handler" for

condition <signal-expr>. The SIGNAL and ENABLE

constructs provide a feature somewhat similar to user

defined ON-conditions in PL/I. 3

- ENABLE

<expr-l> : <handler-expr-i> ;

<exp-k> :.<handLer-expr-k>

ELBANE ;

(Used in conjunction with the SIGNAL construct. On

execution of a SIGNAL <signal-expr>, control passes to

POCCNET Language Study PAGE 2-9

the most recently executed ENABLE bLock. The

<signaL-expr> is then compared with the <expr-i> in

the ENABLE statement; if some <expr-i> matches the

<signal-expr> then the <handler-expr> is executed, and

control passes out of the block containing the ENABLE

block. If no <expr-i> matches the <signal-expr> then

control will pass to the next most recent ENABLE

block, and the search for a handler continues. SIGNAL

and ENABLE provide a "software interrupt" capability,

although no return from the interrupt is possible.)

C. Data Structures

BLISS-11 has two constructs for creating more complex data

structures. The first (STRUCTURE) defines a data structure and an

access method for the data structuret and the second (MAP) is

used to "map or overlay a structure onto a previously

unstructured block of core. The declaration

- STRUCTURE <ident> [<parameter-List>] =

E<structure-size-expr>2 <access-method-expr>

defines the structure <ident> by specifying the number of

storage Locations required for the structure, and an expression

defining an access method for the structure. The expressions

defining the structure size and access method can use any of the

parameters in the <parameter-list> of the structure. The

structure <ident> can then be used to declare new objects of that

type using the the OWN statement, or it can be mapped over some

other variable. The statement

MAP <structure-ident> <identifier-list> <size> ;

maps the specified structure onto the identifiers in the

identifier List. The identifiers can then be referenced as if

they had been declared to have been structures of type

<structure>. The MAP statement allows the programmer to access a

block of core under a number of different formats.

For example, the following BLISS-11 segment defines a

Lower-triangular byte matrix structure:

BEGIN

POCCNET Language Study PAGE 2-10

STRUCTURE LTRIAGEIJ) =

E1*(I+l)/22 (.LTRIAG + .1 * (.1-1)/2 +J - 1);

OWN LTRIAG M[515;

OWN N[153;

MAP LTRIAG N;

ME1,13 = NEl121 = 16;

BLISS-11 has a predefined structure called VECTOR that can

be used to declare one dimensional arrays, and the user can

define arrays with more dimensions by using the STRUCTURE

statement. Finally, the untyped pointers in BLISS can be used to

create arbitrary Linked data structures.

D. Other Features

BLISS-11 has several features that would make BLISS programs

easy to modify. The BIND statement

BIND <ident> = <expression> ;

equates <ident> with the text of the <expression>. This text is

used to replace any occurences of the <ident> in the rest of the

source program. BLISS-11 also has a powerfuL macroprocessor that

provides simple replacement macros, parameterized replacement

macros, and recursive and iterated macros. Source text from a

program library can be included into a BLISS program using the

REQUIRE statement. BLISS-11 has no I/O facilities.

E. auntime Envyironment

BLISS-il is a tow-Level Language and will probably run on a

bare machine.

F. Sy[t

BLISS-11 has a BNF grammar with approximately 150

productions.

2.1.2. CHARACTERISTICS

POCCNET Language Study PAGE 2-11

A. machine Depnd nce

BLISS-11 is a systems programming Language for the PDP-11

series and is highly machine dependent. The machine dependent

features include inline assembly language instructions, the

partword operator for extracting bits, and the TRAP, EMT, WAIT,

and RESET statements for controlling the PDP-11.

B. Efficiene

BLISS-11 is quite efficient, and will compare favorably with

assembly language programs.

C. Level of the Lanqa!ie

The BLISS-11 Language is typeless and Low-level.

D. Size of the Langua e and the Compiler

The Language is small, and the compiler should be the same.

E. Special Systern Features

BLISS-li provides the following system features:

(a) Assembly language statements can be inserted into a BLISS-11

program using the INLINE statement:

INLINE ("any character string").

The character string is passed unaltered to the assember.

(b) The programmer can request that Local variables be allocated

in machine registers using the REGISTER statement: REGISTER

<ident>; . The variable is allocated in one of the machine

registers, although the programmer has no control over which

register is used.

(c) The LINKAGE statement gives the programmer control over the

type of calling sequence generated for a function call. The

user can specify that function parameters are to be placed

on the runtime stack or in selected registers, and the

language used to write the subroutine. Six calling

sequences are available: BLISS (default), FORTRAN,

POCCNET Language Study 	 PAGE 2-12

INTERRUPT, EMT, TRAP9 and IOT.

(d) BLISS-11 has six functions providing access to the hardware

on 	 PDP-11 machines:

TRAP(<trap-number>) - Generate program interrupts.

EMT(<trap-number>)

IOT((trap-number>)

HALTC) - Halt alL execution.

RESETC) - Reset all devices on the UNIBUS.

WAIT() - Wait for an interrupt.

(e) The ENABLE and SIGNAL constructs provide a type of software

interrupt for handling user-defined exceptional conditions.

(f) BLISS-11 has pointer variables, a partword operator for

extracting bits from a word, character strings, record

structures, and the MAP feature for accessing a block of

core under several different formats.

F. Error Checkina and bebuin

Because of the absence of types, there is little that BLISS

can do in the way of compile or runtime error checking. The

BLISS-11 pointers are completely unrestricted, and it is

therefore possible to create pointers that will generate

addressing exceptions, cause branches into the middle of data,

access data under the wrong format, and so forth.

BLISS-11 has a compiler option that wilL provide an

interface for the SIX12 debugging package.

G-P&ian Lpa

(a) modularity

Modularity in BLISS-11 is good. BLISS-11 supports

independent compilation of routines, and communication via GLOBAL

variables or registers. User control over calling sequences

makes interfacing with assembly language or FORTRAN routines

fairly easy.

POCCNET Language Study PAGE 2-13

(b) modifiability

BLISS-11 has a very powerful macro processor and a Large

number of control structures. The BIND statement makes it easy to

alter the constants used throughout a BLISS program. FinaLly,

the REQUIRE statement allows the programmer to inctude source

files into a program.

(c) reliability

BLISS-11 requires very careful programming because of the

Lack of type checking and the unrestricted pointers. It wilt be

much harder to insure the reliability of a BLISS-11 program than

an equivalent program written in a language like PASCAL or HAL/S.

H. Use

BLISS-11 has been implemented on the PDP-11 series, and the

language could not be implemented on other machines unless the

special system features for the PDP-11 were removed (TRAP, WAIT,

RESET, and so forth).

POCCNET Language Study PAGE 2-14

2.2. C

2.2.1. LANGUAGE FEATURES

The language C [RIT74,KER74] is a systems programming

Language developed at Belt Laboratories by D. M. Ritchie. C is a

structured, medium Level Language with a terse syntax and a

profusion of built-in operators. The Language was originally

designed for the PDP-11 series, although it has since been

implemented on other machines (HIS 6070 and the IBM 360 and 370

series). The UNIX operating system and a substantial portion of

the software in the UNIX timesharing system are written in C.

A. Basic Data Tz2.Q2 an[gLj~

C has four basic data types; INT, CHAR (single character),

FLOAT and DOUBLE (single ano double precision floating point).

The language is fully typed, although automatic conversion

between the four basic types is provided in many instances. In

particular, a CHAR expression can be used anywhere that an INT

expression can be used. Five types of constants are permitted in

expressions: integers, character constants of one or two

characters? strings of characters (treated as character arrays),

and floating point numbers.

C has a Large number of operators for manipulating the basic

data types. The operators and the data types on which they

operate are Listed below:

logical operators (INT and CHAR operands only)

=
 <expr> 1 if <expr> 0, and 0 otherwise.

<expr> Bitwise complement of <expr>.

<el> & <e2> Bitwise AND of <el>, <e2>.

<el> <(e2> Bitwise OR.

<el> a <eZ> Bitwise exclusive OR.

<el> << <e2> Left logical shift of <el> by <e2> bits.

<el> >> <e2> Right arithmetic shift.

++ <variable> Auto-increment and auto-decrement operators

POCCNET Language 	 Study 	 PAGE 2-15

-- <variable> corresponding to the PDP-11 series machine

<variable> -+ instructions. In the prefix form the

<variable> -- variable is incremented or decremented by

1 and the value of the variable becomes the value of the

expression. In the postfix form the value of the variable

becomes the value of the expression, and the variable is

then incremented or decremented by 1.

logical operators (alL basic types)

<el> 2 <e2>:<e3> Selection operator equivalent to

if <el> then <e2> else <e3>.

<el> && <e2> 1 if <el> and <e2> are non-zero1

and 0 otherwise0

<el> !I <e2> 	 I if <el> or <e2> is non-zero, 0 otherwise.

<el> , <e2> 	 The expressions <el> and <e2> are evaluated

from left to right, and <e2> becomes the

value of the entire expression.

SIZEOF <expr> 	 size of the expression in bytes.

arithmetic operators

<el> % <e2> 	 Remainder function (<el> modulo <e2>).

The operands <el> and <e2> must be INT

or CHAR.

+w -j *, I 	 Standard arithmetic operators. The operands

may be INT, CHAR, FLOAT, or DOUBLE.

Automatic conversion is performed between

the types.

relational operators (ALL types)

=, != AlL the relational operators yield an

<, >, <= >= integer result (1 or 0). ALL combinations

of operand types are permitted, and

conversion is performed between unequal

types.

assignment operators

C has a standard assignment operator of the form <variable>

= <expr>. Automatic type conversion is performed if the types do

POCCNET Language Study 	 PAGE 2-16

not match. In addition to this standard operator, C combines the

of the previously discussed
assignment operator with many

operators. For each of the following operators, <variable> =op

<expr> is equivalent to <variable> = <variable> op <expr>:

=+p t , I1

=>>t =<<

=&, =!, =^

B. Control Structures

- -C <stmt-l>; ... <stmt-k>; }

(Compound statement formed by placing statement in

braces. Since C uses the characters (and) as part

we wilt use I and 2 to denote
of the Language syntax,

any optional features in the language.)

- IF (<expr>) <stmt-l>; I ELSE <stmt-2>; 2

(Conditional statement with optional ELSE part.)

- WHILE (<expr>) <stmt>;

DO <stmt> WHILE <expr>;

(Standard while loop with the loop test before and

after the loop body.)

- FOR 	(<expr-l>; <expr-2>; <expr-3>) <stmt>;

(For loop. The expression <expr-l> defines the Loop

variable and the initial
 value, <expr-2> the loop

3 > the increment statement. For
testy and <expr

example:

SUM = 0;

FOR (I=0; I<n; I++) SUM =+ VECTOR[I];

- SWITCH (<case-expr>)

-C CASE <constant-expr-l>: <stmt-list-l>;

CASE <constant-expr-k>: <stmt-list-k>;

POCCNET Language Study PAGE 2-17

E DEFAULT: <stmt-List>; 2

(Case statement with an optional DEFAULT clause. No

two of the constant expressions may have the same

value. The <case-expr> is evaluated, and the value is

compared with the constant expressions in an

unspecified order. If a matching constant expression

is found then the corresponding <stmt-list> is

executed; the DEFAULT <stmt-List> is executed only if

no matching constant expression is found. Note: the

case prefixes do not alter the flow of controL within

the SELECT statement. Thus, if <stmt-list-i> is

selected for execution by the <case-expr>, then

controL will flow through <stmt-List-i> into

<stmt-list-i+l> unless some statement in <stmt-list-i>

causes an exit from the SELECT statement.)

- BREAK;

(Exit the innermost WHILE, DO, FOR, or SWITCH

statement.)

- CONTINUE;

(Continue next iteration of the innermost WHILE,

DO, of FOR statement.)

- GOTO <label-expression>;

(Unconditional branch to a Label within the current

function.)

- RETURN I (<expr>) 2 ;

(Return from current function with an optional

result.)

- <type> <ident> (<parameter-list>) <body>

(Standard function definition. For example:

INT FACTORIAL (N)

INT N;

RETURN (N<2 ? 1 : N*FACTORIAL(N-1));

POCCNET Language Study 	 PAGE 2-18

As the example illustrates, functions can be catled

recursively. ALL parameters are
 passed by value.)

C. Data Structures

C has three features for building
 more complex data

structures from the basic data types:

(1) typed 	 pointer variables

The statement

* <type> <ident>;

declares <ident> to be a
 pointer to
 an object of type

<type>. The foliowing
 operators
 are provided for

manipulating pointers:

* <pointer-expr> - Yields object pointed to

by the pointer expression.

& <variable>
 - Yields address of the variable.

<structure-pointer>
 -> <structure-member>

- Accesses the specified member

of the structure pointed to

by the structure pointer.

<pointer> + <integer-expr>

<pointer> - <integer-expr>

- when an integer is added to or

subtracted from a pointer of

type X, the integer is first

multiplied by the length of an

object of type X. Thus if P

points into an array of record

structures, then P+1 is a

pointer to the next record

structure in the array.

= I <t

- Pointers can be compared with

other pointers or integers

using the relational operators.

Integers are multiplied by the

POCCNET Language Study 	 PAGE 2-19

object Length (as discussed

under the + operator).

(2) 	 arrays

The statement

<type> <ident> [<#-of-elements>] (E<#-of-etements>2) ;

declares <ident> to be an array of <#-of-elements> objects

of type <type>. Arrays can have an arbitrary number of

dimensions. Array indexing begins at 0, and elements of an

array are accessed using standard subscript notation:

<ident> [<subscript>] { [<subscript>] I

Arrays need not be fully dereferenced by the subscript

operator. For example, if X was declared by the statement

INT X[5]E20][8] then X133 yields a ZOx8 integer array.

Note: the assignment operator can not be used to copy an

entire array from one variable to another.

(3) record structures

The statement

STRUCT <ident> { <type-declaration-list> };

declares <ident> to be a record structure composed of the

objects listed in the <type-declaration-list>. The dot

operator "." is used to access a member of a structure:

<structure-name>.<member-name>. Note: The address operator

& is the only other operator that can be applied to an

entire structure. The assignment operator can not be used

to copy an entire record structuref and entire structures

can not be passed into functions as parameters or compared

with other structures. A pointer to a structure can be

passed into a functiont however.

D. Other Features

C has 	 an optional preprocessor pass which allows the user to

include source files into the program text, and to use simple

replacement macros. Files are included into the source program

by the statement #INCLUDE "file-name". The statement

#DEFINE <ident> <character-string> is used to define simple

POCCNET Language Study PAGE 2-20

replacement macros. All occurrences of the identifier in the

source text are reptaced by the character string.

C has no statements for performing 1/0, but the C function

Library contains routines for formatted and unformatted I/O.

E. Runtime Environment

C requires a runtime stack because all functions are

potentially recursive.

F. Syntax

The BNF grammar for C has approximately 120 productions.

2.2.2. CHARACTERISTICS

A. Machine De dtfl

C has no machine dependent features and could be implemented

on almost any machine.

B. Efficienc

C requires a runtime stack. C also converts aLL FLOAT

expressions to DOUBLE expressions during the evaluation of any

expression or function call. Various other automatic conversions

are performed if the programmer mixes types in expressions. In

alL other respects C should compare favorably with assembly

Language programs.

C. Level of the Lanqgge

C is a medium level language. The language has records?

arrays, typed pointers, structured control structures, and many

operators.

D. Size of the Language §flad Cgni Ler

C is a relatively small langua'ge with no complicated control

structures. The compiler should also be fairty small.

POCCNET Language Study PAGE 2-21

E. Snt~jil Lx1ttn EFtlrjes

C has typed pointers, record structures, recursive (and

therefore reentrant) functions. The SIZEOF operator would be

helpful when passing arrays or structures to assembly language

routines. C aLso allows the programmer to request (via the

REGISTER statement) that certain variables be allocated in

machine registers instead of main storage. There is no way to

select specific registers, however.

F. Error Checking an!d Db!uga:i

Although the language is fully typed? C provides automatic

type conversion between most of the data types. This will hide a

number of errors (such as misspelling) unless the compiler prints

warning messages when conversions are performed.

The manual does not indicate that any special debugging

features are available.

G- kesuan aS22QELt

Ca) modularity

C allows independent compilation of programs, and provides

communication through external variables. The language also has a

number of control structures.

(b) modifiability

C has a primitive macro processor, the #INCLUDE statement

for including source files into a program, and the basic

structured programming control structures.

(c) reliability

C programs are very difficult to read because of the terse

syntax. Many operators are used both as binary and unary

operators, with no relation between the operations being

performed (e.go, & is used to take the address of a variable and

as the Logical AND function.) Spaces around operands are critical

in some situations. The statements I=-J and I = -J perform

POCCNET Language Study PAGE 2-22

completely different operations, for example.

The automatic type conversion performed by C can hide a

number of errors caused by improper use of variabLes. Finally,

the pointer variables in C require careful use. It is possible

to generate pointers that wilt cause addressing errors when used,

or to branch into the middle of the programs data area by using

the GOTO statement with a pointer expression.

H. Use

C has been implemented on the PDP-11 series, the HIS 6070,

and the IBM 360 and 370 series. The compiler is written in C

itself, so the language could be implemented on other machines

using standard bootstrapping techniques. C has been used

extensively in the UNIX operating system and the software for the

UNIX timesharing system.

POCCNET Language Study PAGE 2-23

2.3. CONCURRENT PASCAL

2.3.1. LANGUAGE FEATURES

CONCURRENT PASCAL [HAN75a,HAN75bHAN75c] is a high level

Language developed by Per Brinch Hansen at the California

Institute of Technology for use in writing operating systems,

The language extends the PASCAL language with three facilities

for concurrent programming: concurrent processes, monitors for

providing controlled access to data structures shared by a group

of processes, and data abstractions called classes. CONCURRENT

PASCAL has alL the basic data types and control structures of

PASCAL, although some of the data structures have not been

included. In particular, CONCURRENT PASCAL does not have the

pointer or file type of sequential PASCAL.

A. Basic Data TyptE and Ooerators

CONCURRENT PASCAL has four basic data types: INTEGER, REAL,

BOOLEAN, and CHAR (single character). Full type checking is

performed at compile time, and no automatic conversions are

performed between the basic types. The following types of

constants are permitted in expressions: integer, real, boolean,

character, and string (treated as an array of characters).

The operators and the data types on which they operate are

Listed below:

arithmetic operators and functions (INTEGER and REAL operands)

- Standard arithmetic operators for

INTEGER or REAL operands.

- Division operator for REAL operands.

DIV, MOD - Division and modulus operators for

INTEGER operands.

ABS(<expr>) - Absolute value of REAL or INTEGER

expression.

SUCC(<expr>) - Functions yielding successor and

PRED(<expr>) predecessor of the INTEGER expression.

POCCNET Language Study PAGE 2-24

CONV(<expr>) - Converts INTEGER expression to REAL.

TRUNC(<expr>) - Truncates a REAL expression to INTEGER.

Logical operators (BOOLEAN operands)

AND, OR, NOT The BOOLEAN operators yield a BOOLEAN

result.

relational operators (all basic types)

=t <>t <, >T <=, >=

- The two operands must have the same

type. The relational operators yield

a BOOLEAN result.

character operators

SUCC, PRED - Successor and predecessor functions.

CHR(<expr>) - YieLds i-th character in the character

set, there i is the value of <expr>.

ORD(<char>) - Ordinal position of the character in the

character set.

B. CgffjQ:2j atrzuctures

- BEGIN <stmt-List> END

(Compound statement.)

- IF <booLean-expr> THEN <stmt> (ELSE <stmt> }

(Standard conditional with optional ELSE ctause,)

- WHILE <boolean-expr> DO <stmt>

(While Loop.)

- REPEAT <stmt-List> UNTIL <boolean-expr>

(Until Loop. The body of the Loop wilL be executed

at least once.)

- CYCLE <stmt-list> END;

(Unbounded repetition of the <stmt-list>.)

- FOR <var> := <expr-1> TO <expr-2> DO <stmt>

DOWNTO

(For Loops with implied increments of +1 and -1.)

POCCNET Language Study PAGE 2-25

- CASE <scaLar-expr> OF

<constant-List-l> <stmt-1>

* C

<constant-list-k> <stmt-k>

END

(Case statement. The <scaLar-expr> can be INTEGERt

CHAR, BOOLEAN, or any user-defined scalar or subrange

type (scalar and subrange types will be described

Later in Section C). The constant Lists must contain

constants of the same type as the <scaLar-expr>. The

<scalar-expr> is evaluated, and the constant Lists are

scanned to find a constant ecuaL to the expression.

If a match is found then the corresponding statement

is executed; if no match is found then the effect of

the CASE statement is undefined.)

- WITH <variable-List> DO <stmt>

(Executes <stmt> using the record variables in the

<variable-list.> Any expression in (stmt> may refer to

subcomponents of the records without fully qualifying

the subcomponent. For example, if X is a record with

subcomponents A, B, and C. then

WITH X DO BEGIN

A A + 1.0;

B A < 10.0;

C = G'

END

is equivalent to

X.A :=X.A + 1.0;

X.B X.A < 10.0;

X.C = G ;

)

- PROCEDURE (ENTRY) <proc-name>

((<parameter-List>)); <proc-body>

POCCNET Language Study 	 PAGE 2-26

FUNCTION C ENTRY) <func-name>

C (<parameter-List>) I : <type> ; <func-body>

(Procedure and function definitions. Neither may be

recursive. If the ENTRY attribute is specified then

the procedure or function may be called by an externaL

PROCESS, MONITOR, or CLASS (see Section D for a

discussion of these system types). The user can

request that procedure parameters be passed by value

or by referencet but alL function parameters are

passed by value.)

- <func-name> C (<argument-List>) }

<proc-name> C (<argument-list>))

(Invoke a function or procedure.)

C. D. lf Slqgtqg

CONCURRENT PASCAL has seven constructs for creating more

complex data structures from the basic data types:

(i) scalar type

The scalar type statement

TYPE <type-ident> = (<object-1>, ...,t <object-k>) ;

defines an ordered set consisting of <object-i>, ... ,

<object-k>. For example:

TYPE 	 MONTH = (JANtFEBMAR?APRfMAYJUNJULAUG,

SEPOCTNOViDEC) ;

The set is ordered, so the relational operators =r <>I <j

>t <=f >=, 	 the assignment operator :=t and the functions

SUCC, PRED, and ORD can be applied to any scalar type.

Note: the basic types INTEGER, CHAR, and BOOLEAN are

predefined scalar types.

(2) subrange types

Subrange types are subranges of scalar types, and they

also form 	 oraered sets of objects. The statement

TYPE <type-ident> = <object-i> <object-m> ;
*o

defines a subrange type. There must be a scalar type

POCCNET Language Study 	 PAGE 2-27

containing both objectst and the first object must be Less

than the second. For example:

TYPE SPRING MAR .. MAY;

TYPE DIGIT '0' .. 9;

TYPE INDEX = 0 .. 100;

ALL the operators for scatar types can be applied to

subrange types.

(3) 	 arrays

The statement

TYPE <type-id> = ARRAY [<dimension-List>) OF <type> ;

defines an array type. Arrays can have an arbitrary number

of dimensions, and the <type> can be any type except a

system type. The dimensions are specified by subrange

types. For example:

TYPE MATRIX = ARRAYCI..3, l..33 OF REAL;

VAR VECTOR ARRAY1o.10] OF REAL;

VAR JOBSRUN : ARRAY[1968..1973, JAN..DEC) OF INTEGER;

Array elements are referenced by listing the subscripts in

brackets:

<ident> [<subscript-list>)

The relational operators = and <> can be use to compare

two arrays of the same type, and the assignment operator

can be used to copy an entire array.

(4) 	 sets

The statement

TYPE <type-ident> = SET OF <base-type> ;

defines a type consisting of all possible subsets of the

<base-type>, which must be a scalar or subrange type. For

example:

TYPE DAY = (MTWTHFSAS); {Define scalar type)

VAR DAYSOFF : SET OF DAY; -CNow use it for a set)

VAR DIGITS : SET OF 0..9;

The following operators are available for manipulating set

types:

[<element-List> I - Set constructor yielding set.

http:ARRAY1o.10

POCCNET Language Study 	 PAGE 2-28

The list may be empty.

OR, -, AND - Set union, difference, and

intersection.

<=, >= - Tests on set inclusion.

IN - Membership operator yielding

true if element is in set.

(5) record structures

A record type is declared with a statement of the form

TYPE 	 <type-ident> = RECORD

<member-l> : <type-i>

<member-k> z <type-k>

END ;

Records can contain an arbitrary number of members, and

each member can be of any type except a system type. The

following operators are provided for manipulating record

types:

<record-var> . <member-name>

Dot operator for accessing member of a record.

-, <> - Tests for equality (records must have same

type).

-= - Assignment operator for copying an entire
record.

The WITH statement discussed in Section B can be used to

avoid qualifying each member of a record with the record

name.

(6) queues

Queues, which are used within MONITORs to suspend and

resume processes, are declared with a statement of the form

TYPE <type-ident> = QUEUE ;

A queue can only hold a single PROCESS, but arrays of

queues can be defined. The following queue functions are

available:

EMPTY(q) - Returns true if the queue is empty.

POCCNET Language Study 	 PAGE 2-29

DELAY(q) - Delay the currently executing process in

the queue (execution of the process is

suspended and the MONITOR is freed for

use by other processes).

CONTINUE(q) - Reactivate a stalled process. The

currently executing process returns from

the MONITOR. If the queue contains a

process then that process resumes

execution in the MONITOR routine that

DELAYed it.

(7) system types

System 	 types are defined with a statement of the form

PROCESS

TYPE <type-ident> = MONITOR C (<parameter-list>) I

CLASS

<private-sector> <routine-entries> <initial-stmt>

The parameter List of a system type defines the constants

and other system types which the system type can access.

Data declared in the <private-section> is accessible only

within the system type, and the <routine-entries> define a

set of routines that may be called by other system types.

The <initial-stmt> specifies any initialization to be

performed when the system type is first activated.

A program in CONCURRENT PASCAL consists of an

arbitrary number of independent, concurrently executing

PROCESSes. Each PROCESS defines a data structure and a

sequential program for operating on the data structure. A

PROCESS can only communicate with another PROCESS by

calling a MONITOR: MONITORS are used for synchronization

and data sharing. A MONITOR also defines a data structure

and an arbitrary number of operations that can be performed

on the data structure by concurrent PROCESSes. A CLASS is

similar to a MONITOR, except that a CLASS may only be

accessed by a single PROCESS.

System types are initiaLLy activated with the INIT

statement:

POCCNET Language Study PAGE 2-30

INIT <sytem-type> C (<parameter-list>) I ;

The INIT statement defines the access rights (the other

system types which can be accessed) by the system type? and

executes the initial statement of the system type.

D. OthhtE features

CONCURRENT PASCAL requires the declaration of alL variables,

functions, and procedures prior to their use. The language has a

declaration of the form CONST <ident> = <expr>;

for declaring program constants. The identifier can be used in

any expression, but the value of the identifier can not be

altered. CONCURRENT PASCAL does not support the pointer type,

the "variant field" in records, or the dynamic storage allocation

provided by sequential PASCAL. CONCURRENT PASCAL does not

provide dynamic arrays or even array dimensions as parameters, as

in the following FORTRAN segment:

SUBROUTINE XYZ(ARRAY,NM)

INTEGER N,M,ARRAY(NM)

Thus, it is not possible to write a CONCURRENT PASCAL program

that manipulates artays of arbitrary sizes. Finally, the

Language does not permit external functions or procedures: a

CONCURRENT PASCAL program consists of a main program and an

arbitrary number of nested functions and procedures, and the

entire program must be compiled as a unit.

E. Runtime Environment

CONCURRENT PASCAL does not require a runtime stack, since

recursive procedures and functions are not permitted. The

language does not require a dynamic storage allocator either,

since the pointer type and the NEW statement of sequential PASCAL

have been eliminated. However, CONCURRENT PASCAL does needs a

runtime executive for time-slicing concurrent processes.

F. Sg ax

CONCURRENT PASCAL has a BNF grammar with approximately 150

productions.

POCCNET Language Study PAGE 2-31

2.3.2. CHARACTERISTICS

A. Machine fependence

The UNIV attribute on procedure and function parameters can

be used to write machine dependent programs. In all other

respects'CONCURRENT PASCAL is not machine dependent, and could be

implemented on almost any machine.

B. j~fficien LX

CONCURRENT PASCAL is an efficient programming Language. The

language requires no runtime stack or dynamic storage allocation,

and the language features have been carefulLy selected to permit

efficient implementation of the Language. Sets can be represented

by bits strings; the set union, intersection, and difference

operators can then be implemented in just a few instructions.

Scalar and subrange types are equivalently simple. The

structured control structures also permit better code

optinization.

The manual for the PDP-11/45 implementation of CONCURRENT

PASCAL contains tables indicating the execution times for many of

the operators and control structures. These tables can be used by

the programmer to minimize the number of expensive constructs in

a program (for example, the DELAY and CONTINUE statements causing

process switching take approximately 100 times as Long to execute

as an integer assignment operation).

C. Level of the Language

CONCURRENT PASCAL is a high Level Language.

D. SiZf t Zhft LgDaqQE aa Qile

The CONCURRENT PASCAL Language is moderate in size. The

compiler (which is written in sequential PASCAL) is only 8500

statements*

E. aptiL axaurn Features

REPRODUCIBILITY Op THE
ORIGINAL PAGE IS POOR

POCCNET Language Study PAGE 2-32

CONCURRENT PASCAL has record types, the set type (which can

be used as bit strings), and the system types PROCESS, MONITOR,

and CLASS for concurrent programming.

Another useful feature is UNIV parameters in procedures and

functions. Declaring a parameter to be UNIV suspends the normal

type checking that would be performed for the parameter, and thus

allows the programmer to access a block of core under a number of

different formats. For example, an array of characters could be

passed into a procedure in which the corresponding formal

parameter was declared to be an array of integers. Within the

procedure body the formal parameter would be treated as an array

of integers.

F. Error Checking and Debugging

CONCURRENT PASCAL performs full type checking at compile

time for any program not using UNIV parameters. The CONST

feature permits the declaration of "read only" variables.

CONCURRENT PASCAL also has a hierarchical structure that forces

the programmer to specify the access rights of all system types,

and the compiler enforces these access rights. The subrange

types also allow the implementation to perform runtime checks on

variables to insure that the values are within the subrange.

Such a feature would be very helpful in a diagnostic compiler.

The manual for CONCURRENT PASCAL does not indicate that any

special debugging toots are available,

D. .i_21t

(a) modularity

Modularity in CONCURRENT PASCAL is fair. The language has a

full set of structured control structures, and internal

procedures and functions are provided. However, CONCURRENT PASCAL

does not permit external proceoures or functions. This makes it

costly to use existing programs (in a system Library, for

example), since the programs must be recompiled each time they

are used.

POCCNET Language Study PAGE 2-33

(b) modifiability

As discussed previously, CONCURRENT PASCAL has no provisions

for externat procedures or functions. This would be a serious

weakness in large systems (10,000 lines), where the most trivial

modification in one of the programs would require the

recompilation of the entire system. However, CONCURRENT PASCAL

does have the CONST feature for declaring program constants, high

level data structures and operators, the subrange type? and the

control structures for structured programming. The CLASS and

MONITOR types also provide a data abstraction facility. All

these features make programs easier to read and modify.

(c) reliability

CONCURRENT PASCAL performs complete type checking at compile

time (including procedure and function parameters). CONCURRENT

PASCAL is also a high level and well structured Language, so that

programs should be smaller and more self-documenting than

programs written in languages with fewer data or control

structures. It should be considerably easier to write reliable

programs in CONCURRENT PASCAL than -in a Language like FORTRAN.

H-.Upe

CONCURRENT PASCAL has been implemented on the PDP-11/45.

The compiler is written in sequentiaL PASCAL, so the language

could easily be transported to other machines. CONCURRENT PASCAL

has been used to implement part of the SOLO operating system (a

single-user operating system for the PDP-11(45).

POCCNET Language Study PAGE 2-34

2.4. CS-4 Base Language

2.4.1. LANGUAGE FEATURES

CS-4 [INT75a] is a Large, general purpose language currently

being developed by Intermetrics for the Navy. The Language is

fully typed, block structured, and offers many of the features

found in PL/I and HAL/S. CS-4 is an extensible language, and

many of the- high Level features in the language are constructed

from lower level features using the CS-4 data abstraction

facility.

Because CS-4 is currently under development, only the CS-4

base language will be examined in this report (in the remainder

of this section the CS-4 base Language wilL be referred to as

CS-4).

A. Eaaic Data zt a[QpeRators

CS-4 has ten basic data types: INTEGER, REAL1 FRACTION,

COMPLEX, VECTOR (vector of REALS), MATRIX (NxM matrix of REALs),

BOOLEAN, STATUSt SET, and STRING (fixea and varying length ASCII

character strings). The STATUS type is equivalent to the PASCAL

scalar type. Mixed mode arithmetic expressions are permitted,

but in general no automatic type conversions are performed. Five

types of Literals can appear in CS-4 expressions: integer, real,

booLean, status, and string.

The operators for manipulating these data types are Listed

below:

arithmetic operators (INTEGER, REAL, FRACTION, and COMPLEX

operands)

IDIV - integer division for integer operands.

ABS - Absolute value.

SGN - Signum function.

SQRT - Square root function for real and

fraction operands.

POCCNET Language Study PAGE 2-35

FLOOR, CELL - Floor and ceiling functions for real

operands.

REAL-EQ - Variable precision comparison functions

REAL-NE

REAL-LT for real operands. The relational

REAL-GT

REAL-LE operators can be used for fixed

REAL-GE

precision comparisons.

FRACTION-EQ - Similar functions for fractions.

FRACTION-GE

COMPLEX-EQ - Similar functions for complex operands.

COMPLEX-NE

REALPART, ItAGPART

- Real and imaginary part of a complex

operand.

CONJUGATE - Complex conjugate.

ANGLE - Angle in polar coordinates of a complex

operand.

MAG - Magnitude of a complex operand.

Log, exponential, and normal, inverse, hyperbolic, and

inverse hyperbolic trigonometric functions are available for

real operands.

boolean operators

NOT, AND, OR, XOR, NANDt NOR, EQV

- ALl the boolean operators yield a boolean

result.

relational operators

- All the relational operators yield a

booLean result. The operands being

compared must have the same type. The

operators = and -= can be applied to any of

the basic data types, but <, >t <=, >= can

only be used with INTEGER, REAL, FRACTION,

or STATUS operands.

POCCNET Language Study PAGE 2-36

status operators

PREDECESSOR, SUCCESSOR

- Successor and predecessor functions.

string operators

FLAVOR - Determines string type (fixed or varying).

LENGTH - Returns Length of a fixed length string.

CURRENT-LENGTH - Returns Length of a varying string.

MAX-LENGTH - Returns maximum length for a varying

string.

<string-var> (<subscript>)

- Pseudo operator for accessing single

characters in a string.

SUBSTR
 - Pseudo-variable for accessing substrings.

It - Concatenation.

ASCII
 - Converts a string of characters to an array

of integers.

PAD
 - Pads blanks onto the end of a string.

vector operators

<vector-var>
 (<subscript>)

- Accesses element of a vector.

- Element-wise addition and subtraction.

- Vector dot product.

OUTER
 - Vector outer product.

CROSS
 - Vector cross product.

VECTOR-SIZE
 - Returns length of a vector.

MAG
 - Magnitude of a vector.

UNIT
 - Unit vector.

VECTOR-EQ
 - Variable precision comparison functions.

VECTOR-NE

matrix operators

<matrix-var>
 (<subscript>t<subscript>)

- Element-wise addition and subtraction.

- Mattix dor product. The * operator can

also be used to form the dot product of

compatible matrices and vectors.

REPRODUCIBILITY up lil
ORIGNAL PAGE IS POOR

POCCNET Language Study PAGE 2-37

TRACE, TRANSPOSE, DETERMINANT, INVERSE

- Standard matrix operators.

MATRIX-SIZE - Returns Length of first or second

dimension.

MATRIX-EQ, MATRIX-NE

- Variable precision comparison functions.

set operators

NOT, AND, OR, NAND, NOR, XOR

- Set complement, intersection, union,

complemented intersection and union, and

exclusive union.

SUBSET - Determines if a set is a subset of another.

EMPTY - Determines if a set is empty.

<set-var> (<set-member>)

- Returns TRUE if the member is contained

in the set.

B. Control truc:tures

- BEGIN <stmt-List> END

(Compound statement. Any data declared within the

BEGIN statement is LocaL to the BEGIN statement.)

- IF <booLean-expr> THEN <stmt-List> (ELSE <stmt-list>) Fl

(Conditional statement with optional ELSE part.)

- CASE <case-expr>

OF <constant-list> <stmt-List>

OF <constant-list> <stmt-List>

f OTHERWISE <stmt-list> }

END

(Case statement. The <case-expr> can be an INTEGER,

STRING, or STATUS expression, and the constant Lists

must contain constants of the same type as the

<case-expr>. The <case-expr> is evaluated, and the

POCCNET Language Study PAGE 2-38

constant Lists are scanned to find a constant equal to

the expression. If a match is found then the

corresponding statement list is executed; if no match

is found then the OTHERWISE clause is executed.)

- WHILE <bootean-expr> REPEAT <stmt-List> END

(Standard while Loop.)

- FOR C <var> IS } INTEGER (RANGE: <expr> THRU <expr>)

STATUS (<status-literal-List>)

(WHILE <booLean-expr>) REPEAT <stmt-list> END

(For Loop specifying a number of iterations of a

statement list. No loop variable is required if the

loop body does not need one. If a Loop variable is

specified then its value may not be altered by the

Loop body.)

- UPDATE (<shared-variable-list>) <stmt-List> END

(Update block for controlling access to shared

variables by concurrent tasks. A variable declared

with the SHARED(PROTECTED) attribute may only be

referenced in an update block, and a task executing an

update block will be stalled until the Locked

variables in the update block are no Longer being

accessed in an UPDATE block of any other task.)

- GOTO <label>

(Unconditional transfer. The <label> can not be the

label of a statement Located outside of the procedure

that contains the GOTO statement.)

- EXIT <Label>

(Exits the BEGIN block, UPDATE block, WHILE or FOR

Loop having the specified label.)

- RETURN C <result-expr>)

(Return from a procedure or function.)

- chandLer-name> : PROCEDURE ({ <parameter-list>)

ATTR (HANDLES (<signal-name-list>)):

POCCNET Language Study PAGE 2-39

<stmt-tist>

END <handler-name>

(Declaration of a signaL handLer. Signals and signal

handlers are similar to PL/I ON-conditions and

ON-units, respectively. A signal can be generated by

a hardware interrupt, runtime error-checking code, or

a SIGNAL statement. Signals generated with the SIGNAL

statement can pass parameters to a signal handler.

Signal handlers can handle an arbitrary number of

signals.)

- SIGNAL <signal-name> { (<parameter-list>) }

(Raises the specified signal. If there is an active

signal handler for the signat then it will be invoked.

The parameter list can be used to pass additional

information to the handler.)

- RESIGNAL

(Can only appear in a signal handler. The RESIGNAL

statement raises the signal that caused the signal

handler to be invoked.)

- ABORT to <label>

(Can only appear in a signal handler. The <label> must

be the label of a statement in the block containing

the signal handler. The ABORT statement transfers

control to the labeled statement, thereby terminating

execution of the handler and alL dynamically

intervening procedures between the handler and the

origin of the signal.)

- <proc-name> * PROCEDURE (<parameter-list> 3)

OPEN

{ <type> } ATTR (CLOSED)

MOPEN

<stmt-list>

END <proc-name>

(Definition of a procedure or a function. The

<parameter-list> defines the procedure parameters and

POCCNET Language Study PAGE 2-40

indicates for each parameter the method used to pass

the parameter (call by value, reference, or name) and

whether the parameter is to be used as an input,

output, or input/output parameter. Parameters can be

declared to be optional by specifying a keyword to

identify the optional parameter and a default value to

be used when the parameter is not supplied.

If the proceoure is declared with the OPEN

attribute then the procedure body will be substituted

inline whenever it is invoked: no calling sequence

will be generated. A normal procedure call is

generated whenever a CLOSEd procedure is invoked.

Finally, procedures declarea as MOPEN are both OPEN

and "mode-unresolved", that is, the type information

used in the declaration of procedure parameters and in

the body of the procedure need not be complete. When

the procedure is substituted inline at the point of

invocation, the type of the actual arguments is used

to specify the type information for the procedure

body. The MOPEN attribute provides a macro-like

capability.

Procedures and functions can not be recursive.)

C. Data Structures

CS-4 has four constructs for creating more complex data

structures from the basic data types:

(a) data abstractions

The MODE statement for defining CS-4 data abstractions

requires the user to specify the data representation for the

new mode and a set of procedures (operators) for

manipulating the data representation.

<mode-name>: MODE ((<parameter-list> }

ATTR(CAPABILITY(<proc-name-list>));

<data-representation>

POCCNET Language Study PAGE 2-41

(proc-definition>

<proc-definition>

END <mode-name>

The <mode-name> can then be used in type declarations to

define objects with the new type. The <parameter-List> is

used to "tailor" the new type to the needs of the program

referencing the type. The parameters can be constants to be

used in array decLarations or eLsewhere, or types to be used

in type declarations. For example, we could define a new

mode called STACK with two parameters -- one indicating the

size of the stack, and one indicating the type of objects to

be stored in the stack. The mode STACK could then be

invoked to define a stack of integers, or reals, or boolean

data.

The data represention section defines the actual

representation used for the objectt and the CAPABILITY

section lists all of the procedures (operators) that can be

used to manipulate the object. The data defined in the

representation section can only be accessed by these

procedures.

The assignment operator := and the relationaL operators

=t = can be used to copy or
 compare entire data

abstractions, as Long as the two operands are compatibLe.

(b) arrays

Arrays are declared with a statement of the form

VARIABLE <ident> IS ARRAY(<dimension-list>, <type>)

Arrays can have an arbitrary number of dimensions, and each

dimension is specified by a subrange of the integers or a

STATUS set. For example;

VARIABLE XYZ IS ARRAYC [0 TO 7, STATUSC"A","B'","C")],

BOOLEAN)

Array elements are referenced using the subscript operator

POCCNET Language Study PAGE 2-42

<ident> (<subscript-List>). The type of the subscripts must

match the type of the corresponding dimension. For example,

XYZ(3v"B") is a legal array reference for the array in the

previous example. As in PL/I and HAL/S, a * can be used as

a subscript to reference all of the corresponding dimension.

The assignment operator and the relational operators ,

= can be used to copy or compare compatible arrays.

(c) structures

CS-4 structures are delared with the statement

VARIABLE <ident> IS STRUCTURE (<member-List>)

The identifiers used to define the members need not be

distinct from identifiers used elsewhere in the program.

The dot operator is used to access members in a structure:

<structure-var> . <member> The assignment operator and

the relational operators = = can be used to copy or

compare compatible structures.

(d) unions

The declaration of union variables is similar to the

declaration of structured variables:

VARIABLE <ident> IS UNION(<member-list>)

The <member-List> defines the set of possible types that the

union variable can represent. A union variable has a "field

tag" indicating which member of the <member-list> is

currently being storedt and the value for that member. The

field tag of a union variable can be read using the built-in

function TAG, which returns a STATUS literal indicating the

name of the member. The value of a union variable can be

accessed using the $ operator and the current field tag:

<union-var> $ <field-tag> . For example;

(Define U as a union of integer, string, and boolean.)

VARIABLE U IS UNION (I IS INTEGER(RANGE: 1 THRU 10),

STR IS STRING(20,"VARYING"),

B IS ARRAY(O THRU 3, BOOLEAN))

POCCNET Language Study PAGE 2-43

[STR: 'A B C'] (Initial value for U.)

{At this point we have TAG(U) = "STR I

(and U$STR = 'A B C" - }

CASE TAG(U)

OF "I" :: U$1 := U$I+1

OF "STR" :: U$STR := rZ

OF "B" :: U$B(3) : FALSE

END

The relational operators = -= can be used to compare two

union variables, and the assignment operator can be used to

change the value of a union variable. However, the only way

to change the field tag of a union variable is to assign it

another union variable that already has desired field tag.

This seriously restricts the usefulness of the UNION type.

D. Other Features

CS-4 is a block structured and fully typed Language.

Complete type checking (including procedure parameters) is

performed at compile time. The language also has a CONSTANT

attribute for declaring program constants.

CS-4 has an operating system interface that provides I/O and

process management capabilities. The I/O system includes a

hierarchical file system, file protection, and sequential, direct

access, and indexed sequential files. The process management

system provides features for scheduling processes, terminating

processes, and communicating between processes. No additional

Language statements are required to support the operating system

interface: the CS-4 MODE declaration is used to define data

abstractions for files and processes.

E. Runtime Environment

CS-4 needs routines for process managementt interprocess

communication, I/O, and interrupt handling. A runtime stack or

POCCNET Language Study PAGE 2-44

dynamic storage area will also be required to support the string

concatenation operator !!.

r. auatta

The BNF grammar for the CS-4 base Language has approximately

500 productions.

2.4.2. CHARACTERISTICS

A. Machine Degendence

The language has several machine dependent features,

including user specified allocation of data items, inline

assembly language code, and user control over calLing sequences.

However, alL of the machine dependent features have been

carefully isolated. Inline assembly language, for example, is

restricted to a special class of procedures called MPROCEDUREso

B. Efficiency

CS-4 should be moderately efficient. It has many high-level

operators and a structured control structure, so a great deal of

optimization can be performed. The user can also reouest that

procedures be expanded inline, so that there wiLL be very little

overhead in the use of data abstractions.

C. Level of the Lannuaae

CS-4 is a high level language.

D. Size of the aua and Compitler

The CS-4 base language is Large and wilL require a large

compiler. The full CS-4 language will require a very Large

compiler.

E. Speciat S z t Features

The language has a large number of special system features.

The MPROCEDURE statement permits the user to declare structures

POCCNET Language Study PAGE 2-45

that include information about the allocation of the structure

members (bit or byte position within a word, and storage

alignment). The MSTRUCTURE can also specify the absolute storage

Location at which the structure is to be allocated.

The MPROCEDURE statement provides the capability of writing

procedures which contain assembly language code. User control

over calling sequences is provided by the EPROCEDURE (externaL

procedure) declaration, which permits the user to specify which

registers will be modified by the called procedure and how

parameters should be passed.

CS-4 also has the data abstraction facility. When combined

with the MSTRUCTURE statement, data abstractions can be created

for bit strings and pointers. The language also has records,

arrayst character strings, signal handlers for processing

exceptional conditions, the UPDATE block for controlLing access

to shared data, and the operating system interface (which

includes I/0 facilities and real-time process scheduling).

F. Error Checking and Debuqing

CS-4 performs complete type checking at compile time

(including procedure parameters), and provides no default

declarations or automatic type conversion. This will allow many

program errors to be detected during compilation.

Runtime checks are performed for many conditions (such as

array subscript errors, CASE statements, and division by zero)

unless the programmer uses compiler directives to disable the

checking. The signal handlers also provide the user a means of

intercepting runtime errors.

The language manual does not indicate that any special

debugging toots are available.

G. QspD t

(a) modularity

CS-4 is a modular, block structured language. The language

has a structured control structure, the MODE declaration for

POCCNET Language Study PAGE 2-46

defining abstract data types, procedures can be separately

compiled, and BEGIN blocks can be used to declare local data.

(b) modifiability

CS-4 programs should be easy to modify. The Language is

well structured, with a Large number of data types, and a data

abstraction facility. Status variables can be used to improve

the readability of programs.

(c) reliability

The Language has a number of features that would aid in the

writing of reliable programs. It is well structured, many data

types are provided, full type checking is performed, declaration

of variables is mandatory, no automatic type conversion is

performed (other than mixed-mode arithmetic), and there are only

five compiler-supplied defaults for the entire base Language.

H. Use

CS-4 is currently under development and has not been used

for any major programming projects.

POCCNET Language Study PAGE 2-47

2.5. FLECS

2.5.1. LANGUAGE FEATURES

FLECS [BEY75aBEY75b] is a preprocessor for Fortran

developed by T. Beyer at the University of Oregon. FLECS supports

all features of ANSI standard Fortran IV, and provides a large

number of structured programming constructs. No special

characters (e.g. $, %) are used to delimit the structured

programming constructs. In the remainder of this section, the

FLECS language is considered to be Fortran IV augmented by the

FLECS preprocessor.

a~jmt
A. Ba~i 2
 [q Opndgr

FLECS supports the five basic data types of Fortran IV:

INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL. The

Language permits mixed-mode expressions and will automatically

convert between integer, reat, and double precision numbers.

Constants used in expressions can have the following types:

integer, real, double precision, complex, logical, and character

strings.

The operators and the data types on which they operate
 are

Listed below:

arithmetic operators CINTEGER, REAL, and DOUBLE

PRECISION operands)

4-, -f *, I, **

Logical operators (LOGICAL operands)

.NOT., -AND., =OR.

relational operators

*EQ., oNE. ALL types.

.LT., .LE., .GT., oGE. INTEGER, REAL, or DOUBLE

PRECISION operands only.

B. Control Structures

POCCNET Language Study PAGE 2-48

Note: In alt the following control structures the symbol

<body> may be replaced by <stmt> or <stmt-l> ... <stmt-k>

FIN. For example:

WHEN (I .LT. MAXVAL) CALL PROCESSi(IJ)

ELSE CALL BADVAL(I)

I = MAXVAL

RETURN

FIN

- IF (<logical-expr>) <body>

(SimpLe if statement.)

- WHEN (<Logical-expr>)

<body>

ELSE

<body>

(Compound if statement.)

- UNLESS (<logicaL-expr>) <body>

(Equivalent to IF (.NOT. <LogicaL-expr>) <body>; the

<body> is executed if the <logicaL-expr> is false.

- IWHILE (<logicaL-expr>) <body>

UNTIL

(White and until loops with test performed before

execution of the <body>.)

- REPEAT WHILE (<logicaL-expr>) <body>

UNTIL

(White and until loops with tests performed after

execution of the <body>. The <body> will therefore be

executed at Least once.)

- CONDITIONAL

(<togical-expr>) <body>

0

(<LogicaL-expr>) <body>

{ (OTHERWISE) <body> } RE oDUCBLITY OF THE

FIN ORIGINAL PAGE IS POOR

POCCNET Language Study PAGE 2-50

the simple, ASSIGNed, and computed GOTO, and FUNCTIONS and

SUBROUTINES. The section in this chapter concerning

Interdata Fortran V gives a detailed description of these

constructs.

C. Data Structures

FLECS has only one feature for building more complex data

types: arrays of up to 7 dimensions. The declaration

DIMENSION <ident> (<dimension-List>)

declares <ident> to be an array. Elements of an array are

accessed using standard subscript notation <ident>

(<subscript-list>).

D. QthkE ettLes

FLECS is essentially a Fortran language with some additional

constructs for structured programming. The language has no block

structure or recursion0 FLECS provides statement functions?

EQUIVALENCE, COMMONt and DATA statements, and the Fortran ItO

statements. Comments are denoted by a "C" in the first column

of the input card. FLECS also Produces a "prettyprinted" output

listing - statements are automatically indented to show program

structure.

E. Runtime Environment

FLECS has no dynamic storage allocation or recursion, so no

stack or heap is needed. Except for I/O and type conversion

routines, FLECS should run on a bare machine.

F. Sy~llaK

Fortran IV (and therefore FLECS) has a BNF grammar, but a

compiler would probably not use it. Fortran compilers tend to use

ad hoc compiling techniques.

2.5.2. CHARACTERISTICS

POCCNET Language Study PAGE 2-49

(LISP-like conditional statement. The

<LogicaL-expr>'s are evaluated sequentially until some

expression evaluates to *TRUE., and the corresponding

<body> is then executed. The <body> of the optional

OTHERWISE clause is executed only if all preceding

<togicaL-expr> evaluated to .FALSE.

- SELECT (<seLect-expr>)

(<expr>) <body>

(<expr>) <body>

{ (OTHERWISE) <body> I

FIN

(Case statement. The <select-expr> is compared

sequentially with the <expr>-s in the body of the

SELECT statement. The first <body> whose <expr>

matches the <select-expr> is executed, and all

remaining bodies are skipped over. The <body> of the

OTHERWISE clause is executed only if no preceding

<expr> matched the <seLect-expr>.)

- DO (<variable> = <expr-1>, <expr-2> -C, <expr-3>}) <body>

(For loop with optional increment.)

- TO <internal-subroutine-name> <body>

(A parametertess, internal subroutine. The subroutine

name can contain any number of letters, digits, or

hyphens, as Long as it begins with a LetterT and

contain's at least one hyphen. For example:

INITIATE-VEHICLE-TRACKING.)

<internal-subroutine-name> (call of an internal

subroutine. Note that no parameters can be passed to

the subroutine.)

FLECS also supports the control structures of standard

Fortran: the Logical and arithmetic IF, the DO statement,

POCCNET Language Study 	 PAGE 2-51

A. Machine Daptngnce

ANSI standard Fortran IV (and therefore FLECS) is fairly

machine independent. Fortran programs can usually be transported

to different machines with only minor modifications (e.g.

different I/O unit numbers).

Fortran IV formatted I/O must be performed interpretively

and is therefore quite slow. In alL other respects Fortran IV

and FLECS are efficent programming languages. We note, however,

that the additional structuring of FLECS programs that would be

very helpful to a code optimizer is not available to the Fortran

compiler; all the structured statements are converted to IF and

GOTO statements before reaching the compiler.

C. Level

FLECS 	 is a-medium level language.

D. Size of Lanaua oad Compiler

Because of the EQUIVALENCE statement, the unstructured

nature of Fortran programs (optimization is difficult), and the

preprocessor pass, FLECS will require a fairly Large compiler.

E. 	 Spt£iaL System Features

FLECS has no special systems features.

F. Error Checking ad U

Fortran compilers have traditionally had very poor compile

and runtime diagnostics, so FLECS diagnostics will probably be

poor. The preprocessor phase of FLECS does print error messages

when illegal FLEES statements are detected.

G. Design §A2QCZr

(a) 	 modularity

FLECS supports independent compilation of subroutines and

POCCNET Language Study PAGE 2-52

functions, and communication through COMMON blocks.

(b) modifiability

FLECS has a Large number of structured programming

constructs. However, the language has no macroprocessor, no

feature Like the PASCAL constant statement for declaring program

constants, no significant features for constructing complex data

structures, and no "include" statement for copying source files.

(c) reliability

The structured programming constructs make FLECS a great

improvement over Fortran IV. However, FLECS has no character or

string operators and data types, and does not have sufficient

data structuring capabilities. The Lack of these features

requires FLECS programs to simulate any character processing,

list processing, or record processing with Fortran code. FLECS

programs will therefore tend to be longer than necessary and more

difficult to understand.

H. Use

The FLECS preprocessor is written in Fortran and could be

implemented on almost any machine. FLECS is available on the CDC

6000, 7000, and Cyber series, the IBM 360 and 370 series, the PDP

8, 10, and 11t and the UNIVAC 1100 series. The source code for

FLECS is available from its author CT. Beyer) at a nominal cost.

POCCNET Language Study PAGE 2-53

2.6. HAL/S

2.6.1. LANGUAGE FEATURES

HAL/S [INT75bMAR74J is a high-level aerospace Language

developed by Intermetrics for the Space Shuttle program.

Although the language is a dialect of PL/I, several of the more

serious weaknesses in the PL/I language have been eliminated (for

example, HAL/S pointers are fully typed, procedure parameters are

checked for valid type, and the programmer must specify which

parameters will be assigned values by the procedure body).

Extensive subscripting capabilities, matrix and vector operators,

and control structures for real-time control and concurrent

processes are also provided.

A. Basic Data Txpesa and Operators

HAL/S has eight basic data types:

INTEGER

SCALAR - floating point numbers

VECTOR - lxN vector of SCALAR objects

MATRIX - NxN matrix of SCALAR objects

BIT - bit string

CHARACTER - variable length character string

BOOLEAN

EVENT - binary semaphores for process control. An

event may be latched or unlatched; a Latched

event holds its value of TRUE of FALSE until

set or reset, an unlatched event remains FALSE

until signaled, whereupon it momentarily

toggles to true, and then reverts back to

FALSE. Process scheduling is invoked any time

that an event is set, reset, or signaled.

Some implicit conversion is performed between these basic

data types, and a set of conversion functions is provided:

the functions INTEGER, SCALAR, VECTOR, MATRIX, BIT,

POCCNET Language Study 	 PAGE 2-54

CHARACTER, SINGLE, and DOUBLE provide conversion between the

data types and possible precisions.

The operators and the data types on which they operate

are listed below:

arithmetic operators (INTEGER, SCALAR,

and MATRIX operands)

+1 -t I

blank - multiplication

*- cross product

* 	 - dot product

Note: some combinations of the operand types

are not permitted.

bit operators (BIT and EVENT operands)

AND, OR, NOT

CAT - concatenation

SUBBIT (bit-expr) - pseudo-variable for insertingi TO 	 I
or extracting bits.

character operators (CHARACTER operands)

CAT - concatenation

char-expr - substring insertion or extraction
i TO 	 I

bootean operators (BOOLEAN operands)

AND, OR, NOT

relational operators (all types)

- I -=

<'>j<=j>= - only for INTEGER, SCALAR, or CHARACTER

operands

B. Control Structures

- IF 	 <expr> THEN <basic-stmt> ELSE <stmt>;

(Standard conditional, but basic-stmt may not be an

IF statement.)

- DO; <Stmt-list> END ;

POCCNET Language Study 	 PAGE 2-55

(Compound statement.)

- DO 	 WHILE <expr>; <stmt-List> END ;

UNTIL

(Standard whiLe and repeat Loops.)

- DO CASE <arith-expr>; t ELSE <stmt>; }

<stmt-l>; ... <stmt-k>; END ;

(Simple case statement.)

- DO FOR <var> = <expr-List> { WHILE <expr> Y;

UNTIL

<stmt-List> END ;

(For-loop with List of values to be assigned to

<var>.)

- DO FOR <var> = <expr> TO <expr>

{ BY <expr> -C WHILE <expr> } ;

UNTIL

<stmt-list> END ;

(Standard for-Loop with optional WHILE or UNTIL

clauses.)

- EXIT <Label>;

(Exit the DO group specified by the Label.)

- REPEAT <label>;

(Continues next iteration of the specified DO group.)

- GOTO <label>;

(Branch to Label in current namescope - can not

be used to branch out of a procedure body.)

- RETURN { <expr>);

(Return from a procedure or function.)

- CALL <identifier> ((<expr-List>))

(ASSIGN (<variable-List>));

(Call statement for a procedure - only those variables

in the ASSIGN list may be altered by the procedure.)

- <proc-name>: PROCEDURE ((<ident-List>) I

OF THEREPRODUCIBILITY
ORIGINAL PAGE IS POOR

POCCNET Language Study 	 PAGE 2-56

k ASSIGN (<ident-list>) I

-CEXCLUSIVE } ;

REENTRANT

<procedure-body> CLOSE <proc-name> ;

(Procedure definition specifying input argumentst

output arguments (the ASSIGN List). If the EXCLUSIVE

attribute 	 is specified then any concurrent task

attempting 	 to execute the procedure will be blocked as

Long as any other task is executing it.)

- <function-name>: FUNCTION -C (<ident-list>) }

<type> (EXCLUSIVE }
REENTRANT

<function body> CLOSE <function name> ;

(Standard function definition, but function body may

not cause side effects by altering the input

parameters (there is no ASSIGN list). 3

AT <expr>

- SCHEDULE <ident> -C 	 IN <expr> I

ON <event expr>

PRIORITY (<expr>) { 	 DEPENDENT I

{ , REPEAT 	 AFTER <expr> I
EVERY

WHILE <event expr>

C UNTIL <event expr> 	 }

UNTIL <expr>

(Scheduling statement for concurrent tasks. A task

may be scheduled immediately, AT a specific time, IN a

certain number of cLock ticks, or ON the value of an

event. The PRIORITY is used in scheduling ready tasks0

If the DEPENDENT attribute is used then the scheduled

task will be terminated if the scheduling task does.

The scheduling task can be REPEATed AFTER a specified

time, or EVERY <expr> clock ticks. Finally, a WHILE

or UNTIL clause may be attached to control this

rescheduling.)

- CANCEL <ident-list> ;

(Stop rescheduLing of all the tasks in the list,

but allow any currently executing tasks to finish.)

POCCNET Language Study PAGE 2-57

- TERMINATE <ident-List> ;

(Stop rescheduling of all tasks in the list, and

terminate any tasks that are currently executing.)

<arith expr> ;

- WAIT UNTIL <arith-expr> ,

FOR DEPENDENT
<event-expr>

(Stalls the current process for a certain number of

clock ticks, UNTIL a specific time, until alL

DEPENDENTs have terminated, or until some event

occurs.)

- UPDATE PRIORITY <ident> TO <arith expr> ;

(Changes priority of a previously scheduled task.)

- SIGNAL <event var> ;

RESET <event var> ;

SET <event var> ;

(Used to alter event variables and thereby schedule or

control tasks. SIGNAL is used for unlatched events;

when an event is SIGNALed all tasks WAITing on that

event are placed in the ready state. SET and RESET

are used for latched events. SET forces an event to

the TRUE state and frees any tasks waiting for the

TRUE value of the eventT RESET forces the value back

to FALSE and frees any tasks waiting for the FALSE

value.)

- UPDATE; <stmt-list> CLOSE;

(Update block for controlling access to shared

variables by concurrent tasks. A variable declared

with the LOCK attribute (LOCK (<lock number>)) may

only be referenced in an update block, and a task

executing an update block will be stalled until the

locked variables in the update block are no longer

being accessed in an UPDATE block of any other task.)

- ON ERROR k <error group> : <error number> I
<error group>

POCCNET Language Study PAGE 2-58

SIGNAL

{ SYSTEM) (AND SET <event var> }

IGNORE RESET

ON ERROR (<error group> : <error number> } <stmt> ;

<error group>

OFF ERROR (<error group> : <error number> I

<error group>

(SimiLar to PL/I on-conditions. Each implementation

will assign error groups and error numbers to the

standard system errors (such as division by zero,

iLlegal instruction); the user may use unassigned

error groups and numbers for user defined conditions.

The ON and OFF statements obey the HAL/S namescoping

rules, so any modifications to the condition handling

environment by an ON or OFF statement is removed on

exit from the enclosing block.

- SEND ERROR <error group> : <error number> ;

(Simulates an occurrence of the specified error

number.)

C. Data Structures

HAL/S has three constructs for creating more complex data

structures from the basic data types:

(1) structures

The statement

STRUCTURE <template-name> -CDENSE C
{ RIGID }

ALIGNED

<level number> <ident> <attribute>t

<Level number> <ident> <attribute> ;

declares <template-name> to be a structure template

This template can be used in declaring a structured

variable: DECLARE <ident> <template name>

((<arith expr>) }.

A structured variable can be dimensionedt and the

POCCNET Language Study 	 PAGE 2-59

components of a structure are referenced by the dot

operator: <ident> . <component>

The assignment operator and the relational operators

=f -= can be used to copy or compare compatible

structures.

(2) 	 arrays

A declaration of the form

DECLARE <ident> ARRAY (<dimension List>)

<type 	 specification> ;

declares <ident> to be an array of the specified type.

Array elements, rows, or subarrays are accessed using

the subscript operator <ident>

(subscript tist>,

where a single subscript can be any of the following:

<#-of-elements> AT <start-pos>

(Selects a range of elements starting

at the specified position.)

<arith-expr> TO <arith-expr>

(Selects a range of elements.)

<arith-expr>

(Selects a single element.)

(Selects alL elements in the

corresponding dimension.)

The assignment operator and the relational operators

=t -= can be used to copy or compare compatible

arrays.

(3) pointer variabLes

HAL/S has fully typed pointer variables declared by

statements of the form:

DECLARE <ident> NAME <type specification> ;

When a pointer of type X is used in an expression or

on the left hand side of an assignment statement an

automatic dereferencing takes place. For examplet if P

points to a variable of type INTEGER then the

POCCNET Language Study PAGE 2-60

statement P = P+1; wilL increment the integer variable

(the value of the pointer P is not altered).

A pseudo variable NAME is used to take the

address of an object or to assign a value to a pointer

variable:

NAME(<pointer var>) = NAME(<non-pointer var>);

NAME(<pointer var>) = NAME(<pointer var>)

In the first case the pointer variable is assigned the

address of the non-pointer variable, in the second

case the pointer variable is simply assigned the value

of the pointer variable on the right hand side. Note

that this implies that a pointer may not point to

another pointer.

Pointer variables may be compared with the

relational operators = and - Finally, if a pointer

points to a structure then the dot operator may be

used to access the components of the structure, and if

a pointer points to a dimensioned object (ARRAY,

MATRIX, or VECTOR) then subscripting may be applied.

D O!her Features

HAL/S is block structured language with reserved words, and

comments in /* */ pairs. A simple replacement and a parameterized

macro facility is provided by the REPLACE statement. The Language

also provides "inline functions"; function bodies as part of

expressions. For example,

STRUCTURE X: / Define a record */

1 A SCALAR, - /* structure X. */

1 B INTEGER,

1 C NAME X-STRUCTURE; 1* Now use it to

DECLARE XSTRUC X-STRUCTURE; /* declare XSTRUC. */

XSTRUC = FUNCTION X-STRUCTURE; /* Initialize XSTRUC */

DECLARE Y X-STRUCTURE; /* using an inline */

Y.A = 0; /* function that */

Y.B = 0.0; 1* returns an object */

NAME(Y.C) = NULL; 1* of type */

POCCNET Language Study PAGE 2-61

RETURN Y; I* X-STRUCTURE- *

CLOSE;

The inline function is most powerful when combined with the macro

facility (for example, the inline function in the previous

example could be declared to be a macro calLed INIT. A statement

of the form XSTRUC = INIT; would then initialize the variable

XSTRUC.)

The language has a data declaration facility called COMPOOL

that is somewhat similar to the Fortran COMMON statement:

<Label>: COMPOOL { RIGID);

<data declarations>

CLOSE <Label>;

COMPOOL blocks can be compiled independently from other programs,

and the declarations in the COMPOOL block can then be included

into a program by invoking the name of the COMPOOL olock. The

RIGID attribute forces allocation of the data in the order

specified within the COMPOOL block.

HAL/S also provides for initialization of variables in

DECLARE statements, and a CONSTANT attribute for declaring

program constants. The language does not allow dynamic arrays,

matrices, or vectorsl but '*' bounds (as in PL/I) are allowed for

formal parameters. Finally, HAL/S produces a standard output

Listing for all programs (programs are "prettyprinted" to show

statement nesting, and subscripts or superscripts are printed on

separate lines).

E. Runtime Environment

HAL/S requires a run-time stack, I/O routines, and

scheduling routines for activating, suspending, and synchronizing

tasks.

F. .yatax

The BNF grammar for HAL/S has approximately 450

productions.

2.6.2. CHARACTERISTICS

POCCNET Language Study PAGE 2-62

A. Mach aie Qkfpt2dSe

Except for the SUBBIT operator for extracting bits from an

object, HAL/S is not machine dependent.

B. EfficiencX

HAL/S is an efficient language. The Language does not

provide dynamic allocation of structures (as the PL/I ALLOCATE

statement) or dynamic arrays, forbids branching out of procedure

bodies, and has no BEGIN blocks. The high Level operators and

statements (matrix multiply, the UPDATE block, the SCHEDULE

statement) should provide room for a great deal of optimization.

In a test performed by Intermetrics as part of the HAL/S

acceptance tests [MAR75), the HAL/S compiler for the IBM 360

series generated code that was faster and required Less core than

IBM Fortran H (OPT=2). The benchmark included numerical analysis

programs and bit and character processing programs.

c. Level of the Lanou!age

HAL/S is a high level language.

D. Size of Langage and glie

HAL/S is a large Language (comparable in size to PL/I), and

the compiler is written in XPL. The compiler is probably large.

E. S~ecJai SXattaE Features

HAL/S has many features that would be useful in systems

programming. The Language allows DO-Loop variabtes to be

declared as TEMPORARY variables within the loop body. Variables

declared to be TEMPORARY wilt be allocated in the fastest storage

Locations available.

example. DO FOR TEMPORARY INTEGER I = 1,100;

S

END;

A variable declared to be a TEMPORARY Loop variable can not be

POCCNET Language Study PAGE 2-63

accessed outside the loop body.

To allow for special extensions (possibly machine dependent)

to HAL/S, a type of procedure or function called the %-macro was

added to the Language. %-macros may be implemented by inline

substitution of the procedure body or by standard procedure call.

As an example, the %-macro %NAMECOPY(A,B) will assign the pointer

variable B to the pointer variable A without requiring type

checking (thereby allowing any structure to be overlayed on any

other structure).

HAL/S also has the RIGID attribute for COMPOOL or

STRUCTUREs, the STRUCTURE and NAME types, the SUBBIT operator,

the exception handling statements (ON, OFF, SEND ERROR), the

UPDATE block for shared variables, and the extensive real-time

processing statements (SCHEDULE, WAIT, CANCEL, TERMINATE). AlL

of these features would be very helpful in systems programming.

F. Error Checking and Debu
ging

HAL/S is fully typed, so many compile time checks can be

perfored. The ON and OFF ERROR statements would be useful in

monitoring runtime errors.

The language manual does not indicate that any special

debugging aids are available.

(a) modularity

HAL/S is quite modular. The COMPOOL block would be very

useful in insuring that separately compiled programs use the same

data structures. The LOCK and ACCESS attributes for program

variables permit controlled sharing of program variables.

Finally, HAL/S programs, procedures, functions, or COMPOOL blocks

can be compiled indepenoently (the first three generating object

modules? the fourth generating an entry in the library of COMPOOL

blocks for the installation).

(b) modifiability

POCCNET Language Study PAGE 2-64

The Language has a number of features that would make HAL/S

programs easy to modify. The REPLACE statement provides simple

and parameterized macro replacement, the CONSTANT attribute can

be used to declare program constants, and the COMPOOL feature

allows a programmer to make minor changes to a data structure

used by all programs in a project simply by changing a single

COMPOOL block. Finally, the high level operators and structured

programming constructs would also make program modification

easier.

(c) reliability

According to its implementors, HAL/S was designed to improve

software reliability. The language allows full type checking to

be performed at compile time, and provides many structured

programming constructs. The LOCK attribute in conjunction with

the UPDATE block permits reliable data sharing, and the SCHEDULE,

WAIT, CANCEL and TERMINATE statements provide high level features

for real-time processing. The formatted output listings would

also enhance reliability,

H. Use

HAL/S has been implemented on the IBMl 360 series, the Data

General NOVA, and the Shuttle flight computer (IBM AP-101). The

compiler is written in XPL, so it shouldn't be terribly difficult

to transport HAL/S to other machines. The language was designed

and implemented by Intermetrics, and has been used extensively by

NASA in the Space Shuttle program.

POCCNET Language Study PAGE 2-65

2.7. INTERDATA FORTRAN V

2.7.1. LANGUAGE FEATURES

INTERDATA FORTRAN V EINTE74a,INTE74b,INTE74c] is an

extension of ANSI Standard Fortran, the major extensions being

the ADDRESS (pointer) type and the ENCODE and DECODE statements

for memory to memory data transfers under format control. The

Fortran language, which was originally designed in the late

1950-s, was the first algorithmic Language to achieve widespread

acceptance. The Language has been used extensively for

scientific programming, but the limited number of data types and

control structures has hindered the use of Fortran for

system-oriented problems. Two Fortran preprocessors (FLECS and

PREST4) which allow the programmer to use structures programming

control structures have also been included in this report.

A. Basic Data Trges and Ope rators

FORTRAN V supports the five basic data types of ANSI Fortran

(INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL) as well

as the pointer type ADDRESS. The Language has no character or

string data type, so alphanumeric data must be packed into

INTEGER variables. Fortran V allows mixed mode expressions and

will automatically convert between INTEGER, REAL, and DOUBLE

PRECISION values. Character and address constants can be used in

INTEGER expressions.

FORTRAN V allows the following types of constants to be used

in expressions: integer, floating point, double precision

floating points complex, logical, data or statement addressest

character, and hexadecimal. The operators and the data types on

which they operate are listed below:

arithmetic operators (INTEGER, REAL, DOUBLE PRECISION,

+1 -, *7 /1 ** -

COMPLEX, and ADDRESS operands)

Standard arithmetic operators. ADDRESS

type can only be used in INTEGER

POCCNET Language Study PAGE 2-66

expressions. FORTRAN V also has a

extensive library of mathematical

functions.

relational operators

.EQ., *NE., *LT., .GT., .LE., .GE.

Logical operators (LOGICAL operands only)

*NOT., .AND., .OR.

pointer operators and functions

A'<name> - Yields the address of the object

<name>t where <name> can be a simple

variable namet array, array element,

or a statement label.

IVAL(<address expr>)

FVAL (<add re ss-exp r>)

DVAL(<address-expr>)

- Functions for obtaining the INTEGER,

REALt or DOUBLE PRECISION value

pointed to by the address expression.

It is the user's responsibility to

insure that the address expression is

pointing to meaningful data. Note:

there is no way to alter the value

of the object pointed to by the address

expression.

ct
 B. £QfltrQI Str u ures

- IF (<logicaL-expr>) <stmt>

(Simple conditional statement with no provision for

an ELSE part.)

- IF (<arith-expr>) <Label-l> , <Labet-2> t <label-3>

(Three-way arithmetic if statement. A transfer is

made to label-l, label-2, or Label-3 depending on

whether the arithmetic expression is negative, zerot

or positive.)

POCCNET Language Study 	 PAGE 2-67

- DO 	 <stmt-no> <var> = <var-i>, <var-2>, <var-3>

<stmt-ltst>

<stmt-no> CONTINUE

(For loop. The variables var-1, var-2, var-3 must be

INTEGER variables, and their values must be greater

than 0.)

- GOTO <stmt-no>

GOTO <assign-var>

GOTO (<stmt-no-l>, .. ,, <stmt-no-k>), <var>

(Unconditional, ASSIGNED, and computed goto

statements.)

- <type> FUNCTION <func-name> (<parameter-list>)

<stmt-List>

END

SUBROUTINE <subr-name> { (<parameter-list>) I

<stmt-List>

END

(Standard function and subroutine definition.

Neither can be recursive. Both functions and

subroutines can have multiple entry points.)

- RETURN

(Return from a function or subroutine.)

- CALL <subr-name> { (<argument-list>) 3

<func-name> (<argument-l1st>)

(Invoke a subroutine or function.)

C. Data Structures

FORTRAN V has only one feature for building more complex

data types: arrays of up to three dimensions. The declaration

<type> <ident> (<dimension-tist>)

declares <ident> to be an array of the specified type. The type

can be any of the basic types, and array elements are extracted

using the subscript notation <ident> (<subscript-list>)

POCCNET Language Study PAGE 2-68

D. 2thpr ftaltrea

INTERDATA FORTRAN V has an extensive Library of built-in

functions and subroutines including

BCLR - Bit clear0

BCMPL - Bit complement.

BSET - Bit set.

BTEST - Bit test.

ICBYTE - Byte clear.

ILBYTE - Byte load.

INBYTE - Byte complement.

ISBYTE - Byte store.

IAND -- Bitwise AND, OR, exclusive OR, complement,

IOR and shift.

IEOR

NOT

ISHFT

FORTRAN V does not require that scalar variables be

declared. A variable that is not explicitly declared is assumed

to be INTEGER or REAL, the choice depending on the first

character in the variable name.

FORTRAN V has formattea and unformatted sequential and

direct access I/O facilities. In addition, the ENCODE and DECODE

statements provide a means of transferring data for one memory

buffer to another, the data being translated according to format

control. The ENCODE and DECODE statements can be used for

converting between character data and the six basic types.

Finally, FORTRAN V has a conditional compilation feature.

Any statements with an X in card column 1 will be treated as

comments unless the compiler debug option is on, in which case

they are compiled as ordinary statements. The conditional

compilation feature is very helpful for inserting debugging

statements into a program.

E. untjime Environment

FORTRAN V requires no runtime stack or dynamic storage

POCCNET Language Study 	 PAGE 2-69

allocator. However, the Language does have fairly complex I/O

facilities, so FORTRAN will require a number
 of I/O routines.

StilLt, the runtime environment for FORTRAN will be considerably

simpler than the runtime environment for HALlS, SPL, or JOVIAL.

F. Syntax

FORTRAN V probably has a BNF syntax, but compilers would not

use it. FORTRAN statements are easy to parse, and most FORTRAN

compilers use ad hoc parsing techniques.

2.7.2. CHARACTERISTICS

A. Machine Depentence

FORTRAN is as machine dependent as any of the other widely

used programming languages. Almost all commercial computer

systems provide a FORTRAN compiler, and FORTRAN programs can

usually be transported to other facilities with out a great deal

of effort. Note: one of the sources of difficulty in

transporting FORTRAN programs is the difference in vord sizes

between the two machines. Since FORTRAN has no character or

string data typet programs using character data must pack

characters into INTEGER variables. Unless the packing density is

set at one character per word (very expensive if there is much

character data), the resulting programs will not be transportable

to other machines without modification.

B. Efflciency

Optimized FORTRAN programs compare favorably with assembly

Language programs. The only operation in FORTRAN that is

inefficient is formatted I/O, which must be interpreted at

runtime.

C. 	 Level of the Langquje

Fortran is a medium level language.

REPRODUCBILITY Op THE
ORIGINAL PAGE IS POOR

POCCNET Language Study 	 PAGE 2-70

D. 	 Size of the La ngua e and Com2it!e

The FORIRAN Language is moderate in size, and the compiler

should 	 be too.

m
E. 	 Speciai Syste Features

FORTRAN V has a very limited form of pointer variables, and

many Logical (bit and byte) functions. The EQUIVALENCE and

COMMON statements can be used to access a block of core under

various formats.

F. Error l£htking la 2 uaina

FORTRAN compilers have traditionally had poor compile and

run time diagnostics. The tack of a character data type requires

the compiler to accept character strings as part of INTEGER

expressions - no type checking can be performed for characters.

The pointer type ADDRESS can be used to point at any data item or

statement in a FORTRAN program, and no type checking can be

performed, It is therefore the user's responsibility to insure

that pointers are used in a proper manner.

The INTERDATA implementation of FORTRAN V provides the

following debugging features:

$COMP - Turns on conditional compilation of source

statements with an X in column 1.

$TRCE - Turns on trace of alt or selected program

variables.

STEST - Turns on checking of array subscripts and

DO-loop indices for 0 or negative values.

G_ DesaQn SVM22Qrt

(a) modularity

FORTRAN V supports independent compilation of subroutines

and functions. Data sharing is provided by the COMMON and

EXTERNAL statements. FORTRAN is seriously Lacking in structured

control structures, however.

POCCNET Language Study PAGE 2-71

(b) modifiability

FORTRAN V has no macro processor, no CONSTANT statement for

defining program constants, no INCLUDE feature for including

source files into a program, and no data structures other than

arrays. FORTRAN programs are often hard to read because of the

lack of control structures. FORTRAN programs would be

considerably harder to modify than programs written in PASCAL,

for example.

(c) reliability

FORTRAN V can not perform any compile-time type checking of

subroutine or function parameters, or check that variables

declared in one COMMON block are consistent with variables

declared in the same COMMON block by another function or

subroutine* The ADDRESS type in FORTRAN V requires careful

programming. It is the user's responsibility to insure that

pointers are pointing to objects of the correct type. Also, the

lack of control structures means that IF and GOTO statements must

be use to simulate if-then-else statements, while and until

Loops, and case statements. This can greatly obscure the

structure of a program. Finally, FORTRAN has no bit or character

data types, requiring any program that uses these data types to

pack characters or bits into words.

Hi. Use

FORTRAN V is implemented on the INTERDATA series of

minicomputers. The FORTRAN Language has been implemented on

almost all commercial computer systems (although the

implementations are all slightly different), and in the past few

years a number of preprocessors have been written that permit the

use of structured programming control structures in FORTRAN

programs. The languages FLECS and PREST4 discussed in this

chapter are two examples of this type of preprocessor.

POCCNET Language Study PAGE 2-72

2.8. JOSSLE

2.8.1. LANGUAGE FEATURES

JOSSLE [JOH73,PRE73] is a high Level language developed by

John White and Leon Presser at the University of California.

Although it was designed to be used in implementing compilerst

the language is general purpose (JOSSLE is loosely based on PL/I)

and could be applied to most system-oriented problems. JOSSLE

provides some special features for managing shared data in

programs, and a hierarchical control structure that tends to

force top-down development of programs.

A. Basic Data TXes and O2erators

JOSSLE has four basic data types: INTEGER, REAL CHAR

(character string), and BIT (bit string). Complete type checking

is performed at compile time, and no automatic type conversion is

peformed between the basic types. However, the language does

provide a function CONVERT for requesting explicit data

conversions.

The operators and the data types on which they operate on

are listed below:

logical operators (BIT operands)

- <expr> - Bitwise complement, AND, and OR.

<expr> & <expr>

<expr> I <expr>

relational operators (all basic types)

=, -= - Operands can be INTEGER, REAL, CHAR,

BIT. Both operands must have same

type.

<t >1 <=, >= - Operands can be INTEGER, REAL, or BIT.

Both operands must have the same type.

Note that there is no implicit ordering

of the character set.

POCCNET Language Study PAGE 2-73

arithmetic operators (INTEGER and REAL operands)

- Operands can be INTEGER or REAL, but

both must have same type.

MOD - Modulo operator. Operand must be

INTEGER.

character operators and functions (CHAR operands only)

!! - Concatenation.

SUBSTR - Substring function. SUBSTR is not a

pseudo-variabLe in the PL/I sense

it can not be used on the left-hand

side of an assignment statement.

B. Control Structures

- BEGIN <stmt-List> END;

(Compound statement.)

- IF <bit-expr> THEN <stmt> (ELSE <stmt> } ;

(Standard conditional statement.)

- LOOP <stmt-list> END LOOP;

(Unbounded repetition of the <stmt-list>. Each LOOP

statement must contain an EXIT statement to provide

termination of the Loop.)

- CASE <integer-expr> OF

<stmt-l>;

<stmt-k>;

END CASE;

(Simple case statement. If the value of the

expression is i then the i-th statement is executed.

A runtime error message is produced if i is Less than

1 or greater than k.)

- EXIT C IF <bit-expr>) ;

(Unconditional and conditional exit of innermost

POCCNET Language Study 	 PAGE 2-74

LOOP statement.)

- RETURN;

(Return from a procedure.)

- RETURN WITH <expr>;

(Return from a function with a result.)

- CALL <proc-name> f (<parameter-list>) 3;

<function-name> f (<parameter-list>));

(Invoke a procedure or function.)

- PROCEDURE <proc-name> { (<argument-List>) } ;

<procedure-body>

END PROCEDURE <proc-name>;

PROCEDURE <func-name>

t (<argument-List>) I RETURNS <type> ;

<function-body>

END 	 PROCEDURE <func-name> ;

(Standard procedures and functions. Neither can be

recursive, and all parameters are passed by vatue.)

Note: JOSSLE has no GOTO statement.

C. Data Structures

JOSSLE has a number of constructs for creating more complex

data structures from the basic types:

(1) one-dimensional arrays

The statement

<ident> LINLIST (<number-of-elements>) OF <type>;

declares <ident> to be a one-dimensional array. The type

can be any one of the basic types or a record structure

defined by the user. Array elements are accessed using the

subscript operator <ident> (<subscript>) , and the

assignment operator <- can be used to copy an entire array.

(2) record structures

The user can define record structures using the NEWTYPE

POCCNET Language 	 Study 	 PAGE 2-75

statement:

<type-ident> = NEWTYPE

<member-l> <type-i>;

* S

<member-k> <type-k>;

END NEWTYPE;

The <type-ident> can then be used anywhere that a basic

type can be used. For example:

ERRORMSG = NEWTYPE /* Define record structure */

TEXT CHAR(20); /* for an error message. *1

ERROR-NO INTEGER;

PRINT-FLAG BIT(1);

NEXT-MSG PTR2A ERRORMSG;

END NEWTYPE;

DECLARE I* Now use the structure *1

SIZE-ERROR ERRMSG; /* to declare some things. */

OTHER-ERRORS LINLIST(10) OF ERRMSG;

END DECLARE-

The syntax for referencing structure components is

<structure-var> : <member-name> { . <member-name>) * The

assignment operator <- can be used to copy an entire record

from one variable to another.

(3) 	 typed pointers

The declaration

<ident> PTR2A <type>;

declares <ident> to be a pointer to an object of type

<type>. The type can be a user defined record structure.

ALL pointer variables are initialized to the constant NULL.

The following operators and JOSSLE statements are provided

for manipulating pointer variables:

= - =, -	 Equality and inequality.

<ptr-var> 	 :> - Object pointed to by the pointer

variable. Can appear on either side

of an assignment statement.

POCCNET Language Study PAGE 2-76

<ptr-var> :> <structure-member> C . <member>)

- Component in a structure pointed to by

the pointer variable.

ADDRESS(<variable>)

- Yields address of the variable.

CONTENTS(<ptr-var>)

- Yields value of object pointed to by

the pointer variable. Can not appear

on the Left-hand side of an assignment

statement.

ALLOCATE <type> SETTING <ptr-var>;

- Allocate statement that causes dynamic

allocation of an object of type

<type>, and the setting of <ptr-var>

to the address of the new object.

FREE <type> PTD2BY <ptr-var>;

- Statement that deallocates the core

block, pointed at by the pointer

variable, and sets the pointer to

NULL.

(4) stacks and queues

The JOSSLE declarations

<ident> STACK OF <type> ;

<ident> QUEUE OF <type> ;

are used to define stacks and queues. The type can be any

basic type or a user defined record structure. Stacks and

queues are initially empty, and objects can be pushed on or

popped off a stack or queue with the following two

operators:

<ptr-var> <== <stack-or-queue-var>

- Sets <ptr-var> to the address of

the object in the stack or queue

and then pops the object off the

list. If the stack or queue is

initially emoty the pointer is

POCCNET Language Study PAGE 2-77

set to NULL.

<stack-or-queue-var> < = <ptr-var>

- Pushes the object pointed to by the

pointer variable onto the stack or

queue.

D. fither Features

JOSSLE provides several features for managing shared data

and for structuring systems of programs. JOSSLE permits internal

procedures (that is, nested procedures)t but unlike other block

structured languages an internal procedure does not automatically

inherit alL variables declared in outer blocks. An internal

procedure can request the use of such variables using the KNOWN

statement:

KNOWN

<identifier-list>

END KNOWN.

This feature prevents internal procedures from modifying a

variable declared at an outer level without gaining explicit

permission to use it.

A system of JOSSLE programs is formed by creating a

COMMUNICATION REGION specifying the member programs in the system

and the data to be shared among the programs. The syntax for a

COMMUNICATION REGION is as follows:

COMMUNICATION REGION <ident>

<record-structure-definitions>

<shared-variable-declarations>

MEMBERS

<main-program>

<sub-program-List>

END MEMBERS;

END COMMUNICATION REGION Cident>;

The statement defines <ident> to be a "task" composed of a main

program and a list of subprograms which communicate only through

the variables in the <shared-variable-list>. A MEMBER program

can only be called by other programs in the same COMMUNICATION

POCCNET Language Study PAGE 2-78

REGION. Each MEMBER program can be an independently compiled

JOSSLE program or another COMMUNICATION REGION. A COMMUNICATION

REGION is activated by a call to the identifier <ident>, which

causes control to pass to the main program in the MEMBERS list.

JOSSLE has a CONSTANT declaration for declaring program

constants, and primitive I/O facilities.

E. Runtime Environment

JOSSLE prohibits recursive procedures, so no runtime stack

is required. However, JOSSLE does require a dynamic storage

allocator and some form of garbage collector for compacting the

dynamic storage area.

F. ynta

JOSSLE has a BNF grammar with approximately 150 productions.

2.8.2. CHARACTERISTICS

A. Machine Eege np~gj

JOSSLE has no machine dependent features and could be

implemented on almost any machine.

B. Efficiency

JOSSLE has no recursion (and therefore no runtime stack),

and the language does not permit dynamic arrays or varying length

character or bit strings. Procedure parameters are all passed by

value. These restrictions would tend to make JOSSLE efficient.

However, JOSSLE programs that use pointer variables to

dynamically allocate storagey or that perform a great deal string

concatenation will require a dynamic storage allocator and

garbage collector. Garbage collection can be very expensive.

C. LeveL of the L

JOSSLE is a high level language.

POCCNET Language Study PAGE 2-79

D. Size of the Lang!j and CoR Ler

JOSSLE is a fairly Large Language, and the compiler wilL

also be large.

E. Speciat Sxsern Features

JOSSLE has record structures, bit and character strings,

fully typed pointer variables, dynamic storage allocation, and

the STACK and QUEUE data structures. All of these features would

be helpful in systems programming.

F. Error Checking and Debugq£ng

JOSSLE performs complete type checking at compile time and

performs no automatic conversions between the data types.

Default runtime checks include array subscript checking, CASE

expression out bounds, data conversion errors from the CONVERT

function, and substring length errors.

The JOSSLE manual does not indicate that any special

debugging features are available.

(a) modularity

Modularity in JOSSLE is excellent. The Language provides

the COMMUNICATION REGION concept, independent compilation of

programs and COMMUNICATION REGIONS, and restricted inheritance of

global variables. JOSSLE also has a small number of structured

programming control structures.

(b) modifiability

JOSSLE programs should be very well structured because of

the COMMUNICATION REGION concept and the declarations for

controlling shared data. However, the language has no macro

processor, and the set of control structures is fairly Limited

(no WHILE, FOR, or REPEAT UNTIL Loops, and only a simple form of

the CASE statement). Because of this, JOSSLE programs will be

harder to modify than programs written in HAL/S or PASCAL.

POCCNET Language Study PAGE 2-8o

(c) reliability

JOSSLE performs complete type checking at compile time.

This permits a large number of errors to be detected at compile

time that would go undetected in a language like Fortran. Like

most languages with pointer variables, however? JOSSLE requires

careful programming. There is nothing to prevent a user from

using the ADDRESS function to point at a static variable, and

then subsequently attempting to free that variable using the FREE

statement.

H. Use

JOSSLE is implemented on the IBM 360 and 370 series.

However, the language is machine independent and could be

implemented on other machines.

POCCNET Language Study PAGE 2-81

2.9. JOVIAL/J3B

2.9.1. LANGUAGE FEATURES

JOVIAL/J3B EREI75,SOF753 is a high Level Language developed

by SofTech for use in avionics applications. The language is

based on JOVIAL/J3, the Air Force standard Language for command

and control applications. JOVIAL/J3B has been used extensively in

the B-i Strategic Bomber program.

A. Basic Data TrQ e and Operators

JOVIAL/J3B has seven basic data types: signed integer,

unsigned integer, fixed pointy single and double precision

floating point, bit string, and character string. The Length of

bit strings is Limited to the implementation dependent number of

bits in a computer word. Automatic conversion is performed

between integer and floating point expressions. The following

types of literals are permitted in JOVIAL/J3B expressions:

integer, fixed point, single and double precision floating point,

and hexadecimal and character strings.

The operators and the data types on which they operate are

listed below:

arithmetic operators

+ -, t* /' *t

ABS - Absolute value.

INTR - Extracts a bit string from an arbitrary

expression and converts the string to integer.

INTGR - Converts a fixed point expression to integer.

FIX - Converts an integer expression to fixed point.

SCALE - Scales a fixed point expression.

relational operators

=1 <>j <1 >5 <=7 >=

- All the relational operators can be used to compare

numeric expressions, but character expressions can

REPRODUCIBILITY OF TIM

ORIGINAL PAGE IS POOR

POCCNET Language Study PAGE 2-82

only be compared using and <> (there is no

explicit ordering of the character set). Bit

expressions can not be compared using the

reLational operators.

All the relational operators yield a bit

string result.

bit operators

NOT, AND, OR, XOR

SHIFTL - Left shift.

SHIFTR - Right shift.

BIT - Pseudo-variable for accessing bit strings. The

BIT function can appear on the left-hand side of

an assignment statement.

character operators

BYTE - Pseudo-variable for accessing a sequence of

bytes (characters). Can appear on left-hand side

of an assignment statement.

B. Control Structures

- BEGIN <stmt-list> END ;

(Compound statement0)

- IF <bit-expr> ; <stmt> ; C ELSE <stmt> } ;

(Standard conditional statement with optional ELSE

part. If the value of the <bit-expr> is known at

compile time then no code is generated for the

bypassed THEN or ELSE <stmt>.)

- WHILE <bit-expr> ; <stmt> ;

(Standard while Loop.)

- FOR <var> (<init-expr> BY <incr-expr>

{ UHILE <bit-expr>)); <stmt> ;

(For loop with optional WHILE clause.)

- FOR <var> (<init-expr> THEN <next-expr>

{ WHILE <bit-expr>)); <stmt> ;

POCCNET Language Study PAGE 2-83

(Alternate form of for loop. The <var> is assigned

the value of the <init-expr> on the first iteration of

the Loop, and the value of <next-expr> on all

subsequent iterations. The <next-expr> can be any

integer expression, and it is evaluated on each

iteration of the loop.)

- GOTO <label> ;

(Unconditional branch to label in current namescope.)

- GOTO <switch-name> (<integer-expr>) ;

(Computed goto. The <switch-name> must have been

declared with a statement of the form

SWITCH <switch-name> = <Label-list> ;

On execution of the GOTO statement the value i of the

<integer-expr> is used to seLect the i-th label, and a

branch is made to the selected label.)

- RETURN ;

(Return from a procedure or function.)

- { DEF) -CRENT)- PROC <proc-name>

(-{ <input-parameters> I k : <output-parameters> 1)

{ <function-type> I

BEGIN

<Local-decLarations> ;

<stmt-List>

END ;

(Definition of a procedure or function. If the RENT

option is selected then reentrant code ciLL be

generated for the procedure (recursive calLs are not

permitted, however). The DEF option permits the

<proc-name> to be called from other external

procedures. Any Labels appearing in the <stmt-List>

must be declared in the <Local-declarations> section.)

- <proc-name> ((<input-arguments>)

{ : <output-arguments> I) ;

POCCNET Language Study PAGE 2-84

(Invocation of a procedure or function. The method

used to pass parameters (such as call by value,

value-resultt or reference) is implementation

dependent.

Internal procedures can be declared as "inline"

routines with a statement of the form INLINE

<proc-name> ; Each invocation of an inline

procedure causes the body of procedure to be

substituted inline at the point of invocation.)

C. Data StruLctures

JOVIAL/J3B has three constructs for creating more complex

data structures from the basic data types:

(a) arrays

Arrays are declared with a statement of the form

ARRAY <var-name> (<dimension-list>) <type> ;

The array type can be any of the basic data types or a

pointer to a table. Arrays can have up to three dimensions,

and array indexing starts at 0. The elements in an array

are referenced using the standard subscript operator

<var-name> (<subscript-List>)

(b) tables

The JOVIAL Language has extensive facilities for

constructing data tables (Linear Lists of record

structures). A "template" for the entries in a table is

declared using the TYPE statement:

M

TYPE <new-template> TABLE C){ D }

{ LIKE <old-template>)

BEGIN <item-declarations> FND ;

The options M and D affect the packing density of the items

within the individual table entries (M-medium, D-dense).

The LIKE option allows a previously defined table template

to be used in the definition of a new template. The items

POCCNET Language Study PAGE 2-85

in the <new-template> wilt consist of all items in the

<item-declarations> list, preceded by the items in the

<old-template> if the LIKE option was used. The type of the

items in the <item-declarations> list can be any of the

basic data types or a pointer to a table.

The table templates can then be used to declare data

tables:

M

TABLE <table-name> (<number-of-entries>) { P I-{ D I-

BEGIN <item-declarations> END ;

The M and D options have already been described. The

default method for allocating storage for a table is by

table entry: for each table entry there is a contiguous

block of core that is Long enough to contain all the items

in the <item-declarations> list. If the P option is

specified, however, the table is allocated in a "parallel"

fashion: there is a contiguous block of core for the first

item in all the table entries, a block for all the second

items, and so forth.

An alternate version of the table declaration gives the

programmer complete control over placement of items within a

table entry. The number of words per table entry and the

placement of each item (word position and starting bit

within the word) is directly specified. The storage for

items can overlap.

Individual items in a directly declared table (declared

without a template) are accessed using subscript notation:

<tabLe-item> (<table-entry>)

An entire table entry can be compared with or assigned the

value of another table entry using the ENTRY function. For

example,

ENTRY(MSC.TABLE()) = ENTRY(ERROR.MSG(4)) ;

Table entries or items within a table entry of any table

declared with a template can only be accessed using

pointers. Pointers will be discussed in the next section.

Note: There are a large number of restrictions on the

EPRODUCIBILITY OF THE

PAGE IS POOR
ORIGINAL

POCCNET Language Study PAGE 2-86

way that tables can be declared and used.

(c) pointers to table entries

A pointer is declared with a statement of the form

ITEM <pointer-var> P { <template> } ;

Pointers declared with a template can only be used to access

table entries having the same templatet pointers declared

without a template can point to any entry.

The following pointer functions and operators are

available:

POINT(<table-name>, <subscript>)

- Yields a pointer to the specified entry

in the table.

NEXTC<entry-pointer>, <table-name>, (<index>)

- Yields a pointer to the next table entry

following <entry-pointer>. The <index>

can be used to obtain a pointer to some

table entry relative to <entry-pointer>.

For example,

NEXT(MSGPTRMSG.TABLE)

NEXT(MSGPTRMSG.TABLEI-2)

<table-item> (<entry-pointer>)

- Accesses the specified item in the table

entry pointed at by the <entry-pointer>.

The reLational operators =, <>, <, >, <=, >= can be used to

compare compatible pointerst and the assignement operator

can be used to copy a pointer.

D_ Qther Features

JOVIAL/J38 has a number of features that would be helpful

for programming large systems. Source files containing JOVIAL

statements can be inserted into a program using a statement of

the form COPY <file-spec> ; * Program constants can be

declared using the CONSTANT statement:

CONSTANT <constant-name> <type> = <value> ,

POCCNET Language Study PAGE 2-87

The <constant-name> can be used in any expression, but it can not

be assigned a new value by an assignment statement or a procedure

ca Lt.

The Language also has a simple replacement and a

parameterized macro facility. Macros are declared with the

statement

DEFINE <macro-name> { (<parameter-list>) }

<replacement-string> ;

The <replacement-string> can contain other macros.

JOVIAL/J3B has a COMPOOL feature that is similar to (but

more awkward than) the HAL/S COMPOOL block. A JOVIAL COMPOOL

file can contain constant and macro definitions, declarations of

external procedures and functions, templates for tables, and

references to BLOCK definitions (BLOCK definitions are used for

declaring shared, external data; they are a combination of the

Fortran COMMON and BLOCK DATA statements.) The COMPOOL file can

be invoked by any program that requires the declarations and

templates.

The Language has an OVERLAY statement that is similar to the

Fortran EQUIVALENCE statement. JOVIAL/J3B has no IO facilities,

E. Runtime Environment

JOVIAL/J3B requires a runtime stack for any procedures

declared to be reentrant. Other than this, the language requires

little in the way of runtime environment.

F. -syltax

The BNF grammar for JOVIAL/J3B has approximately 500

productions (the SofTech grammar for the Language includes type

restrictions and is considerably more precise than typical BNF

grammars).

2.9.2. CHARACTERISTICS

A. Machine Dependence

POCCNET Language Study PAGE 2-88

JOVIAL/J3B has a large number of implementation dependent

features? including the method used to pass procedure and

function parameters, the maximum length of bit strings (limited

to one computer word), the functions INTR, BIT, and BYTE used for

accessing bit and character strings, the OVERLAY statement,

programmer specified table allocation (word position and bit

position within a word), the restriction that alt items in a

table declared with the parallel (P) attribute occupy a single

word, and the Lack of a collating sequence for the character set.

B. Efficiency

The language should be as efficient as Fortran for programs

using non-reentrant procedures. ALL oata areas can be allocated

statically.

C. Level of the Lanquage

JOVIAL/J3B is a high level language.

D. Size of the Lang 1a and Compiler

JOVIAL/J3B is a large language with complicated data

structures (the TABLE in particular). The compiler will also be

Large.

E. SS hi atxen Features

The language has bit and character data types, the INTR,

BIT, and BYTE functions for accessing bits and characters,

reentrant procedures and functions, the OVERLAY statement for

equivalencing data storage, and the TABLE data structure. All of

these features would be helpful for system programming.

F. Error Checking and 2 ing

The JOVIAL/J3B language is strongly typed, so many program

errors can be detected during compilation.

As discussed in section B. Control StructU g no code is

generated for the bypassed section of an IF statement when the

value of the <bit-expr> is known at compile time. This feature

POCCNET Language Study PAGE 2-89

permits debugging code to be maintained in a JOVIAL/J3B program

without any expense in execution time or space. For example:

DEFINE DEBUG = X';

IF DEBUG ; BEGIN <debug-statements> END;

The language manual does not indicate that any other debugging

features are available.

G. kesian! auipaq

(a) modularity

Modularity in JOVIAL/J3B is good. The language has

procedures, functions, and the basic control structures for

structured programming. The language permits independent

compilation of procedures, functionst and COMPOOL files. The

COMPOOL and COPY files can be used to store commonly used

declarations or source text, and the BLOCK statement permits

sharing of external data

(b) modifiability

JOVIAL/J3B has a number of features which would aid in

program modification, including the CONSTANT declaration, the

DEFINE statement for defining macros, the COPY statement for

including source files, and the COMPOOL files. The language also

has a structured control structure which will tend to make

programs more readable,

(c) reliability

The pseudo-variables BIT and BYTE for accessing bit and

character strings need to be used carefully, since they can be

used to alter any portion of a data item. The OVERLAY statement

and user-specified table allocation also require careful

programming0 In general1 however, it should be considerably

easier to write reliable programs in JOVIAL/J3B than in a

Language like Fortran. JOVIAL/J3B has structured control

POCCNET Language Study PAGE 2-90

structures, array and table data structures, a large set of basic

data types, several features that can improve the readability of

programs (macros and CONSTANT items), COMPOOL and COPY files to

insure that separately compiled programs employ the same data

declarations, ana strong type checking.

H. Use

JOVIAL/J3B has been implemented on the IBM 370 series and a

number of speciaL purpose minicomputers including the SKC 2070,

SKC 2000, IBM 4T I and the LITTON 4516D. The compiler was

developed by SofTech using the AED language. JOVIAL/J3B has been

used extensively in the B-1 Strategic Bomber program.

.RRJPRODUp ~ 7mmi

1 Thys0 Po l

POCCNET Language Study PAGE 2-91

2.10. LITTLE

2.10.1. LANGUAGE FEATURES

LITTLE ESH174] was developed at NYU in 1968 in an attempt to

produce an efficient but machine independent systems

implementation Language. The only data type supported by the

Language is bit strings of arbitrary (but not varying) length,

and 'no type checking is performed. LITTLE is essentially a

Fortran Language with some structured programming constructs.

A. Basic Dai Ixng tLo
flp~t
 g2Q2Qt

LITTLE is a typeless language that operates on bit strings

of arbitrary length. The language allows five types of constants

to appear in expressions: unsigned integers, octal numbers,

binary numbers, mixed binary/octal numbers, and character strings

(including the empty string). Note that floating point numbers

are not provided. The following operators are provided:

bit string operators

.OR.y .AND.t .EXOR.

Bitwise OR, AND, and exclusive OR of two expressions.

The shorter operand is padded on Left with zeros.

.NOT.

.FR.

Position of leftmost 1-bit in expression.

.NB.

Number of 1-bits in expression.

.C.

Bitwise concatenation of two operands.

.E. <start bit> <number of bits> <expr>

.F.

Pseudo variables for inserting or extracting bits.

The .E. operator must be used for operands extending

across word boundarys.

arithmetic operators

POCCNET Language Study 	 PAGE 2-92

Integer arithmetic operators.

relational operators

-EQ., .NE , .LT., .GT., .LE., .GE.

character operators

<string-i> .IN. <string-2>

Index of <string-l> in <string-2>.

.S. <start character> <number of characters> <string>

Pseudo variable for inserting or deleting character

strings.

.CH. <character number> <string>

Pseudo variable for inserting or deleting single

characters.

<string-l> °CC. <string-2>

String concatenation.

B. Contro2l Structures

- IF (<expr>) <stmt> ;

(Simple if statement.)

- IF <expr> THEN (stmt-list> { ELSE <stmt-ist>) END IF;

(Compound if.)

- WHILE <expr> ;

UNTIL

<stmt-List>

END WHILE

UNTIL

(Standard while and repeat Loops.)

- DO 	 <var> = <expr-l> TO <expr-2> BY <expr-3> ;

<stmt-List>

END DO ;

(Standard for loop.)

- GOTO <label> ;

GOBY (<expr>) (<Label-I>, ... , <Label-k>) ;

(Unconditional and computed goto.)

POCCNET Language Study PAGE 2-93

- SUBR <ident> C (<parameter-List>) ;

<stmt-List>

END SUBR ;

FNCT <ident> { (<parameter-List>) ;

<stmt-List>

END FNCT ;

(Fortran Like subroutines and functions. Neither can

be recursive. A function may not assign values to its

input parameters.)

- CONT { <specifier> } ;

(Continue next iteration of the innermost or

specified DO, WHILE, or UNTIL loop.)

- QUIT { <specifier> } ;

(Exit the innermost or specified loop.)

- RETURN ;

(Return from a subroutine or function.)

C. Data Structures

The only data structure supported by LITTLE is the

one-dimensional array. The statements

SIZE <ident> (<Length in bits>) ;

DIMS <ident> (<number of elements>) ,

declares <ident> to be a one-dimensional array, each element of

which is a bit string of length <Length in bits>. Array elements

are accessed using standard subscript notation:

<ident> (<subscript>)

D. Other Features

LITTLE is a typeLess, Fortran-Like Language with no block

structure and comments in /* *1 or $ to end-of-line pairs.

LITTLE has a DATA statement for initializing variables, and a

NAtESET feature similar to Fortran COMMON. The Language also has

a simple and a parameterized macro facility allowing recursive

macro expansion.

POCCNET Language Study PAGE 2-94

E. Runtime Environment

Because LITTLE forbids recursive subroutines or functions,

the Language does not require a runtime stack. There is aLso no

need for any form of dynamic storage allocator.

The BNF grammar for LITTLE has approximately 80 productions.

2.10.2. CHARACTERISTICS

A. Machine beeng

LITTLE has no machine dependent features and could be

impLemented on most machines. Howevery because of the arbitrary

Length of operands, there are few machines that could implement

LITTLE efficiently for operands Longer than the word size.

B. Efficlency

LITTLE should be efficient for programs using variables that

match the word size of the host machine. Inline code can be

generated for most operators, there is no need for a runtime

stack, and there is no block entry or dynamic storage allocation.

For expressions involving operands longer than a singLe word,

however, LITTLE may execute considerably slower than hand-coded

assembly language.

C. Level

LITTLE is a low-level Language.,

D. Size of Lanquage and Compiler

LITTLE is a small language, and the compiler should also be

small,

E. Seft2jea Saxftm Features

None.

POCCNET Language Study PAGE 2-95

F. Err2r £hgskina REgQ jqn

Because of the Lack of data types, LITTLE can perform no

compile or runtime type checking. Other runtime checks, such as

subscript errors or expression out of range in a GOBY statement,

will be performed if the debug option is specified.

The CDC 6600 implementaion of LITTLE provides the following

debugging facilities: (1) trace of assignments to selected

variables; (2) calling history of subprograms; (3) statistics on

number of statements executed by statement type; (4) subscript

checks for arrays; and (5) verification that certain assertions

(LITTLE expressions involving program variables) are true.

G.Desjqfl aY22QLt

(a) modularity

LITTLE allows independent compilation of modules, and

provides communication through NAMESET (Fortran COMMON) blocks0

(b) modifiability

LITTLE has a fairly powerful macro processor, the standard

structured programming constructs, and a feature for conditional

compilation of source text. These would be a great help in

modifying LITTLE programs. However, the Lack of any features for

constructing new data types (other than one-dimensional arrays)

means that alL data structures would have to be implemented by

the LITTLE programs themselves. Subsequent changes to the data

structures could require Large scale revisions of the program.

(c) reliability

Because LITTLE is a typeless language, the compiler performs

no compile or runtime checks to insure that the bit pattern in an

operand is meaningful. Type checking is therefore the user's

responsibility. In addition, the Lack of data structures

requires LITTLE programs to simulate the data structures with

LITTLE statements. LITTLE programs will then be longer, more

complex, and harder to understand than a program written in a

POCCNET Language Study PAGE 2-96

Language with more data structuring facilities.

H. Use

LITTLE has been implemented on the CDC 6600, the IBM 360

series, and the Honeywell 512. The compiLer is written in LITTLE

itself, and could easily be bootstrapped onto other machines.

POCCNET Language Study PAGE 2-97

2.11. PASCAL

2.11.1. LANGUAGE FEATURES

PASCAL EJEN74,RIC762 is a general purpose, high Level

Language designed by Niktaus Wirth as a successor to ALGOL 60.

The language has a full set of control structures for structured

programming, and many facilities for data structuring including

arrays, records, sets, and typed pointers. PASCAL has been used

for a number of systems-oriented problems including the compilers

for PASCAL and CONCURRENT PASCAL, and the SOLO operating system

(a single-user operating system for the PDP 11145).

A. Basic Data Txpes and Operaors

PASCAL has four basic data types: INTEGER, REAL, BOOLEAN,

and CHAR (single character). Full type checking is performed at

compiLe time, and no automatic conversions are performed between

the basic types. The following types of constants are permitted

in expressions: integer, real, boolean, character, and string

(treated as an array of characters).

The operators and the data types on which they operate are

listed below:

arithmetic operators and functions (INTEGER and REAL operands)

+, -, *, / - Standard arithmetic operators for

INTEGER or REAL operands. The

division operator returns a REAL result.

DIV, MOD - Division and modulus operators for

INTEGER operands.

ABS(<expr>) - Absolute value of REAL or INTEGER

expression.

SQR(<expr>) - Square of REAL or INTEGER <expr>.

The following functions are available for INTEGER

operands:

ODD(<expr>) - Function returning true if the expression

POCCNET Language Study PAGE 2-98

is odd.

SUCC(<expr>) - Functions yielding successor and

PRED(<expr>) predecessor of the expression.

The folLowing functions are available for REAL operands:

TRUNC(<expr>) - Functions yielding INTEGER resuLt of

ROUND(<expr>) truncating or rounding a REAL <expr>.

SIN, COS, - Standard mathematical functions.

ARCTAN, LN,

EXP, SQRT

logical operators (BOOLEAN operands)

AND, OR, NOT - The BOOLEAN operators yield

a BOOLEAN result.

relational operators (all basic types)

=- <>T <7 C=t >=

- The two operands must have the same

type. The relational operators yield

a BOOLEAN result.

character operators

SUCC, PRED - Successor and predecessor functions.

CHR(<expr>) - Yields i-th character in the character

set, where i is the value of <expr>.

ORD(<char>) - Ordinal position of the character in the

character set.

- BEGIN <stmt-List> END

(Compound statement.)

- IF <boolean-expr> THEN <stmt> C ELSE <stmt> }

(Standard conditional with optional ELSE clause.)

- WHILE <booLean-expr> DO <stmt>

(While Loop.)

- REPEAT <stmt-list> UNTIL <boolean-expr>

REPRODUCIBiLITYop THE

ORIGINAL PAGE IS POOR

POCCNET Language Study PAGE 2-99

(Until Loop. The body of the loop will be executed

at least once.)

- FOR <var> := <expr-l> TO <expr-2> DO <stmt>
DOWNTO

(For Loops with implied increments of +1 and -1.)

- CASE <scaLar-expr> OF

<constant-list-l> <stmt-l>

* C

<constant-list-k> <stmt-k>

END

(Case statement. The <scalar-expr> can be INTEGER,

CHAR, BOOLEAN, or any user-defined scalar or subrange

type (scalar and subrange types will be described

Later in Section C). The constant Lists must contain

constants of the same type as the <scalar-expr>. The

<scalar-expr> is evaluated, and the constant lists are

scanned to find a constant equal to the expression.

If a match is found then the corresponding statement

is executed; if no match is found then none of the

statements are executed.)

- WITH <variable-List> DO <stmt>

(Executes <stmt> using the record variabLes in the

<variable-list.> Any expression in <stmt> may refer to

subcomponents of the records without fully qualifying

the subcomponent. For example, if X is a record with

subcomponents A, B, and C, then

WITH X DO BEGIN

A A + 1.0;

B A < 10.0;

C -G

END

is equivalent to

X.A X.A + 1.0;

X.B X.A < 10.0;

POCCNET Language Study 	 PAGE 2-100

X.C := G ;

)

- GOTO <label>;

(UnconditionaL transfer to a statement in the current

namescope. PASCAL requires that all labels be

declared with the LABEL statement.)

- PROCEDURE <proc-name> { (<parameter-List>)); <proc-body>

FUNCTION <func-name> { (<parameter-List>))I <type>

<func-body>

(Procedure and function definitions. Both may be

recursive. The user can request that parameters be

passed by value or by reference,)

- <func-name> { (<argument-list>) }

<proc-name> { (<argument-list>) 3

(Invoke a function or procedure.)

C. Q4Ah

PASCAL has seven constructs for creating more complex data

structures from the basic data types:

(1) scalar type

The scalar type statement

TYPE <type-ident> = (<object-l> ..,f <object-k>) ;

defines an ordered set consisting of <object-l>, ... ,

<object-k>. For exampLe:

TYPE MONTH = (JANFEBMARAPRMAYJUNIJULAUG,

SEPtOCTNOVDEC) ;

The set is ordered, so the relationat operators =, <>, <t >9

<=l >=y the assignment operator :=, and the functions SUCC,

PRED, and ORD can be apptied to any scalar type. Note: the

basic types INTEGER, CHAR, and BOOLEAN are predefined scalar

types

(2) 	 subrange types

Subrange types are subranges of scaLar types, and they

POCCNET Language Study 	 PAGE 2-101

also form ordered sets of objects. The statement

TYPE <type-ident> = <object-l> .. <object-m> ;

defines a subrange type. There must be a scalar type

containing both objects, and the first object must be less

than the second. For example:

TYPE SPRING = MAR .. MAY;

TYPE DIGIT = 0 .. -9-;

TYPE INDEX = 0 .. 100;

All the operators for scalar types can be applied to

subrange types.

(3) 	 arrays

The statement

TYPE <type-id> = ARRAY [<dimensxon-list>] OF <type> ;

defines an array type. Arrays can have an arbitrary number

of dimensions, and the <type> can be any basic type or one

of the types discussed in this section. The dimensions are

specified by subrange types. For example:

TYPE MATRIX = ARRAYCl..3, i..33 OF REAL;

VAR VECTOR : ARRAYE.i10] OF REAL;

VAR JODSRUN : ARRAYE196S..1973, JAN..DEC] OF INTEGER;

The assignment operator := may be used to copy entire

arrays, and array elements are referenced by listing the

subscripts in brackets:

<ident> t<subscript-List>2

(4) 	 sets

The statement

TYPE <type-ident> = SET OF <base-type> ;

defines a type consisting of alL possible subsets of the

<base-type>, which must be a scalar or subrange type. For

example:

TYPE DAY = (MTWTHFSAS); (Define scalar type)

VAR DAYSOFF : SET OF DAY; {Now use it for a set)

VAR DIGITS : SET OF 0O..9;

The following operators are available for manipulating set

types:

POCCNET Language Study 	 PAGE 2-102

C <eLement-list>] - Set constructor yielding set.

The List may be empty.

+, -, * - Set union, difference, and

intersection.

=, <> - Tests on equality or inequality.

<=t >= 	 - Tests on set inclusion.

IN 	 - Membership operator yielding

true 	 if element is in set.

(5) typed pointers

Pointer types are defined with a statement of the form

TYPE <type-ident> = - <type> ;

where <type> is any type. There is no "address" function in

PASCAL - it is not possible to obtain the address of a

variable. Instead, all pointers in PASCAL point into a

dynamic storage area, and new pointers can only be created

by requesting the allocation of some new data object in this

storage area.

The following pointer operators and functions are

available (Assume that pointer P is declared as VAR P X;

S)

NEW(P) - Allocates enough space for an object of

type X, and sets P to the address of

the space.

DISPOSE(P) - DealLocates the object pointed to by P

and sets P to NIL.

P - Dereference operator yielding object

pointed at by P. May appear on the

left-hand side of an assignment

statement.

=9 <> - Tests on pointer equality.

- The assignment operator can be

to copy pointers,

(6) file type

The 	 statement

TYPE <type-ident> = FILE OF <type> ;

POCCNET Language Study 	 PAGE 2-103

defines a sequentiaL file of objects of type <type>. The

declaration of a variable using this type (i.e., the

declaration of a file) causes the implicit declaration of a

variable X, where X is the name of the file variable. This

variable X- has type <type>, and acts as the buffer pointer

for the file. The basic fiLe functions are

RESET(X) - Sets X- to the first record in the file X.

REWRITE(X) - Prepares file X for rewriting.

GET(X) - Gets the next record and assigns it to X'.

PUT(X) - Writes out X- into the file.

(7) 	 record structures

A record type is declared with a statement of the form

TYPE 	 <type-ident> = RECORD

<member-l> : <type-i>

<member-k> : <type-k>

C CASE <tag-field> : <type> OF

<case-label-list-l> : (<variant-list-l>);

* 	 S

* 	 0

<case-label-list-k> - (<variant-list-k>) 6

END ;

Records can contain an arbitrary number of members, and each

member can be of any type. PASCAL records can also contain

a "variant" part at the end of the record. This variant

part permits records of the same type to contain a different

number and oifferent types of members. The value of the

<tag-field> determines what is stored in the variant portion

of the record. For example:

TYPE LINK = PROCDESCRIPTOR;

PRIORITY = 1..6;

PROCDESCRIPTOR =

RECORD {Define a process descriptor.1

FLINKBLINK : LINK; (Forward/backward ptrs}

POCCNET Language Study PAGE 2-104

GPR : ARRAY [0..7]; (General registers>

PSW INTEGER; (Program status)

CASE PR : PRIORITY OF (Variant part>

1,213 : (AXTIME,

MAXPAGES : INTEGER);

4 : ();

5,6 : (BUFFER : ARRAYCO..1283 OF INTEGER)

END

The dot operator "." is used to reference members of a

record. For example:

VAR P : PROCDESCRIPTOR;

VAR I : INTEGER;

FOR I :0 0 TO 7 DO P.GPREI2 := 0;

P.PR : 2;

P.MAXTIME 5;

P.MAXPAGES := 1000;

The WITH statement discussed in Section a can be used to

avoid qualifying each member of a reccrd with the record

name. The assignment operator := can be used to copy an

entire record.

D. Other Features

PASCAL requires the declaration of all variables, functions,

procedures, and labels. PASCAL has a declaration of the form

CONST <ident> = <expr>;

for declaring program constants. The identifier can be used in

any expression, but the value of the identifier can not be

altered. PASCAL does not provide dynamic arrays or even array

dimensions as parameters, as in the folLowing FORTRAN segment:

SUBROUTINE XYZ(ARRAYTNM)

INTEGER NMARRAY(Nt)

Thus, it is not possibLe to write a PASCAL program that

manipulates arrays of arbitrary sizes.

Finallyv the language does not permit external functions or

procedures: a PASCAL program consists of a main program and an

arbitrary number of nested functions and procedures, and the

POCCNET Language Study PAGE 2-105

entire program must be compiled as a unit.

E. Ru!tlim§ lZfl21Lonment

PASCAL requires a runtime stack (all functions and

procedures are potentially recursive), I/O routines, and a

dynamic storage allocator. Some implementations may provide a

garbage collector for repacking the dynamic storage area.

F. S ntax

PASCAL has a BNF grammar with approximately 150 productions.

2.11.2. CHARACTERISTICS

A. Machine Deptend~le

PASCAL is not machine dependent and has been implemented on

a large number of machines.

B. Efficiencz

PASCAL is moderately efficient. The language does require a

runtime stack, and dynamic storage allocation is required in any

program using pointers or files. However, the language features

have been carefully selected to permit efficient implementation

of the Language. Sets can be represented by bits strings; the set

union, intersection, and difference operators can then be

implemented in just a few instructions. Scalar and subrange

types are equivalently simple. The structured control structures

also permit better code optimization.

C. Level

PASCAL is a high level language.

D. Size of the Lan2ua oe and Comp tr

The PASCAL language is moderate in size. The compiler, which

is written in PASCAL itseLf, is only 8500 statements.

POCCNET Language Study PAGE 2-106

E. Sth~iaL SXattE! ftatllp

PASCAL has typed pointers, dynamic storage allocation,

records, and the set type (which can be viewed as bit strings).

F. Error Checkina and ebuoging!

PASCAL performs full type checking at compile time. In

addition, pointers are fully typed and all pointers point into

the dynamic storage area. This prevents pointers from pointing

to objects of the wrong type, pointers containing illegal machine

addresses, attempts to deallocate storage that was never

allocated, or attempts to access data in deallocated areas. The

subrange types also allow the implementation to perform runtime

checks on variables to insure that the values are within the

subrange. Such a feature would be very helpful in a diagnostic

compiler.

The PASCAL manual does not indicate that any special

debugging tools are available.

G. Design SUnR Lt

(a) modularity

Modularity in PASCAL is fair. The language has a full set of

structured control structures, and internal procedures and

functions are provided. However, PASCAL does not permit external

procedures or functions. This makes it costly to use existing

programs (in a system library, for example), since the programs

must be recompiled each time they are used.

(b) modifiability

As discussed previously, PASCAL has no provisions for

external procedures or functions. This would be a serious

weakness in large systems (IOt000 lines), where the most trivial

modification in one of the programs would require the

recompilation of the entire system. However, PASCAL does have

the CONST feature for declaring program constants, high level

data structures and operators, the subrange type, and the control

POCCNET Language Study PAGE 2-107

structures for structured programming. All these features make

programs easier to read and modify.

(c) reliabiLity

PASCAL performs complete type checking at compile time

(including procedure and function parameters, and pointer

variables). PASCAL is also a high level and well structured

language, so that programs should be smalter and more

self-documenting than programs written in Languages with fewer

data or control structures. It should be considerably easier to

write reliable programs in PASCAL than in a language like

FORTRAN.

H. Use

PASCAL has been implemented on almost all commercial

computer systems, including the PDP 10, PDP-11 series, B6700,

UNIVAC 1100 series, IBM 360 and 370 series, and the CDC 3000 and

6000 series. The compiler is written in PASCAL itself, so the

compiler could be transported to other machines using standard

bootstrapping techniques.

POCCNET Language Study PAGE 2-108

2.12. PREST4

2.12.1. LANGUAGE FEATURES

PREST4 EKAF753 is a preprocessor for Fortran that was

developed by a group at Ohio State University during the period

1973-1975. The Language provides a number of structured

programming constructs, as well as some statements for

controlling the output Listings of PREST4 source programs. The

structured programming constructs are not preceded by special

characters (e.g. $ %), a technique that has been used by other

Fortran preprocessors0 In the remainder of this section, the

PREST4 language is considered to be Fortran IV augmented by the

PREST4 preprocessor.

A. Basic Data Types and Ope rators

PREST4 supports the five basic data types of Fortran IV:

INTEGER, REAL, DOUBLE PRECISIONt COMPLEX, and LOGICAL. The

Language permits mixed-mode expressions and will automatically

convert between integer, real, and double precision numbers.

Constants used in expressions can have the following types:

integer, real, double precision, complex, Logical, octal, and

character strings (character strings must be delineated by

apostrophes, since PREST4 does not permit the H specification

used by Fortran IV).

The operators and the data types on which they operate are

Listed below:

arithmetic operators (INTEGER, REAL, and DOUBLE

PRECISION operands)

+9 -1 *1 I, **

Logical operators (LOGICAL operands)

.NOT., .AND., .OR.

relational operators

.EQ., .NE. All types.

POCCNET Language Study 	 PAGE 2-109

.LT., -LE., .GT., .GE. 	 INTEGER, REAL, or DOUBLE

PRECISION operands only.

B. Control Structures

- IF <expr> THEN <stmt> { ELSE <stmt> }

(Standard conditional.)

- DO <stmt-list> END

(Compound statement.)

- DO WHILE <expr>

UNTIL

<stmt-List>

END

(WhiLe and repeat Loops.)

- DO <var> = <expr-l> { STEP <expr-2> } WHILE <expr-3>

UNTIL

<stmt-list>

END

(Standard for loop.)

Note: PREST4 does not permit use of the Fortran IV forms of

the IF and DO statements; only the structured forms may be

used.

- GOTO <stmt-number>

GOTO <assign-variable>

GOTO (<stmt-number-l>, ..., <stmt-number-k>), <var>

(Unconditional, ASSIGNed, and computed goto

statements.)

- READ (<unit-number>, <format-number>, END: <stmt>)

<input-variable-List>

(Standard Fortran READ statement with different syntax

for the end-of-file condition. The END: <stmt>

provides a means of intercepting an end-of-file

condition without introducing a GOTO statement.)

- <type> FUNCTION <ident> (<parameter-List>)

POCCNET Language Study PAGE 2-110

<stmt-list>

END

SUBROUTINE <ident> 'C (<parameter-list>) }

<stmt-list>

END

(Standard Fortran function and subroutines. Neither

can be recursive. Both functions and subroutines can

have multiple entry points.)

C. Data Structures

PREST4 has only one feature for building more complex data

types: arrays of up to 7 dimensions. The decLaration

DIMENSION <ident> (<dimension-List>)

declares <ident> to be an array. Elements of an array are

accessed using standard subscript notation <ident>

(<subscript-list>).

D. Other Features

PREST4 is essenzially a Fortran language with some

additional constructs for structured programming. The language

has no block structure or recursion. PREST4 provides statement

functions, EQUIVALENCE, COMMON, and DATA statements, and the

Fortran I/O statements. Comments are denoted by an asterisk in

the first column of the input card. PREST4 also provides a numuer

of control statements for affecting the output listings of a

PREST4 program:

%LIST - Begin listing source program.

%XLIST - Stop listing source program.

%PAGE - Page eject.

%SKIP <count> - Skip specified number of lines.

%DOC - Places comments in boxes of asterisks.

%DOCEND

A control statement %COPY <file-name> is also provided for

inserting program text into a PREST4 program from a file. This

feature would be very useful for inserting variable declarations

POCCNET Language Study PAGE 2-111

or COMMON blocks into a program.

E. Runtime Environment

PREST4 has no dynamic storage alLocation or recursion, so no

stack or heap is needed. Except for I/O and type conversion

routines, PREST4 should run on a bare machine.

F. ayia

Fortran IV (and therefore PREST4) has a BNF grammar, but a

compiler would probably not use it. Fortran compilers tend to use

ad hoc compiling techniques.

2.12.2. CHARACTERISTICS

A. Machine Depend ace

ANSI standard Fortran IV (and therefore PREST4) is fairly

machine independent. Fortran programs can usually be transported

to different machines with only minor modifications (e.g.

different 1/0 unit numbers).

B. Efficiecz

Fortran IV formatted 1/O must be performed interpretively

and is therefore quite slow. In all other respects Fortran IV

and PREST4 are efficent programming Languages. We note, however?

that the additional structuring of PREST4 programs that would be

very helpful to a code optimizer is not available to the Fortran

compiler; all the structured statements are converted to IF and

GOTO statements before reaching the compiler.

C. LeveL

PREST4 is a medium level language.

D. Size of L and
g Compjle

Because of the EQUIVALENCE statement, the unstructured

nature of Fortran programs (optimization is difficult), and the

POCCNET Language Study PAGE 2-112

preprocessor pass, PREST4 will require a fairly Large compiler.

E. 2 QisL SX.ttL Features

Although PREST4 is described as "A Highly Structured FORTRAN

Language for Systems Programming", the language has no special

system features.

F. Error Checking and Debging

Fortran compilers have traditionally had very poor compile

and runtime diagnostics, so PREST4 diagnostics will probably be

poor. The preprocessor phase of PREST4 does print error messages

when illegal PREST4 statements are detected.

PREST4 has two control statements for debugging programs.

The statement %IDENT <message> wilL cause <message> to be printed

each time the IDENT statement is encountered during execution of

the program. A full statement trace can be initiated with the

%TRACE statement.

G. Desian Supppor

(a) moduLarity

PREST4 supports independent compilation of subroutines and

functions, and communication through COMMON blocks.

(b) modifiability

PREST4 has a limited number of structured programming

constructs, and an include feature (%COPY) to insert source

statements into a PREST4 program from a file. However, the

Language has no macro processor, no feature like the PASCAL

constant statement for declaring program constants, and no

significant features for constructing complex data structures.

PREST4 programs would be easier to modify than ordinary Fortran

IV programs, but more difficult than programs written in

languages like PASCAL or HAL/S.

(c) reliability

POCCNET Language Study PAGE 2-113

The structured programming constructs make PPEST4 a great

improvement over Fortran IV. However, PREST4 has no character or

string operators and data types, and does not have sufficient

data structuring capabilities. The Lack of these features

requires PREST4 programs to simulate any character processing,

List processing, or record processing with Fortran code. PREST4

programs will therefore tend to be longer than necessary and more

difficult to understand.

H. jjse

PREST4 is implemented on the PDP-10, but the preprocessor

could be implemented on almost any machine.

POCCNET Language Study PAGE 2-114

2.13. SIMPL-T

2.13.1. LANGUAGE FEATURES

SIMPL-T [BAS74,BAS76a] is a small, procedure oriented,

non-block structured Language developed by Victor Basili and Joe

Turner at the University of Maryland. The language provides

features for arithmetic, character, and string processing, and

includes a number of structured programming constructs. SIMPL-T

is the basis language for a family of languages that includes

SIMPL-S and SIMPL-XI (systems programming languages for the

Univac 1100 and the DEC PDP-11 series), GRAAL (a graph algorithm

language), and SIMPL-R (a Language for scientific programming).

A. Basi! i &t Izyes ad Ogerators

SIMPL-T has three basic data types: INT (integer), CHAR

(single character), and STRING (variable length character

strings). Complete type checking is performed at compile-time,

and in general no automatic type conversions are performed4

SIMPL-T allows six types of constants: integer, character,

string, binaryt octal, and hexadecimal.

SIMPL-T provides the following operators and functions for

manipulating the basic data types:

arithmetic operators (INT operands only)

+, -, *, /, unary

relational operators (INT, CHAR, or STRING operands)

The operand types must be the same. The relational

operators yield an integer result (0 - false,

1 - true).

string operators & functions

<string> .CON. <string>

Concatenation of strings.

<string> [<start-position>, <number-of-chars>J

Substring operator. May appear

POCCNET Language Study 	 PAGE 2-115

on the Left-hand side of an

assignment statement.

LENGTH (<string>) Current Length of string.

MATCH (<string-1>,<string-2>)

Position of <string-2> in

<string-l>.

INTF (<string>) Converts string to integer.

STRINGF C<integer>) Converts an integer or a
<char>
character to a string.

TRIM (<string>) Trims trailing blanks.

LETTERS (<string>) Predicate returning true if

<string> contains only Letters.

DIGITS (<string>) Similar predicate for digits.

CHARF (<string>) Converts from string to

character.

Logical operators (INT operands)

.AND., .OR., *NOT.

The logical operators all return an integer

result (0 or 1).

bit and part-word operators (INT operands)

.LL.

<integer-expr> 	 ,LC. <number-of-bits>

.RL.

.RA.

Left logical, left circular, right logical, and

right arithmetic shifts.

.A.

<int-expr> .V. 	 <int-expr>

.X.

Bitwise and, or1 and exclusive or.

.C. <int-expr>

Bitwise complement.

<int-expr> [<bit-position>,<number-of-bits>)

Part-vord selector. May appear on Left-hand side

of an assignment statement.

character functions

INTVAL (<char>)

POCCNET Language Study 	 PAGE 2-116

ASCII code for the character.

CHARVAL (<ASCII-code>)

Character corresponding to the ASCII code.

INTF (<char>)

Converts a character (which must be a digit)

to an integer.

CHARF (<integer>)

<string>

Converts an integer or a string to character.

PACK (<char-array-varable>,<string-expr>)

UNPACK (<string-expr> <char-array-variable>)

Conversion between strings and character arrays.

B. Control Structures

-	 IF <expr> THEN <stmt-tist> (ELSE <stmt-List> Y END

(Standard conditional with the required terminator

END.)

- C !<abel>! Y WHILE <expr> DO <stmt-list> END

(WhiLe Loop with optional Label. The Label may only be

referenced by EXIT statements; SIMPL-T has no GOTO

statement.)

- CASE <expr> OF

<case-expr-List> <stmt-tist>

<case-expr-List> <stmt-list>

{ ELSE <stit-list> }

END

(Case statement. The <expr> is compared sequentially

with the values in each Ccase-expr-list> ; the

<stmt-list> whose <case-expr-List> contains the <expr>

is executed, The <expr> and <case-expr-list>'s must

alL be of the same type, but can be INT or CHAR. The

<stmt-list> of the optional ELSE clause is executed

only if no <case-expr-List> contains the <expr>.)

POCCNET Language Study PAGE 2-117

- PROC <ident> C (<parameter-List>) }

<proc-body>

<type> FUNG <ident> { (<parameter-list>) }

<function-body>

(Procedure and function definition. Both can be

recursive, and both can receive their arguments by

value or by reference. Al scalar parameters are

passed by value unless the REF option is specified.)

- EXIT C (<Label>))

(Exit innermost or Label while Loop.)

- CALL <ident>) C (<argument-List> }

(CalL a procedure.)

- <ident> C (<argument-list>) }

(Invoke a function.)

- RETURN

(Return from a procedure.)

- RETURN (<expr>)

(Return from a function with a result,)

- ABORT

(Terminate execution abnormally.)

Note: SIMPL-T provides no GOTO statement.

C. Data Structures

The only data structure supported by SIMPL-T is the

one-dimensionaL array. The decLaration

<type> ARRAY <ident> (<number-of-elements>)

declares <ident> to be a one-dimensionaL array of the specifed

type. The type can be any of the three basic types (INT, CHAR,

or STRING). Array elements are referenced using standard

subscript notation:

<ident> (<subscript-List>)

POCCNET Language Study PAGE 2-118

D. Other Features

SIMPL-T has a parameterized macro facility of the form

DEFINE <ident> = <define-string>

where the <define-string> is any character string. Parameters in

the string are denoted by &nv where n is any integer between 1

and 9. For example:

DEFINE NUL = "CHARVAL(O)0 /* control characters */

LF = "CHARVAL(10)'

MOD = &l-(&l/92)*&2 /* mod function *1

The language also has simple I/O facilities.

E. Runtime Environment

SIMPL-T requires a runtime stack for recursive procedures

and functions, and for evaluation of string expressions.

However, no dynamic storage alLocator is required for arrays or

strings.

F. Syntax

The working BNF grammar for SIMPL-T has -pproximateLy 150

productions.

2.13.2. CHARACTERISTICS

A. Machine Dependence

SIMPL-T has few machine dependent features and could be

implemented on almost any machine.

B. Efficiency

SIMPL-T has no dynamic arrayst and no automatic type

conversion. All type checking is performed at compile time, and

the default passing mechanism for procedure or function calls is

by value. This allows a great deal of work to be done a compile

time rather than at execution time. The Univac 1100 series

implementation of SIMPL-T generates code that is as efficient as

POCCNET Language Study PAGE 2-119

Univac Fortran V.

C. Level of the Lanouage

SIMPL-T is a medium Level Language.

D. Size Of Lanaua e and Conpilet

The compiler for SIMPL-T is moderate in size.

E. Special Sylei Features

SIMPL-T has no special system features1 although the two

system programming languages in the SIMPL family (SIMPL-S and

SIMPL-XI) provide a number of system features. SIMPL-XI [HAM76],

for example, provides indirect and absolute addressing, access to

machine registers, and interrupt procedures (procedures activated

when a specific interrupt occurs). A one-dimensional array MEM

is used to provide the absolute addressing feature: MEM(I)

accesses the I-th word in main memory. A similar array MEMB is

provided for accessing bytes.

F. Error Checkin and he buaso!i

SIMPL-T performs compLete type-checking at compile time, and

no implicit conversion between data types is permitted. SIMPL-T

can therefore detect many errors at compile time that can not be

detected by other languages (such as rortran, LITTLE, or BLISS).

A number of compiler directives are also available for

debugging SIMPL-T programst including:

(1) subscript checking

(2) case statement checking

(3) calling history

(4) static and runtime statistics

(Such as number of statements executed,

timing estimates for procedures, and so

forth.)

(5) value tracing for program variables

(6) compilable comments

(The form of a compilable comment is

POCCNET Language Study PAGE 2-120

/+ <indicators> <SIMPL-text> +/

where an <indicator> is an integer that can be turned

on or off with other compiler directives. For example;

/+ 4 WRITE ("DEBUG: ON ITERATION",I"X =" X) +/

(7) cross reference and attribute listings.

G. Desianj h!P22Lt

(a) modularity

SIMPL-T allows independent compilation of program modules,

and communication through external variables and entry points.

(b) modifiability

SIMPL-T has a fairly complete set of structured programming

constructs and a powerful macroprocessor. SIMPL-T programs should

be fairly easy to modify.

(c) reliability

The lack of constructs for building more complex data

structures may make SIMPL-T programs Longer than necessary and

difficult to read. SIMPL-T has no record structure, and arrays

can only have one dimension. A large portion of a SIMPL-T

program that operates on complex data structures will therefore

be taken up by segments of SIMPL statements providing access

methods for the data structures. Languages with more complex

data types would provide these access methods automatically. In

HALlST for example, if A and B are compatible record structures

then the statement A = B; will copy all of record B into record

A. In SIMPL-T a transfer of this type would have to be simulated

by a number of assignment statements.

H. Use

SIMPL-T has been implemented on the Univac 1100 series, the

PDP 11/45, the Data General NOVA, and the CDC 6600. A version

for the IBM 360 series is under development0 The compiler is

written in SIMPL-T itself, so the compiler can be transported to

2-121
POCCNET Language study PAGE

in fact,

other machines using standard bootstrapplng

techniques.

on aLL
and parser) is used

the same front end (scanner

This provides standard error

of SIMPL-T.
impLementations

diagnostics for incorrect programs.

POCCNET Language Study PAGE 2-122

2.14. SPL / Mark IV

2.14.1. LANGUAGE FEATURES

SPL [SDC70J is a large, high level Language developed by

System Development Corporation in the period 1967-1970. The

Language was designed for aerospace applications and combines

many of the features in the PL/I and JOVIAL languages. SPL offers

high Level features Like data tables and matrix arithmetic, as

well as Low Level, machine-oriented features Like inline assembLy

language and access to machine registers. SPL has five

application oriented subsets; the subset chosen for this report

(SPL / Mark IV) was designed for ground-based support computers.

In the remainder of this section SPL / Mark IV will be referred

to as SPL.

A. Basic Data Trp2ta Oq raptj

SPL has nine basic data types: INTEGER, FIXED, FLOATING,

BOOLEAN, LOGICAL (bit string), TEXT (character string), STATUS

(ordered sets of "states"), LOCATION (typed pointers), and

CONTEXTUAL (a "universal" type). The STATUS type is equivalent

to the PASCAL scalar type. CONTEXTUAL items can be assigned a

value of any type. When a CONTEXTUAL item X is assigned a value

of type T, the type of the item X is assumed to be T until X is

assigned a new value of different type on some subsequent Line in

the program. CONTEXTUAL items are intended to be used for

temporary storage of various types of items.

The following types of constants can appear in an SPL

expression: integer, fixed point, floating point, boolean,

binary, octaLT hexadecimal, and character string, location, and

status. Mixed mode expressions are permitted and automatic

conversion is provided between all of the basic data types.

The operators and the data types on which they operate are

listed below:

arithmetic operators

POCCNET Language Study PAGE 2-123

REM - Remainder function.

ABS - Absolute value.

LSH - Left arithmetic shift.

RSH - Right arithmetic shift.

SCL - Scales an arithmetic expression.

SCLR - Scales and rounds an arithmetic expression.

LogicaL operators

LAND, LOR, LXOR, LSH, RSH

- Bitwise and, or, exclusive or, and Left and right

logical shift.

BIT - Pseudo-variable for accessing bit strings in any

type of item. Can appear on left-hand side of

an assignment statement.

boolean operators

NOT, AND, ORt EQUIV

- ALL the boolean operators yield a boolean result.

relational operators

EQ, NQ, GR, LS, GQ, LQ

- The relational operators yield a boolean result.

character operators

BYTE - Pseudo-variable for accessing bytes in a

textual item. Can appear on left-hand side

of an assignment statement.

location operators

LOC - Yields Location of an item.

IND - Pseudo-variable for performing indirect

addressing. Can appear on left-hand side

of an assignment statement.

B. Control Structures

- IF <boolean-expr> <stmt-List>

(Simple conditional statement.)

POCCNET Language Study PAGE 2-124

- IF <boolean-expr> THEN <stmt-List>

f ORIF <boolean-expr> <stmt-list>)

C ORIF <boolean-expr> <strut-List>)

C ELSE <stmt-List> }

END

(Conditional statement. If the initial boolean

expression is false then the booLean expressions in

the ORIF clauses are evaluated in order until a true

one is found. If all the boolean expressions are

false then the ELSE statement is executed.)

- CONDITIONS

<boolean-expr> <indicator-List>

<bootean-expr> <indicator-List>

ACTIONS

<stmt> <indicator-List>

* a

<stmt> <indicator-List>

ELSE <stmt>

END

(Decision table for creating a tabular solution to a

complex decision problem. The table describes the

conditions applicable to the problem and the actions

to be taken in response to the conditions. The

indicator lists in the CONDITIONS and ACTIONS sections

are composed of indicators Y (yes), N (no), and blank

(doesn-t apply). The indicator N can only be used in

the CONDITIONS section.)

FOR <var> C = <init-value> I C BY <incr-expr> }

C WHILE <boolean-expr> I { UNTIL <bootean-expr> }

<numeric-expr>

<stmt-List> END

POCCNET Language Study 	 PAGE 2-125

(For loop. If the <init-value> clause is not

specified then the current value of the loop variable

is used, and if the BY clause is not specified the

loop variable is not automatically incremented on each

iteration of the Loop. The value of the Loop variable

and the <mncr-expr> can be altered by the loop body.

The clause UNTIL <numerc-expr> is equivalent to UNTIL

<var> EQ <numeric-expr>.

An abbreviated form of the FOR loop is provided

for processing tables (discussed in section D. a
Structures). The statement

FOR <var> = <table-name> <stmt-List> END

is equivalent to

FOR <var> = <length-of-table> - 1 BY -1

WHILE <var> GQ 0 <stmt-List> END .)

- FOR <var> = <for-clause>

ALSO <var> = <for-cLause>

ALSO <var> = <for-clause>

<stmt-list>

END
(ParalLel FOR Loop. All of the Loop variables are

incremented on each iteration of the Loop. The

<for-clause> contains the <-nit-value>, BY, WHILE, and

UNTIL clauses of the ordinary FOR statement.)

- LOOP WHILE <boolean-expr> <stmt-List> END

UNTIL

(While and until Loop with the test performed before

execution of the Loop body0)

- ON 	 <booLean-expr> <stmt-list> END

<interrupt-name>

(Feature for handling abnormal conditions. The

<boolean-expr> is automaticalLy evaluated whenever the

first operand in the expression (which must be a

POCCNET Language Study 	 PAGE 2-126

variable) is assigned a new value. The variable can

be assigned a new value by an SPL statement or by some

hardware event. If the <boolean-expr> evaLuates to

true or if the specified interrupt occurs then the

<stmt-List> is executed , The SPL ON statement is

similar to PL/I ON-conditions, although SPL provides

no bay of selectively enabling or disabling ON

variables, or for changing the <stmt-list> to be

executed for a given condition or interrupt.)

- UNLOCK <interrupt-name>

LOCK

(Enables or disables the specified interrupt. The

LOCK and UNLOCK statements can also be used for

reserving hardware registers.)

GOTO 	 <Label>

<location-variable>

(Unconditional transfer. The Location variable is

assumed to contain the address of some SPL statement

label.)

- GOTO <switch-name> (<integer-expr>)

(Computed goto. The <suitch-name> must have been

declared with a statement of the form

SWITCH <switch-name> = <label-list>

On execution of the GOTO statement the value i of the

<integer-expr> is used to select the i-th Label, and a

branch is made to the selected Label.)

- RETURN { (<resuLt-expr>))

(Return from a procedure or function with an

optional result.)

- STOP C (<Label>) }

(Halts execution. A "continue operation" after the

execution of a STOP statement will result in a

transfer of control to the statement following the

STOP statement, or to the specified label.)

POCCNET Language Study PAGE 2-127

- TEST ((<FOR-Loop-variabLe>))

(Continues the next iteration of the innermost WHILE,

UNTIL, or FOR loop, or the innermost FOR Loop having

the specified loop variable.)

- WAIT

(Repeats execution of an IF, WHILE, or UNTIL statement

until the conditional expression is satisfied. The

statement is intended to be used to halt the execution

of a program until some external event has occurred.

For example,

IF STATUSREG EQ X 2C- THEN WAIT .)

- PROC .<proc-name> { (<input-parameter-List>

- <output-parameter-List>) }

INLINE
C <type> } C REENTRANT 3

RECURSIVE

<data-decLarations>

ENDDATA

<stmt-List>

EXIT C (<resuLt-expr>) }

(Procedure or function definition. Procedures,

functions, and statement Labels can be passed as

procedure parameters. Alternate exits from a

procedure are possible by branching to a statement

Label parameter. Eoth procedures and functions can

have multipLe entry points. The EXIT clause at the

end of a function definition indicates the expression

to be returned by the function, although the EXIT

expression can be overridden by a RETURN statement.)

- .<proc-name> { (<input-arguments> = <output-arguments>)

(Invoke a procedure or function,)

- CLOSE <close-name> <stmt-List> END

(Parameterless, internal subroutine that can be

POCCNET Language Study PAGE 2-128

defined within another procedure.)

- GOTO <close-name>

(Call a CLOSE subroutine. Control will resume at the

next statement when the CLOSE
routine has finished

execution.)

C. Data Structures

SPL has three features for constructing more complex data

structures from the basic data types:

(a) arrays

Arrays are declared with a statement of the form

ARRAY <ident> (<dimension-list>) <type> C MEDIUM Y

DENSE

The <type> can be any of the basic data types, and the

options MEDIUM and DENSE affect
 the packing density of the

array. Arrays can have an arbitrary number of dimensions.

The <dimension-list> can optionally contain implicit

subscripts for each of the dimensions. These implicit

subscripts are used as the default subscripts whenever an

array variable is used without explicit subscripts. For

example:

ARRAY M(I 10, J 10) INTEGER " Matrix with implicit

FOR 1= 0 BY 1 UNTIL 10 " subscripts. "

ALSO J = 0 BY 1

M = I " Equivalent to

END " M(IJ) = I .

Array indexing begins at 0, and array elements are

referenced using the standard subscript operator <ident>

The following operators are available
(<subscript-List>) .

or 2for manipulating arrays, matrices (2 dimensional arrays

or
dimensional subsets of arrays), and vectors (rows columns

of matrices):

- Assignment.

= - Exchange.

POCCNET Language Study 	 PAGE 2-129

+, - - Vector and matrix addition.

- Vector and matrix dot product.

**-I - Matrix inverse.

TPOSE - Matrix transpose function.

1* - Cross 	 product for 3-D vectors.

(b) tables

SPL has a table data structures almost identical to the

JOVIAL/J3B table. Tables are declared with a statement of

the form

TABLE <ident> C 	 (<implicit-subscript>) } <table-length>

MEDIUM

,CSERIAL > k DENSE I <item-declarations>

TIGHT

The implicit subscript is used whenever the table identifier

is used a subscript. The default method for allocating

tables is by 'columns", that is, there is a contiguous block

of core for the first item in alL table entries, another

block for alL the second items, and so forth. If the SERIAL

option is specified, however, the table will be allocated by

table entry. For each table entry there will be a block of

core long enough to contain all the items in the entry. The

options MEDIUM, DENSE, and TIGHT affect the packing density

of the tablet The items in the <item-declarations> list can

be any of the basic data types? but item names must be

distinct between tables.

An alternate version of the table declaration gives the

programmer complete control over pLacement of items within a

table entry. The number of words per table entry and the

placement of each item (word position and starting bit

within the word) is directly specified. The storage for

items can overlap.

Tables can be accessed in any of the following four ways:

<table-name> - Accesses entire table.

<table-name> (<subscript>) - Accesses all of the specified

entry in the table.

POCCNET Language Study PAGE 2-130

<item-name> - Accesses an entire column of

the table.

<item-name> (<subscript>) - Accesses a singte item in the

specified table entry.

The assignment operator =1 the exchange operator ==, and the

relational operators EQ, NQ can be used to copy, exchange,

or compare tables or tabLe entries. The assignment operator

can also be used to copy columns of a table. Finally, the

functions NENT and NWDSEN are provided for determining the

number of entries in a table and the number of words in a

table entry.

(c) record structures

Record structures are declared with the statement

<ident>* DECLARE <member-declarations>

The members in a record can be arrayst tables, or any of the

basic data types. The identifiers used for members need not

be distinct from identifiers declared elsewhere. The

operator is used to access members in a record:

<record-name> ' <member-name>

D. Other Features

SPL has an OVERLAY statement that is equivalent to the

Fortran EQUIVALENCE statement, and extensive facilities for

sequential I/O (incLuding programmer specified bLocking factors,

record format, error exits, data conversion, and statements for

opening and closing files).

Simple replacement macros can be defined using the DEFINE

statement

DEFINE <ident> AS <character-string>

All occurrences of the identifier are replaced by the character

string. SPL also has a CONSTANT declaration for declaring

program constants, and an implementation dependent COMPOOL

feature that is similar to the JOVIAL COMPOOL file.

The language provides default declarations for undeclared

variablest and the programmer can change the default to any of

POCCNET Language Study PAGE 2-131

the basic data types at any point in an SPL program. Finally,

the SDC implementation of SPL (Mark IV has compiler directives

permitting the user to write portions of an SPL program in the

JOVIAL Language.

E. Runtime Environment

SPL requires a runtime stack for programs using recursive or

reentrant procedures and functions, and sequential I/O routines.

F. Synjf

The BNF grammar for SPL has approximately 400 productions.

2.14.2. CHARACTERISTICS

A. Machine fepe ripd
SPL has a Large number of machine dependent features,

including the function BIT for accessing bit strings, the OVERLAY

statement, user specified table allocation (word position and bit

position within a word), the hardware statement, and inline

assembly language.

S. Efficiency

SPL permits efficient programming. The language provides

high level. operators (incluaing matrix arithmetic and direct

assignment of arrays and tables), a structured control structure

that permits better optimizationv many features for minimizing

storage requirements (the OVERLAY statement, user defined tablest

packing densities)t the INDEX statement for frequently accessed

variables, and the ability to generate inline assembly code. No

runtime stack is required for non-reentrant procedures.

C. Level of the L e

SPL is a high level Language, although it also provides a

large number of Low level features.

D. Size of the Languaae ad Cqgmi Ir

POCCNET Language Study 	 PAGE 2-132

SPL 	 ia a Large language and will require a Large compiler.

E. apeciaL Sat!em Features

SPL has many features that would be helpful in systems

programming, including

(a) 	 Pointers, tables, and record structures.

(b) Recursive, reentrantl or inline procedures. Procedures can

have multiple entry points and alternate exits. A programs

can abort to a procedure many "Levels" back up the calling

chain by branching to a statement label passed as an input

parameter.

(d) 	 The OVERLAY statement, and user defined table allocation

permitting the overlaying of data items and access to a

block of core under varying data formats.

(e) The ON statement for intercepting interrupts and abnormal

conditions.

(M) 	 The HARDWARE statement for defining machine registers and

other hardware, and the DIRECT statement for inline assembly

language.

(g) 	 The LOCK and UNLOCK statements for reserving hardware

registers, enabling and disabling interrupts, and

establishing read/write protection for areas of memory (for

machines having a memory protection facility).

(h) The INDEX statement for requesting that frequently accessed

variables be allocated in the fastest storage Locations

available.

F. Error Checking and Dt2ga n

In general, SPL requires careful programming. Automatic

conversion is peformed bewteen the basic types, and default

declarations are provided. This will tend to hide a number of

programming errors such as misspellings. Location variables can

be used to alter instructions or to branch into a data area.

Finally, the language has many system features the permit the

user to directly access hardware facilities.

SPL 	 has two compiler directives that would be helpful in

POCCNET Language Study PAGE 2-133

debugging and improving SPL programs. The TRACE directive is

used to trace the value of selected program variables and the

flow history of statement labels for selected areas in a program.

The TIME directive enables the programmer to determine the

execution time of any block of SPL statements.

(a) modularity

SPL is quite modular. The Language has internal and external

procedures and functions, the CLOSE routine for nested

procedures, a structured control structure, and the COMPOOL file.

Independent compilation of procedures and functions is permitted.

(b) modifiability

The Language has a variety of basic data types, high Level

operators, the CONSTANT attribute for declaring program

constants, the DEFINE statement for declaring simple macrost and

a structured control structure. AlL of these features would make

SPL programs easier to read and modify.

However, SPL also has many machine dependent features that

permit bit packing, overlaying of data areas, and inline assembly

language. Use of these features in a program would make

modification or transportation to other machines difficult. The

language also permits programs to be written that are not "self

documenting". Implicit subscripts are provided for arrays and

tables, automatic type conversions are performed, and default

declarations are provided for undeclared variabtes. The

statement GOTO A in an SPL program can be an unconditional branch

to the statement labeled A or a call of a parameterless

procedure.

(c) reliability

SPL provides many low level features that permit efficient,

machine dependent programming at the expense of reliability. All

of the system features require careful programming. Automatic

POCCNET Language Study PAGE 2-134

type conversions and default decLarations wilt also tend to hide

program errors0

H. Use

SPL has been implemented on the IBM 360 and 370 series and

on the CDC 6000 series. The compiler was developed by SDC using

the translator writing system CWS.

POCCNET Language Study PAGE 2-135

2.15. STRCMACS

2.15.1. LANGUAGE FEATURES

STRCMACS [BAR74J is a set of macros providing structured

programming constructs for IBM 0/360 assembly Language. The

macros, which were developed by C. Wrandle Barth at Goddard Space

Flight Center, are placed in the 0S/360 macro Library and invoked

automatically during the assembly of an STRCMACS program. No

preprocessor step is required. in the remainder of the section,

STRCMACS will be considered to be the structured programming

macros plus all the facilities of 0S1360 assembly language.

A. Basic Dat Iga! RE
 Oetrators

STRCMACS is a macro assembly Language operating on 32-bit

words, and no type checking is performed. The operators are the

OS/360 assembly language instructions. The instruction set

provides instructions for manipulating bits, characters,

integers, and floating point, double precision, extended

precision, and decimal numbers,

B. Control Structures

- BLOCK

<instruction-l>

<instruction-k>

BLEND

(Compound statement or code block.)

IF <test expression>

<instruction List>

f ELSE

<instruction List>)

FI

(Standard conditional statement. The <test expression>

is composed of machine instructions for setting the

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR

POCCNET Language Study 	 PAGE 2-136

condition code and mnemonics (from the extended

branch-on-condition mnemonics) specifying under what

conditions the "then" part of the if statement is to

be executed. Tests in the test expression may be

combined using the connectives AND and OR. For

exampLe:

IF (LTR,3,3,P) - if register 3 > 0

IF (TM,8(1)X8O0O),OR,(CLCSIZE=CVMAX "%EQ)

- if high order bit of

word at 8(1) is set,

or if SIZE = "MAX

- DO FOREVER

<instruction-List>

OD

(Unbounded repetition.)

- DO 	 WHILE, <test expression>

UNTIL

<instruction List>

OD

(Standard while and repeat Loops. The <test

expression> is identical to the one described for the

IF construct.)

- DOCASE <case var>

CASE <instruction List> ESAC

a

CASE 	 <instruction List> ESAC

ESACOD

DOCASE <case var>

CASE <case vaLue list> <instruction List> ESAC

CASE <case vaLue List> <instruction List> ESAC

ESACOD

DOCASE

CASE <test expression> <instruction List> ESAC

POCCNET Language Study PAGE 2-137

CASE <test expression> <instruction List> ESAC

ESACOD

(Case and Select constructs. In the first two forms

the <case var> is used to select one of the CASE

blocks for execution. The <case var> can be a

register or a memory Location, and can be a byte,

hatfword, or fuLLword in Length. In the first form of

the DOCASE the <case var> is used directly to select a

CASE block (if <case var> = i then the i-th CASE block

is executed). In the second form, the <case var> is

compared sequentially with the <case value List>s; the

CASE block whose <case value list> contains the <case

var> is executed. In the third form of the DOCASE

there is no <case var>; the <test expressions> are

executed sequentially until one of the tests succeeds.

The CASE block containing the succeeding test is then

executed.

In any of the three forms of the DOCASE construct

one of the CASE blocks can have the MISC operand (for

miscellaneous). A CASE block with this attribute is

executed if no other CASE blocks in the DOCASE are

executed.

example:

case block block will be executed if

CASE 2 <case var> = 2

CASE 3v(5,12) <case var> = 3,5,6,...,12

CASE - <> <case var> = =' or '<>,

CASE (1I15) <case var> = 'I1 I5'

CASE (LTR,8,8,Z) register 8 = 0)

- <label> PROC C <options> I

<instruction list>

CORP <label>

(Procedure construct. The procedure can be called

using the 0S/360 CALL macro. The <options> operand

POCCNET Language Study PAGE 2-138

alLows the user to specify standard or non-standard

Linkage, dynamic saveareas, a procedure identifier

string, base registers, and so forth.)

- EXIT <Label>

(Exit the specified block.)

- ONEXIT

<instruction List>

f ATEND

<instruction List> 1

OD

(STRCMACS distinguishes between normal exit of a DO

Loop by failure of the Loop test and abnormal exit by

the execution of an EXIT macro. The ONEXIT ... ATEND

construct can be appended to any of the DO loop

constructs. If the Loop is terminated abnormally then

the ONEXIT <instruction list> is executed and the

ATEND <instruction List> is skipped. IF the Loop

terminates normally only the ATEND <instruction list>

is executed.)

C. Data Structures

STRCMACS has no high Level data structures.

D. Other Features

An STRCMACS program can use all of the 0S1360 assembly

Language instructions,

E. Runtime Environment

As an assembly Language STRCMACS wiLt run on a bare machine.

F_ Sytax

The STRCMACS macros are translated into assembly Language by

the 0S/360 assembLer. There is no compiler for STRCMACS.

2.15.2. CHARACTERISTICS

POCCNET Language Study PAGE 2-139

A. Machine DeQendence

The STRCMACS macros are designed for the IBM 360 series.

However, similar macros could be designed for any machine.

B. Efficiency

STRCMACS is as efficient as assembly language.

C. Level

STRCMACS is a very Low Level Language.

D. Size of LA.n a Angg giier

STRCMACS is implemented by a small number of macrost and is

therefore quite small.

E. apeciat Slatem Features

STRCMACS has no special constructs or data structures for

systems programming. However, the user has access to the full set

of 0S1360 assembly language instructions.

F. Error Checking and bebuqqing

The STRCMACS macros will produce diagnostic messages at

assembly time if an error is detected. Howevert no runtime error

checking is performed. A few features are provided for debugging

STRCMACS programs. Any PROC can specify the following debug

options: (1) LISTBLOCKS - lists the static nesting, name, and

block number of all blocks in the PROC; (2) PROCNAMES - generates

an in-Line character string for the procedure name to aid in

locating procedures in an ABEND dump; (3) PROCCOUNTS, BLOCKCOUNTS

- counts the number of times that each block in the PROC is

executed; (4) PROCTRACE - maintains the calling history of the

Last 257 blocks.

G. Design §apgjt

(a) modularity

STRCMACS suoports independent assembly of programs, and

POCCNET Language Study PAGE 2-140

provides communication through external variables or COMMON

blocks. The Language is also considerably more structured than

ordinary assembly language.

(b) modifiability

STRCMACS is essentially an assembly language. Although the

structured programming constructs are a vast improvement over

ordinary assembly Language, STRCMACS programs will still be

difficult to modify.

(c) reliability

Although the structured constructs are an improvement,

STRCMACS will stilL have the same reliability problems as

assembly language. No type checking of any sort is performed,

all the operators (machine instructions) are low level, and there

are no data structuring facilities.

H. Use

STRCMACS is implemented on the IBM 360 series. Since the

structured programming constructs are not machine dependent, and

since the number of macros is small, STRCMACS could be

implemented on other machines without any significant effort.

POCCNET Language Study PAGE 3-1

3. POCCNET REQUIREMENTS

In this chapter we examine the specific requirements of

POCCNET [DES76aDES76b] and its applications software. POCCNET

is a hardware/software system that will support the development

and operation of Payload Operations Control Centers (POCCs)

during the 1980's. In order to implement the POCCNET system,

software must be developed for the distributed computer network

and the standardized applications software. We, wilL therefore

give a brief description of each of these areas.

The POCCNET network is composed of five functional

subsystems: an Applications Processor (AP) subsystem, an

Interprocess Communication (IPC) subsystem, a Data Base (DB)

subsystem, an Interface subsystem, and a Control subsystem. The

AP subsystem is composed of general purpose minicomputers with

operating systems capable of running POCC software. The IPC

subsystem handles all message transfers within the network, and

the DB subsystem provides on-Line storage for the POCCs and the

network. The standardized applications software for POCCNET is

also managed by the DB subsystem. The Interface subsystem

provides communication between POCCNET and the outside world

(which includes human users, telemetry and commands, and other

computer systems). Finally, the Control subsystem directs and

monitors the operation of the entire POCCNET system.

The package of standardized applications software will

provide software that implements functions common to many POCCs.

This includes POCC application programs, program development

tools, and related software.

The implementation language (or group of languages) for

POCCNET will therefore have to support all of the following

application areas: (1) general systems programming, which is

required throughout POCCNET; (2) real-time processing for

time-critical operations in the IPC and Interface subsystems; (3)

data-base processing for the DS subsystem; (4) numerical

processing for massaging spacecraft datat simulating telemetry,

POCCNET Language Study 	 PAGE 3-2

and so forth; (5) data formatting and conversion for the

Interface subsystem. This involves primarily bit and character

string processing.

For each of these application areas we would Like a

programming Language that provided the following features:

(1) 	 general systems programming

(a) 	 bit and character string manipulation

(b) some ability to perform absolute and indirect addressing

(such as pointers or the SIMPL-XI MEM array)

(c) record structures and one-dimensional arrays

(a) ability to suppress type checking, so that a block of

core can be accessed under various data formats

(e) exception handling by ON-conditions or interrupt

procedures

(f) 	 reentrant or recursive procedures and functions

(g) 	 dynamic storage allocation

(h) concurrent processes and controlled data sharing between

processes

(i) 	 access to operating system facilities

(2) 	 real-time processing

(a) 	 all of the features of general systems programming

(b) 	 high efficiency

(c) 	 real-time scheduling of processes (schedule at a certain

time, in a certain number of clock ticks, and so forth)

(3) 	 data-base processing

(a) protection mechanism for files and individual data

- elements

(b) 	 various file organizations and access methods

(c) 	 good data structuring capabilities, possibly a data

abstraction feature

(d) 	 facilities for defining a data-base management system

(4) 	 numericaL processing

(a) 	 variety of arithmetic data types and precisions

(b) 	 user control over precision

POCCNET Language Study PAGE 3-3

(c) ability to intercept underfLow and overflow conditions

(d) array, matrix, and vector data structures

(e) library of mathematical functions and subroutines

(5) data formatting and conversion

(a) bit and character string manipulation

In addition to the requirements for the separate application

areas, there are a group of features that should appear in any

POCCNET implementation language. These features include integer1

floating point, and character data types; control structures for

structured programming; arrays and record structures for building

data structures; a macro processor; and some form of INCLUDE

statement for copying commonly used source files into a program.

A data abstraction facility would also be very helpful, although

CS-4 and Concurrent Pascal are the only languages in this study

that provide such a feature.

In addition to having all of the above capabilities, the

scientific programming notation should possess certain

characteristics. Among other things it should support ease of

program expression, the writing of correct, efficient, and

portable code, and the reuse of algotithms written in it. Let us

consider these characteristics one at a time.

One would Like to express the algorithms in a natural

manner. This implies the notation should be natural to the

problem area. For example within the general problem area of

mathematics there is a specialized and different mathematical

notation for the algebraist and analyst. Each aids in expressing

the problems of the particular area explicitly and precisely and

in an easy to communicate form.

Correctness of a program is defined as the ability of the

program to perform consistantly with what we perceive to be its

functional specifications. The programming Language should

support the writing of correct programs. The language should

simplify rather than complicate the understanding of the problem

solution. The complexity in understanding a program should be

due to the complexity inherent in the algorithms, not due to the

POCCNET Language Study PAGE 3-4

notation used. The notation should be clear and simple. A

language natural to the problem area aids in correctness as it

makes the statement of the solution easier to read and

understand. The easier it is to read and understand a solution

algorithm, the easier it is to certify its correctness. Aids in

making a program readable are structuring it from top to bottom

and breaking it into small pieces. In order to achieve the goal

of supporting correctness, a language should be simple, contain

welt-understood control and data structures, permit the breaking

up of the algorithm into small pieces using procedures and

macrost and contain high-level problem area oriented language

primitives.

A program is considered efficient if it executes at as fast

a speed and in as small a space as is necessary. The Language

should permit the efficient execution of programs written in it.

The higher Level the algorithm, the more information is exposed

for optimization and the better job a compiler can do on

improving the code generated. On the other hand, high level

often implies general applicability in order to handle the

majority of cases. This can often imply an inefficiency for a

particular application. For example, consider a language in

which matrices have been defined as a primitive data type with a

full set of operators including matrix multiplication. The

multiplication operation has been defined for the general case.

Suppose the particular subproblem calls for the multiplication of

two triangular matrices. Using the standard built in operator is

inefficient. One would like to be able to substitute a more

efficient multiplication algorithm for the particular case

involved. But this implies that the Language permits the

redefinition of language primitives at lower Levels of

abstraction. That is, the programmer should be able to express

the algorithm at a high level and then alter the lower level

design of the algorithm primitives for a particular application

when -itis necessary for reasons of efficiency.

A Language supports portability when it permits the writing

of algorithms that can execute on different machines.

POCCNET Language Study PAGE 3-5

Portability is a difficult, subtle problem that involves several

diverse subproblems. The numerical accuracy of arithmetic

computations can vary even on machines with the same word size.

Techniques for dealing with this problem include variable Length

arithmetic packages or a minimum precision (moduto word size)

specifications. Another problem area of portability is text

processing. One way of dealing with this problem is to define a

high-level string data type which is word size independent. A

third area of problems involves interfacing with a variety of

host machine systems. One method of handling this is to define

programs to run on some Level of virtual machine that is

acceptable accross the various machine architectures and systems

and then to define that virtual machine on top of the host system

for each of those architectures. This is commonly done using a

runtime library. In general the higher Level the algorithms, the

more portable they are. However, more portability often means

less efficiency. A Language that supports portability should

contain one of the above mechanisms for transporting numerical

precision accross machine architectures, high level data types,

the ability to keep nonportable aspects in one place, and a macro

facility for parameterizing packets of information modulo word

size.

Software is reusable if it can be used accross several

different projects with similar benefits. In order for software

to be reusable, its function must be of a reasonably general

nature, e.g., the square root and sine functions, it must be

written in a general way and it must have a good, simple,

straightfoward set of specifications. The area of scientific

programming has a better history of reusable software than most.

Consider as examples some of the libraries of numerical analysis

routines. This is due largely to the easily recognizable,

general nature of many scientific functions and the simplicity of

their specifications. However, there are whole areas of

scientific software development that do not have a histroy of

reuse, such as telemetry software.

Software written in a general way may perform less

POCCNET Language Study PAGE 3-6

efficiently than hand-tailored software. However? if it is well

written it should be possibLe to measure it and based on these

measures modify it slightly in the appropriate places to perform

to specification for the particular application.

A good, simple, straightfoward set of specifications is not

easy to accomplish, especially when the nature of the function is

complex. A good high Level algorithm can help in eliciting that

specification. Specifications for software modules should aLso

include an analysis of the algorithm, e.g., the efficiency of the

algorithm with respect to the size of the input data. The

Language should support the development of a good library of

weiL-specified software modules that are easy to modify if the

time and space requirements are off. It should also be capable

of interfacing efficiently with other Languages and of expressing

algorithms so that the essential function is clear and of a

general nature.

POCCNET Language Study PAGE 4-1

4. LANGUAGE FEATURE TABLES FOR THE LANGUAGES

4.1. INTRODUCTION

Chapter 2 contained a discussion of the criteria used for

evaluating the fifteen languages, and the preliminary evaluations

of the Languages themselves. This chapter contains a series of

tables that summarize the evaluations in Chapter 2, as well as

adding some new information about the languages and POCCNET

requirements discussed in Chapter 3. Each table is devoted to

one of the following POCCNET requirements: modularity,

modifiability, reLiaoiLity, data structuring, character string

processing, bit string processing, numerical processing,

efficiency, special system features and error checking and
t

debugging. Each table contains the primary language features

that influence the POCCNET requirement, and indicates for each

Language feature the presence (X) or absence (.) of that feature

in the languages. Footnotes are added to the end of some of the

tables to provide additional information about a language or

language feature.

The following abbreviations are used for the languages in

the tables: BL (BLISS-11), C (C)9 CP (CONCURRENT PASCAL), FL

(FLECS), HS (HAL/S), IF (INTERDATA FORTRAN V), JS (JOSSLE), JV

(JOVIAL/J3B), LI (LITTLE), PA (PASCAL)t P4 (PREST4), SI

(SIMPL-T), and SP (SPL I Mark IV). The language STRCMACS is not

included in the tables because it only provides structured

control structures (no data types or data structures).

POCCNET Language Study PAGE 4-2

4.2. MODULARITY

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

Structured control structure X X X X X X X X X X X X X
Independent compilation of X X * X X X X X X X o X X X
programs

INCLUDE feature [13 X X X X *

COMPOOL files . o a a a X X .* * . X

Global or COMMON data X X X X X X X X X X X X X X

Controlled access to shared a X X . X
data [23

Data abstraction facility * . X X

Block structure £3) X * X X o X XX X * X . X

Notes:

[1 Some feature permitting source text from a program

Library to be included into a program.

[23 Such as the HAL/S UPtATE block.

[3) JOSSLE is a block structured Language, but it restricts

the inheritance of global variabLes. See discussion of

KNOWN statement in the Chapter 2 evaluation of JOSSLE.

POCCNET Language Study PAGE 4-3

4.3. MODIFIABILITY

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

Structured control structure X X X X X X * X X X X X X X

INCLUDE feature Ell X X . . o . X o a X *

COMPOOL files K * X . . . X

Data abstraction facility . X X

Simple repLacement macros £2) X X . . . X o X X . . X X

Parameterized macros X a K . . X o

Conditional compiLation of a . a . . a X X a a X o
source text

High level data structures X X . X X X o X . X
and operators

CONSTANT dectaration o X . X X X , X . . X

Notes:

£12 Some feature permitting source text from a program

Library to be included into a program.

[2) Macros that do not permit parameters.

POCCNET Language Study PAGE 4-4

4.4. RELIABILITY

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

Structured controL structure X X X X X X o X X X X X X X

FuLL type checking [1) X X X ,X X o X X X X

INCLUDE feature [22 X * X . . X

Data abstraction facitity . X X . *

COMPOOL files . X . . X K

High level data structures oX X X X X X X

and operators

CONSTANT declaration * X X o X o X X X * X

Few machine-dependent features • X K X X X X X X X X X

Standardized output Listings * 0 . K X *...

Debugging aids [33 X o X X X XX X X

Few compiler-suppLied defaults X X . . . X X X

Notes:

Ell Including type checking of procedure parameters.

£22 Some feature permitting source text from a program

Library to be included into a program.

[32 LITTLE and SIMPL-T provide many debugging aids, the

other languages provide only a few.

POCCNET Language Study 	 PAGE 4-5

4.5. DATA STRUCTURING FEATURES

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

Array data structure X X X X X X X X X X X X X X

Array assignment operator . o X e KX . o K o X

Array comparison operators . X X X o . •

= and

Record data structure 11 X X X X ° X X Ko X

Record assignment operator o X X X X X X * .

Record comparison operators * X X * K * . K X .

= and =

Untyped pointer variables 123 X

Typed pointer variables [33 X 	 X . X X X

Address function for pointers X X . . . X X X o * * * X

Dynamic storage allocation *. X * . X .

using pointers [4)

Set data type * . * X . .

Set relational operators * X X . .° .

and --

Set assignment operator X X * . . . X

Various set operators E5 X X X . *

Data abstraction facility X X

Notes:

E1) 	 JOVIAL only has a table data structure (tables can only be formed

from simple items, so that a JOVIAL table can not contain another

table or an array as one of its items).

[2J Pointers in INTERDATA FORTRAN V can only be used to fetch data

indirectly, they can not be used to store data indirectly.

£3) The JOSSLE pointer type is really a table index (subscript) and

not a general pointer.

£4) Such as the JOSSLE ALLOCATE statement or the PASCAL function NEW.

[53 Such as set union, intersection, complement, and membership.

POCCNET Language Study 	 PAGE 4-6

4.6. CHARACTER STRING PROCESSING

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

Character data type 113 * X X .		 a . X 0 X

Character string data o X XK X X . . . X X

type [22

Assignment operator for * X o X X X X * X X

strings

Concatenation operator * K XK xK K * X

Substring pseudo-operator [32 . . o X 0 * K X . K X

Substring function onLy X

Length function 	 o * KX KX X

Character search function X o X . * X

(IKDEX)

RetationaL operators = X x X X X X X X X x X X X X

Relational operators <, > X K X x x x X X X X

<= 	 >=

Conversion between character X K X X * K X X X X o X K

and integer data type

Notes:

E1 	 Fortran has no character data type, but permits characters

to be packed into INTEGER variabLes. LITTLE is typeLess but

provides character string operators.

£22 C, CONCURRENT PASCAL, and PASCAL have no character string data

type, but they do permit character arrays.

t3J A substring pseudo-operator can appear on the Left-hand side of

an assignment statement.

POCCNET Language Study PAGE 4-7

4.7. BIT STRING PROCESSING

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

Bit data type £1] a o a a o X * X X X * X

AND, OR, NOT functions X X . . . X X X X K . X X

SHIFT function X X X X * X X

Bit substring pseudo-operator x . . XK X oX X • X X

Concatenation operator X . . . X

ReLational operators =1 -= X .X X X X X

Relational operators <1 > K o X • X * X X

<=, >=

Notes:

Ell BLISS-11 is typeless but it provides bit manipulating operators.

INTERDATA FORTRAN V and SIMPLT-T have no bit data type but they

provide operators or functions for manipulating bits in integer

expressions.

POCCNET Language Study PAGE 4-8

4.8. NUMERICAL PROCESSING

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

Integer data type X X X X X X X X X X X X X X

Floating point data type * X X X X X X X X * X X * X

Fixed point data type . . . X .. . X . . . X

Complex data type . . X X X X .

Double precision floating o X . X X X 4 X . IX

point type

VariabLe precision for alL . X oa a a a a a X

numeric data types

Automatic conversion between X X X X X X X X

the numeric types

Generic numerical functions o X X o X * X K o X * X X

Ability to intercept underfLow . . X X .

or overflow conditions

Matrix or vector data type [1 X X

Matrix and vector assignment . . X X . .
 X
0

operator

Matrix and vector relational o * X X . .. * . . X

operators = =

Matrix and vector dot product . X X X

Vector cross product . . . X *X . * * . o X

Matrix inverse, transpose, and . * X .X X

trace

FOR or DO Loops [23 X X X X X X X oX X X X ° X

Notes:

[1 SPL has no matrix type, but it provides many operators for

manipulating 1 or 2-dimensional sections of arrays.

[2) FLECS, INTERDATA FORTRAN V, LITTLE, and PREST4 require the

DO loop increment to be positive. CONCURRENT PASCAL and PASCAL

only permit 1 or -1 as the loop increment.

POCCNET Language Study PAGE 4-9

4.9. EFFICIENCY

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

Uses runtime stack X X • X * X X X X X

Uses dynamic storage allocator * * . * o * a X * * X . * .

Uses system monitor for . * X X * X * * . . . o
runtime scheduling

Structured control structure X X X X X X * X X X X X X X

High level data structures o * X X X KX* X

and operators

User requested packing . . . X X * * X

densities E12

Bit packing feature in tables . . . X o X a o X

or structures [2)

OVERLAY or EQUIVALENCE stmt . * . K o K o X o X KX

INLINE attribute for .X * * . . o . .* X

procedures and functions [33

Compiler directives for X K * * K * a X

requesting fast storage L4 3

InLine assembLy language X * X

Notes:

4

E1 Such as the table or record attributes MEDIUM, DENSE, TIGHT.

[23 User allocation of data items within tables or records, including

word and bit position.

E32 INLINE attribute to force procedures or functions to be expanded

inline instead of generating a calling secuence.

[4) Such as the HAL/S TEMPORARY statement and the C REGISTER statement.

POCCNET Language Study PAGE 4-10

4.10. SPECIAL SYSTEM FEATURES

Language Feature Languages

C4BL C CP HS JS LI P4 SP
FL IF JV PA SI

Record structure El) o X X X o K * X X . X X

Bit manipulating features X X *X X X X X X X

Character manipulating X X X X X X X X X X X X X X

features [2)

Pointers or indirect X X . * X X X a X .o
 X

addressing £32

Access to machine registers X . XK . * . o * a * X

Inline assembly language X o o . X X

Reentrant or recursive
 X X X X X *X X X X

procedures

Exception handling X *X o X . o * - X

constructs £42

Special subroutine X o X X . . .

linkages £53

Dynamic storage allocation [62 * x X *. .

Concurrent processes
 X X X

Real-time scheduling of . X
processes

Ability to access a block of X *X X X X X X X *X X

core under varying data

formats [72

Notes:

[13 JOVIAL only has a table data structure (tables can only be formed

from simple items, so that a JOVIAL table can not contain another

table or an array as one of its items).

[2) The Fortran languages FLECS, INTERDATA FORTRAN V, and PREST4

provide inadequate character manipulating features.

[32 Pointers in INTERDATA FORTRAN V can only be used to fetch data

indirectly, they can not be used to store data indirectly.

[4) Such as ON-conditions or signal handlers.

[52 Subroutine linkages to other languages (Like Fortran, PL/I,

assembly language), or user control over the subroutine Linkage

(how arguments are passed, which registers are altered, how result

POCCNET Language Study PAGE 4-11

is returned, and so forth).

[63 Such as the JOSSLE ALLOCATE statement or the PASCAL function NEW.

[73 Without using assembly Language routines.

4.11. ERROR CHECKING AND DEBUGGING

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA P4 SI SP

CompLete type checking [13 o X X X * X * X * X • X

Partial type checking only o . . . X * X o X * * X * X

No automatic conversions X X * . . X X X X

between the basic data types

No default type declarations X * X X . * X o X X X

Exception handLing X * . X o X * o . * . . X

constructs [2)

Debugging aids:

Subscript checking * . . X o X X * X . X

Variable tracing . . . a .• X . . X * X X X

Catling history X X X

Execution-time statistics * .. X . . X X

Conditional compilation X * X . . . X

feature

Notes:

£1) Including procedure parameters and pointer variables.

[2 such as ON-conditions or signal handlers.

POCCNET Language Study PAGE 5-1

5. RECOMMENDATIONS

5.1. Introduction

Based on our study of POCCNET requirements and our

evaluation of the languages, we have concluded that none of the

fifteen languages can satisfy all of the requirements. The

application areas within POCCNET are diverse and there are too

many additional constraints on the implementation Language.

Since none of the Languages satisfy all the requirements, a

Language (or group of languages) should be chosen that satisfies

most of the POCCNET requirements at a low cost.

The requirements of the POCCNET implementation Language were

discussed in Chapters 2, 3, and 4. They included support for the

five application areas, and additional constraints such as

machine independence, efficiency? and modifiability. Howeverf we

should also consider the costs associated with each of the

fifteen Languages. Language costs can be subdivided into

start-up costs, development and testing costs, and maintenance

costs. The start-up costs for the POCCNET language include the

cost of obtaining compilers, training personnel in the new

Language and design methodotogyt and developing other language

tools (such as macro processors, debugging aids, and special

linkers or Loaders). Start-up cost will therefore be directly

affected by the complexity of the Language and the availability

of compilers for the language.

Development and testing costs will be affected by the design

support and debugging features in the Language. These include

features supporting reliability, modularity, modifiability

readability, and error checking/debugging aids. Type checking of

procedure and function parameters will speed the integration

testing of program modules.

Maintenance costs will be affected by the readability and

modifiability of the language. Languages that are not machine

POCCNET Language Study PAGE 5-2

dependent wilL require fewer software changes as new hardware is

added to POCCNET. Documentation aids such as cross reference and

attribute Listing, static and execution-time program statistics,

and standardized output listings would also Lower the cost of

maintaining POCCNET software.

Another factor to consider is the relatively Long life of

POCCNET. The network is expected to support GSFC POCCS

throughout the 1980's. Over such a tong period the development,

testing, and maintenance costs will greatly exceed the start-up

costs associated with the implementation Language.

5.2. Language Recommendations

At this point we wilL discuss our conclusions and

recommendations about the fifteen Languages. The languages fall

naturalLy into five groups: (1) the SIMPL and PASCAL families;

(2) the high level languages CS-4, HAL/St JOSSLE, JOVIAL, and

SPL; (3) the Fortran languages FLECS, INTERDATA FORTRAN Vt and

PREST4; (4) the low to medium Level languages BLISS, C, and

LITTLE; (5) the macro assembly Language STRCMACS. We wilL

discuss each of these groups in turn.

5.3. Families of Languages

As discussed previously, there are a number of application

areas within POCCNET. These range from real-time and general

systems programming up to numerical and data base processing.

POCCNET poses additional constraints on the implementation

Language, including machine independence, reliability, and

modifiability. Based on our evaluation of the languages, none of

them meet alL the POCCNET requirements. Moreover, it is likely

that any Language that did satisfy alL of the requirements would

be too large and contain too many contradictory features

[BAS76b]. The runtime environment needed to support such a

Language would be complex and inefficient. What we would like

REPRODUCIBILIY OF THE

ORIGINAL PAGE IS POOR

POCCNET Language Study PAGE 5-3

instead is a set of Languages, each tailored to one particular

subapplication. However, there are several drawbacks to building

a Large set of independent languages. For one thing, the design

and development of new programming languages would be fraught

with many problems since each language would be an entirely new

design experience. Secondly, if these languages were truly

different in design, it would require the user to Learn several

totally different notations for solving the different aspects of

the problem. Thirdly, there would be a proliferation of

languages and compilers to maintain.

One possible approach that minimizes some of the above

drawbacks is the development of a family of programming languages

and compilers. The basic idea behind the family is that alL the

languages in the family contain a core design which consists of a

minimal set of common language features and a simple common

runtime environment. This core design cefines the base language

for which all the other languages in the family are extensions.

This also guarantees a basic common design for the compilers.

The basic family concept can be viewed as a tree structure in

which each of the languages in a subtree is an extension of the

language at the root of the subtree. For example:

L4 LS L6

L2 L3

Li

In this case the language L4 = L2 U (new features of 14).

Using the family approach permits the development of several

application area languages, minimizing the difference between the

languages and the compiler design effort. Since many of the

constructs for various applications contain a similarity of

design or interact with the environment in similar ways,

experience derived from one design and development effort can be

directly applied to another. Since the best choice of notation

for a particular application area may not be known a priori, the

family idea permits some experimentation without the cost of a

POCCNET Language Study PAGE 5-4

totally new Language and compiler development.

There are several approaches to minimizing the compiler

development for a family of Languages. One can develop an

extensible Language and build the family out of the extensible

base language. The extension can be made either by a data

abstraction facility as in CLU ELIS743 or by some form of full

Language extension as in ELF ECHE68]. The family of compilers

can also be built using a translator writing system or by

extending some base core compiler, as was done with the SIMPL and

the PASCAL families. A combination of two of the above

techniques is recommended here, and they will be discussed a

little more fully.

In the core extensible compiler approach, the base compiler

for the base language is extended for each new language in the

family, creating a family of compilers. In order to achieve the

resulting family of compilers, the core compiler must be easy to

modify and easy to extend with new features. One experience with

this technique, the SIMPL family of Languages and compilers, has

proved reasonably successful with respect to extensibility due to

the use of specialized software oevelopment techniques during

compiler development.

Using the core extensible compiler approacht the compiler

C(L) for a new Language in a subtree is built from the compiler

for the language at the root of the subtree. This is done by

making modifications (mod) to that compiler to permit it to

handle the new features of the extension Language. For the

family in the previous example we have

C(L4) = C(L2) mod {L4 fixes) U (new L4 routines>

where the set of L4 routines represents the code for the L4

extensions to L21 and the set of L4 fixes represents the code for

modifying the L2 compiler to add those extensions. The key to

good extensible compiler design is to minimize the number of

modifications (fixes) and maximize the number of independent

routines.

Using a data extension approach, new data types and data

structures can be added to the language using a built-in data

POCCNET Language Study PAGE 5-5

abstraction facility. In order to achieve reasonable

extensibility, the facility should be easy to use and permit

efficient implementation. Experience with forms of data

abstraction facilities in CS-4 and CONCURRENT PASCAL have

demonstrated the benefits of this approach.

Here the effective compiler for a new Language is again

built from the compiler for its immediate ancestor in the tree.

This is done by adding a new set of Library modules that

represent the new data types and structures and their associated

operators and access mechanisms, respectively. For example,

C(L4) = C(L2) U {L4 Library modules).

Each of the two techniques has different assets. The core

extensible compiler approach permits full language extension,

including new control structures and modifications to the runtime

environment. It offers the most efficiency and permits a full

set of specialized error diagnostics to be built in. The data

definitional approach can be used only for data extensions, but

these are by far the most common in the range of subapplication.

It is also a lot easier to do and can be performed by the average

programmer, where the compiLer extensions require more

specialized training. Ideally, the first approach should be used

for application extensions and the second for smaller

subapplication extensions.

Let us now apply this family concept to the POCCNET system

and consider how the various application-oriented language

features could be distributed across several Languages in the

family. There would be a language in the family for each

application, i.e., a systems programming language, a numerical

analysis language, a cata base language, a graphics or display

language, and so forth. Each Language would be built out of some

base language (which may in fact be the system Language). The

application language may have several extensions, each of which

adds on some higher level set of primitives. For example, some

set of standardized algorithms could be defined as a set of

primitive operations in the language. The family tree for the

language may take on a form such as

POCCNET Language Study PAGE 5-6

AL(n)

NAL
Numerical
Analysis

AL(I)
Apptication
Language

DBL
Data Base
Language

Language

SL

Base Language
System
Language

In general, the application Languages can be just as high an

extension of ALM1) as is appropriate for the sophistication of

the user. The system is then modularized so that each module is

programmed in the appropriate language, e.g., a numerical

analysis module in the numerical analysis language NAL. Each of

these modules can interface with the others through an

interfacing system. The interface system is part of the basis

for the family of languages and contains among other things the

compilers for the Languages. The interface system could be built

into the IPC or Interface Subsystems of POCCNET.

It is clear that the family of languages concept permits the

incorporation of the various capabilities required for the

POCCNET system. This concept also rates weLL with respect to

design support, reliability, efficiency, machine independence,

and reusability.

With respect to ease of expression, algorithms are written

in a notation which is specialized to the application. Since

each Language is reasonably independent of the application Level,

primitives in one notation can be fine-tuned without affecting

the primitives of another application. This permits a certain

amount of experimentation, and primitives can be varied with

experience.

High level, appLication-oriented primitives make a solution

algorithm easier to read and understand and therefore easier to

verify as correct. The specialized notation raises the level of

the executing algorithm to the Level at which the solution is

developed. Debugging features will be improved, because the

compilers for the individual languages can tailor error

diagnostics and recovery to the particular application.

POCCNET Language Study PAGE 5-7

Each language is small and relatively simple, so that

compilation of programs is very efficient. Each language is not

complicated by a mix of features whose interaction may complicate

the runtime environment, and a simpler runtime environment

implies more efficient execution. Language features are

specialized to meet one specific application and don't have to be

generalized, inefficient versions of the feature. If necessary,

the programmer can always use one of the lower level languages to

improve or fine-tune an algorithm.

Higher Level primitives will make 'programs more portable.

The hierarchy with respect to the data abstractions permits the

localization of the machine dependent aspects of the program, and

these localized sections can be recoded when the program is

transported to a different machine. And with regard to the

development of reusable software, each application area has its

own Language. Thus, needed submodules are written in the target

application notation rather than the host application notation.

This makes it easier to recognize the essential function of the

submodule and easier to write it in a more generally applicable

way.

Our primary recommendation is that POCCNET be implemented

using a family of languages. Two such families (PASCAL and

SIMPL) were examined in this study. However? since neither of

these families as they currently exist will satisfy all of the

requirements of POCCNET, we recommend that one of the families be

improved for POCCNET. The compilers for both languages are

written in a high Level language (PASCAL and SIMPL-T) and both

were designed to be modifiable and machine independent.

The two major deficiencies in the PASCAL family are the lack

of external procedures (programs must be compiled en masse) and

the lack of "adjustable" arrays or strings as formal procedure

parameters. PASCAL requires the length of formal array or string

parameters to be decLared at compile time, so there is no way to

write a PASCAL procedure that will manipulate arrays or strings

of arbitrary length. We would recommend that external procedures

POCCNET Language Study PAGE 5-8

be added to PASCAL, and that adjustable arrays and strings be

provided using the "*"-bound of PL/I or by passing in the array

or string dimensions, as is done in Fortran. At Least one

implementation of PASCAL on the IBM 360 series already provides

external procedures and functions [RUS76]. The usefulness of

CONCURRENT PASCAL for systems programming would also be increased

by the addition of a bit string data type.

The SIMPL family could be improved by the addition of record

structures and multidimensional arrays (both of these extensions

have already been designed). The system features in SIMPL-XI

could also be extended for POCCNET. The addition of a data

abstraction facility would greatly improve the entire SIMPL

family. Finally, these changes would not require complete

reworking of the compiler, since the SIMPL compiler was

specificalLy designed to be extendible.

5.4. Use of a Single Language

The second alternative for a POCCNET implementation language

is to use a single language that meets most of the POCCNET

requirements. Any of the languages CS-41 HAL/S, JOSSLE,

JOVIAL/J38t and SPLIMark IV could be used to implement most of

POCCNET.

We recommend that HAL/S be chosen over the other four

languages. HAL/S has few machine dependent features, it is

efficient, and it has many system features (including records,

pointers, real-time process scheduling, and exception handling

statements). The Language also has features that would improve

the reliability and modifiability of programst including full

type checking, COMPOOL files, a macro processort and structured

control structures. HAL/S has been implemented on the IBM 360

series, the Data General Nova, and the Shuttle flight computer.

Although the CS-4 language has many nice features (such as

data abstractions), the language is currently under development

and no compiler is available. For this reason, we can not

POCCNET Language Study PAGE 5-9

recommend CS-4 for use in the POCCNET system. SPL is judged to

be equivalent to HAL/S in power, but the Language has many

features that would decrease the reliability of programs. SPL

provides many low Level and machine dependent features, automatic

type conversion between all of the basic data types, default

declarations of variables, and "implicit" subscripts for arrays.

SPL was therefore judged to be inferior to HAL/S. Finally, the

JOSSLE and JOVIAL/J3B languages are proper subsets of HAL/S and

were therefore eliminated.

5.5. Use of Fortran

Because of its widespread use in the computer industry, this

report must discuss the possibility of using Fortran as the

POCCNET implementation language. Fortran variants have been

implemented on almost alL commercial computer systems. Although

there are many minor differences between the implementations,

almost all implementations support the 1966 ANSI Standard

Fortran. In addition, the Fortran language is more widely known

than any of the other languages in this study. Thus, the use of

Fortran as the POCCNET implementation language would probably

permit a shorter start-up time and a lower initial cost than the

other languages.

Despite the lower initial cost, we recommend that Fortran

not be used for POCCNET. Over the course of a long project like

POCCNET, it is likely that the cost of software development and

maintenance will greatly exceed the initial start-up cost. This

is crucial, because Fortran provides few features that support

the development or maintenance of programs. The Language has few

control structures, so that GOTO and IF statements must be used

to simulate if-then-else statements, while loops, case

statements, etc. No bit or character data type is provided. Bit

and character data must therefore be stored in INTEGER variables,

and it becomes impossible to enforce type checking between the

integer, bit, and character data types. Fortran also doesn't

POCCNET Language Study PAGE 5-10

perform type checking for subroutine or function parameters, so

integration testing of Fortran programs becomes more difficult.

The only data structure provided by Fortran is the array: the

language has no record structure for forming logical groupings of

data. Finally, Fortran has no macro facilities, no CONSTANT

statement for defining program parameters, and no INCLUDE feature

for copying source files into a program. The Lack of these

features wilL make Fortran programs longer than necessary and

difficult to read, modify, or debug.

Finally, Fortran does not provide the system features that

are required of the POCCNET implementation language. Fortran has

no pointers, records, reentrant procedures, access to machine

registers, concurrent processes, or exception handling features.

Some of these features can be simulated by calling assembly

language routines, but with considerable Loss in efficiency. For

alL these reasons, we feeL that Fortran would be a poor choice

for the POCCNET implementation language.

If Fortran is chosen as the implementation Language (in

spite of our recommendations), we strongly advise that a

preprocessor be used to provide control structures for structured

programming. Two such preprocessors (FLECS and PREST4) were

examined in this study. Since PREST4 forbids the use of some

Fortran constructs (FLECS does not) and provides fewer new

control structures than FLECS, we recommend that FLECS be chosen

as the Fortran preprocessor. FLECS is written in Fortran and is

available from its author, T. Beyer, at a nominal cost ($100).

Many other Fortran preprocessors are also available [MEI753.

5.6. Remaining Languages

The remaining languages were eliminated early in the study

when it became clear that they did not come close to satisfying

all the requirements of the POCCNET system. The languages

BLISS-11 and LITTLE were considered to be too Low-level for

general use in POCCNET. Both of these Languages are typeless,

POCCNET Language Study PAGE 5-11

systems implementation languages. While the language C provided

many Low-level features within a typed, medium level Languaget it

was rejected because of its terse and frequently unreadable

syntax.

Finally, some portions of the POCCNET system may be written

in assembly Language where time or space efficiency is critical.

For these portions, we recommend that the vendor's assembly

language be augmented by a set of structured macros similar to

STRCMACS. Macros of this type can greatly improve the

readability of assembly language programs. The structured macros

can be expanded during the normal assembly step if the assemoly

Language provides a macro facility, or during a preprocessor pass

if no such facility exists.

5.7. Summary

To summarize, on the basis of our study none of the fifteen

languages meet all of the requirements for a POCCNET

implementation Language, Our primary recommendation is that a

family of Languages be developed for POCCNET by modifying the

PASCAL or SIMPL families. If a single implementation Language is

to be used then we recommend that the NASA Shuttle Language HAL/S

be chosen. We recommend that Fortran not be used as the

implementation language. Finally, if Fortran or assembly

Language are used in POCCNET then preprocessors should be used to

provide structured control structures.

POCCNET Language Study PAGE 5-12

th-th-that's alL foLks!

POCCNET Language Study PAGE \-2

on bit strings of arbitrary Lengtl

PASCAL - A highly structured, general

purpose Language.

PREST4 - A Fortran preprocessor.

SIMPL-T - The base member of a highly

structured family of Languages.

SPL / MARK IV - A high Level language with many

machine-oriented features.

STRCMACS - A collection of structured

programming macros for IBM OS/360

assembly language.

The Language evaluations in this report are based solely on the

Language reference manuals and other papers listed in the

references. we have immediate access to the compilers for only

two of the fifteen Languages CC and SIMPL-T)0

The criteria for evaluating the Languages and the

preliminary evaluations are presented in the second chapter of

this report. Each evaluation is composed of two sections. The

first section provides a detailed summary of the following

syntactic features of the language:

(1) basic data types and operators

(2) controL structures

(3) data structures

(4) other interesting features

(5) language syntax

(6) runtime environment

The second section of each evaluation presents the

characteristics of the Language:

(1) machine dependence

(2) efficiency

(3) level of the language

(4) size of the language and compiler

(5) special system features

(6) error checking and debugging

(7) design support (modularity, modifiability, and

POCCNET Language Study PAGE

1. INTRODUCTION

This report presents an evaluation of systems implementation

languages for the Payload Operations Control Center Network

(POCCNET), which is a general hardware/software concept adopted

by GSFC as a meansof developing and operating payload operations

control centers in the 1980's. The POCCNET system

[DES76aDES76b] will provide hardware and software

resource-sharing via a distributed computer network and a package

of standardized applications software. This report develops

criteria for evaluating POCCNET implementation Languages, and

then compares fifteen existing languages on the basis of these

criteria.

An attempt was made during this study to examine a wide

range of existing languages, from a low leveL macro assembler to

the very large and high level Language CS-4. The following

fifteen languages were examined in detail:

BLISS-11 - A systems implementation language

for the PDP-11 series.

C - The Language of the UNIX operating

system.

CONCURRENT PASCAL - A high Level language for writing

operating systems.

CS-4 Base Language - An extensible Language being

developed for the Navy0

FLECS - A Fortran preprocessor.

HAL/S - The NASA Language for the Space

Shuttle program.

INTERDATA FORTRAN V - An extension of ANSI Fortran.

JOSSLE - A PL/I derivative for writing

compilers.

JOVIAL/J3B - A close relative of JOVIAL/J3, the

Air Force standard Language for

command and control applications.

LITTLE - A Fortran derivative that operates

