https://ntrs.nasa.gov/search.jsp?R=19930011838 2020-03-17T08:07:29+00:00Z

{NASA-TM-107599-Rev-D) CRAY MINI N93-21027

MANUAL. REVISION D (NASA) 175 p

Unclas

00/60 0152793

Central Scientific
Computing Complex
Document CR-1d

CRAY
Mini Manual

January 1993

(Replaces CR-1c Dated April 1992)

Geoffrey M. Tennille and Lona M. Howser

PREFACE

This record of revision is a permanent part of the CRAY Mini Manual. In this release,
some section headings have the suffix [d] added to indicate that the section was added
or substantially changed at this revision. Section headings without a suffix or with
suffixes [a] through [c] have not changed since the last revision. This method of anno-
tation was chosen since sections in the CRAY Mini Manual are generally brief, thus a
revision record can be kept with the text of the document. Grammatical, spelling, sec-
tion renumbering and other changes that don’t effect the context of the section are not

marked.
DATE REVISION MAIJOR FEATURES
March 1989 Preliminary
July 1989 Original Corrections to Preliminary version; NQS queues; MSS Utilities
March 1990 Revision a UNICOS 5.1; File System Quotas; Autotasking; Appendix on Unsup-
ported Software; cdbx debugger; New options for MSS utilities; New
syntax for cf77 command; List of acronyms used; Section guides to
hidden files and commands used in this manual
February 1991 Revision b Reorganization of manual; Installation of CRAY Y-MP; FORGE;
hpm; perftrace; Standard C; Additional information on autotasking,
cdbx and quotas; Automatic symbolic dump (debugx)
April 1992 Revision ¢ Hardware upgrades to Voyager and Sabre; UNICOS 6.1; cf77 Ver-
sion 5; Standard C Version 3; Removal of dda and drd debuggers;
New X-based tools for autotasking; Section on run-time errors
January 1993 Revision d Hardware upgrade to Sabre; Solid-state Storage Device; New NQS
queues; Removal of FORGE from Voyager; Mixing C and FOR-
TRAN.

)
M}

January 1993

Preface -1-

CRAY Mini Manual

ACRONYMS [d]

ACD
ANSI
ARC
BLAS
CAB
CAL
CGL
CMB
CPU
DCM
DRAM
EARS
FTP
GAS
IBM
IMSL
7o
ISO
LaRC
LaTS
LCUC
MFLOPS
MOTD
MSS
NAS
NCAR
NCS
NFS
NOS
NQS
NSO
OCO
PVI
RGL
RM/RMT
SAG
SCCS
SNS
SRAM
SSD
SSIG
TCP/IP
X

Preface -2-

Analysis and Computation Division
American National Standards Institute
Ames Research Center ,

Basic Linear Algebra Subroutines
Computer Applications Branch
CRAY Assembly Language

Common Graphics Library

Computer Management Branch

Central Processing Unit

Division Computing Manager

Dynamic Random-Access Memory
Explicit Archival and Retrieval System
File Transfer Protocol

Graphics Animation System
International Business Machines
International Mathematical Statistical Library
Input/Output '
International Organization for Standardization
Langley Research Center

LaRC Telecommunications System
LaRC Computer Users Committee
Million FLoating Operations Per Second
Message-of-the-Day

Mass Storage Subsystem
- Numerical Aerodynamic Simulator
‘National Center for Atmospheric Research

NOS Computing Subsystem

Network File System

Network Operating System

Network Queuing System

Network Support Office

Operations Control Office

Precision Visuals, Inc.

Remote Graphics Library

Raster Metafile/RM Translator
Supercomputing Applications Group
Source Code Control System
Supercomputing Network Subsystem
Static Random-Access Memory
Solid-state Storage Device
Supercomputing Special Interest Group
Transmission Control Protocol/Internet Protocol
X Window System

January 1993

Table of Contents

1.' INTRODUCTION [B] ..oovvrremmssmrsesssssssssesens 1-1
1.1. The CRAY Mini Manual [d] ... 1-1
1.2. Characteristics of Voyager [b] ... ’ 1-2

1.2.1. CRAY-2S Hardware [C] ... 1-2
1.2.2. CRAY-2S Performance [a] S
1.3. Characteristics of Sabre [d] | . 15
1.3.1. CRAY Y-MP Hardware [d] ... 1-5
1.3.2. CRAY Y-MP Performance [d] 1-6
1.4. CRAY Software [C] ... w 1-9
1.5. CRAY Programming [b] ' 1-9
/2. FORTRAN ON THE CRAYS [c] | 2-1
2.1. Compiling with the cft77 Compiler [c] .. 2-2
2.1.1. cft77 Differences On Voyager and Sabre [c] 2-3
2.2. Loading with segldr [c] 2-4
2.3. Using cf77 to Compile and Load [c] 2-5
2.4. Execution of FORTRAN Programs [a] ... 2-7

3. PASCAL AND C ON THE CRAYS [c] 3-1
3.1. PASCAL [C] .oovrrererssssesnssesssnessresees , 3-1
3.2. Mixing C and FORTRAN [d] .. i 3.2
3.3. Standard C [€] .ermrersresmnrsmesesssenes 3-3
3.4. Portable C [C] ...cccmmmmmmmmnneensensnesssssssssseens 34

Januafy 1993 . Table-of-Contents- 1

CRAY Mini Manual

4. UNICOS COMPUTING ENVIRQNMENT L) 4-1
4.1. Logging Onto the CRAY Sﬁpercomputers [c] 4-1
4.1.1. Changing Your PasswWord [C] ... 4-2
4.1.2. Environment and C-Shell Variables [b]mccmsiverns . 4-3
4.1.3. Personalizing Your Environment [a]ccoe......... Y- o
4.1.4. Your .login File [d] ...ovmrerornene SR E AT PR AT = S
4.1.5. Your .cshrc File [C] .o ;4-6
4.2. Interactive Computing ... o i 47
4.2.1. Processes [a]cemenmmrsioioessonns A ST S 4-7
4.2.2. Killing a RUnaway PrOCESSmmmmmsssmssssmssscsssessmeseomessosen 4-8
4.2.3. Logging Out ...erccnen T — i 48
4.3, Batch Processing on the CRAY Supercomﬁuters [d] i, 49
4.3.1. NQS [A] oo esssctsssssssesseses e seesssssssesssssssssssssssssssssssessesssssomsnssesess - 49
4.4. Solid-state Storage DeviCe [A]rcmnsnssmnessssssesesessmesseesesnns -15
4.4.1. SSD Queue Structure and Validation [d] ... i 4-15 ~
4.4.2. SSD Job SubmisSion [A] ... -15
4.4.3. SSD File Cleanup [d]ccccoreenrnssssssssssesssssssssssesemeseseen! -16 \
4.4.4. SSD Sample Script [d]crivcnssnnrsiossnssnnnns SR S J
5. DEBUGGING ON THE CRAYS [C] oo 51
5.1. cdbx Symbolic Debugger [b] ..o SR 5-2
5.2. symdump Snapshot Dump ... - e ssees 5-4
5.3. debug [C] ..o s N 5-4
5.4, Interpreting the Error Location in a CRAY Dump [d] ... 5-5
5.5. Automatic Symbolic DUMD [C] ..voeveveceececessensecsssnenee | - 5-6
5.6. Error MeSSages [C]ceromeesesssmsressssesesss s SORE. = | |
5.6.1. Numbered Error Messages [c] ... coreees st sas s sss e st eseme 5-7
5.6.2. Unnumbered Error Messages [A] ... 5-7
6. CODE MANAGEMENT AND CONVERSIONooreereeesssssns 6-1
6.1. Timing Your Program [C] ... sssmessssossessessseseeens 6-1

Table-of-Contents- 2 January 1993

CRAY Mini Manual

6.1.1. Flowtrace [c] 6-2

6.1.2. Hardware Performance Monitor (hpm) [cj . 6-3
6.1.3. Perftrace [c] s ssasesss s 6-4
6.2. Program Optimization [c] N SO 2 |
6.2.1. Scalar Optimization ... : . 6-5
6.2.2. Automatic Vectorization [c] . - 6-6
6.3. Multitasking [c] SR 6-7
6.3.1. Macrotasking [c] s 07
6.3.2. Microtasking [b] 6-8
6.3.3. Autotasking [b] 6-10
6.3.4. Code ConVersion [C] ... 6-12
6.3.5. Memory Usage [c] ... 6-14
6.3.6. Performance Measurement [C]ooerosoeeeosoooosesssesssessson 6-15
6.4. Source Code COoNtrol SYSIEM ..o 6-17
6.5. FORGE [d] crrerrennnn0=18
6.5.1. Using FORGE with the X Interface [C] .o 6-18

) 7. CRAY DOCUMENTATION [d] o 71
7.1. The CRAY UNICOS Primer [C] ...oooeecmreseommessseossesssmssssessseseesssses 7-1

January 1993 Table-of-Contents- 3

CRAY Mini Manual

}

Table-of-Contents- 4 January 1993

1. INTRODUCTION [b]

Langley Research Center’s (LaRC’s) supercomputers, the CRAY-2S, Voyager, and the
CRAY Y-MP, Sabre, provide a significant portion of the Center’s computing
resources. If you are an experienced UNIX user, it is recommended that you peruse
this manual to check for topics unique to CRAY computers prior to using either Voy-
ager or Sabre. If you are either a novice UNIX user or unfamiliar with the LaRC
environment, you should also read Document A-8, the SNS Programming Environment
User’s Guide prior to using Voyager or Sabre.

1.1. The CRAY Mini Manual [d]

The purpose of the CRAY Mini Manual is to provide Supercomputing Network Sub-
system (SNS) users with basic information about Voyager and Sabre, the two CRAY
supercomputers installed at NASA Langley Research Center (LaRC).

This revision reflects the hardware upgrades to LaRC’s CRAY Y-MP, Sabre, (See sec-
tion 1.3) and installation of a Solid-state Storage Device (see Section 4.4). Addition-
ally, FORGE (See section 6.5) has been removed from Voyager. FORGE, however is
still available for Sun Workstations. The structure of NQS queues (See section 4.3)
has changed. Information on mixing C and FORTRAN code has been added (See sec-
tion 3.2). Within the Mini Manual, new sections and sections that have changed sub-
stantially are marked with the revision level, [d], in the section title. References to
other manuals omit revision levels. See Table 7.1 for the revision level of CRAY
documentation associated with UNICOS 6.1.6. Questions, comments and suggestions
about this manual are solicited from the user community.

This mini manual does not attempt to provide a tutorial on any given topic. It is
intended as a broad overview of the system, with references to more detailed informa-
tion. Commands described in this manual usually have several other options for which
space does not allow a discussion. Examples are for the C-shell unless specifically
designated as Bourne shell examples. Use of the man pages, a standard UNIX feature,
is recommended to learn more about any particular command. The notes utility on the
CONVEX computers, Eagle and Mustang, is used to disseminate information rapidly
to SNS users. Another useful resource is the CRAY UNICOS Primer, Document CR-2
(See section 7.1). It provides more detailed examples than the CRAY Mini Manual.

January 1993 1-1

CRAY Mini Manual

1.2, Characteristics of Voyager [b]

The official designation of LaRC's CRAY-2, Voyager, is a CRAY-2S5/4-128.
Hereafter it will be designated simply as CRAY-2S. The 'S’ indicates that the
memory is static rather than dynamic and the *4-128’ indicates that Voyager has four
processors and 128 million 64-bit words of central memory. The following sections

give a brief description of the major hardware and performance features of the
CRAY-2S. -

1.2.1, CRAY-2S Hardware [c]

The CRAY-2S is a register to register vector processor with 4 identical and indepen-
dent background processors and a foreground processor. It has 128 Mwds of Static
- Random Access Memory (SRAM), interleaved in 128 memory banks. Each back-
ground processor also has a 16,384 word local memory. The CRAY-2S has no virtual
memory. The scalar and vector capability of this machine in a multiprocessing
environment produce extremely high result rates. The entire mainframe, which includes
all memory, computer logic and DC power supplies, is integrated into a compact pack-
age consisting of 14 vertical columns, each 4 foot high, arranged in a 300 degree arc.
Cooling is provided by fluorinert, an inert noncorrosive liquid, which circulates within
the mainframe in direct contact with the integrated circuit packages. Additionally,
Voyager is now configured with 37 Gbytes of disk storage on 2 DS-41 disk drives.

Each of the four independent background processors has eight 64 word vector regis-
ters, eight scalar and eight address registers. Each processor has a single port to the
large common memory, through which vectors are transferred to the vector registers.
There are four vector functional units, three scalar functional units and two address
functional units. It is possible for these functional units to be operating concurrently
on independent operands. Chaining is not supported on Voyager like it is on the
CRAY X-MP and CRAY Y-MP. A set of eight semaphore flags allows for communi-
cation and synchronization between the background processors. One flag is assigned
to each background CPU and one is assigned to each currently active process.

The local memory is used to hold scalar operands during a period of computation. It
can also be used for the temporary storage of vector operands, when they are used
more than once during a computation in the vector registers.

The foreground processor controls and monitors system operations and includes high-
speed synchronous communications channels which interconnect the background
CPU’s, the foreground processor, disk, HSX and external I/O controllers. The HSX
channel controller connects high-speed external devices to the CRAY-2S system. The
foreground processor also responds to background CPU requests and sequences chan-
nel communications signals.

1-2 January 1993

INTRODUCTION

1.2.2. CRAY-2S Performance [a]

The CRAY-2S, Voyager, is a 4 CPU vector and parallel computer. Each CPU is a
powerful register-to-register vector processor (4.1 nanosecond minor cycle) capable of
generating results in the 100-300 MFLOPs (Million FLoating OPerations per Second)
range. Additionally, the four processors can be brought to bear on a single problem,
called multitasking, to greatly increase that performance. On one problem a rate of
over 1 GigaFLOP (one billion floating point operations per second) has been achieved.
The vector speed of the computer is accomphshed primarily through the vectorization
capability of the compiler. Generally, this is the optimization of an innermost DO loop.
However, the programmer can significantly affect performance through program design

and programming techniques employed. '

The MFLOP speed of Voyager is primarily dependent upon three things:

1. Vector length - Vector length is defined to be the length of the DO loop that has
been vectorized by the compiler. In actuality, for loops of length greater than 64 the
compiler generates code to process the loop in groups of 64 since that is the size of
each vector register and hence the maximum number of operands that can be involved

in any one vector instruction. Even though a vector register can only process 64 ele- = -

ments at a time, performance does increase with increasing vector length to a max-
imum (called r-infinity) for "infinite " length vectors. Experience to date indicates that
vectors in the 20 - 40 length range achieve half the performance of r-infinity and vec-
tors of length 64 achieve 60-75 percent of r-infinity if the loop is computationally
intensive (See dependency 3.). The actual figures vary with the type of calculation
being performed.

2. Vector stride - Vector stride is defined to be the separation in memory between ele-
ments of a vector. For instance, the vector A(2), A(6),A(10), etc. has a stridé of 4 .

Vectors with unit or other odd stride can be loaded from memory to a vector register

at a rate of one element per minor cycle after an initial startup of approximately 35

cycles. However, due to the division of the memory into four quadrants and each qua-

drant into 32 banks, the transfer of vectors with any even stride suffer some degrada-

tion in performance. The worst strides, in order of increasing degradation are multiples
of 2, 4, 64, and 128. The cycles per element for these strides are 2,4,6, and 12 respec-

tively.

Table 1.1 gives MFLOP rates for a vector addition of length 64 as a function of of the
stride. Since the largest percentage of time in this loop is the data transfer to and from
memory, the rates are greatly affected by the stride. In a kernel with more calculations
per memory reference, the load/store time has a less dramatic effect on the overall per-
formance.

January 1993 1-3

CRAY Mini Manual

Vector
Length

Table 1.1 - Effect of Stride on CRAY-2S MFLOP Rate of Vector Addition

3. Computational richness of the loop - The CRAY-2S CPU is extremely fast in car-
rying out its floating point operations once operands are in the vector registers. How-
ever, if much of the time spent in executing a DO loop is devoted to loading (or stor-
ing) of vector operands from memory, that performance is degraded. Consequently, a
very simple loop, such as:

CO =AM +B@), I=1,N

where the ratio of memory activity to computation is 3 to 1, has an r-infinity (See dis-
cussion of vector length on previous page) of only 67 MFLOPS, and executes at 23
MFLOPS for vectors of length 64. On the other hand, a loop such as:

A =BO*CA) + DO*ED + 3.4F(D) - GO)*FD +HD) , I=1,N

which has a 1 to 1 ratio, has an r-infinity of 137 MFLOPs, and achieves 104 MFLOPS
for N=64.

The richness of the latter loop also allows increased performance in other ways. The
CRAY-2S allows some functional units to execute in parallel. For instance, where
there is no conflict in the use of the vector registers, it is possible for a vector load (or
store), vector multiplication, and vector addition to be in execution simultaneously.
The compiler attempts to schedule its instructions in such a way to maximize this type
of activity. However, in loops in which very little computation occurs, there is little or
no opportunity for overlap.

Benchmark results on a collection of application programs show Voyager executing
5.9 times as fast as Eagle or Mustang and approximately 25 percent faster than
Navier, the 256 Mwd CRAY-2D at NASA Ames Research Center (ARC). This speed
difference is primarily due to improved performance of the SRAM memory on Voy-
ager, as compared to the Dynamic Random Access Memory (DRAM) of Navier.

1-4 January 1993

)

INTRODUCTION
1.3 Characteristics of Sabre [d]

The official designation of LaRC’s CRAY Y-MP Sabre is a CRAY Y-MP8E/8256.
Hereafter it will be designated simply as CRAY Y-MP. The '8E’ indicates that Sabre
is a model "E’ machine with an eight CPU chassis. The ’8256’ indicates that eight
processors are installed and configured with 256 million words (Mwds) of memory.
The following sections give a brief description of the major hardware and performance
features of the CRAY Y-MP. '

1.3.1 CRAY Y-MP Hardware [d]

The CRAY Y-MP is a register to register vector processor. The configuration of
Sabre is 8 identical and independent processors with interprocessor communication
and an I/O Subsystem (I0S). There is a 512 Mwd Solid-state Storage Device (SSD)
(See section 4.4) associated with Sabre. It has 256 Mwd of SRAM central memory
that is shared by the processors and the I0S. Memory is divided into 256 interleaved
banks, which improves the speed of memory access by allowing simultaneous and
overlapping memory references. Each CPU has four parallel ports to central memory,
each of which performs specific functions. Bidirectional access to memory allows
both block reads and writes to be done simultaneously. The CRAY Y-MP has no vir-
tual memory and unlike Voyager, does not have local memory associated with each
processor. The scalar and vector capability of this machine in a multiprocessing
environment produce extremely high result rates.

The entire mainframe, which includes all memory, computer logic and DC power sup-
plies, is integrated into a compact package that is about six and one half feet tall and
covering an area of about sixteen square feet. Cooling is provided by fluorinert, an
inert noncorrosive liquid, which circulates through each module, power supply and
power supply mounting plate but not in direct contact with the integrated circuit pack-
ages like Voyager. Sabre is now conﬁgured with 80 Gbytes of disk storage on 2
DD-4R disk drives.’

Each of the independent processors has eight 64 word vector registers, eight scalar and
eight address registers. Additionally, the scalar and address registers each have sixty-
four intermediate registers. Each processor has four parallel ports to the common
memory, through which vectors are transferred to the vector registers. There are five
vector functional units, four scalar functional units and two address functional units. It
is possible for these functional units to be operating concurrently on independent
operands. Chaining is supported on Sabre. The CRAY Y-MP also has a built-in per-
formance monitor, hpm (See section 6.1.2), that allows a programmer to gather perfor-
mance data in an efficient manner.

The /O Subsystem (IOS) has several I/O Processors (ICP’S), a buffer memory and
necessary interfaces. It is designed for fast data transfer between buffer memory and
central memory, as well as to peripheral devices. The IOS also interfaces with the

January 1993 ' 1-5

CRAY Mini Manual

High-speéd External Con'imunicétioﬁéy (HSX) channel. The HSX channel controller
connects high-speed external devices to the CRAY Y-MP system.

1.3.2 CRAY Y-MP Performance [d]

LaRC’s CRAY Y-MP, Sabre, is an 8 CPU vector and parallel computer. Each CPU is
a powerful register-to-register vector processor (6 nanosecond minor cycle) capable of
generating results in the 150-300 MFLOPS (Million FLoating OPerations per Second)
range. Additionally, the eight processors can be brought to bear on a single problem,
called multitasking, to greatly increase that performance. The vector speed of the
computer is accomplished primarily through the vectorization capability of the com-
piler. Generally, this is the optimization of an innermost DO loop. However, the pro-
grammer can significantly affect performance through program design and program-
ming techniques employed.

The MFLOP speed of Sabre is primarily dependent upon four things:

1. Vector length - Vector length is defined to be the length of the DO loop that has
been vectorized by the compiler. In actuality, for loops of length greater than 64 the
compiler generates code to process the loop in groups of 64 since that is the size of
each vector register and hence the maximum number of operands that can be involved
in any one vector instruction. Even though a vector register can only process 64 ele-
ments at a time, performance does increase with increasing vector length to a max-
imum (called r-infinity) for "infinite " length vectors. Experience to date indicates that
vectors in the 75 - 100 length range achieve half the performance of r-infinity and vec-
tors of length 64 achieve 40-45 percent of r-infinity if the loop is computationally
intensive (See dependency 3.). The actual figures vary with the type of calculation
being performed.

2. Vector stride - Vector stride is defined to be the separation in memory between ele-
ments of a vector. For instance, the vector A(2), A(6),A(10), etc. has a stride of 4 .
Vectors with unit or other odd stride can be loaded from memory to a vector register
at a rate of one element per minor cycle after an initial startup of approximately 15
cycles. However, due to the division of the memory into four sections of 64 banks
each, the transfer of vectors with any non-unit stride suffers some degradation in per-
formance. The worst strides, in order of increasing degradation, are multiples of 8, 16
and 32. Strides of a multiple of 2 or 4 are no more of a detriment to performance
than odd strides. The average cycles per element for the worst strides are 1.25, 2.5
and 5 respectively.

Table 1.3 gives MFLOP rates for a vector addition of length 64 as a function of of the
stride. Since the largest percentage of time in this loop is the data transfer to and from
memory, the rates are greatly affected by the stride. In a kernel with more calculations
per memory reference, the load/store time has a less dramatic effect on the overall per-
formance. '

1-6 January 1993

INTRODUCTION

Stride
Vector
Length 1 2 3 4 3 16 32 | 64 1 128 | 256
N=64 210 | 184 | 184 | 184 16.2 130 1 93 | 93] 93 | 9.3

Table 1.3 - Effect of Stride on CRAY Y-MP MFLOP Rate of Vector Addition

3. Computational richness of the loop - The CRAY Y-MP CPU is fast in carrying
out its floating point operations once operands are in the vector registers, However, if
much of the time spent in executing a DO loop is devoted to loading (or storing) of
vector operands from memory, that performance is degraded. Consequently, a very
simple loop, such as:

C=AD +B{@, I=1,N

where the ratio of memory activity to computation is 3 to 1, has an r-infinity (See dis-
cussion of vector length on previous page) of only 138 MFLOPS, and executes at 21
MFLOPS for vectors of length 64. On the other hand, a loop such as:

A() = BAY*CQ) + DA*EQ) + 3.4F() - GO)*ED) +H®D) , I=1,N

which has a 1 to 1 ratio, has an r-infinity of 230 MFLOPs, and achieves 104 MFLOPS
for N=64. :

The richness of the latter loop also allows increased performance in other ways. The
CRAY Y-MP allows some functional units to execute in parallel. For instance, where
there is no conflict in the use of the vector registers, it is possible for a vector load (or
store), vector multiplication, and vector addition to be in execution simultaneously.
The compiler attempts to schedule its instructions in such a way to maximize this type
of activity. However, in loops in which very little computation occurs, there is little or
no opportunity for overlap.

January 1993 1-7

CRAY Mini Manual

4. Chaining - The multiple ports to memory of each of the CRAY Y-MP’s processors
allows for the overlapping of memory accesses. The add and multiply functional units
. may also be kept busy at the same time. Consider the following simple loop:

C@M =S * (AQ) + BD), I= LN

- Because of the multiple ports to memory, after the access of the array A is initiated,
the access to the array B can begin after just one clock cycle. Then once an element
of both A and B have been loaded into the vector registers, the addition can begin.
After the addition of the first elements of A and B is complete, that result can be
chained to the multiply functional unit to be multiplied by the scalar S. When the first
result of that operation is complete, a third path to memory may be used to begin the
store of the array C. On Sabre, the computational time for this loop is O(N), since the
three memory accesses (two loads and a store) can be overlapped with the two arith-
metic operations. On Voyager, the computational time for the loop is O(5N), since
none of the memory accesses or arithmetic operations can be overlapped.

1.4. CRAY Software [c]

The CRAY UNICOS operating system is derived from the AT&T System V UNIX
and has been enhanced for use on a supercomputer. The version currently installed is
UNICOS 6.1. It supports most traditional features of UNIX, some of which are
described in sections 2.2.5, 2.2.7 and 3 of the SNS Programming Environment User's
Guide (Document A-8). The NQS batch facility (See section 4.3.1) provides true
batch functionality in a system designed for interactive access. There are two FOR-
TRAN compilers (See chapter 2) as well as PASCAL and two C compilers (See sec-
tions 3.1, 3.2, and 3.3). The FORTRAN compilers automatically vectorize user source
codes. There is no explicit vector syntax.

Several mathematical libraries (See section 7 of A-8), debugging utilities (See section
5), graphics packages (See section 6 of A-8) and code management utilities (See sec-
tion 6) are supported on Voyager and Sabre. Additionally UNICOS supports the
Transmission Control Protocol/Internet Protocol (TCP/IP) utilities (See section 5 of A-
8). Multitasking from within FORTRAN programs is supported both automatically
and via compiler directives (See section 6.3).

1-8 " January 1993

e

)

INTRODUCTION
1.5. CRAY Programming [b}

CRAY supports three higher level programming languages: FORTRAN, PASCAL and
C. There are two different FORTRAN compilers: ¢ft77 and ¢ft, both of which are
based on the ANSI FORTRAN X3.9-1978 standard (FORTRAN 77). Use of the ¢ft77
compiler is recommended, since it is supported across the entire CRAY product line
and generally produces more efficient executable code. The c¢ft FORTRAN compiler is
not available on Sabre. See section 2.1 for more detailed information on the FOR-
TRAN compilers. ‘

The PASCAL compiler is called pascal (See section 3.1). CRAY PASCAL is a com-
plete implementation of the Level 1 requirements of PASCAL standard ISO 7185 (as
defined by the International Organization for Standardization). Document CR-21 is the
CRAY PASCAL Reference Manual. The book PASCAL User Manual and Report
(Second Edition), by Kathleen Jensen and Nicklaus Wirth is considered a standard
PASCAL reference manual.

The C compilers are called cc and pcc (See sections 3.2 and 3.3). The cc compiler is
the Standard C compiler and the pcc compiler is the portable C compiler, which is
based on the AT&T implementation. Documents CR-30 and CR-20 are the
CRAY Standard and CRAY C Reference Manual respectively. The C Programming
Language, by Brian Kernighan and Dennis Ritchie is considered the standard C pro-
gramming language reference manual by most C programmers. Version 2 of Ker-
nighan and Ritchie describes Standard C.

January 1993 1-9

CRAY Mini Manual

%
|
¥

1-10 January 1993

e

e

G

2. FORTRAN ON THE CRAYS [c]

Both CRAY FORTRAN compilers are an implementation of FORTRAN 77, as defined
by the American National Standards Institute (ANSI 3.9-1978) with extensions. The
c¢ft77 compiler contains the full FORTRAN 77 standards, offers automatic vectorizing -
of code and other automated features designed to exploit the CRAY hardware. On
Voyager, the older compiler ¢ft is supported at a maintenance level only, and will not
be supported after UNICOS 6. It is also not available on Sabre and is no longer
described in this manual.

The ¢ft77 compiler is not very fast. It is recommended to use the make utility (See
section 3.3 of A-8) to only recompile those routines that have been modified, rather
than the entire code. Using make to recompile only those routines that have been
modified, is a more efficient use of computer resources. Object code generated by the
two compilers is however load compatible, so subroutines compiled with cft and cft77
can be combined at load to create an executable.

January 1993 ‘ ’ 2-1

CRAY Mini Manual

2.1. Compiling with the cft77 Compiler [c]

The basic syntax for the ¢ft77 compilér is:
cft77[-bptions] filename.f

The name of the file which contains your source code is filename.f, where the .f
extension is required for the compiler to recognize the file as FORTRAN source code.
Executable files generated using cft77 on Voyager and Sabre are not compatible,
You must recompile any source code that is moved between the two CRAY’s.

Keywords may be in any order, separated by spaces. Spaces between a keyword and
the argument are optional. The keywords.-e (enable) and -d (disable) can be followed
by a string concatenating the options. For a detailed description of options, use man
¢ft77 or see Chapter 1 of Document CR-35, CF77 Comptlmg System, Volume 1: FOR-
TRAN Reference Manual.

Some of the more useful options and defaults are listed below.

-a alloc Specifies memory allocation method. alloc can be:

static - All memory allocated statically. Address location does ey
not change. (Default)

stack - Variables in SAVE, DATA and COMMON statements
are allocated statically, all others are stack. (Required for multi-
tasking.)

-b binfile Binary object code of the program ready for the loader is written
to binfile. (Default is filename.o)

-1 inlinef Subprograms contained in the file inlinef are expanded inline.

-l listfile Listings enabled by the compiler are written to listfile. (Default
is filename.l. All listings are off by default.)

-o optim Specifies optimization level. optim can be: noaggress, bl, noin-
line, noloopalign, recurrence, norecursive, scalar, vector,
vsearch, nozeroinc. Default is vector. Multiple optimization
levels are separated by commas. See man pages or chapter 1 of
CR-35 for specific details.

-N col Specifies number of characters of source code to read. col can
be 72 (default) or 80.

2-2 January 1993

g

FORTRAN ON THE CRAYS

-R Enables run-time checking of array boﬁnds.

-ec ‘ Enables a list of common block haines and lengths.

-ef Generates flowtrace for the entire compilation unit.

-ei - Causes uninitialized memory to be set to an undefined value.

-€j Causes at least one execution of each DO loop when the DO

statement is executed.

-em Enables the Loopmark option, which marks each DO loop in the
source listing and indicates type: vector, short vector or scalar.

-es - Listing of source code is written to listfile. (Default is
filename.l)

-ex Enables cross reference listing to be written to listfile. (Default
is filename.l)

-ez _Enables use of debugging by generating a debug table.

Examples: B
cft77 prog.f -

File progf is compiled using all defaults; no listing is generated; the binary to be -
loaded is written to prog.o; and all optimization and vectorization is done.

cft77 -efmx prog.f

File prog.f is compiled with all optimization and vectorization. Flowtrace is enabled,
so timing information can be generated at execution. File prog.l contains the source
listing with each DO loop marked by type and cross reference listing. The binary to
be loaded is written on file prog.o.

2.1.1, cft77 Differences On Voyager and Sabre [c]

There are some subtle differences in the implementation of FORTRAN on Voyager
and Sabre. These differences should not prevent most applications from executing
correctly. Check under notes CRnews on Eagle for all differences between Voyager
and Sabre. Also, since the two machines have differing instruction sets, executable
files generated using cft77 are not-compatible between them.

January 1993 2-3

CRAY Mini Manual

2.2. Loading With segldr [c] .

The segldr command links relocatable binaries together to produce an executable
binary. It invokes the loader and loads all libraries needed for FORTRAN. Informa-
tion is passed to segldr by the use of options or directives. The syntax is:

segldr[options] files

The files listed in files are of the form:

filename.o ~ Binary object file generated by a compiler.
~ filename.a Binary library file.
any other name The files contain directives to segldr.

For a detailed description of the options and directives for segldr, use man segldr or
see Document CR-8, CRAY Segment Loader (SEGLDR) and ld Reference Manual.

A few useful options are listed below:

-o outfile Writes executable program to outfile. (Default is a.out)

-m Writes an address level load map to stdout.
-1lib = . Non-default libraries in directory lib are loaded, such as: larclib,
imslib, perf.
Examples:

segldr prog.o
Creates an exc;:utable a.out from the binary object file prog.o.
segldr -o prog prog.o
Creates an executable prog from the binary object prog.o.
segldr -0 prog -lflow prog.o

Createé‘ an executable prog which ihcludes the flowtrace libraries (See section 6.1.1)
from the binary object file prog.o.

2-4 January 1993

R
S

FORTRAN ON THE CRAYS

2.3. Using cf77 to Conipile and Load [c]

The command ¢f77 can be used to invoke the cft77 compiler and the loader segldr
The syntax of the ¢f77 command allows options to be passed to various system phases
in addition to many other options. Some of the most useful are listed here:

cf77 [-Z phase] [-c] [-F] [-] lib] [-0 outfile] [-Wf'cft77 options"] files

The files have names of the form:

filea library input file
file.f FORTRAN source file
file.o binary object file

cft77_options | cft77_options can be used in the same manner they are used on
the ¢ft77 command line. Multiple options are separated by ,
white space within the double quotes.

-c Produces .o object files, but does not produce an executable.

-F , " Enables flowtrace processing, turns on cft77 flowtrace. opfion and
" ‘ loads flowtrace library. o

-11ib Non-default libraries in directory lib are loaded, such as: larclib,
imslib, perf.

-0 outfile Executable binary file is written to o'utﬁle (Default is a. oui.)

-Z 'phase o ’Spec1ﬁes code generatlon option, usually needed only when mul-

titasking; phase can be one of the following:
¢ - Activates FORTRAN compiler and loader only. (Default)
. m - Specifies microtasking

p - Specifies autotasking

January 1993 : 2-5

CRAY Mini Manual

Additional options may be passed to the individual system phases as:

-wd"fpp" Dependence analyzer
-Wu"ﬁnp" Translator

-Wa"as" Assembler
-W1"segldr" Loader

-Wp"gpp" Generic preprocessor

If any of the multitasking options are specified, ¢f77 ensures that the stack allocation
option is selected. See section 6.3 and CR-38 for details about multitasking.

Examples:
cf77 -¢ *f

All FORTRAN source code files in your current working directory are compiled to
create object code files, but no executable file is generated.

¢f77 -0 prog -F - Wf"-emx" prog.f
The file prog.f is compiled with the ¢ft77 compiler and a source listing prog.l is gen-
erated. File prog.l has DO loops marked according to type and a cross reference.

The flowtrace option is turned on and the flowtrace library is loaded. The executable
created is called prog.

¢f77 -o prog -Z p prog.f

The file prog.f is autotasked (See section 6.3.3) and an executable file, prog, is
created.

2-6 January 1993

‘%:

e

FORTRAN ON THE CRAYS

2.4. Execution of FORTRAN Programs [a]

To execute your program after it has been loaded by the compiler, type the name of
the executable file. The default name of the executable file is a.out.

FORTRAN unit numbers (except unit 5 and 6) are usually associated with a file by a
FORTRAN OPEN statement. If a FORTRAN unit number is not associated with a file
name by a FORTRAN OPEN statement, the default file name is fort.n where n is the
unit number in the FORTRAN I/O statement. FORTRAN units 5 and 6 are standard
input and output respectively. See section 2.4 of A-8 for redirecting I/O to and from
units 5 and 6. : '

A set of sample commands which compiles, loads and executes a typical program
using C-shell file redirection is:

cft77 -es prog.f
segldr -o prog prog.o
prog < datax > & prog.outx

The source is on file prog.f. File prog.l is a source listing, which contains messages
from the compiler, errors and vectorization information. File prog is the executable
generated by the loader. File datax contains data read from unit 5. File prog.outx
contains output from the program that is written to unit 6 and run time errors.

A generic C-shell script to perform the same tasks, with parameter substitution, fol-
lows:

#!/bin/csh

cft77 -es $1.f

segldr -0 $1 $1.0

81 < $2 > & $l.outx

If the above script is on a file runift, then the command

runit prog datax

executes the same commands as the first example.

January 1993 2-7

CRAY Mini Manual

B
#

2-8 January 1993

3. PASCAL AND C ON THE CRAYS [c]

PASCAL, Standard C and Portable C compilers are supported on Voyager and Sabre.
3.1. PASCAL [c]

The CRAY PASCAL compiler is called pascal. Document CR-21, CRAY Pascal
Reference Manual describes the CRAY implementation of PASCAL. Chapter 3 of
CR-21 lists reserved words, operators and predefined identifiers. It complies with the
Level 1 requirements of standard ISO 7185, defined by the International Organization
for Standardization (ISO). The default compiler options may be explicitly overwritten
by the command line. Compiler directives placed in a PASCAL program override the
command line and defauit settings. CRAY extensions toc PASCAL include: ‘

Three sizes of integer data (24, 32 and 64 bit).

An OTHERWISE label for the CASE statement.

Calls to external PASCAL or FORTRAN routines.

The ability to initialize variables at compile time.

Array processing with a single statement.

In-line function expansion.

Octal numbers.

Expressions that operate on entire arrays.

Additional predefined declarations, functions and procedures.

WO L=

The basic syntax of the pascal command line (All parameters are optional.) is:

pascal [-1 file.l] [-b file.o] [-0 olist] [-V] [file.p]

A complete description of the command line may be found in chapter 2 of CR-21.
The parameters are:

-1 file.l Specifies the file to receive the listing output. All list output is
suppressed if -/ 0 (zero) is specified. The default is stdout.

-b file.o Specifies the file to receive the binary load modules generated by
the compiler. The default is file.o, unless the Input file is
stdin, which defauit to stdin.o.

-o olist Specifies the list of compiler options, separated by commas, in
effect at the beginning of compilation.
The defaults on the CRAY-2 are: a+, ag-, al-, bp-, breg=8,
bt-, ¢-, cal-, debug-, dmJ, e+, fe-, g-, I-, m2, mi3, o+, p-, p32,
4, IV, St=, {4+, treg=8, u-, v+, W=, X=, Z+.
The defaults on the CRAY Y-MP are: a+, ag-, al-, bp-,
breg=8, bt-, ¢-, cal-, debug-, dm0, e+, fe-, g-, 1-, mi3, o+, p-,
p32, r+, vv-, st-, t+, treg=8, -, v+, W=, X=, Z+.

g

January 1993 3-1

CRAY Mini Manual

-V Writes the compiler version used to stderr.

file.p Specifies the PASCAL source code file. It must end with the .p
extension, unless the default is used. The default is stdin.

To compile, load and execute a PASCAL program with source on file, test.p, use:

pascal -l test.l -b test.o test.p
segldr -o test test.o
test > test.data

A cbmpiler listing, fest.], is generated. The load modules are on test.o, and the exe-
cutable is called rest. When test is executed, the output is redirected to test.data.

With the 4.2 release of CRAY PASCAL, the ranges of 124 and I32 data types has
expanded. 124 now spans -8388608 to 8838607 and I32 now spans -2147483648 to
2147483647. There are also new directives for inlining, producing CAL assembler
code and aggressive optimization. User messages now conform to the UNICOS 6.1
message system conventions.

3.2. Mixing C and FORTRAN [d]

When a FORTRAN subroutine calls a C module, the C module names must be
declared using upper CASE characters. Labeled COMMON names to link with FOR-
TRAN routines must also be declared using upper case characters. Without these upper
case declarations, the link phase will produce unsatisfied external references. Chapters
12 and 13 of CRAY Standard C Programmer’s Reference Manual, which describe
interlanguage communication and interfaces to libraries and the loaded, may be a valu-
able source of information.

3-2 January 1993

PASCAL AND C ON THE CRAYS

3.3. Standard C [c]

CRAY supports the Standard C compiler, called cc. The cc compiler is described in
The C Programming Language Version 2 by Brian Kernighan and Dennis Ritchie.
The reference manual for the CRAY implementation of Standard C is Document CR-
30. There is also a CRAY Standard C Library Reference Manual (CR-31). The cc
compiler is a superset of the pcc compiler (See section 3.3). Differences include:

1. Function prototypes, which provide a new way to declare functions.

2. Several new types, including long double, which is equivalent to
FORTRAN DOUBLE PRECISION. _

3. There are three new keywords: Const, signed and volatile.

4. Several new header files are included. The most significant for
numerical processing is <float.h>.

5. Vectorization is enhanced.

The syntax for the use of the Standard C compiler is:

cc [options] files

The files usually have the extensions .c, .0 or .s, which are Standard C source code,
i previously compiled code and assembly language code respectively. A file with the

extension .f or .F is considered a ¢ft77 program, the latter to be run through the Stan-

dard C preprocessor prior to being compiled. A partial list of options follows: '

-c Forces the production of object files, and leaves them in the .o
extension. The loader is not invoked.

-F Enables flowtrace processing.

-g Generates the Debug Symbol Table and suppresses any compiler
optimization. '

-h Passes Standard C compiler code generation options to the Stan-
dard C compiler. These include optimization levels. See the
man page for cc for more details.

-0 Specify a name for the executable code, ie. -0 prog. The
default name is a.out.

Many other options are available, check the man entry for cc, which both compiles
and loads Standard C programs.

January 1993 3-3

CRAY Mini Manual

3.4. Portable C [c]

CRAY also supports the portable C compiler called pcc. The pcc compiler is the port-

able C compiler described in The C Programming Language by Brian Kernighan and

Dennis Ritchie. The reference manual for this CRAY implementation of the C pro-

gramming language is Document CR-20. There is also a CRAY C Library Reference

Manual (CR-28). The pcc compiler will not be supported after UNICOS 6. This
implementation has several CRAY extensions, including:

Support of upper and lower case variables up to 255 characters.
Ability to pass a variable length argument list.

Support for declaration of more register variables.

Standardized frame package and stack-handling' mechanism.
Support for enumeration and unique structure member names.

LA WN -

The syntax for the use of the portable C compiler is:

pcc [options] files

The files usually have the extensions .c, .0 or.s, which are C source code, previously
compiled code and assembly language code respectively. A file with the extension .f
or .F is considered a c¢ft77 FORTRAN program, the latter to be run through the C
preprocessor prior to being compiled. A partial list of options follows:

-¢ Forces the production of object files, and leaves them in the .o
extension. The loader is not invoked.

-F Enables flowtrace processing.

-g Generates the Debug Symbol Table and suppresses ahy compiler
optimization.

-h Passes C compiler code generation options to the C compiler.
These include optimization levels. See the man page for cc for
more details.

-0 Specify a name for the executable code, i.e. -0 prog. The
default name is a.out.

Several other options are available, check the man entry for pcc, which both compiles
and loads portable C programs.

3-4 January 1993

£

e e

4. UNICOS COMPUTING ENVIRONMENT [b]

UNICOS is designed primarily as an interactive system. The user has the ability to
customize his environment and to create new commands (or scripts) to perform fre-
quently executed tasks. The environment can be created automatically at login by
using the .login and .cshrc files (See sections 4.1.4 and 4.1.5) or as needed by modi-
fying the environment or C-shell variables (See section 4.1.2). Usually, the .login file
is used to initialize batch vs interactive environment, your search path for commands
and environment variables. The .cshrc file is used to insure that all your aliases are
passed on to subsequent C-shells and to initialize C-shell variables.

4.1. Logging Onto the CRAY Supercomputers [c]
When you get connected to Voyager the system responds

Connected to voyager.larc.nasa.gov
Escape character is >}’

Cray UNICOS (voyager)
UNICOS Release 6.1

A similar message appears when you get connected to Sabre. The system then
prompts for your login name with:

login:

At this time type your login name followed by a carriage return. The carriage return is
followed by a prompt for your password:

password:

If you type either your login name or password incorrectly, the system prompts you
again. If you hit the backspace in an attempt to correct an error, your login attempt
fails. Try again and be more careful. If you can’t login at all, call Password Valida-
tion at 864-8282. If your login is successful, you are told the name of your default
account (See section 1.3.1 of A-8).

January 1993 4-1

CRAY Mini Manual

4.1.1. Changing Your Password {[c]

You must change your initial password when you first login to both Voyager and
Sabre. When you first login to Voyager or Sabre, you are told to change your
password immediately. Once you successfully make the change, the system closes
your connection. Don’t panic, just login again with the new password. You must
change your password at least once a year. Once changed, a password may not be
changed during the next week.. Your new password must meet the following security
requirements:

It must be at least six characters long.

It must have at least two alphabetic and one numeric or special character.
It must not be any permutation of your login name.

It must differ from your old password by at least three characters.

el

Also, words found in a dictionary with only a single digit appended to the end or
added at the beginning to form the password are highly susceptible to being comprom-
ised and should not be used. The command to change your password is:

passwd

It is an interactive command. All that you must do is enter the command and passwd
prompts you for a response. As you enter your old and new passwords at the
appropriate prompts, you will notice that the system does not echo your password to
the screen. This is a security feature and the reason that the system prompts you twice
for your new password. If the two entries for your new password don’t match, the
system does not change your password and prompts you again to enter your new pass-
word. If you forget your password, contact Password Validation at 864-8282 for assis-
tance.

4-2 : January 1993

UNICOS COMPUTING ENVIRONMENT

4.1.2. Environment and C-Shell Variables [b]

Data about your environment such as your home directory and terminal type is main-
tained in two sets of variables called environment and C-shell variables. Environment
variable values are inherited by all programs executed by the shell, including new
shells that you spawn or fork. C-shell variables are inherited by execution of your
.cshrc file whenever you spawn a new C-shell. Many of your environment and C-
shell variables are defined by the system administrator in your initial .cshrc and .login
files, but you may change these variables by using the setenv or set commands respec-
tively. These variables generally define information that programs need to execute
correctly. Your current environment variables can be displayed by typing:

printeny

- The setenv and sef commands have slightly different syntax, as illustrated below
seteny variable string

and

set variable=string

where variable is the name of the environment variable and string is the new value.
Some of the C-shell variables are Boolean and are either set (i.e. true) or unset (i.e.
false), such as noclobber and ignoreeof. These two C-shell variables are used in the
sample .cshrc file in section 4.1.5.

Some common environment variables include HOME, PATH, TERM, USER,
DISPLAY, SHELL, PRINTER, DELIVER and EDITOR. Environment variables are
discussed in detail in section 5.3.1 of CR-2. Some will be illustrated in the examples
of .login and .cshrc files that are discussed in sections 4.1.4 and 4.1.5.

January 1993 4-3

CRAY Mini Manual

4.1.3. Personalizing Your Environment [a]

A nice feature of UNICOS is the ease with which you can change your environment.
It can be done automatically with the .cshrc and .login files, or it can be custom
tailored for a single interactive session. When you are assigned a login name and
password, the system administrator provides default .cshrc and .login files in your
home directory. You may change these to suit your needs. A frequent change that
users make to the .cshre file is to add aliases. Aliases allow you to create another

name for frequently used commands. For example if you type (or add to your .cshrc
file) the next line

alias rm "rm -i"

then each time you type rm to delete a file the system automatically prompts you to
insure that you really intended to remove the specified file. Otherwise you would have
to enter

rm -i
each time you wanted the system to prompt you for file removal.

The directory /usr/locailadm/skel has several sample hidden files that you may use to
customize your environment, including .login, .cshrc and .logout files. Additionally
there are sample skeleton files for the .exrc, .mailrc, .forward, .netrc and .rhosts files
that are discussed in Document A-8. The next two sections have sample .login and
.cshre files that are similar to the skeleton files that the system administrator gives you
initially, If you modify the default files or bring your .login and .cshrc files from
another machine and discover that something isn’t working, then you can copy the
default .Jogin and .cshrc files from the directory /usrl/localladmiskel to your home
directory.

4-4 January 1993

UNICOS COMPUTING ENVIRONMENT

4.1.4. Your .login File [d]

The .login file is automatically executed every time that you log into either CRAY
after your .cshrc file is executed (See section 4.1.5). An analogous .logout file is
automatically executed every time that you log off, if such a file exists (See section
4.2.3). An example of a typical .login file is given below. It is similar, but not identi-
cal to the skeleton .login file that you are given initially. Everything to the right of
the pound signs (#) is a comment to explain the various entries. Your .login file may

not look exactly like this, but you can tailor it to suit your needs.

Sample .login File

set path=("/bin lusrl/locallbin lusr/local /bin lusribin lusrlucb .) # Set path variable

echo "The current date and time are: "
date
umask 022

setenv DELIVER delivery_info
source lusrllocalladm/skel/ GRAPHICS
if ($?ENVIRONMENT) then
if ("SENVIRONMENT" == "BATCH") then
exit
endif
endif
echo "Enter Terminal Type -
Default is vt100 "
set termname="$<"
if ($termname =") then
set termname=vt100
endif
setenv TERM ‘tset -Q - $termname*
set term=$termname
quotamon -s 600

mesg -n _

setenv MAIL lusr/maill $user
setenv PAGER lusrlucblmore
stty erase “H kill "U

setenv EXINT "set redraw wm=8 showinsert ai"

setenv VISUAL lusr/bin/vi
setenv EDITOR [usrlbin/vi
setenv LPP 48

setenv DISPLAY myxterm:0:0

January 1993

#

Give date and time at login

Deny write access to group

and others

delivery_info - 8 chars max

For access to di3000

Check for batch or interactive
environment

Check terminal type -

3 o$k R H o e e e e

Ask for automatic warning
when soft quota is exceeded
Disable talk utility

Identify mailbox

One screen of mail at time
Set erase & line kill chars
Set vi attributes

Use vi for " v in mail

Use vi for " e in mail

Set default page length

Define display for X

CRAY Mini Manual

4.1.5. Your .cshre File [c]

Every time you log onto either CRAY or spawn a new C-shell the .cshrc file is
automatically executed. It may also be executed by typmg ‘

source .cshre

An example of a typical .cshre file is given below. Everything to the right of the
pound signs (#) is a comment to explain the various entries. Your .cshrc file may not
look exactly like this one, but remember that you can tailor it to suit your needs.

Sample .cshre File
alias cds "cd Iscr/$user" # Shortcut to scratch directory
set cdpath=(") # Set alias for default cd
if ($?ENVIRONMENT) then # Check for interactive or baich
if ("SENVIRONMENT" == "BATCH") then # environment.
exit # Following commands are
endif , # only executed for

endif # interactive shells
set history=20 # Save last 20 commands on history file
set savehist=20 # Save last 20 commands between logms
set prompt="3$user% " # Set prompt to show user
set ignoreeof # Disable "D for logout
set noclobber # Avoid accidental file overwrite
set notify # Automatic notification of mail

and background task completion
alias mail mailx # Always use smart mail
alias h history # Shorthand notation for history
alias c clear # Clear the screen
alias rm "rm -i" # Avoid accidental removal of files
alias Is "Is -aC" , # List files in multiple columns

including "." files
alias x "chmod +x" # Make a file executable with

"x file name"
alias bye logout # Alias for logout

More information on the commands listed above or in the sample .Jogin file can be
found using the man command for the specific command or with

man csh

Section 5.3.2 of The CRAY UNICOS Primer has more detail on the .login and .cshrc
files.

4-6 January 1993

W

UNICOS COMPUTING ENVIRONMENT

4.2. Interactive Computing

UNICOS is basically an interactive operating system, but unlike some other operating
systems the user can be executing multiple tasks, called processes under UNICOS, at
the same time. This feature tends to make your terminal sessions more productive,
since you don’t have to wait for one process to finish to start another.

4.2.1. Processes [a]

A process is a program that is running. The most frequently running program is the
command interpreter called csh and referred to as the C-shell. UNICOS also supports
the Bourne shell, which is called sh. Every time the user issues a command the csh
spawns (or forks) a new process. The spawned process is the child of the process that
created it. Processes may be run in the foreground or background. Usually they are
run in the foreground; however by running processes in the background, you are able
to do a lengthy task, while continuing to do other work in the foreground. For exam-
ple, to compile a FORTRAN program, prog.f, in the background type:

cft77 prog.f &

The ampersand (&) causes the program to be compiled in the background. If you are
running in the background and logout, your process will terminate unless you have
redirected standard input and output (See section 2.4.3) and have preceded the com-
mand with the nohup (no hang up) command. For example,

nohup cft77 prog.f &

continues to execute after you logout.

You can check on the status of processes with the ps command, which stands for pro-
cess status. Each process is assigned a number called a Process IDentifier (PID). This
number is important if you have a hung process and want to kill it (See section 4.2.2).
It is not possible to switch jobs between the foreground and background on Voyager
or Sabre as it is on the CONVEX computers.

January 1993 4-7

CRAY Mini Manual

4.2.2. Killing a Runaway Process

If you have a runaway process running in the background, the ps command gives you
the PID which you can then use to kill the process. For example to kill the process
with PID 1234, type:

kill -9 1234

Sometimes you may have a hung terminal or a runaway process running in the fore-
ground. There is no need to panic. First try using the "C (control C) signal. If that
doesn’t work, login again from another terminal and enter the ps command. Then use
the kill command as just illustrated to kill the process(es) associated with the other ter-
minal. If you kill the wrong C-shell by mistake, you are logged off the system, so just
try again.

4.2.3. Logging Out

Usually, you will log off the system with the logout command. If you are no longer
in your login shell then you must use the exit command. The "D (Control D) will also
log you off the computer if you do not have the variable ignoreeof set in your .cshrc
file (See section 4.1.5). You may also create a .Jogout file that is executed every time
that you logout. A sample .logout file is given below.

Sample logout file
clear # Clear screen at logout
/binlrm a.out # Remove generic executables
echo "Closing connection to Sabre at " #
date # Give date and time at logout

4-8 January 1993

o

UNICOS COMPUTING ENVIRONMENT

4.3. Batch Processing on the CRAY Supercomputers [d]}

The Network Queuing System (NQS) provides the batch processing environment on
the CRAY-25. It may be necessary to tune the various queue limits to the mix of jobs
at LaRC to obtain the optimal throughput. The NQS queues for Voyager (as of March
1992) are found in Table 4.1 at the end of the next section. Those for Sabre (as of
November 1992) are found in Table 4.2. Changes to the NQS queues are announced
in the Message-of-the-Day (See section 8.1.2 of A-8), referring you to the new entry
under notes CRadmin (See section 8.3 of A-8) on Eagle and Mustang.

4.3.1. NQS [d]

NQS is summarized in section 6.2 of CR-2. The NQS commands are all described in
CR-6 and on man pages. NQS commands include:

gsub Submits a request to a batch queue.

gstat Displays the status of NQS queue and requests.
qdel Deletes or signals NQS request.

glimit Displays batch limits and shell strategy

To use NQS, you must first create a script (See section 2.1.3 of A-8) of commands to
be executed in batch mode. Unlike interactive shell scripts, NQS scripts can not
accept positional parameters. Since NQS begins execution in your home directory, file
space limitations will generally require that you use the c¢d command as one of the
first commands in your script to change into your subdirectory in /scr (See section
44.1), for the compilation, loading and execution of your program. The NQS script
may have a prolog that defines the shell under which it executes and sets resource lim-
its on a per-process or per-request basis. By default, NQS scripts are executed in your
login shell, which is the C-shell for nearly all Sabre and Voyager users.

The resource limits are specified with # QSUB as the first characters of the line. For
compatibility with earlier systems, the string # @$ may be used as the first characters
of the line as well. Examples of frequently used gsub options are:

-lm 18Mw Establish a per-process memory size limit of 18Mw.

-1t 1000 Establish a per-process CPU time limit of 1000 seconds.
-nr Specify that the process is not rerunnable.

-me Send mail when the request ends execution.

-q q8mw_1h Queue request in the g8mw_Ih queue.

-a Spm Submit job to NQS at 5§ PM.

If -IM and -IT are used, the memory size and CPU time limits are on a per-request
basis. Check the man page for details on these and other gsub options.

January 1993 4-9

CRAY Mini Manual

An example of a sample NQS script for user john follows:

#

QSUB-Im 20mw

OQSUB-It 1000

QSUB-me

#

cd Iscrijohn

[binltime cft77 -es prog.f > & prog.out
segldr -o prog prog.o

Ibinltime prog < prog.in > & prog.out

This job when submitted to NQS, will run in the scratch directory of john, with a
memory size limit of 20 million words and a CPU time limit of 1000 seconds. The
job times both the compilation and execution (See section 6.1) and the request will
send john a mail message when it completes.

The most common syntax of a batch job submission using NQS is

gsub script_name [-q queue_name]

where specification of the quere_name is optional, but the limits specified in the script
must not exceed those of the specified queue. Once you submit the job, the system
responds:

request request_name submitted to queue: queue_name

Unless you specify a specific queue with the -g option, the gueue_name that will be
given is router. A later invocation of the gstat command will show the specific queue
to which the job was assigned. See Table 4.1 and Table 4.2 for the queue
configurations. The request_name is used by the gdel command, if it becomes neces-
sary to kill the request. To kill a request, use:

qdel -k request_name
The -k option is required only if the process has begun execution.

Once your NQS job is completed, two files are created in the directory from which
you submitted the job. If your script name is ngsjob and your request name was
4758, then these files are named ngsjob.e4758 and ngsjob.04758. They contain infor-
mation that would have been written to standard error and standard output respectively.
Both files should be examined for information if your program terminated abnormally.

4-10 January 1993

UNICOS COMPUTING ENVIRONMENT

The glimit command displays the resources available on Sabre and Voyager and the
corresponding parameter names to be used by gsub. The shell strategy displayed is the
name of the shell which interprets script commands, if the user does not specify an
alternate shell. The display is of the form

Per-Process/Request resource_name resource_description
where resource_description defines the gsub option associated with resource_name.

The gstat command is used to query the system about the status of NQS requests as
illustrated below: '

gstat -a Show summary of all requests.
gstat -i Show summary of requests awaiting processing.
gstat -r Show summary of requests currently running.

gstat -b Show batch queue summary.

The status of an individual queue may also be queried. For example,

gstat -rbi big-long

gives a summary of all jobs running or queued in the big-long queue, which enables
you to check on the status of your job. Running jobs are listed first, followed by
queued jobs which are listed in the order that they become eligible for execution. The
gstat command has other options, check the man page.

January 1993 4-11

CRAY Mini Manual

‘Maximum

NQS Queue Memory (Mw) CPU Time (secs)
interactive * 10 600
q8mw_1200s 8 1200
q8mw_1h 8 3600
q8mw_2h 8 7200
q20mw_1h 20 3600
q20mw_3h 20 ' 10800
“ db20mw=1003 20 100
q40mw_2h ** 40 7200
q40mw_4h ** 40 14400
db40mw_300s 40 300
multitask 40 600
‘special 110 14400

* Interactive is not a true NQS queue, but is included for completeness.

** Oueue is active only during non-prime shifts.

Table 4.1 NQS Queues for Voyager [c]

These NQS queues were established March 4, 1992. This change only affected the
names of the queues to reflect the time and memory restrictions of each queue. They
may change, so space has been left in Table 4.1 for additional entries, or changes to
the queue limits. Jobs are automatically routed to the correct NQS queue as specified
by the -Im and -It QSUB options, except for special and multitask which must be
specified with the -q option on the gsub command. The notes CRadmin category on
Eagle and Mustang contains the latest revision to Table 4.1. The special queue is
reserved for priority jobs. If you need this capability, contact Joe Drozdowski at
(804)-864-6535. The multitask queue is only enabled a limited number of times per
week.

WARNING: Any job submitted to NQS that exceeds the established queue limits will
be deleted by the NQS daemon and will never appear with a gstat command. How-
ever, the daemon does send you electronic mail to inform you that your request could
not be queued.

4-12 January 1993

UNICOS COMPUTING ENVIRONMENT

Maximum

NQGS Queue Memory (Mw) CPU Time (secs)
interactive * 10 600
ql0mw_1h 10 3600
ql0mw_3h 10 10800
q10mw_6h 10 21600
db20mw_100s 20 100
q20mw_1h 20 3600
q20mw_3h 20 10800
.db40mw_300s 40 300
q40mw_1h 40 3600
q40mw_3h 40 10800
q80mw_3h 80 10800
db125mw_300s 125 300
ql125mw_3h 125 10800
mt40mw_3h 40 10800
mt200mw_8h 200 28800
ssddb40mw_300s 40 300
ssd40mw_3h 40 10800
ssdmt40mw_3h 40 10800
ssdmt200mw_8h 200 28800
special 225 32400

* Interactive is not a true NOS queue, but is included for completeness.

** Queue is active only during non-prime shifts.

January 1993

Table 4.2 NQS Queues for Sabre [d]

4-13

CRAY Mini Manunal

These NQS queunes were established November 16, 1992. They may change, so space
has been left in Table 4.2 for additional entries, or changes to the queue limits. See
Section 4.4.1 for information about the special queues for using SSD. Jobs are
automatically routed to the correct NQS queue as specified by the -Im and -lIt QSUB
options, except for special and multitask which must be specified with the -g option
on the gsub command. The notes CRadmin category on Eagle and Mustang contains
the latest revision to Table 4.2. The special queue is reserved for priority jobs. If
you need this capability, contact Joe Drozdowski at (804)-864-6535.

4.3.1.1. NQS Queue Management [d]

The following management strategy has been adopted to insure each user an equitable
portion of resources on Sabre and Voyager when using NQS. Changes to this stra-
tegy are announced in the Message-of-the-Day and under notes CRadmin on Eagle and
Mustang.

1. No user may have more than one job (queued or running) in any queue Monday
through Thursday, with a limit of jobs in 3 queues. On Friday, starting at 8 A.M,,
users may submit up to four jobs per queue to be run during the weekend. Users
should, however, be reasonable with the number of jobs submitted for weekend
processing.

2. The debug queues are intended only for debugging. They are not for short pro-
duction runs. The limit in these queues is one job per user in any state. Running
many jobs in these queues tends to cause swapping problems. Their use is
expected to be minimal. Running more than 4 or 5 jobs each day for an extended
period is considered an abuse. It prevents other users from preparing jobs for the
larger queues as the queues were intended.

3. The emphasis on Sabre is running large memory jobs, but not at the expense of
oversubscribing memory and causing swapping. The use of the Solid-state
Storage Device (SSD) is limited to special queues, which require that users ask
for validation to use the SSD.

Failure to comply with the above guidelines results in all NQS jobs for the offending
user being put into a hold status. The user is notified by mail of this action. When the
user complies with the guidelines, remaining jobs have the hold removed. A hold does
not allow a job to be considered for selection to run.

It is requested you be reasonable with your weekend requests or similar guidelines
may be forthcoming. It is your responsibility to comply with the guidelines on Mon-
day, if you stacked jobs on Friday, Saturday or Sunday.

4-14 January 1993

g

UNICOS COMPUTING ENVIRONMENT

4.4. Solid-state Storage Device (SSD) [d]

The CRAY Y-MP, Sabre, configuration includes a 512 million word Solid-state
Storage Device (SSD). The SSD functions like a disk, but enhances the performance
of the CRAY Y-MP because of SSD’s fast access time, fast transfer rates, and large
storage capacity. Three hundred sixty million words of SSD are available to the users.

Initially, use of the SSD is through the batch system NQS only. The batch queues
defined below are used to manage the file space allocation so that competing jobs do
not oversubscribe the SSD and cause other executing jobs to abort. The Session
Reservable File System (SRFS) software from NAS will be implemented as soon as
possible to provide a more automated management mechanism.

4.4.1. SSD Queue Structure and Validation [d]

Four queues have been established to allow the use of SSD. The queues which allow
use of SSD are ssddb40mw_300s, ssd40mw_3h, ssdmt40mw_3h, and ssdmi200mw_8h.
A user must be validated to use these queues. To become validated, e-mail your
request to be added to the SSD user list to root@sabre. Each validated user has a
quota limit of 180 million words of SSD.

4.4.2, SSD Job Submission [d]

To submit a job for a single cpu and SSD use:

gsub -q ssd scriptname

The explicit option, -g ssd, on the gsub command or the equivalent embedded option
in the script will cause the job to be routed to either the ssddb40mw 300s or the
ssd40mw_3hqueue.

To submit a job for multitasking and SSD use:

qsub -q missd scriptname

The explicit option, -g missd, on the gsub command or the embedded equivalent
option in the script will cause the job to be routed to either the ssdmt40mw_3h or the
ssdmi200mw_8h queue.

January 1993 4-15

CRAY Mini Manual

4.4.3. SSD File Cleanup [d]

Files residing on SSD remain there until some action is taken to move or delete them.
If no action is taken, they reduce the space available for subsequent jobs. Conse-
quently, SSD files must be moved or deleted by the user. Any files left there after job
completion, or files observed to have been generated from a job not running from one
of the valid SSD queues will be removed immediately. Therefore, at the completion of
your job, be sure to :

1. Move any files which need to be saved to permanent or mass storage
2. Remove all files from SSD space.

4.4.4. SSD Sample Script [d]

The SSD file system can be accessed with the preset environment variable $FASTDIR.
The following sample script, runssd, uses embedded NQS options. It assigns the file
plif (to be opened as FORTRAN unit 40) to SSD using the unblocked structure
required for the most efficient transfer rates, executes the job and removes the files
from SSD.

#

#QOSUB-It 10800

#QSUB-Im 40mw

#OSUB -q ssd

#

cd Iscrluserx

¢f77 prog.f

/binlrm asyn

env FILENV=asyn assign -a $FASTDIRIplf -s u u:40
env FILENV=asyn a.out < data >& out
cp plf ~userxiplf

Ibin/rm $FASTDIR/plf

The assign command associates attributes with unit numbers or file names during the
processing of a FORTRAN OPEN statement. These attributes are stored in an assign
environment file called asyn in the above example. Then the executable is executed
with the file attributes stored in asyn. See the assign man page for more details.

To submit the script:

qsub runssd

The job will be put in the ssd40mw_3h queue.

4-16 January 1993

e

R =
g

5. DEBUGGING ON THE CRAYS [c]

The symbolic debugger, cdbx, supports most of the features of dda, the dynamic
dump analyzer and drd, the dynamic run-time debugger, as well as standard features
of the UNIX debugger dbx. Neither dda or drd is supported under UNICOS 6.1.6.
The cdbx debugger is described in CR-25, CRAY UNICOS CDBX Debugger User’s
Guide, and CR-26, CRAY UNICOS CDBX Debugger Reference Manual.

Some debugging utilities require the file core, which contains a complete image of the
failed program. Because Voyager and Sabre have large memories, these files can
become huge. Under UNICOS 6.1, on both Voyager and Sabre, a full length core file
is always obtained when a program terminates abnormally. On Veyager, most run-
time errors did not create a core file under UNICOS 5.1, simply to conserve file
space. '

Another alternative is to use the traceback mechanism to find errors. There is a FOR-
TRAN callable routine TRACEBK that permits dynamic tracebacks from an executing
program. There is also a locally written script that takes an address from an aborted
subroutine and returns a FORTRAN line number to assist in debugging (See section
5.4). Next, there is a another locally written script, debugx, that executes your pro-
grams and invokes the CRAY debug utility if your program terminates abnormally
(See section 5.5). Section 5.6 has been added to provide information about numbered
FORTRAN run-time errors and to describe some unnumbered miscellaneous error mes-
sages that are otherwise difficult to decipher.

January 1993 5-1

CRAY Mini Manual

3.1. cdbx Symbolic Debugger [b]

The cdbx debugger is an interactive symbolic debugger that has the capability to per-
form the following functions:

Setting breakpoints and traces.

Controlling program execution.

Displaying and changing data.

Managing image (core or executable) files.
Defining debug variables and aliases.

nbhwe e

Multitasked applications can also be debugged using cdbx, but only by examining the
core file. Interactive debugging of multitasked programs is not yet supported.
Chapter 4 of CR-25 has sample debug sessions, while chapter 3 summarizes the cdbx
commands, which are organized by functionality, while chapter 7 of CR-26 describes
the cdbx commands in detail. Almost all the dbx commands are implemented with
this release of cdbx. Additionally, several CRAY-specific commands have been
included. The cdbx utility is very similar to the CONVEX utility csd. Error messages
are explained in chapter 4 of CR-25.

To use cdbx, it is recommended that each source code module be on a separate file.
Using optimization inhibits the effectiveness of the debug tables that are generated
with the -ez compiler option. The best results from using cdbx are with unoptimized
code. You should use the -0 off compiler option on routines where you suspect errors,
otherwise you may have difficulty setting breakpoints and traps at desired locations
within your code. '

This release of cdbx supports an X Window System (X) interface in addition to the
traditional line oriented interface. If you are invoking cdbx from within the X
environment, and have the DISPLAY environment set, then the X interface to cdbx is
invoked unless the -L option is selected (See section 3.4 of A-8). It also allows the
command dbx to invoke cdbx, along with a warning message that UNICOS does not
support dbx. Appendix B of CR-26 describes differences between the current imple-
mentation of cdbx and dbx. To use cdbx, symbol tables must have been generated
when the program was compiled. Section 2.1 describes how to generate the symbol
tables with each of the compilers supported on Voyager and Sabre. A simplified syn-
tax of the cdbx command follows on the next page.

5-2 January 1993

e 7
i

g

DEBUGGING ON THE CRAYS

cdbx [-c cfile] [-e efile] [-] Ifile] [-s symfile] [command_line]

-¢ cfile

-g efile

-1 1file

-s symfile

-L

command_line

select the file that contains a dump of the user memory 1mage
The defauit is core.

enable the echo feature to record the input of the debugging
session on efile. The default file name is echo.db

select the logging feature and identify the file to which all log
output is written. The default is log.db

select the file that contains the symbolic information. The
default is a.out.

forces use of the line oriented interface rather than the X
interface

specify the command line that is used to invoke the program,
including all options and file redirection. The command line
must be enclosed in double quotes (" "), unless it consists
only of an executable name. You must include blank space
around the " < " and " > " symbols used for file redirec-
tion in order for cdbx to recognize your command line.

Other cdbx options are available, including overriding the DISPLAY environment vari-
able with the -display option, check the man page. By default, cdbx searches your
current working directory for the file a.out to obtain the necessary symbolic informa-
tion. The -s symfile option may be used to override the default. It also searches for a
core file, which may be overridden using the -c cfile option. If a core file exists, it is
used as the initial image to be debugged, otherwise the executable file is used as the
initial image to debug. See Chapter 5 of CR-26 for more detailed information on

invoking cdbx.

January 1993

5-3

CRAY Mini Manual

5.2. symdump Snapshot Dump

The snapshot dump utility, symdump, yields output similar to that of debug (See sec-
tion 5.3), but can be invoked repeatedly by an executing program with a subroutine
CALL. To use symdump from within a FORTRAN program, insert the following line
of code at all locations where a snapshot dump is desired:

CALL SYMDUMP (["options"])

The options argument is a character string containing debug options. The symdump
utility is described in chapter 5 of CR-10.

5.3. debug [c]

The debug utility (See chapter 4 of CR-10) is a batch symbolic post-mortem core
analyzer that allows you to interpret a core file in terms of source language symbols,
which are user-defined names for variables and subroutines. It also provides a subrou-
tine traceback and can be used with either the ¢ft77 or cft compiler. To use debug,
your program must be compiled with the -ez option for ¢ft77 or the -ezi option for
cft. It is recommended that optimization be turned off when you attempt to use debug,
otherwise it will not be able to give the correct loop indices where the error occurred.
A core file must exist to use debug. The syntax of debug is:

debug [-B] [-b blklist] [-d dimlist] [-s symfile] [-Y] [-y symlist]

There are four ways to display COMMON blocks and program variables. If neither -
B or -b is specified, then no COMMON blocks are displayed. If both are specified
then only those COMMON blocks named are displayed. Just specifying -b displays
only the COMMON blocks named and using just -B displays all COMMON blocks.
However, if neither -Y or -y is specified, all variables are displayed. If both are
specified then only those variables named are displayed. Specifying just -Y displays
no variables, while specifying -y displays all variables except those named.

The file symfile contains the debug symbol tables. The default is a.out. The parameter
dimlist specifies the maximum number of elements to be displayed for array variables.
The default is 20,5,2,1,1,1.

5-4 January 1993

DEBUGGING ON THE CRAYS

5.4. Interpreting the Error Location in a CRAY Dump [d]

Using cft77, the traceback from a floating point exception run-time error does not give
a FORTRAN line for the subroutine in which the error occurred. The script
~howser/err.exc on Voyager and Sabre may help you find a FORTRAN line number
near the error. The use of the utility requires a traceback like the one given on Voy-
ager, but this is not the default traceback on Sabre. On Sabre only, to get a trace-
back which can be used by this script, issue the command,

seteny $TRACEBK? 1

before executing the job. The environment variable, $TRACEBK2, can be set in either
the .cshrc or login file.

The script requires two parameters that are obtained from the dump information given
at abort time. The line containing the information required is of the following form:

"tins" FltPt exception: CPU-A stopped at P= 05324c = "TURB" + 2477¢

A0 ... SO ...
Al .. St ..

In the information above:

TURB = routine in which error occurred
2477¢ = relative address where error occurred

The script is executed as follows:

~“howserlerr.exc subname addr

subname The name of the routine in which the error occurred. It must be
a separate .f file containing only subname and is compiled with
all the ¢ft77 defaults.

addr Relative address where error occurred. (Do NOT include the
alphabetic ending.)

The script only requires the cpu time needed for a c¢ft77 compilation of the routine.
The output goes to stdout and returns up to four line numbers that will be near the
error. The script will be no more accurate than the address returned with the abort
dump. With optimization and vectorization this can be several lines away from the
error, but may point to the loop containing the error.

Using the sample abort above and assuming that the subroutine TURB is on the file

January 1993 5-5

CRAY Minl Manual

turb.f, the script is executed:

~howserferr.exc turb 2477 > errout &

The file err.out contains the FORTRAN line number(s) near the error.

5.5 Automatic Symbolic Dump [c]

When your executing job terminates abnormally, UNICOS usually provides insufficient
information on the problem for the error to be located. In this situation, you are
forced to rerun the job to perform any debugging. A low overhead script has been
developed that forces a symbolic interpretive dump of program variables at an abnor-
mal termination.

The script is called debugx and is found in the directory ~ howser/Debugx on Voyager
and Sabre. To use debugx, your program must be compiled with the -ez option to
build a symbol table. The utility executes your program and calls the CRAY utility
debug (See section 5.3) only if the program terminates abnormally. The only over-
head associated with debugx when your program terminates normally, is a minimal
increase in compile time to build the symbol tables. Thus the script may be used on a
regular basis.

To use the script, your normal execute line must be enclosed in double quotes (" ") to
prevent the shell from trying to interpret the command before debugx can. For exam-
ple, if your code is on a file prog.f, the following sequence of commands may be used
to compile, load and execute your program under the control of debugx:

cft77 -ez prog.f
segldr -o prog prog.o
~ howser/Debugx/debugx "prog < mydata > & outdd"

The symbolic dump is appended to the file outdd. This information should always be
redirected, since the file can be very large. The most recent values of program vari-
ables known to debug for the subroutine in which the error occurred, as well as values
for variables for all routines in the calling tree are included. As with any debugger,
the use of optimization or vectorization may mask the true location of the error.

If you have difficulty interpreting the results from debugx, call Lona Howser at 864-
5784 for assistance. You may use the In command to link to debugx or may copy it
to your own directory. There is a README file in the directory ~ howser/Debugx that
gives more details about the script and the form of the output.

5-6 January 1993

£
:
7

N

DEBUGGING ON THE CRAYS

5.6 Error Messages [d]

Under UNICOS 6, an attempt has been made to consolidate the error messages issued
by the various utilities in the /ibf FORTRAN run-time library for both Voyager and
Sabre. In the past error number 121, for example, might be completely different on
the two architectures. The CRAY UNICOS FORTRAN Library Reference Manual,
CR-27, has a detailed list of all errors issued by libf .utilities, as well as a brief
description of the condition that may have caused the error. Messages now begin at
1000 rather than 100 to prevent misinterpretation with the UNICOS 5 messages.

5.6.1 Numbered Error Messages [c]

The UNICOS command, explain, is a useful in interpreting runtime errors issued by
the FORTRAN run-time library and some other utilities. Many run-time errors are
given with a message identifier and an error number. To receive an explanation of the
error message and a description of what conditions may have caused it, execute the
command explain with the message identifier and error number as parameters. For
example, if your program received the message:

lib-1315 : UNRECOVERABLE library error

type:
explain lib-1315
and more information about the possible causes of this error will be given.

5.6.2 Unnumbered Error Messages [d]

These following unnumbered error messages are difficult to decipher, unless you have
encountered them in the past. The first message may appear on Veyager only

Run-time stack overflow: Memory request denied by UNICOS
" LA = 03155537(8)

If you get this message, ask yourself the following questions:
1. Are you using the old cft compiler?
2. Are you running a program using cft instead of ¢f77?

The loader does not accurately reflect the memory needed if a big array is in a dimen-
sion statement, but not in labeled COMMON . The cft77 generated code seems to load
ok, but the old ¢ft compiler does not compute the accurate sizes needed. One of the
following actions usually cures this probiem.

January 1993 5-7
%

CRAY Mini Manual

1. Put the big dimension array variable in a labeled common and the memory, stack,
etc. will be correctly evaluated and size will give you, a more accurate memory
neeeded.

2. Increase the -lm parameter for your NQS job to reflect the memory really needed.

3. If you were running interactively, run the job under NQS. Be sure the -Im param-
eter gives enough memory. It actually may be needing more than the 10 million
words, but gives this message instead of "not enough space”.

The next message also is frequently seen on Veyager only.

Local memory usage overflowed available space by nnn words;
local block overlay performed :

This is a caution message issued by segldr. It may occur when you have compiled a
big source code (100 or more subroutines). A big source code is generated if the array
bounds checker option is enabled. The local memory on Voyager overflowed, but
segldr was successful at overlaying the program. Your results should be fine. The
next error messages may be encountered on both Voyager and Sabre.

USER CALLED PREDEFINED PROCEDURE HALT
Runtime error RT1000: program called HALT

Error RT1000 is fatal '

Detected by ROR[145] Write error.

Any of these messages come from the compiler and usually mean:

‘1. You are compiling in your home directory and have exceeded your permanent file
quota. Type the command quota and see if you have reached your limit. Com-
pile the job in /scr.

2. If you are compiling in scratéh, /scr may be full. This occurs intermittenly,
because it varies with what other users are doing. Type the command df /scr to
see how much space is left.

Not enough space
~Cannot allocate memory space

These two messages may be received from an interactive or a batch job. Either mes-
sage means the executable requires more memory than allowed by the queue requested
or needs more memory than the allowed interactive limit. Most of the time the mes-
sage "Not enough space” will be issued immediately and the job never gets into execu-
tion. Sometimes the job will be close to the memory limits and will get into execu-
tion, but still not have enough memory, then the message "Cannot allocate memory
space” will be issued. For either message the solution is to run the job in a queue
which allows more memory. If the job is an interactive job, the solution is to run it
as a batch job in a queue with sufficient memory. If the job is a batch job, the solution
is to increase the memory size requested and the job will be put in a larger queue.

5-8 ' January 1993

p S . -

g

6. CODE MANAGEMENT AND CONVERSION

The FORTRAN compiler, cft77, is based on standard FORTRAN 77, but does have
some extensions and restrictions that are unique to CRAY supercomputers (See section
6.2). There is no explicit vector syntax, so programs written in standard FORTRAN-
77 should need little work to execute correctly on Voyager or Sabre. To get the
optimal performance from your program is slightly more difficult than just obtaining
the correct answers (See section 6.2).

6.1. Timing Your Program [c]

One of the first things that you may want to do once your program is executing
correctly is to time it. You can use the /bin/time command to time your compilation
and execution in the shell script that runs your program, as follows:

/bin/time cft77 prog.f
segldr -o prog prog.o
/binltime prog < prog.in > & prog.out

The /bin/time command returns elapsed time, CPU time and system time labeled as
real, user and sys respectively. The C-shell has a built-in time command that returns
timing information in a different format (i.e. user, system, real and ratio of user and
system time to real time expressed as a percentage). Timing multitasked codes is
described in section 6.3.6. The FORTRAN compiler ¢ft77 is discussed in section 2.1
and file redirection (i.e. using the < and > symbols) is discussed in section 2.4 of A-8.

The ja utility (See section 6.3.6 also) may be used to time the example given above in
the following manner:

Jja

cft77 prog.f

segldr -o prog prog.o

prog < prog.in > & prog.out
ja -csft

The last use of ja is important, because it terminates the "job accounting” function of
Ja and gathers the statistics.

CRAY also supports a flowtrace mechanism for timing individual routines and a
profiling utility called prof. They are both described in Documents CR-16 and CR-22.
The flowtrace utility is described in the next section. There are two additional utilities
available on the CRAY Y-MP only for monitoring program performance. The utilities
hpm and perftrace rely on a hardware feature of Sabre. They are described in the

January 1993 6-1

CRAY Mini Manual

sections immediately following the discussion of flowtrace. A FORTRAN-callable
SECOND function is supplied by the FORTRAN library.

6.1.1. Flowtrace [c]

Flowtrace gathers information about subroutines during execution of the program;
therefore, CPU overhead is generated. The type of output generated by flowtrace is
determined by the option chosen, but may include:

Percentage of execution time spent in each routine.
Name or entry point.

Number of times a routine is called.

Calling routine (parent).

Time spent in routine exclusive of children.

wh W

To use flowtrace, the appropriate compiler option must be chosen and the appropriate
library must be loaded. For the FORTRAN cf77 load and compile command and the
C compiler, cc, the option is -F. The -F option specifies flowtrace processing, includ-
ing loading the library /libllibflow.a. If the cft77 compiler and segldr are used
separately, then the c¢ft77 command must use the -ef option and the segldr command
must use the -/ flow option.

J

After execution of the program, the command flowview must be executed to generate
the statistical output. The command flowview can be executed under the X Window
System (X). When using the command line options, you must specify the -L option to
prevent the utilization of X and at least one other option. The option -u gives timings
for all routines sorted in descending order by the amount of CPU time used by the
routine. On Voyager and Sabre by default, flowtrace writes its data to a file called
flow.data. The name of this file can be changed by setting the environment variable
FLOWDATA to the name of the alternate file. The command flowview interprets the
flow.data file and produces output statistics about the program’s execution. On Voy-
ager the flow command may still be used to interpret the flow.data file; however, the
flow command will not be supported at UNICOS 7.0.

The following example generates a report in batch or interactive without using X:

¢f77 -F prog.f
a.out > prog.out
flowview -Lu < flow.data > flow.out

S

It is not necessary to specify the file containing the flowtrace output unless it is called
something other than flow.data.

6-2 January 1993

gt

CODE MANAGEMENT AND CONVERSION

The use of the FORTRAN subroutine FLOWMARK allows the selective timings of
portions of code. The source code must be recompiled with two calls to FLOW-
MARK. The two calls to FLOWMARK mark the area of the code to be treated as a
subroutine for statistical gathering. The argument of the first call is a seven character
string. This is the name used in the flowtrace output to identify the timings from that
part of the code. The argument to the second call is zero.

An example of a FORTRAN source code follows:

CALL FLOWMARK (’partb’L)
DO 10, i=1,N

10 CONTINUE
CALL FLOWMARK (0)

The flowtrace output includes an entry parth which looks like the report for a subrou-
tine.

Chapter 4 of CRAY UNICOS Performance Utilities Reference Manual (Document CR-
16) gives more details, including the use of flowview under X and FLOWMARK.

6.1.2. Hardware Performance Monitor (hpm) [c]

The CRAY Y-MP hardware performance monitor, hpm, reports on the machine perfor-
mance, during execution, of a program written in any language available under
UNICOS. Unlike perftrace (See section 6.1.3), hpm reports only on whole programs,
however it does not require a separate compilation with the flowtrace option. You
may generate four types of reports: (0) execution summary; (1) hold-issue conditions;
(2) memory use; or (3) vectorization and instruction summary. Generally reports (0)
and (3) are the most informative. More information may be found in chapter 6 of
CRAY UNICOS Performance Utilities Reference Manual (Document CR-16).

To use hpm, you compile and load your program normally. The -g option specifies
which report you want. To get all four reports, you must execute your program under
the control of hpm on four separate occasions. The output from hpm is sent to stderr
and the default report is 0, execution summary.

The following example redirects the Apm output and the program output to file
hpmO.out:

hpm -g 0 a.out >& hpmO.out

January 1993 6-3

CRAY Mini Manual

Because hpm output is sent to stderr, additional shell notation is required to separate

hpm output from the program’s stdout. The following is an example in the C shell.

The hpm output is redirected to the file hpm.out and the program’s output stdout. is
sent to prog.out. ’ ‘ , "

‘(hpm -g 0 a.out > prog.out) >& hpm.out

6.1.3. Perftrace [c]

The perftrace utility gives the same type of statistics as hpm, but the results are broken
down by each individual routine. It does not work with multitasked programs. To use
perftrace, your program must be compiled with the flowtrace option (See section 6.1.1)
and the library perf must be loaded. Since it uses flowtrace, there is considerable sys-
tem overhead. After execution of the program, the command perfview must be exe-

cuted to generate the report. The perfview command can be executed under X. When

using the command line options, you must specify the -L option to prevent the utiliza-
tion of X and at least one other option. The options -Lu give useful statistics for
each routine sorted in descending order by the amount of CPU time used by the rou-

tines; however, many other command line options are available. By default, only'

report (0), execution summary, is generated.

The following example generates a typical useful %epon in batch or intefactive without

using X:

- ¢f77 -F -l perf prog.f
a.out > prog.out
_ perfview -Lu > perf.report

However, perftface can generate the other three reports by specifying the environment
variable PERF_GROUP within the env command. To generate the vectorization
report, you can use commands similar to the following:

¢f77 -F -1 perf prog.f -
env PERF_GROUP=3 a.out > prog.out3
perfview -Lu > perf.report

The perftrace utility may be used with both C and PASCAL programs too. Chapter 7
of CRAY UNICOS Performance Utilities Reference Manual (Document CR-16) gives

more detail, including the selective use of perftrace, other env environment variables
and the use of perfview under X.

6-4 January 1993

%
&

g

ssgen

i

CODE MANAGEMENT AND CONVEKSION
6.2. Program Optimization [c]

Optimization of programs on a multi-processing vector computer such as Voyager or
Sabre, consists of scalar optimization, automatic vectorization and multitasking. Some
optimizations are done automatically, some require compiler directives and some
require manual code restructuring. The FORGE utility (See section 6.5) can be used
to assist you in the restructuring of your code. These topics are discussed in the con-
text of FORTRAN programming in the next three sections. Additionally, CR-37,
CRAY CF77 Compiling System, Volume 3: Vectorization Guide, describes vectorization
techniques in detail.

The key to optimizing a FORTRAN program is to identify the computationally heavy
portions of the code. On CRAY supercomputers, one easy way of performing this task
is to use the flowtrace utility (See section 6.1.1). Once the subroutines that consume
most of the CPU cycles are identified, optimize them one or two at a time to reduce
the chance of introducing an error. Any errors introduced by the attempted optimiza-
tion are then easier to find and correct. This is especially important for multitasking
(See section 6.3), since errors in task and data synchronization may produce results
that are non-repeatable from run to run.

6.2.1. Scalar Optimization

The CRAY FORTRAN compilers, especially cft77, do an excellent job of scalar
optimization. They recognize invariant code within a loop and remove it and calculate
common subexpressions only once. Manual scalar optimizations, such as loop inter-
changing, loop unrolling, subroutine (or function) in-lining and use of PARAMETER
statements for array dimensioning and DO loop limits improve a FORTRAN
program’s performance on a serial computer, as well as making automatic vectoriza-
tion an easier task.

The ¢ft77 compiler eliminates both dead and useless code. If the results of a calcula-
tion are never used in another calculation, written to a file or stored into a variable in a
COMMON block, then the code is deemed useless and eliminated. As a caveat to
those who would test execution speeds on kernels lifted from other programs, this
feature has been known to produce extremely high execution rates, when the kernel’s
code is deemed useless. The compiler may also reorder expressions for more efficient
calculations. This can result in numerical differences. Use of the compiler directive
$CDIR SUPRESS, before and after a statement can show whether a numerical
difference occurred. Parentheses may be used to force expression evaluation in a par-
ticular order.

January 1993 6-5

CRAY Mini Manual

6.2.2. Automatic Vectorization [c]

Automatic vectorization is the default setting for the ¢ft77 compiler. It may be turned
off on a loop-by-loop basis by using compiler directives. Only inner loops are candi-
dates for vectorization; however, not all inner loops vectorize. In general loops with
the following properties do not vectorize:

Any l/O statements.

CALL, PAUSE, STOP and RETURN statements,
References to CHARACTER data.

Backward branches within the loop.

Branches into the loop.

Three branch IF’s or assigned and computed GOTO’
Any recurrence, except vector reductions.
Ambiguous subscript references

P NN R R e

Some of these problems may be resolved by restructuring the code. For example, if a
loop contains a subroutine CALL, then often the loop can be split and the CALL
moved to a separate loop. In some cases, the loop may be brought into the subroutine.
Alternatively, short subroutines can often be expanded in-line within the DO loop.

The listing file contains informative messages about each loop that vectorized after
every subroutine. Additionally each loop that didn’t vectorize has a reason given for
the failure. If a loop fails to vectorize, you may be able to resolve the problem by res-
tructuring the code or by using a compiler directive. '

If a loop has vectorized to the degradation of performance, scalar execution may be
forced with the CDIR$ NOVECTOR compiler directive, which remains in effect until
the end of the current program unit. If loops that appear later in the routine should
still be vectorized, the CDIR$ VECTOR compiler directive should be used to turn vec-
torization on again. Some other compiler directives for optimization include:

CDIRS IVDEP Force the compiler to ignore potential vector
dependencies in trying to vectorize the loop.
CDIR$ SHORTLOOP Specifies that loop length is 64 or less.

CDIR$ NO SIDE EFFECTS Specifies that called subroutine does not redefine
variables local to the calling routine.

CDIR$ VFUNCTION Specifies name of a vector version (written in
CAl, the CRAY Assembly Language) of the
scalar function referenced in the loop.

Chapter 1 of CR-35, CRAY CF77 Compiling System, Volume 1: FORTRAN Reference
Manual, discusses the various compiler directives.

6-6 January 1993

= B
i

CODE MANAGEMENT AND CONVERSION
6.3. Multitasking [c]

LaRC’s Voyager and Sabre are equipped with multiple identical and independent cen-
tral processing units. Voyager has four central processing units and Sabre has five.
Multitasking allows two or more parts of a program to be executed concurrently on
these processors. The three forms of multitasking are macrotasking, microtasking, and
autotasking, each of which is discussed in this section. In addition, brief discussions
on code conversion, memory usage, and performance measurement are included.
Detailed information on macrotasking and microtasking can be found in Document
CR-18, CRAY-2 Multitasking Programmer’s Manual and Document CR-33, CRAY Y-
MP, CRAY X-MP EA, and CRAY X-MP Multitasking Programmer’s Manual. Informa-
tion on autotasking is located in Document CR-38, CF77 Compiling System, Volume 4.
Parallel Processing Guide. Information on the UNICOS 6.1 X-based autotasking tools
can be found in Document CR-16, UN/COS Performance Utilities Reference Manual.

6.3.1. Macrotasking [c]

Macrotasking was designed for programs with long execution times and large memory
requirements running in a dedicated environment. Performance is best when macro-
tasking is used by programs containing large sections of disjoint code (or large-grain
parallelism) which do not require a lot of synchronization. Macrotasking a program
involves calling subroutines which exist in the macrotasking library, which is automati-
cally loaded. The program modification for macrotasking results in code which is not
portable across any machines other than CRAY computers.

Macrotasking is the more difficult form of multitasking to use, and some macrotasked
programs can perform poorly on a heavily loaded system. For these reasons, macro-
tasking is not recommended to users.

January 1993 6-7

CRAY Mini Manual

6.3.2, Microtasking [b]

Microtasking is preferred over macrotasking for several reasons. The ease of code
conversion makes microtasking an attractive choice. Microtasking a program requires
inserting compiler directives, rather than subroutine calls, and as a result, microtasked
programs maintain portability to other machines. Since the overhead for microtasking
is smaller, tasks which are small and tightly coupled are efficiently multitasked. Paral-
lelizing small tasks, usually outermost DO loops, makes data analysis much easier and
less time consuming., Another advantage of microtasking is its design for batch
environments. Microtasked programs can make efficient use of processors that are
available for short periods of time. If no additional processors are avaxlable, little
overhead is incurred.

The command to microtask a program is:
cf77 -Z m file.f

The -Z m option calls the microtasking preprocessor premult and sﬁeéiﬁes the use of
mxcrotaskmg libraries to the loader. The command above is equivalent to the follow-
ing commands

premult -F filef

cft77 -a stack mullf.f

as multc.s

¢f77 multf.o multc.o -Z m

The exeéutable in the example above is a.out. The premult option F specifies that
cft77 is to be the compiler.

If premult is invoked explicitly, it leaves two files, multf.f and multc.s in the directory
where it was executed. However, if premult is invoked by c¢f77, as in the first case
above, then the files, multc.s and muliff are automatically removed. The file multc.s
contains CAL master routines for each microtasked subroutine. The file multf.f con-
tains two subroutines for each microtasked subroutine. One subroutine is a multi-
tasked version and the other is a single processor version. When a microtasked routine
is called at run time, the CAL routine checks to see if microtasking is already in
effect. If microtasking is in effect, further microtasking may not be invoked, so the
single processor version of the routine is executed. These two versions of the original
subroutine have as much of mult and sngl appended to their names as possible
without making the new names more than eight characters long. Therefore, the origi-
nal microtasked subroutine name should contain no more than seven characters. A
microtasked subroutine name can contain eight characters as long as the premult
option -/ is selected. In this case, premult replaces the eighth character of the name
with an s for the single processor version and an m for the multitasked version.

6-8 January 1993

3

s

CODE MANAGEMENT AND CONVERSION

The file names multf.f and multc.s can be changed with the -m and -c options by
entering:

premult -m filef.f -c filec.s -F file.f

The object files are created and loaded by entering:

¢ft77 -a stack filef.f
as filec.s
¢f77 filef.o filec.o -Z m

Again, the executable is a.out.

Microtasked programs may also be created by entering:
cf77 -Z p file.f

If the program is partially microtasked, fpp analyzes any subroutines that do not con-
tain microtasking directives. The translator, fimp, replaces both autotasking and micro-
tasking directives with the appropriate code. The command above is equivalent to:

Jpp filef > filem

fmp file.m > file.j

cft77 -b file.o -a stack file.j

as mulic.s

¢f77 -Z p file.o multc.o

/binlrm file.m file.j file.o mulic.s multc.o

Note that the assembler, as, must be invoked for the microtasked portion of the code.

As in macrotasking, the default number of CPU’s allowed to execute a microtasked
program is the number of system processors. The environment variable NCPUS is
used to control the maximum number of CPU’s which can execute microtasked pro-

grams. For example to request two processors, enter the following before executing
the program:

setenv NCPUS 2

January 1993 6-9

B BRI,

CRAY Mini Manual

6.3.3. Autotasking [b]

Autotasking is the most recent form of multitasking. The autotasking compiling sys-
tem provides the capability for automatic data analysis and compiler directive inser-
tion. Autotasking may optimize some codes well, but autotasking cannot detect all
forms of parallelism. User analysis and insertion of directives can lead to a significant
increase in performance. As with all forms of multitasking, autotasking should be
carefully applied to avoid adding unnecessary overhead.

Autotasking maintains the basic design of microtasking and includes some major
improvements. Along with automatic data analysis and directive insertion, a major
difference between autotasking and microtasking is the placement of parallel regions.
In microtasked subroutines, the parallel region extends to the subroutine boundaries,
and neither the main program nor functions can be microtasked. On the other hand,
autotasking allows multiple parallel regions to be defined anywhere in the program.
For example, an autotasked subroutine may have several sets of nested DO loops
where each nested loop is defined as a separate parallel region. Any code outside of
the parallel regions is executed by only one CPU. However, since the initiation of
parallel regions requires a certain amount of overhead, the number of parallel regions
should be limited.

The autotasking compiling system consists of three phases: dependency analysis, trans-
lation, and code generation. The dependency analysis phase, fpp, produces FORTRAN
code optimized for vectorization and multitasking. Generally, innermost loops are
analyed for vectorization and outermost loops are analyzed for concurrency. The
translation phase, fmp, transforms the fpp output, replacing autotasking directives with
the appropriate multitasking code. The code generation phase, cft77, produces
machine executable code from the fmp output.

The command to autotask a program is:
cf77 -Z p file.f

The -Z p option specifies the use of Jpp, the dependency analyzer, and fimp, the trans-
lator, before compilation with the ¢ft77 compiler. The executable resides in file a.out.
The command above is equivalent to the following commands:

fop file.f > filem

Jmp file.m > file.j

cft77 -b file.o -a stack file.j
¢f77 -Z p file.o

Ibinlrm file.m file.j file.o

6-10 January 1993

CODE MANAGEMENT AND CONVERSION

‘The executable in the example above is a.out. The intermediate files, file.m and file;j
-may be retained by using the -Z P option. Refer to the fpp, ﬁnp, and ¢f77 man pages
for addmonal command optlons ‘

The translation phase -output file, file.j, can be significantly larger than the original
FORTRAN file. . This file contains master and slave code for each autotasked region.
'In autotasking and microtasking, a master process executes all code inside and outside
of parallel regions; whereas, the slave processes execute code only within parallel
regions. At run-time, the CPU executing the master process code checks to see if mul-
titasking is being done at a higher level. If so, the master process executes a sequen-
tial version of the code in the parallel region. If multitasking is not being done at a
higher level, the master process executes a multitasked version, and sends a signal
which causes any additional connected CPU’s to execute the slave process code.

" There are a number of options available to the programmer which aid in improving the
performance of fpp. For example, since fpp cannot analyze data across subroutine’
boundaries, loops containing subroutine calls are not autotasked. Inline expansion,
.controlled either through the command line or compiler directives, may increase ‘the
number of loops autotasked by fpp. Additional optlrmzatlon techniques are described
_ in the autotasking documentation. :

January 1993 6-11

CRAY Mini Manual

- 6.3.4. Code Conversion [c]

Multitasked programs must execute using stack memory allocation mode, which
allows the multiple CPU’s to have separate storage locations for local variables.
Under stack mode, local variables do not exist across subroutine calls, unless the
FORTRAN SAVE statement is used. Since static is the default memory allocation
scheme for Voyager and Sabre, verify that the program executes correctly in a stack
environment before attempting multitasking. (On Navier and Reynolds, stack is the
default mode.) The memory allocation may be changed from static to stack by the
cft77 -a stack option. As mentioned earlier, if the -Z m or -Z p option is used, the
program executes in stack mode.

Identify the time consuming routines of the program by using flowtrace (See section
6.1.1). Vectorize these routines as much as possible. Since greater performance
improvements are obtained from vectorization, do not sacrifice vectorization for multi-
tasking. In general, consider the outer DO loops for multitasking, since the inner
loops may be vectorized.

If macrotasking, microtasking, or manually inserting autotasking directives, one must
scope the data which involves determining if variables are shared or private. If the
dependency analyzer, fpp, detects the parallelism, the data has been automatically
scoped. Shared and private data must be used properly to obtain correct results. It
may be necessary to use the atscope tool (See section 6.3.4.1) to analyze DO loops
that fpp does not automatically parallelize for the scope of data within the loop.
Shared data is known to all CPU’s by one memory location, while separate copies of
private variables exist for each CPU.

To verify correct execution, run the multitasked program on a single CPU, then multi-
ple CPU’s. Test the program in both batch and dedicated environments. To obtain
dedicated runs, submit NQS scripts to the queue multitask by entering:

qsub -q multitask script_name

The multitasking queue is enabled a limited number of times per week. Refer to sec-
tion 4.3.1 for details on NQS.

Multitasked programs are difficult to debug since errors are not usually reproducible.
The programmer must make sure that the code is properly synchronized, since there is
no certainty on the order in which parallel tasks are executed or which CPU’s will
actually execute specific parts of the code. Under UNICOS 6.1, improvements to the
cdbx debugger (See chapter 5) allow users to set breakpoints, run to breakpoints,
examine data, and perform other debugging functions on multitasked programs. The
atchop utility (See section 6.4.3.2) may be helpful in determining the source of numer-
ical differences between the autotasked and non-autotasked versions of a code.

6-12 January 1993

CODE MANAGEMENT AND CONVERSION

- 6.3.4.1, atscope [c]

The X tool atscope “assists in autotasking loops that fpp does not detect automatically
to run in parallel. The tool displays text and provides a best guess as to the scope
(shared, private, or unknown) of each variable in a loop. Clicking on a variable shows
all occurrences of the variable in a loop. After all variables in a loop have been
scoped, atscope inserts the appropriate autotasking directive.

To run atscope, enter:

atscope file.f

6.3.4.2. atchop [c]

The X tool atchop identifies subroutines and/or loops within subroutines that are caus-
ing numerical differences or abort conditions in programs which have been prepro-
cessed by fpp. Before using atchop, you should determine if any reduction functions,
such as inner products or summations, have been parallelized. The results obtained
can be dependent on the order of execution if the data is of widely differing magni-
~ tudes. To check on the parallelization of reduction functions, use:

fop file.f > file.m

The file, file.m, can be checked for autotasked reduction functions, which are alwayé |
preceded by a CMIC$ GUARD directive. A sample atchop, session follows:

cf77 file.f
a.out < infile > outl
- ¢f77 -2Zp file.f
 a.out < infile >-out2
diff outl out2 > outdifs
atchop -Zp -r infile -c outl -b file.f

If the file outdifs has zero length then no numerlcal dlfferences were introduced by
autotaskmg The atchop command line options used above are:

invoke all phases of the compiling system
designates the user’s standard input file
designates file holding sequential results
performs both a binary and fpp chop

o6 N
i~

By default, atchop compiles, loads and executes in a temporary directory in /tmp. The
location of this directory can be controlled with the TMPDIR environment variable.

January 1993 6-13

CRAY Mini Manual | o o

6.3.5. Memory Usage [c] -

Under UNICOS 6.1, the individual task stack size is computed which should lead to
reduced memory requirements for autotasked programs. The following example

describes how the stack memory requlrements for autotasked programs may be
lowered if necessary. '

The over estimation of autotasking memory requirements can ‘occur when when large
private arrays are used. A possible solution to this problem is to place large local
arrays in FORTRAN COMMON or SAVE statements. Another alternative is to
redefine the initial and incremental stack sizes. A segldr load map can be generated
with the following statement: 3

cf77 -Zp -WlI,-D’MAP=STAT" file.f

The ¢f77 option -Wc,argl[,arg2]/....] passes arguments to various phases of the com-
piling system. In the command above, ! corresponds to the loader. (Options may also
be passed to premult, fpp and finp. by using -Wm, -Wd and -Wu respectively.)

In the load map, locate the initial decimal stack size under the"m,emory statistics sec-
tion. Next, analyze the subprogram units and estimate the largest amount of stack
space needed by one processor for private variables. For example, assume that the
load map gives an initial stack size of 2000000 and the stack size estimate for the pro-
gram is 10000. The memory management can be controlled by the following com-
mand: 2

)

¢f77 -Zp -W1,-D’STACK=10000+1990000’ file.f

As a result, each task initially receives 10000 words, rather than 2000000. When the
master task needs more memory, it receives 1990000 (2000000 - 10000) additional
words of memory. Care should be taken to avoid underestimating the initial stack
size.

The stack space is contained within the the dynamic memory area, also known as the
heap. Since the initial heap size is based on the initial stack size, the initial heap size
should also be reset. Otherwise, many requests must be made in order to allocate
memory for the master task. For example, if four processors are used, the mmal heap
can be estimated with the following:

initial_heap = (10000 * 4) + 1990000
Both the stack and heap values can be changed with the following command:

of77 -2p -Wi,-D ’STACK=10000+1990000,-HEA1>=2’030000’ file.f

6-14 January 1993

CODE MANAGEMENT AND CONVERSION

6.3.6. Performance Measurement [c]

The goal of multitasking is to divide a program’s CPU time among multiple proces-
sors, thus reducing the actual elapsed time. Speedups are calculated by comparing the
wall clock time of the multitasked program with that of the sequential program.
Before attempting multitasking, determine the amount of parallelizable code in the pro-
gram. Given the percentage of parallel code in a program, Amdahl’s Law (See CR-18
or man amlaw for more information) predicts the theoretical maximum speedup in a
dedicated environment. In addition to sequential code, several factors including the
overhead required for the multitasking code and any load imbalance across parallel
tasks contribute to speedup degradation. Multitasked programs containing well bal-
anced tasks with large grain parallelism generate less overhead.

The performance of a multitasked program running in a batch environment is difficult
to measure and varies from one run to the next depending on the system load. How-
ever, even on heavily loaded systems, multitasked programs usually receive some
benefit. In general, this is true for microtasked and autotasked programs; however, on
some CRAY systems, macrotasked programs can behave poorly. A macrotasked pro-
gram containing many synchronization points requires extensive task management and
-~ may result in an elapsed time much greater than the time required for the sequential
program. See section 6.3.6.1 for a discussion of the atexpert graphical tool for
displaying performance information about an autotasked program.

The elapsed time and CPU time for an entire program may be displayed with /bin/time
. (See section 6.1). Additional timing information may be displayed with the job
accounting utility, ja. To produce a report for the executable file program, enter the
following commands:

ja
program
ja -st

The option -¢ terminates job accounting, while the option -s produces the job account-
ing summary report. Included in this report is the time spent executing on n proces-
sors concurrently. This CPU timing breakdown can also be displayed by calling the
subroutine MTTIMES at the end of program execution. Appendix A of CR-18 gives
an example of the output from MTTIMES. This subroutine returns the amount of time
that the program spent executing with 1, 2, 3 or 4 CPU’s, as well as total CPU time
and a measure of how much overlap there was during program execution. All timings
of multitasked code are dependent on system load and may vary from run to run.

Other functions exist for timing a FORTRAN program. SECOND returns the cumula-
tive CPU time in seconds, while IRTC and TIMEF measure wall clock time in clock
periols and milliseconds respectively. On Veoyager, one clock period is 4.1E-9
secords (4.1 nanoseconds), and on Sabre, the clock period is 6.17 nanoseconds. For

January 1993 6-15

CRAY Mini Manual

example, to time SUBROUTINE A:

W 1= TIMEF()

T1= SECOND()
CALLA -

T2= SECOND()

W2= TIMEF()

CPU= T2 -T1

WALL= (W2 -W1)/1000.

If SUBROUTINE A is microtasked and multiple CPU’s are available then the time
returned in WALL should be less than the time returned in CPU.

6.3.6.1. atexpert [c]

The atexpert graphical tool displays performance information of an autotasked pro-
gram based on statistics gathered during execution of the program on an arbitrarily
loaded system. The display shows how the program actually performed by showing
the serial and parallel times for each parallel region. Serial time outside of parallel
regions and a breakdown of autotasking overhead is also provided.- Two speedup
curves are shown on the atexpert display. The top curve displays the speedup calcu-
lated from Amdahl’s Law and the bottom curve displays the predicted dedicated speed-
ups for a given number of CPU’s. The Amdahl’s Law curve shows the speedup
attainable with the percentage of parallelism exploited in the program assuming there
is no autotasking overhead. The dedicated speedups are calculated using measured
values of parallel time and sequential time. Large gaps between the ideal speedup (the
number of CPU’s used) and the Amdahl’s Law curve indicate a large amount of serial
code present in the program. A large gap between the Amdahl curve and the dedi-
cated curve indicates that overhead is affecting parallel performance.

To use atexpert, enter the following commands:

cff77 -Zp -Wu"-p" file.f
atexpert -f atx.raw

The -Wu"-p" option causes fimp to generate output for use with atexpert. The. -f
option specifies the file with which atexpert is to work. Reports detailing the speed-
ups and overheads for the program, subroutine, and loop levels can be generated using
the -r option. :

6-16 January 1993

CODE MANAGEMENT AND CONVERSION

6.4. Source Code Control System

The Source Code Control System (SCCS) is a collection of utilities running under
UNICOS.' SCCS tracks modifications to files. The following capabilities are provided:

Storing files of text.

Retrieving particular versions of files.

Controlling updating privileges to files.

Identifying the version of retrieved files.

Recording when, where and why a change was made.
Identifying the author of a change.

SR

SCCS works on source code or text files, but not on binary files or executables. It
uses’ a control file to accomplish all of the above tasks. Document CR-12, CRAY
UNICOS Source Code Control System User’s Guide, describes SCCS in detail.

“The control file’s name begins with the characters s., and is created with the admin
command, as follows:

admin -isource.f s.source.f

The file source.f initializes the original control file. The get command retrieves the
latest version of the source code (or text file) from the control file, as shown:

get s.source.f

The latest version of source.f is recreated, and the version number of the file and
number of lines of text are output to the screen. The delta command is used to record
the changes made to a file during an editing session. The comments added are limited
to 512 characters. Enter

delta s.source.f

and you are be prompted with

comments?

To continue a line of comments, end the line with a back slash (\) and a carriage
return.

Other SCCS commands are described in chapter 5 of CR-12, while chapter 6 discusses
file formats, file maintenance and access permissions.

January 1993 6-17

CRAY Mini Manual

6.5. FORGE [d]

FORGE is an interactive program global analysis system, that was developed by
Pacific-Sierra Research (PSR) Corporation and is now supported by Applied Parallel
Research (APR). It has an user interface to the X Window System (X). FORGE pro-
vides tools that allow you to analyze a program and to use that information to
transform the program into a more efficient code. It has an instrumentation facility
that allows you to time selected subroutines down to the DO loop level. It is well
suited as both a utility to improve the performance of "dusty deck" codes and an
environment within which new efficient code can be developed. The FORGE User’s
Guide, Document CR-32, is the basic guide to the baseline FORGE system.

FORGE builds and maintains a database of all variable usage and flow of control,
which is compiled from your original program. With this database, you can trace the
use of variables across any part of the program calling tree, including implicit and
explicit equivalencing. It also contains features that allow code reformatting and ver-
sion control for experimental versions of subroutines. The X interface is menu driven
and has a HELP utility. Section 3.4 of the SNS Programming Environment User’s
Guide describes the steps that need to be taken for you to access a utility on a remote
machine with an X interface.

FORGE is available for all Sun Microsystem SPARC workstations at LaRC. The
FORGE SPARC-executable code is in the director_y J

~tennille/FORGE/forge.tar

on Eagle. Installation of FORGE on your Sun workstation may require the assistance
of your System Administrator if you do not have write permission in the /usr/local
directory. The recommended installation point is in the /usr/local/FORGE directory,
which may be accomplished with the following commands:

cd lusrfllocal
mkdir FORGE

cd FORGE
tar -xvf forge.tar

The following alias is recommended for your .cshrc file

alias forge "lusrllocallFORGE/xforge -f lusrllocal/FORGE"

to insure that FORGE can locate all necessary HELP files.

5 S
gt

6-18 ‘ January 1993

y
/

CODE MANAGEMENT AND CONVERSION

~ 6.5.1. Using FORGE with the X Interface [c]

When you invoke FORGE, there are several "How To Use ..." entries that appear in
the right window called Main Menu. The most efficient manner to access these entries
is to use your-mouse to "pick” them by clicking the left button. To use FORGE to
analyze a code, you must create. a FORGE "package", which is simply a set of files
and directories maintained in a directory named psr.dir, which is created for you
automatically. These files may become rather large.

You must identify which files are to be included in a "package". FORGE performs a
cursory parsing of the identified files, which includes locating the beginning and end of
each subroutine. Once the "package" is created, you may invoke the FORGE code
reformatting utility (See section 2.5.6 of CR-32) or instrumentation facility (See sec-
tion 2.5.5 of CR-32). When you time routines on Voyager and Sabre with the instru-
mentation facility, the library ~tennille/FORGE/psrtim.a must be loaded with your
code to gather the statistics.

Since FORGE is menu-driven, it is relatively easy to learn your way around the sys-
tem. In general, the left mouse button is used to "pick”, the right for "show", and the
middle for "help" on the item selected. The Main Menu has the following selectable
items:

Package Creation and Selection
Analyze and Modify Current Package
Change Directory

How To Use FORGE

How To Use the Mouse

How To Use Command Mode
Options

Exit

This menu appears whenever you invoke FORGE or "pick" the MENU box in the
upper right corner of the display. When you "pick" any of the above items, a new
menu pops up for you to chose another item. By default, the left window displays the
menu "Analyze and Modify Current Package" when FORGE is invoked. '

Within the "Analyze and Modify Current Package" menu is an entry titled "Define/Edit
Files in Package”. When you pick this item, one of the entries in its menu is "Select
Hardware File". "Pick” this item, and you may choose the target hardware for which
you want to optimize your code, so even though FORGE is only available on Voy-
ager, you may also optimize codes for Sabre.

January 1993 6-19

CRAY Mini Manual ' i

The power of FORGE lies in its ability to do a global analysis. You may query the
database built by FORGE using templates as illustrated in section 2.5.3.4 of CR-32. A
template is simply a filter to specify the usage of variable. For example, you might
wish to locate all variables that are used somewhere but never defined or conversely
variables that are defined but never used.

Appendix A of CR-32 describes the setting of various options to control your FORGE
environment. Appendix B describes the command line options. Appendix D is a sam-
ple X interface FORGE session. ‘

6-20 January 1993

7. CRAY DOCUMENTATION [d]

Users of the CRAY supercomputers have several sources of information and assistance
(see chapter 8 of A-8). UNICOS 6.1.6 provides much more information on-line than
UNICOS 5.1. However, ACD still provides substantial printed documentation that is
described below.

ACD automatically distributes several CRAY manuals (highlighted in boldface in
Table 7.1 on the next page) that describe frequently used features of the CRAY super-
computers to SNS Document Librarians. The only manual that is new or revised is
CR-61, which reflects the hardware upgrade to Sabre. All manuals in the table are
available on an individual basis from OCO by calling 864-6562; visiting room 1035 in
Building 1268; or by sending electronic mail to cco@eagle, for overnight service.
This list is current as of January, 1993. Refer to notes tradoc on Eagle for any later
documentation changes. Two of the manuals have been compiled by ACD personnel:
CR-1, CRAY Mini Manual; and CR-3, CRAY Mathematical Libraries. Each newly vali-
dated SNS user receives copies of CR-1, CX-1, the CONVEX Mini Manual and A-8,
the SNS Programming Environment User’s Guide. There are sufficient quantities of
CR-2 and CR-35 in OCO for any user to obtain a personal copy. Demand determines
the number of copies of other manuals that are kept in stock by OCO for individual
distribution. The CONVEX series manuals CX-19 and CX-22, which describe the
notesfile and make utilities, are also available from OCO.

7.1. The CRAY UNICOS Primer [c]

Document CR-2, the CRAY UNICOS Primer, is a useful manual for the novice
UNICOS programmer and has been rewritten for UNICOS 6.1. It is designed to assist
you with the following:

logging to a CRAY system.

using basic UNICOS commands.

communicating with other users.

creating files.

compiling programs.

understanding shell scripts and environment variables.
describing the hierarchical file system.

NSk -

CR-2 may be used as a self-paced tutorial on CRAY UNICOS.

January 1993 7-1

CRAY Mini Manual

Ccsce
Doc No

CR-1c
CR-2a
CR-3a
CR-5a
CR-6b(v1)
CR-6b(v2)
CR-7
CR-8b
CR-9a
CR-10
CR-11b
CR-12
CR-13a
CR-16b
CR-18a
CR-20
CR-21a
CR-22
CR-23a
CR-24
CR-25a
CR-26b
CR-27a
CR-29a
CR-30a
CR-31a
CR-32b
CR-33

CR-34
CR-35a
CR-36a
CR-37
CR-38a
CR-39
CR-40
CR-41
CR-42
CR-43
CR-61a
CR-76

Title

CRAY Min! Manual (April 1992)

CRAY UNICOS Primer

CRAY Mathematical Libraries (January 1990)

CRAY FORTRAN (CFT2) Reference Manual

CRAY UNICOS User Commands Reference Manual, Volume 1
CRAY UNICOS User Commands Reference Manual, Volume 2
CRAY UNICOS Editor’s Primer

CRAY Segment Loader (SEGLDR) and 1d Reference Manual
CRAY UNICOS Support Tools Guide

CRAY Symbolic Debugging Package Reference Manual

CRAY TCP/IP and OSI Network User’s Guide

CRAY UNICOS Source Code Control System User’s Guide
CRAY-2 UNICOS Macros and Opdefs Reference Manual

CRAY UNICOS Performance Utllitles Reference Manual
CRAY Multitasking Programmer’s Reference Manual

CRAY C Reference Manual

CRAY PASCAL Reference Manual

CRAY Computer Systems User Environment

CRAY UPDATE Reference Manual

CRAY SORT Reference Manual

CRAY UNICOS CDBX Debugger User’s Guide

CRAY UNICOS CDBX Symbolic Debugger Reference Manual
CRAY UNICOS FORTRAN Library Reference Manual

CRAY UNICOS Math and Scientific Library Reference Manual
CRAY Standard C Programmer’s Reference Manual

CRAY C Library Reference Manual

CRAY The FORGE User’s Guide

CRAY Y-MP, CRAY X-MP EA and CRAY X-MP

Multitasking Programmers’ Manual

CRAY Macros and Opdefs Reference Manual

CF77 Compiling System, Volume 1: FORTRAN Reference Manual
CF77 Compliling System, Volume 2: Compiler Message Manual
CF77 Compiling System, Volume 3: Vectorization Guide

CF77 Compiling System, Volume 4: Parallel Processing Guide
CRAY UNICOS Source Manager (USM) User’s Guide

CRAY UNICOS X Window System Reference Manual

CRAY DOCVIEW User’s Guide

CRAY DOCVIEW Writer’s Guide

CRAY UNICOS I/O Technical Note

CRAY Y-MP Functional Description Manual

CRAY-2 Computer System Functional Description

Table 7.1 - CRAY Documentation [d]

CRAY
Doc No

$G-2010 6.0

SR-2007D
SR-2011 6.0
SR-2011 6.0
5$G-2050
SR-0066 6.0
$G-2016 6.0
SR-0112C
SG-2009 6.0
$G-2017
SR-2082 6.0
SR-2040 6.0
SN-2026C
SR-2024
SR-0060 4.2
SN-2086
SR-0013K
SR-0074
SG-20%94 6.0
SR-2091 6.1
SR-2079 6.0
SR-2081 6.0
SR-2074 3.0
SR-2080 6.0

SR-0222F-01
SR-0012D
SG-3071 5.0
S$G-3072 5.0
S$G-3073 5.0
$G-3074 5.0
S$G-2097 6.0
SR-2101 6.0
SG-2109 6.0
5G-2118 6.0
SN-3075 6.0
HR-04016-0A
HR-2000C

January 1993

CR-1 SECTION GUIDE TO HIDDEN FILES {b]

File Description
.cshrc Executes when a C-shell is spawned
Jogin Executes when you log into a UNIX machine

Jogout Executes when you log off a UNIX machine

CR-1 SECTION GUIDE TO COMMANDS [c]

Command

admin
alias
atchop
atexpert
atscope
cc

cdbx
cft77
cf77
debug
debugx
err.exe
exit
explain
flowview
hpm

ja

kill
logout
nohup
pascal
passwd
pecc
perfview
premult
printenv
qdel
qlimit
gstat
gsub
segldr
set
setenv
time

January 1993

Description

create a SCCS control file
create an alias

check for numerical differences from autotasking
display performance statistics for autotasked jobs

scope loop variables for autotasking
invoke Standard C compiler

invoke interactive symbolic debugger
invoke FORTRAN-77 compiler

invoke cft77 compile & load

invoke batch post-mortem debugger
invoke debug automatically

utility to locate FORTRAN line number
terminate an interactive session
interpret error message

generate flowtrace output

invoke hardware performance monitor
obtain job accounting information
terminate a process

terminate an interactive session

allow interactive process to run after logout
invoke PASCAL compiler

change your password

invoke portable C compiler

generate performance statistics report
invoke microtasking preprocessor
check on status of environment variables
remove running or queued NQS job
display NQS batch limits

display status of NQS jobs

submit a job to NQS

invoke the segment loader

set C-shell variable

set environment variable

check execution and wall time

Guide-1

Section

4.1.5
4.14
423

Section

6.4
4.13
6.3.4.2
6.3.6.1
6.3.4.1
3.2
5.1
2.1
2.3
53
55
5.4
423
5.6.1
6.1.1
6.1.2
6.1
422
423
42.1
3.1
4.1.1
3.3
6.1.3
6.3.2
412
43.1
43.1
43.1
43.1
2.2
4.12
4.12
6.1

CRAY Mini Manual

,,

Guide-2 January 1993

form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubhc reporting burden for this collection of information 15 estimated to average 1 hour per response, including the ume for reviewing instructions, searching existing data sources,
gathening and maintaning the data needed, and completing and reviewing the colt tion of information. Send comments re?ardmg this burden estimate or any other aspe-1 of this
collection of inlormation, including suggestions for reducing this burden. o Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and 1o the Otfice of Management and Budge1. Paperwork Reduction Project (0704-0 188), Washington, DC 20503.

1. AGENCY USE OMLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1993 Technical Memorandum
A. TITLE AND SUBTITLE 5. FUNDING NUMBERS
CRAY Mini Manual 505-90-53-02

6. AUTHOR(S)
Geoffrey M. Tennille and Lona M. Howser

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23681-0001 CSCC Doc. No. CR-1d

9. SPONSOFRING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA TM-107599 (revised)

11. SUPPLEMENTARY NOTES
Tennille and Howser: Langley Research Center, Hampton, Virginia.
This TM supersedes the April 1992 version (CR-1c)

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 60

13. ABSTRACT (Maximum 200 words)
This document briefly describes the use of the CRAY supercomputers that are an
integral part of the Supercomputing Network Subsystem of the Central Scientific
Compu*.ing Complex at the Langley Research Center. Features of the CRAY
supercomputers are covered, including: FORTRAN, C, PASCAL, architectures of the
CRAY-2 and CRAY Y-MP, the CRAY UNICOS environment, batch job submittal,
debugying, performance analysis, parallel processing, utilities unique to CRAY
and documentation.

The document is intended for all CRAY users as a ready reference to frequently
asked questions and to more detailed information contained with the vendor
manuals. It is appropriate for both the novice and the experienced user.

This revision reflects hardware upgrades to the CRAY-Y-MP, changes to
operational procedures and software.

14. SUBJECT TERMS 15. NUMBE;{BOF PAGES

FORTRAN, multitasking, debugging, computing environment TR T RTT
A0S

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std Z239-18
298-102

