
https://ntrs.nasa.gov/search.jsp?R=19930011838 2020-03-17T08:07:29+00:00Z

Central Scientific
Cegagutiag Complex
Document CR-ld

ini anual

January 1993

(Replaces CR-lc Dated April 1992)

Geoffkey M. Tennille and Lona M. Howser

EFACE

This record of revision is a permanent part of the CRAY Mini Manual. In this release,
some section headings have the suffix [d] added to indicate that the section was added
or substantially changed at this revision. Section headings without a suffix or with
suffixes [a] through [c] have not changed since the last revision. This method of anno-
tation was chosen since sections in the CRAY Mini Manual are generally brief, thus a
revision record can be kept with the text of the document. Grammatical, spelling, sec-
tion renumbering and other changes that don’t effect the context of the section are not
marked.

MAJQR FEATURES

C o d o n s to Preliminary version; NQS queues; MSS Utilities

UNICOS 5.1; File System Quotas; Autotasking; Appendix on Unsup-
ported Software; cdbx debugger; New options for MSS utilities; New
syntax for cf77 command; List of acronyms used; Section guides to
hidden files and commands used in this manual

Reorganization of manual; Installation of CRAY Y-MP; FORGE;
hpm; perftrace; Standard C; Additional information on autotasking,
cdbx and quotas; Automatic symbolic dump (debugx)

Hardware upgrades to Voyager and Sabre; UNICOS 6.1; cf77 Ver-
sion 5; Standard C Version 3; Removal of dda and drd debuggers;
New X-based tools for auto?asking; Section on run-time errors

Hardware upgrade to Sabre; Solid-state Storage Device; New NQS
queues; Removal of FORGE from Voyager; Mixing C and FOR-
TRAN.

January 1993 Preface -1-

9

ation for Standardization

e -2- January 1993

f . INTRODUCTION [b] .. 1- 1

1.1. The CRAY Mini Manual [d] .. 1-1

I

Table of Contents

1.2. Characteristics of Voyager [Ib] ... 1-2
1.2.1. CRAY-2S Hardware [e] .. 1-2
1.2.2. CRAY-2s Performance [a] ... 1-3

1.3. Characteristics of Sabre [d] .. 1-5
1.3.1, CRAY Y-MP Hardware [d] ... 1-5
1.3.2. CRAY Y-MP Performance [d] ... 1-6

1

1.4. CRAY Software [c] ... 1-9

j 1.5. CRAY Programming [b] .. 1-9

2- 1 2. FORTRAN ON THE CRAYS [c]j

2.1. Compiling with the cft77 Compiler [c] .. 2-2
2.1.1. cft77 Differences On Voyager and Sabre [c] 2-3

2.2. Loading with segldr [c] ... 2-4

2.3. Using cf77 to Compile and Load [c] ... 2-5

2.4. Execution of FORTRAN Programs [a] .. 2-7

3. PASCAL AND C ON THE CRAYS [c] .. 3- 1

3.1. PASCAL [c] ... 3- 1

3.2. Mixing C and FORTRAN [d] .. 3-2

3.3. Standard C IC] ... 3-3

3.4. Portable C [c] .. 3-4

January 1993 Table-of-Contents- 1

s

rB

4 . ENT [b] ... 4-1

upercomputers [c] .. 4-1
our P~sswQrd [e] .. 4-2

ables [b] ... 4-3
[a]

.. 4-6

ng ... 4-7
................................ : 4-7
.. 4-a

... 4-8

omputers [d] 4-9
... 4-9

vice [dl .. 4-15
n [d] : 4-15 .

ssion [d] ... 4-15
p [d] ... 4-16

.................................
i

2 .. Y 4-16 1

5 . US [c] .. 5-1

5.4,

er [b] .. 5-2

p .. 5-4

... 5-4

ation in a GRAY Dump [d] 5-5

[c] .. 5-6

.. 5-7
essages [e] .. 5-7

essages [d] .. 5-7

NVERSION ... 6-1

.. 6-1

January 1993

&\

CRAY Mini Manual

6.1.1. Flowtrace [c] ... 6-2
6.1.2. Hardware Performance Monitor (hpm) [c] 6-3
6.1.3. Perftrace [c] ... 6-4

c

6.2. Program Optimization [c] .. 6-5
6.2.1. Scalar Optimization .. 6-5
6.2.2. Automatic Vectorization IC] ... 6-6

6.3 . Multitasking IC] .. 6-7
6.3.1. Macrotasking [c] .. 6-7
6.3.2. Microtasking [b] ... 6-8
6.3.3. Autotasking [b] ... 6-10
6.3.4. Code Conversion [c] ... 6-12
6.3.5. Memory Usage [c] .. 6-14
6.3.6. Performance Measurement [c] ... -6- 15

6.4. Source Code Control System .. 6-17

6.5. FORGE [d] .. 6-18
6.5.1. Using FORGE with the X Interface [e] ... 6-18

7 . CRAY DOCUMENTATION [d] ... 7-1

7.1. The CRAY UNICOS Primer [c] ... 7-1

January 1993 Table-of-Contents- 3

CRAY Mini Manual

Table-of-contents- 4 January 1993

1. INTRODUCT

Langley Research Center’s (LaRC’s) supercomputers, the CRAY-2S, Voyager, and the
CRAY Y-MP, Sabre, provide a significant portion of the Center’s computing
resources. If you are an experienced UNM: user, it is recommended that you peruse
this manual to check for topics unique to CRAY computers prior to using either Voy-
ager or Sabre. If you are either a novice UNIX user or unfamiliar with the LaRC
environment, you should also read Document A-8, the SNS Programming Environment
User’s Guide prior to using Voyager or Sabre.

11.1. The CRAY Mini Manual [dl

The purpose of the CRAY Mini Manual is to provide Supercomputing Network Sub-
system (SNS) users with basic information about Voyager and Sabre, the two CRAY
supercomputers installed at NASA Langley Research Center (LaRC).

This revision reflects the hardware upgrades to LaRC’s CRAY Y-MP, Sabre, (See sec-
tion 1.3) and installation of a Solid-state Storage Device (see Section 4.4). Addition-
ally, FORGE (See section 6.5) has been removed from Voyager. FORGE, however is
still available for Sun Workstations. The structure of NQS queues (See section 4.3)
has changed. Information on mixing C and FORTRAN code has been added (See sec-
tion 3.2). Within the Mini Manual, new sections and sections that have changed sub-
stantially are marked with the revision level, [d], in the section title. References to
other manuals omit revision levels. See Table 7.1 for the revision level of CRAY
documentation associated with UNICOS 6.1.6. Questions, comments and suggestions
about this manual are solicited from the user community.

This mini manual does not attempt to provide a tutorial on any given topic. It is
intended as a broad overview of the system, with references to more detailed informa-
tion. Commands described in this manual usually have several other options for which
space does not allow a discussion. Examples are for the C-shell unless specifically
designated as Bourne shell examples. Use of the mun pages, a standard UNIX feature,
is recommended to learn more about any particular command. The notes utility on the
CONVEX computers, Eagle and Mustang, is used to disseminate information rapidly
to SNS users. Another useful resource is the CRAY UNICOS Primer, Document CR-2
(See section 7.1). It provides more detailed examples than the CRAY Mini Manual.

January 1993 1-1

1.2. Char

The official desi~~at ion
Hereafter it will be
memory is static rathe
processors and 1
give a brief de
CRAY-2s.

icates that the

The CRAY-2S is

Random Access

Each of the four cessors has eight 64 word vector regis-
Each ~ ~ O C ~ S S Q ~ has a single port to the
s are transferred to the vector registers.
scalar functional units and two address

functional units rating concurrently
6p like it is on the

CRAY X-MI’ md C ows for communi-

The local memory is used to hol computation. It
can also be used for the temp n they are used
more than once durin

The foreground processor co rs system ope~~tions and includes high-
speed synchronous c o ~ ~ which i ~ ~ r c o n n e c t the b ~ ~ g ~ o u n d
CPU’s, the llers. The NSX
channel con 2s system. The
foreground processor
ne1 communicatio

1-2 muary 1993

INTRODUCTION

1.2.2. CRAY-2S Performance [a]

The CRAY-2S, Voyager, is a 4 CPU vector and parallel computer. Each CPU is a
powerful register-to-register vector processor (4.1 nanosecond minor cycle) capable of
generating results in the 100-300 MFLOPs (Million Fhating Operations per Second)
range. Additionally, the four processors can be brought to bear on a single problem,
called multitasking, to greatly increase that performance. On one problem a rate of
over 1 GigaFLOP (one billion floating point operations per second) has been achieved.
The vector speed of the computer is accomplished primarily through the vectorization
capability of the compiler. Generally, this is the optimization of an innermost DO loop.
However, the programmer can significantly affect performance through program design
and programming techniques employed.

The MFLOP speed of Voyager is primarily dependent upon three things:

1. Vector length - Vector length is defined to be the length of the DO loop that has
been vectorized by the compiler. In actuality, for loops of length greater than 64 the
compiler generates code to process the loop in groups of 64 since that is the size of
each vector register and hence the maximum number of operands that can be involved
in any one vector instruction. Even though a vector register can only process 64 ele-
ments at a time, performance does increase with increasing vector length to a max-
imum (called r-infinity) for "infinite " length vectors. Experience to date indicates that
vectors in the 20 - 40 length range achieve half the performance of r-infinity and vec-
tors of length 64 achieve 60-75 percent of r-infinity if the loop is computationally
intensive (See dependency 3.). The actual figures vary with the type of calculation
being performed.

2. Vector stride - Vector stride is defined to be the separation in memory between ele-
ments of a vector. For instance, the vector A(2), A(6),A(10), etc. has a stride of 4 .
Vectors with unit or other odd stride can be loaded from memory to a vector register
at a rate of one element per minor cycle after an initial startup of approximately 35
cycles. However, due to the division of the memory into four quadrants and each qua-
drant into 32 banks, the transfer of vectors with any even stride suffer some degrada-
tion in performance. The worst strides, in order of increasing degradation are multiples
of 2, 4, 64, and 128. The cycles per element for these strides are 2,4,6, and 12 respec-
tively.

Table 1.1 gives MFLOP rates for a vector addition of length 64 as a function of of the
stride. Since the largest percentage of time in this loop is the data transfer to and from
memory, the rates are greatly affected by the stride. In a kernel with more calculations
per memory reference, the loadhtore time has a less dramatic effect on the overall per-
formance.

January 1993 1-3

GRAY Mini Manual

Table 1.1 - Effect of Stride on CRAY-2s MFLOP Rate of Vector Addition

3. Computational richness of the loop - The CRAY-2S CPU is extremely fast in car-
rying out its floating point operations once operands are in the vector registers. How-
ever, if much of the time spent in executing a DO loop is devoted to loading (or stor-
ing) of vector operands from memory, that performance is degraded. Consequently, a
very simple loop, such as:

C(I) = A(1) + B(1) , I=l,N

where the ratio of memory activity to computation is 3 to 1, has an r-infinity (See dis-
cussion of vector length on previous page) of only 67 MFLOPS, and executes at 23
MFLOPS for vectors of length 64. On the other hand, a loop such as:

I

1 A(I) = B(I)*C(I) + D(I)*E(I) + 3.*(F(I) - G(I))*(F(I) +H(I)) , k1,N

which has a 1 to 1 ratio, has an r-infinity of 137 MFLOPs, and achieves 104 MFLOPS
for N=64.

The richness of the latter loop also allows increased performance in other ways. The
CRAY-2S allows some functional units to execute in parallel. For instance, where
there is no conflict in the use of the vector registers, it is possible for a vector load (or
store), vector multiplication, and vector addition to be in execution simultaneously.
The compiler attempts to schedule its instructions in such a way to maximize this type
of activity. However, in loops in which very little computation occurs, there is little or
no opportunity for overlap.

Benchmark results on a collection of application programs show Voyager executing
5.9 times as fast as Eagle or Mustang and approximately 25 percent faster than
Navier, the 256 Mwd CRAY-2D at NASA Ames Research Center (ARC). This speed
difference is primarily due to improved performance of the SRAM memory on Voy-
ager, as compared to the Dynamic Random Access Memory (DRAM) of Navier.

1-4 January 1993

$3

The official designation of LaRC’s CRAY Y-R/zp abre is a CRAY Y-Mp8E/8256.
Hereafter it will be designated simply as CRAY Y-MP. The ’8E’ indicates that Sabre
is a model ’E’ machine with an eight CPU chassis. The ’8256’ indicates that eight
processors are installed and configured with 256 million words (Mwds) of memory.
The following sections give a brief description of the major hardware and performance
features of the CRAY Y-MP.

Y Y-MP Hardware [dl

The CRAY Y-MP is a register to register vector processor. The configuration of
~ ~ b r e is 8 identical and independent processors with interprocessor communication
and an UO Subsystem (10s). There is a 512 Mwd Solid-state Storage Device (SSD)
(See section 4.4) associated with Sabre, It has 256 Mwd of SRaM central memory
that is shared by the processors and the IO§. Memory is divided into 256 interleaved
banks, which improves the speed of memory access by allowing simultaneous and
overlapping memory references. Each CPU has four parallel ports to central memory,
each of which performs specific functions. Bidirectional access to memory allows
both block reads and writes to be done simultaneously. ,The CRAY Y-MP has no vir-
tual memory and unlike Voyager, does not have local memory associated with each
processor. The scalar and vector capability of this machine in a multiprocessing
environment produce extremely high result rates.

The entire mainframe, which includes all memory, computer logic and DC power sup-
plies, is integrated into a compact package that is about six and one half feet tall and
covering an area of about sixteen square feet. Cooling is provided by fluorinert, an
inert noncorrosive liquid, which circulates through each module, power supply and
power supply mounting plate but not in direct contact with the integrated circuit pack-
ages like Voyager. Sabre is now configured with 80 Gbytes of disk storage on 2
DD-4R disk drives.

Each of the independent processors has eight 64 word vector registers, eight scalar and
eight address registers. Additionally, the scalar and address registers each have sixty-
four intermediate registers. Each processor has four parallel ports to the common
memory, through which vectors are transferred to the vector registers. There are five
vector functional units, four scalar functional units and two address functional units. It
is possible for these functional units to be operating concurrently on independent
operands. Chaining is supported on Sabre. The CRAY Y-MP also has a built-in per-
formance monitor, hpm (See section 6.1.2)’ that allows a programmer to gather perfor-
mance data in an efficient manner.

The UO Subsystem (10s) has several UO Processors (IOP’s), a buffer memory and
necessary interfaces. It is designed for fast data transfer between buffer memory and
central memory, as well as to peripheral devices. The 10s also interfaces with the

January 1993 1-5

CRAY Mini Manual

Y

High-speed External Communications (HSX) channel. The HSX channel controller
connects high-speed external devices to the CRAY Y-MP system.

1.3.2 CRAY Y-MP Performance [d]

LaRC's CRAY Y-MP, Sabre, is an 8 CPU vector and parallel computer. Each CPU is
a powerful register-to-register vector processor (6 nanosecond minor cycle) capable of
generating results in the 150-300 MFLOPS (Million FLoating Operations per Second)
range. Additionally, the eight processors can be brought to bear on a single problem,
called multitasking, to greatly increase that performance. The vector speed of the
computer is accomplished primarily through the vectorization capability of the com-
piler. Generally, this is the optimization of an innermost DO loop. However, the pro-
grammer can significantly affect performance through program design and program-
ming techniques employed.

The MFLOP speed of Sabre is primarily dependent upon four things:

1. Vector length - Vector length is defined to be the length of the DO loop that has
been vectorized by the compiler. In actuality, for loops of length greater than 64 the
compiler generates code to process the loop in groups of 64 since that is the size of
each vector register and hence the maximum number of operands that can be involved
in any one vector instruction. Even though a vector register can only process 64 ele-
ments at a time, performance does increase with increasing vector length to a max-
imum (called r-infinity) for "infinite 'I length vectors. Experience to date indicates that
vectors in the 75 - 100 length range achieve half the performance of r-infinity and vec-
tors of length 64 achieve 40-45 percent of r-infinity if the loop is computationally
intensive (See dependency 3.). The actual figures vary with the type of calculation
being performed.

2. Vector stride .. Vector stride is defined to be the separation in memory between ele-
ments of a vector. For instance, the vector A(2), A(6),A(10), etc. has a stride of 4 .
Vectors with unit or other odd stride can be loaded from memory to a vector register
at a rate of one element per minor cycle after an initial startup of approximately 15
cycles. However, due to the division of the memory into four sections of 64 banks
each, the transfer of vectors with any non-unit stride suffers some degradation in per-
formance. The worst strides, in order of increasing degradation, are multiples of 8, 16
and 32. Strides of a multiple of 2 or 4 are no more of a detriment to performance
than odd strides. The average cycles per element for the worst strides are 1.25, 2.5
and 5 respectively.

Table 1.3 gives MFLOP rates for a vector addition of length 64 as a function of of the
stride. Since the largest percentage of time in this loop is the data transfer to and from
memory, the rates are greatly affected by the stride. In a kernel with more calculations
per memory reference, the loadstore time has a less dramatic effect on the overall per-
formance.

1-6 January 1993

INTRODUCTION

Table 8.3 0 Effect of Stride on C

all richness of the loop - The CRAY Y-MP CPU is fast in carrying
out its floating point operations once operands are in the vector registers, However, if
much of the time spent in executing a DO loop is devoted to loading (or storing) of
vector operands €rom memory, that performance is degraded. Consequently, a very
simple loop, such as:

C(1) = A(I) + B(1) , I=l,N

where the ratio of memory activity to computation is 3 to 1, has an r-infinity (See dis-
cussion of vector length on previous page) of only 138 MFLOPS, and executes at 21
MFLOPS for vectors of length 64. On the other hand, a loop such as:

A(I) = B(I)*C(I) + D(I)*E(I) + 3.*(F(I) - G(I))*(F(I) +H(I)) , I=l,N

which has a 1 to 1 ratio, has an r-infinity of 230 MFLOPs, and achieves 104 MFLOPS
for N=64.

The richness of the latter loop also allows increased performance in other ways. The
CRAY Y - W allows some functional units to execute in parallel. For instance, where
there is no conflict in the use of the vector registers, it is possible for a vector load (or
store), vector multiplication, and vector addition to be in execution simultaneously.
The compiler attempts to schedule its instructions in such a way to maximize this type
of activity. However, in loops in which very little computation occurs, there is little or
no opportunity for overlap.

January 1993 1-7

CRAY Mini Manual

4. Chaining - The multiple ports to memory of each of the CRAY Y-MP’s processors
allows for the overlapping of memory accesses. The add and multiply functional units
may also be kept busy at the same time. Consider the following simple loop:

C(1) = S * (A(I) + B(I)), I= l,N

Because of the multiple ports to memory, after the access of the array A is initiated,
the access to the array B can begin after just one clock cycle. Then once an element
of both A and B have been loaded into the vector registers, the addition can begin.
After the addition of the first elements of A and B is complete, that result can be
chained to the multiply functional unit to be multiplied by the scalar S. When the first
result of that operation is complete, a third path to memory may be used to begin the
store of the array C. On Sabre, the computational time for this loop is O(N), since the
three memory accesses (two loads and a store) can be overlapped with the two arith-
metic operations. On Voyager, the computational time for the loop is 0(5N), since
none of the memory accesses or arithmetic operations can be overlapped.

1.4. CRAY Software [e]

The CRAY UNICOS operating system is derived from the AT&T System V UNIX
and has been enhanced for use on a supercomputer. The version currently installed is
UNICOS 6.1. It supports most traditional features of UNE, some of which are
described in sections 2.2.5, 2.2.7 and 3 of the SNS Programming Environment User‘s
Guide (Document A-8). The NQS batch facility (See section 4.3.1) provides true
batch functionality in a system designed for interactive access. There are two FOR-
TRAN compilers (See chapter 2) as well as PASCAL and two C compilers (See sec-
tions 3.1, 3.2, and 3.3). The FORTRAN compilers automatically vectorize user source
codes. There is no explicit vector syntax.

Several mathematical libraries (See section 7 of A-8), debugging utilities (See section
5), graphics packages (See section 6 of A-8) and code management utilities (See sec-
tion 6) are supported on Voyager and Sabre. Additionally UNICOS supports the
Transmission Control Protocol/Internet Protocol (TCP/IF) utilities (See section 5 of A-
8). Multitasking from within FORTRAN programs is supported both automatically
and via compiler directives (See section 6.3).

1-8 January 1993

INTRODUCTION

CRAY supports three higher level programming languages: FORTRAN, PASCAL and
C. There are two different FORTRAN compilers: cy777 and cy7, both of which are
based on the ANSI FORTRAN X3.9-1978 standard (FORTRAN 77). Use of the cy777
compiler is recommended, since it is supported across the entire CRAY product line
and generally produces more efficient executable code. The cfl FORTRAN compiler is
not available on Sabre. See section 2.1 for more detailed information on the FOR-
TRAN compilers.

The PASCAL compiler is called pascal (See section 3.1). CRAY PASCAL, is a com-
plete implementation of the Level 1 requirements of PASCAL standard IS0 7185 (as
defined by the International Organization for Standardization). Document CR-2 1 is the
CRAY PASCAL Reference Manual. The book SCAL User ~ a ~ u ~ i and Report
(Second E~i~ion), by Kathleen Jensen and Nicklaus Wirth is considered a standard
PASCAL reference manual.

The C compilers are called cc and pcc (See sections 3.2 and 3.3). The cc compiler is
the Standard C compiler and the pcc compiler is the portable C compiler, which is
based on the AT&T implementation. Documents CR-30 and CR-20 are the
CRAYStandard and CRAY C Reference Mmual respectively. The C ~ r o g ~ ~ ~ ~ i ~ g
Language, by Brian Kernighan and Dennis Ritchie is considered the standard C pro-
gramming language reference manual by most C programmers. Version 2 of Ker-
nighan and Ritchie describes Standard C.

I

1-9

CRAY Mini Manual

1-10 January 1993

2. FORTRAN ON T GRAYS [c]

Both CRAY FORTRAN compilers are an implementation of FORTRAN 77, as defined
by the American National Standards Institute (ANSI 3.9-1978) with extensions. The
cft77 compiler contains the full FORTRAN 77 standards, offers automatic vectorking
of code and other automated features designed to exploit the CRAY hardware. On
Voyager, the older compiler cft is supported at a maintenance level only, and will not
be supported after UNICOS 6. It is also not available on Sabre and is no longer
described in this manual.

The cft77 compiler is not very fast. It is recommended to use the make utility (See
section 3.3 of A-8) to only recompile those routines that have been modified, rather
than the entire code. Using make to recompile only those routines that have been
modified, is a more efficient use of computer resources. Object code generated by the
two compilers is however load compatible, so subroutines compiled with cft and cft77
can be combined at load to create an executable.

i

I

January 1993 2- 1

CRAY Mini Manual

fler [c]

The basic syntax for the cft77 compiler is:

cft77 [-options] j1ename.f

The name of the file which contains your source code is filename$ where the .f
extension is required for the compiler to recognize the file as FORTRAN source code.
Executable files generated using cft77 on Voyager and Sabre are not compatible.
You must recompile any source code that is moved between the two CRAY’s.

Keywords may be in any order, separated by spaces. Spaces between a keyword and
the argument are optional. The keywords -e (enable) and -d (disable) can be followed
by a string concatenating the options. For a detailed description of options, use man
cf77 or see Chapter 1 of.Document CR-35, 0 7 7 Compiling System, Volume I : FOR-
TRAN Reference Manual.

Some of the more useful options and defaults are listed below.

-a alloc

-b binfile

-I inlinef

-1 listfile

-0 optim

-N C O ~

Specifies memory allocation method. alloc can be:

static - All memory allocated statically. Address location does
not change. (Default)

stack - Variables in SAVE, DATA and COMMON statements
are allocated statically, all others are stack. (quired for multi-
tasking.)

Binary object code of the program ready for the loader is written
to binjile. (Default is fi1ename.o)

Subprograms contained in the file inlinef are expanded inline.

Listings enabled by the compiler are written to listjile. (Default
is filename.1. All listings are off by default.)

Specifies optimization level. optim can be: noaggress, bl, noin-
line, noloopalign, recurrence, norecursive, scalar, vector,
vsearch, nozeroinc. Default is vector, Multiple optimization
levels are separated by commm. See man pages or chapter 1 of
CR-35 for specific details.

Specifies number of characters of source code to read. col can
be 72 (default) or 80.

2-2 January 1993

-R

-ec

-ef

-ei

-ej

-em

-eS

-ex

-ez

Examples:

FORTRAN ON THE CRAYS

Enables run-time checking of array bounds.

Enables a list of common block names and lengths.

Generates flowtrace for the entire compilation unit.

Causes uninitialized memory to be set to an undefined value.

Causes at least one execution of each DO loop when the DO
statement is executed.

Enables 'the Loopmark option, which marlcs each DO loop in the
source listing and indicates type: vector, short vector or scalar.

Listing of source code is written to listfile, (Default is
filename.1)

Enables cross reference listing to be written to listfile. (Default
is filename.1)

Enables use of debugging by generating a debug table.
. I

* ... ~$377 pr0g.f .

File progf is compiled using all defaults; no listing is generated; the binary to be
loaded is written to prog.0; and all optimization and vectorization is done.

@77 -efmx pr0g.f

File pr0g.f is compiled with all optimization and vectorization. Flowtrace is enabled,
so timing information can be generated at execution. File prog.2 contains the source
listing with each DO loop marked by type and cross reference listing. The binary to
be loaded is written on file prog.0.

2.1.1. cft77 Differences On Voyager and Sabre [c]

There are some subtle differences in the implementation of FORTRAN on Voyager
and Sabre. These differences should not prevent most applications from executing
correctly. Check under notes CRnews on Eagle for all differences between Voyager
and Sabre. Also, since the two machines have differing instruction sets, executable
files generated using c877 are not compatible between them.

January 1993 2-3
1

c

CRAY Mini Manual

2.2. Loading With segldr [e]

The segldr command linlcs relocatable binaries together duce an executable
binary. It invokes the loader and loads all libraries needed ORTRAN. Informa-
tion is passed to segldr by the use of options or directives. The syqtax is:

.

segldr [options] files

The files listed infiles are of the form:

fi1ename.o
fi1ename.a Binary library file.
any other name

Binary object file generated by a compiler.

The files contain directives to segldr.

For a detailed description of the options and directives for segldr, use man segldr or
see Document CR-8, CRAY Segment Loader (SEGWR) and Id Reference Manual.

A few useful options are listed below:

-0 outfile Writes executable program to ou@le. (Default is a.out)

-m Writes an address level load map to stdout.

-1 lib Non-default libraries in directory lib are loaded, such as: lurclib,
imslib, pet$

Examples:

segldr prog.0

Creates an executable a.out from the binary object file prog.0.

segldr -0 prog prog.0

Creates an executable prog from the binary object prog.0.

segldr -0 prog -@ow prog.0

Creates an executable prog which includes the flowtrace libraries (See section 6.1.1)
from the binary object file prog.0.

2-4 January 1993

FORTRAN ON THE CRAYS

2.3. Using cn7 to Compile and Load [c]

The command @‘7 can be used to invoke the ~$77 compiler and the loader segldr
The syntax of the $77 comand allows options to be passed to various system phases
in addition to many other options. Some of the most useful are listed here:

~$77 [-Zphasel [-c] [-F] [- 1 lib] [-o outjile] [-Wfcft77 - options”]files

Theples have names of the form:

fi1e.a library input file
fi1e.f FORTRAN source file
fi1e.o binary object file

cft77 - options cft77 options can be used in the same manner they are used on
the a 7 7 command line. Multiple options are separated by ,

white space within the double quotes.

-C Produces .o object files, but does not produce an executable.

-F Enables flowtrace processing, turns on cft77 flowtram opfion and
\ loads flowtrace library.

-1 lib Non-default libraries in directory lib are loaded, such as: Zarclib,
imslib, per$

-0 outfile

-Z phase

Executable binary file is written to outjle. (Default is a.out.)

Specifies code generation option, usually needed only when mul-
titasking; phase can be one of the following:

c - Activates FORTRAN compiler and loader only. (Default)

m - Specifies rnicrotasking

p - Specifies autotasking

January 1993 2-5

CRAY Mini Manual

Additional options may be passed to the individual system phases as:

c

- Wdt'fpptt Dependence analyzer

-Wu"fmpt' Translator

-Watt as" Assembler

-Wl"segldr" Loader

-Wpt'gppt' Generic preprocessor

If any of the multitasking options are specified, cy7 ensures that the stuck allocation
option is selected. See section 6.3 and CR-38 for details about multitasking.

Examples:

All FORTRAN source code files in your current working directory are compiled to
create object code files, but no executable file is generated.

cj77 -0 prog -F - W f - e m " pr0g.f

The file pr0g.f is compiled with the cft77 compiler and a source listing prog.2 is gen-
erated. File prog.1 has DO loops marked according to type and a cross reference.
The flowtrace option is turned on and the flowtrace library is loaded. The executable
created is called prog.

cf77 -0 prog -Z p pr0g.f

The file pr0g.f is autotasked (See section 6.3.3) and an executable file, prog, is
created.

2-6 January 1993

FORTRAN ON THE CRAYS

To execute your program after it has been loaded by the compiler, type the name of
the executable file. The default name of the executable file is a.out.

FORTRAN unit numbers (except unit 5 and 6) are usually associated with a file by a
FORTRAN OPEN statement. If a FORTRAN unit number is not associated with a file
name by a FORTRAN OPEN statement, the default file name is f0rt.n where n is the
unit number in the FORTRAN I/O statement. FORTRAN units 5 and 6 are standard
input and output respectively. See section 2.4 of 8-8 for redirecting I/O to and from
units 5 and 6.

A set of sample commands which compiles, loads and executes a typical program
using C-shell file redirection is:

cf77 -es pr0g.f
segldr -0 prog prog.0
prog < datax > & prog.outx

The source is on file prog.8 File pr0g.Z is a source listing, which contains messages
from the compiler, errors and vectorization information. File prog is the executable
generated by the loader. F ie d a t a contains data read from unit 5. File prog.outx
contains output from the program that is written to unit 6 and run time errors.

A generic C-shell script to perform the same tasks, with parameter substitution, fol-
lows:

#!lbinlcsh
477 -es $l.f
segldr -0 $1 $1.0
$1 < $2 > & $l.outx

If the above script is on a file mnit, then the command

runit prog datax

executes the same commands as the first example.

January 1993 2-7

CRAY Mini Manual

2-8 January 1993

3.

PASCAL,, Standard C and ~ o ~ a b l e C compilers are supported on Voyager and Sabre.

3.1.

The CRAY PAS ocument CR-21, CRAY Pascal
Reference M a n u mplementation of PASCAL. Chapter 3 of
CR-21 lists reserved words, p r e d e ~ ~ e d identifiers. Pt complies with the
Level 1 requirements of standard IS0 7185, defined by the International Organization
for Standardization (ISO). The default compiler options may be explicitly overwritten
by the command line. Compiler di placed in a PASCAL program override the
command line and default setti extensions to PASCAL, include:

compiler is called pascala

1.
2.
3. Calls to external
4.
5.
6. In-line function expansion.
7. Octal numbers.
8.
9.

s of integer data (24, 32
RVVISE label for the CA

The ability to initialize variables at compile time.
Array processing with a single statement.

Expressions that operate on entire mays.
A d d i t i o ~ ~ predefined declarations, knctions and procedures.

i The basic syntax of the pascal command line (All parameters are optional.) is:

pascal [- E Jile.11 [-b J;ile.o] [-o olist] [-VI I;file.p]

A complete description of the co
The parameters are:

d line may be found in chapter 2 of CR-21.

-1 file.1 Specifies the file to receive the listing output. All list output is
suppressed if -k 0 (zero) is specified. e default is stdout.

-b fi1e.o Specifies the file to receive the binary load modules generated by
s the ~~~~~ file is

-0 olist Specifies the list of compiler options, separated by commas, in

January 1993 3- 1

-v Writes the compiler version used to stderr.

fi1e.p CAL source code file. It must end with the .p
default is used. The d ~ ~ a u ~ t is stdin.

To compile, load program with source on file, test.p, use:

pascal -I test.l -b Itest.0 tmt.p
segldr -0 test test.0
test > test.data

A compiler listing, test.l, is g~nera t~d . The load modules are on test.0, and the exe-
cutable is called test. When test is executed, the output is redirected to test.data.

With the 4.2 release of C Y PASCAL, the ranges of I24 and I32 data types has
expanded. I24 now spans -83$8608 to 8838607 and I32 now spans -2147483648 to

There are also new directives for inlining, producing CAL assembler
ressive o p ~ ~ ~ z a t i o n . User messages now conform to the UNICOS 6.1

message system conventions.

33.

When a FORT subroutine calls a C module, the C module names must be
declared using upper CASE characters. Labeled COMMON names to link with FOR-
TRAN routines must also be declared using upper case characters. Without these upper
case declarations, the link phase will produce unsatisfied external references. Chapters
12 and 13 of CRAY Standard C Programmer's Reference Manual, which describe
interlanguage communication and interfaces to libraries and the loaded, may be a valu-
able source of i ~ f o r ~ ~ i o n .

3-2 January 1993

PASCAL AND C ON THE GRAYS

3.3. Standard C fc]

CRAY supports the Standard C compiler, called cc. The cc compiler is described in
The C Programming Language Version 2 by Brian Kernighan and Dennis Ritchie.
The reference manual for the CRAY implementation of Standard C is nt CR-
30. There is also a CRAY Standard C Library Reference Manwl (CR-31). The cc
compiler is a superset of the pcc compiler (See section 3.3). Differences include:

1.
2.

3.
4.

5. Vectorization is enhanced.

Function prototypes, which provide a new way to declare functions.
Several new types, including long double, which is equivalent to
FORTRAN DOUBLE PRECISION.
There are three new keywords: Coast, signed and volatile.
Several new header files are included. The most significant for
numerical processing is <float.h>.

The syntax for the use of the Standard C compiler is:

cc [options I Jiles

The files usually have the extensions .c, .o or .s, which are Standard C source code,
previously compiled code and assembly language code respectively. A file with the
extension .f or .F is considered a c#77 program, the latter to be run through the Stan-
dard C preprocessor prior to being compiled. A partial list of options follows:

-c Forces the production of object files, and leaves them in the .o
extension. The loader is not invoked.

-F Enables flowtrace processing.

-g Generates the Debug Symbol Tdble and suppresses any compiler
optimization.

-h Passes Standard C compiler code generation options to the Stan-
dard C compiler. These include optimization levels. See the
man page for cc for more details.

-0 Specify a name for the executable code, i.e. -0 prog. The
default name is a.out.

Many other options are available, check the man entry for cc, which both compiles
and loads Standard C programs.

January 1993 3-3

3.4. Por [cl

GRAY also supports; the port
able C compiler de$cribed in
Dennis fitchie.
gramming langu 0. There is also a CRAY
Manual (CR-28). The pcc compiler will not be supported aft
implementation has several CRAY extensions, including:

for this CRAY implementation

1.
2.
3.

5.

Support of upper and lower case variables up to 255 characters.
Ability to pass a. variable length argument list.
Support for declaration of more register variables.

S ~ p ~ o r t for enu~eration and unique structure member names.
dardized frame package and s~ck-handling, mechanism.

The syntax for the use of the p o r t ~ ~ ~ e C compiler is:

pcc [options] Ples

The files usually have the extensions .c, .o or .s, which are C source code, previously
compiled code d assembly 1 de respectively. A file with the extension J
or .F is considered a cf77 FO program, the latter to be run through the C
preprocessor prior to bein compiled. A partial list of options follows:

-e Forces the production of object files, and leaves them in the .o
extension. The loader is not invoked.

-F Enables flowtrace processing.

-g Generates the Debug Symbol Table and suppresses any compiler
optimization.

asses G compiler code generation options to the C compiler.
These include o ~ t i ~ i ~ a t i o n levels. See the man page for cc for

-0 cify a name for the executable code, i.e. -0 prog.

Several other options are a v ~ l ~ b ~ e , check the man entry for pcc, which both compiles
and loads portable C programs. ,

3

3-4 January 1993

4. UNICOS COMPUTING ENV NT Ibl

UNICOS is designed primarily as an interactive system. The user has the ability to
customize his environment and to create new commands (or scripts) to perform fre-
quently executed tasks. The environment can be created automatically at login by
using the .login and .cshrc files (See sections 4.1.4 and 4.1.5) or as needed by modi-
fying the environment or C-shell variables (See section 4.1.2). Usually, the .login file
is used to initialize batch vs interactive environment, your search path for commands
and environment variables. The .cshrc file is used to insure that all your aliases are
passed on to subsequent C-shells and to initialize C-shell variables.

4 e l e Logging Onto the CRAY Supercomputers [c]

When you get connected to Voyager the system responds

Connected to voyager.larc.nasa.gov
Escape character is '''1'

Cray UNXCOS (voyager)

UNICOS Release 6.1

A similar message appears when you get connected to Sabre. The system then
prompts for your login name with:

login:

At this time type your login name followed by a carriage return. The carriage return is
followed by a prompt for your password:

password

If you type either your login name or password incorrectly, the system prompts you
again. If you hit the backspace in an attempt to correct an error, your login attempt
fails. Try again and be more carehl. If you can't login at all, call Password Valida-
tion at 864-8282. If your login is successful, you are told the name of your default
account (See section 1.3.1 of A-8).

January 1993 4- 1

change your password at least once a year. Once changed, a password m y not be
changed during the next week. Your new password must meet the following security
requirements;

1.
2.
3.
4.

It must be at least six characters long.
It must have at least two alphabetic and one numeric or special character.
It must not be any permutation of your login name.
It must differ from your old password by at least three characters.

Also, words found in a dictionary with only a single digit appended to the end or
added at the be inning to form the password are highly s u s ~ e ~ t i b ~ e to being comprom-
ised and should not be used. The command to change your password is:

passwd

It is an interactive command. All that you must do is enter the command and ~ C Z S S W ~
prompts you for a response. As you enter your old and new passwords at the
appropriate prompts, you will notice that the system does not echo your password to
the screen. This is a security feature and the reason that the system prompts you twice
for your new password. If the two entries for your new password don’t match, the
system does not change your password and prompts you again to enter your new pass-
word. If you forget your password, contact Password Validation at 864-8282 for assis-
tance.

4-2

UNICOS COMPUTING ENVIRONMENT

4.1.2. Environment and C-Shell Variables [b]

Data about your environment such as your home directory and terminal type is main-
tained in two sets of variables called environment and C-shell variables. Environment
variable values are inherited by all programs executed by the shell, including new
shells that you spawn or fork. C-shell variables are inherited by execution of your
.cshrc file whenever you spawn a new C-shell. Many of your environment and C-
shell variables are defined by the system administrator in your initial .cshrc and .login
files, but you may change these variables by using the setenv or set commands respec-
tively. These variables generally define information that program need to execute
correctly. Your current environment variables can be displayed by typing:

printenv

The setenv and set commands have slightly different syntax, as illustrated below

setenv variable string

and

set variable=string

where variable is the name of tle environment variable and string is the new value.
Some of the C-shell variables are Boolean and are either set (Le. true) or unset (Le.
false), such as noclobber and ignoreeofi These two C-shell variables are used in the
sample .cshrc file in section 4.1.5.

Some common environment variables include HOME, PATH, TERM, USER,
DISPLAY, SHELL, PRINTER, DELIVER and EDITOR. Environment variables are
discussed in detail in section 5.3.1 of CR-2. Some will be illustrated in the examples
of .login and .cshrc files that are discussed in sections 4.1.4 and 4.1.5.

January 1993 4-3

A nice feature of with which you can change your environment.
les, or it can be custom

you are assigned a login name and
.login files in your

frequent change that
ow you to create mother

(or add to your .cshrc

them each time
insure that you
to enter

lete a file the s ically prompts you to
wise you would k v e

each time YOU e system to prompt you for file removal.

The directory / ~ ~ r / l ~ c ~ ~ l ~ ~ / ~ ~ e l has several sample hidden files that you may use to
, .cshrc and .logout files. Additionally

mailre, .forward, .netrc and .rhosts files
next two sections have sample .login and

n files that the system administrator gives you
bring your Jogin and .cshrc files from

isn’t w ~ r ~ ~ g , then you can copy the
tory l u s r l l o c a l l ~ ~ l s k ~ ~ to home

.cshrc files that

directory.

i

4-

UNICOS COMPUTING ENVIRONMENT

4.1.4. Your .login File [d]

The .login file is automatically executed every time that you log into either CRAY
afkr your .cshrc file is executed (See section 4.1.5). An analogous .logout file is
automatically executed every time that you log off, if such a file exists (See section
4.2.3). An example of a typical .login file is given below. It is similar, but not identi-
cal to the skeleton .login file that you are given initially. Everything to the right of
the pound signs (#) is a comment to explain the various entries. Your .login file may
not look exactly like this, but you can tailor it to suit your needs.

Sample .login File
set path=(-lbin lusrllocallbin lusrllocal lbin lusrlbin lusrlucb
echo "The current date and time are: "
date
umask 022

setenv DELIVER delivery info
source IusrllocalIadmlske~GRAPHICS
if ($?ENVIRONMENT) then

if (,,$ENVIRONMENT' = = "BATCH") then
exit

endif
endif
echo "Enter Terminal Type -

Default is vtl00 "
set termname="$<"
if ($termname =-) then

set termname=vtl00
endif
setenv TERM 'tset -Q - $termname'
set term=$termname
quotamon -s 600

mesg -n
setenv MAIL lusrlmailt$user
setenv PAGER lusrlucblmore
stty erase ^H kill ^U
setenv EXINT "set redraw wm=8 showinsert ai"
setenv VISUAL lusrlbinlvi
setenv EDITOR lusrlbinlvi
setenv LPP 48
setenv DISPLAY myxterm:O:O

.) # Set path variable

Give date and time at login
Deny write access to group
and others
delivery info - 8 chars max
For acczss to di3000
Check for batch or interactive
environment

Check terminal type

Ask for automatic warning
when soj3 quota is exceeded
Disable talk utility
IdentiB mailbox
One screen of mail at time
Set erase & line kill chars
Set vi attributes
Use vi for - v in mail
Use vi for -e in mail
Set default page length
Defne display for X

January 1993 4-5

Y or spawn a
be executed by typ

e ~ a ~ p l ~ of a typical .cshrc
nd signs (#) is a comment to

le is given below.
lain the various en YQLU .cshrc file may not

ok ~ ~ ~ t l y like s one, but remember that you can tailor it to suit your needs.

en
== "BATCH') then

endif

set ~ ~ ~ o r e e ~ ~
set noclobber
set notify

alias 6: clear
alias -if'
alias 1s "1s -aC"

alias. x "chmod 636"

~ ~ ~ r t ~ ~ t to scratch directmy
Set alias for $ ~ ~ ~ ~ ~ t cd
Check fop. i n ~ ~ ~ ~ c t i v e QP batch
environment.

only e ~ e c ~ t ~ ~ f o ~
interactive shells
Save last 28 ~ o ~ ~ a ~ d s on history file

~ ~ l l o w ~ ~ ~ ~ O ~ ~ ~ ~ d ~ are

Always use smwt mail
S ~ o r t h a ~ $ notation for history
Clear the x r e m

i ~ c l ~ ~ i n g "." j l e s
ke a file exemtable with

ore i ~ ~ o ~ ~ ~ t i o n on the CQIXUWI~S listed above or in the
man command for the specific co or

n csh

4-6

UNICOS COMPUTING ENVIRONMENT

4.2. I ~ t ~ ~ a c t i v ~ Compnti

UNICOS is basically an interactive operating system, but unlike some other
systems the user can be executing multiple tasks, called processes under "NICOS, at
the same time. This feature tends to make your terminal sessions more productive,
since you don't have to wait for one process to finish to start another.

4.2.1. Processes [a]

A process is a program that is running. The most frequently running program is the
command interpreter called csh and referred to as the C-shell. UNICOS also supports
the Bourne shell, which is called sh. Every time the user issues a command the csh
spawns (or forks) a new process. The spawned process is the child of the process that
created it. Processes may be run in the foreground or background. Usually they are
run in the foreground; however by running processes in the background, you are able
to do a lengthy task, while continuing to do other work in the foreground. For exam-
ple, to compile a FORTRAN program, prog.f, in the background type:

cf77 pr0g.f &

The ampersand (a) causes the program to be compiled in the background. If you are
running in the background and logout, your process will terminate unless you have
redirected standard input and output (See section 2.4.3) and have preceded the com-
mand with the nohup (no hang up) command. For example,

nohup cf77prog.f &

continues to execute after you logout.

You can check on the status of processes with the ps command, which stands for pro-
cess status. Each process is assigned a number called a Process IDentifier (PID). This
number is important if you have a hung process and want to kill it (See section 4.2.2).
It is not possible to switch jobs between the foreground and background on Voyager
or Sabre as it is on the CONVEX computers.

January 1993 4-1

C

4.2.2.

If you have a ~ n a w a y process running in the background, the ps command gives you
you can then use to kill the process. For example to kill the process

kill -9 1234

Sometimes YSU may have a hung terminal or a runaway process sunning in the fore-
ground. There is no need to panic. First try using the T (control C) signal. If that
doesn9t work, login again from another terminal and enter the ps command. Then use
the kill c o m a n d as just illustrated to kill the process(es) associated with the other ter-
minal. If you kill the wrong C-shell by mistake, you are logged off the system, so just
try again.

Usually, you will log off the system with the logout command. If you are no longer
in your login shell then you must use the exit command. The A (Control D) will also
log you off the computer if you do not have the variable ignoreeof set in your .cshrc
file (See section 4.1.5). You may also create a .logout file that is executed every time
that you logout. A sample .logout file is given below.

e

clear
lbinlrm a.out
echo "Closing connection to Sabre at "
dace

Clear screen at logout
Remove generic executables

Give date and time at logout

at LaRC to obtain t
1992) are found in

s are announced

is summarized in se
and on &n pages.

S commands are all described in

qsub Submits a request to a batch queue.
qstat Displays the statu S queue and requests.
qdel Deletes or signals
qlimit Displays batch li

, you must first create a script (See section 2.1.3 of A-8) of commands to
in batch mode. Unlike interactive shell scripts, NQS scripts can not

accept positional parameters. Since ecution in youp home directory, file
space limitations will g e ~ e r ~ l y re se the cd comand as one of the
first commands in your script to subdirectory in Iscr (
4.4. l), for the compilation, loadin f your program. The
may have a prolog it executes and sets resource lim-
its on a per-proces NQS scripts are executed in your
login shell, which is the C-

The resource limits are specified with #
compatibili~ with earlier systems, the s
of the line as well. Examples of ~ ~ ~ ~ e ~ ~ l y used p u b options are:

as the first characters of the line. For
@$ may be used as the first characters

-nr
-me

-a 5pm

If -1M and -IT are us
basis. Check the man

-9 q8mw - Ih

4-9

C inf

This j ~ b ~~~n ~ ~ ~ ~ i t t ~ d to NQS, will run in the scratch directory of john, wi
~ e ~ o ~ size limit of 263 million words and a CPU time limit of 1000 seconds.

c o ~ ~ ~ l ~ ~ o n and ex~cution (See section 6.1) and the request will
when it completes.

of a batch job submission using NQS is

name is optional, but the limits specified in the script
sp’ecified queue. Once you submit the job, the system

&O ~ u ~ ~ e : queue - name

pecific queue with the -4 option, the queue name that will be
how the specific queue
le 4.2 for the queue

quest name is used by the qdel command, if it becomes neces-
TO GII a request, use:

cess has begun execution.

, two files are created in the directory from which
ript name is nqsjob

n q s ~ o ~ . e 4 ~ 5 8 and n
to standard error

h

-10

The qlimit command displays the resources available on abre and Voyager and the
corresponding parameter names to be used by qsub. The shell strategy displayed is the
name of the shell which interprets script commands, if the user does not specify an
alternate shell. The display is of the form

est resource - name resource - description

where resource description defines the qsub option associated with resource - name.

The qstat command is used to query the system about the status of NQS requests as
illustrated below:

qstat -a

qstat -i

Show sumrnary of all requests.

Show s u m m q of requests awaiting processing.

qstat -r Show summary of requests currently running.

qstat -b Show batch queue summary.

The status of an individual queue may also be queried. For example,

qstat -rbi big-long

gives a summary of all jobs running or queued in the big-long queue, which enables
you to check on the status of your job. nning jobs are listed first, followed by
queued jobs which are listed in the order that they become eligible for execution. The
qstat command has other options, check the man page.

January 1993 4-1 1

* Interactive is not a true NQS queue, but is included for completeness.

ueue is active only during non-prime shifs.

ueues for Voyager [e]

These NQS queues were established March 4, 1992. This change only affected the
names of the queues to reflect the time and memory restrictions of each queue. They
may change, SO space has been left in 4.1 for additional entries, or changes to
the queue limits. Jobs are automaticall d to the correct NQS queue as specified
by the -Im and -It UB options, except for special and multitask which must be

ed w -4 option on the qsub command. e notes CRadmin category on
and ng contains the latest revision to e 4.1, The special queue is

reserved for priority jobs. If you need this capability, contact Joe Drozdowski at
(804)-864-6535. The multitask queue is only enabled a limited number of times per
week.

Any job submitted to NQS that exceeds the established queue limit
the NQS daemon and will never appear with a qstat command.

n does send you electronic mail to inform you that your request could

- 12 January 1993

* Interactive is not a true IVQS queue, but is included for completeness.

** Queue is active only during non-prime shifts.

es

January 1993 4-13

eues were established ovember 16, 1992. They may change, so space
has been left in
Section 4.4.1
automatically routed to the correct NQS queue as specified by the -Zm and -It &SUB
options, except for special and ~ ~ Z t ~ t a s k which must be ed with the -4 option
on the qsub command. The notes g contains
the latest revision to reserved for priority jobs. If
you need this capabil

for additional entries, or changes to the que
ion about the special queues for using S

The follow in^ ana age men^ stra each user an equitable
stra-

n o u n c ~ ~ in the and
portion of resources on S

1.

2.

3.

No user may have more than one job (queued or running) in any queue Monday
through Thursday, with a limit of jobs in 3 queues. On Friday, starting at 8 A.M.,
users may submit up to four jobs per queue to be run during the weekend. Users
should, however, be reasonable with the number of jobs submitted for weekend
processing.

queues are intended only for debugging. They are not for short pro-
duction runs. The limit in these queues is one job per user in any state. Running
many jobs in these queues tends to cause swapping problems. Their use is
expected to be minimal. Runni more than 4 or 5 jobs each day for an extended
period is considered an abuse. prevents other users from preparing jobs for the
larger queues as the queues were intended.
The emphasis o is running large memory jobs, but not at the expense of
oversubscribing ry and causing swapping. The use of the Solid-state
Storage Device is limited to special queues, which require that users ask
for validation to use the SS

with the above guidelines results in all N
a hold status. The user is notified by mai

jobs for the offending
this action. When the

user complies with the guidelines, remaining jo s have the hold removed. A hold does
not allow a job to be considered for selection to run.

It is requested
may be forthco
day, if you stac

r~asonable with your weekend requests or similar gui
t is your respon§i~i~ity to comply with the guidelines o
on Friday, Saturday or Sunday.

4-14

a
UNICOS

4. -S 1
The C M Y Y- n includes a 512 million word Solid-state

nctions like a disk, but enhances the performance
's fast access time, fast transfer rates, and large

storage capacity. Three hundred sixty million words of SSD are available to the users.

Initially, use of the SSD is through the batch system NQS only. The batch queues
defined below are used to manage the file space allocation so that competing jobs do
not oversubscribe t?x SSD and cause other executing jobs to abort. The Session
Resewable File System (S S) software from NAS will be implemented as soon as
possible to provide a more automated management mechanism.

Fom queues have been established to allow the use of SSD, The queues which allow
use of SSD are ssddb4Omw 300s, ssd40mw 3h, ssdmt40mw 3h, and ssdmt2OOmw 8h.
A user must be validated t o use these q&ues. To becoGe validated, e-mail your
request to be added to the SSD user list to root@subre. Each validated user has a
quota limit of 180 million words of SSD.

4.4.2. SS

To submit a job for a single cpu and S S

qsub -q ssd scriptname

The explicit option, -q ssd, on the qsub command or the equivalent embedded option
in the script will cause the job to be routed to either the ssddb4Omw - 300s or the
ssd4Omw - 3h queue.

To submit a job for multitasking and SSD use:

qsub -q mtssd scriptname

The explicit option, -q mtssd, on the qsub command or the embedded equivalent
option in the script will cause the job to be routed to either the ssdmt4Omw 3h or the
ssdmt2OOmw - 8h queue.

-

January 1993 4-15

9

Files residing on S D remain there until some action is taken to move or delete them.
If no action is taken, they reduce the space available for subsequent jobs. Conse-
quently, SSD files must be moved or deleted by the user. Any files left there after job
completion, or files observed to have been generated from a job not running from one
of the valid SSB queues will be removed immediately. Therefore, at the completion of
your job, be sure to :

files which need to
ove d l files from SS

The SSD file system can be accessed with the preset environment variable $ ~ A S T D ~ ~ .
sample script, runssd, uses embedded NQS options. It assigns the file

plf (to be opened as FORTRAN unit $0) to SSD using the unblocked
required for the most efficient transfer rates, executes the job and removes
from SSD.

#QSUB-lm 40mw
#QSUB -4 ssd

cd lscrluserx

lbinlnn asyn
env FILENV=asyn ussign -a $FASTDIRplf-s u u:40
env FILEW=asyn a.out < datu >& out
cp plf " usemlplf
lbinlnn $FASTDIRIplf

cf77 PrOkT*f

structure
the files

The assign command associates attributes with unit numbers or file names during the
processing of a FORTRAN PEN statement. These attributes are stored in an assign
environment file called asyn in the above example. "hen the executable is executed
with the file attributes stored in asyn. See the assign man page for more details.

To submit the script:

qsub runssd

The job will be put in the ssd4lhnw - 3h queue.

4- 1 January 1993

I

The symbolic debugger, cdbx, supports most of the features of ddu, the dynamic
dump analyzer and drd, the n-time debugger, as well as standard features
of the UPJIX debugger dbx. or drd is supported under UNCOS 6.1.6.
The cdbx debugger is desc Y UNICOS CDBX Debugger User’s
Guide, and CR-26, Debugger Reference Manual.

Some debugging utilities require the file core, which contains a complete image of the
failed program. Because ries, these files can
become huge. Under UNI full length core file
is always obtained when a program terminates abnormally. On Voyager, most run-
time errors did not create a core file under UNPCQS 5.1, simply to conserve file
space.

Another alternative is to use the traceback mechanism to find errors. There is a FQR-
T W callable routine T that permits dynamic tracebacks from an executing
program. There is also tten script that takes an address from an aborted
subroutine and returns a line number to assist in debugging (See section
5.4). Next, there is a locally written script, debugx, that executes your pro-
grams and invokes the debug utility if your program terminates abnormally
(See section 5.5). Section. 5.6 has been added to provide information about numbered
FORTRAN run-time errors and t~ describe some unnumbered miscellaneous error mes-
sages that are otherwise difficult to decipher.

January 1993 5- 1

CRAY Mini Manual

5.1. cdbx Sy bolic Debugger [b J

The cdbx debugger is an interactive symbolic debugger that has the capability to per-
form the following functions:

1. Setting breakpoints and traces.
2. Controlling program execution.
3. Displaying and changing data.
4.
5.

Managing image (core or executable) files.
Defining debug variables and aliases.

Multitasked applications can also be debugged using cdbx, but only by examining the
core file. Interactive debugging of multitasked programs is not yet supported.
Chapter 4 of CR-25 has sample debug sessions, while chapter 3 summarizes the cdbx
commands, which are organized by functionality, while chapter 7 of CR-26 describes
the cdbx commands in detail. Almost all the dbx commands are implemented with
this release of cdbx. Additionally, several CRAY-specific commands have been
included. The cdbx utility is very similar to the CONVEX utility csd. Error messages
are explained in chapter 4 of CR-25.

To use cdbx, it is recommended that each source code module be on a separate file.
Using optimization inhibits the effectiveness of the debug tables that are generated
with the -ez compiler option. The best results from using cdbx are with unoptimized
code. You should use the -0 uflcompiler option on routines where you suspect errors,
otherwise you may have difficulty setting breakpoints and traps at desired locations
within your code.

This release of cdbx supports an X Window System (X) interface in addition to the
traditional line oriented interface. If you are invoking cdbx from within the X
environment, and have the DZSPLAY environment set, then the X interface to cdbx is
invoked unless the -L option is selected (See section 3.4 of A-8). It also allows the
command dbx to invoke cdbx, along with a warning message that UNICOS does not
support dbx. Appendix B of CR-26 describes differences between the current imple-
mentation of cdbx and dbx. To use cdbx, symbol tables must have been generated
when the program was compiled. Section 2.1 describes how to generate the symbol
tables with each of the compilers supported on Voyager and Sabre. A simplified syn-
tax of the cdbx command follows on the next page.

5-2 January 1993

YS

cdbx [-e cjilel [-e ejle] [-1 &le] [-s symjile] [command - line]

-c cfile

-e efile

-1 lfile

-s symfile

-L

command - line

select the file that contahs a dump of the user memory image.
is ~~~~~

enable the echo feature to record the input of the debugging
session on efile.

select the logging feature and identify the file to which all log
output is written. is b

that contains the symbolic infomation. T
t.

forces use of the line oriented interface rather than the X
interface

specify the command line that is used to invoke the program,
including all options and file redirection. The command line
must be enclosed in double quotes (I' "), unless it consists

Other cdbx options are available, including overriding t Y environment varji-
able with the -display option, c ck the man page. uk, cdbx seaches your
current working directory for the file a.out to obtain the necessary symbolic informa-
tion. The -s sym..le option may be used to override the default. It dso searches for a
core file, which may be overridden using the -c cJle option. If a core file exists, it is
used as the initial image to be debugged, at ise the executable file is used as the
initial image to debug. See Chapter 5 of 4 for more detailed information on
invoking cdbx.

J a n u q 1993 5-3

Y Mini Manual

The snapshot dump utility, symdump, yields output similar to that of debug (See sec-
tion 5.31, but can be invoked repeatedly by an executing program with a subroutine
CALL. To use symdump from within a FORTRAN program, insert the following line
of code at all locations where a snapshot dump is desired:

CALL SYMDUMP (["options"])

The options argument is a character string containing debug options. The symdump
utility is described in chapter 5 of CR-10.

The debug utility (See chapter 4 of CR-10) is a batch symbolic post-mortem core
analyzer that allows you to interpret a core file in terms of source language symbols,
which are user-defined names for variables and subroutines. It also provides a subrou-
tine traceback and can be used with either the 477 or cft compiler. To use debug,
your program must be compiled with the -ez option for cf77 or the -ezi option for
cf. It is recommended that optimization be turned off when you attempt to use debug,
otherwise it will not be able to give the correct loop indices where the error occurred.
A core file must exist to use debug. The syntax of debug is:

debug [-B] [-b blklist] [-d dimlist] [-s symjle] [-Y] [-y symlist]

There are four ways to display CO ON blocks and program variables. If neither -
B or -b is specified, then no COMMON blocks are displayed. If both are specified
then only those COMMON blocks named are displayed. Just specifying -b displays
only the COMMON blocks named and using just -B displays all COMMON blocks.
However, if neither -Y or -y is specified, all variables are displayed. If both are
specified then only those variables named are displayed. Specifying just -Y displays
no variables, while specifying -y displays all variables except those named.

The file symjZe contains the debug symbol tables. The default is a.ouf. The parameter
cifies the maximum number of elements to be displayed for array variables.

The default is 20,5,2,1,1,1.

5-4 January 1993

DEBUGGING ON THE CRAYS

i
1)

5.4. ~nterpreti~g the Error Location in a GRAY Dump [d]

Using ~ 3 7 7 , the traceback from a floating point exception run-time error does not give
a FORTRAN line for the subroutine in which the error occurred. The script
"howser/err.exc on Voyager and Sabre may help you find a FORTRAN line number
near the error. The use of the utility requires a traceback like the one given on Voy-
ager, but this is not the default traceback on Sabre, On Sabre only, to get a trace-
back which can be used by this script, issue the command,

setenv $TRACEBK2 1

before executing the job. The environment variable, $TRACEBK2, can be set in either
the .cshrc or .login file.

The script requires two parameters that are obtained from the dump information given
at abort time. The line containing the information required is of the following form:

"tlns" FltPt exception: CPU-A stopped at P= 05324c = "TURB" + 2477c

A0 .,. so ...
A1 ... s1 ...

In the information above:

TURB = routine in which error occurred
2477c = relative address where error occurred

The script is executed as follows:

howser/err.exc subname addr

subname The name of the routine in which the error occurred. It must be
a separate .f file containing only subname and is compiled with
all the cft77 defaults.

addr Relative address where error occurred. (Do NOT include the
alphabetic ending.)

The script only requires the cpu time needed for a cft77 compilation of the routine.
The output goes to stdout and returns up to four line numbers that will be near the
error. The script will be no more accurate than the address returned with the abort
dump. With optimization and vectorization this can be several lines away from the
error, but may point to the loop containing the error.

Using the sample abort above and assuming that the subroutine TURB is on the file

January 1993 5-5

> e

5.

regular basis.

DEBUGGING ON THE CRAYS

5.6 Error Messages [dl

Under W C O S 6, an attempt has been made to consolidate the error messages issued
by the various utilities in the Zibf FORTRAN run-time library for
Sabre. In the past error number 121, for example, might be c
the two architectures. The CRAY UNCOS FORTRAN Library Reference Manwl,
CR-27, has a detailed list of all errors issued by lib$.utilities, as well as a brief
description of the condition that may have caused the error. Messages now begin at
lo00 rather than 100 to prevent misinterpretation with the UNICOS 5 messages.

5.6.1 Numbered Error Messages [c]

The UNICOS command, explain, is a useful in interpreting runtime errors issued by
the FORTRAN run-time library and some other utilities. Many run-time errors are
given with a message identifier and an error number. To receive an explanation of the
error message and a description of what conditions may have caused it, execute the
command explain with the message identifier and error number as parameters. For
example, if your program received the message:

lib-1315 : UNRECOVERABLE library error
t
?

type: L

explain lib-I315

and more information about the possible causes of this error will be given.

5.6.2 Unnumbered Error Messages [d]

These following unnumbered error messages are difficult to decipher, unless you have
encountered them in the past. The first message may appear on Voyager only

Run-time stack overflow: Memory request denied by UNICOS
LA = 031§5537(8)

If you get this message, ask yourself the following questions:
1. Are you using the old cft compiler?
2. Axe you running a program using cft instead of cf77?

The loader does not accurately reflect the memory needed if a big array is in a dimen-
sion statement, but not in labeled COMMON . The $77 generated code seems to load
ok, but the old cfi compiler does not compute the accurate sizes needed. One of the
following actions usually cures this problem.

January 1993 5-7
\

CRAY Mini Manual

1. Put the big dimension array variable in a labeled common and the memory, stack,
etc. will be correctly evaluated and size will give you, a more accurate memory
neeeded.
Increase the -Zm parameter for your NQS job to reflect the memory really needed.
If you were running interactively, run the job under NQS. Be sure the -Zm param-
eter gives enough memory. It actually may be needing more than the 10 million
words, but gives this message instead of "not enough space".

2.
3.

The next message also is frequently seen on Voyager only.

Local memory usage overflowed available space by nnn words;
local block overlay performed

This is a caution message issued by segldr. It may occur when you have compiled a
big source code (100 or more subroutines). A big source code is generated if the array
bounds checker option is enabled. The local memory on Voyager overfiowed, but
segZdr was successful at overlaying the program. Your results should be fine. The
next error messages may be encountered on both Voyager and Sabre.

USER CALLED PREDEFINED PROCEDURE HALT
Runtime error RT1000 program called HALT
Error RTlOOO is fatal
Detected by ROR[145] Write error.

Any of these messages come from the compiler and usually mean:
1. You are compiling in your home directory and have exceeded your permanent file

quota. Type the command quota and see if you have reached your limit. Com-
pile the job in her.
If you are compiling in scratch, /scr may be full. This occurs intermittenly,
because it varies with what other users are doing. Type the command df/scr to
see how much space is left.

2.

Not enough space
Cannot allocate memory space

These two messages may be received from an interactive or a batch job. Either mes-
sage means the executable requires more memory than allowed by the queue requested
or needs more memory than the allowed interactive limit. Most of the time the mes-
sage "Not enough space" will be issued immediately and the job never gets into execu-
tion. Sometimes the job will be close to the memory limits and will get into execu-
tion, but still not have enough memory, then the message "Cannot allocate memory
space" will be issued. For either message the solution is to run the job in a queue
which allows more memory. If the job is an interactive job, the solution is to run it
as a batch job in a queue with sufficient memory. If the job is a batch job, the solution
is to increase the memory size requested and the job will be put in a larger queue.

5-8
4 w

January 1993
@-- -

t
4

6. CODE ~ N ~ ~ E M E N T AND CONVERSION

The FORTRAN compiler, qft77, is based on standard FORTRAN 77, but does have
some extensions and restrictions that are unique to CRAY supercomputers (See section
6.2). There is no explicit vector syntax, so programs written in standard FORTRAN-
77 should need little work to execute correctly on Voyager or Sabre. To get the
optimal performance from your program is slightly more difficult than just obtaining
the correct answers (See section 6.2).

E

6.1. Timing Your Program [e]

One of the first things that you may want to do once your program is executing
correctly is to time it. You can use the lbinltime c o d a n d to time your compilation
and execution in the shell script that runs your program, 8s follows:

lbinltime cft77 pr0g.f
segldr -0 prog prog.0
lbinltime prog < progin > & prog.out

The lbinltime command returns elapsed time, CPU time and system time labeled as
real, user and sys respectively. The C-shell has a built-in time command that returns
timing information in a different format (Le. user, system, real and ratio of user and
system time to real time expressed as a percentage). Timing multitasked codes is
described in section 6.3.6. The FORTRAN compiler cf77 is discussed in section 2.1
and file redirection (Le. using the < and > symbols) is discussed in section 2.4 of A-8.

The ja utility (See section 6.3.6 also) may be used to time the example given above in
the following manner:

ja
cft77 pr0g.f
segldr -0 prog prog.0
prog < progin > & prog.out
ja -csf

The last use of ja is important, because it terminates the "job accounting" function of
ju and gathers the statistics.

CRAY also supports a flowtrace mechanism for timing individual routines and a
profiling utility called pros They are both described in Documents CR-16 and CR-22.
The flowtrace utility is described in the next section. There are two additional utilities
available on the CRAY Y-MP only for monitoring program performance. The utilities
hpm and perftrace rely on a hardware feature of Sabre. They are described in the

January 1993 6- 1

sections i ly following the discussion of flowtrace. A F
SECOND i s supplied by the FORTRAN library.

[c3

Flowtrace gathers information about subroutines during execution of the program;
therefore, CPU overhead is generated. The type of output generated by flowtrace is
determined by the option chosen, but may include:

1.
2. Name or entry point.

Percentage of execution time spent in each routine.

of times a routine is called.
outine (parent).

Time spent in routine exclusive of children. 5.

To use flowtrace, the appropriate compiler option must be chosen and the appropriate
library must be loaded. For the FORTRAN cf77 load and compile command and the
C compiler, cc, the option is -F. The -F option specifies flowtrace processing, includ-
ing loading the library /lib/libjiow.a. If the cff77 compiler and segldr are used
separately, then the cft77 command must use the -ef option and the segldr command
must use the -2frow option.

After execution of the program, the commandflowview must be executed to generate
the statistical output. The command jiowview can be executed under the X Window
System (X). When using the command line options, you must specify the -L option to
prevent the utilization of X and at least one other option. The option -u gives timings
for all routines sorted in descending order by the amount of CPU time used by the

Q y ~ g e ~ and Sabre by default, flowtrace writes its data to a file called
jlow.data. The name of this file can be changed by setting the environment variable
FLOWDATA to the name of the alternate file. The command flowview interprets the
jiow.datu file and produces output statistics about the program's execution. On Voy-
ager the jiow command may still be used to interpret the jiow.data file; however, the
flow command will not be supported at UNICQS 7.0.

The following example generates a report in batch or interactive without using X:

cf/s -Fprog.f
a.out > prog.out
jiowview -Lu < Jlow.data > jiow.out

It is not necessary to specify the file containing the flowtrace output unless it is called
something other than jiow. data.

6-2 January 1993

CODE MANAGEMENT AND CONVERSION

The use of the FORTRAN subroutine FLOWMARK allows the selective timings of
portions of code. The source code must be recompiled with two calls to FLOW-
MARK. The two calls to FLOWMARK mark the area of the code to be treated as a
subroutine for statistical gathering. The argument of the first call is a seven character
string. This is the name used in the flowtrace output to identify the timings from that
part of the code. The argument to the second call is zero.

An example of a FORTRAN source code follows:

CALL FLOWMARK ('partb'l)
DO 10, i=l,N
...

10 CONTINUE
CALL FLOWMARK (0)

The flowtrace output includes an entry purtl, which looks like the report for a subrou-
tine.

Chapter 4 of CRAY UNICOS Performance Utilities Reference Manual (Document CR-
16) gives more details, including the use of Jlowview under X and FLOWMARK.

6.1.2. Hardware Performance Monitor (hpm) [c]

The CRAY Y-MP hardware performance monitor, hpm, reports on the machine perfor-
mance, during execution, of a program written in any language available under
UNICOS. Unlike perftrace (See section 6.1.3). hpm reports only on whole programs,
however it does not require a separate compilation with the flowtrace option. You
may generate four types of reports: (0) execution summary; (1) hold-issue conditions;
(2) memory use; or (3) vectorization and instruction summary. Generally reports (0)
and (3) are the most informative. More information may be found in chapter 6 of
CRAY UNICOS Perjormance Utilities Reference Manual (Document CR- 16).

To use hpm, you compile and load your program normally. The -g option specifies
which report you want. To get all four reports, you must execute your program under
the control of hpm on four separate occasions. The output from hprn is sent to stderr
and the default report is 0, execution summary.

The following example redirects the hprn output and the program output to file
hpmO.out:

hpm -g 0 a.out >& hpm0.out

January 1993 6-3

shell notation is required to separate
owing is an example in the C shell.

le !apm.out and the program’s output sfdout, is
sent to prog.oul.

’ (hpm -8 0 a.out > prog.out) >& hpmmf

The perftrace utility gives the same type of statistics as hpm, but the results are broken
down by each indiv~dual routine. It does not work with multitasked programs. To use

am must be compiled with the flowtrace option (See sectian 6.1.1)
must be loaded. Since it uses flowtrace, there is considerable sys-

execution of the program, the command p e e i e w must be exe-
report. The pe@iew command can be executed under X. When

using the command line options, you ust specify the -L option to prevent the utiliza-
tion of X and at least one other option. The options -Lu give useful statistics for
each routine sorted in descending order by the amount of GPU time used by the rou-
tines; however, many other command line options are available. By default, only
report (01, e ~ ~ u t i o ~ summary, is generated.

The following e x ~ ~ l ~ generates a typical useful report in batch ‘or interactive ’without’
using X:

cf17 -F -1 perfpr0g.f

perfview. -Lu > per$report
c11.QU8 > prOg;bUt

However, perftrace can generate the other three reports by specifying the environment
OUP within the env command. To generate the vectorization
commands similar to the following:

cj77 -F -I perfprogf
env OW=3 a.out > prog.out3
perfvie w -Lu > per$ report

P

The perftrace utility may be used with both C and PASCAL programs too. Chapter 7 ,

ocument GR- 16) gives ’ eference Manua
per ft race, other environment variables ,

and the use of perfview un

6-4 January 1993

CODE MANAGEMENT AND CONVEkSiON

roglram Opti

Optimization of programs on a multi-processing vector computer such as Voyager or
Sabre, consists of scalar optimization, automatic vectorization and multitasking. Some
optimizations are done automatically, some require compiler directives and some
require manual code restructuring. The FORGE utility (See section 6.5) can be used
to assist you in the restructuring of your code. These topics are discussed in the con-
text of FORTRAN programming in the next three sections. Additionally, CR-37,
CRA Y CF77 Compiling System, Volume 3: Vectorization Guide, describes vectorization
techniques in detail.

The key to optimizing a FORTRAN program is to identify the computationally heavy
portions of the code. On CRAY supercomputers, one easy way of performing this task
is to use the flowtrace utility (See section 6.1.1). Once the subroutines that consume
most of the CPU cycles are identified, optimize them one or two at a time to reduce
the chance of introducing an error. Any errors introduced by the attempted optimiza-
tion are then easier to find and correct. This is especially important for multitasking
(See section 6.3), since errors in task and data synchronization may produce results
that are non-repeatable from run to run.

6.2.1. Scalar Optimization

The CRAY FORTRAN compilers, especially cf77, do an excellent job of scalar
optimization. They recognize invariant code within a loop and remove it and calculate
common subexpressions only once. Manual scalar optimizations, such as loop inter-
changing, loop unrolling, subroutine (or function) in-lining and use of PARAMETER
statements for array dimensioning and DO loop limits improve a FORTRAN
program’s performance on a serial computer, as well as making automatic vectoriza-
tion an easier task.

The cf77 compiler eliminates both dead and useless code. If the results of a calcula-
tion are never used in another calculation, written to a file or stored into a variable in a
COMMON block, then the code is deemed useless and eliminated. As a caveat to
those who would test execution speeds on kernels lifted from other programs, this
feature has been known to produce extremely high execution rates, when the kernel’s
code is deemed useless. The compiler may also reorder expressions for more efficient
calculations. This can result in numerical differences. Use of the compiler directive
$CDIR SUPRESS, before and after a statement can show whether a numerical
difference occurred. Parentheses may be used to force expression evaluation in a par-
ticular order.

January 1993 6-5

J

CRAY Mini Manual

6.2.2. Automatic ~ ~ ~ t ~ r i z ~ ~ ~ ~ n [c]

Automatic vectorization is the default setting for the cft77 compiler. It may be turned
off on a loop-by-loop basis by using compiler directives. Only inner loops are candi-
dates for vectorization; however, not all inner loops vectorize. In general loops with
the following properties do not vectorize:

1.
2.
3.
4.
5.
6.
7.
8.

Any VO statements.
CALL, PAUSE, STOP and RETURN statements.
References to CHARACTER data.
Backward branches within the loop.
Branches into the loop.
Three branch IF’S or assigned and computed GOTO’s.
Any recurrence, except vector reductions.
Ambiguous subscript references

Some of these problems may be resolved by restructuring the code. For example, if a
loop contains a subroutine CALL, then often the loop can be split and the CALL
moved to a separate loop. In some cases, the loop may be brought into the subroutine.
Alternatively, short subroutines can often be expanded in-line within the DO loop.

The listing file contains informative messages about each loop that vectorized after
every subroutine. Additionally each loop that didn’t vectorize has a reason given for
the failure. If a loop fails to vectorize, you may be able to resolve the problem by res-
tructuring the code or by using a compiler directive.

If a loop has vectorized to the degradation of performance, scalar execution may be
forced with the CDIR$ NOVECTOR compiler directive, which remains in effect until
the end of the current program unit. If loops that appear later in the routine should
still be vectorized, the CDIR$ VECTOR compiler directive should be used to turn vec-
torization on again. Some other compiler directives for optimization include:

CDIR$

CDIR$
CDIR$

CDIR$

Chapter 1

IVDEP

SHORTLOOP
NO SIDE EFFECTS

VFUNCTION

Force the compiler to ignore potential vector
dependencies in trying to vectorize the loop.

Specifies that loop length is 64 or less.
Specifies that called subroutine does not redefine

variables local to the calling routine.
Specifies name of a vector version (written in

CAL, the CRAY Assembly Language) of the
scalar function referenced in the loop.

of CR-35, CRAY CF77 Compiling System, Volume I : FORTRAN Reference
Manual, discusses the various compiler directives. \

6-6 January 1993

CODE MANAGEMENT AND CONVERSION

6.3. Multitasking [c]

LaRC’s Voyager and Sabre are equipped with multiple identical and independent cen-
tral processing units. Voyager has four central processing units and Sabre has five.
Multitasking allows two or more parts of a program to be executed concurrently on
these processors. The three forms of multitasking are macrotasking, microtasking, and
autotasking, each of which is discussed in this section. In addition, brief discussions
on code conversion, memory usage, and performance measurement are included.
Detailed information on macrotasking and microtasking can be found in Document
CR-18, CRAY-2 Multitasking Programmer’s Manual and Document CR-33, CRAY Y-
MP, CRAY X-MP EA, and CRAY X-MP Multitasking Programmer’s Manual. Informa-
tion on autotasking is located in Document CR-38, CF77 Compiling System, Volume 4:
Parallel Processing Guide. Information on the UNICOS 6.1 X-based autotasking tools
can be found in Document CR-16, UNlCOS Per$ormance Utilities Reference Manual.

6.3.1. Macrotasking [c]

Macrotasking was designed for programs with long execution times and large memory
requirements running in a dedicated environment. Performance is best when macro-
tasking is used by programs containing large sections of disjoint code (or large-grain
parallelism) which do not require a lot of synchronization. Macrotasking a program
involves calling subroutines which exist in the macrotasking library, which is automati-
cally loaded. The program modification for macrotasking results in code which is not
portable across any machines other than CRAY computers.

Macrotasking is the more difficult form of multitasking to use, and some macrotasked
programs can perform poorly on a heavily loaded system. For these reasons, macro-
tasking is not recommended to users.

Januaiy 1993 6-7

for several reas

preprocessor ~ ~ @ r n u l t a d siecifies the use of
command above is equivalent to the follow-

e example above is aout. The prernult option -F specifies that
cft77 is to be the compiler.

citly, it leaves two files, muk$f and mu1tc.s in the directory
wever, if premdt is invoked by cf77, as in the first case

and mulgf are automatically removed. The file rnultc.~
. The file rnulgf con-
s u b ~ o ~ t ~ n ~ is a multi-

a microtasked routine

can contain eight characters as long as the p ~ @ ~ u l t
this case, p ~ @ ~ ~ l t replaces the ei
rocesso~ versi~n and an rn for the

Janu 93

CODE MANAGEMENT AND CQMVERSTON

The file names mulgf and mu1tc.s cm be changed with the -m and -c options by
entering:

premult -m JileJf -c Ji1ec.s -F le
, *‘

The object files are created and loaded by entering:

cft77 -a stack filefif
as Ji1ec.s
cf/7$lef.o Ji1ec.o -2 m

Again, the executable is aout.

Microtasked programs may also be created by entering:

cj77 -Z p ji1e.f

If the program is partially microtasked, fpp analyzes any subroutines that do not con-
tain microtasking directives. The translator, j k p , replaces both autotasking and micro-
tasking directives with the appropriate code. The command above is equivalent to:

f p p JiLe.f > fi1e.m
fmp Ji1e.m > Ji1e.j
cft77 - b j1e.o -a stack ji1e.j
as mu1tc.s
cj77 -Z p Ji1e.o mu1tc.o
lbtnlrm j2e.m fi1e.j Ji1e.o mu1rc.s mu1tc.o

Note that the assembler, as, must be iwoked for the microtasked portion of the code.

As in macrotasking, the default number of CPU’s allowed to execute a microtasked
program is the number of system proc;essors. The environment variable NCPUS is
used to control the maximum number of CPU’s which can execute microtasked pro-
grams, For example to request two processors, enter the following before executing
the program:

setenv NCPUS 2

January 1993 6-9

CRAY Waf Manual

6.3.3. Autotasking [b]

Autotasking is the most recent form of multitasking. The autotasking compiling sys-
tem provides the capability for automatic data analysis and compiler directive inser-
tion. Autotasking may optimize some codes well, but autotasking cannot detect all
forms of parallelism. User analysis and insertion of directives can lead to a significant
increase in performance. As with all forms of multitasking, autotasking should be
carefully applied to avoid adding unnecessary overhead.

Autotasking maintains the basic design of microtasking and includes some major
improvements. Along with auto data analysis and directive insertion, a major
difference between autotasking a rotasking is the placement of parallel regions.
In microtasked subroutines, the parallel region extends to the subroutine boundaries,
and neither the main program nor functions can be microtasked. On the other hand,
autotasking allows multiple parallel regions to be defined anywhere in the program.
For example, an autotasked subroutine may have several sets of nested DO loops
where each nested loop is defined as a separate parallel region. Any code outside of
the parallel regions is executed by only one CPU. However, since the initiation of
parallel regions requires a certain amount of overhead, the number of parallel regions
should be limited.

The autotasking compiling system consists of three phases: dependency analysis, trans-
lation, and code generation. The dependency analysis phase, &py produces FORTRAN
code optimized for vectorization and multitasking. Generally, innermost loops are
analyed for vectorization and outermost loops are analyzed for concurrency. The
translation phase, j h p , transforms the fpp output, replacing autotasking directives with
the appropriate multitasking code. The code generation phase, cf77, produces
machine executable code from thefmp output.

The command to autotask a program is:

c y 7 -2 p fi1e.f

The -2 p option specifies the use of fpp, the dependency analyzer, and @pY the trans-
lator, before compilation with the cf77 compiler. The executable resides in file aout.
The command above is equivalent to the following commands:

fpp fi1e.f > fi1e.m
j h p fi1e.m > file.j
@77 -b fi1e.o -a stackfi1e.j
c y 7 -2 pfi1e.o
lbinlrm fi1e.m fi1e.j fi1e.o

6-10 January 1993

.
CODE MANAGEMENT AND CONVERSION

t
1

The executable in the example above js a.out. The intermediate files, fiZe.rn and f2e.j
-may be retained by using the -Z P option. Refer to the fpp,*fmg, and cf77 man pages
for additional command options. . <

The translation phase output file, jiZe.j, can be significantly larger than the original
FORTRAN file. This file contains master and slave code for each autotasked region.
In autotasking and microtasking, a master process executes all code inside and outside
of parallel regions; whereas, the slave processes execute code only within parallel
regions. At run-time, the CPU executing the master process code checks to see if mul-
titasking is being done at a higher level. If so, the master process executes a sequen-
tial version of the code in the parallel region. If multitasking is not being dqne at a
higher level, the master process executes a multitasked version, and sends' a signal
which causes any additional connected CPU's to execute the slave process code.

There are a number of options available to the programmer which aid in improving the
performance of jpp. For example, since fpp cannot analyze data across subroutine'
boundaries, loops containing subroutine calls are not autotasked. Inline expansion,
controlled either through the command line or compiler directives, may increase the
number of loops autotasked by fpp. Additional optimization techniques are described
in the autotasking documentation.

January 1993 6-1 1

. "1C

CRAY Mini Manual

6.3.4. Code conversion [e]

,

Multitasked programs must execute using stack memory allocation mode, which
allows the multiple CPU's to have separate storage locations for local variables.
Under stack mode, local variables do not exist across subroutine calls, unless the
FORTRAN SAVE statemnt is used. Since static is the default memory allocation
scheme for Voyager and Sabre, verify that the program executes correctly in a stack
environment before attempting multitiuking. (On Navier and Reynolds, stack is the
default mode.) The memory allocation may be changed from static to stuck by the
cft77 -a stack option. As mentioned earlier, if the -2 m or -2 p option is used, the
program executes in stuck mode.

Identify the time consuming routines of the program by using flowtrace (See section
6.1.1). Vectorize these routines as much as possible. Since greater performance
improvements are obtained from vectorization, do not sacrifice vectorization for multi-
tasking. In general, consider the outer DO loops for multitasking, since the inner
loops may be vectorized.

If macrotasking, microtasking, or manually inserting autotasking directives, one must
scope the data which involves determining if variables are shared or private. If the
dependency analyzer, fpp, detects the parallelism, the data has been automatically
scoped. Shared and private data must be used properly to obtain correct results. It
may be necessary to use the atscope tool (See section 6.3.4.1) to analyze DO loops
that fpp does not automatically parallelize for the scope of data within the loop.
Shared data is known to all CPU's by one memory location, while separate copies of
private variables exist for each CPU.

To verify correct execution, run the multitasked program on a single CPU, then multi-
ple CPU's. Test the program in both batch and dedicated environments. To obtain
dedicated runs, submit NQS scripts to the queue mubitask by entering:

qsub -q multitusk script - name

The multitasking queue is enabled a limited number of times per week. Refer to sec-
tion 4.3.1 for details on NQS.

Multitasked programs are difficult to debug since errors are not usually reproducible.
The programmer must make sure that the code is properly synchronized, since there is
no certainty on the order in which parallel tasks are executed or which CPU's will
actually execute specific parts of the code. Under UNICOS 6.1, improvements to the
cdbx debugger (See chapter 5) allow users to set breakpoints, run to breakpoints,
examine data, and perform other debugging functions on multitasked programs. The
atchop utility (See section 6.4.3.2) may be helpful in determining the source of numer-
ical differences between the autotasked and non-autotasked versions of a code.

6-12 January 1993

CODE MANAGEMENT AND CONVERSION

I
6.3.4.1. atscope [c]

The X tool atscope assists in autotasking loops that fpp does not detect autom
to run in parallel. The tool displays text and provides a best guess as to th
(shared, private, or unknown) of each variable in a loop. Clicking on a variable shows
all occurrences of the variable in a loop. After all variables in a loop have been
scoped, atscope inserts the appropriate autotasking directive.

To run atscope, enter:

atscope j1e.f

6.3.4.2. atchop [c]

The X toql atchop identifies subroutines andor loops within subroutines that are caus-
ing numerical differences or abort conditions in programs which have been prepro-
cessed by fpp. Before using atchop, you should determine if any reduction functions,
such as inner products or summations, have been parallelized. The results obtained
can be dependent on the order of execution if the data is of widely differing magni-
tudes. To check on the parallelization of reduction functions, use:

fpp j1e.f > j1e.m

The file,Jile.m, can be checked for autotasked reduction functions, which are always
preceded by a CMIC$ GUARD directive. A sample atchop, session follows:

cf77jZe.f
a.out < injle > outl
cf77 -Zp j1e.f
a.out < injile > out2
diroutl out2 > outdifs
atchop -Zp -r injle -c outl -h Ji1e.f

If the file outdifs has zero length, then no numerical differences were introduced by
autotasking. The utchop command line Dptions used above are:

ZP
r

b
C

invoke all phases of the compiling system
designates the u:er’s standard input file
designates file holding sequential results
performs both a binary and fpp chop

By default, atchop compiles, loads and executes in a temporary directory in ltmp. The
location of this directory can be controlled with the TMPDIR environment variable.

January 1993 6-13

CRAY Mini Mmual

6.3.5. Memory us^^^ [c]

Under UNICOS 6.1, the individual task stack size is computed which should lead to
reduced memory requirements for autotasked programs. The following example
describes how the stack memory requirements for autotasked programs may be
lowered if necessary.

The over estimation of autotasking memory requirements can .occur when when large
private arrays are used. A possible solution to this problem is to place large local
arrays in FORTRAN COMMON or SAVE statements. Another alternative is to
redefine the initial and incremental stack sizes. A segldr load map can be generated
with the fallowing statement:

I

cj77 -Zp -Wl,-D’MAP=STAT’ fi1e.f
. *

The ~$77 option -Wc,argl[,arg2][,,..] passes arguments to various phases of the com-
piling system, In the command above, 1 corresponds to the loader. (Options may also
be passed to premult, f i p andfip by using -Win, -Wd and -Wu respectively.)

In the load map, locate the initial decimal stack size under the memory statistics sec-
tion. Next, analyze the subprogram units and estimate the largest amount of stack
space needed by one processor for private variables. For example, assume that the
load map gives an initial stack size of 2000000 and the stack size estimate for the pro-
gram is 1oooO. The memory management can be controlled by the following com-
mand:

cf77 -Zp -Wl,-D’STACK=lOOOO+199OOOO’Jile.f

As a result, each task initially receives 10000 words, rather than 2000000. When the
master task needs more memory, it receives 1990000 (2000000 - 1oooO) additional
words of memory. Care should be taken to avoid underestimating the initial stack
size.

The stack space is contained within the the dynamic memory area, also known as the
heap. Since the initial heap size is based on the initial stack size, the .initial heap size
should also be reset. Otherwise, many requests must be made in order to allocate
memory for the master task. For example, if four processors are used, the initial heap
can be estimated with the following:

initial - heap = (10000.* 4) =+ 1990000

Both the stack and heap values can be changed with the following command:

cj77 -Zp -Wl,-D’STACK=10ooo+1990000;HEAP=2030000’ le

6- 14 January 1993

CODE MANAGEMENT AND CONVERSION

6.3.6. Performance Measurement [c]

The goal of multitasking is to divide a program’s CPU time among multiple proces-
sors, thus reducing the actual elapsed time. Speedups are calculated by comparing the
wall clock time of the multitasked program with that of the sequential program.
Before attempting multitasking, determine the amount of parallelizable code in the pro-
gram. Given the percentage of parallel code in a program, Amdahl’s Law (See CR-18
or man amlaw for more information) predicts the theoretical maximum speedup in a
dedicated environment. In addition to sequential code, several factors including the
overhead required for the multitasking code and any load imbalance across parallel
tasks contribute to speedup degradation. Multitasked programs containing well bal-
anced tasks with large grain parallelism generate less overhead.

The performance of a multitasked program running in a batch environment is difficult
to measure and varies from one run to the next depending on the system load. How-
ever, even on heavily loaded systems, multitasked programs usually receive some
benefit. In general, this is true for microtasked and autotasked programs; however, on
some CRAY systems, macrotasked programs can behave poorly. A macrotasked pro-
gram containing many synchronization points requires extensive task management and
may result in an elapsed time much greater than the time required for the sequential
program. See section 6.3.6.1 for a discussion of the atexpert graphical tool for
displaying performance information about an autotasked program.

The elapsed time and CPU time for an entire program may be displayed with lbinltime
(See section 6.1). Additional timing information may be displayed with the job
accounting utility, ja. To produce a report for the executable file program, enter the
following commands:

ja
program
ja -st

The option -t terminates job accounting, while the option -s produces the job account-
ing summary report. Included in this report is the time spent executing on n proces-
sors concurrently. This CPU timing breakdown can also be displayed by calling the
subroutine M?TZMES at the end of program execution. Appendix A of CR-18 gives
an example of the output from MiTZMES. This subroutine returns the amount of time
that the program spent executing with 1, 2, 3 or 4 CPU’s, as well as total CPU time
and a measure of how much overlap there was during program execution. All timings
of multitasked code are dependent on system load and may vary from run to run.

Other functions exist for timing a FORTRAN program. SECOND returns the cumula-
tive CPU time in seconds, while ZRTC and TIMEF measure wall clock time in clock
perio Is and milliseconds respectively. On Voyager, one clock period is 4.1E-9
secor ds (4.1 nanoseconds), and on Sabre, the clock period is 6.17 nanoseconds. For

Janui,ry 1993 6-15

CRAY Mini Matluai

example, to time SUBROUTINE A:

Wl= TIMEF()
T1= SECOND()
CALL A
T2= SECOND()
W2= TIMEF()
CPU= T2 -T1
WALL.: (W2 -Wl)/lOOO.

If SUBROUTINE A is microtasked and multiple CPU’s are available then the time
returned in WALL should be less than the time returned in CPU.

6.3.6.1. atexpert [c]

The atexpert graphical tool displays performance information of an autotasked pro-
gram based on statistics gathered during execution of the program on an arbitrarily
loaded system. The display shows how the program actually performed by showing
the serial and parallel times for each parallel region. Serial time outside of parallel
regions and a breakdown of autotasking overhead is also provided. . Two speedup
curves are shown on the atexpert display. The top curve displays the speedup calcu-
lated from Amdahl’s Law and the bottom curve displays the predicted dedicated speed-
ups for a given number of CPU’s. The Amdahl’s Law curve shows the speedup
attainable with the percentage of parallelism exploited in the program assuming there
is no autotasking overhead. The dedicated speedups are calculated using measured
values of parallel time and sequential time. Large gaps between the ideal speedup (the
number of CPU’s used) and the Amdahl’s Law curve indicate a large amount of serial
code present in the program. A large gap between the Amdahl curve and the dedi-
cated curve indicates that overhead is affecting parallel performance.

To use atexpert, enter the following commands:

cf l7 -Zp -Wu“-p” ji1e.f
atexpert -f atx. raw

The -Wu”-p” option causes fmp to generate output for use with atexpert. The. -f
option specifies the file with which atexpert is to work. Reports detailing the speed-
ups and overheads for the program, subroutine, and loop levels can be generated using
the -r option.

6-16 January 1993

CODE MANAGEMENT AND CONVERSION

6.4. Source Code Control System

The Source Code Control System (SCCS) is a collection of utilities running under
UNICOS. SCCS tracks modifications to files. The following capabilities are provided:

1. Storing files of text.
2.
3.
4.
5.
6.

Retrieving particular versions of files.
Controlling updating privileges to files.
Identifying the version of retrieved files.
Recording when, where and why a change was made.
Identifying the author of a change.

SCCS works on source code or text files, but not on binary files or executables. It
uses a control file to accomplish all of the above tasks. Document CR-12, CRAY
UNICOS Source Code Control System User’s Guide, describes SCCS in detail.

The control file’s name begins with the characters s., and is created with the admin
command, as follows:

admin -isource.f s.source.f

The file s0urce.f initializes the original control file. The get command retrieves the
latest version of the source code (or text file) from the control file, as shown:

get s. s0urce.f

The latest version of s0urce.f is recreated, and the version number of the file and
number of lines of text are output to the screen. The delta command is used to record
the cnanges made to a file during an editing session. The comments added are limited
to 5 12 characters. Enter

delta ss0urce.f

and you are be prompted with

comments?

To continue a line of comments, end the line with a back slash (\) and a carriage
return.

Other SCCS commands are described in chapter 5 of CR-12, while chapter 6 discusses
file formats, file maintenance and access permissions.

January 1993 6-17

CRAY Mini Manual

6.5. FORGE [d]

FORGE is an interactive program global analysis system, that was developed by
Pacific-Sierra Research (PSR) Corporation and is now supported by Applied Parallel
Research (APR). It has an user interface to the X Window System (X). FORGE pro-
vides tools that allow you to analyze a program and to use that information to
transform the program into a more efficient code. It has an instrumentation facility
that allows you to time selected subroutines down to the DO loop level. It is well
suited as both a utility to improve the performance of "dusty deck# codes and an
environment within which new efficient code can be developed. The FORGE User's
Guide, Document CR-32, is the basic guide to the baseline FORGE system.

FORGE builds and maintains a database of all variable usage and flow of control,
which is compiled from your original program. With this database, you can trace the
use of variables across any part of the program calling tree, including implicit and
explicit equivalencing. It also contains features that allow code reformatting and ver-
sion control for experimental versions of subroutines. The X interface is menu driven
and has a HELP utility. Section 3.4 of the SNS Programming Environment User's
Guide describes the steps that need to be taken for you to access a utility on a remote
machine with an X interface.

FORGE is available for all Sun Microsystem SPARC workstations at LaRC. The
FORGE SFARC-executable code is in the directory

* tennille/FORGE/forge.tar

on Eagle, Installation of FORGE on your Sun workstation may require the assistance
of your System Administrator if you do not have write permission in the lusrllocal
directory. The recommended installation point is in the lusrllocaZlFORGE directory,
which may be accomplished with the following commands:

cd lusrllocal
mkdir FORGE
cd FORGE
tar -xvf forge. tar

The following alias is recommended for your .cshrc file

alias forge "lusrllocall FORGElxforge -f lusrllocallFORGE"

to insure that FORGE can locate all necessary HELP files.

6-18 January 1993

i
x

. ..

CODE MANAGEMENT AND CONVERSION

GE with the X Interface IC]

When you invoke FORGE, there are several "How To Use ..
the right window called Main Menu. The most efficient manner to access these entries
is to use your.mouse to "pick" them by clicking the left button. To use FORGE to
analyze a code, you must create a FORGE "package", which is simply a set of files
and directories maintained in a directory named psr.dir, which created for you
automatically. These files may become rather large.

You must identify which files are to be included in a "package". FORGE performs a
cursory parsing of the identified files, which includes locating the beginning and end of
each subroutine. Once the "package" is created, you may invoke the FORGE code
reformatting utility (See section 2.5.6 of CR-32) or instrumentation facility (See sec-
tion 2.5.5 of CR-32). When you time routines on Voyager and Sabre with the instru-
mentation facility, the library tennillelFORGE1psrtim.a must be loaded with your
code to gather the statistics.

Since FORGE is menu-driven, it is relatively easy to learn your way around the sys-
tem. In general, the left mouse button is used to "pick", the right for "show", and the
middle for "help" on the item selected. The Main Menu has the following selectable
items:

Package Creation and Selection
Analyze and Modify Current Package
Change Directory
How To Use FORGE
How To Use the Mouse
How To Use Command Mode
Options
Exit

This menu appears whenever you invoke FORGE or "pick" the MENU box in the
upper right corner of the display. When you "pick" any of the above items, a new
menu pops up for you to chose another item. By default, the left window displays the
menu "Analyze and Modify Current Package" when FORGE is invoked.

Within the "Analyze and Modify Current Package" menu is an entry titled "DefineEdit
Files in Package". When you pick this item, one of the entries in its menu is "Select
Hardware File". "Pick" this item, and you may choose the target hardware for which
you want to optimize your code, so even though FORGE is only available on VOY-
ager, you may also optimize codes for Sabre.

January 1993 6-19

GRAY Mini Manual c

The power of FORGE lies in its ability to do a global analysis. You may query the
database built by FORGE using templates as illustrated in section 2.5.3.4 of CR-32. A
template is simply a filter to specify the usage of variable. For example, you might
wish to locate all variables that are used somewhere but never defined or conversely
variables that are defined but never used.

I Appendix A of CR-32 describes the setting of various options to control your FORGE
environment. Appendix B describes the command line options. Appendix D is a sam-
ple X interface FORGE session.

6-20 January 1993

7. c

Users of the C Y supercomputers have several sources of information and assistance
A-8). UNICOS 6.1.6 provides much more information on-line than

UNICOS 5.1. However, ACD still provides substantial printed documentation that is
described below.

ACD automatically distributes several CRAY manuals (highlighted in boldface in
next page) that describe frequently used features of the CRAY super-
S Document Librarians. The only manual that is new or revised is

CR-61, which reflects the hardware upgrade to Sabre. A1 manuals in the table are
available on an individual basis from OCO by calling 864-6562; visiting room 1035 in
Building 1268; or by sending electronic mail to aco@eagle, for overnight service.
This list is current as of January, 1993. Refer to notes tradoc on Eagle for any later
documentation changes. Two of the manuals have been compiled by ACD personnel:
CR-1, CRAY Mini Manual; and CR-3, CRAYMathematical Libraries. Each newly vali-
dated SNS user receives copies of CR-1, CX-1, the CONVEX Mini Manual and A-8,
the SNS Programming Environment User’s Guide. There are sufficient quantities of
CR-2 and CR-35 in OCO for any user to obtain a personal copy. Demand determines
the number of copies of other manuals that are kept in stock by OCO for individual
distribution. The CONVEX series manuals CX-19 and CX-22, which describe the
notesfle and make utilities, are also available from OCO.

Document CR-2, the CRAY UNICOS Primer, is a useful manual for the novice
UNICOS programmer and has been rewritten for UNICOS 6.1. It is designed to assist
you with the following:

1. logging to a CRAY system.
2. using basic UNICOS commands.
3. communicating with other users.
4. creating files.
5. compiling programs.
6.
7.

understanding shell scripts and environment variables.
describing the hierarchical file system.

CR-2 may be used as a self-paced tutorial on GRAY UNICOS.

January 1993 7-1

%

cscc
Doc No

CR-lc
CR-2a
CR-3a
CR-Sa
CR-Gb(v1)
CR=6b(v2)
CR-7
CR-8b

I

CR-9a
CR- 10
CR-llb
CR- 12
CR-13a

CR- 18a

CR-2 1 a

CR-23a

CR-25a

CR-27a
CR-29a
CR-30a
CR-3 1 a

CR-16b

CR-20

CR-22

CR-24

CR-26b

CR-32b
CR-33

CR-34
CR-35s
CR-36a
CR-37
CR-38a
CR-39
CR-40
CR-4 1
CR-42
CR-43
CR-61a
CR-76

Title

CRAY Mini Manual (April 1992)

caries (January 1990)

CRAY UNICQS User C

CRGY UNICOS Editor’s Primer
CRAY Segment Loader (SEGLDR) and Id Reference Manual
CRAY UNICOS Support Tools Guide
CRAY Symbolic Debugging Package Reference Manual
CRAY TCP/IP and OS1 Network User’s Guide
CRAY UNICOS Source Code Control System Vser’s Guide
CRAY-2 UNICOS Macros and Opdefs Reference Manual
CRAY UNICQS Performance Utilities Reference Manual
CRAY Multitasking Programmer’s Reference Manual
GRAY C Reference Manual
CRAY PASCAL Reference Manual
CRAY Computer Systems User Environment
CRAY UPDATJ3 Reference Manual
CRAY SORT Reference Manual
CRAY UNICOS CDBX Debugger User’s Guide
CRAY UNICOS CDBX Symbolic Debugger Reference Manual
CRAY UNICOS FORTRAN Library Reference Manual

CRAY Standard C Programmer’s Reference Manual
CRAY C Library Reference Manual
CRAY The FORGE User’s Guide
CRAY Y-MP, CRAY X-MP EA and CRAY X-MP
Multitasking Programmers’ Manual
CRAY Macros and Opdefs Reference Manual
CF77 Compiling System, Volume 1: FORTRAN Reference Manual
CF77 Compiling System, Volume 2: Compiler Message Manual
CF77 Compiling System, Volume 3: Vectorhation Guide
CF77 Compiling System, Volume 4: Parallel Processing Guide
CRAY UNICOS Source Manager (USM) User’s Guide
CRAY UNICOS X Window System Reference Manual
CRAY DOCVIEW User’s Guide
CRAY DOCVIEW Writer’s Guide
CRAY UNICOS YO Technical Note
CRAY Y-MP Functional Description Manual
CRAY-2 Computer System Functional Description

ds Reference Manual, Volume 1
Manual, Volume 2

Y UNICOS Math and ScienMc Library Reference Manual

Table 7.1 - CRAY Documentation Ed]

CRAY
Doc No

86-2010 6.0

SR-2007D
SR-20116.0
SR-20116.0
SG-2050
SR-0066 6.0
SG-2016 6.0
SR-0112C
SG-2009 6.0
SG-2017
SR-2082 6.0
SR-2040 6.0
SN-2026C
SR-2024
SR-Oo60 4.2
SN-2086
SR-0013K
SR-0074
SG-2094 6.0
SR-2091 6.1
SR-2079 6.0
SR-2081 6.0
SR-2074 3.0
SR-2080 6.0

SR-0222F-01
SR-00 12D
SG-3071 5.0
SG-3072 5.0
56-3073 5.0
86-3074 5.0
SG-2097 6.0
SR-2101 6.0
SG-2109 6.0
SG-2118 6.0
SN-3075 6.0
HR-04016-OA
HR-200oc

7-2 January 1993

CR-1 SECTION GUIDE TO HIDDEN FILES [b]
File Description

.cshrc

.login

.logout

Executes when a C-shell is spawned
Executes when you log into a UNIX machine
Executes when you log off a UNIX machine

CR-1 SECTION GUIDE TO COMMANDS [c]
Command Description

admin
alias
atchop
atexpert
atscope
cc
cdbx
cft77
cf77
debug
debugx
err.exe
exit
explain
flowview
hPm
ja

logout
kill

nohup
pascal
passwd
PCC
perfview
premult
printenv
qdel
qlimit
qstat
qsub
segldr
set
setenv
time

create a SCCS control file
create an alias
check for numerical differences from autotasking
display performance statistics for autotasked jobs
scope loop variables for autotasking
invoke Standard C compiler
invoke interactive symbolic debugger
invoke FORTRAN-77 compiler
invoke cft77 compile & load
invoke batch post-mortem debugger
invoke debug automatically
utility to locate FORTRAN line number
terminate an interactive session
interpret error message
generate flowtrace output
invoke hardware performance monitor
obtain job accounting information
terminate a process
terminate an interactive session
allow interactive process to run after logout
invoke PASCAL compiler
change your password
invoke portable C compiler
generate performance statistics report
invoke microtasking preprocessor
check on status of environment variables
remove running or queued NQS job
display NQS batch limits
display status of NQS jobs
submit a job to NQS
invoke the segment loader
set C-shell variable
set environment variable
check execution and wall time

Section

4.1.5
4.1.4
4.2.3

Section

6.4
4.1.3
6.3.4.2
6.3.6.1
6.3.4.1
3.2
5.1
2.1
2.3
5.3
5.5
5.4
4.2.3
5.6.1
6.1.1
6.1.2
6.1
4.2.2
4.2.3
4.2.1
3.1
4.1.1
3.3
6.1.3
6.3.2
4.1.2
4.3.1
4.3.1
4.3.1
4.3.1
2.2
4.1.2
4.1.2
6.1

January 1993 Guide- 1

i

Form Approved
OM8 N o 0704-0188

4. TITLE AND SUBTITLE

CRAY M i n i Manual

6. AUTHOR(S)
Geof f rey M. T e n n i l l e and Lona M. Howser

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)
NASA Langley Research Center
Hampton, VA 23681-0001

ING IMONITORIMG AGENCY NAME(S) AND ADDRESS(E.5)

Nat iona l Aeronaut ics and Space A d m i n i s t r a t i o n
Washington, DC 20546-0001

-
5. FUNDING NUMBERS

505-90-53-02

8. PERFORMING ORGANlZATlON

CSCC DOC. NO. CR-ld
RFPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA TM-107599 (r e v i s e d

11. SUPPLEMENTARY NOTES
T e n n i l l e and Howser:
Th is TM supersedes t h e A p r i l 1992 v e r s i o n (CR- lc)

Langley Research Center, Hampton, V i r g i n i a .

U n c l a s s i f i e d - U n l i m i t e d
Sub jec t Category 60

13. ABSTRACT (Maximum 200 words)
This document b r i e f l y desc r ibes t h e use of t h e CRAY supercomputers t h a t a r e an
i n t e g r a l p a r t of t h e Supercomputing Network Subsystem o f t h e Cen t ra l S c i e n t i f i c
Compu’.ing Complex a t t h e Langley Research Center. Features o f t h e CRAY
supercomputers a re covered, i n c l u d i n g : FORTRAN, C, PASCAL, a r c h i t e c t u r e s o f t h e
CRAY-;’ and CRAY Y-MP, t h e CRAY U N I C O S environment, ba tch j o b s u b m i t t a l ,
debugging, performance ana lys i s , p a r a l l e l process ing, u t i l i t i e s un ique t o CRAY
and documentation.

The document i s in tended f o r a l l CRAY users as a ready re fe rence t o f r e q u e n t l y
asked ques t ions and t o more d e t a i l e d i n f o r m a t i o n conta ined w i t h t h e vendor
manuals.

Th is r e v i s i o n r e f l e c t s hardware upgrades t o t h e CRAY-Y-NP, changes t o
o p e r a t i o n a l procedures and so f tware .

I t i s a p p r o p r i a t e f o r bo th t h e nov ice and t h e exper ienced user .

FORTRAN, m u l t i t a s k i n g , debugging, computing environment

NSN 7540-01 -280-5500 Standard Form 298 (Rev 2 89)
Prercribed by AYSI 5td Z39-18
298-102

