1,272 research outputs found

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    The augmented value of using clinical notes in semi-automated surveillance of deep surgical site infections after colorectal surgery

    Get PDF
    BACKGROUND: In patients who underwent colorectal surgery, an existing semi-automated surveillance algorithm based on structured data achieves high sensitivity in detecting deep surgical site infections (SSI), however, generates a significant number of false positives. The inclusion of unstructured, clinical narratives to the algorithm may decrease the number of patients requiring manual chart review. The aim of this study was to investigate the performance of this semi-automated surveillance algorithm augmented with a natural language processing (NLP) component to improve positive predictive value (PPV) and thus workload reduction (WR). METHODS: Retrospective, observational cohort study in patients who underwent colorectal surgery from January 1, 2015, through September 30, 2020. NLP was used to detect keyword counts in clinical notes. Several NLP-algorithms were developed with different count input types and classifiers, and added as component to the original semi-automated algorithm. Traditional manual surveillance was compared with the NLP-augmented surveillance algorithms and sensitivity, specificity, PPV and WR were calculated. RESULTS: From the NLP-augmented models, the decision tree models with discretized counts or binary counts had the best performance (sensitivity 95.1% (95%CI 83.5-99.4%), WR 60.9%) and improved PPV and WR by only 2.6% and 3.6%, respectively, compared to the original algorithm. CONCLUSIONS: The addition of an NLP component to the existing algorithm had modest effect on WR (decrease of 1.4-12.5%), at the cost of sensitivity. For future implementation it will be a trade-off between optimal case-finding techniques versus practical considerations such as acceptability and availability of resources

    Automated Detection Of Surgical Adverse Events From Retrospective Clinical Data

    Get PDF
    University of Minnesota Ph.D. dissertation. August 2017. Major: Health Informatics. Advisors: GENEVIEVE MELTON-MEAUX, GYORGY SIMON. 1 computer file (PDF); iv 101 pages.The Detection of surgical adverse events has become increasingly important with the growing demand for quality improvement and public health surveillance with surgery. Event reporting is one of the key steps in determining the impact of postoperative complications from a variety of perspectives and is an integral component of improving transparency around surgical care and ultimately around addressing complications. Manual chart review is the most commonly used method in identification of adverse events. Though the manual chart review is the most commonly used method that is considered the “gold-standard” for detecting adverse events for many patient safety studies (research setting), it could be very labor-intensive and time-consuming and thus many hospitals have found it too expensive to routinely use. In this dissertation, aiming to accelerate the process of extracting postoperative outcomes from medical charts, an automated postoperative adverse events detection application has been developed by using structured electronic health record (EHR) data and unstructured clinical notes. First, pilot studies are conducted to test the feasibility by using only completed EHR data and focusing on three types of surgical site infection (SSI). The built models have high specificity as well as very high negative predictive values, reliably eliminating the vast majority of patients without SSI, thereby significantly reducing the chart reviewers’ burden. Practical missing data treatments have also been explored and compared. To address modeling challenges, such as high-dimensional dataset, and imbalanced distribution, several machine learning methods haven been applied. Particularly, one single-task and five multi-task learning methods are developed and compared for their detection performance. The models demonstrated high detection performance, which ensures the feasibility of accelerating the manual process of extracting postoperative outcomes from medical chart. Finally, the use of structured EHR data, clinical notes and the combination of these data types have been separately investigated. Models using different types of data were compared on their detection performance. Models developed with very high AUC score have demonstrated that supervised machine learning methods can be effective for automated detection of surgical adverse events

    Clinical Data Reuse or Secondary Use: Current Status and Potential Future Progress

    Get PDF
    Objective: To perform a review of recent research in clinical data reuse or secondary use, and envision future advances in this field. Methods: The review is based on a large literature search in MEDLINE (through PubMed), conference proceedings, and the ACM Digital Library, focusing only on research published between 2005 and early 2016. Each selected publication was reviewed by the authors, and a structured analysis and summarization of its content was developed. Results: The initial search produced 359 publications, reduced after a manual examination of abstracts and full publications. The following aspects of clinical data reuse are discussed: motivations and challenges, privacy and ethical concerns, data integration and interoperability, data models and terminologies, unstructured data reuse, structured data mining, clinical practice and research integration, and examples of clinical data reuse (quality measurement and learning healthcare systems). Conclusion: Reuse of clinical data is a fast-growing field recognized as essential to realize the potentials for high quality healthcare, improved healthcare management, reduced healthcare costs, population health management, and effective clinical research

    Gold standard evaluation of an automatic HAIs surveillance system

    Get PDF
    Hospital-acquired Infections (HAIs) surveillance, defined as the systematic collection of data related to a certain health event, is considered an essential dimension for a prevention HAI program to be effective. In recent years, new automated HAI surveillance methods have emerged with the wide adoption of electronic health records (EHR). Here we present the validation results against the gold standard of HAIs diagnosis of the InNoCBR system deployed in the Ourense University Hospital Complex (Spain). Acting as a totally autonomous system, InNoCBR achieves a HAI sensitivity of 70.83% and a specificity of 97.76%, with a positive predictive value of 77.24%. The kappa index for infection type classification is 0.67. Sensitivity varies depending on infection type, where bloodstream infection attains the best value (93.33%), whereas the respiratory infection could be improved the most (53.33%). Working as a semi-automatic system, InNoCBR reaches a high level of sensitivity (81.73%), specificity (99.47%), and a meritorious positive predictive value (94.33%).Xunta de Galicia | Ref. ED431C2018/55-GR

    Utilizing artificial intelligence in perioperative patient flow:systematic literature review

    Get PDF
    Abstract. The purpose of this thesis was to map the existing landscape of artificial intelligence (AI) applications used in secondary healthcare, with a focus on perioperative care. The goal was to find out what systems have been developed, and how capable they are at controlling perioperative patient flow. The review was guided by the following research question: How is AI currently utilized in patient flow management in the context of perioperative care? This systematic literature review examined the current evidence regarding the use of AI in perioperative patient flow. A comprehensive search was conducted in four databases, resulting in 33 articles meeting the inclusion criteria. Findings demonstrated that AI technologies, such as machine learning (ML) algorithms and predictive analytics tools, have shown somewhat promising outcomes in optimizing perioperative patient flow. Specifically, AI systems have proven effective in predicting surgical case durations, assessing risks, planning treatments, supporting diagnosis, improving bed utilization, reducing cancellations and delays, and enhancing communication and collaboration among healthcare providers. However, several challenges were identified, including the need for accurate and reliable data sources, ethical considerations, and the potential for biased algorithms. Further research is needed to validate and optimize the application of AI in perioperative patient flow. The contribution of this thesis is summarizing the current state of the characteristics of AI application in perioperative patient flow. This systematic literature review provides information about the features of perioperative patient flow and the clinical tasks of AI applications previously identified

    Artificial intelligence-based tools to control healthcare associated infections: A systematic review of the literature

    Get PDF
    Background: Healthcare-associated infections (HAIs) are the most frequent adverse events in healthcare and a global public health concern. Surveillance is the foundation for effective HAIs prevention and control. Manual surveillance is labor intensive, costly and lacks standardization. Artificial Intelligence (AI) and machine learning (ML) might support the development of HAI surveillance algorithms aimed at understanding HAIs risk factors, improve patient risk stratification, identification of transmission pathways, timely or real-time detection. Scant evidence is available on AI and ML implementation in the field of HAIs and no clear patterns emerges on its impact. Methods: We conducted a systematic review following the PRISMA guidelines to systematically retrieve, quantitatively pool and critically appraise the available evidence on the development, implementation, performance and impact of ML-based HAIs detection models. Results: Of 3445 identified citations, 27 studies were included in the review, the majority published in the US (n = 15, 55.6%) and on surgical site infections (SSI, n = 8, 29.6%). Only 1 randomized controlled trial was included. Within included studies, 17 (63%) ML approaches were classified as predictive and 10 (37%) as retrospective. Most of the studies compared ML algorithms' performance with non-ML logistic regression statistical algorithms, 18.5% compared different ML models' performance, 11.1% assessed ML algorithms' performance in comparison with clinical diagnosis scores, 11.1% with standard or automated surveillance models. Overall, there is moderate evidence that ML-based models perform equal or better as compared to non-ML approaches and that they reach relatively high-performance standards. However, heterogeneity amongst the studies is very high and did not dissipate significantly in subgroup analyses, by type of infection or type of outcome. Discussion: Available evidence mainly focuses on the development and testing of HAIs detection and prediction models, while their adoption and impact for research, healthcare quality improvement, or national surveillance purposes is still far from being explored
    • …
    corecore