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Abstract
Background  In patients who underwent colorectal surgery, an existing semi-automated surveillance algorithm 
based on structured data achieves high sensitivity in detecting deep surgical site infections (SSI), however, generates 
a significant number of false positives. The inclusion of unstructured, clinical narratives to the algorithm may decrease 
the number of patients requiring manual chart review. The aim of this study was to investigate the performance of 
this semi-automated surveillance algorithm augmented with a natural language processing (NLP) component to 
improve positive predictive value (PPV) and thus workload reduction (WR).

Methods  Retrospective, observational cohort study in patients who underwent colorectal surgery from January 
1, 2015, through September 30, 2020. NLP was used to detect keyword counts in clinical notes. Several NLP-
algorithms were developed with different count input types and classifiers, and added as component to the original 
semi-automated algorithm. Traditional manual surveillance was compared with the NLP-augmented surveillance 
algorithms and sensitivity, specificity, PPV and WR were calculated.

Results  From the NLP-augmented models, the decision tree models with discretized counts or binary counts had the 
best performance (sensitivity 95.1% (95%CI 83.5–99.4%), WR 60.9%) and improved PPV and WR by only 2.6% and 3.6%, 
respectively, compared to the original algorithm.

Conclusions  The addition of an NLP component to the existing algorithm had modest effect on WR (decrease of 
1.4–12.5%), at the cost of sensitivity. For future implementation it will be a trade-off between optimal case-finding 
techniques versus practical considerations such as acceptability and availability of resources.
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Background
Approximately 5–30% of colorectal surgery patients 
develop a surgical site infection (SSI). SSIs result in mor-
bidity, mortality, longer hospital stays and extra costs 
[1–3]. Monitoring SSIs is an essential policy strategy and 
has been proven effective in reducing these infections [4, 
5]. Several (local and national) surveillance programs tar-
get SSI after colorectal surgery; patient records are retro-
spectively reviewed and manually annotated by infection 
control practitioners (ICPs) according to surveillance 
case definitions for SSI [6–8]. This traditional way of 
performing surveillance is labour-intensive, prone to 
subjective interpretation, and poor interrater agreement 
has been reported [9–11]. In the past years, automated 
surveillance methods that re-use data stored in electronic 
health records (EHRs) are increasingly developed to 
reduce workload, and to objectify and align surveillance 
methods. They are considered an attractive alternative to 
manual surveillance [12].

For most automated surveillance algorithms target-
ing SSI after colorectal surgery, no satisfying results 
have been reported so far as the methods described are 
not applicable to different settings, are very complex, 
and have insufficient performance [13–17]. One semi-
automated algorithm has been described and validated 
in multiple (Dutch) hospitals with promising results [18]. 
With the use of structured data from radiology orders, 
admission-and discharge dates, antibiotic prescriptions, 
and re-operations, the algorithm classifies patients into 
high-or low probability of having had a deep SSI accord-
ing to pre-specified rules. Only the high-probability 
records need manual confirmation [19]. Despite high 
sensitivity, the workload reduction achieved was not 
optimal given the large number of false positives.

As the diagnosis of SSI is mainly dependent on physi-
cal examinations and observations that are described in 
clinical notes, the inclusion of unstructured, free-text 
information to this algorithm may improve the accu-
racy by reducing the number of false positives. Natural 
language processing (NLP) is a technique that processes, 
learns and understands human language content, and 
can be used in analysing these unstructured data [20]. 
Experiences with NLP-supported surveillance algo-
rithms are limited and they provide varying and often 
inconclusive results [21–24]. Also, the combination of 
using both structured and unstructured data for surveil-
lance algorithms has not been extensively researched 
so far, but might result in better performance and case-
finding [25, 26]. The aim of this study was to investigate 
the performance of the original semi-automated surveil-
lance algorithm augmented with an NLP component to 
improve positive predictive value (PPV) and to reduce 
the workload.

Methods
Study design, setting and study population
This is a retrospective, observational cohort study includ-
ing patients undergoing colorectal surgery (i.e., primary 
or secondary colorectal resections, incisions or anasto-
mosis) performed at the Karolinska University Hospital 
(KUH) Sweden, between January 1, 2015 and August 
31, 2020. KUH is a tertiary care academic centre with 
1,100 beds divided between two hospitals (Huddinge and 
Solna), which serves the population of Region Stockholm 
(2.3  million inhabitants). The original semi-automated 
algorithm [18] – based on structured data – was vali-
dated in KUH [27]. The same 225 randomly selected sur-
geries were also used as validation cohort for this study. 
The semi-automated algorithm was subsequently applied 
to the remaining colorectal surgeries and a random 
sample of 250 high-probability records were selected 
for the development cohort (Fig. 1). Model results were 
compared with the reference standard, which is the tra-
ditional manually annotated surveillance. The study was 
approved by the Regional Ethical Review Board in Stock-
holm, Sweden (2018/1030-31).

Outcome
The outcome was deep SSI or organ/space SSI, hereinaf-
ter together referred to as deep SSI, versus no deep SSI 
within 30 days after the colorectal procedure. The out-
come was recorded during manual annotation by two 
experienced ICPs according to the European Centre for 
Disease Prevention and Control (ECDC) SSI definition 
and guidelines at the time of this study [6].

Data sources
The 2SPARE (2020 started Stockholm/Sweden Proactive 
Adverse Events REsearch) database is an SQL-based rela-
tional database and a duplicate of prospectively entered 
data from the EHR system of KUH, containing data on 
patient characteristics, hospital admission and discharge 
records, outpatient records, physiological parameters, 
medication, microbiology, clinical chemistry, radiol-
ogy, and clinical notes. The clinical notes data includes 
unstructured, free-text notes such as progress notes, 
discharge summaries, history and physical examination 
notes, and telephone encounter notes, all written in the 
Swedish language. We limited the notes to those written 
by physicians, residents, surgery assistants, and nurses, 
and to those written within 1–30 days post-surgery, as 
these are most likely to contain SSI-relevant information.

Development and validation of NLP-augmented 
algorithms
The NLP algorithms were developed as an ‘add-on’ com-
ponent and designed as an additional step following the 
existing semi-automated algorithm, aiming to reduce 
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false-positive results whilst maintaining high sensitivity. 
This sequential design will arguably lower implementa-
tion thresholds in the future as hospitals can already start 
implementing the semi-automated algorithm with struc-
tured data and may later add the (more advanced and 
challenging) NLP component (Fig. 2). Several NLP com-
ponents were developed using the development cohort 
consisting of high-probability individuals. The final NLP-
augmented algorithms were validated using the valida-
tion cohort as described above (Fig. 1).

Pre-processing of linguistic variables
A list of keywords was compiled by reviewing clinical lit-
erature and local case reports, and by expert consultation 

in the Netherlands and Sweden (i.e., colorectal surgeons, 
medical microbiologists, ICPs, infectious disease consul-
tants). Next, from the keywords we created a list of lem-
matized versions and applied part-of-speech tagging to 
capture differences in grammatical and spelling versions 
of the words. This resulted in the overall lexicon list. 
The keywords given by Dutch experts were translated to 
Swedish to be able to apply them on Swedish notes, and 
all keywords were translated to English for the purpose of 
reporting results.

Feature selection and algorithm development
The original keywords and their lemmatized versions 
can be considered as ‘features’. All text from the clinical 

Fig. 1  Flow chart of the study
ECDC: European Centre for Disease Prevention and Control; NLP: natural language processing; SSI: surgical site infection.
Semi-automated algorithm as published in Verberk et al. [18].
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notes were matched with the lexicon list and each fea-
ture match was counted. Negation detection using the 
NegEx algorithm was applied to filter out negated men-
tions [28]. For example, in case ‘no signs of infection’ is 
written down, the keyword ‘infection’ is negated and not 
counted as a keyword match. Subsequently, three input 
types were considered: a count per keyword, a discretized 
count with four bins, and a binary model indicating the 
presence or absence of a keyword. Each input type has its 
pros and cons: a binary representation benefits from its 
simplicity, however, cannot capture the case when several 
mentions of the same keyword corresponds to a stron-
ger deep SSI signal. The count per keyword, on the other 
hand, captures the number of times each keyword is 
mentioned, but is more sensitive to writing styles and will 
have fewer examples of each distinct keyword count in 
the training data. The discretized count can be viewed as 
a compromise between the binary model and the counts 
model, since three of the bins represented a count below, 
within, or above the expected interquartile range, and the 
fourth bin represented no occurrences.

During development, we split the development cohort 
consisting of high-probability records as classified by 
the original algorithm into training (80%) and testing 
data sets (20%) to evaluate parameters of the learning 
algorithms. Two tree-based classification algorithms, a 
single decision tree (DT) and a random forest (RF) with 
500 trees [29], were evaluated for their ability to separate 
between the two classes, deep SSI and no deep SSI [30, 
31]. A DT has the benefit of being interpretable, since the 
tree can be understood as one set of rules for classifying 
future patients as belonging to either class. An RF, on 
the other hand, is a more complex model with multiple 
sets of rules and therefore lacks interpretability, but often 

outperforms a DT. Each of the classifiers, DT and RF, was 
applied to each feature representation (raw counts, dis-
cretized counts, or binary counts) resulting in six tree-
based models.

For application in semi-automated surveillance, a 
near-perfect sensitivity is required as false-positive cases 
are corrected during subsequent chart review, whereas 
false-negative cases will remain unnoticed. To increase 
the sensitivity when using the DT classifier, ten small 
decision trees with slightly different characteristics were 
inferred from the development data. Subsequently, in 
the validation cohort, a patient was classified as deep SSI 
if any of these trees classified the patient as such. This 
ensemble of DT classifiers could be considered as a min-
iature forest with a decision threshold of 0.1. Within an 
RF, each tree classifies each patient in the data set. Gen-
erally, for an RF with two classes, a majority decision 
determined class membership, i.e., the class assigned by 
a majority of the trees will be assigned to the patient. 
This corresponds to a decision threshold of 0.5, meaning 
that 50% of the trees are required to consider a patient 
as belonging to the class deep SSI for the RF to classify 
it as such. To increase the sensitivity of the RF the con-
ventional decision threshold of 0.5 was lowered, mean-
ing that fewer trees are required to classify a patient as 
deep SSI, which will however reduce PPV. Multiple deci-
sion thresholds were explored using the development 
cohort, and the thresholds of 0.3 (for model using raw or 
discretized counts) and 0.35 (model using binary counts) 
were selected to ensure a high sensitivity (> 0.95 in the 
development cohort).

Fig. 2  Flow diagram of natural language processing-augmented surveillance algorithm for deep surgical site infections
NLP: natural language processing; SSI: surgical site infection.
Schematic overview of the original semi-automated algorithm comprised of structured data (grey frame), augmented with unstructured data from clinical notes 
(blue frame).
Admissions: Length of stay of index admission ≥ 14 days or 1 readmission to original department or in-hospital mortality within follow-up (FU) time (= 45 days 
after surgery).
Re-surgery: ≥1 reoperation by original surgery specialty after the index surgery but within FU time.
Radiology: ≥1 orders for CT scan within FU time.
Antibiotics: ≥3 consecutive days of antibiotics (ATC J01) within FU time, starting from day 2 (index surgery = day 0).
Fulfilling 2–4 of the above components classifies surgery as high probability for deep SSI.
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Rule-based NLP component
Furthermore, a rule-based NLP component was devel-
oped based on keywords reflecting the deep SSI definition 
(Fig. 3). This NLP component is more straightforward as 
no DT or RF techniques are used, i.e., if a keyword match 
was present for a patient according to the OR/AND-rules 
as specified in the supplementary file, the patient was 
classified as probable deep SSI by the algorithm.

Analysis
Baseline characteristics were compared between the high 
probability groups – as defined by the original algorithm 
– of the development and validation cohorts. Heat maps 
were created from the development cohort to visualize 
the presence of keywords between the deep SSI group 
and the group without. In total, seven surveillance mod-
els were compared, as described above, with the original 
semi-automated model composed of structured data only 
(model 1): model 1 augmented with the NLP component 
developed with DT using either raw counts (model 2), 
discretized counts (model 3) or binary counts (model 4); 
model 1 augmented with the NLP component developed 
with RF using either raw counts (model 5), discretized 
counts (model 6) or binary counts (model 7); and model 
1 augmented with the rule-based component (model 8). 
The performance measures sensitivity (recall), specific-
ity, PPV (precision), negative predictive value (NPV) and 
workload reduction (WR) with corresponding 95%-con-
fidence intervals (95%CI) were calculated as compared to 
the reference standard. WR was defined as the difference 
between the total number of surgeries under surveillance 
and the proportion of surgeries requiring manual review 
after algorithm application. 2SPARE data acquisition, 
management and analysis were performed using R sta-
tistical software (version 3.6.1) and Python (version 3.7), 
and in accordance with current regulations concerning 
privacy and ethics.

Results
The median age of the validation cohort was 66 year 
(IQR 55–75) and 48.9% (n = 110) were female (Table  1). 
The majority of patients had a primary surgery (63.6%, 
n = 143) and most surgeries were open (77.3%, n = 174). 
In 41.8% (n = 94) of patients a stoma was created. Base-
line characteristics between the high probability deep SSI 
cases of the development cohort (n = 250) and the valida-
tion cohort (n = 96) were similar, albeit somewhat higher 
age, lower ASA classification, lower frequency of pri-
mary procedures, and higher rate of SSIs in the validation 
cohort (Table 1).

Model performance of the semi-automated algorithm 
augmented with an NLP component
The distribution of keywords among patients with deep 
SSI versus no deep SSI differed with regards to frequency 
and timing (Fig. 4). The keywords ‘abscess’, ‘anastomotic 
leakage’, ‘drainage’ and antibiotic names appeared more 
frequently in the clinical notes from deep SSI cases. The 
other keywords were present in both groups, although 
more often in the group of patients with deep SSI and 
between day 15–30 post-surgery.

For each NLP-augmented surveillance model, perfor-
mances are shown in Table 2. Model 3 and 4 had sensitiv-
ity above 95% and 3.6% less records to review manually as 
compared to the original algorithm based of structured 
data (model 1). Keywords incorporated in model 3 were: 
the antibiotic names, ‘abscess’, ‘anastomotic leakage’, 
‘subfebrile’, ‘fluid’, ‘intestinal content’, ‘drainage’, ‘leakage’, 
‘antibiotics’, and ‘drained’. For model 4 also the follow-
ing keywords were included: ‘intestinal content’, ‘serous’, 
and ‘echo’. Model 8, with the rule-based component, had 
lowest sensitivity. Overall, the models with discretized 
or binary count input types had better performance esti-
mates than the models with raw counts.

Discussion
In this study, when adding an NLP-component to the 
original semi-automated algorithm, the number of 
records to assess manually was decreased by 1.4–12.5% 
at the cost of sensitivity. The NLP component with the 
best performance yielded seven (3.6%) fewer patients to 
review manually, thereby lowering the sensitivity with 
2.5% (1 extra deep SSI missed).

Adding the NLP component lowered the number of 
false positives and thus resulted in WR, however the 
added value was limited. These findings are similar to a 
study of Grundmeier et al. [32], who used a data-driven 
selection of pre-specified keywords related to SSI from 
clinical narratives after ambulatory paediatric surgery. By 
using regular expression matching, keyword occurrence Fig. 3  Rule-based component
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was counted and combined within an RF model. High 
sensitivity (90%) was obtained, but the PPV was 23%, 
which is lower compared to 44.3–51.5% for the models 
in our study. A study who successfully succeeded to dis-
criminate between SSI groups is from Thirukumaran and 
colleagues [21]. They demonstrated high sensitivity and 
PPV in a model that combined administrative data (age, 
sex, race, clinical comorbidities, year of procedure and 
Clinical Classification diagnosis categories) with clinical 
notes to detect SSIs after orthopaedic surgery. Although 
they applied a comparable NLP technique as this current 
study, it remains uncertain what the value of NLP was in 
case similar structured clinical care data was used as in 
this current study. Thereby, SSI diagnostic classification 
after abdominal surgeries is more complex compared to 
the more ‘straightforward’ orthopaedic surgeries.

Other attempts of NLP surveillance systems from 
Tvardik et al. [33], Fitzhenry et al. [34], Branch-Elliman 
et al. [22] and Murff et al. [35] had modest performance 
results with sensitivities reported between 33% and 87%. 
All these studies used different NLP techniques, different 
patient populations and had various targets (other post-
operative complications or catheter-related urinary tract 
infections) complicating direct comparisons, and reflects 
the numerous techniques available that can be applied 
to process unstructured clinical notes and to build an 
algorithm.

The keyword list for the NLP was compiled by various 
clinical experts from both the Netherlands and Sweden 
and the NLP component was developed by computer 
science experts according to cutting edge knowledge 
and techniques. Despite all this, the addition of the 
NLP component to the existing algorithm led to minor 

Table 1  Baseline characteristics of surgeries in validation and development cohort
Validation cohort Development cohort P#

Total High probability SSI High probability SSI
n 225 96 250

Age (years), median [IQR] 66 [55–75] 68 [58–75] 65 [52–73] 0.088

Female sex, n (%) 110 (48.9) 37 (38.5) 92 (36.8) 0.860

BMI, median [IQR] 25.6 [22.3–29.4] 25.7 [22.3–29.7] 25.2 [22.6–28.6] 0.782

- Missing, n (%) 2 (0.9) 1 (1.0) 0 (0.0)

ASA classification, n (%) 0.232

- Grade I 25 (11.1) 9 (9.4) 17 (6.8)

- Grade II 96 (42.7) 35 (36.5) 125 (50.0)

- Grade III 78 (34.7) 42 (43.8) 83 (33.2)

- Grade IV 4 (1.8) 2 (2.1) 4 (1.6)

- Grade V 0 (0) 0 (0) 0 (0)

- Unknown 22 (9.8) 8 (8.3) 21 (8.4)

Surgical approach, n (%) 0.583

- Closed 51 (22.7) 12 (12.5) 37 (14.8)

- Open 174 (77.3) 84 (87.5) 213 (85.2)

Duration of surgery (minutes), median [IQR] 316 [206–427] 371 [245–458] 379 [266–514] 0.372

- Missing, n (%) 65 (28.9) 21 (21.9) 70 (28.0)

Wound contamination class, n (%) 0.771

- Clean-contaminated (class 2) 171 (76.0) 74 (77.1) 184 (73.6)

- Contaminated (class 3) 42 (18.7) 16 (16.7) 50 (20.0)

- Dirty-infected (class 4) 12 (5.3) 6 (6.3) 16 (6.4)

Stoma, n (%) 94 (41.8) 54 (56.3) 139 (55.6) 1.000

Malignancy, n (%) 173 (76.9) 77 (80.2) 191 (76.4) 0.538

Primary procedure, n (%) 143 (63.6) 53 (55.2) 162 (64.8) 0.128

Anastomotic leakage, n (%) * 13 (31.7) 13 (32.5) 36 (39.1) 0.597

Surgical site infection, n (%) 0.298

- No 165 (73.3) 44 (45.8) 132 (52.8)

- Yes 60 (26.7) 52 (54.2) 118 (46.4)

  - Superficial 19 (31.7) 12 (23.1) 26 (22.0)

  - Deep or organ/space 41 (68.3) 40 (76.9) 92 (78.0)

30-day mortality, n (%) 5 (2.2) 3 (3.1) 6 (2.4) 0.998
BMI: body mass index; ASA: Physical status classification developed by the American Society of Anesthesiologists

* Only registered in case of deep SSI.

# Comparison between development cohort and high probability deep SSI cases of validation cohort
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Table 2  Performance characteristics of the different surveillance models
Sensitivity,
% (95%CI)

Specificity,
% (95%CI)

PPV,
% (95%CI)

NPV,
% (95%CI)

WR,
%

Model 1 97.6 (87.1–100.0) 69.6 (62.4–76.1) 41.7 (31.7–52.2) 99.2 (95.7–100.0) 57.3

Model 2 87.8 (73.8–95.9) 79.9 (73.4–85.4) 49.3 (37.4–61.3) 96.7 (92.5–98.9) 67.5

Model 3 95.1 (83.5–99.4) 73.4 (66.4–79.6) 44.3 (33.7–55.3) 98.5 (94.8–99.8) 60.9

Model 4 95.1 (83.5–99.4) 73.4 (66.4–79.6) 44.3 (33.7–55.3) 98.5 (94.8–99.8) 60.9

Model 5 92.7 (80.0–98.5) 77.7 (71.0–83.5) 48.1 (36.7–59.6) 97.9 (94.1–99.6) 64.9

Model 6 95.1 (83.5–99.4) 70.6 (63.5–77.1) 41.9 (31.8–52.6) 98.5 (94.6–99.8) 58.7

Model 7 92.7 (80.1–98.5) 79.3 (72.8–84.9) 50.0 (38.3–61.7) 97.9 (94.2–99.6) 66.2

Model 8 85.4 (70.8–94.4) 82.1 (75.8–87.3) 51.5 (39.0–63.8) 96.2 (91.8–98.6) 69.8
PPV: positive predictive value; NPV: negative predictive value; WR: workload reduction; 95%CI: 95% confidence interval; NLP: natural language processing.

Model 1: Original semi-automated algorithm with structured data only.

Model 2: Model 1 augmented with NLP component using decision tree and raw counts.

Model 3: model 1 augmented with NLP component using decision tree and discretized counts.

Model 4: model 1 augmented with NLP component using decision tree and binary counts.

Model 5: model 1 augmented with NLP component using random forest and raw counts.

Model 6: model 1 augmented with NLP component using random forest and discretized counts.

Model 7: model 1 augmented with NLP component using random forest and binary counts.

Model 8: Model 1 augmented with a rule-based component.

Fig. 4  Heat map for the distribution of keywords among patients with and without deep SSI
* Proximity search, keyword must be within a distance of five words from one of the following locations: incision, operation wound, abdomen, wound, pelvis, 
duodenum, flank, gall bladder, skin, intra-abdominal, next to anastomosis, colon, liver, pancreas, abdomen/stomach, between small intestines, operation area, 
operation wound, presacral, rectum, retroperitoneal, incision, intestine, small intestine, under diaphragm, midline incision, midline wound, sutures / stitches / 
(surgical) staples, stomach.
# The following antibiotics including their brand names: piperacillin-tazobactam, meropenem, imipenem, metronidazole, ciprofloxacin, cefotaxime, trime-
thoprim-sulfa, cefuroxime, amoxicillin.
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improvement. This indicates that using clinical notes and 
NLP for the automated surveillance of SSI after colorec-
tal surgery is not as straightforward as one might expect, 
and this should be taken into account when designing 
automated surveillance algorithms. There may be several 
reasons for the limited benefit obtained in this study by 
adding an NLP component. First, the NLP component 
tries to find the patients with deep SSI in an already pre-
selected high-risk group identified by the four compo-
nents of the original algorithm. These patients have either 
re-operations, antibiotics, radiology or prolonged hos-
pital stays, and certain keywords are therefore expected 
in all these patients given their clinical course and com-
plications. The lexicon list was probably more focused 
on distinguishing deep SSI from non-deep SSI, how-
ever, maybe other keywords and language patterns are 
required to identify the deep SSI cases in the high-proba-
bility group. Second, on practical ground, we have chosen 
to add the NLP component as the last step in the algo-
rithm. Including the NLP component in the first steps of 
the algorithm, as often seen in rule-based algorithms that 
combine structured and unstructured data, may achieve 
better results [26]. Third, all studies mentioned above 
used different techniques to process and analyse clinical 
notes. We did not attempt all possible options because we 
investigated NLP in a semi-automation setting, thereby 
prioritizing sensitivity. Using clinical notes may be more 
valuable in fully-automated surveillance, in which sensi-
tivity and specificity are balanced instead of focusing on 
high sensitivity only. However, expectations are tempered 
as the studies applying other techniques also had mod-
est results. Last, the development of an (NLP) algorithm 
requires an excellent reference standard of sufficient size 
to ensure correct classification of patients [10, 11, 22]. 
Although the agreement between our raters was good, 
the sample size for developing the NLP components 
might have been too small.

Clinical notes are a rich data source, useful for post-
discharge surveillance and an extremely important data 
source in the detection and manual ascertainment of SSI 
by ICPs [36]. It is therefore a logical step to incorporate 
this data source in surveillance algorithms. However, 
aside from the limited incremental benefit in this study, 
several drawbacks of using this data source for auto-
mated surveillance exist. First, medical personnel often 
describe terms indirectly related to SSI (e.g., dehiscence, 
opening incision, removing sutures, rupture) or describe 
their observations in terms of smell, colour, or shape (e.g., 
yellow substance, smelly, not flexible) making it difficult to 
catch important vocabulary. Lexicon libraries with medi-
cal synonyms, such as the Unified Medical Language 
System from the National Library of Medicine, can help 
to connect alternate names for the same concept or key-
words, however are not available for all languages (yet) 

[37]. Second, the frequency of reporting and the vocabu-
lary used varies between individual practitioners, centres 
and between countries. There is no information avail-
able about the generalizability of such algorithms when 
applied to other languages, and little is known about their 
robustness – especially when using the count input type 
– against (local) reporting habits. Third, to the best of our 
knowledge, there is limited experience with using NLP-
augmented surveillance algorithms in daily routines. 
Given the small benefit that NLP provides in this study, 
one may wonder whether its development, implementa-
tion and maintenance will be cost-effective, at least for 
deep SSI classification in patients undergoing colorectal 
surgery. Yet, we have previously shown that using free-
text analyses improves surveillance accuracy for urinary 
tract infections [26]. Although the digital infrastructure 
can be expanded to other (post-operative) complications, 
developing and building NLP models require substan-
tial effort of information technology experts. Last, tech-
niques to build NLP-augmented algorithms are mostly 
complex and less transparent, lowering the chance of 
understanding and acceptance of clinicians and hospital 
staff. We used two methods for feature classification. A 
DT has the benefit of being interpretable, since the tree 
can be understood as a set of rules for classifying future 
patients as belonging to either class. A RF, on the other 
hand, is more complex and therefore lacks in interpret-
ability, but such classifiers are usually more accurate and 
less likely to over fit data compared to a DT [30]. For 
future implementation, there will be a trade-off between 
optimal case-finding techniques versus practical consid-
erations such as acceptability and resources.

Conclusions
Our study indicated that adding an NLP component to 
incorporate clinical notes as extra data source lowered 
the number of false positives, however the benefit was 
minor as the number of records to review manually was 
reduced by only 1.4–12.5%. Given the complexity of such 
systems and the resource-intensive nature of developing 
NLP, large-scale implementation seems unlikely. How-
ever, further research is needed to evaluate whether NLP 
technology is an appropriate tool for helping to detect 
deep SSI in semi-automated surveillance systems or their 
utility in fully-automated surveillance.
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