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Abstract 

 
The Detection of surgical adverse events has become increasingly important with 

the growing demand for quality improvement and public health surveillance with surgery. 

Event reporting is one of the key steps in determining the impact of postoperative 

complications from a variety of perspectives and is an integral component of improving 

transparency around surgical care and ultimately around addressing complications. Manual 

chart review is the most commonly used method in identification of adverse events. 

Though the manual chart review is the most commonly used method that is considered the 

“gold-standard” for detecting adverse events for many patient safety studies (research 

setting), it could be very labor-intensive and time-consuming and thus many hospitals have 

found it too expensive to routinely use.  

In this dissertation, aiming to accelerate the process of extracting postoperative 

outcomes from medical charts, an automated postoperative adverse events detection 

application has been developed by using structured electronic health record (EHR) data 

and unstructured clinical notes. First, pilot studies are conducted to test the feasibility by 

using only completed EHR data and focusing on three types of surgical site infection (SSI). 

The built models have high specificity as well as very high negative predictive values, 

reliably eliminating the vast majority of patients without SSI, thereby significantly 

reducing the chart reviewers’ burden. Practical missing data treatments have also been 

explored and compared. To address modeling challenges, such as high-dimensional dataset, 

and imbalanced distribution, several machine learning methods haven been applied. 

Particularly, one single-task and five multi-task learning methods are developed and 
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compared for their detection performance. The models demonstrated high detection 

performance, which ensures the feasibility of accelerating the manual process of extracting 

postoperative outcomes from medical chart. Finally, the use of structured EHR data, 

clinical notes and the combination of these data types have been separately investigated. 

Models using different types of data were compared on their detection performance. 

Models developed with very high AUC score have demonstrated that supervised machine 

learning methods can be effective for automated detection of surgical adverse events. 
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Chapter 1 Introduction 

1.1 Problem and Significance  

 An adverse event is defined as “an unintended injury or complication resulting in 

prolonged length of hospital stay, disability at the time of discharge or death caused by 

healthcare management and not by the patients’ underlying disease.” Adverse events are 

costly (1-2), can result in significant patient harm (3-4), and overall 50% to 75% of all 

adverse events are associated with surgery.  

 According to recent reports, adverse events affect nearly one out of ten surgical 

patients during hospital admission, contributing significantly to postoperative morbidity 

and mortality. Surgical adverse events are very expensive to deal with and have been 

identified as an important cause of increased health care costs (5-6). In addition, about 40% 

of surgical adverse events, are potentially preventable (7-8).  

 Historically, despite their importance, there were few sources that healthcare 

institutions could use for understanding their surgical adverse event rates. Adverse event 

detection traditionally mainly relies on voluntary reporting systems and manual 

retrospective chart review. Voluntary reporting is the most often used method, but misses 

the majority of events, which means most adverse events go underreported, and 

approximately 63% of such events are undetected. The most reliable adverse event 

detection sources have historically relied on costly manual chart abstraction and many 

hospitals recognize the importance of having accurate data and utilize surgical clinical 

registries (e.g., NSQIP, STS, Trauma Registry) for quality improvement, outcome 
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surveillance, and determining the impact of postoperative complications on downstream 

clinical outcomes. Conducting research and quality improvement using manual chart 

review remains widely used in traditional observational clinical studies aimed at assessing 

detailed information on patients to understand disease course or outcomes and is also a 

primary modality used for quality improvement, epidemiologic assessments, and for 

graduate and ongoing professional education and assessment. Sources for surgical adverse 

event detection include administrative billing and coding data, discharge summaries, and 

other clinical data in the electronic health record (EHR). While manual chart review is 

considered the “gold-standard” for identifying adverse events for many patient safety 

studies (research setting), many hospitals have found it too expensive to routinely use. 

The objective of this body of research is to explore, validate, and expand upon 

approaches for automatically detecting adverse events using structured electronic health 

record (EHR) data and to include information extraction from unstructured clinical notes 

leveraging adverse event detection conducted using laborious chart abstraction. 

There are two main advantages of using electronic methods for surgical adverse 

event detection. They are based on routinely collected, readily available EHR data and 

clinical notes, and are therefore less expensive and less time-consuming than usual manual 

way. In addition, automated methods are based on objective criteria (e.g., diagnostic codes, 

value of lab test, etc.) that may be able to lead to standardized detection processes and 

should eliminate reviewer subjectivity and error.  
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 1.2 Related work  

A large body of research work has been conducted with the automated detection of 

adverse events caused by medication related harm. Using computerized algorithms to 

screen electronic healthcare databases for events has proven to be an effective method (9-

11). There are, however, only a few automated applications for surgical adverse event 

detection developed to date (12-13).  

Some rule-based approaches include “trigger tools” which work by detecting 

“triggers” of interest, like an abnormal laboratory value or a low blood pressure, which 

serve as clues to a possible adverse event. It is, however, difficult for these methods to deal 

with adverse events that are not based upon intuitive and obvious sets of rules.  

Machine learning is a promising set of methods which could identify latent patterns 

associated with surgical adverse events and help with discovering the underlying cause and 

nature of adverse events that injure patients. These methods have been applied to a variety 

of use cases including the early detection of disease or mining health records for a disease’s 

risks (14-15). These techniques can be used to exploit numeric or coded clinical EHR data 

(i.e., structured data) and also can be used on data from unstructured sources using text 

mining or natural language processing (NLP) from clinical notes, such as discharge 

summaries, operative reports, and nursing notes (16). 

1.3 Aims and Hypotheses  

The overall objective of this dissertation is to develop an automated detection 

platform for surgical adverse events based on local EHR data and clinical notes at the 
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University of Minnesota Medical Center. This work leverages data provided by surgical 

clinical reviewers who manually abstract surgical adverse events for surgical patients for a 

national surgical quality improvement registry.  

The proposed task of automatically detecting surgical adverse events from clinical 

data is complicated due to a number of challenges with the associated dataset, which 

require specific considerations to address appropriately. Those main challenges include: 

(1) how to preprocess EHR data and generate features for further modeling  

(2) understanding reason(s) for missingness of EHR data and utilizing appropriate 

techniques to handle missing data (e.g., imputation methods) 

(3) methods to address the high-dimensional nature of the associated dataset  

(4) issues associated with processing an imbalanced dataset 

Machine learning represents a complex field in itself and offers a wide range of solutions 

that can be potentially employed to address these challenges. In conducting the research, 

careful balance and analysis of the strengths and weaknesses of these approaches must be 

performed. 

 

Overall, the hypotheses of the dissertation are:  

(1) with reliably labeled adverse events as a gold standard, supervised machine 

learning methods should be effective for automatic detection of surgical adverse events 

(2) the combination of structured EHR data and unstructured clinical notes would 

improve detection performance compared to solely using either structured EHR data, NLP 

or text mining from unstructured clinical notes.  
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1.4 Outline of thesis 

Chapter 2 introduces the background of the clinical registry utilized in this work: 

American College of Surgeons (ACS) National Surgical Quality Improvement Program 

(NSQIP). NSQIP used well-defined and a validated process for documenting and detecting 

surgical adverse events. Additionally, a general primer around EHR data and clinical notes 

used is presented, as well, in Chapter 2.  

Chapter 3 describes an initial study conducted that tests the feasibility of the overall 

project with surgical site infection as a use case. Three subtypes of surgical site infections 

are detected based on patients with complete EHR datasets. Methods for summarizing 

variables based on EHR data are presented. The study’s results including model evaluation 

and significant features selected are discussed, as well. 

Chapter 4 provides a specific analysis for exploring situations of missing data 

which occurs not uncommonly with EHR data. Several practical imputation methods are 

described, compared and discussed.  

Chapter 5 expands upon previous methodologies and examines the application of 

multi-task learning for surgical adverse event detection. Though different adverse events 

have their own diagnosis method and treatment, a number of events (e.g., infectious events 

such as surgical site infection, sepsis, pneumonia) share some similar features in either 

diagnosis or treatment. Multi-task methods are designed and developed not only to find 

similar features but also solve the challenges caused by high-dimensional and imbalanced 

dataset.  
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As a culmination of the associated work, Chapter 6 examines a range of surgical 

adverse events and demonstrates the value of adding NLP and information extraction for 

clinical notes to this problem. In this study, automated detection based on both EHR data 

alone, NLP with clinical notes, or both sources are compared.   

Finally, Chapter 7 summarizes and discusses the contribution and significance of 

the overall dissertation. Future directions and work for potential future investigations are 

discussed.  
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Chapter 2 Background 

2.1 NSQIP 

 As stated in Chapter 1, our research leverages outcomes from the surgical registry, 

ACS NSQIP. NSQIP is widely recognized as “the best in the nation” surgical quality 

improvement resource in the United States (17-19). With the guidance of NSQIP, 

participating hospitals track outcomes and other patient variables using manual abstraction. 

Variables collected include preoperative, intraoperative, and postoperative clinical data 

elements and morbidity/complication occurrences. The preoperative and intraoperative 

clinical data elements include patient demographics, co-morbidities and disease history, 

functional status, laboratory results, operation duration, and wound classification scores. 

Postoperative morbidity outcomes include 21 well-defined surgical adverse events (i.e., 

complications) within the 30-day postoperative window. These adverse event occurrences 

include surgical site infections (SSIs), urinary tract infections (UTI), sepsis, and acute renal 

failure (ARF). These events each have detailed definitions with specific inclusion and 

exclusion criteria. For example, Table 2-1 includes a standard definition used in NSIQP 

for sepsis. Surgical patients are selected at each hospital for inclusion into NSQIP (based 

on a cyclical schedule and a certain target number with stratified sampling to preferentially 

select major surgical cases). For each of selected patient cases, all preoperative, 

intraoperative, and postoperative data are collected, entered, and included in NSQIP which 

then has a number of statistical analysis performed on the data to provide feedback.  
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Table 2-1. The standard definition of sepsis used by the NSQIP registry 

Report this event if the patient has two of the following clinical signs and 

symptoms of SIRS: 

• Temp > 38°C (100.4 °F) or < 36 °C (96.8°F)  

• HR > 90 bpm 

• RR > 20 breaths/min or Pa CO2<32 mmHg (<4.3 kPa) 

• WBC > 12,000 cell/mm3, < 4,000 cells/mm3, or > 10% immature band forms. 

• Anion gap acidosis: this is defined by either:  

o [Na + K] – [Cl + HCO3 (or serum CO2)]. If this number is greater than 

16, then an anion gap acidosis is present.  

o Na – [Cl + HCO3 (or serum CO2)]. If this number is greater than 12, 

then an anion gap acidosis is present.  

*If anion gap lab values are performed at your facilities lab, ascertain which formula is 

utilized and follow guideline criteria.  

     And either A or B below:  

  A. One of the following:  

• Positive blood culture  

• Clinical documentation of purulence or positive culture from any site for which 

there is documentation noting the site as the acute cause of sepsis.  

  B. One of the following findings during the Principal Operative Procedure:  

• Confirmed infarcted bowel requiring resection  

• Purulence in the operative site  

• Enteric contents in the operative site, or  

• Positive intra-operative cultures  

Guidance: if the patient meets criteria to assign preoperative sepsis, assign the risk 

factor; if the patient meets the criteria to assign postop sepsis, assign the occurrence 

and then assess for PATOS and assign if appropriate.  
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 NSQIP uses the collected data from all member hospitals to calculate the hospital’s 

relative performance for different types of operations with respect to adjusted postoperative 

morbidity and mortality and compares each member hospital’s performance with a 

benchmark for each postoperative adverse event. Specifically, a ratio of observed to 

expected number of events is provided to each hospital for each event adjusted by patient 

morbidity, case complexity, and a number of other factors. An O/E ratio of 1 means the 

performance is as expected for a particular outcome given the composite patient and case 

severity, whereas less or greater than one indicates better or worse performance, 

respectively (20-23). With this feedback, NSQIP member hospitals are able to focus on 

areas of improvement and have achieved measurable improvement in surgical care quality 

and in many cases have saved money by reducing length of stay and preventable 

readmissions. Figure 2-1 demonstrates the mechanism NSQIP utilizes for surgical quality 

improvement. 

 The success of NSQIP in improving surgical quality for member hospitals is ensured 

by the high quality collection of clinical data elements performed with manual abstraction. 

To maintain the high reliability of this data collection, formally trained surgical clinical 

reviewers are employed by hospitals. These individuals select surgery cases strictly 

following NSQIP inclusion and exclusion criteria, manually extract preoperative data 

characteristics, and then recognize and record 21 postoperative surgical adverse events and 

mortality. Because data collection for NSQIP is very time and labor intensive, only a subset 

of surgical patients are selected, and despite the registry’s value, its cost poses a significant 

burden for medical institutions. Unfortunately, mainly due to this costly manual manner of 
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clinical data collection and other costs like NSQIP’s associated participation fee, less than 

20% of hospitals in the United States currently are enrolled in NSQIP.  

 To make NSQIP more accessible, one proposed and promising solution is to 

accelerate the process of data extraction by automatically or semi-automatically detecting 

NSQIP elements from EHR systems. While EHR data and specific modules have been built 

(e.g., Epic NSQIP module) for automated abstraction of preoperative and intraoperative 

clinical data elements, these approaches have not been used for adverse event outcome data. 

Preoperative and intraoperative data also tend to be structured, and are much easier to 

extract without complicated algorithms. Since reviewers spent most of their time 

identifying post-operative adverse events and these outcomes are most relevant for 

performance of a healthcare institution, the goal of the associated research is to utilize 

automated techniques, specifically machine-learning, to classify surgical patients with or 

without particular postoperative adverse events.  
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Figure 2-1. The overall review of NSQIP standard workflow 
 

 

2.2 Hospital acquired infections 

  Hospital acquired infections (HAIs) are infections acquired in a hospital or other 

health care facility. Table 2-2 list all 21 surgical adverse events defined and recorded in 

NSQIP. Among all events, infections in italic type are the HAIs.  

 HAIs account for nearly 60% of all complications (24-25). They are not only the 

most common surgical adverse events, but also very morbid. Severe SSIs and pneumonia 

could trigger sepsis and even septic shock, particularly in people who are already at risk. 

Sepsis and septic shock are common and deadly, and CDC has listed “septicemia” as the 
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11th leading cause of death nationwide (26-28). In addition, HAIs are expensive to treat. 

According to a recent study, 440,000 of these adverse events happen annually and cost 

overall up to 10 billion dollars per year in the United States (29-31). Given the significant 

influence on the quality and cost of healthcare, postoperative HAIs are increasingly and 

widely viewed as a quality benchmark and are a strong emphasis of national initiatives for 

infection prevention and control (32-35). Therefore, our research has a particular emphasis 

on HAI detection in surgical patients and SSI in particular in several of the studies. 

 

Table 2-2. 21 defined postoperative surgical adverse events in NSQIP registry 

 

Superficial surgical site infection 

Deep surgical site infection 

Organ space surgical site infection 

Urinary tract infection 

Pneumonia 

Sepsis 

Septic shock 

Wound disruption 

Cardiac arrest requiring CPR 

Myocardial infarction 

Unplanned reintubation 

 

On ventilator > 48h 

Pulmonary embolism 

Progressive renal insufficiency 

Acute renal failure 

Stroke/Cerebrovascular accident (CVA) 

Bleeding requiring transfusion 

Coma 

Perioperative nerve injuries 

Deep vein thrombosis (DVT) 

Postoperative death within 30 day 
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2.3 Structured EHR data 

 Nationally, EHR systems have replaced paper-based systems in most healthcare 

organizations. EHR systems have resulted in a large amount of rich health data, which hold 

great value for reuse. As the American Medical Informatics Association (AMIA) states:  

Secondary use of health data can enhance healthcare experiences for individuals, 

expand knowledge about disease and appropriate treatments, strengthen 

understanding about the effectiveness and efficiency of our healthcare systems, 

support public health and security goals, and aid businesses in meeting the needs of 

their customers.  

Retrospective analysis of health data holds promise to expedite scientific discovery in 

medicine and constitutes a significant part of clinical research. National initiatives have 

been created to facilitate greater use of EHR to support clinical research in the United States. 

 EHR systems include a wide range of data about patients (i.e., demographics, 

problem list, vital status, vaccines, surgical and medical histories), as well as specific data 

about their hospital and clinic visits (i.e., admission/discharge, diagnoses, procedures, 

medications, lab tests, orders, vitals and observations, location of the visit, specialty of the 

provider). In this work, the EHR data comes from our CDR at the University of Minnesota, 

which houses the EHRs of more than 2 million patients seen at 8 hospitals and more than 

40 clinics. For this research, all relevant EHR data of surgical patients enrolled in NSQIP 

at the University of Minnesota were collected from CDR for the adverse event detection 

modeling. 
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2.4 Unstructured clinical notes  

 Narrative clinical notes are a valuable source of information for detection and 

characterization of outbreaks, decision support, recruiting patients for clinical trials, and 

translational research, because clinical notes contain information regarding signs, 

symptoms, treatments, and outcomes (36-38). For example, radiology, surgical pathology, 

molecular pathology, cytogenetic, and flow cytometry reports contain valuable information 

for translational cancer research that can be used for epidemiologic and descriptive studies 

and discovery of new relationships that impact diagnosis and prognosis or treatment. Most 

of the information contained in clinical documents, however, is locked in free-text format 

and must be encoded in a structured form to be useful for automated and computable 

applications. In many cases, the words or concepts indicating a specific surgical adverse 

event might be found in the clinical notes. Several examples are shown in Table 2-3, where 

the keywords and concepts are bolded.  

 It is worthy to note that “no UTI” in the sentence is an example of negation. Negation 

is an example of important contextual feature in clinical reports. As such, successful 

application of NLP needs to address negation and other contextual information (e.g., 

uncertainty, past/previous) contained in clinical notes.  In this study, an NLP tool for 

clinical research developed by NLP/IE group at the University of Minnesota was used to 

analyze unstructured clinical notes (39). 

 

 

 



 

 15 

Table 2-3.  Relevant keywords and concepts in clinical notes 

 

“…...Pt had recent hernia repair. Pt came from rehab center with a concern for wound 

infection…....” 

“…... Concern for sepsis. Fever 101.8, chills & hypoxia. Has wound vac, central line, 

PICC & oxygen. Sepsis protocol initiated.…...” 

“…... Quick Note: Has pneumonia, on antibiotics…...” 

“……Let her know UC so far negative (so no UTI)…....” 
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Chapter 3 Preliminary studies and pilot testing 

3.1 Introduction 

To test the feasibility of automated retrospective detection of surgical adverse 

events, pilot studies were conducted on detection of the family of SSI events. An SSI is an 

infection occurring after surgery in the part of body where surgery took place. While most 

surgical patients do not experience an SSI (40), SSIs are very expensive and morbid. 

According to the depth and severity of infection, SSIs are categorized into superficial, deep, 

and organ/space. Definitions for SSIs have been standardized by the CDC and are used by 

NSQIP SCR to identify and document each SSI category (41).  

Previous work has explored risk factors associated with SSI, but few studies have 

focused on the detection of SSI. Most papers examining detection have relied heavily on 

administrative data or claims data bases (such as age, gender, principal diagnosis, and 

billing information about medications and procedures) (42-44). Since EHR data contains 

more detailed and richer clinical data (e.g. vital signs, lab results, and social history), 

compared with claims data it would provide additional significant indicators and signals to 

SSI and thus enhance the detection performance. In addition, most studies are procedure-

specific, only processing SSIs following certain types of operation, such as hip and knee 

arthroplasty (44-46), instead of the current approach which is broadly inclusive of different 

types of surgery. To help reduce the labor and cost in reviewing patient records for 

postoperative surgical occurrences, we hypothesized that we could leverage both EHR data 

and historic NSQIP registry data to develop and validate an automated approach with 
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supervised machine learning algorithms to detect NSQIP occurrence outcomes. In 

particular, we focused on the postoperative SSI occurrences to develop a classifier of three 

SSI categories (superficial, deep, and organ/space) and the overall SSI, and to reduce the 

SCR’s burden by eliminating the vast majority patients if the surgeries that did not result 

in SSI. 

3.2 Methods and Materials  

 Our overall methodological approach for this study included four steps as outlined in 

Figure 3-1: (1) identification of the patient cohort and associated patient EHR data, (2) 

data preprocessing, (3) iterative supervised learning model development, and (4) 

evaluation of the final models using gold standard outcome data from the NSQIP registry. 

Institutional review board approval was obtained and informed consent waived for this 

minimal risk study. 
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Figure 3-1. Overall materials and methods 
 

3.2.1 Data collection and Patient cohort identification 

The CDR at the University of Minnesota Medical Center (UMMC) is a database 

that makes EHR data accumulated from a larger, tertiary care medical center available for 

researchers. We extracted clinical EHR data from CDR for surgical patients included in 

the NSQIP registry 2011 through 2013 and retrieved their NSQIP postoperative SSI 

outcome from the registry. The patient’s medical record number and date of surgery were 

used to link CDR data to the NSQIP registry. Though UMMC has been a member of 

NSQIP since 2007, the CDR only has consistent clinical data since 2011 when the 

institution implemented its current Enterprise EHR system (Epic systems). Patients without 

matching records in the CDR (22 total, from incorrectly entered medical record numbers) 

were removed. Our goal was to assess the models’ robustness in the face of changes that 

take place over time, since the purpose of our model will be to ultimately detect future SSIs. 

Thus, our dataset was divided into a training set of patients with surgery dates between 

2011 to the end of 2012 and a test set of patients with surgery dates in 2013. The training 

dataset was used for model development, while the test set was used solely for evaluation 

of the models we developed.  

The standard definition of SSI by CDC has been used by NSQIP reviewers to 

determine if a patient experienced an SSI. However, some clinically important indicators 

mentioned in the standard definition, such as imaging orders and cultures, are not included 

in the NSQIP elements.  We collected relevant data elements from six types of data: 

demographics, medications, orders, diagnosis codes, lab results and vital signs, based on 
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the opinion of three content experts (all surgeons familiar with NSQIP definitions and the 

EHR). Demographics contained each patient’s basic information (e.g., gender, race, age). 

Among medications, we focused only on the use of antibiotics after surgery. Orders known 

to be associated with the diagnosis and treatment of an SSI were also gathered from CDR, 

including orders of imaging studies, infectious disease consultation, and interventional 

radiology drainage procedures for abscess drainage. Diagnosis codes consisted of relevant 

ICD-9 codes created during the encounter and hospital stay at the time of surgery from 

coding, as well as diagnoses from the past medical history and problem list. Lab values 

(e.g., WBC, hemoglobin, lactate, etc.) and vital signs (e.g., temperature, pain scale, etc.) 

before surgery and those generated during the postoperative window after surgery were 

extracted, as well, from the CDR. Microbiology cultures, such as wound culture, abscess 

culture, were collected. We also included surgical wound classification and American 

Society of Anesthesiologists (ASA) physical status classification that was recorded prior 

to surgery (47-48). The surgical wound classification is used to grade intra-operative 

wound contamination, which is highly correlated with the chance of developing a 

postoperative SSI, and is part of intra-operative case documentation. ASA classification 

reflects a patient’s overall status with respect to surgical risk from normal healthy patient 

to a brain-dead patient (49-50).  

3.2.2 Data preprocessing 

EHR data of interest were collected, cleaned, and analyzed next. Identifying and 

removing outliers, and correcting inconsistent data were the very first tasks of data 

preprocessing. How to transform clinical data into meaningful features was our main 
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interest. Most clinical data, such as lab test results and vitals, tended to be longitudinal with 

repeated measures. Traditional methods to summarize those variables by calculating the 

moments (mean and standard deviation) or extremes tended not to be sufficient to describe 

the temporal behavior of such variables. To better summarize individual tests, we explored 

other features like the change of values during an “elevating period”. An elevating period 

is a time period during which the measurement in question is near-monotonously 

increasing from a low level (trough point) to a high level (peak point). For patients with 

SSI, some lab results, like serum glucose (GLC), platelet count (PLT), and white blood 

cells (WBC), have significant increases in the measurement from the third day after 

operation. 

As shown an example in Figure 3-2, GLC increased in three time periods: (I) day 

3~7, GLC increased from 116 to 128; (II) day 7~9, from 104 to 140; and (III) day 15~28, 

from 87 to 148. Such elevation may indicate the onset of SSI. To capture the elevating 

period, a feature defined as the postoperative increase from a trough to its nearest peak was 

included in our tentative model. In case with multiple elevating periods, the feature was 

computed by using the period with the highest peak. For measures, where low values could 

indicate SSI, a “descending period” can be defined analogously. 
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Figure 3-2. GLC values within 30 days before and after surgery 
 

Figure 3-3 depicts the flow chart of the algorithm to compute this feature. The 

algorithm first searches for the maximum value (pm) from all results at least two days after 

the operation ({pi, i=0, …, n}), e.g., in Figure 3-2, point B is the maximum GLC value, 

which was measured nineteen days after the operation. Then the algorithm proceeds by 

searching for the trough point backward from point B. The algorithm is robust to filter out 

the abnormal point that temporarily breaks the rule of monotone. For example, in Figure 

3-2, the elevating period is from day 15 to 19, however, there is an abnormal point A which 

breaks the monotone increasing trend between day 15 and 17; to overcome the problem 

and identify the real trough, the algorithm further compares day 15 and day 17 and see if 

they satisfy the criterion of monotone increasing.   
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Figure 3-3.  Finding the postoperative increase in GLC 
 

For other data like antibiotic use and specific orders, we created binary variables to 

indicate whether a relevant element was observed. For example, a value of 1 for 

Interventional Radiology signifies that an abscess drainage order was placed for a patient; 

while a value of 0 signifies that no such test was ordered. 

3.2.3 Model development 

As our SSI detection model, we utilized multivariate logistic regression models.  

We constructed one model for overall SSI and one model for each of the three SSI subtypes. 
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Binary variables were entered as dummy indicator variables and continuous variables were 

entered unmodified. We used stepwise construction to select significant features and 

Akaike Information Criterion (AIC) for model selection. 

3.2.4 Model evaluation 

In assessing detection of surgical adverse event outcomes like SSI, since these 

events are relatively rare, overall detection accuracy percentage is not an optimal criterion 

for evaluating model validity. Instead, we report specificity, as well as the the area under 

the curve (AUC), in evaluation of our automated detection system. Our aim was to 

maximize the specificity under the constraint that the negative predictive value remains 

above 98%. This aim is reflective of our original expectation of actual use of the detection 

models: to assist a NSQIP chart extractor to eliminate patients who clearly did not suffer 

the adverse event and then accelerate the process of data abstraction from clinical charts. 

3.3 Results 

3.3.1 Significant variables selected 

 Tables 3-1 through 3-4 show the results for the multivariate detection models for the 

three kinds of SSI and the overall SSI, selected by AIC. The two most common variables 

included were diagnosis codes (the ICD-9 codes of SSI is 998.xx) and antibiotic use. 

Superficial SSI occurs just at the skin incision and thus relatively easily diagnosed. 

Therefore, imaging diagnostic orders tends to be unnecessary. Infection is sometimes 

diagnosed with microbiology cultures, however, frequently this diagnosis is based on the 

physical examination only. Actually only cultures ordered or not is a signal of SSI. 
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According to Table 3-3 and Table 3-4, we can find that abscess culture, fluid culture and 

wound culture are significant factors for detecting deep and organ space SSI. Since this 

two kinds of SSI occurs deep within or under the wound, imaging orders for both diagnosis 

and treatment are frequently required. 

 We also found the postoperative elevating period of GLC for superficial and PLT 

for organ/space are indicative of clinical suspicion. Clinically these lab values can be 

altered in the setting of infection. For a unit increase in postoperative increase of GLC, 

we expect to see approximately 0.0112 increase in log-odds of superficial SSI. Similarly, 

for a unit postoperative increase of PLT, approximately 0.0115 increase in the log-odds 

of organ space SSI is expected.  

 

Table 3-1. Significant indicators for detecting superficial SSI 

Significant variables Estimate P-value 

Diagnosis codes 2.1126 <0.0001 

Wound culture ordered 2.1941 <0.0001 

Antibiotic use 1.1321 <0.0001 

Encounter type (inpatient) 1.6007 0.0010 

ASA Classification (significant disturbance) 0.4342 0.0058 

Abscess culture ordered 1.5020 0.0050 

Postoperative increase of GLC 0.0112 0.0687 
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Table 3-2. Significant indicators for detecting deep SSI 

Significant Variables Estimate p-value 
Diagnosis codes 3.1959 <0.0001 

Antibiotic Use 2.2276 <0.0001 

Abscess culture ordered 1.2880 0.0868 

Gram stain ordered 0.8040 0.0427 

Imaging treatment ordered 1.5445 0.1107 

Imaging diagnosis ordered 0.6254 0.0981 

Tissue culture ordered 1.6516 0.1010 

 

 

 
Table 3-3. Significant indicators for detecting organ space SSI 

Significant Variables Estimate p-value 
Imaging_treatment 1.3999 <0.0001 

Imaging_diagnosis 1.2090 <0.0001 

Antibiotic Use 1.1662 <0.0001 

Abscess culture ordered 2.3041 <0.0001 

Fluid culture ordered 1.4204 0.0003 

Preoperative PLT 0.00332 0.0135 

Drainage culture ordered 1.3760 0.0711 

Diagnosis code 0.8259 0.0667 

Postoperative increase of PLT 0.0115 0.0606 
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Table 3-4. Significant indicators for detecting overal SSI 

Significant Variables Estimate p-value 
Diagnosis codes 5.3940 <0.0001 

Antibiotic use 1.3672 <0.0001 

Abscess culture ordered 3.2565 <0.0001 

Wound culture ordered 2.2926 <0.0001 

Imaging diagnosis ordered 0.8741 <0.0001 

Fluid culture ordered 1.2909 <0.0001 

Encounter type (inpatient) 1.0185 0.0037 

ASA Classification (significant disturbance) 0.4258 0.0031 

Preoperative PLT 0.00214 0.0440 

Post maximum pain 0.0775 0.0957 

 
 
 
3.3.2 Model performance 

Four detection models exhibited excellent specificity to eliminate the majority of 

non-SSI patients, which greatly accelerate the process of extracting postoperative SSI 

occurrences. Table 3-5 presents the negative predictive value (NPV) for each of the SSI 

identification models. The highest specificity 0.988 was for detecting deep SSI at NPV 

equals to 0.99, and the lowest 0.787 was for detecting overall SSI at NPV equals to 0.99. 

AUC values for four models are 0.820, 0.898, 0.886 and 0.896. 
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Table 3-5. Negative predictive value  and specificity for four SSI models 

                                         NPV Specificity 

Superficial SSI 0.980 1.000 

 0.985 0.987 

 0.990 0.900 

Deep SSI 0.980 1.000 

 0.985 1.000 

 0.990 0.988 

Organ space SSI 0.980 1.000 

 0.985 0.999 

 0.990 0.974 

Overall SSI 0.980 0.935 

 0.985 0.888 

 0.990 0.787 

 

3.4 Discussion 

 The current research is a pilot study to examine the feasibility of automatically 

detecting postoperative SSI occurrences based on EHR data. The aim of this study is to 

assist a NSQIP SCR to eliminate patients who clearly did not suffer the adverse event. 

Therefore, very high negative predictive value is desired, which could assist in the reliable 

identification of patients without postoperative SSI. From the modeling results, we can see 

that all four models perform very well (with specificity ranging from 0.788 to 0.988) in 

eliminating the majority of patients without SSI based on the negative predictive value 

equals to 0.99. Considering the nature of NSQIP SCR’s work, SCRs still need to review 

all clinical charts even the positive predictive value for a patient is 0.9 or even higher, since 
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they need to extract the clinical characteristics of patients with SSI. Therefore, achieving 

high negative predictive value, and thus allowing SCRs to eliminate patients, rather than 

achieving a high positive predictive value is the main focus of this research. 

 Among selected potential indicators, a few of them were found to be quite significant 

with very small p-values. Only the indicators that had p-value less than 0.0001 were also 

used to do logistic regression modeling, but this did not improve the detection performance. 

Other modeling methods, like Random Forest and Support Vector Machine, were 

employed; however, logistic regression models were found to outperform these methods 

for detection of all types of postoperative SSI events.  

 The current study was limited by the fact that it was conducted with only about 

complete cases in three years, which might have limited our ability to fully refine and 

optimize the automated detection model. In the future, more procedures will be included, 

and the treatment of missing data will be studied. 

3.5 Conclusion 

 In this study, to accelerate the process of extracting postoperative SSI outcomes from 

medical charts and reduce the workload of NSIQP SCR, an automated postoperative SSI 

detection model based on supervised learning was proposed and validated. The models 

exhibited good performance, they reduced the SCR’s burden by reliably eliminating the 

vast majority of patients with no SSI. The significant factors of detecting SSI identified by 

our models are in line with clinical knowledge. In addition, some useful patterns, e.g. 

postoperative increase of PLT and GLC, were extracted from the longitudinal lab results. 
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Chapter 4 Missing data in electronic health records 

4.1 Capturing the context of “missing data” 

Unfortunately, secondary use of EHR data can be challenging due to the inconsistent 

and incomplete nature of patient records within the EHR. The presence or absence of 

elements, the timing and sequence, and other characteristics of the collected data can vary 

greatly from patient to patient. Sometimes necessary or expected data elements might be 

missing in a patient’s record. Missing data rates in the EHR have been previously reported 

from 20% to 80% (51-52). In this study, we were interested in clinical data between 

postoperative day 3 to 30 (which we refer to as the postoperative window henceforth) 

because the first two days after surgery often constitute a recovery period, where abnormal 

measurements are common and may simply be a result of healing from the trauma caused 

by surgery, rather than a sign of SSI. During the postoperative window, the problem of 

missingness commonly exists for many data elements. Researchers traditionally categorize 

missing data mechanisms into three types according to the characteristics of the 

missingness: missing completely at random (MCAR), missing at random (MAR), and 

missing not at random (MNAR) (53). 

• MCAR - Causes of missingness are not related with any characteristics of the 

dataset (e.g., whether a data point is missing is not related with any values in the 

dataset). For example, the urine culture test is usually ordered to help make 

diagnosis of urinary tract infection. However, a urine sample might be randomly 

broken and the test result is missing completely at random. 
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• MAR - Data are not missing at random, but the probability that a data element is 

missing depends on values of other observed variables in the dataset. As an example, 

suppose men are more likely to drop out of a clinical trial, but the chance of 

dropping out is the same for all men. We can say that male subjects are just MAR. 

Both MCAR and MAR are viewed as ignorable missingness.  

• MNAR - When the likelihood of missingness is related to missing variables, a third 

type of non-ignorable non-response missingness, MNAR, arises. For example, 

consider a study aiming to evaluate treatments to reduce cocaine use. In this 

hypothetical study, the outcome drug level is measured from a urine drug test every 

Monday morning. Participants who use cocaine over the weekend and do not show 

up for their urine test would be expected to have higher cocaine metabolites. 

Therefore, the likelihood of the data being missing is directly related to the 

unobserved cocaine level, which is viewed as MNAR. 

The traditional three missing data categories are not sufficient to capture the complexity 

of missing data in EHR-derived applications. Missing data in EHR-derived datasets could 

be caused by a lack of collection or a lack of documentation (54). Lack of collection, for 

example, refers to orders or other items that are not placed or measured. In this instance, 

the missing data element is typically a negative value, i.e. a normal state patient.  

Alternatively, the clinician may not be considering the measurement since the test or 

measure is thought to be low yield for the patient in question. Such missing values are 

MNAR. Lack of documentation refers to orders or other items that are placed or performed 

but the response values are not recorded or obtained during the process of data collection. 
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In this instance, data was lost during the extraction, transformation, and loading (ETL) of 

clinical data. Such missing values are MCAR or MAR. Furthermore, a good working 

knowledge of the specific research question is likely helpful for understanding missing data 

mechanisms and potentially for selecting the most suitable missing data imputation 

methods for a particular secondary use application of EHR data. 

In our SSI detection use case with EHR data, possible missing data can potentially be 

caused by either lack of collection or lack of documentation and thus we are facing a 

mixture of MNAR and MCAR/MAR mechanisms. In the situation of lack of collection, 

for example, a WBC count is usually measured repeatedly to monitor a patient’s status 

after surgery. However, WBC test is not necessarily ordered for all patients—patients 

doing well clinically are less likely to have the WBC test. Similarly, an image-guided order 

with interventional radiology related to SSI treatment or a microbiology culture test is less 

likely to be placed on patients for whom there is minimal to no suspicion of an SSI. There 

are also examples of lack of documentation. For instance, the microbiology gram stain 

specimen from a wound suspected of harboring an SSI may be sent to an outside laboratory 

and therefore not recorded in the system.  It is difficult to tell to which category of data 

missingness a case of missingness belongs (e.g., lack of collection or lack of 

documentation).  Additionally, performance of common missing value imputation methods 

in the context of MNAR is unknown.  Therefore, we need to explore and compare different 

missing data imputation methods, and find the most suitable approach.  
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4.2 Related work on handling missing data  

Though numerous missing data treatments have been developed, selecting the most 

appropriate one depends strongly on the problem at hand. Overall, most studies have not 

demonstrated one technique to be universally better than others. This section briefly 

summarizes traditional statistical and model-based methods. Our aim is to suggest ways 

that clinical research practitioners without extensive statistical backgrounds can handle 

missing data by exploring several of the most commonly used strategies to handle missing 

data for the real problem of postoperative SSI detection with EHR data. 

The most common and easiest method is to exclude cases or single variables with 

missing data. Researchers either consciously or by default drop incomplete cases since 

many statistical and machine learning tools operate on complete cases and only rarely have 

built-in capabilities to handle missing data (55-56). However, discarding cases or variables 

with missing data not only decreases the number of available cases in a given dataset but 

may also result in significant bias (57-58). As an alternative to complete-case analysis, 

many researchers will impute missing values for variables with a small percentage of 

missing data (59-60), such as using the mean value of the observed cases on variables of 

interest. However, filling in the mean value usually causes standard errors to appear smaller 

than they actually are, since it ignores the uncertainty of missing data (60-61). 

Compared with filling in the mean value, advanced methods, such as multivariate 

and maximum likelihood imputation, were developed several decades ago. In particular, 

multivariate imputation enables researchers to use existing data to generate or impute 

values approximating the “real” value and has been widely applied in clinical data analysis 
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(62-63). In addition, multivariate imputation by chained equations (MICE) approach 

generates a regression model for each variable with missing data, with other variables as 

predictors, to impute the missing data. This method, being a regression model, can handle 

different types of variables (continuous or discrete). More recently, imputation methods 

based on more sophisticated models have been developed. Some well-known approaches, 

such as multilayer perceptron, self-organizing maps, and K-nearest neighbors (KNN), have 

been employed as the predictive models to estimate values for the missing data in specific 

applications such as breast cancer diagnosis, detection of cardiovascular patients and 

intensive care unit monitoring (64-65). However, for clinical researchers, most 

complicated methods typically are not easy to implement. Also, to date they have failed to 

show a convincing and significant improvement over univariate imputation (e.g., filling in 

the mean value or MICE).  

At the present time, most algorithms apply to MCAR or MAR. Imputation for 

MNAR is generally not recommended, and hence few algorithms exist. Algorithms like 

selection method and pattern mixture models could jointly model data and missingness. 

The former assigns weights to observations based on their propensity for missingness (66-

67), while the latter constructs imputation models for each pattern of missingness (68-69). 

Both methods have the potential to reduce bias in the results.  However, due to their 

untestable assumptions, they may perform worse than imputation methods developed for 

MCAR or MAR. Several researchers have previously applied the combination of Fourier 

transformation (70-71) and lagged KNN to impute biomedical time series data in which up 

to 50% of data are missing (72-73).  
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In our work, the potential for non-random missing data exists.  Discarding patients 

with missing values would be a conservative choice. However, if we discarded all 

observations (patients) that contain missing values, we would discard close to 80% of our 

study population. This alone could fatally bias the results and hence imputation is 

imperative. In this work, we seek to explore several commonly used missing data 

imputation methods in our SSI dataset to increase our sample size and to avoid discarding 

a large portion of patients with missing values. In particular, eight imputation methods 

were used to fill in absent values for lab tests and vital signs in the postoperative SSI dataset. 

To compare different imputation methods, the performance of multiple detection models 

based on different missing data treatments were evaluated by using the reference standard 

SSI outcome from NSQIP. 

4.3 Data collection and preprocessing  

The EHR dataset used was the same one in pilot studies conducted previously. Data 

preprocessing consisted of transforming the data (if necessary), and correcting any 

inappropriate formatting in the data for further modeling (e.g., the 

erythrocyte sedimentation rate value could be entered as “56 H” in EHR system, however, 

to keep the value consistent in numerical format for further modeling, we needed to remove 

“H”.) Lab results and vital signs, viewed as continuous variables, are measured periodically. 

The resulting longitudinal data were summarized into three features: two extreme values 

(highest and lowest values) as well as average value during the postoperative window. To 

establish a baseline, the preoperative extreme and average values were also extracted. 

Binary features (taking the values of 0 and 1) are created for medications, orders and 
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diagnosis codes, indicating the presence or absence of that data element during the 

postoperative window. For example, the value of 1 for a particular antibiotic (medication) 

signifies that the patient received the antibiotic during the postoperative window. Another 

two variables, ASA score and wound classification, are ordinal variables with multiple 

levels. A univariate logistic regression model was used to compare the effects of different 

levels, and levels regrouping might be necessary. In our dataset ASA classes I and II were 

grouped and classes III, IV, V and VI were grouped.  For wound classification, classes I 

and II were grouped and classes of III and IV were grouped. We made age an ordinal 

variable—above the age of 65 and under 65. Other SSI risk factors, such as smoking, 

alcohol use, history of diabetes, anesthetic type, etc., however, were not selected as 

significant indicators to SSI by the detection model in our pilot study using the completed 

dataset, therefore, were not included in this study.  

All the data were transformed into a data matrix amenable to statistical modeling. 

The rows of this matrix correspond to patients and the columns to features (predictors). It 

is worth noting that a patient may have multiple visits during the postoperative window. 

All the EHR data generated during the postoperative window were collected for modeling. 
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4.4 Missing data imputation of the incomplete dataset 

We define a missing value as a specific lab result or vital sign that is missing 

entirely during the postoperative window. For example, a patient’s WBC values could be 

completely missing during the postoperative window.  In this instance, there is no way to 

summarize the WBC values. We need to impute the WBC related variables (i.e., maximum 

WBC, minimum WBC, and average of WBC). If a patient has several WBC measurements 

during the postoperative window, imputation is unnecessary.  In this work, mean-

imputation, 0-imputation, imputing normal values, and MICE methods were utilized. In 

the case of first three non-model-based methods, for each feature, a single value is imputed 

every time the value for that feature is missing. For example, in case of “mean” imputation, 

for each feature, the mean of the non-missing entries was calculated in the training dataset 

and imputed into both the training and test datasets every time the value was missing for 

that feature. In case of “0” imputation, we simply imputed the numeric value “0” for every 

missing entry; and in case of “normal” imputation, the average value of patients in the 

training set with no postoperative SSI was imputed into both the training and test datasets. 

Non-model-based imputation ignores the concept that related features can be used 

to “predict” what the missing value could be. In MICE method, we utilized linear regression 

modeling to impute missing values based on the non-missing values of other features, 

essentially a multivariate imputation through chained equations (74-75).  

 In the course of imputation, bias can be introduced when values are not missing at 

random. To reduce some of this bias, indicator variables were used. An indicator variable, 

implemented as a dummy variable, takes the values of 1 and 0; 1 indicates that the 
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corresponding value is missing. For example, if a dummy variable for postoperative WBC 

is created and takes the value 1 for a patient (observation), then the patient in question does 

not have any postoperative WBC value during the postoperative window; the 

corresponding features (minimal, maximal postoperative WBC) contain imputed values. 

In total, for our dataset, this resulted in 15 original features, 33 transformed features and 

22 dummy variables. Table 4-1 summarized the different imputed datasets by different 

methods. 

Table 4-1. Imputed datasets with eight imputation methods.  

Imputed Datasets Imputation Method 

Mean filling in the mean of all non-missing observations in 

training set; 

filling in the mean of all non-missing observations in test 

set, separately 

Normal filling in the mean of non-SSI patients in training set; 

filling in the mean of non-SSI patients in test set, separately 

MICE using multivariate regression model  

0 filling in 0 for all missing values 

Dummy+Mean adding dummy variables to model “mean” 

Dummy+Normal adding dummy variables to model “normal” 

Dummy+MICE adding dummy variables to model “MICE” 

Dummy+0 adding dummy variables to model “0” 
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4.5 Modeling method 

 LASSO regression estimates coefficients by minimizing the quantity of the 

regularization term plus the RSS, if fitting a linear regression (Eq. 4-1), or deviance, if 

using a logistic regression.  
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&/*              (Eq. 4-1) 

 The regularization term, or l1 norm multiplied by a weight ., favors sparse models 

that involve only a subset of predictors. Depending on the tuning parameter, ., we can 

select arbitrary number of predictors by using LASSO (Figure 4-1). 

 

 
 

Figure 4-1.  An example that indicates LASSO can produce a model with arbitrary 
number of predictors.  

 
       The curves of different styles show how the coefficients estimated change as λ 
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increases. As lambda increases, more coefficients become zero, in other words, only the 

more related predictors are selected in the LASSO regression model. Figure courtesy of 

The Elements of Statistical Learning (76) 

 By allowing the coefficient estimates to be zero, LASSO regression supports feature 

selection, which is the advantage compared with other regularization method. Compared 

with other variable selection methods such as best subset selection, LASSO regression has 

the advantage of computational feasibility.  

 Because of the additional regulation term (Eq. 4-1), when . gets sufficiently large, 

the coefficients estimated by LASSO regression is shrunk from the coefficients estimated 

by linear regression or logistic regression, which significantly reduces their variance, at the 

expense of slight increase in bias. The best . with the least error can be tuned, e.g., by cross 

validation. Thus, LASSO helps increase the prediction accuracy, especially when a 

relatively small subset of original predicators is related to the outcome. LASSO also 

improves model interpretability because irrelevant predictors are removed from the fitted 

model.  

4.6 Model Evaluation 

 The performance of the SSI detection models was evaluated both on the training set 

and on the leave-out test set. In order to assess the detection performance of the model on 

the training set, 10-fold cross validation (CV) was employed and the values of area under 

the curve (AUC)43, as well as the bias, were calculated. AUC is an accepted performance 

metric and quantifies the ability of a model to discriminate between positive and negative 
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outcome. Bias is used to examine whether the estimation of outcome systematically differs 

from the true outcome18. The closer the absolute value of bias is to 0, the smaller the bias 

is for SSI detection. Positive or negative bias indicates the overestimate or underestimate 

of a model. 

 Evaluating the reference model raises important issues. We could evaluate its 

performance on the unimputed test dataset as a reference.  However, the reference model 

would not be able to make predictions for the vast majority of patients, since many (around 

50%) would be deleted due to missing values. For this reason, we applied the reference 

model (without imputation) to all imputed test sets and selected the one with best 

performance as the performance for the reference model. The reference model was 

evaluated on each imputed test dataset. Every model that was constructed on a specific 

imputed training set was evaluated by the imputed test set that used the same imputation 

method. 

4.7 Results 

We retrieved the clinical data from EHR for 4,491 patients in the NSQIP registry 

at UMMC between 2011 and 2013. Table 2 includes detailed demographic information. 

The training set covers years 2011 and 2012, and encompasses 2,840 patients with 132, 51, 

and 81 postoperative superficial SSI, deep SSI, and organ space SSI, respectively. The test 

data set covers the year 2013 and contains 1,651 patients with 41, 34, and 41 respective 

SSI types. Some patients may have multiple SSI types. 
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Table 4-2. Training and Test Set Patient and Surgical Site Infection (SSI) Characteristics 

   Training set (2011-2012)    Test set (2013) 

Characteristic 
ALL 
Procedure 

Overall 
SSI 

Superficial 
SSI 

Deep  
SSI 

Organ 
Space 
SSI 

 ALL 
Procedure 

Overall  
SSI 

Superficial 
SSI 

Deep  
SSI 

Organ 
Space 
SSI 

Total  2840 252 132 51 81  1651 114 41 34 41 
Encounter type            
    Inpatient 2429 242 129 47 78  1052 104 35 32 38 
    Outpatient 411 10 3 4 3  599 10 6 2 3 
Age group            
     < 65 2259 210 109 41 67  1269 91 30 28 34 
    �65 581 42 23 10 14  382 23 11 6 7 
Gender            
    Male 1246 119 63 22 39  774 51 19 15 18 
    Female 1594 133 69 29 42  877 63 22 19 23 
Race            
    White 2386 213 112 44 66  1481 99 34 30 38 
    African  
    American 

189 18 8 5 7  112 7 3 1 2 

   Other/ 
   unknown 

265 21 12 2 8  58 8 4 3 1 
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Model performance in detecting superficial, deep, organ space and overall SSI are 

shown in Figure 4-2. AUC scores obtained through a 10-fold cross validation on the 

training set and the final AUC scores on the test set are also reported. Generally, imputed 

models performed substantially better (statistically significant difference, with at least a 

2nd digit difference in AUC) than the reference model, except for superficial SSI detection, 

where the reference model offered comparable performance. 

The final AUC score and bias of each model are reported in Table 4-3. We observed 

that for superficial SSI, every model performed similarly except “Dummy+0” and the 

reference model, which had the largest bias. Among models of deep SSI, imputed models 

without dummy variables performed best and the reference model performed worst in 

terms of AUC. Also, “Dummy+MICE” had the smallest bias among the different models. 

For organ space SSI, models with dummy variables performed best except “Dummy+0”, 

and all models had similar bias except “Dummy+0”. For detecting any SSI, most imputed 

models had similar performance and were substantially better than the reference model. 

Biases were also similar except the reference model and “Dummy+0”, which were more 

biased than the other models. Selected important variables, the estimated coefficients of 

variables and the 95% confidence intervals for the coefficients, are included in the 

supplemental appendix.  

Pairwise t-tests on the 1000 replications of the Bootstrap procedure were conducted 

to test for statistical difference in AUC scores between the methods for each SSI event.  

The majority of imputation methods in each category of SSI showed statistical difference, 

with p-values less than 0.01, except “0” vs. “Dummy+Mean” for superficial SSI (p-
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value=0.102), “MICE” vs. “Normal” for Deep SSI (p-value=0.129), “Dummy+Mean” vs. 

“Dummy+Normal” for organ space SSI (p-value=0.098), and “Reference” vs. “Mean” (p-

value = 0.094) and “Normal” “vs. “0” (p-value=0.143) for overall SSI. The detailed results 

are included in the supplemental appendix. 
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Figure 4-2. Detection Performance for each category of SSI with different 

imputation methods.  
 

 
The AUC scores are calculated based on both the training set (using the 10-fold cross 

validation) and the test set. Generally, the results indicate that developed models have a 

better performance on the test sets.
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Table 4-3. Bias analysis for eight imputed models as well as the reference model when detecting postoperative SSI.  

The average AUC and bias across the three sub-types of SSI and overall SSI are calculated as well. 
 

 
Superficial   

SSI 
Deep SSI Organ Space SSI Overall SSI  

 AUC Bias AUC Bias AUC Bias AUC Bias 
Average 

AUC 
Average 

Bias 
Reference 0.855 0.0600 0.702 -0.0032 0.864 -0.0136 0.864 -0.0159 0.821 -0.0079 

Mean 0.841 0.0131 0.864 -0.0085 0.867 -0.0086 0.863 -0.0055 0.858 -0.0024 

Normal 0.845 0.0132 0.866 -0.0014 0.896 -0.0092 0.935 0.0038 0.884 0.0016 

MICE 0.832 0.0191 0.865 -0.0010 0.894 -0.0087 0.927 0.0053 0.879 0.0037 

0 0.852 0.0122 0.886 -0.0090 0.903 -0.0105 0.934 -0.0072 0.893 -0.0036 

Dummy+Mean 0.851 0.0155 0.823 -0.0155 0.935 -0.0088 0.906 0.0052 0.878 -0.0009 

Dummy+Normal 0.856 0.0155 0.844 -0.0009 0.934 -0.0082 0.926 0.0052 0.888 0.0029 

Dummy+MICE 0.843 0.0195 0.826 0.0001 0.946 -0.0082 0.903 0.0089 0.879 0.0051 

Dummy+0 0.724 0.1679 0.813 -0.0154 0.774 0.1349 0.655 0.0639 0.741 0.0879 
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4.8 Discussion 

In this work, we explored the use of nine methods for treating missing data (one 

where records with missing values were completely discarded and eight methods using 

imputation for missing values) and evaluated the performance of the SSI-detection models 

constructed on nine training sets that utilized these imputation methods. Overall, we found 

imputation to be beneficial. Models built on imputed data outperformed the reference 

model for all SSI types except superficial SSI. In case of superficial SSI, essentially all 

models had very similar performance; only “Dummy+0”, the model built on the 0-imputed 

dataset utilizing bias-correcting dummy variables, had lower performance. We will explore 

the reasons for its lower performance later. 

The most surprising finding from this study is that the models with bias-correcting 

dummy variables did not perform as well as we expected. We expected that missing values 

signal that the patient is at a lower risk of SSI (the lab test is not necessary), giving rise to 

a “healthiness” bias. We originally thought that models without the dummy variables 

would have no ability to correct for this “healthiness” bias; hence, the addition of the bias-

correcting dummy variables would allow the model to correct the bias, improving its 

performance. Instead, the performance did not improve. There are two possible reasons for 

this. First, potentially the rates of missing values in the cases (SSI patients) and the controls 

(patients without SSI) are significantly different between the training and test set. In 2013, 

non-SSI patients appear to have more results (e.g. WBC and vital signs like body 

temperature) than in 2011-2012; thus, the “healthiness” bias in the training set is different 

from that on the test set. Second, there are some variables in the dataset that can take on 
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the role of the dummy variables to some extent. For example, the variable “patient type”, 

which indicates whether the patient had an inpatient or outpatient surgery, captures the 

"healthiness" bias well: outpatient surgeries are traditionally less complicated and thus are 

less likely to have complications; or conversely, if a procedure is associated with higher 

risk and a higher complication rate, it is less likely to be performed in the outpatient setting. 

This is similar to dummy variables, which also indicate a lowered risk of complication 

when the corresponding lab tests are not ordered. 

The “0” model, where the value 0 was imputed for missing elements, performed 

surprisingly well.  It achieved AUC scores ranging from 0.852 to 0.934. In most cases, 

imputing 0 is not clinically meaningful. Typically, imputing 0 for temperature would be a 

disastrous choice, as it would create large biases. The model for superficial SSI is one 

example. Among its significant variables, two are related to temperature: the postoperative 

maximum temperature and the minimum temperature. Their coefficients have the opposite 

signs, with the maximal temperature having the positive coefficient and the minimum 

having the negative. This can be interpreted as the difference between the maximum and 

minimum postoperative temperatures, which automatically corrects for the bias. 

MICE exploits the structure of the problem, namely the relationship between the 

variables with the missing value and other variables; compared with other non-model-

based imputation methods that ignore such structure, MICE methods are expected to 

perform best. Surprisingly, we did not find that the performance of the MICE models is 

significantly better than that of other imputation models. This is a result of differences in 

the problem structure between unhealthy and healthy patients: variables of healthy non-
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SSI patients are different in range from unhealthy SSI patients, and are more likely to have 

higher rate of missingness than unhealthy SSI patients, which affects the models in two 

ways: (1) the observations of unhealthy SSI patients contributes more in modeling 

imputation models because only complete observations are used to build imputation 

models; and (2) as a result, biases were likely introduced when applying the model to 

impute missing values for healthy non-SSI subjects. In spite of this, it is worth pointing out 

that “Dummy+MICE” achieved the best AUC on Organ Space SSI and the lowest bias on 

Superficial SSI. Overall, the performance of MICE method is good, but other simpler 

imputation techniques appear to be able to match their performance for the use case of SSI 

detection. 

Another interesting fact worth noting is that in some cases, the performance of the 

models on test set was actually better than that in the training set. There are two possible 

reasons for this observation. First, this may be related to the SSI rates in the year of 2013 

(test dataset) and 2011-2 (training dataset). For example, the rate of superficial SSI in the 

two sets was most different, 2.5% and 4.6%, respectively; consequently, the performance 

of models for superficial SSI between the two datasets differed and was higher for the test 

dataset. As for other types of SSI, rates were close between the two datasets, specifically 

2.5% vs. 2.8% for organ SSI and 2.1% vs 2.1% for deep SSI. While the EHR system was 

not changed from the 2011 to 2013, other possible unseen factors which may influence the 

distribution of patients in 2013. Second, it is possible the constructed models underestimate 

the risk of SSI on the training set; therefore, the performance on the training dataset is 

relatively lower than for the test dataset; yet, the biases remain small. We also hypothesize 
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that the increased collection of lab results may have also biased the regression models we 

used to fill in missing values since they were constructed on the training set. This is an 

analogous effect to the inability of the dummy variables to “un-bias” the estimates.  

4.9 Limitations 

The NSQIP database can provide insight into the importance of adequately 

addressing the problem of missing data. Data in NSQIP is manually abstracted directly 

from the EHR by trained personnel. If WBC values are entirely missing in the NSQIP file, 

it is most likely that the cause of missingness is lack of collection (i.e. there was no need 

to measure it). However, in our experiment, we have not fully explored the characteristics 

of missingness in the NSQIP dataset.  This will be addressed in future work. 

The NSQIP population in this experiment had some patients with primary providers 

who utilized a different EHR from the one used for manual data extraction and entry into 

the NSQIP database. In general, the EHR for the institution enrolled in the NSQIP database 

includes all pre-, intra-, and post-operative data on included patients. However, there are 

examples where the surgeon’s outpatient EHR or the patient’s primary care provider’s 

EHR differs from the EHR of NSQIP-enrolled institution.  This is relevant to our present 

study of missing data, since preoperative data as well as post-operative complication data 

may be recorded in a database to which the trained manual abstractors do not have access. 

In our study, the EHR for the surgeon remained the same as the NSQIP-enrolled 

institutional EHR.  However, the EHR for the primary care provider often differed 

(approximately 50% of cases). Patients with primary care providers who utilize a different 

outpatient EHR (compared to the NSQIP-enrolled institution’s EHR) might have some 



 

 50 

relevant data within the postoperative window missing after discharge from the hospital. 

We did not exclude/censor these patients. In addition, a subset of SSIs in our study were 

noted in the ICU or acute care (i.e., inpatient) setting. Some SSIs, most notably superficial 

SSI, can occur as wound infections in the outpatient and ambulatory settings after the index 

stay. Others, namely, deep and organ space SSI can be typically discovered during the 

index inpatient stay.  However, some occur after discharge.  These SSIs often require 

readmission and further inpatient treatment. Therefore, missing data after discharge could 

be an important potential limitation to applying our approach more widely. Actually, 5% 

of SSI cases in our cohort are those patients with SSIs who have no data collected.  

Presumably, these patients were both seen and treated at clinics that utilized a different 

EHR from the NSQIP-enrolled institutional EHR. 

As introduced in section 2.1, our dataset was divided into a training set and a test 

set by calendar year rather than randomly sampling, since we are interested in investigating 

how robust the models are in face of institutional changes at a relatively short time horizon. 

It is inevitable that due to institutional changes the model performance will drift. With 

every passing year the model’s performance can decrease. At some point in the future, the 

model will have to be recalibrated or outright reconstructed. It is undesirable to have to 

rebuild a model every year. Our method of dividing the data set by year allows us to assess 

how resilient the models are to such institutional changes. 

The application of EHR data in surveillance continues to be an issue of importance 

in the informatics and quality literature. Though the main purpose of our work is to 

accelerate the manual process of NSQIP data collection, EHR data could be used to help 
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surveillance as well. At this point, we do not believe that we can entirely rely on the EHR 

since a number of challenges remain.  These include the real-time availability of EHR data, 

the heterogeneity of EHR systems utilized by different providers treating the patients 

enrolled in the NSQIP database, and the variability of signals for event detection. 

The relative infrequent nature of these events is part of the challenge with event 

detection. When events (e.g., myocardial infarction) are relatively rare, the imbalanced 

nature of the data could be a large part of the challenge. Possible solutions to deal with this 

challenge when investigating more adverse (and thankfully rarer) events will be explored 

in future work.  

4.10 Conclusions  

In summary, we found models with imputation perform almost always better than 

models that discarded patient records with missing values. However, the optimal choice of 

imputation method is not clear. Data characteristics and data collection variation all affect 

the performance of imputation methods. If the test and training datasets have similar 

characteristics in terms of missing values, the use of bias-correcting dummy variables can 

be advantageous; if the characteristics differ, the estimated bias will be incorrect and can 

be similar in magnitude to the bias caused by the missing value they try to correct for, 

which is what happened in the present study.  Similarly, if variables present in the dataset, 

such as “patient type” can take on the role of correcting for the bias, then dummy variables 

may not be necessary. 

If it is guaranteed that test datasets have the same missing value biases as training 

or evaluation datasets, then the use of bias-correcting dummy variables can be 
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advantageous. Similarly, MICE is advantageous only if the structure of the training dataset 

is similar to the structure of the test dataset.  In our example, increased lab result collection 

created significant differences between the training and test datasets, rendering MICE only 

marginally useful.  In our experiments, we found that imputing the mean of the non-SSI 

cases was successful in reducing the bias introduced by the fact that missing labs and vitals 

were suggestive of the lack of SSI event.  
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Chapter 5 Detection of postoperative complications using 

multi-task learning methods 

5.1 Introduction 

In this study, our aim is to build an automated platform for postoperative 

complications detection based on structured EHR data by using robust modeling techniques. 

Included in this analysis are the main postoperative complications of three subtypes of SSI 

(superficial, deep, and organ space), pneumonia, UTI, sepsis, and septic shock. We 

hypothesized that EHR data would include significant indicators and signals of 

postoperative complications and that sophisticated machine learning methods might be 

able to extract these signals, accelerating the Manual Chart Review (MCR) process of these 

adverse events. Compared with the gold standard MCR process, automated application has 

potential advantages. First, MCR lacks inter-rater reliability, while an automated 

abstraction system would provide an objective and consistent reporting protocol that can 

be applied across multiple medical institutions. Second, a successful automated abstraction 

system would allow for expansion to include other procedures where postoperative 

surveillance is not being performed currently.  

Specifically, we explore several methods for developing postoperative 

complication detection models. The most straightforward way to detect each type of 

complications is to build an independent classifier for each of them, which could be viewed 

as single-task learning, where detecting each complication is a task. As shown in Figure 

5-1, more than on surgical adverse event may happen on patients the same time. Among 
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all patients in population, 31 patients have organ space SSI and sepsis together. When tasks 

are known to share similar features, we expect the resultant models to be similar. Learning 

models for these tasks together allows us to introduce inductive bias to make the resultant 

models similar, providing us with more robust models. Learning models for related tasks 

together is referred to as multi-task learning. For example, when our task is to identify a 

particular SSI subtype, a related task can be to detect any SSI (overall SSI). With an overall 

SSI model in hand, identifying a particular SSI subtype is easier, because the classifier only 

needs to learn the difference between overall SSI and the particular SSI subtype, rather 

than the difference between the SSI subtype and any other complication. 

In this work, we compare six methods for developing post-operative complications 

detection models. First we have single task learning, where predicting each complication 

is an independent task. We also explore five different methods for multi-task learning, 

assessing their value in improving the detection performance. 
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Figure 5-1.  A hierarchical structure among postoperative complications 
 

In our application, we have a hierarchy of tasks as shown in Figure 5-2. The first 

task is to distinguish patients with infection from those without. Next we distinguish among 

the various kinds of infections and finally, if the patient happens to have SSI, we distinguish 

among the three types of SSI. We assume that many infections share some characteristics 

that other diseases do not; and we further assume that many types of SSI share some 

characteristics that non-SSI infections do not. Our hypothesis is that by making a task-
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similarity hierarchy available to the multi-task learning methods as domain knowledge, 

they can utilize these information towards building more robust and better performing 

detection models. 

 

 
 
Figure 5-2.  A hierarchical structure among postoperative adverse events 
 

5.2 Data collection and preprocessing 

We first identified surgical patients from 2011 to 2014 who had been selected for 

inclusion into the NSQIP. Clinical data for the identified patients were extracted from our 

CDR and their postoperative complication outcomes were retrieved from the NSQIP 

registry. The dataset was divided into training set (first 2.5 years) for model development 

and test set (last 1.5 years) for evaluation. The occurrences of postoperative complications 

in both training and test set are shown in Table 5-1. Overall SSI included any type of SSI.  

Table 5-1.  Postoperative complications distribution in training and test set 
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 All 
Complica
-tions 

Super-
ficial 
SSI 

Deep 
SSI 

Organ 
Space 
SSI 

Overall 
SSI Pneu

monia UTI Sepsis 
Septic 
Shock 

All  
Observa
-tions 

Training 
set 571 168 76 105 336 124 140 115 34 5280 

Test  
set 279 59 26 73 157 48 76 30 17 3629 

 

Data preprocessing generally included data cleaning and missing data imputation. 

Our previous work on missing data imputation methods suggests that filling in the average 

value of patients without complications (normal value) in the training set and the test set 

introduces the least bias17. Accordingly, in this research, we chose to follow this 

imputation method. 

For longitudinal lab results and vital records, we used aggregated features. We 

included the most recent value before the operation as the baseline, and the extreme and 

mean values from day 3 to day 30 after the operation during follow-up. We assembled a 

list of relevant antibiotics for each specific outcome, and extracted different classes of 

antibiotics as features. For relevant orders, procedures, and diagnosis codes, binary 

variables were created to denote if they were assigned to a patient. Additionally, we not 

only considered whether a microbiology test was ordered or not, but also looked at the 

specific bacterial morphological types (e.g. gram positive rods, gram negative cocci). Two 

binary features were built for each test to represent a culture placed or not and a 

positive/negative result, separately.  

5.3 Methods 

After data collection and preprocessing, the six modeling techniques were applied.  
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When building our detection models, we face three key challenges. The first one is 

the skewed class distribution.  A mere 10% of patients in the training set have any 

complications and some complications, like septic shock, occur in only .6% (half a percent) 

of the patients. The second challenge is the small sample size. Some complications, like 

septic shock, only have 34 observations in the training and 17 in the test set. While our 

problem does not appear particularly high dimensional, for these rare complications, the 

number of predictors (approx. 200) exceeds the number of samples. The third challenge is 

the heterogeneity of the outcomes. We have 9 outcomes, each having their own specific 

characteristics and there are also variations among patients who do not have any 

complications. A successful detection algorithm has to address some of these challenges. 

Below, we explain each of the six methods and describe which of the above 

challenges they address. 

5.3.1 Hierarchical Classification  

Let us consider the hierarchical structure among surgical patients as shown in 

Figure 5-2. All tasks are divided into three levels and models are constructed in a top-

down fashion. The top-most task identifies patients with any postoperative complication. 

Next, in patients who are predicted to have complications, a 2nd level task is carried out to 

distinguish between SSI, pneumonia, UTI, sepsis, and septic shock. If a patient is predicted 

to have SSI, a further 3rd level task is also carried out to identify the SSI type: superficial, 

deep, and organ space SSI. Each task utilizes Lasso-penalized logistic regression. When 

more than two classes are possible, the one-vs-all approach is used to break a multi-class 

classification into a set of binary classifications.  
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As the method progresses from the top towards the bottom of the hierarchy, it 

gradually focuses on subpopulations that are enriched in the outcome of interest. This 

addresses heterogeneity by explicitly ignoring patients without indication of the outcome 

and also addresses the skewed class distribution. The adoption of LASSO model can 

overcome the problem of small sample size.  

5.3.2 Offset Method 

Similar to the hierarchical method, the classifiers for different tasks are built in a 

top-down fashion. For the top level task (i.e. complication classifier), a LASSO logistic 

regression classifier is built directly. For the lower-level tasks, we essentially model the 

difference between the parent and the child task. For example, the deep SSI classifier 

models the difference between overall SSI and deep SSI. This is achieved through 

penalizing the child model against the parent model: the predictions from the parent model 

are included as an offset term (a term with fixed coefficient of 1) in the child model, which 

is a LASSO logistic regression classifier. Due to the Lasso penalty, variables that have the 

same effect in the parent and child model will have a coefficient of 0; and conversely, 

variables that have non-zero coefficient are the variables in which the parent and child tasks 

differ. The method addresses the challenge of small sample size in two ways. First, in 

contrast to method 2, it uses the entire population at each level, thus the problem does not 

become overly high dimensional. Also the offset biases the child classifier towards the 

parent model. This method only offers limited ability to address heterogeneity. 

Figure 5-3 shows the mechanism of the offset method. Suppose we have 

hierarchical tasks r, s, and t, respectively; task r and s are the parent tasks of task s and t, 
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respectively; p is the number of features; N is the number of sample size; y",$, y%,$, y&,$ 

denote the gold standard of the task r, s, and t for a given subject i, respectively. From 

Figure 5-3, the estimation of the child model is dependent on the parent model. 

 

 

Figure 5-3. Mechanism of offset method. 
 

For the top level task r, the model below estimates the probability of a given 

subject, i, having the event: 

  '(,) = +,-./01(3)
45()    (Eq. 5-1) 

 

To estimate 7(, we need solve the optimization problem below: 

argmin
5>∈ℝ

A
+ 5( + C 5( 	   (Eq. 5-2) 

where + 5(  is the negative log likelihood function defined below: 

+ 5( = −
1

F
['(,) 3)

45( − log	(1 + K3L
M5>)]F

)O1   (Eq. 5-3) 

and C 5(  is the lasso regulation term, 

C 5( = P 5( 1 = P |7(,R|
S
RO1    (Eq. 5-4) 

where P is a tuning parameter which is estimated by cross validation. 
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For the secondary level task s, the model below estimates the probability of a 

given subject, i, having the event: 

 'T,) = +,-./01(3)
45T + +,-./('(,)))   (Eq. 5-5) 

To estimate 5T, we need solve the optimization problem below: 

argmin
5U∈ℝ

A
+′ 5T + C 5T    (Eq. 5-6) 

where +′(5T) is the negative log likelihood function defined below: 

+′(5T) = −
1

F
['T,) 3)

45T + +,-./('(,)) − log	(1 + K3L
M5UWXYZ)[(\>,L))]F

)O1  (Eq. 5-7) 

C 5T  is the same lasso regulation term as the parent model, 

For the tertiary level task t, the model below estimates the probability of a given 

subject, i, having the event: 

'[,) = +,-./01(3)
45[ + +,-./('T,))))   (Eq. 5-8) 

To estimate 5[, we need solve the optimization problem below: 

argmin
5]∈ℝ

A
+" 5[ + C 5[    (Eq. 5-9) 

where l′′(β&) is the negative log likelihood function defined below: 

+" 5[ = −
1

F
['[,) 3)

45[ + +,-./('T,)) − log	(1 + K3L
M5]WXYZ)[(\U,L))]F

)O1  (Eq. 5-10) 

C 5[  is the same lasso regulation term as the parent model.  

5.3.3 Propensity weighted observation  

 The propensity weighted observations method also builds classifiers from the top 

level to the bottom level. The classifier of the top-level task, the complication classifier, is 

LASSO-penalized logistic regression (same as all of the previous methods). The classifiers 

for the second level task are built on the entire population, however, the observations 
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(patients) are weighted by their propensity of having a complication. The propensity is 

obtained from the higher-level (complication) classifier. Patients, who are likely to have a 

complication receive a relatively large weight, while patients who are unlikely to have a 

complication receive a small weight. Therefore, patients with complication contribute more 

to the 2nd level classifiers than those who are unlikely to have complications.  Similarly, 

the 3rd level classifiers, which distinguish between the three kinds of SSI, are also built on 

the entire population. The weights of the patients are their propensity of having SSI, thus 

the patients who likely have SSI contribute more to these classifiers than patients who are 

unlikely to have SSI. Similarly, to the offset method, the PWO method uses the entire 

population, but by applying weights, it reduces outcome heterogeneity (patients with 

unrelated complications receive small weights) and reduces the skew of the class 

distribution by enriching the training set with patients having the outcome of interest (these 

patients receive high weights). 

Figure 5-4 shows the mechanism of the propensity weighted method. Suppose we 

have hierarchical tasks r, s, and t, respectively; task r and s are the parent tasks of task s 

and t, respectively; p is the number of features; N is the number of sample size; y",$, y%,$, 

y&,$ denote the gold standard of the task r, s, and t for a given subject i, respectively. The 

estimation of the child model in Figure 5-4 is actually dependent on the parent model. 
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Figure 5-4. Mechanism of propensity weighted method. 
 

For the top level task r, the model below estimates the probability of a given 

subject, i, having the event: 

  '(,) = +,-./01(3)
45()    (Eq. 5-11) 

 

To estimate 7(, we need solve the optimization problem below: 

argmin
5>∈ℝ

A
+ 5( + C 5( 	   (Eq. 5-12) 

where + 5(  is the negative log likelihood function defined below: 

+ 5( = −
1

F
['(,) 3)

45( − log	(1 + K3L
M5>)]F

)O1   (Eq. 5-13) 

and C 5(  is the lasso regulation term, 

C 5( = P 5( 1 = P |7(,R|
S
RO1    (Eq. 5-14) 

where P is a tuning parameter which is estimated by cross validation. 

For the secondary level task s, the model below estimates the probability of a 

given subject, i, having the event: 

'T,) = +,-./01(3)
45T)    (Eq. 5-15) 

To estimate 5T, we need solve the optimization problem below: 
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argmin
5U∈ℝ

A
+′ 5T + C 5T    (Eq. 5-16) 

where +′(5T) is the propensity weighted negative log likelihood function defined below: 

+′(7T) = −
1

F
'(,)['T,) 3)

45T − log	(1 + K3L
M5U)]F

)O1 	  (Eq. 5-17) 

C 5T  is the same lasso regulation term as the parent model. 

For the tertiary level task t, the model below estimates the probability of a given 

subject, i, having the event: 

'[,) = +,-./01(3)
45[)    (Eq. 5-18) 

To estimate 5[, we need solve the optimization problem below: 

argmin
5]∈ℝ

A
+" 5[ + C 5[    (Eq. 5-19) 

where +′′(5[) is the negative log likelihood function defined below: 

+" 5[ = −
1

F
'T,)['[,) 3)

45[ − log	(1 + K3L
M5])]F

)O1  (Eq. 5-20) 

C 5[  is the same lasso regulation term as the parent model. 

5.3.4 Multi-task learning with penalties 

Unlike the previous methods, the objective of multi-task learning with penalty 

(MTLP) method is to learn the regression coefficients 5[ for all tasks simultaneously. In 

the MTLP method, we assume that the parent task and its child tasks share some features 

and the respective models should have similar coefficients for those features. Similarly, to 

the offset method, this similarity is enforced through penalizing the child model against the 

parent model. Unlike the offset method, which builds models in a top-down manner, MTLP 

builds all models simultaneously. Specifically, the objective function is 
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	`C-a.b
{d]∈ℝ

e}

+ 7[ + C1 7XghgX_j + Cj 7XghgX_k 																																							(Eq.	5-21)	

It consists of three parts, the negative log likelihood of logistic regression, l β& , and two 

regularization terms,  r1 β&  and rj β& , as shown below. 

l β& = −
1

r∙tu
y&,$ ∙ x&,$

r β& − log 1 + exu,y
z {utu

$O1
r
&O1                            (Eq. 5-22) 

r1 β& = λ1 β}~�~}1	ÄÅ"~Ç&	&Å%É − β}~�~}j	ÑÖ$}Ü"~Ç	&Å%É%                            (Eq. 5-23) 

rj β& = λj β}~�~}j	ÄÅ"~Ç&	&Å%É − β}~�~}k	ÑÖ$}Ü"~Ç	&Å%É%                             (Eq. 5-24) 

where T and Nt are the number of tasks and training set for each task, respectively; xt,i and 

yt,i are the feature vector and the label for the subject i in task t, respectively; 5[ is the 

coefficient vector for the task t. The two regularization terms, C1 5[  and Cj 5[ , restrict 

the difference in coefficients between the level 1 parent task and its level 2 child tasks; and 

the difference between the level 2 parent task and its level 3 child tasks, respectively. 

Penalizing the difference between the parent and child models make them similar. The 

MTLP method addresses heterogeneity by explicitly making the parent and child models 

similar, thereby essentially only modeling the difference between them; and it addresses 

the small sample size through the use of the entire population and regularization.  

 

5.3.5 Partial least squares regression  

As with the MTLP method, partial least squares (PLS) regression models all tasks 

simultaneously. PLS regression is similar to principal components regression in the sense 

that both methods reduce the dimension of input data by projecting the outcomes and 

predictors into new spaces and then build regression models in those new spaces. PLS 
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differs from MTLP in that the task hierarchy is not explicitly given to the fitting algorithm; 

the algorithm has to autonomously learn the relationships among the tasks. The table below 

shows the algorithm of the PLS. 

 

Table 5.2. PLS Algorithm 

1. Standardize each	áR to have mean zero and variance one. Set à(â) = '×ãbKåç×1, 

and 3R
(â)

= 3R, é = 1,… , ê. 

Note: p is the number of original predictors; n is the number of observations; 3R	is all 

the n observations of the jth predictor. 

2. For a = 1,2, … , ê 

(a) ëí = ìíR3R
(í01)S

RO1 , where ìíR =< 3R
(í01)

, à >. 

(b) ñí =
óëò,àô

óëò,ëòô
	. 

(c) à í = à í01 + ñíëí. 

(d) Orthogonalize each 3R
(í) with respect to ëí: 3R

(í)
= 3R

(í01)
−

óëò,3õ
úùû

ô

óëò,ëòô
ëí. 

3. Output the sequence of fitted vectors à í
1

S
. Since the ëX 1í are linear in the 

original 3R, so is à(í) = ü5SXT(a). These linear coefficients can be recovered from 

the sequence of PLS transformations. 

 

5.4 Evaluation 

 Outcomes based on MCR from ACS-NSQIP were used as gold standard to be 
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compared with the results of postoperative complication detection models. The evaluation 

metric is area under the curve (AUC), which is commonly used to compare detection 

models. The range for AUC is between .5 and 1, .5 indicating a random model and 1 

indicating perfect discrimination among the outcomes. We report the cross-validated AUC 

on the training set. To assess the variability of the detection performances on the test, 

bootstrap replication was applied and the 95% (empirical) confidential interval (CI) and 

mean AUC scores are reported, as well. Since all methods were evaluated on the same 

bootstrap samples, paired t-test was used to compare each pair of methods and assess the 

statistical significance of the observed differences in performance.  

5.5 Results  

5.5.1 Evaluation results of six detection methods 

Figure 5-5 depicts the performances of the six methods. Each plot in Figure 2 

corresponds to a task (complication) and each column in each plot corresponds to a method. 

Methods are numbered in the same order as they appear in the Methods section: #1 

corresponds to Single-task, #2 to Hierarchical, #3 to Offset, #4 to Propensity Weighted 

Observations (PWO), #5 to Multi-Task Learning with Penalty (MTLP), and #6 

corresponds to Partial Least Squares (PLS). The vertical axis is AUC. For each method, 

the mean AUC (across the bootstrapped test samples) is represented by a disk and lines 

extending out of the disk correspond to the 95% CI.  

To assess the statistical difference between some of the methods, in Table 5-3, we 

show the results of pairwise (paired) t-tests among the various methods. The rows of the 

table correspond to tasks, the columns to a comparison between two methods. Each cell 
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contains a number, which indicates which method has a significantly better performance 

and we also provide the p-value in brackets. ‘NS’ means ‘not significant’. The methods are 

numbered in the same way as above. 

For the detection of all complications, Single-task, Hierarchical, Offset, PWO, and 

MTLP have the same good performance, and are significantly better than PLS. To detect 

superficial SSI, Offset and PWO have virtually identical performance (difference is not 

significant) and they perform significantly better than the other four methods. PWO 

performs best for detecting deep SSI and overall SSI. Single-task, PWO, and MTLP all 

perform similarly (no statistically significant difference) in detecting organ space SSI but 

perform significantly better than the other methods. To detect pneumonia and UTI, Single-

task and MTLP are not significantly different from each other but are significantly better 

than other four methods. Single-task, PWO, and MTLP are the top three in detecting sepsis 

and PWO is also the best method for detecting septic shock. In general, PWO is the best 

method for detecting most complications. Single-task and MTLP are close seconds (and 

they have virtually identical performance) and PLS is the method with the worst overall 

performance. 

Detailed information about the performance of the methods is depicted in Figure 

5-5 and the statistical significance of the pairwise comparisons between the various 

methods is shown in Table 5-3. 
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Figure 5-5.  Detection performance of six models for all nine tasks, showing the mean 
and 95% CI
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Table 5-3.  Paired t-test results to compare different methods 

 
 Method 1 vs. 2 Method 1 vs.  3 Method 1 vs. 4 Method 1 vs. 5 Method 2 vs. 3 

Superficial SSI 2 (<2.2e-16) 3 (<2.2e-16) 4 (<2.2e-16) NS 3 (=1.533e-14) 
Deep SSI 1 (< 2.2e-16) 1 ( = 5.073e-07) 4 (< 9.285e-10) NS 3 (< 2.2e-16) 
Organ Space SSI 1 (< 2.2e-16) 1 (< 2.2e-16) NS NS 3 (< 2.2e-16) 
Overall SSI 1 (< 2.2e-16) 1 (< 2.011e-13) 4 (< 3.572e-15) NS 3 (< 2.2e-16) 
Pneumonia 1 (< 2.2e-16) 1 (< 2.2e-16) 1 (=2.353e-8) NS 2 (< 2.2e-16) 
UTI 1 (< 2.2e-16) 1 (< 2.2e-16) 1 (< 2.2e-16) NS 2 (< 2.2e-16) 
Sepsis 1 (< 2.2e-16) 1 (< 2.2e-16) NS NS 2 ( < 2.2e-16) 
Septic Shock NS 1 (< 2.2e-16) 4 (<1.671e-12) NS 2 ( < 2.2e-16) 

 
 Method 2 vs. 4 Method 2 vs. 5 Method 3 vs. 4 Method 3 vs. 5 Method 4 vs. 5 
Superficial SSI 4 (< 5.879e-16) 2 (< 2.2e-16) 3 (=0.001203) 3 (< 2.2e-16) 4 (< 2.2e-16) 
Deep SSI 4 (< 2.2e-16) 5 (< 2.2e-16) 4 (= 1.151e-14) 5 (= 5.073e-07) 4 (= 9.285e-10) 
Organ Space SSI 4 (< 2.2e-16) 5 (< 2.2e-16) 4 (< 2.2e-16) 5 (< 2.2e-16) NS 
Overall SSI 4 (= 1.607e-14) 5 ( < 2.2e-16) 3 (= 0.02337) 3 ( = 2.011e-13) 4 (< 3.572e-15) 
Pneumonia 4 (<2.2e-16) 5 (< 2.2e-16) 4 (< 2.2e-16) 5 (< 2.2e-16) 5 (= 2.353e-8) 
UTI 4 (=1.607e-14) 5 (< 2.2e-16) 4 (< 2.2e-16) 5 (< 2.2e-16) 5 (< 2.2e-16) 
Sepsis 4 (<2.2e-16) 5 (< 2.2e-16) 4 (< 2.2e-16) 5 (< 2.2e-16) NS 
Septic Shock 4 (<2.2e-16) NS 4 (< 2.2e-16) NS 4 (< 2.2e-16) 
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5.5.2 Significant variables selected  

Lasso-penalized regression performs automatic feature selection. In Table 5-4, we 

provide a list of the most important features selected by the model that aims to identify 

whether a patient has a complication. This model is common across most methods. Due to 

space limitation, we cannot provide a list for all methods and all complications. Below we 

provide some examples of features selected by the best performing method for each of the 

complications. 

Superficial SSI detection model based on Offset and Propensity Weighted 

Observations methods selected antibiotic use, gram stain ordered, and the ICD_9 code of 

SSI.  

Besides diagnosis codes, antibiotics use, gram stain culture, deep SSI detection 

model based on PWO selected more features from laboratory results (mean value of 

creatinine and maximum value of WBC) and two more microbiology tests (tissue and 

wound culture).  

Organ space SSI models based on Single-task, PWO, and MTLP methods have 

quite similar detection performance and important variables. The selected variables include 

four features of bacteria type (streptococcus, gram positive cocci, enterococcus, and 

escherichia. coli), three microbiology cultures (abscess and fluid culture), and the imaging 

orders of treatment. Interestingly, the diagnosis code of sepsis and imaging orders of sepsis 

treatment are selected as well. These can be explained by the fact that there are over 30 

patients in our cohort have sepsis and organ space SSI together.  
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Table 5-4.  Selected important variables for all complications and their descriptions   

Category Name  Description 

 In/Out patient Inpatient or outpatient surgery  

Diagnosis code ICD_9 code: 998.59 and 

997.32 

Diagnosis code of postoperative SSI and 

pneumonia 

Microbiology test order 

 

Abscess culture 

Blood culture 

Gram stain culture 

Sputum culture 

Urine culture  

These are binary features to indicate if 

such microbiology test ordered or not 

during day 3 to day 30 after operation.  

Microbiology test result 

 

Escherichia. Coli     

Staphylococcus        

 

These are binary features to indicate if 

the type of bacteria is positive or not no 

matter in which kind of microbiology 

test during day 3 to day 30 after 

operation.  

Antibiotic use Antibiotic_Superficial_SSI 

Antibiotic_Pneumonia 

Antibiotic_UTI 

They are binary features to indicate if 

antibiotics is placed to patients during 

day 3 to day 30 after operation. 

Laboratory results Measurement_CR 

Measurement_PLT 

Measurement_PREALAB 

Measurement_WBCU 

The number of measurements for 

creatinine, platelet count test, 

prealbumin, and urine white blood cells 

(WBCU).  

 

Overall SSI detection models based on weighted observation and offset methods 

perform with no significant difference. The important variables selected are antibiotic use 

(UTI, superficial and deep SSI), microbiology cultures (abscess, fluid, and wound culture, 
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and the gram stain test), two types of bacteria (escherichia. coli and staphylococcus) and 

two relevant order features (imaging orders for diagnosis and procedures of treatment).  

Besides the diagnosis code and antibiotic use, pneumonia models based on Single-

task and MTLP include two features from microbiology test (bronchial and sputum 

culture), one binary feature of image-guided diagnosis orders, and two aggregate features 

from lab tests (the mean value of PCAL and PH). 

UTI models based on Single-task and MTLP selected diagnosis codes (for UTI), 

antibiotic use, placement of urine culture, and two bacteria types (proteus and escherichia. 

coli).  

For sepsis models, the top performing methods, Single-task, PWO, and MTLP, 

selected features including antibiotic use, microbiology cultures (abscess, blood, fluid, and 

urine culture, and the gram stain), two bacterial types (enterococcus and escherichia. coli), 

and the image guided orders of treatment.  

For septic shock detection, most models only selected diagnosis codes. However, 

PWO included more variables, such as laboratory tests (maximum value of partial 

thromboplastic time, PH, mean value of lactate), bacteria types (stenotrophomonas and 

staphylococcus) and the tracheal culture.  

5.6 Discussion  

Manual chart review for post-operative complications is very resource intensive. In 

this work, we examined whether EHR-based state-of-the-art predictive modeling 

approaches can learn characteristics of various types of complications and subsequently 

detect them reliably. With detection performances (measured as AUC) exceeding 0.8 for 
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all complications and even 0.9 for some complications, the answer is affirmative: machine 

learning detection models definitely have the potential to help detect post-operative 

complications automatically. The question is which modeling approach is best suited for 

this application. 

Post-operative complications are heterogeneous; they cover a wide-range of 

conditions, each having their own diagnostic methods, diagnoses codes, laboratory tests, 

and diagnostic and therapeutic procedures. They can be organized into a hierarchy and 

complications on the same level of the hierarchy are more similar to each other than to 

complications on a higher level of the hierarchy. Multi-task learning methods have the 

ability to exploit such similarities towards achieving better detection performance and more 

stable models even when the sample sizes are small. 

We compared six approaches to building post-complication detection models. One 

of them was single-task learning, where we build independent models for each task; four 

methods were multi-task learning methods that can utilize the hierarchy of complications; 

and finally, we also utilized Partial Least Squares (PLS), which can simultaneously model 

multiple outcomes, but it tries to autonomously detect the relationship among the outcomes. 

PLS thus stands in sharp contrast with the other multi-task learning methods, as PLS 

automatically infers the relationships among the complications, while the other multi-task 

learning methods receive this information from an expert. 

We found PLS to have the overall worst performance. This is not surprising, since 

PLS receives less information than the other multi-task learning methods. We expect PLS 

to bias the models based on the relationships among the outcomes, but we do provide it 
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with these relationships. If PLS infers the relationships among outcomes incorrectly, it will 

bias the models incorrectly, eroding detection performance. With some of the 

complications having small sample sizes, it is unsurprising the PLS failed to infer the 

correct relationships. If we had substantially more samples, PLS could have inferred the 

relationship among complications possibly better than what the expert can provide, but our 

sample size, albeit relatively large, was insufficient for this purpose. Single task learning 

managed to (significantly) outperform PLS, because we did not “force” it to bias the 

models beyond applying Lasso-penalty which is virtually mandatory given our sample 

sizes for some of the complications. 

Hierarchical modeling also had disappointing performance. The essence of 

hierarchical modeling is to build classifiers in a subpopulation that is greatly enriched in 

the outcome of interest. For example, distinguishing among the three types of SSI is easier 

in a subpopulation of SSI patients than it is in the general population. The performance of 

the method did not live up to our expectation for two reasons. First, while these outcomes 

are rare (deep SSI occurred in 76 patients out of 5280), they still occur in sufficient numbers 

for a Lasso-penalized logistic regression model. The second reason concerns the way the 

subpopulations were constructed. If the higher-level classifier (does this patient has SSI?) 

predicts the patient to be free of SSI, then this patient does not enter the subpopulation and 

the deep SSI detector has no opportunity to learn from this sample. We could have built 

the deep classifier on the true SSI patients (rather than the predicted SSI patients), but then 

the distributions of the training SSI patients (true SSI patients) and the test SSI patients 

(predicted SSI patients) would be different, leading to degraded detection performance. 
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Our results with the Propensity Weighted Observations method tell us that the concept of 

enriching patients with SSI for (say) the deep SSI classifier is valid; the hierarchical method 

simply implemented this concept suboptimally. 

The Propensity Weighted Observations (PWO) method achieved the overall 

highest performance with a margin that is statistically significant. PWO is closely related 

to the hierarchical method in that it enriches the training sample with patients who have 

the outcome of interest. In contrast to the hierarchical method, it achieves this enrichment 

through constructing a new sample, which is a propensity weighted version of the original 

population. For example, to identify patients with deep SSI, PWO uses the entire 

population, but patients with high propensity for SSI receive high weight and patients with 

low propensity for SSI receive low weight. The hierarchical method is a binary version of 

PWO, where the weights are either 0 or 1. Having the propensity weighted population 

removes the problem of excluding patients based on an incorrect prediction. Suppose our 

SSI classifier misclassifies a deep SSI patient as not having SSI. This patient will still be 

included in the training set for the deep SSI classifier; this observation will receive a 

slightly lower weight. Admittedly, using propensity score weighing for multi-task learning 

is rather unusual; we did not expect this method to perform so well. 

The offset method, like PWO, always uses the entire population for classification. Its 

performance falls short of that of PWO, because its ability to remove heterogeneity is 

limited.  It can bias a child model against the parent model, which helps with small sample 

sizes (it performed well on superficial SSI), but has limited effect on removing the variation 
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in (say) normal patients. PWO is more effective at removing heterogeneity: patients with 

unrelated complications receive a low weight and contribute to the model only minimally. 

MLTP is essentially identical to the offset method, except MLTP optimizes all 

outcomes simultaneously (as opposed to sequentially in a top-down manner). In a top-

down construction scheme, only the parent task can influence the child task; the model 

from the child task cannot influence the parent model. When all tasks are carried out 

simultaneously, the child models can influence the parents, as well.  As a result, MLTP 

was either the best or second best method for almost all rare (<3% of patients) outcomes. 

The caveat of simultaneous optimization is the increased potential for overfitting. Indeed, 

comparing MTLP’s cross-validated AUC scores on training set to those on the test set, 

reveal signs of overfitting. For example, to detect sepsis, it has a very high training AUC 

(>0.96), but the 95% CI of AUC on test set is only (0.8986, 0.9183).  

5.7 Conclusion 

Developing machine learned models to automatically detect post-operative 

complications definitely has the potential to accelerate the manual chart review process. 

We found that multi-task learning, specifically, the propensity weighted observations 

method, statistically significantly outperformed the single-task learning approach. While 

the difference in detection performance was relatively modest (albeit significant), the 

additional cost of implementing this method over the standard single-task learning method 

is minimal. Thus, we would recommend trying both single-task learning and PWO. 

Our application was relatively easy: we had sufficiently many samples for Lasso-

penalized logistic regression to construct a good model even for the most infrequent 
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outcome. In an application, where fewer samples are available or outcome distributions are 

more skewed, we would expect the performance gap between multi-task learning and 

single-task learning to open up, providing a more attractive implementation cost versus 

detection performance proposition for multi-task learning. 

Our future work includes building postoperative complications detection models 

using both structured and unstructured EHR data. We hypothesize that the combination of 

structured and unstructured clinical data would include more significant indicators and 

signals of postoperative complications, and improve the performance of detection. The 

performance of the models with only structured data and that of the models with both 

structured and unstructured data will be compared and evaluated. 
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Chapter 6 Using EHR data and clinical notes to automatically 

detect surgical adverse events 

6.1 Introduction  

To improve the efficiency of surgical adverse events reporting, we have explored 

the feasibility of computerizing the process of retrospective chart review. Our previous 

work was conducted based on only structured EHR data. The purpose of this study was to 

design and evaluate an automatic HAI event detection platform based on both structured 

EHR data and unstructured clinical notes.  

We hypothesized that the combination of structured EHR data and unstructured 

clinical notes with NLP approaches would improve detection performance compared to 

solely using either structured EHR data or unstructured clinical notes.  

6.2 Materials and Methods 

6.2.1 Data collection 

We collected EHR data and clinical notes from the UMN CDR for the surgical 

patients in our cohort along with NSQIP postoperative adverse event outcomes from the 

registry. The patient’s medical record number and date of surgery were used to link CDR 

data to the NSQIP registry. We used data from 2011 onward following implementation of 

the current Enterprise EHR system (Epic systems). Patients without matching records in 

the CDR (22 total, from incorrectly entered medical record numbers in NSQIP) and who 
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opted out of using their EHR data for research research purposes (215 total) were removed 

from the study cohort. 

Unstructured clinical notes include discharge summaries, progress notes, and 

operative notes.  Surgeons and surgical residents at the department of surgery helped 

compile potential keywords which might correspond to each type of adverse event. For 

example, keywords related to the diagnosis and treatment of an SSI include abscess, 

anastomotic leak, or wound dehiscence.  A natural language processing tool, NLP-PIER 

(Natural Language Processing-Patient Information Extraction for Research) developed by 

the natural language processing/information extraction (NLP/IE) program at the University 

of Minnesota enables the free-text and semantic searches in the clinical notes (77). For 

example, searching for the keyword and UMLS concept abscess (i.e., CUI: C0024110) 

generates a list of patients who have this word in the notes with no negation, and detailed 

information about the mention (i.e., note date and the type of notes). Therefore, keywords 

and concepts were extracted from clinical notes and binary features were created to indicate 

the presence or absence of a positive mention of a specific keyword or concept.  

Using Organ Space SSI as an example (Table 6-1), the standard definition used by 

NSQIP is provided. Relevant structured EHR data, and related keywords or concepts were 

searched from clinical notes.
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Table 6-1.  NSQIP Definition for Organ Space SSI, relevant data elements used from EHR data, and keywords or concepts from 

clinical notes 

 
Organ Space SSI is an infection that occurs within 30 days 
after the principal operative procedure. The criteria include: 

 Relevant data elements from EHR database  Relevant keywords / concepts from clinical notes 

AND involves any of the anatomy (e.g., organs or spaces), 
other than the incision, which was opened or manipulated 
during the operation  
AND at least ONE of the following:  

      A. Purulent drainage from a drain that is placed through 
a stab wound into the organ/space. This does not apply to 
drains placed during the principal operative procedure, 
which are continually in place, with continual evidence of 
drainage/infection since the time of the principal operative 
procedure  

      B. Organisms isolated from an aseptically obtained 
culture of fluid or tissue in the organ space  

      C. An abscess or other evidence of infection involving 
the organ/space that is found on direct examination, during 
reoperation, or by histopathologic or radiologic examination  

      D. Diagnosis of an organ/space SSI by a surgeon or 
attending physician 

 (1) Demographics (e.g., age, gender, race) 

(2) Histories (e.g., anemia, diabetes mellitus, BMI, etc.) 

(3) Lab tests (e.g., WBC, HGB, PLT, CR, etc.) 

(4) Microbiological results (blood culture, drainage 
culture, fluid culture, skin culture, tissue culture, wound 
culture) 

(5) Vitals (temperature, heart rate, blood pressure, 
respiratory rate, pain scale) 

(6) Antibiotics (e.g. Amoxicillin, Clindamycin, 
Levofloxacin, Vancomycin, etc.) 

(7) Imaging orders (e.g., CT abdomen, CT chest, X-ray 
colon, CT guided abscess drainage, IR abscess tube check, 
etc.) 

(8) Procedures (e.g., drain care, wound care referral, 
infectious disease referral, etc.) 

(9) Diagnosis codes ( 998.59 for ICD-9; K68.11 and T81.4 
for ICD-10 ) 

 Abscess, Anastomotic dehiscence, 

Anastomotic leak, Cellulitis/cellulitic, 

Cloudy, Dehiscence, Demarcated/demarcation, 

Drain care, 

Drainage, Drain placement, Dressing/dressing 

change, Empyema, Erythema, Evisceration, 

Extraluminal, Extravasation, Fistula, Foul-

smelling, Hartmann's blowout, 

Induration/Indurated, Infected/infection, Intra-

abdominal abscess IV Antibiotics, Joint abscess, 

Leak, Interventional radiology, Malodorous, 

Murky, Open wound, Packing/packing change, 

Pelvic abscess, Pelvic collection, Pelvic sepsis, 

Phlegmon, Presacral abscess, Purulent, Rectal 

stump blowout, Presacral abscess, Rim 

enhancing, Wet to dry, Wound dehiscence, 

Wound infection, Wound packing, Vac dressing 
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6.2.2 Data analysis 

Data for analysis from the EHR and NSQIP were integrated into our database with 

NSQIP outcomes used as the gold-standard. The whole dataset was divided by calendar 

year rather than random sampling with the most recent events closer to our target 

(understanding that our models would be used to detect future events). Data from 2011 to 

2013 were used as training set for model development and 2014 to 2015 data were used to 

test detection performance. Since the input features were high-dimensional and the data 

matrix was sparse, LASSO regression method was adopted for modeling since this type of 

analysis could automatically select the most important features for an adverse event. The 

performance of our models is provided via a receiver operating characteristic (ROC) curve. 

Evaluation metrics used in this study are the AUC score, sensitivity and specificity for a 

particular threshold. In this case, Youden’s index was used to maximum both sensitivity 

and specificity. To test the significance between different models, 95% CIs were calculated 

by performing a 1,000 replications of the Bootstrap procedure in R version 3.3.3 (2017-03-

06). 

6.3 Results 

The mean AUC score and the 95% CI were calculated. Figure 6-1 summarizes the 

mean AUC and corresponding 95% CI of each model for every HAI event. Generally 

speaking, AUC sores are quite promising. When 95% CIs of two models do not overlap, 

there will indeed be a statistically significant difference between the means (at the 0.05 

level of significance). Except for superficial SSI and sepsis, the performance of models 
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based on both EHR data and clinical notes work significant better for other five types of 

HAIs (i.e., Deep SSI, Organ Space SSI, PNA, UTI, Septic Shock).  

 

Figure 6-1. AUC score and 95% CI for HAIs based three different datasets. 
 

For the purposes of this study, we varied the cut-off of the sensitivity and specificity 

to maximize both since cases with and without complications are important. Youden’s 

index was used for finding the optimal cut-off (Table 6-1) (78-79). While statistically 

similar, the model using only EHR data has the highest sensitivity, whereas the model using 

both EHR data and clinical notes and model using only clinical notes was better in terms 

of specificity. 
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Table 6-2.  Using Youden’s index to find the cutoff maximizing both sensitivity and 

specificity for organ space SSI 

  EHR data  Clinical notes EHR and clinical notes 

Sensitivity 0.9628  

(0.9486, 0.9770) 

0.8432 

(0. 8231, 0.8633) 

0.9204 

(0.9063, 0.9345) 

Specificity 0.7636  

(0.7513, 0.7760) 

0.8505 

(0.8356, 0.8654) 

0.8708  

(0.8618, 0.8797) 

 

6.4 Discussion and Conclusion 

Overall, this study demonstrates the feasibility of automated detection of validated 

surgical NSQIP adverse event occurrences for seven HAIs and five non HAIs following 

surgery using EHR data. This report represents one of the most robust and comprehensive 

analyses to date using EHR data and advanced machine-learning models. Compared to 

previous reports, our analyses include all NSQIP surgical patients and a hold out set of two 

years of test data to validate the associated models. Our results demonstrate that automated 

approaches are feasible for adverse event detection and may, at the very least, be an 

effective method for focusing abstraction on patients with a greater chance of an adverse 

event and excluding those with a high probability of no event. While we found that models 

using both EHR data and clinical notes do not always clearly perform better than models 

using only either EHR data or clinical notes, using this combination of data resulted in 

models with statistically similar performance and for several HAIs, performance was 

improved significantly when both data sources were included.  
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Like other diagnostic curves, the ROC curve cut-off can be varied resulting in 

different levels of sensitivity and specificity. We used Youden’s index for this study to 

achieve a high sensitivity and specificity, but this is not the only solution for adjusting the 

associated cut-offs. In this study, still take Organ Space SSI as example, the highest 

specificity is about 0.87 and the corresponding NPV values are higher than 0.99 and very 

close to 1, which means 87% of all true negative cases in our study population could be 

identified and more than 99% of cases detected as negative are true negatives. The 

sensitivities are very high, but the corresponding PPV values are quite low, therefore, with 

true positive cases detected many false positive cases are included as well (one in 10 

positive patients were positive). With over 95% of charts eliminated as negatives, the chart 

review process may be greatly accelerated using this approach. 

In designing this study and its associated evaluation, our dataset was divided into a 

training set and a test set by calendar year rather than randomly sampling, since we are 

interested in investigating how robust our generated models are over time and if there 

would be any degradation of performance over time. It is inevitable that due to institutional 

changes and changes in practice (e.g., change of patient population, distribution of 

procedure, changes in diagnostic studies) the model performance could drift over time. At 

some point in the future, model will likely require recalibration or even outright 

reconstruction. It is undesirable rebuild our model every year. Our method of dividing the 

data set by year allows us to assess how resilient the models are to such temporal changes. 

Although EHR systems were not designed for secondary purposes like research or 

quality improvement, the data generated and stored in the UMN CDR is a good resource 
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for these types of secondary use. Our use of the NLP-PIER information extraction tools 

was lightweight and was not restricted to the specific EHR system used at a medical 

institution. As such, while some minimal preprocessing was required, this work was 

streamlined and robust for the task of surgical adverse event detection.  

The main limitation in this study is that it is conducted at a single site and the results 

of a single teaching hospital with a single type of EHR record may not be generalizable. 

For instance, patient populations, diagnostic and treatment practices, and language used to 

express information about adverse events may vary by site. To test the reproducibility, 

model validation based on other sites and EHR systems is necessary.  

In conclusion, we observed that machine learning methods with EHR data and NLP 

applied to clinical notes for automatic adverse event detection was an effective approach. 

These approaches resulted in good AUC scores and demonstrate very good potential for 

accelerating the manual postoperative complication identification process. Ultimately, we 

anticipate that the maturation of this research will have a positive impact on surgical care 

and surgical quality improvement.  
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Chapter 7 Summary and Future Directions 

7. 1 Summary 

This dissertation explored the automated detection of surgical adverse events 

through machine learned models trained on structured EHR data and clinical notes at the 

University of Minnesota. Four studies were conducted to achieve this overall objective.  

The first study aimed to test the feasibility of this idea using only structured EHR 

data and we limited our outcomes to the three subtypes of surgical site infection (SSI). Our 

SSI detection models achieved high classification accuracy proving the possibility of 

automated detection of surgical adverse events. In the two subsequent studies, we aimed to 

concentrate on the technical challenges posed by EHR data.  

The second study focused on missing data, a common challenge in the secondary 

use of EHR data, and explored several methods for handling missing data. We compared a 

number of commonly-used simple imputation methods and some more advanced methods. 

We found that imputation improved the overall detection performance significantly and 

that some of the simplest imputation methods yielded excellent performance.  

In the third study, we exploited the relationship between the various surgical 

adverse events through multi-task learning. Multi-task learning can capture the common 

aspects of related outcomes, potentially leading to better detection performance. We 

proposed five multi-task learning methods and compared them with the single-task method 
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(as baseline), which simply ignores the relationship among the outcomes. Surprisingly, 

complicated methods didn’t always perform better for all HAIs.  

In our last study, we investigated the use of structured EHR data, clinical notes and 

the combination of these data types. Models using different types of data were compared 

on their detection performance.  

We have successfully demonstrated that with reliably labeled adverse events as a 

gold standard, supervised machine learning methods can be effective for automatic 

detection of surgical adverse events. The best model for each HAI event obtained a very 

good overall detection performance, with very high AUC score. We have also 

demonstrated that detection models can achieve very good performance either with 

structured EHR data alone or with features extracted from clinical notes; but the combined 

use of these two data types improves detection performance significantly.  

7. 2 Future directions 

Given the great results our detection models have achieved, a question naturally 

arises: how can these models help annotators? Though completely automated detection still 

needs more efforts, and it may not even be possible or practical, our models will be able to 

significantly accelerate the manual chart review process in identifying surgical adverse 

events. Researchers in our group have been starting to work on the application prototype. 

For each patient the models can compute the probability of having a particular surgical 

adverse event. By setting two probability cut-offs, patients could be divided into three 

layers: patients definitely presenting with the complication will fall into the top layer 
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(having high predicted probability of the adverse event in question); patients who definitely 

do not have the complication fall into the bottom layer (having very low predicted 

probability); and patients for whom the evidence in either direction was insufficient for a 

confident classification fall into the middle layer. Given that our models have very high 

accuracy in the top and bottom layers, chart reviewers don’t have to review these patients 

and they just need to focus on screening patients in the middle layer. 

In this thesis, we explored several technical challenges, missing data, including 

high-dimensional dataset, and imbalanced distribution. And addition direction that would 

be worth exploring is using more sophisticated approaches (e.g., longitudinal analysis, time 

series analysis) to summarize the repeated lab results and vital signs. Some specific pattern 

related with disease might be recognized and help improve the performance of detection 

model. 

The work described in this thesis shows excellent potential and we see no reason 

why the same concepts could not be applied at other locations, but we acknowledge that 

this is a single-site study, which puts limitations on the generalizability of the findings. 

Further validation using data from other sites is necessary for wider dissertation. It should 

have less trouble to apply the application developed in this study to hospitals using the 

same EHR system (Epic locally used), however, for hospitals using different EHR, some 

mapping or transforming might be needed. 

In conclusion, we lay the technical and conceptual foundation of a system that help 

detect postoperative adverse events from structured EHR data and unstructured clinical 
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notes, which can be used to assist surgical clinical reviewers to extract and document the 

surgical occurrences. Our automated system can accelerate the creation of registry date 

lowering the barrier of entry for providers without sacrificing the high quality. In addition, 

this cost-effective and efficient method can be applied to high sample sizes that enable to 

benefit more surgical patients in term of personalized medicine and other relevant 

applications.   
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