1,878 research outputs found

    VERIFICATION AND DEBUG TECHNIQUES FOR INTEGRATED CIRCUIT DESIGNS

    Get PDF
    Verification and debug of integrated circuits for embedded applications has grown in importance as the complexity in function has increased dramatically over time. Various modeling and debugging techniques have been developed to overcome the overwhelming challenge. This thesis attempts to address verification and debug methods by presenting an accurate C model at the bit and algorithm level coupled with an implemented Hardware Description Language (HDL). Key concepts such as common signal and variable naming conventions are incorporated as well as a stepping function within the implemented HDL. Additionally, a common interface between low-level drivers and C models is presented for early firmware development and system debug. Finally, selfchecking verification is discussed for delivering multiple test cases along with testbench portability

    SW-VHDL Co-Verification Environment Using Open Source Tools

    Get PDF
    The verification of complex digital designs often involves the use of expensive simulators. The present paper proposes an approach to verify a specific family of complex hardware/software systems, whose hardware part, running on an FPGA, communicates with a software counterpart executed on an external processor, such as a user/operator software running on an external PC. The hardware is described in VHDL and the software may be described in any computer language that can be interpreted or compiled into a (Linux) executable file. The presented approach uses open source tools, avoiding expensive license costs and usage restrictions.Unión Europea 68722

    Advances in Architectures and Tools for FPGAs and their Impact on the Design of Complex Systems for Particle Physics

    Get PDF
    The continual improvement of semiconductor technology has provided rapid advancements in device frequency and density. Designers of electronics systems for high-energy physics (HEP) have benefited from these advancements, transitioning many designs from fixed-function ASICs to more flexible FPGA-based platforms. Today’s FPGA devices provide a significantly higher amount of resources than those available during the initial Large Hadron Collider design phase. To take advantage of the capabilities of future FPGAs in the next generation of HEP experiments, designers must not only anticipate further improvements in FPGA hardware, but must also adopt design tools and methodologies that can scale along with that hardware. In this paper, we outline the major trends in FPGA hardware, describe the design challenges these trends will present to developers of HEP electronics, and discuss a range of techniques that can be adopted to overcome these challenges
    corecore