
Advances in Architectures and Tools for FPGAs and their Impact on the Design of
Complex Systems for Particle Physics

Anthony Gregersona, Amin Farmahini-Farahania, William Plishkerb, Zaipeng Xiea,

Katherine Comptona, Shuvra Bhattacharyyab, Michael Schultea

a University of Wisconsin - Madison

b University of Maryland - College Park

{agregerson, farmahinifar, zxie2}@wisc.edu
{plishker, ssb}@umd.edu {compton, schulte}@engr.wisc.edu

Abstract

The continual improvement of semiconductor technology has
provided rapid advancements in device frequency and density.
Designers of electronics systems for high-energy physics (HEP)
have benefited from these advancements, transitioning many de-
signs from fixed-function ASICs to more flexible FPGA-based
platforms. Today’s FPGA devices provide a significantly higher
amount of resources than those available during the initial Large
Hadron Collider design phase. To take advantage of the ca-
pabilities of future FPGAs in the next generation of HEP ex-
periments, designers must not only anticipate further improve-
ments in FPGA hardware, but must also adopt design tools and
methodologies that can scale along with that hardware. In this
paper, we outline the major trends in FPGA hardware, describe
the design challenges these trends will present to developers of
HEP electronics, and discuss a range of techniques that can be
adopted to overcome these challenges.

I. INTRODUCTION

High-energy physics systems have a history of pushing
the boundaries of technology. The electronics in HEP sys-
tems often require extremely high bandwidth and computational
throughput, precise timing, and tight real-time processing con-
straints. These stringent performance specifications historically
demanded the use of custom ASIC solutions [2], because in the
past, programmable hardware such as FPGAs were inadequate
to the task. Although ASICs are capable of achieving the highest
possible performance, they suffer from two major shortcomings
for HEP applications. First, they are very expensive to produce
in low volumes because the costs of fabrication are not well-
amortized. Second, they are rigid, fixed-function devices that
offer very limited flexibility for adjustment to new experimental
parameters or algorithms. Early designers were forced to cope
with these shortcomings, as ASICs were the only technology
capable of meeting key performance requirements of HEP sys-
tems. However, as time has passed, continual advancements in
the semiconductor industry have produced major improvements
in the density and speed of electronics. Consequently, FPGAs
have also improved in capacity and performance. Modern FP-
GAs are able to achieve performance levels suitable for many
HEP applications and provide attractive properties such as re-
programmability and smaller low-volume costs. The result of

these trends has been a rapid adoption of FPGAs in HEP elec-
tronics. A large proportion of the electronics in the Compact
Muon Solenoid Level-1 Trigger, for example, are based on FP-
GAs, and many of the remaining ASICs are scheduled to be
replaced with FPGAs in proposed upgrades [1].

Improvements in FPGA technology are not likely to end
soon. Today’s high-density FPGAs are based on a 40-nm sil-
icon process and already contain an order of magnitude more
logic than the FPGAs available at planning stage of the Large
Hadron Collider’s electronics. 32 and 22 nm silicon process
technologies have already been demonstrated to be feasible;
as FPGAs migrate to these improved technologies their logic
density and performance will continue to increase. With the
next generation of HEP designs, the question has changed from
’When will programmable hardware be good enough to meet
our needs?’ to ’How can we take maximum advantage of the
advancing density and performance of programmable hardware
in our designs?’ The answer to this question is not as simple
as it may seem. Faster, higher-density devices may enable more
complex algorithms, greater functionality, and higher-resolution
processing—but only if the methods of designing, testing, im-
plementing, and verifying these systems adapt to meet the needs
of these new levels of complexity. As devices continue to im-
prove, the importance of using the right combination of tools
and methodologies to enhance developer productivity and create
maintainable designs will become increasingly critical. Relying
solely on established hardware design languages (HDLs) may
not be sufficient to meet the challenges of future system design.
In this paper, we examine recent trends in FPGAs and the impli-
cation these trends have on the adoption of new software tools,
techniques, and methods for the design of HEP systems based
on future generations of FPGAs.

The rest of this paper is organized as follows. In Section II,
we cover the major trends in FPGA hardware. In Section III, we
describe the problem of managing increased design complexity
and describe a series of tools and techniques that can be used to
create scalable design processes. In Section IV, we describe the
effects of FPGA trends on the problem of hardware verification
and debugging and present tools and techniques for managing
this problem. Finally, in Section V, we provide our conclusions
about the impacts of FPGA trends on the future of electronics
design for high-energy physics applications.

617

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44240231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. FPGA HARDWARE TRENDS

We divide FPGA hardware trends into two different cate-
gories: trends in performance and trends in resource capacity.
In this section we examine performance and resource capac-
ity trends for high-end FPGAs from Xilinx over the past ten
years [34, 35, 36, 37, 38, 39, 40]. HEP applications often rely
on cutting-edge technology to meet their stringent requirements.
Therefore, we will present composite data based on the largest
and highest-performance device available from either vendor at
a given point in time.

A. Performance

There are two aspects of FPGA performance that have a
strong impact on HEP designs, maximum operating frequency
and I/O bandwidth.

Operating frequency is directly related to the computational
capabilities of a device. Higher frequencies allow calculations
to be completed faster. This is important because computational
latency is one of the key constraints of many HEP designs. A
graph of the maximum frequency and silicon process technol-
ogy of high-end commercial FPGAs is shown in Fig. 1. Fre-
quency has scaled linearly with time. It is also notable that at
600 MHz, modern FPGAs are still operating at relatively low
frequencies compared to high-end ASIC-based chips, such as
microprocessors. Whereas ASICs have experienced many chal-
lenges in continuing to scale their frequency up, such as power
density concerns and pipeline scaling, FPGAs still have some
headroom before they encounter these problems. As indicated
in the graph, frequency is closely related to the silicon pro-
cess size used to manufacture devices. Smaller processes can
produce transistors with lower latencies (and correspondingly
higher frequencies). As of 2009, high-end FPGAs are being
manufactured on a 40-nm silicon process. Intel has already
demonstrated viable 32-nm and 22-nm processes [3]. There-
fore, we expect that FPGA frequencies will continue to follow
increasing trends through the near future.

Figure 1: Frequency and CMOS process size trends for high-end com-
mercial FPGAs.

A second key performance parameter of FPGA devices is
their total I/O bandwidth. One of the key distinguishing char-
acteristics of particle physics applications are the tremendous

data rates produced by HEP experiments. The electronics in-
volved in triggering, data acquisition, compression, and other
real-time data processing need very high bandwidth to handle
copious amounts of experimental data. Often, the amount of
data that can be processed by each device in these systems is
limited by device bandwidth rather than by logic resources or
computational speed. Such systems require many duplicate de-
vices to handle all the data.

Figure 2: Total serial I/O bandwidth trends for high-end commercial
FPGAs.

As discussed later in Section II.B, although the total number
of I/O pins on FPGAs has not experienced significant growth in
recent years, total device bandwidth has rapidly improved due to
the introduction of high-speed serial transceivers. Fig. 2 shows
the trend in total serial I/O bandwidth over the past decade. I/O
bandwidth has managed to maintain an exponential growth rate
in recent years, allowing it to keep pace with the growth of logic
resources (see Section II.B). The matching growth of bandwidth
and logic is a key trend for HEP system designers. If FPGAs
continue this trend in the future, devices will maintain consis-
tent resource ratios, making it easier to consolidate distributed,
multi-device systems into a smaller number of devices. If, on
the other hand, bandwidth growth falls behind logic growth, de-
signers will need to consider ways they can use extra logic to im-
prove the quality of their systems. This might mean increasing
the precision of computations or adding redundant error correc-
tion. Both Xilinx and Altera have recently introduced 11-Gb/s
transceivers, but have not yet integrated these transceivers on all
serial I/O pins. Moreover, the number of pins dedicated to high-
speed serial I/O could be increased; serial I/O is currently only
available on a small fraction of available pins. Therefore, it is
feasible for total I/O bandwidth to continue to grow.

B. Resource Capacity

In addition to FPGA performance, resource capacity is also
a major concern. The quantity of logic resources available to
developers may determine the amount of functionality and pre-
cision of computation that can be incorporated into each de-
vice. Unlike the monolithic silicon wafers used to implement
ASIC designs, modern FPGAs have a heterogeneous design
substrate. They include look-up-tables (LUTs), flip-flops, high-
density block RAM (BRAM), optimized multiply and accumu-
late chains (DSP blocks). Since FPGAs are packaged chips,

618

it is also worthwhile to consider the total number of I/O pins
available. Graphs of the growth of each of these resource types,
normalized to the resource capacity of one of the highest capac-
ity FPGAs from 1998, are shown in Fig. 3. Note that the DSP
blocks were not introduced into Xilinx FPGAs until 2001, so
multiplier growth is normalized to this later device.

Figure 3: Resource capacity trends for high-end commercial FPGAs,
shown in on a logarithmic scale.

There are several key relationships to be observed from these
trends. All logic resources (LUTs, flip-flops, BRAM, and DSP
blocks) have exhibited exponential growth. This can be at-
tributed to advancements in silicon process technology, and thus
is likely to continue in the near future. In particular, sequential
state (BRAM and flip-flops) makes up a larger percentage of
the total logic resources. The total number of I/O pins, how-
ever, has not shown sustained growth due to physical limita-
tions. The package size of the device, the number of pins that
can fit in that space, and the feasibility of board-level routing
for those pins are significant limiting factors. In fact, pin count
has shown a downward trend in recent years; I/O bandwidth has
only managed to increase due to the introduction of high-speed
serial transceivers on a subset of the remaining pins.

Of most importance are the ways in which these trends in-
teract to impact the design process. As the amount of logic and
bandwidth to each device increases exponentially, the size and
complexity of designs possible on a single device increases dra-
matically. We discuss design methods and software advances
that can be used to manage this challenge in Section III. Logic
is growing at a much faster rate than the number of I/O pins. The
rapidly increasing ratio of device state to I/O pins will make it
more difficult to rely on the use of external logic analyzers to
perform hardware verification and debugging for complex se-
quential circuits. We discuss FPGA-centric verification and de-
bugging tools in Section IV.

III. DESIGN COMPLEXITY

New FPGA generations will continue to bring increases in
device resources and performance. Future architectures will
have significantly more logic and bandwidth available on each
chip than what is available today. Designers can leverage these
improvements to enable higher levels of system integration,

more nuanced algorithms, robust error correction and reliabil-
ity, and higher-resolution processing. However, these design
enhancements come at a price; as designs become larger and
more capable, they also become more complicated. If it already
takes several person-months to properly design, simulate, de-
bug, and verify the firmware of an FPGA with tens to hundreds
of thousands of logic cells, how long will it take to do the same
for FPGAs with tens of millions of cells?

Before designers can take advantage of larger devices, they
must ensure that they can meet three main objectives. First,
we must make sure we can control the design costs. The logic
density of FPGAs may double every few years, but the budgets
of scientific research organizations do not. Second, to main-
tain a reasonable pace of advancement of HEP systems, the de-
sign time for these circuits cannot simply increase proportion-
ally with the growth of logic capacity. Third, ensure the collec-
tion of valid scientific results and protect the operation of critical
experimental systems, the number of bugs and defects in these
circuits must be held to a very low level. To achieve these three
objectives, we must increase the productivity and effectiveness
of the design and testing of systems. In some cases this can be
achieved by adopting new software tools and technologies. In
other cases it may mean that developers must transition from ad
hoc design practices to more formal and rigorous methodolo-
gies.

In this section we cover three concepts for increasing pro-
ductivity for complex designs: collaborative techniques, scal-
able design methodology, and high-level-language tools.

A. Collaborative Design

One approach to managing larger, more complex designs
is to tap into a larger pool of design talent and expertise.
On a global system-wide scale, HEP projects already rely on
large-scale collaborative efforts from many research and design
groups. However, collaboration can also employed at the level
of individual designs. This sort of collaboration can be imple-
mented on varying scales.

On a small scale, each design group could institute a policy
of seeking peer review of their work to ensure that it is of the
highest quality. Presenting design decisions for external review
not only provides the benefit of outside expert experience and
insight, but also helps the group to systematically explore, jus-
tify, and document their design choices. Such a review could
be regularly applied at multiple levels, including specifications,
major design decisions, and actual firmware code.

On a larger scale, related groups within HEP projects could
implement infrastructure for sharing firmware code with each
other. Although the LHC collaboration has access to a spec-
tacular range of expertise from numerous universities and labs,
teams often work in isolation until it is time to begin integrating
their systems. Although each group has its own set of goals,
constraints, and platforms, it is reasonable to expect that some
design work could be shared between teams. For example, many
systems may need to decompress zero-suppressed data trans-
missions, calculate parity and apply error correction, or sort
sets of data. If many groups replicate the same design process
needed to implement these functions, time and money are being

619

wasted.

On the largest scale, firmware source code published and
made open to public scrutiny after the initial internal design.
Studies suggest that the average defect rate for open source soft-
ware is significantly lower than that of proprietary software [5].
It may be possible to achieve similar improvements with open
source firmware. Moreover, opening the code up to the public
for comment could allow review by hundreds of external de-
signers at very low cost.

B. Methodology

One of the most crucial components to managing complex
projects is adherence to a structured design methodology. The
topic of design methodology is too broad to be thoroughly cov-
ered in a single paper. Therefore, rather than attempting to pro-
vide an exhaustive summary, we focus on a few concepts that
are particularly useful to the design of complex digital systems
for HEP applications.

1) Specification

The first step in the design of any reasonably large system is
the development of the design specifications. The specifications
include the performance requirements of the design — which
may include aspects such as latency, throughput, I/O bandwidth,
error correction capabilities, and other factors — a description
of the algorithms to be implemented, and input and output data
formats. At a higher level, the specifications may also include
factors such as the monetary and time budgets. Development
of a robust and well-documented set of specifications for each
major portion of a design should be performed early in the de-
sign process, possibly before the first line of firmware code is
written. Clear and early communication of these requirements
helps to avoid the errors and incompatibilities that arise when
teams work from a set of incomplete or unclear specifications.
Moreover, the development of the specifications may itself yield
insight into the strategies to take during the firmware develop-
ment process, guide resources to the most challenging aspects
of the design, and uncover potential problems before a major
engineering investment has been made.

For systems that implement physics algorithms, such as trig-
ger systems, the specifications for the physics and electronics
components are typically kept separate. For example, the algo-
rithms are developed in order to meet the physics requirements
and verified via simulation and mathematical models. Then,
these algorithms are used to develop specifications for the elec-
tronics. This methodology makes sense when considering that
the physics performance is the first concern of an experiment.
However, the problem with this method of developing electron-
ics specifications is that it may constrain the ability of engineers
to evaluate alternate designs. For example, making slight alter-
ations to a triggering algorithm might have minimal impact on
the triggering efficiency (the physics) but yield major savings in
the complexity of the hardware (the electronics). With limited
budgets and more stringent hardware requirements, it may be-
come prudent to view the development of the hardware systems
that support the experiments as a first-class concern. Efforts
should be made to integrate the physics and electronics specifi-

cations and form multi-disciplinary teams to evaluate the impact
of algorithmic modifications in both the physics and electronics
domains.

2) Design Practices

When designing firmware code for complex systems, there
are a variety of techniques that can be used to help manage large
projects. One of the most basic of these is the concept of modu-
lar design. Modular design uses a ’divide and conquer’ approach
to break up big projects into smaller parts that are easier to de-
sign, test, and verify. Systems are partitioned into a group of
interconnected modules that each implement a basic function,
and these can be combined (perhaps hierarchically) into the re-
quired larger structure. Ideally the system should be partitioned
in such a way that modules have few interdependencies and each
module’s function can be analyzed and understood in isolation.
Furthermore, modularity provides the benefit of module reuse.
For example, a 32-bit-wide adder module could be hierarchi-
cally designed, composed of several 8-bit-wide adder modules.

Modular design offers several important advantages over
monolithic design. Building a system up by starting with
smaller modules allows the developer to test and debug the
firmware code in small pieces. This makes it easier to identify
and isolate bugs in the code. Modular design also allows devel-
opers to perform synthesis on basic computational modules and
obtain early performance estimates to guide later development.
Building up a library of modules that implement basic functions
also allows code re-use, avoiding duplicate coding work and re-
ducing the testing burden. Such modules could also be shared
across different projects using a collaborative firmware reposi-
tory as described in Section III.A.

For the development of HEP systems, it may be beneficial
to use parameterization to further increase design re-use beyond
what would be possible with modularity alone. Parameteriza-
tion is a powerful construct available in all major HDLs. It al-
lows a designer to use computations on constants to determine
design features such as the size of registers and width of buses.
Modifying paramterized features requires simply changing the
parameter value in the code, then re-compiling the HDL code
into a new (modified) hardware structure. By parameterizing
modules, one could, for example, use the same parameterized
adder code to create multiple adders of different bit-widths with-
out having to alter the firmware, potentially introducing new
bugs. Parameters can also be used to rapidly explore the impact
of different design decisions. For example a developer could
study the effect that varying the precision of a multiplication
unit has on its maximum frequency.

When parameterized modules are combined with code gen-
eration constructs available in HDLs, they give designers a pow-
erful tool for exploring large-scope considerations, such as the
number of design units that can fit on a given FPGA model.
This analysis can be especially useful in large-scale HEP sys-
tems where a design may need to be partitioned across multi-
ple devices. The use of fully-parameterized designs enables a
rapid evaluation of various partitioning schemes and the ability
to gauge the tradeoffs of using different models. It also allows
the HDL code to be quickly adapted to different FPGAs; this can
be a very valuable trait in HEP designs where the long develop-

620

ment process may mean that the target device is not finalized
until well into the development cycle. Moreover, it allows the
design to be gracefully adapted to larger FPGAs if the hardware
is upgraded in the future.

3) Firmware/Emulator Co-design

Designing firmware is generally a more time-consuming
process than writing software using a high-level language. As
such, it is common practice to first create an emulator for a HEP
hardware system in software, use it to explore and test new al-
gorithms, then design the hardware to match the function of the
emulator. This approach is effective for rapidly testing algorith-
mic changes, but often leaves a large implementation gap be-
tween the emulator and the hardware. Algorithms that are easy
to implement and achieve high performance in software do not
necessarily share those properties in hardware. This may lead
the software designers to describe algorithms that are very dif-
ficult for the hardware designers to implement efficiently. Also,
the high-level code that implements the emulator may have a
much different structure and interface than the HDL code that
implements the firmware, making it difficult to share the same
testing infrastructure between the two.

In the future, it may be advantageous to move to a method-
ology that focuses on firmware/emulator co-design rather than
a sequential process of creating the emulator and then creating
the firmware or vice versa. The concept of co-design is to allow
systems to be developed in tandem, allowing rapid transmis-
sion of feedback and implementation of changes. Better com-
munication between firmware designers and algorithm develop-
ers should lead to the adoption of algorithms that both meet the
needs of the experiment and are well-suited to hardware. More-
over, a co-design process would encourage the use of similar
structural hierarchies in the emulator and firmware. This would
allow the use of a unified test framework, making it much easier
to pinpoint bugs in either implementation.

One of the most important aspects of a co-design methodol-
ogy is to ensure that the speed of firmware design does not im-
pede the software design. Therefore, rather than directly going
between a high-level language, such as C/C++, and an HDL,
it may be beneficial to use a hardware verification language
(HVL) such as SystemVerilog or SystemC [7, 8] to help bridge
the gap.

4) Testing Practices

As projects migrate functionality from high-level languages
to firmware implementations or collaboration begins via a co-
design methodology, a wide gap separates hardware system and
software emulator design approaches. Each has their own pro-
gramming models and development environments. The original
software application description can range from general imper-
ative languages like C, to object-oriented languages like C++ or
Java, to domain-specific approaches like MATLAB. Firmware
may be developed in SystemVerilog or SystemC during the early
design exploration phase and in VHDL or Verilog in the imple-
mentation phase. This multitude of languages and programming
environments makes the design time lengthy and error prone,
as developers must often manually transcode between different

languages and environments. Many ’best practices’ are utilized
in industrial and academic environments to help this process,
such as automatically generating documentation (e.g. Javadoc),
auto-configuration, adherence to interface specifications, and
unit testing.

In particular, unit testing facilitates productive design by in-
tegrating testing early into the design flow to catch erroneous or
unexpected module behavior earlier in the design cycle, when it
is cheaper and easier to alter the design or specifications. Such
techniques have proven effective for many languages and plat-
forms, but for design projects that involve transcoding and re-
tooling for the final implementation, existing tools still leave
many manual, error-prone steps in the process. This leads to
longer design times with lower-quality implementations.

Typically when software designers employ unit testing, they
use frameworks that are language-specific (e.g. see [9]). More
than just a syntactic customization, such frameworks are often
tied to fundamental constructs of the language, such as check-
ing that methods exhibits the proper form of polymorphism in an
object-oriented language. Furthermore, these language-specific
approaches work well when designers are using only a single
language or a single platform for both development and final
implementation. But when designers must move between lan-
guages with different constructs (such as when moving between
an emulator coded in C++ and firmware written in VHDL), the
existing tests must be rewritten. This consumes extra design
time and creates a new verification challenge to ensure that the
corresponding unit tests between these two languages are, in
fact, performing the same test.

A new testing approach is needed that is language and
platform agnostic. Such an approach is possible by leverag-
ing model-based design for projects that integrate heteroge-
neous programming languages and by applying and integrat-
ing different kinds of design and testing methodologies. With
model-based development, automatic testbench creation is pos-
sible, improving the ease with which designers can create cross-
platform tests.

One tool that has been developed to manage this aspect of
the design process is the DSPCAD Integrative Command Line
Environment (DICE) [10]. It provides a framework for facil-
itating efficient management of the test and development of
cross-platform design projects. In order to accommodate cross-
platform operation, the DICE engine provides a collection of
utilities implemented as bash scripts, C programs, and python
scripts. By using free and open source command-line interfaces
and languages, DICE is able to operate on different platforms,
such as Windows (equipped with Cygwin), Solaris, and Linux.

5) Design Verification

To improve the quality and performance of hardware designs
while reducing their development time, a cross-platform design
environment is needed that accommodates both early design ex-
ploration and final implementation tuning. One could make ef-
fective use of the initial higher-level application specification
to create a functionally-accurate, language-independent design
model. This model could be used in the development and vali-
dation of both the emulator and hardware.

621

The Dataflow Interchange Format (DIF) is tool for model-
based design and implementation of signal processing systems
using dataflow graphs [13, 14]. A designer starts by translating
the high-level design specification into a platform-independent
description of the application in the DIF format. This struc-
tured, formal application description is an ideal starting point
for capturing concurrency and optimizing and analyzing the ap-
plication. Because the application description in DIF exposes
communication as a first-class citizen, DIF descriptions are suit-
able for targeting hardware design, where modules must be in-
terconnected by wires. After creating the initial DIF description,
a designer can use it to perform side-by-side development and
validation of optimized hardware or software implementations.
One of the main advantages of using the DIF format is that it is
dataflow-based description that allows the use of sophisticated
analysis techniques that have been developed for dataflow lan-
guages.

A formal model such as dataflow can improve the test quality
and provide information and tools that can be used to optimize a
design. Dataflow models have proven invaluable for application
areas such as digital signal processing. Their graph-based for-
malisms allow designers to describe applications in a natural yet
semantically-rigorous way. Such a semantic foundation has per-
mitted the development of a variety of analysis tools, including
tools for balancing input and output buffers and for efficiently
scheduling multiplexed operations [11]. As a result, dataflow
languages are increasingly popular. Their diversity, portability,
and intuitive appeal have extended them into many application
areas and target platforms.

A typical approach involves specifying the application in
DIF. Such an application specification typically defines the un-
derlying modules and subsystems, along with their interfaces
and connections. This specification is complete in terms of en-
suring a correct functional behavior and module interfaces. The
DICE framework can be applied to test each of the individual
modules for its correctness, or extended to a larger subsystem
or the entire application.

Any transcoding or platform-specific enhancements are ac-
commodated by DICE via its standardized build and test frame-
work. This allows designers to utilize the same testing frame-
work at inception as they do at final implementation. Soft-
ware developed jointly with DIF and DICE uses a single, cross-
platform framework to handle design validation throughout each
phase of development. The amount of time required to perform
validation can be reduced through the direct reuse of unit tests
in DICE. Model-based development can allow automatic test-
bench creation, improving the ease with which designers can
create cross-platform tests.

C. High-Level-Language Tools

Several tools have been developed to enable designers to
specify algorithms using high-level languages and/or graphical
user interfaces and automatically map those algorithms into an
HDL. The resulting HDL code can be simulated to ensure cor-
rect performance and synthesized, placed, and routed to pro-
duce an ASIC or FPGA implementation. These tools facilitate
rapid design-space exploration and for certain classes of algo-

rithms lead to efficient implementations. In addition to generat-
ing HDL, several of these tools also generate testbenches, hard-
ware interfaces, and synthesis scripts. However, the HDL pro-
duced by these tools is often difficult to read and debug. Further-
more, for certain tools and algorithms, the original high-level
language code may require significant modifications to yield ac-
ceptable results and various high-level language constructs can-
not be converted to synthesizable HDL. With some tools, the
generated HDL instantiates components that are specific to a
particular FPGA family, which can make it difficult to port to
other platforms.

1) C-to-HDL Tools

Numerous companies and universities have developed tools
that convert C code to Verilog or VHDL. These tools typically
take a program written in C, along with a set of design con-
straints or guidelines, and produce functionally-equivalent Ver-
ilog or VHDL. They may also produce accompanying C code (if
not all of the original C code is meant to be synthesized), test-
benches, synthesis and place-and-route scripts, and interfaces to
the resulting hardware designs. With many of these tools, only
a subset of the C language is supported, since constructs such
as library calls, dynamic memory allocation, function pointers,
complex data structures, and recursive functions cannot be eas-
ily implemented using synthesizable HDL code. Some of these
tools provide extensions to the C language to allow the designer
to specify operand lengths, hardware interfaces, timing-related
information, and the desired level of parallelism in the result-
ing HDL. In the remainder of this section, we provide several
examples of C-to-HDL conversion tools and then discuss their
strengths and weaknesses.

The Impulse CoDeveloper Toolset from Impulse Acceler-
ated Technologies provides a C-based development framework
for FPGA-based systems. It includes the CoDeveloper C-to-
FPGA Tools, the CoValidator Test Bench Generator, and the
CoDeveloper Platform Support Packages [15, 16] . Collectively,
these tools allow designers to (1) specify their hardware designs
with Impulse-C, which supports a subset of C plus some ex-
tensions, (2) profile their Impulse-C code to determine poten-
tial performance bottlenecks, (3) if desired, partition the code
such that certain code sections are run on an FPGA and other
portions are run on a programmable processor, (4) use inter-
active, graphical tools to specify design constraints and per-
form optimizations, (5) map selected Impulse-C code into either
VHDL or Verilog, (6) generate hardware interfaces for specific
FPGA platforms, and (7) create HDL testbenches and simula-
tion scripts to test the resulting designs. The Impulse CoDevel-
oper Toolset can be used to generate either standalone hardware
designs or hardware design that interface with an embedded or
external processor. They also provide several optimizations to
improve hardware efficiency and parallelism including common
sub-expression elimination, constant folding, loop pipelining,
and loop unrolling. The Impulse CoDeveloper Toolset has been
used to develop FPGA-based solutions for a wide range of appli-
cations including image and video processing, security, digital
signal processing, and scientific and financial computing.

Pico Express FPGA from Synfora takes an algorithm written
using a subset of the C programming language and a set of de-

622

sign requirements, such as clock frequency and target through-
put, and creates register transfer level (RTL) and SystemC im-
plementation models [17]. It also generates testbenches and an
application driver program. PICO Express FPGA includes de-
sign space exploration capabilities that, based on user-specified
design parameters, create multiple implementations and pro-
vide FPGA resource and performance estimates for these im-
plementations to allow design tradeoffs to be evaluated. To
achieve efficient designs and provide accurate performance and
resource estimates, PICO Express FPGA utilizes several device-
independent optimizations and also optimizes the resulting RTL
for a particular Xilinx FPGA family. PICO Express FPGA has
been used to design FGPA-based hardware for a wide range of
systems including video, audio, and image processing, wireless
communication, and security.

The C2R Compiler from Cebatech provides an automated
mechanism for converting structured C source code, along
with a small set of compiler directives, to Verilog and Sys-
temC [19, 20]. Internally, the C2R Compiler creates a control
dataflow graph and then uses allocation and scheduling algo-
rithms to produce Verilog that is functionally equivalent to the
C source code. Consequently, the original C code can be used
to perform functional verification of the resulting Verilog. The
C2R design flow allows designers to instrument the C source
code with various compiler directives and explore the design
space of the resulting architectures. The compiler directives can
be used to specify state machines for control, create interfaces
to the resulting Verilog code, bind arrays to specific FPGA re-
sources, specify the degree of pipelining to be used to imple-
ment loops, control variable bit widths, and enable clock gating
of registers in the resulting design . C2R has been used to im-
plement hardware designs for security, data compression, and
floating-point arithmetic.

The Catapult C Synthesis Tools from Mentor Graphics syn-
thesizes C++ source code without extensions to SystemC, Ver-
ilog, or VHDL [18]. Catapult C provides a graphical user inter-
face that lets the designer specify area, performance, and power
constraints, apply a variety of optimizations including loop
merging, loop unrolling, and loop pipeling, specify operand bit
widths, generate hardware interfaces, evaluate design tradeoffs,
and identify bottlenecks and inefficiencies in the generated de-
sign. Catapult C also provides options for clock-gating to re-
duce power consumption, takes advantage of optimized FPGA
resources such as block RAMs and DSP blocks, and provides
automated equivalence checking to formally prove that the orig-
inal C++ code and the generated HDL are functionally equiva-
lent. Catapult C has been successfully used to generate complex
hardware designs for wireless communication and image and
video processing. By the end of 2008, over 100 million ASICs
had shipped with hardware designed using Catapult C [18]..

Several other tools for C-to-HDL conversion have been de-
veloped. These include (but are not limited to):

1. The Nios II C-to-Hardware Acceleration Compiler from
Altera [22, 23]

2. The C-to-Verilog Automated Circuit Design Tool from C-
to-Verilog.com [24]

3. The Trident Compiler from Los Alamos National Labora-

tory [25, 26]

4. The No Instruction Set Computer (NISC) Technology and
Toolset from the Center for Embedded Systems at the Uni-
versity of California at Irvine [21].

5. The Riverside Optimizing Compiler for Configurable
Computing (ROCCC) Toolset from the University of Cali-
fornia at Riverside [27, 28]

6. The SPARK Toolset from the Microelectronic Embedded
Systems Laboratory at the University of California at San
Diego [29, 30]

7. The GAUT High-level Synthesis Tool from the Laboratory
of Science and Technology Information, Communication
and Knowledge [31]

In general, the C-to-HDL tools discussed in this paper help
simplify the design process, especially for people not familiar
with HDLs. They allow the designs to be specified using a sub-
set of C, sometimes with extensions. These tools also facilitate
design-space exploration by allowing the designer to specify
design constraints, bitwidths, and desired levels of parallelism
and then evaluate design tradeoffs based on these specifications.
Several of the tools generate additional resources including C
support code, test benches, hardware interfaces, and synthesis
and place-and-route scripts.

The C-to-HDL tools, however, also have several limitations.
Only a subset of the C language is generally supported, and for
several tools, extensions to the C language are needed to enable
correct synthesis. In order to generate efficient code, it may
be necessary to rewrite the original C code to adhere to tool-
specific guidelines. Furthermore, the generated code is usually
difficult to read and debug. Code that is not well written or too
complex can result in designs that are much less efficient than
hand-coded HDL designs. On the other hand, it is expected that
the tools will continue to improve so that in the future several of
these limitations may not be as severe.

2) AccelDSP and System Generator

Xilinx’s AccelDSP Synthesis Tool is a high-level MATLAB-
based development tool for designing and analyzing algorith-
mic blocks for Xilinx FPGAs [32]. Although MATLAB is a
powerful algorithm development tool, many of its benefits are
reduced when converting a floating-point algorithm into fixed-
point hardware. For example, quantization errors and the poten-
tial for overflow and underflow are introduced into the algorithm
due to floating-point to fixed-point conversion. Consequently
designers may need to rewrite the code to reduce the impact
of these errors and analyze the results produced by the fixed-
point code to ensure they are acceptable. To facilitate this, Ac-
celDSP provides the capability to replace high-level MATLAB
functions with fixed-point C++ or Matlab models and automati-
cally generates testbenches to facilitate fixed-point simulations.
The tool automatically converts a floating-point algorithm to a
fixed-point C++ or MATLAB model. It then generates synthe-
sizable VHDL or Verilog code from the fixed-point model, and
creates a testbench for verification. During the HDL genera-
tion process, it performs several optimizations including loop
unrolling, pipelining, and device-specific memory mapping. A

623

graphical user interface allows the user to specify the bitwidths
used in the generated code and to guide the synthesis process.

The AccelDSP Synthesis tool provides several advantages.
It is a tightly integrated component of the Xilinx XtremeDSP
Solution and the MATLAB toolset, which allows it to utilize
MATLAB’s mathematical modeling and data visualization fea-
tures. To improve the design’s efficiency, it automatically uti-
lizes Xilinx IP cores and generates code blocks for use in Xilinx
System Generator, which is described below. AccelDSP also
provides capabilities to replace high-level MATLAB functions
with fixed-point C++, MATLAB, or HDL code by specifying
the target Xilinx FPGA model, intermediate data precision, and
desired resource distribution. HDL test benches are generated
automatically from the corresponding fixed-point C++ or MAT-
LAB model and these testbenches can be used to verify func-
tional equivalence between the higher-level model and the re-
sulting HDL. Furthermore, overflow and underflow that occur
in the fixed-point code are reported by the AccelDSP simula-
tion tool to help designers find potential errors that occur due to
the floating-point to fixed-point conversion process. AccelDSP
also provides a set of graphical tools, including probe functions,
design reports, and plots to visualize and analyze the system.
AccelDSP allows designers to define constraints and control re-
source usage and timing. For example, the user may choose
to expand a ”for loop” into multiple parallel hardware blocks
or a single hardware block that is reused for several iterations.
The user may also provide timing constraints that result in a
pipelined design.

AccelDSP also has several limitations. For example, it can-
not convert all MATLAB files. Rather, the MATLAB file has to
be written in a specific way, and only a limited subset of MAT-
LAB can be used. AccelDSP only works with Xilinx FPGA
chips so designs cannot easily be ported to FPGAs from other
vendors. Furthermore, the generated HDL can be difficult to
read and debug. For many algorithms, the amount of resources
required by designs generated using AccelDSP is greater than
the amount of resources required by designs generated using
hand-coded HDLs.

Xilinx’s System Generator is a high level design tool that uti-
lizes MATLAB Simulink and enables designers to develop DSP
hardware designs for Xilinx FPGAs [33]. It provides over 90
parameterized DSP building blocks that can be used in the Mat-
lab Simulink graphical environment. The design process with
Simulink and System Generator is simply selecting DSP blocks,
dragging the blocks to their desired location, and connecting the
blocks via wires. These blocks and their communication links
can be converted from Simulink to Verilog, VHDL, or FPGA
bit files. System Generator can also utilize blocks generated by
AccelDSP.

System Generator has several strengths. In particular, it is a
useful tool for designers with no previous experience with FP-
GAs or HDL design. In addition to directly generating VHDL
and Verilog code, it also provides a resource estimator that
quickly estimates the FPGA resources required by the design
prior to placement and routing. System Generator can create a
hardware simulation model, and integrate with a Simulink soft-
ware model to evaluate complete applications including analog
signals. For example, Simulink can be used to create a sine

wave with pseudo-random noise that serves as an input to a
System Generator hardware model, which writes it outputs to a
file. The complete Simulink model, which includes the System
Generator model can then be used to simulate the entire sys-
tem and generate a testbench for the hardware module. System
Generator also has several limitations. It requires experience
with Simulink to create efficient designs The Simulink tool uses
an interactive graphical environment and a parameterized set of
block libraries, which may not be convenient for programmers
who are more familiar with high-level program languages, such
as C++ or Java. Furthermore, although the blocks provided by
System Generator are very useful for certain types of signal pro-
cessing applications, these blocks may not meet the needs of
other types of applications. Similar to AccelDSP, the HDL code
produced by System Generator only works with Xilinx FPGA
chips and can be difficult to read and debug.

IV. HARDWARE VERIFICATION AND DEBUGGING

Differences between the simulation results and the perfor-
mance of the real hardware may result from hardware defects
that went undetected by the manufacturer, inaccuracies in the
models used for hardware simulation, variation from nominal
environmental parameters, or unexpected operating conditions
such as mutual inductance or capacitive coupling from other
systems, clock jitter, power supply noise, etc. Such issues be-
come more important for high-performance systems with tight
tolerances, since they are more susceptible to problems arising
from variations in the timing of internal signals. Additionally,
for large, interconnected system, such as those used in HEP,
full system simulation may be very costly or simply infeasible.
This further motivates the importance of thoroughly testing the
hardware. As we have discussed, FPGA hardware trends show
rapid increases in the number of logic resources on each device.
In particular, the number of registers on each devices has in-
creased at an especially fast pace recently. The growth trends
in registers and in on-chip RAM contribute to an overall trend
of increasing state in FPGAs. Increasing the amount of state
in a device can prove particularly troublesome during hardware
verification-the process of confirming that a circuit built in hard-
ware is consistent in behavior and performance with the circuit
as it performed in simulation. Differences between the simula-
tion results and the performance of the real hardware may re-
sult from hardware defects that went undetected by the man-
ufacturer, inaccuracies in the models used for hardware sim-
ulation, variation from nominal environmental parameters, or
unexpected operating conditions such as mutual inductance or
capacitive coupling from other systems, clock jitter, power sup-
ply noise, etc. Such issues become more important for high-
performance systems with tight tolerances, since they are more
susceptible to problems arising from variations in the timing of
internal signals. Additionally, for large, interconnected system,
such as those used in HEP, full system simulation may be very
costly or simply infeasible. This further motivates the impor-
tance of thoroughly testing the hardware.

Hardware verification is performed by subjecting hardware
to a series of test patterns and comparing the performance to the
expected results. When an error occurs, it is important to find
the source of the error to determine an appropriate way of cor-

624

recting it. The process of locating the source of errors becomes
much more difficult as the quantity of state in a device increases.
This is because faulty values may contaminate the state and may
propagate to different parts of the state and may take many cy-
cles before they generate an observable error. At the same time,
the number of pins on FPGAs is growing at a much slower rate
than the internal state. It will become more difficult to observe
internal state using external logic analyzer as the ratio of state to
pins increases. This is particularly concerning because it means
that designers must use much longer and more elaborate tests
to verify their hardware. However, in physics applications, it is
crucial to identify and eliminate any such bugs before the start
of experimentation to ensure confidence in experimental results.

The problem of verifying and debugging circuits with large
amounts of state is not unique to FPGAs, and has been exten-
sively studied in the integrated circuit domain [4]. Today, engi-
neers use a set of design techniques known as design for testa-
bility (DFT) and built-in self-test (BIST) to automatically apply
tests internally and more easily probe the contents of state reg-
isters [41]. While these techniques are useful, they come with a
cost; adding DFT and BIST consumes chip resources, may re-
quire extended design time, and often results in reduced operat-
ing frequency. However, because FPGAs are reprogrammable,
they have the unique ability to be able to potentially use these
techniques without reducing the performance of the final design.
In the remainder of this section, we will describe the software
tools available for performing BIST on FPGAs in a fast and ef-
ficient manner.

A. Integrated Logic Analyzers

Major FPGA vendors have provided tools to alleviate the
problem of hardware verification. Xilinx’s ChipScope Pro [6]
and Altera’s SignalTap II Embedded Logic Analyzer [12] en-
able designers to probe and monitor an FPGA’s internal sig-
nals in real-time. These tools considerably cut verification time
and effort in order to eliminate hard-to-detect bugs. The tools
help equip a design with embedded hardware logic analyzers
that sample data and transactions on selected signals and nodes.
ChipScope Pro further provides the ability of forcing internal
signals to specified values. Any internal signals in the design
can be selected for monitoring. The sampled data are stored in
the FPGA’s embedded Block RAMs. Data are sent to a personal
computer using the JTAG interface, the same interface used in
FPGA programming, to give a visualized demonstration of the
internal signals. Designers can easily observe and analyze trans-
actions on internal signals of the design in real-time by means
of a Software Logic Analyzer installed on a PC. Data sampling
is triggered at runtime by a set of predefined conditions that can
be set using a graphical user interface. The data sampling lasts
for the number of clock cycles specified by the designer.

This approach of utilizing integrated logic analyzers re-
moves or reduces the need for specific external hardware. These
tools provide relatively complete observability to designers.
They are especially useful for large designs, which often have
a myriad of signal and data variations to verify. Designers are
able to control the value of internal signals with ChipScope Pro.
This is especially valuable in complex sequential circuits where
it may take a long sequence to external inputs to change certain

internal signals. In addition, signal monitoring is done by on-
chip configurable logic analyzers, while the FPGA is working
under standard operating conditions. This eliminates the need
to purchase expensive external logic analyzers and chip testers.
Hence, these tools provide an easy, yet powerful approach for
FPGA design verification that lowers project costs, saves design
time, and helps find bugs early in the implementation process.

Although this approach supplies the designer with new veri-
fication capabilities, it has some drawbacks and limitations. The
number of observed signals and sampled time depend upon the
free Block RAMs available on an FPGA, and since this ap-
proach uses FPGA resources, it might have negative timing im-
pact on a design. Furthermore, defining a proper trigger condi-
tion that leads to bug detection might be challenging. Finally,
embedded logic analyzers are not able to capture signal glitches
and to test clock signals, because data is sampled at the hard-
ware’s clock frequency and thus cannot perform clock super-
sampling.

1) Chipscope Cores

ChipScope is composed of a set of cores to promote the de-
sign verification process. The Integrated Logic Analyzer (ILA)
core, as the most common core, is used for signal monitoring.
The Integrated Bus Analyzer (IBA) core simplifies system bus
monitoring. The Integrated Controller (ICON) core is used to
set trigger conditions and send data from Block RAMs to the
PC via the JTAG interface. The Agilent Trace Core 2 (ATC2)
core provides an interface between the embedded logic ana-
lyzer and the Agilent FPGA trace port analyzer. The virtual
input/output (VIO) core provides the designer with signal con-
trollability along with signal monitoring. The internal bit error
ratio tester (IBERT) core allows the designer to detect bugs hid-
den in RocketIO serial I/O designs.

V. CONCLUSION

The trends in FPGA hardware show exponential increases
in device logic, on-chip memory, and I/O bandwidth over recent
years. Process technology is in place to allow FPGA manu-
facturers to maintain this growth in the near future. This im-
provement in FPGAs could allow future HEP systems to incor-
porate more intricate and flexible algorithms, implement higher-
resolution processing, and perform system integration. Achiev-
ing these goals will require larger, more complex designs on
each FPGA. To manage increasingly complex designs while still
working within constrained cost and time budgets, system de-
velopers must adopt a more scalable design methodology. This
methodology must extend across the entire design process, from
specification and design exploration to testing and hardware ver-
ification. In this paper, we have presented core design concepts
and emerging software tools that can serve as the foundation for
a design methodology that can scale to meet the next generation
of FPGA-based HEP systems.

VI. ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation, under grants EECS-0824040 and EECS-0823989.

625

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. We are grateful to the
Topical Workshop on Electronics for Particle Physics (TWEPP)
Scientific Organizing Committee for inviting us to present at the
workshop and submit this paper.

REFERENCES

[1] CMS Collaboration. CMS TriDaS Project: Technical Design Re-
port; 1, The Trigger Systems, CERN (2000).

[2] W.H. Smith, P. Chumney, S. Dasu, M. Jaworski, and J. Lackey.
CMS Regional Calorimeter Trigger High-Speed ASICs, 6th
Workshop on Electronics for LHC Experiments, 2000-2010
(2000).

[3] Intel Corp. Press Release: Intel Developer Forum 22nm News
Facts (2009).

[4] A. Ghosh, S. Devadas, and A.R. Newton. Test Generation
and Verification for Highly-Sequential Circuits, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 652-
667 (1991).

[5] Coverity Inc. Scan Open Source Report (2009).

[6] Xilinx Inc. ChipScope Pro 11.3 Software and Cores (2009).

[7] IEEE Std. 1666-2005. Open SystemC Reference Manual (2005).

[8] IEEE Std. 1800-2005. System Verilog: Unified Hardware De-
sign, Specification, and Verification Language (2005).

[9] P. Hamill. Unit Test Frameworks (2004).

[10] S.S. Bhattacharya, S. Kedilaya, W. Plishker, N. Sane, C. Shen,
and G. Zaki. The DSPCAD Integrative Command Line Environ-
ment: Introduction to DICE Version 1, UMIACS-TR-2009-13
(2009).

[11] E.A. Lee and D.G. Messerschmitt. Synchronous Dataflow, Pro-
ceedings of the IEEE, 1235-1245 (1987).

[12] Altera Corp. Design Debugging Using the SignalTap II Embed-
ded Logic Analyzer (2009).

[13] C. Hsu, M. Ko, and S.S. Bhattacharyya. Software Synthesis from
the Dataflow Interchange Formal, Int. Workshop on Software and
Compilers for Embedded Systems, 37-49 (2005).

[14] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S.S. Bhat-
tacharyya. Functional DIF for Rapid Prototyping, Rapid System
Prototyping, 17-23 (2008).

[15] Impulse Accelerated Technologies. Impulse CoDeveloper
(2009). Available from http://www.impulseaccelerated.

com/products.htm.

[16] D. Pellerin. Impulse C-to-FPGA Workshop, Fourth Annual
Reconfigurable Systems Summer Institute (2008). Available
from http://www.rssi2008.org/proceedings/tutorial/

Impulse.pdf.

[17] Synforma. PICO Express FPGA (2009). Available from http:

//www.synfora.com/products/picoExpressFPGA.html.

[18] Mentor Graphics. Catapult C Synthesis (2009). Available from
http://www.mentor.com/products/esl/high_level_

synthesis/catapult_synthesis/.

[19] Cebatech. Cebatech Technology (2009). Available from http:

//www.cebatech.com/technology.

[20] S. Ahuja, S.T. Gurumani, C. Spackman, and S.K. Shukla. Hard-
ware Coprocessor Synthesis from an ANSI C Specification,
IEEE Design & Test of Computers, 58-67 (2009).

[21] Center for Embedded Systems. NISC Toolset User Guide (2007).
Available from http://www.ics.uci.edu/~nisc/toolset/

Quick-Guide.pdf.

[22] Altera Corporation. Nios II C-to-Hardware Acceleration Com-
piler (2009). Available from http://www.altera.com/

products/ip/processors/nios2/tools/c2h/ni2-c2h.

html.

[23] Altera Corporation. Nios II C2H Compiler User Guide (2009).
Available from http://www.altera.com/literature/ug/

ug_nios2_c2h_compiler.pdf.

[24] The C-to-Verilog Automated Circuit Design Tool (2009). Avail-
able from http://www.c-to-verilog.com/.

[25] Trident Compiler (2009). Available from http:

//sourceforge.net/projects/trident/.

[26] J.L. Tripp, M.B. Gokhale, and K.D. Peterson. Trident: From
High-Level Language to Hardware Circuitry, IEEE Computer,
28-37 (2007).

[27] The University of California at Riverside. The Riverside Opti-
mizing Compiler for Configurable Computing (ROCCC) Toolset
(2009). Available from http://www.cs.ucr.edu/~roccc/.

[28] Z. Guo, W. Najjar, and A.B. Buyukkurt. Efficient Hardware Code
Generation for FPGAs, ACM Transactions on Architecture and
Compiler Optimizations, 1-26 (2008).

[29] Microelectronic Embedded Systems Laboratory. SPARK: A Par-
allelizing Approach to the High-Level Synthesis of Digital Cir-
cuits (2004). Available from http://mesl.ucsd.edu/spark/.

[30] S. Gupta, R.K. Gupta, N.D. Dutt, and A. Nicolau. SPARK: A Par-
allelizing Approach to the High-Level Synthesis of Digital Cir-
cuits, Kluwer Academic Publishers, (2004).

[31] LABSTICC. The GAUT High-level Synthesis Tool (2009).
Available from http://www-labsticc.univ-ubs.fr/

www-gaut/.

[32] Xilinx, Inc. AccelDSP Synthesis Tool (2009). Available from
http://www.xilinx.com/tools/acceldsp.htm.

[33] Xilinx, Inc. System Generator for DSP (2009). Available from
http://www.xilinx.com/tools/sysgen.htm.

[34] Xilinx, Inc. Virtex 2.5 V Field Programmable Gate Arrays,
DS003-1 v2.5 (2001).

[35] Xilinx, Inc. Virtex-E 1.8V Field Programmable Gate Arrays,
DS022-1 v.2.3 (2002).

[36] Xilinx, Inc. Virtex-II Platform FPGAs: Complete Data Sheet,
DS031 v3.5 (2007).

[37] Xilinx, Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet, DS083 v4.7 (2007).

[38] Xilinx, Inc. Virtex-4 Family Overview, DS112 v3.0 (2007).

[39] Xilinx, Inc. Virtex-5 Family Overview, DS100 v5.0 (2009).

[40] Xilinx, Inc. Virtex-6 Family Overview, DS150 v2.0 (2009).

[41] L.T. Wang, C.W. Wu, and X. Wen. VLSI Test Principles and Ar-
chitectures: Design For Testability (2006).

626

