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ABSTRACT OF THESIS 
 
 
 
 

VERIFICATION AND DEBUG TECHNIQUES FOR INTEGRATED CIRCUIT 
DESIGNS 

 
 
 

Verification and debug of integrated circuits for embedded applications has grown in 
importance as the complexity in function has increased dramatically over time.  Various 
modeling and debugging techniques have been developed to overcome the overwhelming 
challenge.  This thesis attempts to address verification and debug methods by presenting 
an accurate C model at the bit and algorithm level coupled with an implemented 
Hardware Description Language (HDL).  Key concepts such as common signal and 
variable naming conventions are incorporated as well as a stepping function within the 
implemented HDL.  Additionally, a common interface between low-level drivers and C 
models is presented for early firmware development and system debug.  Finally, self-
checking verification is discussed for delivering multiple test cases along with testbench 
portability. 
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Chapter 1 

INTRODUCTION 

 

Verification and debug of integrated circuits for embedded applications has grown 

in importance as the complexity in function has increased dramatically over time.  

Various modeling and debugging techniques have been developed to overcome this 

overwhelming challenge.  This thesis attempts to address verification and debug methods, 

by presenting an accurate C model at the algorithm and bit levels coupled with an 

implemented Hardware Description Language (HDL).  Key concepts, such as common 

signal and variable naming conventions, are incorporated, as well as, a stepping function 

within the implemented HDL.  Additionally, a common interface between low-level 

drivers and C models is presented for early firmware development and system debug.  

Finally, self-checking verification is discussed for delivering multiple test cases along 

with testbench portability. 

 In Chapter 2, the reader will find background material in the area of verification 

and debug of integrated circuits implementing complex algorithms.  It should become 

obvious that the key concepts mentioned above are required for success in industry.  

While many of these concepts have been considered individually, merging them together 

into one model has been overlooked.  Chapter 3 attempts to link the background material 

of Chapter 2 and point out the key concepts mentioned above. 

 Chapter 4 will discuss an implementation of the key concepts.  This will be 

presented in an example using error-diffusion, which is a complex image processing task, 

especially needed in the printing industry, in particular with thermal ink-jets.  Examples 
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of C code, Very High Speed Integrated Circuit Hardware Description Language 

(VHSICHDL or VHDL), register specifications of implemented HDL, and bus modeling 

will be used.   

 Chapter 5 will discuss error-diffusion further and explain how the key concepts 

lead to improvements in verification and debug through real examples.  A Linear 

Feedback Shift Register (LFSR) design will be used to discuss the need for accurate 

modeling during verification and debug.  After pointing out the need for accuracy, the 

topics of algorithm proofing and self-checking verification will be addressed. 

Finally, Chapter 6 will present the next step in verification using an accurate self-

checking C model.  Here, it will be revealed that device independent portability can be 

achieved using C code generation.  In continuation, constrained random verification 

using System Verilog will be discussed. 
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Chapter 2 

BACKGROUND RESEARCH 
 

To address the growing complexity of integrated circuits for embedded 

applications, and the verification and debug challenge associated with them, various 

modeling and debugging techniques have been developed.  For instance, F. Wotawa 

presented a model-based diagnosis tool, VHDLDIAG, designed to automatically locate 

bugs in VHDL programs [1].  VHDLDIAG utilizes model based diagnosis for fault 

localization which requires a logic model of the VHDL program to be debugged [1].  

While fault localization is useful, Wotawa admitted that unique identification of a fault is 

not guaranteed [1].  Thus, a C model that could help pinpoint failures within hardware 

would be more advantageous than fault localization. 

 The Open SystemC Initiative (OSCI) is an independent, not-for-profit association 

dedicated to defining and advancing SystemCTM as an open industry standard for system-

level modeling, design and verification [2].  The IEEE Standards Association approved 

the standard for the SystemC library as IEEE Standard 1666-2005 [2].  The first version 

was released on February 2, 2002 [2].  OSCI was launched in 1999 [2].  Sanguinetti and 

Pursley proposed that SystemCTM would bridge the gap between high-level modeling and 

top-down design methodology [3].  While it is common practice to begin design with a 

high-level model, general-purpose programming languages, such as C/C++, are not 

acceptable languages for Register Transfer Level (RTL) modeling and synthesis [3].  

SystemCTM adds synthesis and hardware architecture constructs to a general-purpose 

programming language [3].  This thesis shares the argument that system-level modeling 

is needed but accomplishes the same task without additional libraries or language 
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learning.  It is not intended to bridge the gap with modeling and synthesis using C 

modeling.  Both Verilog and VHDL are preferred languages by most designers in 

industry for RTL representation.     

In most cases, system-on-chip (SOC) design is a sequential process, where 

supporting software, often referred to as firmware, cannot be developed until after the 

HDL implementation is complete [4].  Moreover, it is desirable to explore different 

design alternatives for complex systems which can be unreasonable using slow 

simulations of the HDL implementation [4]. Kruijtzer, Reyes and Gehrke argued the use 

of System C to provide a high level model developed with System C for early firmware 

development and algorithm proofing [4].  While it is true that a high level model is useful 

for most tasks, a C model with more low level debugging features would support 

additional needs such as direct simulation verification, emulation, and final system debug. 

 Designers spend up to 70% of their time developing and running tests attempting 

to verify their designs [5] [6]. Regression simulations, alone, can take several years of 

CPU time for completion [6].  As complexity of designs increase, the effort to verify 

those designs is increasing at a faster rate than Moore’s Law [5] [6] [7].  One assertion 

suggests that the time required for verification increases as the square of the size of the 

design [6].  There is a great deal of interest in increasing verification capabilities and 

efficiencies today within industry and academia [6].  Much work has been applied to 

coverage tools both practically and theoretically and most HDL logic simulators have 

coverage tools either as optional or standard features [6].  Additionally, different methods 

of generating effective stimulus automatically have been developed [6].  For instance, 

constrained random stimulus has matured with many EDA companies offering some sort 

 4 
 



 

of stimulus generation capabilities [6] [8] [9].  To aid in stimulus generation, Klein and 

Piekarz argue that using software is an effective means to help with the growing 

possibilities [6].  Using software would stimulate the design identically as it would be 

used in the final project [6].  This technique assumes that a processor functional model is 

available very early in the design stage.  As an alternative, a device independent bus 

stimulus model capable of executing simple instructions would be more portable and 

accessible for these early design stages.  It is also apparent that an accurate C model with 

an expected interface could be used to develop software which would test hardware 

functional expectations.  

 In 2008, Ng presented the usefulness of high-level models written in C and C++ 

focusing on RTL hardware model verification [10].  Figure 2.1 was presented as the 

simulation based RTL verification flow using system level models [10].  A C model 

enabling the verification flow described by Ng is desired.  Simulation input vectors are 

needed as well as output vectors or expected results for file comparison.  This will lead to 

a pass/fail structure eliminating the need for manual human interaction. 

In July 2007, Brier and Mitra presented the importance of C/C++ models for 

architecture exploration and verification of DSP designs [11].  In this presentation 

important aspects of this C modeling technique are represented.  It was imperative that 

the C model be as block accurate as possible giving the following benefits [11]: 

• C model matches the functional block diagram [11]. 

• C model modules match RTL module partitioning [11]. 

• When considering re-use, modifications may be accomplished by substituting the 

same blocks in the RTL and C models [11]. 
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• Observation points are more exposed and correlate [11]. 

These benefits would enhance debuggability and lead to higher quality design re-use [11].  

Additionally, they offered that bit real representations of the RTL would enable faster 

debug of the RTL implementation for arithmetic structures, as well as, rounding and data 

concatenation [11].  Finally, Brier and Mitra suggested that cycle accurate modeling 

along with the model’s functionality allowed for flagging errors in simulation much 

easier [11].  The C model presented in this thesis incorporates several of the aspects Brier 

and Mitra included as being imperative.  It is important to have a model that matches 

RTL module partitioning as well as signal level naming conventions.  Additionally, re-

use within an emulation setting where a C model can easily replace hardware drivers, 

aids in debugging both firmware and hardware.  Finally, a C model and implemented 

HDL that exposes observation points for correlation is needed. 

 In discussing the typical design flow for digital implementation Bertacco provided 

Figure 2.2 [12].  A C model that can be used at each verification stage of this flow is 

imperative.  In most cases, when traditional signal forcing is used in verification for 

stimulus, the test cases have to be modified when moving from RTL to gate level 

verification.  This type of modification is not needed in a system level verification 

environment where stimulus is generated via register interaction.  Bertacco goes on to 

reinforce the difficulty of verification, particularly the verification infrastructure [12].  

Distinct verification practices often change with subsequent designs due to the 

insufficient “correctness confidence-level” that most current approaches provide [12].  It 

becomes clear that more than 70% of design time and engineering resources are spent in 
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verification [12].  To address resource constraints and minimize modification of test 

cases at each verification level, a C model promoting portability is desired. 

 In his publication, Wilcox stated that finding 98% of the bugs in a design is just a 

matter of using methodical process [13].  However, finding the last 2% takes the most 

time and effort [13].  Tough bugs are hard to locate because of misconceptions.  These 

obstacles involve a large amount of design time and they require many simulation cycles 

to find and recreate [13].  In many cases, verification engineers do not understand the 

operation of the design, therefore finding it difficult to focus on the root cause [13].  Long 

debug cycles are unacceptable with limited time and resources. It is very important in 

today’s industry that verification teams reach their goals in less time with the least 

amount of resources possible [13].  A mantra of many good code developers is “write 

once and use often” [13].  Therefore, a C model which can address several of the issues 

as recognized by Wilcox would be beneficial.  As an example, it would be advantageous 

for a C model to closely represent the implemented HDL as to expose several internal 

signals for observation.  Additionally, if the implemented HDL exposes similar signals 

then debug time can be shortened drastically. 

 Dearth, Meeth and Whittemore presented a network driven system using C++ and 

Verilog Bus Functional Models to create a co-simulation environment between software 

and hardware engineers [14].  Figure 2.3 depicts a simplified model of the Object Based 

Interface they discuss [14].  An accurate C model is beneficial for developing the tests of 

this system.  The tests would then be applied through the Object Based Interface to drive 

the device under test (DUT).    
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Li and Nagarajan recognized the importance of testing techniques which utilize 

C/C++ models that match bit for bit the VHDL/Verilog RTL model [15].  Additionally, 

they placed within their models probing nodes for comparison to facilitate early problem 

identification and resolution [15].  Li and Nagarajan also stressed that the image 

processing driver layers should be decoupled separating out the parameters from the code 

[15].  It has been reported that 61% of all new ASICs in industry require at least one 

respin [15] [16].  Their attempts were to present techniques that help reduce this number 

[15].  It is agreed that a C model incorporating philosophies that Li and Nagarajan 

recognized in 2005 is necessary for efficient verification and debug techniques.   

Recognizing the importance of faster verification needs in 2004, Bernstein, 

Burton and Ghenassia introduced Transaction Level Modeling (TLM) to bridge the 

abstraction gap in system level modeling and design [17].  TLM addresses a number of 

practical system level design problems [17]. The OSCI Transaction Level Working 

Group (TLMWG) has identified a number of abstraction levels at which modeling can 

take place [17] [18] [19].  These include:   

• Algorithmic: At the algorithmic level, there is no distinction made between 

hardware and software [17]. 

•  Software View: At this level, there is a division made between hardware and 

software[17].  The model is at least suitable for programmers to develop their 

software [17].  This level is also referred to as the Architectural view [17]. 

• Hardware View:  This level has enough information for hardware engineers to 

develop both the device itself and/or the devices surrounding the device being 

modeled [17].  It may not have the fidelity of the RTL, but enough for the 
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hardware designer [17].  This level is also referred to as the Micro-Architectural 

view [17]. 

TLM enables a representation of the hardware for software development at much faster 

rates than RTL modeling interfaced with software [17].  Modeling is used to reduce time 

to market in three principle areas: early embedded software development, performance 

analysis and functional verification [17].  It is desirable to have a C model which 

incorporates the hardware view but with more detail than a TLM.  However, one 

modeling aspect of a TLM, which this thesis does not address, is system timing.  The 

focus of this thesis is on functional detail rather than timing, and is intended to aid early 

embedded software development and functional verification with the addition of more 

enhanced debugging capabilities. 

 Cheema and Hammami also pointed out, in 2006, the usefulness of TLM.  They 

identified the following benefits: 

• Faster system design space exploration [20]. 

• Easier system modeling [20]. 

• Faster simulation speeds [20]. 

• Early start of software development [20]. 

• Avoidance of late bugs in a project [20]. 

• Hence: Shorter Times to Market for a product [20]. 

A C model addressing the benefits identified here is required.  Additionally, quicker 

debug can be achieved with more detailed modeling of the internal structure. 

 In 2003, Kim, et al. described a verification scheme in the implementation of an 

MPEG-4 Video Codec in which C modeling techniques were used [21].  Their 
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verification environment included both HDL and C test bench models [21].  In 2000, S. 

M. Park, et al. used test bench models which including HDL-models and C-models to 

verify a Video/Audio Codec [21] [22].  The intent of the C models in these environments 

was to generate test vectors for comparison of actual hardware output [21] [22].  There 

was no documentation of utilizing the C models for early firmware development.  

Additionally, there was no indication that the models were detailed enough for faster 

debugging of issues.  A C model is needed that can be used in early firmware 

development.  Furthermore, intricate detail of the implemented HDL is necessary within 

the C model for faster debug of issues.   

 Bennour, Abid and Tourki presented the benefits of hardware-software co-

verification in the simulation and emulation environments [23].  For register level 

interaction, it is assumed that either a processor model is available for simulation, or 

hardware has been implemented for emulation [23].  For high level interaction, a high 

level hardware model, possibly C, is assumed [23].  The intent is to shorten the 

development cycle by getting earlier software-hardware interaction [23].  A detailed C 

model for early firmware development, but at the register interaction level, is desirable to 

reduce the development cycle.  This would alleviate the need for a hardware simulator 

during early firmware development, thus eliminating an additional learning curve for a 

firmware engineer.    

 Bergeron reviewed verification techniques in the industry in 2000 and released 

“Writing Testbenches: Functional Verification of HDL Models”.  In his second edition 

released in 2003, Bergeron pointed out typical design-for-verification techniques that 

include well-defined interfaces, clear separation of functions in relatively independent 
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units, providing additional software-accessible registers to control and observe internal 

locations, and providing programmable multiplexers to isolate or bypass functional units 

[24].  It is agreed that implemented HDL should incorporate software-accessible registers 

for observation points.  Additionally, an intricately designed C model containing detail to 

work in concert with the HDL logic for debug comparison between variables and internal 

signaling is desired.  Bergeron also introduced the method of designing a self-checking 

testbench where stimulus is applied and the results are verified by abstracting the 

physical-level transactions into high-level procedures using bus-functional models [24].  

A C model capable of translating input requirements into high-level transactions for bus 

model interpretation is ideal.  This would lead to constrained random verification and 

platform independence.  

 In 2006, Bombieri, Fummi and Pravadelli attempted to capture the state of the 

industry with regards to hardware design and simulation for verification [25].  In this 

document they described a transactor based system that provided stimulus to an RTL 

design through control and data inputs and acquired the results through control and data 

outputs [25].  The results would be checked through a result checker, and if successful, 

the next transaction would be initiated [25].  Figure 2.4 represents a pictorial view of the 

role of the transactor in testbench verification [25].  Once again a C model that can be 

used to generate the simple read and write transactions for control, as well as the input 

stimulus for data, is desirable.  Additionally, generating expected results would be 

required for comparison in a checker. 

 

Copyright© David Allen Crutchfield 2009 
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Figure 2.1: Simulation-based RTL Verification Flow Using System-level Models [10]. 
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Figure 2.2: Conceptual Design Flow of a Digital System [12]. 
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Figure 2.3: Simplified Model of the Object Based Interface [14]. 
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Figure 2.4: The Role of the Transactor in Testbench Verification [25]. 
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Chapter 3 

PROBLEM STATEMENT 

 

This thesis intends to coordinate the ideals presented thus far and enhance them to 

develop a more complete verification and debug strategy.  The research for this thesis 

began in April 2001 with the first version of the C model being completed in May 2001.  

The C model, including all aspects of this thesis, was completed in October 2002.   

Over time, requirements for embedded applications have increased in function 

and complexity.  In particular, imaging needs are increasing in complexity and magnitude.  

While some imaging applications can and have been implemented within an embedded 

microprocessor, it is advantageous to implement high performance functions within 

dedicated integrated circuits.  This could be accomplished using a Hardware Description 

Language (HDL) targeted for an Application Specific Integrated Circuit (ASIC), 

Application Specific Standard Product (ASSP) or Field Programmable Gate Array 

(FPGA).  Considering the complexity required for imaging applications, a more complex 

verification system is required.   

 Though modeling techniques are not new to the industry, the detail, portability, 

debug ability, and level of usefulness has been debated for some time.  This thesis 

outlines a verification technique utilizing a C model that incorporates several important 

aspects of verification.  First, an accurate C model is imperative to represent, at the bit 

level, the requested algorithms and modes of a given image processing task.  This allows 

for early validation of the intended function before its availability.  Kim, et al. recognized 

the need for comparison C models when they implemented verification for an MPEG-4 
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Video Codec in 2003 [21].  S.M. Park also recognized this verification need for a 

Video/Audio Codec [22] in 2000.  It is unclear how well matched the detail of these 

models is to the hardware under verification. 

Secondly, a C model that contains variables matching internal registers and 

signals within the intended HDL is also desired.  F. Wotawa presented a tool for fault 

localization but appeared to fall short on pinpointing root cause [1].  Wilcox understood 

the need for pinpointing errors faster given shorter design cycles and more complex 

designs [13].  Brier and Mitra presented the need for observation points for exposure and 

correlation in C models for pinpointing root cause [11].  Li and Nagarajan called out 

models that matched bit for bit the VHDL/Verilog RTL models that they created, as well 

as well placed probing nodes for comparison to facilitate early problem identification and 

resolution [15].  Well placed probing points in hardware coincident with internal signals, 

along with matching variable names for internal registers, would foster side-by-side 

comparison debugging between the expected output from the C model and the HDL, once 

implemented.  The C model suggested by this thesis incorporates these ideals.    

Thirdly, a C model incorporating input variables within a structure that represents 

control register function of the HDL once it is implemented would be advantageous.  

This will allow for firmware development without requiring the implemented HDL.  

Additionally, during system bring-up, this expected interaction allows for debug between 

the firmware function written to configure the implemented HDL control registers, or the 

C model itself.  With earlier software development in mind, Bernstein, Burton and 

Ghenassia looked to TLM with the intent of bridging the abstraction gap in system level 

modeling and design [17].  Additionally, Bennour, Abid and Tourki presented the 
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benefits of hardware-software co-verification in the simulation and emulation 

environments using a processor model in early verification, thus, enabling earlier 

software development [23].   

Also, the implemented HDL should contain a cycle stepping function that will 

effectively pause processing between pixels.  This allows for state and register retrieval 

between pixels for comparison to C model variables much like comparison debugging 

between the C model and HDL simulation.  Enabling an easier method for pinpointing of 

issues addresses Wilcox concern in [13].  Bergeron identified software-accessible 

registers for observation points as key enablers to debugging [24].   

Finally, a C model that is capable of parsing an input parameters file and 

generating some sort of test stimulus based on these parameters is considered necessary.  

This allows for self checking and less human interaction while developing multiple tests 

automatically with little effort.  Additionally, portability of design test cases from one 

level of design to the next, as discussed by Bertacco in Figure 2.2 [12], should be 

addressed.  Portability to future designs should also be considered.  In 2008 Ng presented 

a verification flow in Figure 2.1 that incorporated generating stimulus and comparing 

results between RTL and a system level model [10].  Bergeron also introduced the 

method of designing a self-checking testbench to aid in better test generation [24].  In 

2006, Bombieri, Fummi and Pravadelli pointed out the use of a transactor based system 

in Figure 2.4 that would stage transactions based on success [25].      

 Implementing a C model with these aspects will aid in early firmware 

development, multiple test case generation within an encapsulated test environment, 

system emulation debugging, simulation debugging, and the capability to prove out 
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algorithms before HDL implementation.  Additionally, a constrained random test 

environment can be achieved.  These aspects will be demonstrated in the following 

chapters.         
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Chapter 4 

MODELING AND VERIFICATION OF ERROR DIFFUSION USING C MODEL 

 

There are many different examples of imaging tasks or systems.   These include: 

image filtering, image compression, error diffusion halftoning, and several others.  For 

the purposes of this document, error diffusion halftoning will be considered. 

 Error diffusion halftoning effectively reduces the bit depth of an image while 

giving the appearance of a constant gradient of colors with respect to the human eye.  In 

most applications, error diffusion halftoning is used to convert a multi-level image into a 

binary image.  The quantization residual is distributed to neighboring pixels to be 

processed at a later time.  Neighboring input into the error diffusion function for a 

specific pixel location can subtly change the binary value of the pixel being affected.  It is 

virtually impossible to visually track the correct value of all pixels within a halftoned 

image.  

To properly address the verification challenge for an error diffusion halftoning 

function implemented in an HDL, a C modeling approach was incorporated.  The C 

model contained the following characteristics.  First, the C model was implemented to be 

bit level accurate for the requested algorithms and modes.  This was important to allow 

color science validation of the implemented HDL before its availability, as well as 

proving out new inventions or requests before implementation.  Second, the C model 

contained variables that matched internal registers and signals within the HDL.  This was 

also important for fostering side-by-side comparison debugging between the expected 

output from the C model and the actual HDL implementation.  Third, the C model 
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incorporated input variables within a structure that represented the control register 

function within the HDL implementation.  This allowed for firmware development 

without requiring the implemented HDL.  Additionally, during system bring-up and 

debugging, the firmware can effectively switch between a function written to configure 

the implemented HDL control registers, or the C model itself, for comparison purposes.  

Also, included within the implemented HDL, is a cycle stepping function that will 

effectively pause processing between pixels.  This allowed for state and register retrieval 

between pixels for comparison to C model variables, much like comparison debugging 

between the C model and HDL simulation.  Finally, in addition to the function of 

producing the expected result, the C model was expanded to parse an input parameters 

file and generate a stimulus script, thus, enabling an encapsulated verification approach.  

Enabling an encapsulated verification approach reduces the reliance on human interaction 

and thus the potential for human error.  Due to the intricate nature of a complete C model 

design, only portions of the C model and the implemented HDL will be discussed in this 

document to illustrate the aforementioned points.         

 The Floyd-Steinberg error diffusion method was used for the basis of the 

algorithm being implemented and tested.  This method consists of applying a threshold to 

a running pixel value and distributing the quantized error to neighboring pixels.  For 

further consideration, Figure 4.1 depicts a pixel location and its effect on neighboring 

pixels.  Also depicted is a pixel and how it is affected by its neighbors.  Several variations 

and enhancements have been implemented over time to improve the quality of binary 

image produced over that of the Floyd-Steinberg method.  For instance, attempts have 

been made to randomize the threshold used.  This technique is used to break up artifacts, 
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sometimes referred to as worms, to give a better distribution of dots.  For the 

implemented HDL, a Linear Feedback Shift Register (LFSR) was implemented to 

augment a desired threshold, giving a pseudo-random effect.  This complicates bit 

accurate modeling, because the value of an LFSR depends on the number of cycles it has 

been iterated.  For the C model to be bit accurate at a given pixel location during 

processing, the same number of cycles through the LFSR will have to be duplicated.  

Consider the excerpt of code in Figure 4.2 that highlights the LFSR function within the C 

model.  Additionally Figure 4.3 highlights cycle duplicating of this LFSR function.    

Note that the RandGen function models the LFSR behavior within the 

implemented HDL at the gate level.  RandGen was called multiple times before 

processing the image to ensure that the value returned by this function exactly matched 

the LFSR implemented within hardware for processing the first pixel.  Additionally, the 

RandGen function was called after processing each line to accomplish alignment between 

lines.  The RandGen function is called during processing as well, when the LFSR value is 

actually used.  While this is a trivial matter, considerations similar to this had to be made 

throughout the C model to force an exact match of running values and results to the 

implemented HDL.  Given an exact matched C model, a color science or algorithm 

development team working in parallel with an ASIC team can ensure the output of a 

product before having a fabricated ASIC.   

 The running pixel mentioned previously is an addition of several components 

consisting of the current pixel to be quantized, the quantized error of neighboring pixels, 

and any remainder leftover from the by 16 division.  The C model excerpt in Figure 4.4 
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represents an implemented HDL for the running pixel calculation.  Figure 4.5 contains 

actual implemented HDL for running pixel calculation.    

While the variables and signals are not identically matched names, they are easily 

identifiable.  This is important for direct comparison between a C debug window and a 

simulation wave window during debug of the system.  The running pixel value, or Dotval 

(DOT_VALUE) as it is referred to here, can be thought of as the signature of the error 

diffusion system.  The point at which Dotval does not match between the C model and 

the implemented HDL is usually the first place to investigate for an error.  Note that 

differences in Dotval may not cause an immediate difference in the binary output image, 

depending on several factors, including the threshold.  Therefore, comparing the resultant 

binary output images from the C model and implemented HDL is not a complete 

verification of the system.  The error passed to the next line, a derivative of Dotval, is the 

best place to complete verification.  Because of this, it is essential that the error passed 

between lines match between the C model and implemented HDL.  As is indicated in the 

comments of the LFSR C code excerpt, the implemented HDL has several pipeline stages.  

Because of the nature of a pipelined design, each variable into the Dotval equation is 

staged in different ways.  This had to be accounted for in the C model to ensure exact 

comparison. 

 For early firmware development, or for in system debugging, the C model utilizes 

a struct variable named DiffParams to give a common interface between the C model and 

register level firmware.  This struct has variables within it that represent the control 

register function of the implemented HDL.  By providing this struct to a firmware 

programmer, and the associated C model before an implemented HDL is available, 
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development can proceed very early.  Additionally, when unexpected results arise while 

using the implemented HDL, the C model can easily be interposed to verify whether the 

issue lies within the algorithm or the implementation.  Figure 4.6 presents the DiffParams 

struct C model excerpt.  Figure 4.7 highlights two control registers of the LFSR 

implemented HDL firmware specification for comparison.  The firmware specification 

excerpt is the description for interfacing to the LFSR function within the implemented 

HDL.  Note that the variable names within struct ErrorDiffParams are easily identifiable 

with the specification.  This is the case with all other variables of ErrorDiffParams and 

the corresponding HDL specification. 

 The next aspect of this verification technique lies solely within the implemented 

HDL.  For hardware debugging, a stepping function was implemented to force an 

execution pause of the controlling state machine for the implemented HDL.  Figure 4.8 is 

an excerpt from the main control register firmware specification which contains this 

function’s appropriate bits.  When bits 1 and 7 are asserted for the Err Diff Control 

Register, the logic is configured to execute to a certain point within the controlling state 

machine and wait for clearance to execute the next pixel.  Once in the waiting (paused) 

condition, the logic can be configured to process the next pixel by asserting bits 1, 7, and 

8.  Figure 4.9 presents an excerpt from the implemented HDL controlling state machine 

that highlights a signal named WAIT_ST enabling execution.  If WAIT_ST is asserted, 

then the controlling state machine cannot continue execution.  However, once WAIT_ST 

is de-asserted, execution can continue.  Figure 4.10 contains a portion of the implemented 

HDL for the WAIT_ST assignment.  Along with other signals, STEP_FUNC_EN and not 

STEP_ED are included to assert WAIT_ST_INT under the right conditions.  
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STEP_FUNC_EN and STEP_ED are the register bits 7 and 8 indicated above in the Err 

Diff Control Register specification.  When STEP_FUNC_EN is asserted, WAIT_ST_INT 

will be asserted as well, until STEP_ED is provided.   

While waiting for an asserted STEP_ED signal, the system will remain stable.  

During this time, debug registers can be read to gather information about the current state 

of several registers and signals.  For instance, in Figure 4.9 there is a signal named 

STATE_SIGS.  This signal is accessible via addressable registers.  Figure 4.11 contains 

the firmware specification outlining access of STATE_SIGS, its encoded values, and 

what they represent.  As is indicated, several states of the controlling state machine are 

encoded and can be viewed during execution.  If, for instance, the implemented HDL 

fails to finish execution, then the STATE_SIGS variable can be viewed to understand 

during what state execution failed.  Note that LXK_THRESH_RAND can be observed 

through bits 27 down to 16 in the same register mapping identified here.  This signal is a 

combination of a threshold lookup table and the same LFSR discussed earlier.  During 

design of the implemented HDL, it was important to choose several observation points 

such as the LFSR, to aid debug of the system.  By choosing a good range of observation 

points, one can avoid having to reconfigure an FPGA to route out more signals.  This can 

greatly reduce development time, as FPGA synthesis can consume more than a day 

depending on complexity.    

Thus far, the discussion has centered on an accurate imaging C model and the 

benefits it brings to proving out color science algorithms, firmware development, 

debugging implemented HDL, and verification.  To aid in more robust and complete 

simulation and emulation verification techniques, subtle but powerful additions were 
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made to the C model.  First, the C model was expanded to read in and parse a parameters 

file that contained information on register settings.  Second, the C model was expanded to 

include the capability for creating a simple scripting language with basic read and write 

instructions to memory locations targeting the DUT and system memory, as well as a 

waiting instruction for system feedback.  These simple reads and writes were used for 

writing DUT registers, loading main memory with a desired image, and dumping main 

memory to compare an image processed by the DUT with an expected result after 

execution.  Finally, to complete the system, a bus stimulus model was created to interpret 

the simple instructions of read, write, wait, and compare.  The read and write instructions 

were to be applied to the system bus using the bus stimulus model.  These additions 

allowed for an encapsulated verification environment where multiple simulations could 

be generated and verified, without the traditional approach of wave investigation.  

Furthermore, less human interaction was needed once an accurate encapsulated C model 

environment was incorporated.   

Consider Figure 4.12, which depicts a verification system utilizing an accurate C 

model for comparison with implemented HDL or DUT.  From this, it can be seen that the 

same parameters are used to stimulate both the implemented HDL and accurate C model 

algorithm.  The C model parsing function reads in the parameters and applies them to the 

C model algorithm to generate expected results.  Furthermore, the C model scripting 

function takes the parsed parameters and generates a unique stimulus script using the 

simple scripting language of reads, writes, wait, and compare.   

See Figure 4.13 which presents an architecture utilizing a bus model attached to 

the internal system bus.  In this architecture, the bus model acts as the microprocessor 
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and enacts read and write accesses on the internal system bus based on the unique script 

provided before simulation.  As described above, this unique script is provided by the C 

model along with an expected resultant image.  Figure 4.14 includes a sample of what a 

simple script looks like for this type of environment.  The addresses provided in this 

sample are actual error diffusion hardware assist control registers within one 

implementation.  In this script, the wrchk command is used to instruct the bus model to 

write the data in the second field to the address indicated in that of the first.  After 

executing the write, the bus model reads back the address indicated to compare with what 

was written.  The sense command instructs the bus model to check a signal bus going into 

the model for certain values.  The first field indicates which bit of the bus to check.  The 

second field indicates what value to look for.  In this case, the bus model should check to 

see if bit 0 is asserted.  Finally, the check command is used to read large amounts of data 

from a provided address, and place the data within a file indicated within the first field.  

Additionally, the check command instructs the bus model to compare the data as it is read 

with the data from the file indicated by the second field.  The third and fourth fields of 

check indicate the starting address and how many bus words to read.  The basic function 

of this script is to enable the error diffusion logic, wait for execution, and then compare 

the results.  What is not shown here is configuring direct memory access (DMA), 

enabling the error diffusion logic to read a given image from main memory for diffusion, 

and then write the result back into memory.  This is easily extensible to this script. 

It should be noted that this verification environment is independent of the 

microprocessor chosen for the system.  Therefore, the verification environment and tests 

developed around it are directly portable to future designs given that a bus model capable 
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of accepting identical commands exists.  This becomes a very powerful argument as 

function requirements for higher end image processing chips continue to grow beyond 

resources to support them.           

In summary, verification of image processing tasks within hardware has become a 

very complex and overwhelming task.  Complex tools and techniques are required for 

success. Within this verification implementation, a C model exactly matching the 

algorithm desired and the implemented HDL of that algorithm was incorporated.  

Features of this C model included variables that matched internal registers and signals 

within implemented HDL, and variables within a structure that represented the control 

register function within the HDL implementation.  Additionally, the implemented HDL 

contained a cycle stepping function that effectively paused processing between pixels.  

Finally, the C model was expanded to parse an input parameters file, generate a stimulus 

script, and generate an expected result to enable encapsulated verification. 
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Figure 4.1: Effect of Error Spreading on Neighboring Pixels. 
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/**********Pseudo-Random Number Generator for Diffusion (LFSR)**************/ 
void RandGen (ErrorDiffParams *DiffParams)  
{ 
 /*RandNum is a global variable*/ 

short int   X1_in1, X1_in2, X2_in1, X2_in2, X3_in1, X3_in2; 
 short int   X1, X2, X3; 
 unsigned short int BitSel0, BitSel1, BitSel2, BitSel3; 
 unsigned short int EnableXor0, EnableXor1, EnableXor2, EnableXor3; 
 unsigned char ReSeed, Feedback; 
 
 /*Peel off the register settings*/ 

BitSel0 = DiffParams->RandomBitSel0; 
BitSel1 = DiffParams->RandomBitSel1; 

 BitSel2 = DiffParams->RandomBitSel2; 
 BitSel3 = DiffParams->RandomBitSel3; 
 EnableXor0 = DiffParams->RandomEnableXor0; 
 EnableXor1 = DiffParams->RandomEnableXor1; 
 EnableXor2 = DiffParams->RandomEnableXor2; 
 EnableXor3 = DiffParams->RandomEnableXor3; 
 ReSeed = DiffParams->Seed; 
 Feedback = DiffParams->RandomFeedback; 
 
 if (ReSeed) 
 { 
  RandNum = DiffParams->SeedVal; 
 } 
 else 
 {  /*If not a ReSeed then generate a new random value.*/ 

/*Get the first bit of the first xor.*/ 
  X1_in1 = (RandNum >> BitSel0)&0x1&EnableXor0;  

/*Get the second bit of the first xor.*/ 
X1_in2 = (RandNum >> BitSel1)&0x1&EnableXor1;  

  X1 = X1_in1^X1_in2; 
 
/*Get the first bit of the second xor.*/ 
X2_in1 = X1;  
/*Get the second bit of the second xor.*/ 
X2_in2 = (RandNum >> BitSel2)&0x1&EnableXor2;  

  X2 = X2_in1^X2_in2; 
   

/*Get the first bit of the third xor.*/ 
X3_in1 = X2;        
/*Get the second bit of the third xor.*/ 
X3_in2 = (RandNum >> BitSel3)&0x1&EnableXor3;  

  X3 = X3_in1^X3_in2; 
  RandNum = (((RandNum>>1)&0x7FFF) & (~(0x1<<Feedback))) | ((X3)<<Feedback); 
                        /*Shift RandNum right by one with the top bit being the xor.*/ 
 } 
} 

Figure 4.2: C Model Excerpt of LFSR Function. 
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/* This starts the Error-Diffusion part. */ 
while (LineNum < DiffParams.NumLinesToProcess) 
{ 

/*Line the LFSR up with the HW at the beginning.*/ 
 if (DiffParams.Enable) 
 { 
  if (!LineNum) 
  { 
   /*First Line. Time to reseed*/ 
   RandGen(&DiffParams); 
  } 
  /*Pipeline Stage: SOURCE_IN_REG1*/ 
  RandGen(&DiffParams); 
  /*Pipeline Stage: SOURCE_IN_REG2*/ 
  RandGen(&DiffParams); 
  /*Pipeline Stage: SOURCE_IN_REG3*/ 
  RandGen(&DiffParams); 
  /*Pipeline Stage: SOURCE_IN_REG4*/ 
  RandGen(&DiffParams); 
  /*Pipeline Stage: SOURCE_IN_REG5*/ 
  RandGen(&DiffParams); 
  if (!DiffParams.SpreadPassEnable) 
  { 

/*Two extra stages are needed in the pipeline when the Spread  
    passing is not enabled*/ 

   /*Pipeline Stage: SOURCE_IN_REG6*/ 
   RandGen(&DiffParams); 
   /*Pipeline Stage: SOURCE_IN_REG7*/ 
   RandGenA(&DiffParams); 
  }/*End if DiffParams.SpreadPassEnable*/ 
 }/*End if DiffParams.Enable*/ 
  * 
  * 
  * 
  * 
  * 
 if (DiffParams.Enable) 
 { 
  /*Line the LFSR up with the HW at the end of the line*/ 
  RandGen(&DiffParams); 
 } 
}/*End of LineNum loop*/ 
 

Figure 4.3: C Model Excerpt for Duplication of LFSR Function. 
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/* This is the most important equation in this file!!! 
    Explanation: 
    We want to take the dot value from the raster line and add in errors from the previous 
    line and from the previous dot. Here is what everything means:   

ErrorFW - Error from the previous dot. 
SourceIn - Current raster byte. 
DiffParams.Shift – Weight control of source passed via DiffParams struct. 
Error.Rem - Remainder from division by 16 of previous Error.Whole. 
PrevLineErrorTotal - Total of ErrorDB, ErrorDN, and ErrorFW  
    from the dots on the previous line that contribute to the current raster byte. 
DotVal - The adjusted raster byte with error added and multiplied by 16. 

*/ 
DotVal = ErrorFW + (((SourceIn<<DiffParams.Shift)&0xFFF) + Error.Rem) + PrevLineErrorTotal;  

Figure 4.4: C Model Excerpt of Implemented Running Pixel Calculation. 
 

 

SYNC: process(ASIC_CLK, RESET_N) 
begin 

if (RESET_N = '0') then 
DOT_VALUE <= (others => '0'); 

elsif (ASIC_CLK'event and ASIC_CLK = '1') then 
if (CLEAR_ACC = '1') then 

DOT_VALUE <= (others => '0'); 
elsif (ENABLE_CALC1 = '1') then -- Green light 

                 -- stage 1 calculation 
-- Add source, line-to-line error, remainder and forward error and latch 
-- them to DOT_VALUE. 
-- Extend the sign for the ERRORs.  
-- 
-- DOT_VALUE is made up of 16 bits.  This allows 4 bits of remainder, 
-- 10 bits of whole number, one bit for sign and one bit for overflow.   

                  DOT_VALUE <=  ERROR_FW + ('0'&SOURCE_SHIFTED) + 
                               REMNDR_INT + ERROR_IN_INT; 

  end if; 
 end if; 
end process SYNC;  

Figure 4.5: HDL Excerpt of Implemented Running Pixel Calculation. 
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#ifndef CHKDIFF_H 
#define CHKDIFF_H 
 
typedef struct 
{ 
 /*Register variables*/ 
 Byte1Type Enable; 
 Byte1Type InitDir; 
 Byte2Type NumLinesToProcess; 
 Byte4Type NumBytesToProcess; 
 Byte1Type BitsPerPix; 
 Byte1Type Shift; 
 Byte1Type NumRandomBits; 
 Byte2Type Seed; 
 Byte2Type InitSeed; 
 Byte1Type RandomBitSel0; 
 Byte1Type RandomBitSel1; 
 Byte1Type RandomBitSel2; 
 Byte1Type RandomBitSel3; 
 Byte1Type  RandomEnableXor0; 
 Byte1Type  RandomEnableXor1; 
 Byte1Type  RandomEnableXor2; 
 Byte1Type  RandomEnableXor3; 
 Byte1Type RandomFeedback; 
  
 /*DMA variables*/ 
 Byte4Type DMAErrBuffStart; /*DMA Start of the Internal Error Buffer*/ 
 Byte4Type DMAErrBuffEnd; /*DMA End of the Internal Error Buffer*/ 
 Byte4Type DMAPrintBuff;  /*DMA Start of Print Buffer*/ 
 Byte4Type DMAMarkBuff;  /*DMA Start of Mark Buffer*/ 
 Byte4Type DMAPrintIndex;  /*DMA Print Step Index*/ 
  
}ErrorDiffParams; 
 

Figure 4.6: C Model Excerpt of DiffParamsStruct. 
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Err Diff Random Control Register           rb4ErrdiffRandCntrl  0x1000138C 
 
This register allows firmware to control the pseudo-random number generator.  Also, this register 
contains the selection bits for each feedback bit into the XOR logic.  Up to four terms can be fed back 
through XOR’s into the LFSR.  An explanation of the LFSR and its settings occurs later in this 
document. 

   
 

Bit POR Description Operation 
15:0 0 Not Used Read Only 
19:16 0 Random selection bits for term 1.  Represents which one of 

16 bits will be used from the pseudo-random number 
generator for first feedback bit.  

Read/Write 

23:20 1 Random selection bits for term 2.  Represents which one of 
16 bits will be used from the pseudo-random number 
generator for second feedback bit. 

Read/Write 

27:24 0 Random selection bits for term 3.  Represents which one of 
16 bits will be used from the pseudo-random number 
generator for third feedback bit.  

Read/Write 

31:28 0 Random selection bits for term 4.  Represents which one of 
16 bits will be used from the pseudo-random number 
generator for fourth feedback bit. 

Read/Write 

 

Err Diff Seed Register  rb4ErrdiffSeed 0x10001390 
 

This register allows firmware to input a new seed into the pseudo-random number generator.  When 
reading the Seed/LFSR bits of this register the current LFSR state is returned.  Also, this register 
contains the disable bits of each feedback entry of the XOR’s in the LFSR polynomial.  When set to 1 
the input into the XOR for the particular entry is set to 0.  This essentially forces the XOR into pass-
through mode.  Finally, this register contains the feedback entry selection bits. 

 
Bit POR Description Operation 
15:0 0 Seed/LFSR bits. Read/Write 
16 0 Disables Random feedback entry 1. Read/Write 
17 0 Disables Random feedback entry 2. Read/Write 
18 1 Disables Random feedback entry 3. Read/Write 
19 1 Disables Random feedback entry 4. Read/Write 
23:20 F Random feedback entry selection bits.  Represents which one 

of 16 bits will be the feedback point of the LFSR.  For 
instance, if set to 4 then bit 4 of the LFSR will be where the 
feedback from the final XOR term enters the LFSR. 

Read/Write 

31:24 0 Not used Read Only 
 

 Figure 4.7: Implemented HDL Firmware Specification Excerpt for LFSR Function. 
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Err Diff Control Register  rb4ErrdiffControl 0x10001380 
 

This register holds the control bits for the Error Diffusion Hardware Assist.   
 

Bit POR Description Operation 
0 0 Left out for this illustration Read Only 

1 0 

Run operation bit.  Writing a 0 tells the hardware to stop 
operation and return to an initial state.  Writing a 1enables 
operation.  This bit will be automatically cleared when the 
process completes. 

Read/Write 

6:0 0 Left out for this illustration Read Only 

7 0 This bit, when set to a 1, enables the Error Diffusion logic to 
run in the step mode.  Read/Write 

8 0 
By setting this bit to a 1 the Error Diffusion logic is told to 
step when in the step mode.  This bit will be cleared 
automatically by the hardware.  

Read/Write 

31:9 0 Left out for this illustration Read Only 
 

Figure 4.8: Main Control Register Firmware Specification Excerpt. 
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Figure 4.9: Portion of Controlling State Machine Driven by Signal WAIT_ST. 
 

-- Generate the signal that moves the ERRDIFF_CTRL_SM into the wait state 
WAIT_ST_INT <= (STEP_FUNC_EN and not STEP_ED) or  
                PRINT_OUT_FULL or  
                (SMBUFF_OUT_ENABLE and ERROR_OUT_FULL) or 
                (SPREAD_PASS_EN_REG and PACKED_SPREAD_FULL) or 
                (SMBUFF_IN_ENABLE and ERROR_IN_EMPTY) or 
                not SOURCE_RDY; 
WAIT_ST <= WAIT_ST_INT;  

Figure 4.10: Excerpt of Implemented HDL for WAIT_ST Assignment.
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Err Diff Dot Map Reg  rb4ErrdiffDotMap 0x100013A0 
 

This register allows firmware to control the dots that will be produced when a given threshold is met.  The 
STATE_SIGS_REG and LXK_THRESH are for debugging purposes only. 

 
Bit POR Description Operation 
7:0 0 Dot map.  Each pair of bits represents each combination 

using Lexmark and 2bpp thresholds.  Bits 1:0 represent no 
dot placement and no threshold met.  Bits 3:2 represent 
above the 2bpp-threshold only (low).  Bits 5:4 represent 
above Lexmark threshold only (mid).  Bits 7:6 represent 
above both thresholds (top).  

Read/Write 

13:8 0 STATE_SIGS_REG Read Only 
15:14 0 Not used Read Only 
27:16 0 LXK_THRESH_RAND observation.  Output of the LXK 

threshold table plus the selected RAND_NUM. 
Read Only 

31:28 0 Not used Read Only 
 
 

State values: 
 SOURCE_IN_REG1:  000001 

SOURCE_IN_REG2:  000010 
SOURCE_IN_REG3:  000011 
SOURCE_IN_REG4:  000100 
SOURCE_IN_REG5:  000101 
DOT_VALUE:   000110 
SOURCE_IN_REG6:  000111 
SOURCE_IN_REG7:  001000 
CALC_STG1:   001001 
CALC_STG2:   001010 
FS1_STG2:   001011 
FS2_STG2:   001100 
FS3_STG2:   001101 
FS4_STG2:   001110 
FS5_STG2:   001111 
FS6_STG2:   010000 
FS7_STG2:   010001 
FDV_STG2:   010010 
WAIT_ON_DMA:  010101 
WAIT_SPREAD_FIFO:  011100 
FLUSH_LAST_ERROR1:  011111 
END_OF_LINE:   100000 
WAIT_ON_PRINT:  100001 
WRITE_LAST_ERROR:  100100 
WRITE_LAST_SHIFT:  100110 

 

Figure 4.11: Firmware Specification Excerpt Showing STATE_SIGS Access. 
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Figure 4.12: Encapsulated Verification System Utilizing an Accurate C Model. 
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Figure 4.13: System Architecture Incorporating Bus Model. 
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-----Write ERRDIFF registers---- 
wrchk 10001384 00010010  --ErrDiff Bytes/Lines Register 
wrchk 1000138C 0010E853  --ED Random Control Register 
wrchk 10001390 00001711  --ED Seed Register 
wrchk 12001394 0000637F  --ED Top Threshold register 
wrchk 12001398 00007F7F  --ED Mid Threshold register 
wrchk 1200139C 00007F7F  --ED Low Threshold register 
wrchk 12001380 0003D63A  --ED Control Register 
-------------------------------- 
-----Wait for the interrupt----- 
sense 01 01 
-------------------------------- 
-------Clear the interrupt------ 
wrchk 12001128 00600020  --ED_A interrupt 
-------------------------------- 
----Now read back the output---- 
check cyerrout cyerrin 00000400 40 --Store the cyan errors while checking them 
check cydotsout cydotsin 00010000 1430 --Store the cyan print data while checking it 

 

Figure 4.14: Sample Simple Script for Bus Model Stimulus. 
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Chapter 5 

USING THE ERROR DIFFUSION C MODEL 

 

To better understand the importance of having an accurate C model, let us 

consider the LFSR previously discussed.  The LFSR designed in this implementation of 

error diffusion is designed to break up unpleasant patterns that may result from 

distributing quantized error to neighboring pixels.  It is intended to randomize the 

threshold step of the system.  One could argue that the value of an LFSR at any given 

time is not important and does not need to be predicted.  Regardless of the LFSR value, 

randomization should be achieved assuming the designed full cycle range is targeted.  

However, please consider the following two images.  Figure 5.1 represents a diffused 

image using a C model that exactly matches the implemented HDL.  Figure 5.2 

represents a diffused image using an altered version of the C model.  The altered C model 

contains one less function call to RandGen, thus, misaligning the LFSR cycle of the C 

model to that of the implemented HDL.  Note that the two images appear very similar 

and are acceptable.  Now consider Figures 5.3 and 5.4.  Figure 5.3 is the same as Figure 

5.1, but focusing only on the left corner of the image.  Thus, Figure 5.3 is a focused zoom 

on the left corner of the image generated using a C model that exactly matches the 

implemented HDL.  Similarly, Figure 5.4 is a focused zoom on the left corner of the 

image generated using the altered C model.  Note that the two images are not the same 

and would be very hard to detect without focusing on a unique area of pixels.  Without 

knowing what the intended result was, or having an accurate C model to point out this 

error, it would be virtually impossible to find.  Additionally, without an exact C model it 
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would be hard to predict results of marginal algorithm improvements over model 

implementation deficiencies.   

 To take this example a step further, consider the debug steps required when an 

image difference such as this occurs.  Initially, it could be detected just by simple 

comparison.  Unfortunately, this would not be enough to point out the root cause.  With 

an accurate C model, a simulation can be generated and compared by stepping through 

the C code using a debugger.  Now consider Figure 5.5 which represents a screen capture 

of a code debugger alongside a simulation wave window for variable and signal 

comparison.  Knowing that the failure occurs during initial processing, the focus is on the 

first pixel.  When the first DotVal calculation is made, both the simulation and C model 

match with a value of 0x00FC, however, there is a difference between rand_no_reg of the 

implemented HDL and RandNum of the C model during this cycle.  The two should be 

aligned one cycle before DotVal.  This is the case because rand_no_reg actually is added 

to other signals and captured by the threshold register on the next cycle to align with 

DotVal in the pipeline.  Notice that RandNum has a value of 0x7171 while rand_no_reg 

has 0xB8B8.  While RandNum and rand_no_reg only disagree by one cycle, and this 

difference did not cause an immediate problem, it will force an issue with DotVal at some 

later cycle.  Figure 5.6 presents the code debugger state along with the simulation wave 

window after taking four steps through the model.  Note that DotVal still matches with a 

value of 0x0238, and that rand_no_reg and RandNum are still misaligned with values of 

0x8B8B and 0x1717 respectfully.  The first DotVal misalignment occurs after the next 

step and is shown in figure 5.7.  Here, the C model expects DotVal to be 0xFA48, while 

the implemented HDL is actually 0x0240.  Note the value of PrintByte does not match 
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between the two as well.  PrintByte represents the diffused dots as they are created.  The 

C model placed a dot at pixel location 5, which explains a negative DotVal of 0xFA48.  

Surrounding pixels must be negatively affected by the dot placement.  Because the LFSR 

is applied to the threshold logic, the error manifested itself as incorrect predicted dot 

placement versus actual dot placement.  After determining that the LFSR cycle appears to 

be misaligned, additional RandNum function calls can be added to the C model.  Figure 

5.8 illustrates correct alignment at the first DotVal calculation or first pixel.  Both 

systems match for DotVal and LFSR with 0x00FC and 0xB8B8 respectfully.  Fortunately, 

in this example the incorrect LFSR cycle would not be considered an HDL 

implementation issue.  In fact, given the nature of an LFSR, its current value is irrelevant.  

However, the C model would need to be corrected to match exactly the implemented 

HDL for accurate prediction.  

 A similar approach could be taken when debugging the actual hardware.  Assume 

for demonstration purposes that the LFSR cycle error was implemented in the C model 

and had escaped HDL verification.  The expected result would be that displayed in 

Figures 5.2 or 5.4 and the actual hardware result would be that displayed in Figures 5.1 or 

5.3.  Focus would quickly turn to processing the first few pixels.  Utilizing the stepping 

function provided within the actual hardware, the system could be configured to stop 

processing just before the first pixel.  At that point, the current LFSR value could be read 

and compared to that of the predicted result.  Once identified as an issue, the scenario 

could be recreated in simulation to point out that the LFSR C model design was missing 

an extra access.   
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 While the above LFSR examples were fabricated and would not necessarily point 

out a hardware design issue, they do point out a need for accurate modeling techniques.  

It could be that some simple design flaw existed in how to implement binary overflow 

conditions.  Something like this would not happen often in images with light color, but 

could be problematic in those with dark shades.  Figure 5.9 illustrates an image diffused 

with approximately 2% error overflow accruing.  Figure 5.10 illustrates the same image 

diffused using better techniques to eliminate error overflow.  As illustrated in the first 

few lines of the image in Figure 5.9, overflow within error can cause quantization loss 

and unsightly diffusion issues.  By utilizing an accurate C model, running error could be 

checked between lines and debugged similarly to that of the LFSR example above.     

 Given that an exact C model has been developed, proving out new functions or 

enhancements can become achievable.  For instance, consider United States Patent 

#7486834, System and Method for Dynamically Shifting Error Diffusion Data [26].  This 

patent entails compressing diffused error that passes between lines during processing.  

The passing of error between lines can be cumbersome in two ways.  First, it may burden 

the system bandwidth while passing error into and out of main memory.  Second, an 

internal SRAM is used to optimize system bandwidth.  This technique can be large and 

expensive in area, depending on the number of colors being processed simultaneously, 

the width of the image, and the resolution of passed error.  Before, it was stated that 

diffused error can be viewed as the system signature, and it is vital that its integrity is 

maintained.  Any failure to accomplish this will result in a poor diffusion system.   

Therefore, something as intrusive as error compression had to be proven.  

Additionally, the results had to be accepted by a panel of engineers skilled in the art of 
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color science and image manipulation.  Using a C model that accurately represented what 

the implementation would be easily enabled the development of print samples for 

approval.  Several print samples were generated using uncompressed error and two 

different variations of compression techniques.  Given an objective survey between the 

different images, it was proven that the error compression technique in question was 

acceptable.  This allowed for savings in both SRAM area and system bandwidth when 

required.  Once the C model was proven, the implemented HDL was designed to produce 

identical and acceptable output. 

In all cases discussed thus far that implied simulation, an encapsulated 

verification method was utilized.  As was discussed before, the C model expects a 

parameters file to parse, which dictates the intended operation.  Additionally, the C model 

expects an input file on which to execute the operation.  Based on these two variables, a 

stimulus script for a targeted bus model will be generated, as well as the expected 

resultant image from the operation requested.  The mode of operation to generate a new 

test case using this method is to change the parameters file and input image.  Multiple 

parameters files and images were generated to test different problematic areas.  For 

instance, the parameters file indicates LFSR setup information.  By targeting and 

changing this information for different images, the LFSR function can be more 

completely verified.  Consider Figure 5.11, which represents an excerpt from an actual 

parameters file that could be used for generating a test case.  As it can be seen, the 

parameters did, in some cases, represent the register settings very closely.  This gave 

tighter control between parameter variance and control register effect.  As will be 
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explained later, this type of verification lends itself nicely to constrained random 

verification.    

In summary, the importance of an accurate C model at the processing cycle level 

is proven when considering several examples.  As presented here, a simple cycle 

misalignment with a predicted LFSR function caused subtle differences within the image.  

While it was subtle and probably acceptable, it would make system debug impossible 

without first correcting the C model.  During the debug phase, it is vital that variables 

within the C model accurately represent signals and registers of the implemented HDL.  

Without this, correlation to root cause becomes a guessing exercise.  Assuming an 

accurate C model is provided, new features or enhancements can be proven through 

presentation of expectations to experts in color science.  Finally, by implementing the 

encapsulated simulation environment, multiple test cases can be generated by changing 

the input parameters file and input image with less reliance on human interaction.  
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Figure 5.1: Diffused Image Using Accurate C Model. 
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Figure 5.2: Diffused Image Using Altered C Model. 
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Figure 5.3: Diffused Image Using Accurate C Model. 
 

 

 

Figure 5.4: Diffused Image Using Altered C Model. 
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Figure 5.5: Simulation Wave vs. C Model Debugger at First Pixel. 
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Figure 5.6: Simulation Wave vs. C Model Debugger at Fourth Pixel. 
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Figure 5.7: Simulation Wave vs. C Model Debugger at Fifth Pixel. 
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Figure 5.8: Simulation Wave vs. C Model Debugger with Corrected LFSR at First 
Pixel. 
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Figure 5.9: Image Containing ~2% Error Overflow. 

 

Figure 5.10: Image Diffused With No Error Overflow. 
 

--Psuedo-Random Number Generator Seed (default=0x5905) 
RandomSeed = 0000          
--Selects first bit that goes into first XOR (default=0) 
RandomBitSel0 = 0           
--Selects second bit that goes into first XOR (default=11) 
RandomBitSel1 = 11           
--Selects second bit that goes into second XOR (first bit is output of first XOR) (default=13) 
RandomBitSel2 = 13           
--Selects second bit that goes into third XOR (first bit is output of second XOR) (default=14) 
RandomBitSel3 = 14           
--1=Enable first bit of first XOR, 0=Force 0 into first bit of first XOR (default=1) 
RandomEnableXor0 = 1       
--1=Enable second bit of first XOR, 0=Force 0 into second bit of first XOR (default=1) 
RandomEnableXor1 = 1       
--1=Enable second bit of second XOR, 0=Force 0 into second bit of second XOR (default=1) 
RandomEnableXor2 = 1       
--1=Enable second bit of third XOR, 0=Force 0 into second bit of third XOR (default=1) 
RandomEnableXor3 = 1       
--Selects the feedback bit entry point into the LFSR (0-15) (default=15) 
RandomFeedback = 15           
 

Figure 5.11: Parameters File Excerpt for LFSR Function Directives. 
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Chapter 6 

FUTURE WORK 

While implementing a simple scripting language for generating encapsulated test 

cases is powerful, this idea could be carried further.  Using the bus model described 

above, adding the ability to branch to various lines of the script based on a check unlocks 

more possibilities.  With a branch command, the role of the bus model could be extended 

to modeling a microprocessor utilizing a simple device independent scripting language.  

With more effort, a C compiler could be developed to convert simple C code into the 

simple commands described above.  By designing the accurate C model to write simple C 

instructions instead of the device independent scripting, the C model is now able to write 

low level C code that can be used in various ways.  It could be used to aid in firmware 

development and could be used at each level of hardware development, from simulation 

to actual FPGA or silicon fabrication regardless of the platform.  During early 

development verification, the microprocessor model C compiler would compile the C 

model generated code for simulation verification.  At later stages, when an actual 

microprocessor is available, the corresponding compiler would compile the same C code 

into the correct assembly language.  Device independent and portable platform 

verification can thus be achieved.   

 Obtaining identifiable parameters with expected boundaries and an encapsulated 

environment leads to constrained random verification techniques.  In industry today, 

verification engineers are utilizing tools such as System Verilog to randomize variables 

within constraints to achieve very high testing coverage.  Additionally, code and 

functional coverage metrics are being applied.  The C model described in this thesis is 
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ideal for utilization within a System Verilog environment.  A System Verilog simulation 

could be developed to generate the parameters files and select input images for each new 

test case to be created.  The System Verilog code would randomize the 

variables/parameters within specified constraints and be able to generate thousands of test 

cases.  Furthermore, given that the test cases being generated utilize C code, the test cases 

are directly portable to an FPGA emulation or ASIC platform.   

In summary, the C model concept can be further innovated to take advantage of 

an encapsulated verification environment.  This yields several powerful possibilities.  

Among these possibilities is device independent verification from simulation to actual 

silicon.  Additionally, constrained random verification can be achieved at each stage of 

verification.   
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