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Abstract: The verification of complex digital designs often involves the use of expensive simulators.
The present paper proposes an approach to verify a specific family of complex hardware/software
systems, whose hardware part, running on an FPGA, communicates with a software counterpart
executed on an external processor, such as a user/operator software running on an external PC.
The hardware is described in VHDL and the software may be described in any computer language
that can be interpreted or compiled into a (Linux) executable file. The presented approach uses open
source tools, avoiding expensive license costs and usage restrictions.
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1. Introduction

1.1. Background

The verification of designs at the software, hardware and firmware level is one of the most
important tasks to assure the correct functionality of a designed application. This can be especially
critical in fields where a functional failure is costly in terms of economy or risk to human life, such as
biomedical and aerospace industries.

At the firmware (also called gateware) level, there are multiple ways to verify the behaviour
of a circuit, from the basic use of simulation tools to simulate specific parts of a design [1], or using
these simulation tools following standard verification methodologies, such as UVM [2] or UVVM [3],
to applying formal verification [4].

Simulation-based approaches allow the user to monitor the behaviour of his/her circuit when
faced with given stimuli. This is also known as functional verification. When the complexity of the
designs grows, testbenches also become more complex and thus require more time to be developed.
For this reason, there is a high interest in the industry to reuse code for testbenches and streamlining
the verification process. UVM and UVVM are simulation methodologies to describe testbenches and
its components in a generic way, so that they can be reused for many different projects and allow
automatic testing.

Formal methods are capable of proving that the properties of a given design hold, under specific
conditions (such as inputs within an expected sequence of values), using mathematical methods,
without the need to create complex testbenches.

As the complexity of the design increases, as can happen in the integration between software and
hardware, the verification becomes more complex and therefore requires the use of more sophisticated
tools to detect and correct errors in the application or design to be verified.
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1.2. Problem of Interest

Nowadays, there are different tools to perform verification, such as Vivado Simulator [5] or
Questa Advanced Simulator [6] for HDL simulation, which typically require the purchase of expensive
licenses. Recently, free and open source software tools have emerged that are capable of simulating
HDL designs with accuracy, speed and adherence to the HDL Standards that can rival many of the
commercial tools (particularly the ones integrated with the software provided by FPGA vendors).
A revision of what can be done with these free and open source tools can be found in [7].

Basic simulation, without following any functional verification methodologies, has the advantage
of requiring little engineering effort at first, but it does not scale well when testing complex modules
or using complicated input sequences, requiring more and more engineer effort as complexity
increases. For this reason, it is seldom used to simulate complete designs, but is instead used by
the design engineers to make some quick verification of the most basic functionality of a module.
When verification metrics are used, this verification method typically obtains poor results.

Functional verification methodologies improve on what can be done with simulation,
by structuring testbenches so that engineering efforts are distributed between different testbench
submodules which may also be reused. The main drawback of these methodologies is their steep
learning curve: for example, if a VHDL designer wants to use UVM to verify a design, he or she
must first learn Verilog, SystemVerilog and object-oriented programming, and then learn the UVM.
Furthermore, the commercial simulators that support the versions of the HDL standards that these
methodologies need (SystemVerilog in the case of UVM, and VHDL-2008 in the case of UVVM)
are not distributed with the FPGA vendor tools and must be purchased separately. This makes
designers, especially the ones whose target is an FPGA, not have the economic or time budget to
use them. The reason being that these methodologies are mainly tailored for designs that are going
to silicon, but designs whose target device is an FPGA (which would gain confidence if using these
methodologies) often find that the designers do not need all the verification capabilities and their
time/effort budget is not sufficient to warrant the use of these methodologies.

Formal methods are notably powerful for demonstrating circuit properties in small-to-medium
design blocks. Due to the heavy mathematical load of these methods and the change in mindset
that the verification engineer needs to undertake in order to use them, they typically require special
training. As the complexity of the mathematical proofs increases exponentially with design complexity,
these methods do not lend themselves well to checking full designs. In some cases, the formal models
of the full designs may be simplified in order to reduce calculation time, which could create verification
gaps if not done correctly.

Apart from the verification methods chosen, projects where integration between hardware,
software and firmware is required often suffer from delays, which may risk the final project closure
on time. A missing hardware or firmware part may block the progress of the software part and
vice versa, resulting in a delay of the global project. The integration with external software is subject
to the capabilities of proprietary simulators, and the users may be in a situation where they want
to access a feature that is not covered by their current licenses. Furthermore, simulators that are
provided with the typical FPGA vendor tools, which are the ones that the majority of users know how
to use, do not support the VHDL or Verilog capabilities that these modern verification methodologies
require. It would be desirable to have a verification environment whose capabilities were not limited
by proprietary licenses, while being easy to use to verify a complex design where the integration of
software and hardware is required.

1.3. Literature Survey

In the existing literature, there are several methods and tools to perform the verification of
different kinds of designs or circuits. They can be classified into two categories: functional verification
and formal verification.
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Functional verification based on simulation can be done by stimulating the design under test
with ad hoc test benches using a software simulation tool. Commercial simulation tools are used in [8],
where genetic algorithms are used to define input patterns, which are fed to a VHDL simulator to drive
the system to configurations that increase code coverage, improving the capabilities of the verification
by simulation technique. In [9], the co-simulation of hardware and software for a system-on-chip is
achieved by running the software part in a simulated hardware model. Co-verification allows verifying
the complete final system, thus avoiding software development time delays due to missing hardware
or mismatches between hardware architecture and software application.

Other approaches for functional verification, such as [10,11], use the standard methodologies,
such as UVM or UVVM, to verify their designs. A recent study in FPGA verification trends in industry
can be found in [12]. On the other hand, in academia, there seems to be a lower penetration of
functional verification methodologies, and specific verification efforts are typically not mentioned in
publications, except the ones that directly focus on verification [13–16]. Some researchers, such as [17],
propose their own methodologies with reusable modules, resulting in testbench architectures similar
to (but not compatible with) the standard methodologies.

If a higher level of confidence is needed, formal verification methodologies may be applied.
This technique allows to mathematically prove or disprove properties of the circuit, without using
simulations. A popular use is to check that specific error conditions will never occur in a module,
given a set of restrictions in its inputs. For some circuits, another use case could be to compare the
equivalence between the design under verification and a reference model that behaves as desired.
A survey of techniques for formal verification for co-verification is collected in [18].

When the complexity of the designs increases, formal verification techniques are more difficult
to apply. In these cases, approaches that combine different verification methodologies can be useful.
Ref. [19,20] combine techniques of simulation and formal verification to reach a compromise between
confidence and complexity.

1.4. Scope and Contribution of This Paper

This paper presents the design and development of a co-verification environment with both
software and firmware components that allows to verify the functionality of an FPGA application that
communicates with a software that runs on a PC, all using open source tools.

Although approaches like [9] also perform co-verification techniques, there is not a single one
among the above proposed that performs co-verification where the software and hardware parts
interact, but are independent of each other. In the case of [9], the software runs inside the simulated
hardware, while in the proposed approach, the software runs on a PC and communicates with a
firmware application running on an FPGA.

The proposed verification approach has a lower learning curve than standard methodologies,
since it does not require learning a different language or constructing a very complex testbench in
terms of transactions, drivers, monitors and agents.

Another advantage of the proposed approach compared to the rest found in the literature is the
use of open source tools, which avoids licensing requirements that limit the capabilities of the software,
allowing full access to the tool for the user.

1.5. Organization of the Paper

The paper is structured as follows: Section 2 describes the design under co-verification and how to
construct the co-verification environment. Section 3 describes the test procedure. Experimental results
obtained using the co-verification environment are shown in Section 4. Lastly, the discussion and
conclusions are presented in Section 5.
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1.6. Graphical Abstract

Figure 1 summarizes the proposed approach, test procedure and involved files and tools,
which will be explained in the following sections.

Test failed

pipes

pipes

virtual device

virtual device

software

.tcl

.log~

.log

equal ? no

yes

VHDL
sources

software
sources

Test passed

gccghdl mkfifo gdbgtkwave

Design specifications

inputs expected
outputs

Figure 1. Architecture of the developed co-verification environment. All software used to develop it is
free or open source software (FOSS).

2. Co-Verification Environment

2.1. Design under Co-Verification: The FTU-VEGAS System

The design under co-verification is the system logic of the FTU-VEGAS system, an FPGA-based
fault injection platform developed by Universidad de Sevilla for the European H2020 project VEGAS.
This fault injection platform is based on its previous version FT-Unshades2 [21], which allows to inject
single event upsets (SEUs) on the user logic and configuration bits of an FPGA.

The architecture of the complete system can be seen in Figure 2. In the absence of any specific
verification efforts, all the different elements of the platform must be available in order to test and
verify the system logic, which is implemented in the software and firmware.

The elements that compose the design are described in the following sections.

2.1.1. The Hardware Device

The hardware side of the system is a custom PCI express dual-FPGA board. The two FPGAs are a
Xilinx Virtex-5 and a NanoXplore BRAVE NG-MEDIUM. The first FPGA is called the Service FPGA,
and the second one is called the Target FPGA. The purpose of the system is to study the behaviour
under radiation-induced faults of the Target FPGA, which can be configured with different user designs.
The Service FPGA must then contain all the necessary firmware to control the fault injection testing
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and associated on-board hardware: buses, communications, memory, etc. The hardware device also
includes two on-board memories and a PCI express port to connect to a PC. The design and production
of this hardware device consisting of a custom PCB with these two FPGAs require a considerable
fraction of the project time, resulting in a bottleneck in the development process.

Figure 2. Architecture of the FTU-VEGAS system. A custom PCI express dual-FPGA board supports
the two FPGAs in the system. The system logic is implemented in the FPGA Firmware (Firmware 4.0)
and the computer software (tntsh 4.0).

2.1.2. The FPGA Firmware

The firmware that runs in the Service FPGA is responsible for the low-level management of the
fault injection testing and all on-board hardware. The different modules of the firmware exchange
data using custom-made stream blocks that allow managing a flow of data whose width may change.
The architecture of the firmware is shown in Figure 3, which also shows other on-board components
that directly interact with it.

The main functional blocks in the firmware are:

• Core: decodes commands from software, manages the other modules and sends responses
to software.

• Config: manages the configuration interface of the Target FPGA.
• Vectors: manages the feeding of test vectors (stimuli and clock) for the user design.

Communicates with the SRAM controller to store the input and output vectors in order to
minimize communications with the software.

• SRAM controller: manages data transfer with one of the on-board SRAMs.
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Figure 3. Architecture of the firmware that runs in the Service FPGA, the Xilinx Virtex-5.
The NanoXplore BRAVE NG-MEDIUM FPGA and the on-board SRAM accessed by the Virtex-5
are also shown.

2.1.3. The Computer Software

The software runs on a computer to which the hardware is connected and interfaces with both
the hardware and firmware of the system, interpreting and executing the user commands which can
be read either from an interactive shell or from a script file. Most of the functionalities of the software
require interacting with the firmware that is supported by the hardware. The software is called tntsh
(test analysis tools shell), and its architecture is shown in Figure 4.

Figure 4. Architecture of the tntsh software.
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The main functional modules of the software are:

• tntsh: a tcl shell that interprets the user commands and can be used in batch mode.
• libtnt-tcl: extends the tntsh functionalities by wrapping the C/C++ API of the internal modules,

so that they can be accessed through the tcl shell.
• bit tree: creates an internal representation of the design hierarchy. The .pin files are I/O pin

representations and the .ctxt files are internal design representations.
• campaign: the top-level implementation of the fault injection tests. Different injection schemas

may be used, and campaigns can be run in batch mode.
• commands: header file with the command codes
• debugger: allows single-step execution, interactive debugging and reading and writing .vcd files

with the inputs and outputs of the design under test. The record submodule manages an internal
compressed I/O vector format.

• device: manages the communications with the FTU-VEGAS device.

2.2. Developing the Co-Verification Environment

2.2.1. Traditional Testing

Unit tests can be performed at all levels by building a test environment for every module
developed, both at firmware and software source levels. Due to the complexity of the system, these unit
tests may only cover small parts of the complete functionality. Many, if not most, of the functionalities
of all system elements require the system to be at least partially complete, to cover all the functionality
that depends on the interactions between the different system elements.

If no specific verification actions are taken, integration tests can only be run if we have the
complete system, as shown in Figure 5. Waiting for the complete system to be available in order to
begin a thorough testing of the system logic increases risk and may introduce delays in the project.

Hardware

Firmware PCIe tntsh .tcl

Figure 5. Components required for integration tests of the full system.

The integration tests use the Tcl API provided by tntsh to run a test script and compare the
output with a model that is sometimes hand made, sometimes generated with an independent
script, and sometimes generated with a previous version of the system and checked for errors.
Unfortunately, they cannot be executed without the hardware.

2.2.2. Testing Software with No Hardware or Firmware

At some point in the development process, it was noticed that the software was getting ahead of
the rest of the project, but could not be tested beyond the most basic unit tests because there was no
platform to do so. The solution is then to provide a platform that does not require the same resources
that the hardware does, as can be seen in Figure 6.
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Software virtual device

Firmware mockup pipes tntsh .tcl

Figure 6. Components required for integration tests where neither hardware nor firmware are available.

Since the communication protocol between software and firmware had been specified, it was
possible to write a software module that behaved just like the firmware and hardware would. It could
not be connected to a PCI express device, but since a PCI express device connected to a unix or unix-like
server can become a device file in userspace, the presence of the device can be emulated by a pair of
named pipes that connect the software and our virtual device.

Constructing the software virtual device

The software virtual device is a computer program that completes the following tasks:

• Open the read and write pipes that connect it to the tntsh software.
• While the pipes exist:

– Read 1 byte from the input pipe.
– Decode the read byte to obtain the command sent by tntsh.
– Execute the command, reading from the input pipe any data needed.
– Send the expected response to the output pipe.

• Exit cleanly, closing any open files and releasing any reserved memory.

If the software is well structured, multiple files can be shared between the software and the
software virtual device, such as the header file with the command codes, communication protocol
details, and internal data structures, which eases the construction of the software virtual device.
Reusing these files is a tradeoff between development speed and verification capability.

Capabilities and limitations of the software virtual device

The software virtual device has many limitations: it does not actually simulate the Target FPGA;
instead, it has a table where the bitstreams are copied and the values of individual bits can be queried
and changed. For these reasons, only a subset of the software functions can be meaningfully tested.
The simulation of the functionality inside the Service FPGA is not cycle-accurate, since no HDL code is
being used. The emulation of the user design is also missing, since there is no simulation of any HDL.
It does, however, handle all possible error conditions and returns the appropriate codes. Examples
of these are sanity checks, such as reporting an error if the user tries to perform a single clock step
without any vectors previously loaded. While this solution is interesting to test a number of software
functions that need some interaction with the device, it cannot be used to verify any of the VHDL
code of the firmware, since it is not involved in these tests. When enough firmware code is available,
a firmware virtual device becomes preferable, making the software virtual device obsolete except for
functional comparison purposes.



Electronics 2020, 9, 2104 9 of 20

2.2.3. Testing Software and Firmware with No Hardware

As development advanced, the firmware for the Service FPGA grew, as did the required
integration tests, but the development of the hardware lagged behind producing yet another bottleneck.
With the software virtual device in mind, the same principles can be applied to remove the need for
actual hardware in these tests. To achieve this, it would be desirable to have a simulation of the
firmware HDL code that could manage the communication with the unix pipes. The components
required to perform the integration tests in this case are shown in Figure 7.

Firmware virtual device

Firmware pipes tntsh .tcl

Figure 7. Components required for integration tests where firmware is available but hardware is not.

Constructing the firmware virtual device

In order to construct the firmware virtual device, a number of additions have been made to the
firmware architecture. The modified architecture is shown on Figure 8, and it includes the following
new elements:

• Configuration interface simulation model: a simple model of the configuration memory of the
Target FPGA that allows to write and read data from it.

• User design simulation model: instances one of a number of different possible designs.
• SRAM simulation model: models the on-board SRAM. Allows to store and retrieve data.
• Virtual device top-level (VHDL): a wrapper that instances the needed firmware modules and

simulation models, and manages communication between the software shell (tntsh) and the
instantiated firmware through a pair of pipes. This top level implements a VHDL generic that
allows to select the user design and is passed to the user design simulation model.

• Virtual device (Python): a small script that modifies signal values in the user design when it
detects write operations in the configuration interface simulation model. The Python script uses
the cocotb coroutine cosimulation framework [22] in order to perform the fault injections.

Compiling the first four modules with the rest of the firmware code, with GHDL [23], results
in an executable file: the firmware virtual device. In case of testing any system features that need
fault injection, the relevant environment variables must be set or passed so that the Python script is
executed with the virtual device.

Capabilities and limitations of the firmware virtual device

The firmware virtual device solves the drawbacks that the software virtual device had: it includes
a simulation model of the Target FPGA with fault injection capabilities, the simulation is cycle-accurate,
and the user designs in the Target FPGA can be emulated. There is no possible verification gap due to
code reuse, since all the code of the firmware virtual device is written in a different language than the
software. The tradeoff is that the firmware virtual device requires longer execution times, since the
VHDL simulation is more complex than the execution of the software virtual device.
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Figure 8. Architecture of the firmware virtual device. This simulation model includes components to
simulate different parts of the system, including the user designs.

3. Test Procedure

3.1. Unit Tests

Before running the integration tests, it is always advisable to run all unit tests available. This saves
time in case of an easier-to-detect error being inserted in the code, since it would not make sense to
run the integration tests with erroneous code. The developed unit tests check the main functionalities
of the different submodules of the system and have been automated using the GNU Make tool.

3.2. Integration Tests

3.2.1. Components

Figure 9 shows the different components that must interface for every integration test performed:

pipes

pipes

virtual device

virtual device

tntsh

.tcl

.log~

.log

equal ? Test failedno

yes

Test passed

Figure 9. Data flow for all integration tests where hardware is not available.

• The software shell, which is the tntsh software of the project.
• One or more virtual devices.
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• One pair of named pipes per virtual device.
• A script that is executed in the shell (.tcl file).
• A model output (.log) that is compared to the shell output (.log~).

3.2.2. Process

The procedure to run the tests is as follows:

1. Create n pairs of named pipes, where n is the number of devices required to run the test
(typically 1, but more are needed when testing multi-device functionality). These pipes will be
used for communication between the virtual devices and the software shell.

2. Launch n virtual devices, each one using a different pair of named pipes.
3. Execute the script in the software shell. The script is the one responsible for opening the virtual

devices through the names of the pipes.
4. The output of the script is written to a file, e.g.,: testname.log~
5. When the software shell ends, the test environment must be cleaned: the processes for all

virtual devices must be terminated and the named pipes used for communication must be
removed. The Python part of the virtual device catches the SIGTERM unix signal in order to
gracefully terminate the simulation, to avoid any possible data loss, such as code coverage files
not being written.

Table 1 summarizes the test procedure, which has been automated through the use of the GNU
Make tool, showing the tools used to obtain the required components and perform the tests. As soon
as it becomes available, the use of the firmware virtual device is preferred to the software one.

Table 1. Test procedure and software tools involved in test preparation, execution,
debugging and automation.

Step Description Tool

Test preparation

Step 1 Compile firmware virtual device ghdl
Step 1 (alternate) Compile software virtual device gcc
Step 2 Compile tntsh software gcc

Test execution

Step 3 Create pipes mkfifo
Step 4 Launch virtual devices compiled virtual device
Step 5 Run the .tcl script tntsh
Step 6 Test output is written to a file tntsh
Step 7 Compare test output with model output diff
Step 8 Clean test environment kill, rm

Debugging and automation

Step 9 Software debugging gdb
Step 10 Firmware debugging gtkwave
Step 11 Test automation GNU Make

3.2.3. Error Conditions

The test fails if one of the following conditions happen:

• tntsh terminates with an error code or raises an exception.
• The actual test output testname.log~ and expected test output testname.log do not match.
• The test does not terminate (see below).

Otherwise, the test is assumed to have succeeded. A potential pitfall for this system is that an error
in the virtual device can result in a test that never ends if the software keeps waiting for a response



Electronics 2020, 9, 2104 12 of 20

that will never come. This can happen if the virtual device gives a shorter response than expected or is
caught in an endless loop itself. A timeout can be implemented at several levels to prevent this: it can
be implicit in the software shell itself—only in debug mode, in our case—or it can be implemented
in the scripts that manage the test. Furthermore, assertions can be added to both software and HDL
implementations of the virtual device to detect the most probable failure conditions. If a new failure
condition is detected as a result of executing a new test, new assertions can be added as needed.

3.2.4. Debugging

The software virtual device can be debugged with any software debugger such as gdb,
simply launching the application with it. Having launched this process, the rest of the test proceeds as
usual, and it can be interrupted at any time by the user.

The GHDL virtual devices can be made to export waveform data. This can be done by passing
the --wave GHDL option to the firmware virtual device executable. The generated files can be viewed
with the open source waveform analyzer tool gtkwave.

4. Experimental Results

The co-verification environment, with the firmware virtual device, has been used as a verification
platform for the firmware and software parts of the FTU-VEGAS fault injection system. A set of
unit tests was performed to check the correct functionality of each element of the firmware and
software parts. Afterwards, integration tests were executed, in order of increasing complexity. For each
test, a comparison between the expected output and the actual output has been performed to detect
differences between them, thus allowing to find bugs in the system and fix them. In addition, several
fault injection campaigns have been performed using the virtual device, obtaining results as expected.
These fault injection campaigns are also a type of integration test, since performing fault injection
campaigns is the intended use of the system under co-verification, and in order to perform them, most
of the functionalities of the system have to be used.

The code coverage metric has been obtained using GHDL and accumulatively measured after
each test, so the increase in the metric with each new test can be measured. GHDL can generate
line coverage metrics if compiled with the GCC backend. Figure 10 shows how the code coverage
metric improves with each added test, where the green area corresponds to unit tests, the blue area to
non-campaign integration tests and the red area to the fault injection campaigns performed. The final
code coverage reached is 82.97% of the source code, which is a large quantity considering that no
actions have been taken specifically to increase the code coverage metric. Further increases in this
metric could be achieved by identifying and analyzing the unreached code, in order to develop unit or
integration tests specially tailored to hit the missed lines.

4.1. Firmware Unit Tests

The set of firmware unit tests executed is summarized in Tables 2–5. The tests are executed in the
order that they appear in the tables. An asterisk (*) in a test name in the Tables symbolizes a group
of tests that result from executing the same test setup with different configurations. Nonetheless, all
test names can be found in Figure 10. The coverage column in the Tables shows the accumulated line
coverage metric up to the specific test.

Table 2. Tests for the stream module.

Test Name Description Coverage %

depth_* Tests for the fifo submodule of the stream module with various sizes 1.78
encoder Test for the encoder submodule of the stream module given various byte widths 3.19
decoder Test for the decoder submodule of the stream module given various byte widths 4.56
stream Test for the complete stream module given various byte widths 5.51
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Figure 10. Coverage improvement with each test. The green area corresponds to the unit tests, the blue
area corresponds to the integration tests and the red area represents the fault injection campaigns
performed. The total coverage value reached is 82.97%.
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Table 3. Tests for the config module.

Test Name Description Coverage %

load_conf-empty Loads an empty bitstream 18.48
load_conf-header Loads the header of the bitstream 20.92
load_conf-counter Loads a complete bitstream of a counter design 21.00
has_conf Tests has_conf command which indicates if the Target FPGA is configured 21.25
clear_conf Tests clear_conf command which clears the configuration on the FPGA 21.25
bit_up-bad_context Tests sanity check for bit_up command 21.67
bit_up-success Changes the state of a bit of the bitstream to high level 25.10
bit_down-bad_context Tests sanity check for bit_down command 25.52
bit_down-success Changes the state of a bit of the bitstream to low level 26.22
bit_get-bad_context Tests sanity check for bit_get command 26.64
bit_get-success Gets the value of a bit of the bitstream 27.05
bit_flip-bad_context Tests sanity check for bit_flip command 27.46
bit_flip-success Performs a flip of a bit of the bitstream 28.17

Table 4. Tests for the vectors module.

Test Name Description Coverage %

load_io-empty_wave Loads an empty wave to the vectors module 37.74
load_io-empty_masks Loads a wave with empty masks for the I/O vectors 39.27
load_io-7ic8o Loads a complete wave with 7 inputs, clock and 8 outputs 41.88
load_io-input_clock Loads a wave with clock as an input (bad wave) 41.96
load_io-output_clock Loads a wave with clock as an output (bad wave) 42.05
load_io-inout_clock Loads a wave with clock as inout (bad wave) 42.05
load_io-too_many_nbytes Loads a very wide wave (bad wave) 42.13
has_io Checks if a wave is loaded 42.13
fetch_io-bad_clk Returns a preloaded wave with a bad clock 42.29
fetch_io-empty_wave Returns a preloaded empty wave 42.29
fetch_io-empty_masks Returns a preloaded wave with empty masks 43.66
fetch_io-7ic8o Loads, reads and returns the 7ic8o (7 in, clock and 8 out) wave 44.45
step-bad_clk Performs a step (give cycles of clk to the vectors) to a bad clock wave 44.95
step-empty_masks_empty_vectors Performs a step of an empty masks and empty vectors wave 46.02
step-empty_masks_single_vector Performs a step of an empty masks and one cycle vectors wave 49.96
step-1bytemask_empty_vector Performs a step of a 1byte masks and empty vectors wave 49.96
step-1bytemask_single_vector Performs a step of a 1byte masks and one cycle vector wave 50.66
skip-bad_clk Performs a skip (skip cycles of clk to the vectors) to a bad clock wave 51.78
skip-empty_masks_empty_vectors Performs a skip of an empty masks and empty vectors wave 51.86
skip-empty_masks_single_vector Performs a skip of an empty masks and one cycle vectors wave 53.89
skip-1bytemask_empty_vector Performs a skip of a 1byte masks and empty vectors wave 53.89
skip-1bytemask_single_vector Performs a skip of a 1byte masks and one cycle vector wave 54.27
pin_down-bad_clk Sanity check for pin_down command 54.64
pin_down-empty_mask Set down a pin of an empty wave 54.85
pin_down-only_input Set down a pin of an only inputs wave 55.22
pin_down-only_output Set down a pin of an only outputs wave 55.22
pin_up-bad_clk Sanity check for pin_up command 55.59
pin_up-empty_mask Set up a pin of an empty wave 55.80
pin_up-only_input Set up a pin of an only inputs wave 55.84
pin_up-only_output Set up a pin of an only outputs wave 55.84
pin_get-bad_clk Sanity check for pin_get command 56.17
pin_get-empty_mask Get a pin of an empty wave 56.38
pin_get-only_input Get a pin of an only inputs wave 56.42
pin_get-only_output Get a pin of an only outputs wave 56.42
pin_flip-bad_clk Sanity check for pin_flip command 56.75
pin_flip-empty_mask Flip a pin of an empty wave 56.96
pin_flip-only_input Flip a pin of an only inputs wave 57.00
pin_flip-only_output Flip a pin of an only outputs wave 57.00

4.2. Integration Tests

The set of Integration tests executed is shown in Table 6. As in the previous tables, the coverage
column shows the accumulated line coverage metric up to the specific test.
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Table 5. Tests for the core module.

Test Name Description Coverage %

echo-empty Echoes an empty string 63.01
echo-hello Echoes a “hello” string 63.30

flush
Checks the flush command, which empties the output buffer,
ensuring that the responses from all executed commands,
including the flush itself, are sent to the software

63.55

load_conf-empty Loads an empty configuration bitstream 64.13
load_conf-header Loads a configuration header 64.79
sram Tests the commands that write to and read from the SRAM 68.06

Table 6. Integration tests.

Test Name Description Coverage %

echo Echoes a string 68.10

regs
Sets up, sets down, flips and gets registers of the Target FPGA when
configured and when non-configured (sanity check) 69.39

bits
Sets up, sets down, flips and reads multi-register values from the
Target FPGA 69.39

load_io Loads a wave to a device 71.13

pins
Tests pin commands, which read and modify the value of the pins
that connect to the user design 72.66

clock Tests commands to manipulate vectors (step, skip, rewind, etc.) 79.16
flags Tests flags for the campaign options 80.49
sram Performs writes and reads to/from SRAM 80.65

diff
Computes the differences between the simulation wave and the
emulated wave 80.65

diff2
Computes the differences between the simulation wave and the
emulated wave after rewind, step and skip commands are
performed

81.81

load_conf Loads a configuration file to the Target FPGA 82.15
clear_conf Clears the configuration of the Target FPGA 82.15

4.3. Campaigns

Table 7 describes the designs for which a set of fault injection campaigns have been performed.
For all designs, four campaigns have been made, using 1, 2, 4 and 8 devices in parallel. As in previous
Tables, an asterisk (*) in a test name symbolizes a group of tests that result from executing the same
test setup with different configurations, in this case with a different number of devices in parallel. As
in the previous tables, the coverage column shows the accumulated line coverage metric up to the
specific test.

Table 7. Fault injection campaigns performed. For each user design, 4 campaigns have been performed,
using 1, 2, 4 and 8 devices in parallel.

Test Name Description Coverage %

campaign* Fault injection campaigns over an 8-bit counter design 82.48
campaign*_adder_acum Fault injection campaigns over an adder-acummulator design 82.48
campaign*_dualcounter Fault injection campaigns over two 8-bit counters in series 82.48
campaign*_shiftreg Fault injection campaigns over an 8-bit shift register 82.97
campaign*_b13 Fault injection campaigns over an interface to meteo sensors 82.97
campaign*_fifo Fault injection campaigns over a first-in first-out memory controller 82.97
campaign*_pcm Fault injection campaigns over an I2S interface for an audio codec 82.97

4.4. Discussion

The proposed co-verification approach has been used to verify a complex design with a high level
of confidence, obtaining very satisfactory code coverage results, in line with what can be expected
using complex verification methodologies such as UVM or UVVM.
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The main advantages of this approach are twofold: it bridges the efforts/results gap between
simple ad-hoc testbenches and complex verification methodologies, and it does not require any
proprietary software tool.

The approach has shown to be useful to methodically verify complex SW-VHDL co-designs,
where the software and hardware parts interact, but are independent from each other. The approach is
also fully automatable using any scripting or build tool such as GNU Make.

On the other hand, a number of simulation models for on-board hardware had to be developed to
construct the firmware virtual device. Developing these simulation models is a tradeoff between test
capability and verification effort, since each new simulation model added to the virtual device allows
to test a bigger set of system functionalities. This is not a particularity of this approach, since at least
basic simulation models of external interfaces or hardware are often required to perform high-quality
functional verification.

Another advantage is that the integration tests are compatible with the physical hardware.
This makes it possible to use the co-verification environment to reproduce bugs found while executing
the system logic in the physical hardware, with the added debugging capabilities of a waveform
viewer and software debugger.

A drawback of this approach is that it only supports VHDL code, since the GHDL simulator only
supports VHDL simulation. While a firmware virtual device could be constructed with verilog code
using verilog-only FOSS tools and simulators like Verilator or Icarus Verilog, currently there exist no
free or open source simulators that support Verilog-VHDL mixed simulation, so this approach cannot
be used yet in mixed-language designs.

One of the advantages of this approach is that it requires less effort to learn: the engineer can start
adding tests as needed, adding different elements to the environment and virtual device architecture as
soon as they become necessary. This reduces the learning curve as there is no need to have a complex
testbench to begin performing tests. The proposed approach also allows mitigating delays introduced
by a lack of hardware in complex projects.

Since the firmware under verification was highly structured by using custom stream interface
blocks, the development of unit tests was made simpler, since the majority of the firmware modules
use the same interface. In the case of a less structured design, unit test development would be expected
to require more effort, depending on the complexity and number of module interfaces. This issue could
be mitigated by writing less unit tests and focusing more on developing the firmware virtual device
and integration tests, checking any gaps in the code coverage metric to identify untested functionality.

The advantages and disadvantages of different verification approaches, including the proposed
approach, are summarized in Table 8.

Table 8. Comparative analysis of different verification approaches. The proposed approach bridges
the gap between ad hoc simulation and complex verification methodologies.

Methodology Advantages Disadvantages

Ad hoc testbenches
Quick to start
Does not require any specific simulator

Does not scale well to complex designs
Efforts increase hugely with complexity if all
functionalities must be tested
Typically gets poor results in terms of code coverage

Proposed approach

Reduced learning curve
Can scale to complex designs
Can co-verify VHDL and software through simple
pipe-based communication
Can be implemented only with free and open
source tools
Integration tests are fully compatible with the
physical hardware
Can achieve high values of code coverage

Needs constructing basic simulation models of
on-board hardware
No mixed-language simulation (VHDL-Verilog)



Electronics 2020, 9, 2104 17 of 20

Table 8. Cont.

Methodology Advantages Disadvantages

UVVM

Can scale to complex designs
Can achieve high values of code coverage
Partially supported by the open source simulator GHDL

Full features require a commercial simulator
Steep learning curve

UVM
Most popular industry standard
Can scale to complex designs
Can achieve high values of code coverage

Requires expensive commercial simulators
Very steep learning curve
Testbenches are written in Verilog, which can be an issue
for VHDL-only engineers
Class-based Object-Oriented testbench architecture
difficult for design engineers

5. Conclusions and Future Work

A co-verification environment has been proposed and developed to perform co-verification of
the software and firmware of a complex system. This co-verification environment can be used in all
the family of FPGA designs, which comprises FPGA designs that interact with software running on
an external computer. This is a fairly common case of digital design that may not always require
all the verification capabilities used in ASIC design, but would benefit from an easy-to-deploy
verification methodology.

The co-verification environment has been successfully demonstrated and used to verify the
FTU-VEGAS fault injection system. The use of the virtual device avoids bottlenecks in projects where
the work of different development teams, which may evolve at different speeds, must be integrated.

The virtual device is developed using free and open source software tools, so it is not necessary
to purchase licenses for its use, allowing the user to access all its capabilities for free. The proposed
approach is extensible to multi-device tests, so that it can be used to co-verify multi-device systems.
Furthermore, if a user wanted to co-verify a system with a huge number of devices running in parallel,
fully taking advantage of the maximum number of processor cores in his/her computer, the cost
in simulator licenses would be prohibitive if using any other different approach that required a
commercial simulator.

Multiple bugs have been found and corrected in both software and firmware parts of the
system without the need for hardware, by running unit and integration tests with the virtual device.
The integration tests are fully compatible, without modification, with the real hardware.

The proposed co-verification methodology bridges the effort/results gap between basic simulation
and ASIC-focused modern verification methodologies. Being fully applicable using free and open
source software, it is available to companies, researchers and hobbyists. The methodology has also
demonstrated that it can achieve very satisfactory values of code coverage.

Future work will include automating the generation of the firmware virtual device wrapper and
developing abstraction layers for different communication protocols that do not get mapped to files in
unix-like operating systems. Furthermore, synchronization schemas to use multiple computers to run
simulations of a huge number of devices will be explored.
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Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface
ASIC Application-Specific Integrated Circuit

BRAVE NG-MEDIUM
Big Re-programmable Array for Versatile Environments, Next
Generation—Medium Capacity

FOSS Free and Open-Source Software
FPGA Field Programmable Gate Array
FT-Unshades Fault Tolerance-Universidad de Sevilla Hardware Debugging System

FTU-VEGAS
FT-Unshades for the Validation of European High Capacity Rad-Hard FPGA
and Software Tools

FW Firmware
GDB Gnu Project Debugger
GCC Gnu Compiler Collection
GNU GNU’s Not Unix
HDL Hardware Description Language
HW Hardware
I/O Input/Output
PC Personal Computer
PCB Printed Circuit Board
PCI Express Peripheral Component Interface Express
SEU Single Event Upset
SIGTERM Termination Signal
SRAM Static Random Access Memory
SW Software
TCL Tool Command Language
TNT Test aNalysis Tools
VHDL Very High Speed Integrated Circuit Hardware Description Language
UVM Universal Verification Methodology
UVVM Universal VHDL Verification Methodology
VHDL Very High Speed Integrated Circuit Hardware Description Language
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