654,286 research outputs found

    Partial discharge pulse propagation in power cable and partial discharge monitoring system

    Get PDF
    Partial discharge (PD) based condition monitoring has been widely applied to power cables. However, difficulties in interpretation of measurement results (location and criticality) remain to be tackled. This paper aims to develop further knowledge in PD signal propagation in power cables and attenuation by the PD monitoring system devices to address the localization and criticality issues. As on-line or in-service PD monitoring sensors commonly comprise of a high frequency current transformer (HFCT) and a high-pass filter, the characteristics of detected PD pulses depend on the attenuation of the cable, the HFCT used and the filter applied. Simulation of pulse propagation in a cable and PD monitoring system are performed, based on analyses in the frequency domain using the concept of transfer functions. Results have been verified by laboratory experiments and using on-site PD measurements. The knowledge gained from the research on the change in pulse characteristics propagating in a cable and through a PD detection system can be very useful to PD denoising and for development of a PD localization technique

    Effects of Interpretation Error on User Learning in Novel Input Mechanisms

    Get PDF
    Novel input mechanisms generate signals that are interpreted as commands in computer systems. Sometimes noise from various sources can cause the system to produce errors when attempting to interpret the signal, causing a misrepresentation of the user's intention. While research has been done in understanding how these interpretation errors affect the performance of users of novel signal-based input mechanisms, such as a brain-computer interface (BCI), there is a lack of knowledge in how user learning is affected. Previous literature in command-based selection tasks has suggested that errors will have a negative impact on expertise development; however, the presence of errors could conversely improve a user's learning by demanding more attention from the user. This thesis begins by studying people's ability to use a novel input mechanism with a noisy input signal: a motor imagery BCI. By converting a user's brain signals into computer commands, a user could complete selection tasks using imagined movement. However, the high degree of interpretation errors caused by noise in the input signals made it difficult to differentiate the user's intent from the noise. As such, the results of the BCI study served as motivation to test the effects of interpretation errors on user learning. Two studies were conducted to determine how user performance and learning were affected by different rates of interpretation error in a novel input mechanism. The results from these two studies showed that interpretation errors led to slower task completion times, lower accuracy in memory recall, greater rates of user errors, and increased frustration. This new knowledge about the effects of interpretation errors can contribute to better design of input mechanisms and training programs for novel input systems

    MODELLING CARDIAC SIGNAL AS A TOMOGRAPIDC MAP

    Get PDF
    The interpretation of ECG for medical purpose has become an important issue today. The medical professionals use this interpretation to diagnose the heart disease. As concern, the manual interpretation may not accurate due to the altered of the ECG signal by cardiovascular disease and abnormalities. The main focus of this project is about analyzing ECG signal by using tomography mapping or in the simplest way; colored representation. Based on the research on the characteristics as well as the technical knowledge of MA TLAB simulation, this project can developed a better way for ECG interpretation. This project is designed to emphasize the one dimensional ECG to colorful pattern known as tomographic mapping based on the vertical and horizontal surge in amplitude. This report will explain the steps involved in implementing the project. At the end, a conclusion has summarized all the ideas discussed in this report. As expected this project should be able to display the tomographic mapping through the color pattern which able to interpret the ECG according to the medical prediction with the greatest accuracy

    The bedrock topography of Gries- and Findelengletscher

    Get PDF
    Knowledge of the ice thickness distribution of glaciers is important for glaciological and hydrological applications. In this contribution, we present two updated bedrock topographies and ice thickness distributions for Gries- and Findelengletscher, Switzerland. The results are based on ground-penetrating radar (GPR) measurements collected in spring 2015 and already-existing data. The GPR data are analysed using ReflexW software and interpolated by using the ice thickness estimation method (ITEM). ITEM calculates the thickness distribution by using principles of ice flow dynamics and characteristics of the glacier surface. We show that using such a technique has a significance advantage compared to a direct interpolation of the measurements, especially for glacier areas that are sparsely covered by GPR data. The uncertainties deriving from both the interpretation of the GPR signal and the spatial interpolation through ITEM are quantified separately, showing that, in our case, GPR signal interpretation is a major source of uncertainty. The results show a total glacier volume of 0.28±0.06 and 1.00±0.34 km3 for Gries- and Findelengletscher, respectively, with corresponding average ice thicknesses of 56.8±12.7 and 56.3±19.6 m

    Automated eddy current analysis of materials

    Get PDF
    The use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using eddy current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The eddy current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining eddy current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful eddy current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component

    Waveform Analysis of UWB GPR Antennas

    Get PDF
    Ground Penetrating Radar (GPR) systems fall into the category of ultra-wideband (UWB) devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium) plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency
    • …
    corecore