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Abstract

Novel input mechanisms generate signals that are interpreted as commands in computer systems. Some-

times noise from various sources can cause the system to produce errors when attempting to interpret the

signal, causing a misrepresentation of the user’s intention. While research has been done in understanding

how these interpretation errors affect the performance of users of novel signal-based input mechanisms, such

as a brain-computer interface (BCI), there is a lack of knowledge in how user learning is affected. Previous

literature in command-based selection tasks has suggested that errors will have a negative impact on expertise

development; however, the presence of errors could conversely improve a user’s learning by demanding more

attention from the user. This thesis begins by studying people’s ability to use a novel input mechanism with

a noisy input signal: a motor imagery BCI. By converting a user’s brain signals into computer commands,

a user could complete selection tasks using imagined movement. However, the high degree of interpretation

errors caused by noise in the input signals made it difficult to differentiate the user’s intent from the noise.

As such, the results of the BCI study served as motivation to test the effects of interpretation errors on user

learning. Two studies were conducted to determine how user performance and learning were affected by

different rates of interpretation error in a novel input mechanism. The results from these two studies showed

that interpretation errors led to slower task completion times, lower accuracy in memory recall, greater rates

of user errors, and increased frustration. This new knowledge about the effects of interpretation errors can

contribute to better design of input mechanisms and training programs for novel input systems.
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1 Introduction

Interaction with computer systems is an integral part of daily life.1 From the widespread use of desk-

top computers in administrative offices to the smartphones that allow us to access the internet from nearly

anywhere, people are almost always using a computer in some way. While traditional desktop interactions

were once mainly done through a mouse and keyboard, advances in technology have provided users with

novel, alternative ways to interact with computer systems, such as the touch mechanisms that have become

standard for modern smartphones. Along with a better understanding of how humans interact with comput-

ers, developers have now provided users with many methods of input for accessing and controlling computer

systems.

The mouse and keyboard are the most widely used input mechanisms for interacting with a desktop

computer for good reason. They are fast, accurate, and provide the user with fine control over their actions

and input. A major benefit of using a mouse and keyboard is that they have little to no error in converting a

user’s intended action into a command for the computer. Many other input mechanisms, such as speech input

or handwriting recognition, can be susceptible to errors in which the command that the system interprets is

different from the user’s input. While the mouse and keyboard have been the ubiquitous interaction methods

for traditional computers, alternative input mechanisms can be vital for improving the quality of life and

usability of computers for disabled users [122], despite the possibility of errors. As a result, these alternate

technologies face unique obstacles in their implementation and execution, such as a noisy input signal. One of

the consequences of noise in input mechanisms are interpretation errors. When a noisy signal is received by

the computer system, such as a user’s brain signals, the system may incorrectly interpret the user’s intended

input, leading to the wrong command being executed by the system.

An upcoming technology that has potential as an alternative input technique is the brain-computer

interface (BCI). BCIs use electroencephalography (EEG) to detect changes in a user’s electrical brain activity

and convert their mental state into computer commands. Studies have already shown that it is possible for

users with motor deficiencies (e.g., paraplegia) to use BCIs and effectively control prosthetic limbs to grab

objects [88], move using motorized wheelchairs [71], and transmit visual images to the brain to allow blind

people to see [99]. However, it is a technology that is still in its infancy. Various major issues have prevented

BCIs from becoming more mainstream as an alternative input method: non-invasive, scalp-surface electrodes

have issues with accurately detecting the electrical signals of the brain [43]; limited understanding of the

1Portions of this thesis appeared in the following publication: Kevin C. Lam, Carl Gutwin, Madison Klarkowski, and Andy
Cockburn. The Effects of System Interpretation Errors on Learning New Input Mechanisms. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, volume 713, pages 1–13. ACM, May 2021.[68]
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complexities of human brain activity prevents complex control schemes from being developed [27]; and the

possibility of recording human thought can eliminate any individual privacy for the user [73]. Other issues

arise from the greater time needed to process a single command when compared with a traditional input like

mouse and keyboard, as well as the high rate of inaccuracy and errors that can arise from translating a user’s

noisy brain activity to a computer command.

One of the major obstacles to effectively using an input mechanism, such as a BCI, is the presence of noise

in analog signals, typically leading to interpretation errors. When using a signal-based input mechanism (i.e.,

the user’s input is entered into the computer as a signal that will eventually be interpreted into a command),

noise can be described as any unwanted information in the signal that obscures useful information. Noise

can originate from a variety of phenomena, causing the user’s intent to be misrepresented. Sources of noise

can come from the environment (e.g., people talking in the background), inadvertently created by the user

(e.g., eye blink artifacts in EEG recordings), picked up during the transmission of a signal (e.g., interference

from nearby electrical/magnetic fields), or the computer system classifying the input incorrectly (e.g., the

command executed by the computer is different from the command entered by the user). Many alternative

input mechanisms will have some form of noise as part of the analog input signal. The presence of this noise

can make an input method unreliable at accurately determining a user’s intended command. For example,

speech recognition must handle the differences in speech patterns and accents between people [7], as well as

acoustic noise from the surrounding environment; otherwise, the speech command that is executed by the

recognizer may be different from what the user intended. Similarly, BCIs must be able to interpret specific

commands from a user’s brain activity, which is a naturally noisy channel. Furthermore, most BCIs are

EEG-based, meaning that the input for the BCI comes from detecting minuscule changes in the electrical

activity of a person’s brain. In general, electrical signals are particularly susceptible to noise from various

sources: noise from AC wall outlets [77], induced voltage from environmental electric/magnetic fields [77],

differences in skull thickness and conductivity [5], and physiological artifacts produced from hair obstructing

contact with the scalp or movement of the electrodes. Due to the sensitivity of the EEG electrodes, the

readings of the brain signals are likely to be disrupted by external sources of noise. Mitigating the different

sources of noise to isolate useful input information is a constant challenge for the development of any input

technique.

While previous research into input mechanism and user performance has studied the impacts of interpre-

tation errors on a user’s ability to effectively use an input mechanism [129, 78], there is little understanding

of how these errors can affect users during the early stages of the learning process. This thesis will provide

insight into how new users of novel input mechanisms are affected by interpretation errors.

2



1.1 Problem

The problem addressed in this thesis is: there is a lack of understanding of the effects of system-based

interpretation errors on user learning of novel input mechanisms for command selection.

1.2 Motivation

Generally, noise in input signals and the resulting interpretation errors can make it difficult for computer

systems to interpret a user’s intended command and lead to a variety of problems for the user. Issues may

occur where a user’s input is misinterpreted, such that they enter a specific command expecting a particular

response, but the system unexpectedly outputs a different, wrong result. For example, a motor imagery BCI

user may attempt to produce a “go” command using left arm imagery, but the system incorrectly interpreted

right arm imagery from the signal, which outputs a “stop” command instead. Another interpretation error

could be that the system does not even recognize the left arm imagery, resulting in no output being produced

by the system (i.e., false negative error).

The problems caused by interpretation errors and the subsequent effects they have on users are known

to developers and designers of novel input mechanisms. High rates of interpretation errors can lead to

performance loss [78], frustrated users [98], and can make an input mechanism too unreliable to be used

for safety-critical systems (e.g., using speech recognition to drive a car) [9]. However, while alternative

input techniques exist for most users, some input mechanisms, like BCIs, are mainly designed for users

with disabilities that prevent them from using a traditional mechanism (e.g., limited mobility). Even when

techniques exist to reduce noise in an input signal (e.g., filtering [19]), these methods are not completely

effective and can be difficult or time-consuming to implement. This can mean that any leftover noise in the

resultant signal can be a source of interpretation errors for these types of input mechanisms. However, while

current literature has studied the impact of noise (and interpretation errors as a result) on user performance

[8, 28], a considerable obstacle in creating alternative input mechanisms is that there is little knowledge

regarding how system interpretation errors affect user learning.

Since many novel input mechanisms are unique in their operation (e.g., motor imagery BCIs), users will

always need to learn the mapping between input and command. This learning process can also entail learning

to identify system interpretation errors, techniques to reduce their occurrences, and methods to correct an

error. Although noise in inputs and user learning have been studied separately, few have investigated their

effects together. Developing a greater understanding of how noise affects learning can aid in creating better

training programs to teach users how to avoid or fix interpretation errors when they might occur.
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1.3 Solution

To address the lack of understanding of how interpretation errors affect user learning and performance, three

user studies were conducted. The first study investigated an EEG headset’s capabilities as a brain-computer

interface (BCI) input mechanism using motor imagery, as well as how noise affects an input signal. A motor

imagery BCI uses electroencephalography (EEG) to detect electrical activity across a user’s scalp as they

imagine limb movement. A computer system then interprets the incoming electrical signals in real time and

executes a computer command based on the imagined motion. Since the highly sensitive EEG measures all

brain activity on the scalp during the input period, any unrelated activity, such as electrical interference

from nearby power lines (e.g., 60 Hz mains hum) or movement artifacts (e.g., eye blinks), is also recorded as

noise. From the results of this BCI study, it was discovered that the high level of noise in the input signal

of the EEG made it difficult to isolate the brain activity that is associated with motor actions. This led to

greater rates of interpretation error than expected, resulting in an inability of the system to produce distinct

commands, along with participants not knowing how to perform correct inputs. Results from the BCI study

were inconclusive due to these issues with noise in the EEG data, which eventually served as inspiration to

further investigate the effects of interpretation errors on novel input mechanisms. The work following the

BCI study focused on studying the impact of interpretation errors on the early stages of learning an input

mechanism.

The outcome of the BCI study provided a foundation and motivation for studying the effects of inter-

pretation errors on novel input mechanisms. Specifically, two studies were conducted to understand how

interpretation errors affects user learning of new input mechanisms. Participants were asked to complete

a series of tasks using an input mechanism with artificial interpretation errors. These interpretation errors

would incorrectly translate a user’s input into the wrong command or fail to produce a command. Two

possible effects of interpretation errors on learning were hypothesized. The first hypothesis suggested that

user learning could be negatively affected by the interference caused by the interpretation errors. Conversely,

the second hypothesis postulates that more errors could require users to expend more effort to learn the

input mechanism, potentially leading to improved performance. The results of these two studies provided

knowledge about how user learning and performance with tasks using novel input mechanisms were affected

by increasing occurrences of interpretation errors.

1.4 Steps to the Solution

Different steps were taken towards understanding how interpretation errors affect users learning novel input

mechanisms:

� Investigate a novel input mechanism susceptible to noise.

1. Select a signal-based novel input mechanism that is known for its susceptibility to input noise.
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2. Determine the tasks that are commonly completed when using the novel input mechanism.

3. Determine a set of commands to be used to complete the tasks.

4. Design a study to assess user performance while completing tasks with the command set.

5. Develop study system to gather data on the effect of noise on the use of the novel input mechanism.

6. Analyze the resulting participant data to determine how noise affects user performance.

� Investigate the effects of interpretation errors on users learning new input mechanisms.

1. Select an input mechanism with a controlled and adjustable rate of interpretation error.

2. Establish the levels of interpretation error rate that should be studied.

3. Determine a set of tasks with the input mechanism that users can improve at over a short period.

4. Determine a representative command set to be used to complete the tasks.

5. Develop a study system to gather data on the effects of interpretation error on learning to use a

novel input mechanism.

6. Analyze the resulting participant data to determine how interpretation errors affect user learning.

1.5 Evaluation

Two studies were conducted to determine the effects of interpretation error on user learning. Study 1

provided users with immediate feedback from the system when they made their selections. Study 1 showed

the increasing the rate of interpretation errors led to lower accuracy during memory tests, higher rates of user

errors in training, and greater perceptions of effort. Study 2 required participants to monitor and manually

correct the system’s interpretation of their inputs to ensure that the correct selections were being made.

Study 2 showed higher rates of interpretation error caused slower completion times during memory tests,

higher rates of user errors in training, and increased perceived effort. The results of these two studies also

indicate a deeper relationship between interpretation errors and user learning. Completion times during

training and overall learning throughout both studies were similar at all rates of error, and participants did

not report much difference in how easy it was to learn the items in the tasks.

The main findings of the two studies on the effects of interpretation error on user learning are as follows:

1. Higher rates of interpretation errors generally led to slower task completion times, decreased accuracy

during memory tests, higher occurrences of user errors during training, and increased perceptions of

frustration. This suggests that the interference hypothesis is more applicable than the retrieval effort

hypothesis to understanding how interpretation errors affect user learning of novel input mechanisms.

2. Users of Study 1 were less concerned with avoiding errors, due to the automatic feedback. During

the training phase, participants were given immediate feedback regarding whether their selections were
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correct, which determined if they would successfully move onto the next task or repeat the same task

until they made a correct selection. These users were more accurate in making correct selections during

memory tests of the Zero percent error condition.

3. Users of Study 2 spent more time and effort to carefully ensure their inputs were correctly interpreted,

since they had to monitor the system’s output. These users were faster in completing the tasks during

memory tests in the Zero percent error condition when they had to manually check the system’s

interpretation output.

1.6 Contribution

The major contribution of this thesis is to provide new knowledge regarding how interpretation errors affect

learning a set of commands using a novel input mechanism. The results of the studies showed that higher

occurrences of interpretation error, which is often caused by noise in the input, cause problems for user

learning. This new knowledge of the learning process can allow designers and developers of novel input

mechanisms to understand how noisy input signals can impact a user’s ability to gain proficiency with a

new input mechanism. This can lead to the creation of superior training programs for both novice and

expert users, new metrics for quality-assurance testing, or better practices in user-centric design of systems.

With novel input mechanisms like BCIs, which some members of the population are limited to using (e.g.,

limited-mobility users), a better understanding of interpretation errors can further improve their quality of

life.

This thesis also presents additional contributions throughout the steps towards resolving the lack of

understanding of interpretation errors and their effects on learning. The BCI study provided an analysis

of one BCI using common hardware for command selection and assessed the effects of noise on this device.

The results of the BCI study aided in identifying explicit hypotheses about how interpretation error affects

user learning. An experimental paradigm was also established for studying the effects of interpretation

error on novel input mechanisms. This thesis also provides various avenues for future work regarding novel

input mechanisms, interpretation errors, and their effects on learning. Furthermore, the study presented a

methodological template for studying noise in HCI contexts for other similar types of input mechanisms that

are vulnerable to noise and interpretation errors.

1.7 Thesis Outline

This thesis is presented in six chapters. This first chapter briefly describes and summarizes the contributions

made by this thesis.

Chapter Two provides an outline of related literature on the topic of novel input mechanisms, user learning

of human-computer interfaces, and the presence of noise and interpretation errors in input mechanisms. The
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first section presents the relevant work on signal-based input mechanisms for controlling computer systems,

with a specific focus on brain-computer interfaces as the exemplar. The second section describes the various

research on learning, such as the process that users undergo to gain expertise when using a new input

mechanism or completing new tasks. Finally, the third section provides an overview of the literature on noise

in input mechanisms and the impact on user performance, as well as the methods employed to reduce the

effect of noise on the output. The program of research described in the following chapters uses this summary

of related work as a foundation for the studies conducted in this thesis.

Chapter Three explores the use of brain-computer interfaces as a novel input mechanism for controlling

a computer system using brain activity. In particular, the feasibility of a motor imagery BCI to provide

simple commands is explored. The chapter describes a study designed for testing the use of an EEG headset

as a motor imagery BCI. The results of the offline data analysis are discussed, as well as details regarding

the obstacles encountered with regards to noise in the input signal. The findings of this work serve as the

motivation for the following investigation into interpretation errors learning.

Chapter Four provides the methods and results of two user studies undertaken to determine the effect

of interpretation errors on learning novel input mechanisms. Both studies required participants to complete

selection tasks using a novel input mechanism with varying levels of artificial interpretation errors added to

the input. The first study provided participants with immediate feedback regarding whether their selections

were correct and if they completed their task. The second study required participants to manually monitor

the system’s interpretation themselves to ensure that their selections were correct. The implications of the

results of these studies are considered in the next chapter.

Chapter Five discusses the findings of the two studies on interpretation errors that were performed in

the previous chapter. The main findings are presented and their implications on noisy input mechanisms are

examined. Limitations to the approach of the studies are considered, as well as suggestions for improvements

that could be made for similar work in the future. The considerations of the results are noted for their

implications on signal-based input mechanisms, like the BCI. Additional ideas are also presented as possible

avenues to investigate for further research to reinforce and improve the results found in this thesis.

Chapter Six summarizes the findings and contributions made throughout this thesis towards understand-

ing the effect of interpretation errors on input mechanisms and user learning.

7



2 Related Work

Noise in input mechanisms is a wide field of research that has been explored extensively. By understanding

the work that has been done previously with regards to novel input mechanisms and noise, a foundation can

be developed for the contributions that will be presented in this thesis. The first section presents a general

overview and definition of input mechanisms. Depending on the needs of the user and the design of the

computer system, input mechanisms can differ in how they transform an analog input into a digital output.

The second section examines the literature on learning and expertise development with user interfaces.

The current knowledge regarding how users interact with new input mechanisms provides a foundation for

understanding how disruptions to the learning process can affect the user. The final section of this chapter

explores relevant work on noise and interpretation errors affecting input mechanisms. Previous studies of

alternative input mechanisms that are susceptible to noise are included, and the effects of noise on user

performance is examined. Furthermore, a variety of methods for reducing noise in such input mechanisms

are also summarized.

2.1 Input Mechanisms

Input mechanisms use some form of a real-world analog input from a user as a means of controlling an

interactive, digital system. In human-computer interaction (HCI), a variety of research has been done on

input mechanisms and the users that interact with them. This includes the development of novel input

mechanisms (e.g., [45, 76, 139]), improvements to existing ones (e.g., [49, 56]), studies to understand the

psychology of the users (e.g., [112, 151]), and methods for empirical evaluations (e.g., [145]).

Input mechanisms are categorized by a variety of properties [49], such as by the analog data being

converted into input data (e.g., sound, visual, etc.), the degrees of freedom available to the user (e.g.,

gyroscopes in smartphones can have up to three degrees of freedom), or direct versus indirect modes of

operation (i.e., pressing the “W” key on a keyboard will type the “W” letter versus dragging an item to the

recycle bin on a desktop to delete the item) [49]. Furthermore, how an input is interpreted by the computer

system can influence the type of interaction between the user and computer. Input information can be

interpreted as: free-form movement that allows for high levels of user freedom to interact with the system

(e.g., moving a mouse cursor and clicking on items), contextual information that informs the system of the

user’s current state (e.g., the speed at which a smartphone user is moving or if they are stopped [55]), or

command selections where the input executes an instruction from a predetermined set of commands [6, 89].
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Command selection-based input mechanisms can also be separated between discrete commands (e.g., pressing

Ctrl+C as a keyboard shortcut performs the “copy” function) and parameterized commands (e.g., pinching

an image on a smartphone adjusts the magnification of the image based on the relative finger movements).

This thesis investigates input mechanisms that interpret inputs as command selections. Specifically,

discrete command input mechanisms are the category being considered due to the wide range of input

mechanisms that have been developed, studied, and used commercially with many different sensors. The

most common form of a discrete command input sensor is the keyboard, which allows users to physically

press keys that perform individual actions within the computer system. However, input mechanisms that

use alternative sensors can also be used to execute discrete commands, such as using touch sensors for

character or word input (e.g., Scriboli [49], unistrokes [20], SHARK [65]), bio-acoustic sensors that use the

human body as an input surface (e.g., Skinput [45]), pressure sensors for grip gestures [6, 89], ultrasonics

and cameras for in-air gestures [140], gaze recognizers for tracking eye movements [152], and EEG sensors

for BCIs [101, 102, 150, 74, 25, 97].

2.2 Learning

There is a rich history of research describing how people learn to use input mechanisms to control computer

systems. In the field of HCI, researchers apply aspects of knowledge from psychology and human performance

to understand how users start learning to use and improve at using interactive systems. This knowledge also

allows developers and designers to create better input mechanisms that are easier for users to learn to use

[144], as well as produce quality of life improvements that help users with completing their tasks [15]. When

users use interfaces and perform tasks with them over time, they gain proficiency and skill with their use.

This gradual development can be observed as multiple stages that the user progresses through, eventually

becoming experts in using an input mechanism. However, the addition of noise and interpretation errors in

an input mechanism may affect how well a user learns to use that mechanism. While it can be naturally

assumed that noise is likely to have negative effects on learning and task completion performance, it is also

possible that errors caused by the noise could help users be more attentive with their tasks.

2.2.1 Transition from Novice to Expert

Fitts and Posner have presented three general stages in which users learn and gain expertise [33]. These three

stages can be adapted with respect to completing tasks using input mechanisms. The first is the cognitive

stage in which users have just started using and understanding the input mechanism, as well as the tasks that

they can complete with it. The user’s experience with using the mechanism is minimal and they mainly rely

on declarative knowledge. Declarative knowledge refers to information that a person can consciously recall

and be able to verbalize [121], such as knowing the steps required to shut down a computer (i.e., “click the

Start button and then select the Shut Down command”). While a user can recall declarative information,
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it usually requires some effort and time to do so. As such, their ability to complete tasks is at its slowest,

relying on their need to recall and perform each individual step explicitly. When teaching users about a new

input mechanism, developers will often use tutorials or on-screen instructions to guide users through the early

steps of the learning process. This acts as an aid for the user to gain the necessary declarative knowledge.

The second stage is the associative stage. Here, users will begin to improve upon their initial knowledge

by using their experience with the input mechanism and feedback that they received while using it. This

feedback can come from the system (e.g., alerts when an error occurs and suggestions for how to fix them

or avoid them in the future) or from the user themselves (e.g., using the Ctrl-C hotkey rather than clicking

on the Copy icon is faster and does not require the use of the mouse). As users become more familiar

with the input mechanism, they begin to create associations between their actions and how the system

responds. Instead of needing to think about every individual action of their task, they begin to assemble

their declarative knowledge into easily retrieved procedural memory [33]. This procedural knowledge is the

counterpart of declarative knowledge; information that is subconsciously known to the person and can be

retrieved without expending any additional effort beyond simply thinking about it [121]. For example, the

declarative knowledge ”pressing a letter on the keyboard while the Shift key is held down will produce an

upper-case letter” becomes procedural knowledge when users simply press the Shift key when they want an

upper-case letter, without thinking about the command. Procedural memory is involved in the development

of motor skills, which can sometimes be gained without the individual’s explicit knowledge of how to perform

that skill. At this stage, users are often practicing with using the input mechanism to complete tasks, which

reinforces the correct memory pathways. Researchers have found that users of touchscreen devices are mostly

capable of recalling a stroke-based gesture without thinking after having performed about 15 repetitions of the

gesture [151]. Although training exercises can be performed for real-world input mechanism, these repetitions

are usually done while the user uses the mechanism naturally.

Finally, the autonomous stage is the last step for users to become experts at using an input mechanism.

When users are at this stage, they are able to quickly retrieve items from memory without needing to think

about the action or command to do so. This means that they can automatically perform an operation

without conscious thought and without giving any attention to the process. For example, a user familiar

with keyboard hotkeys may unconsciously use the Ctrl-S shortcut to save their writing whenever they finish a

sentence or take a break. Automaticity is also known as “muscle memory”, which is well known for allowing

people to perform complex actions without remembering each individual step, like riding a bicycle. Users who

have reached the autonomous stage are able to execute commands quickly and without conscious thought,

since their knowledge of the operation has been fully compiled into their procedural memory [151]. Likewise,

because the process of performing a command from procedural memory has been streamlined, users require

little to no feedback for these automatic actions. However, problems may arise for users in the autonomous

stage when interacting with a system that is prone to interpretation errors. If an interpretation error were

to occur, the user would be interrupted from their main task as they would need to make corrections and
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monitor the system’s output for further potential errors [90].

As mentioned previously, users are able to progress through these three stages of expertise through

repetitive practice. Fitts and Posner have shown that the user’s gains in performance follow that of a power

function, which is known as the “power law of practice” (shown in Figure 2.1). In other words, the greatest

improvement to the user’s performance occurs at the beginning of the learning or training process. The

amount of improvement exponentially decreases over time, such that after a while, the gains are incremental

over the same amount of time spent practicing. Researchers have studied different kinds of practice and

their effects on learning to understand how to improve the learning process [114]. This includes exploring

the different forms of feedback that a user might receive during their training period, as well as how humans

process new information [104]. For example, research has found that allowing users a period to stop and

rest from their practice can improve learning [142]. Similarly, it has been shown that extending the intervals

between task repetitions can lead to users being more receptive to the benefits of training [69]. These types

of training strategies can improve the learning process passively. Alternatively, a user’s learning can also be

enhanced through intentional learning or extra effort from the user themselves, which is a theory that stems

from the “levels of processing” model from Craik and Lockhart [26]. This model theorizes that when the user

spends more effort during their learning process, they form more long-lasting and deeper memory pathways

than if they expended little effort in their learning. This theory suggests that the added effort helps to

compile declarative knowledge into procedural memory, which helps people retrieve knowledge more quickly.

Particularly with human-computer interaction, studies have shown that increased attention and effort in their

tasks during learning lead to better memorization [23, 30]. While this idea may increase the load on the user

during the training process, putting in more effort to train ultimately results in better learning in the long

term.

Figure 2.1: An example of the power law of practice [57]. New users begin in the cognitive stage
and require the most time to complete tasks. As the users gain practice over time, they will move
through the associative stage until they reach the autonomous stage, where they will have the quickest
completion times.
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2.2.2 Retrieval Effort During Learning

In general, it is accepted that the memory and recall of an item are improved when a person practices

remembering that item. With learning to use an input mechanism, practice usually means to repetitively

use the mechanism over time to develop the input action and command associations. By successfully using

the input mechanism to perform commands, the user is able to reinforce the correct memory pathways.

However, Pyc et. al found that users who practiced more difficult memory retrievals gained better benefits

from that practice [107]. This retrieval effort hypothesis (i.e., “successful but difficult retrievals will be better

for memory than successful but easy retrievals” [107]) states that increasing the difficulty of a user’s training

or practice will improve their learning and performance that involves recalling items from memory. Difficulty

of the practice can be adjusted differently based on the task being performed. In the studies by Pyc et.

al, the difficulty of the tasks was manipulated by increasing the number of items that participants had to

memorize, as well as how many items had to be recalled correctly. They observed that participants who

memorized more items were able to recall more items correctly during memory recall tests. Similar results

were found between a group that performed the test almost immediately after memorization and a different

group that underwent the recall test one week later. In the end, the increase in difficulty causes the user

to put more effort into completing their task (i.e., memory recall), which aids in developing better memory

pathways.

When using an input mechanism, errors in the output are likely to force users to pay more attention

since they need to monitor the system’s output to prevent more errors from occurring. Furthermore, when

an error does occur (either a user error or system interpretation error) the user must put in additional effort

to correct the error. According to Pyc et. al, the presence of interpretation errors can potentially help

users in the learning process, by forcing them to be more attentive of their actions and tasks. Although the

users would need to spend more time and effort making corrections due to interpretation errors, they could

develop stronger memory pathways between the input action and resultant command by having to perform

the action multiple times. While the retrieval effort hypothesis tested by Pyc et. al adjusted task difficulty

through different number of recall targets [107], the process of fixing errors could potentially improve memory

through increased repetition and error tracing (i.e., understanding what caused the error and how to correct

the error).

A caveat to the approach of assuming that interpretation errors lead to higher user effort is that errors

typically lead to a failed task. In other words, if a user were to attempt to recall and perform an action from

muscle memory as an interpretation error occurs, they would receive feedback from the system that their

memory retrieval was unsuccessful, even though it would have been correct if not for the error. From the

user’s perspective, it would appear as an unsuccessful retrieval until they later realized that an interpretation

error had happened. The retrieval effort hypothesis only considers that effort is beneficial when retrievals

from memory are successful. Some studies have shown that unsuccessful retrieval attempts can provide some

advantages to learning and memory encoding [41]. However, the literature lacks examples that support the
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benefits of retrieval effort when the user fails to correctly recall the item. Similarly, the hypothesis has not

been tested when external factors cause the result of a retrieval to be different than what the user expected

or intended, such as in the case of interpretation errors.

2.2.3 Interference During Learning

When an unexpected outcome is produced by the system, the user is interrupted from their primary task

and usually is required to fix the error before they can continue, such as when a wrong command is executed.

Work in this area has previously examined what occurs when a user encounters such interferences during their

learning process [4, 36]. As opposed to the retrieval effort hypothesis, the presence of noise and interpretation

errors could lead to negative impacts to the user’s learning and performance with the input mechanism. This

interference hypothesis states that system errors weakens the memory association between the correct input

and command (i.e., memory trace degradation) [31]. Since their impression of the correct association is being

overwritten with the incorrect one, the more recent memory of the error could make it difficult for the user to

recall the older, correct memory pathway. This retroactive interference is more likely to occur for memories

that are similar to one another, which can often be the case when trying to recall which input action is

associated to which output command. This degradation of the correct memory pathway could even affect

users who are at the autonomous stage of expertise, potentially undoing any learning that they might have

done [143].

Furthermore, it is also possible that interpretation errors can lead to the part-list cuing effect [11]. This

effect, which is also known as cue interference, refers to the counterintuitive phenomenon that occurs when

cuing an item for memory retrieval causes interruptions to the retrieval of the correct item. Normally,

providing a cue usually improves a person’s ability to recall, since they can use the cue as a point of reference.

For example, real-world systems often use the “Enter” and “Esc” keys to confirm and cancel selections,

respectively. However, if the provided cue is too similar or does not provide enough information for the

person, then cue interference can occur, leading to a wrong (or false) memory being recalled instead [108].

Using the same example as above, some systems highlight the “Cancel” option by default in confirmation

windows, which can cause a user to cancel their command if they press “Enter” without first changing the

selected option. Regardless of the type of interference, studies with input mechanisms have shown that

interpretation errors can disrupt a user’s internal association of the input action and resultant command,

leading them to retrieve the wrong memory pathway and suffering losses to their task performance.

2.3 Errors in Input Mechanisms

One type of error when operating an input mechanism arises from the presence of noise in the input. Noise is

a particularly prominent problem in signal-based input mechanisms, and there are many sources of noise that

should be considered (e.g., user errors [130], quantization errors [40], classification errors [44]). Disruptions
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to the signal can create issues for the computer system when processing the information, such as errors when

interpreting the user’s intended input. As such, much research in signal processing has been devoted to

understanding how noise affects a signal. With better knowledge of how noise changes the data, methods to

minimize that noise, while retaining as much useful information as possible, can be designed. Developers of

novel input mechanisms implement such methods to prevent interpretation and other types of errors from

occurring while using the mechanism.

2.3.1 Noise in Input Signals

One of the reasons why the keyboard as an input mechanism is ubiquitous is because it allows users to perform

input commands with an extremely low error rate. Each key that they press is almost guaranteed to perform

the exact operation that the user intended, barring user errors. On the other hand, input mechanisms

that use sensors [34] with a less direct relationship between the user input and output command (e.g.,

BCIs, vision-based systems, or speech systems) requires the computer to translate the user’s intent. This

interpretation of the input signal is often fallible and susceptible to noise, leading to incorrect commands being

executed or commands being missed entirely. Noise can arise from a variety of sources and is present in many

signal-based sensors. For example, noise can come from the environment (e.g., sounds in the background,

electrical interference), the user themselves (e.g., drawing a curved line instead of a straight line), or from

the quantization process that converts continuous, analog signals to discrete, digital ones [16, 40]. Noise

creates changes to the original signal that obscures the useful information. To reduce the amount of noise to

a manageable level and obtain digital data from the analog signal, different methods are used to process the

signal [105]. These including preprocessing steps (e.g., applying a low-pass filter to remove high frequency

noise [19]), feature extraction (e.g., retrieving the outline of a person’s face in an image with edge detection

[118]), and classification (e.g., using a Hidden Markov Model to find similar words for autocorrect [86]). In

particular, Casiez et. al have developed a relatively cheap low-pass filter for removing noise in user input

streams [19]. This filter provides a basis for noise reduction in input mechanisms with an easy-to-implement

algorithm and low computer resource cost. However, as a signal becomes noisier, it becomes more difficult

to completely decouple the valuable information from the random data created from the noise. For practical

purposes, most interactive systems that experience noise are designed with some flexibility towards having

small amounts of noise in the system.

With signal-based inputs, the presence of noise can cause the interpretation of the user’s input and intent

to fail. This can occur at various points in the processing of the input signal, leading to interpretation errors

that cause the system to perform a command that is different than what the user expected. These errors can

occur as early as the quantization process when signal is converted. For example, the analog signal could be

sampled at too low of a sampling rate, leading to a less accurate digital representation of the original signal

(i.e., quantization errors [40]). Preprocessing can create errors if important bits of information are removed

along with noise when filters are not carefully used [80]. Feature extraction may fail if the presence of noise
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creates difficulties in discovering the desired features, such as when low contrast in an image prevents edge

detection from accurately predicting where an edge exists [128]. Lastly, classification of the features can

suffer if the model does not provide enough distinction between similar results; for instance, stroke-based

smartphone keyboards need additional context to differentiate when a user wants to type “to” versus “too”

[109].

Interpretation errors can be categorized into one of three types: misinterpretations, false negatives, and

false positives. Misinterpretations are when an error causes the system’s output to be different than what the

user originally intended when they entered their input. False negative errors occur when the user provides

an input, but no resulting command is produced by the system, either since the system did not recognize an

input or that the input did not match with any of the predetermined commands. False positive interpretation

errors are inversely related to false negatives: the system provides an output command despite the user not

supplying an input. Most systems are designed in a manner to prevent false positives from appearing by

biasing false negative errors. Generally, it is preferable that the system misses a user input than for the system

to act without instruction [124, 155]. Additionally, noise and the subsequent interpretation errors create a

need for the user to continually monitor the system and its output to ensure that correct interpretation of

their input has occurred. This extra burden on the user is an issue that expands into Norman’s “gulf of

evaluation and execution” problem [13, 100]. The gulf of evaluation can be described as the difficulty the

user experiences when trying to understand the current state of the system. When the system is designed to

provide meaningful feedback and information about its state, the gulf of evaluation is small. Likewise, the

gulf of execution is the difference between what a user wants to do and what they system can allow them

to do (e.g., one would expect that flipping a light switch upwards would turn on the lights in the room).

Providing proper labeling, instructions, and training for the user allows them to understand the actions or

commands that a system is capable of performing. Interpretation errors can cause the gulfs to increase, since

they can obscure the true state of the system (e.g., the system performed an incorrect command leading to

the wrong state) or mislead the user as to correct result of their input action.

2.3.2 Strategies to Reduce Noise

One of the main focuses of signal processing research is the study of effective noise reduction techniques [133].

An effective technique not only minimizes noise in the signal, but also does so in a timely manner with a

reasonable amount of computer processing power. Different methods of noise reduction exist for different

types of signals; the type of noise in a digital image (e.g., Gaussian noise, salt-and-pepper noise) can be vastly

different from acoustic or electrical noise (e.g., power mains noise, thermal noise). As such, the methods that

developers of input mechanisms use differ depending on the type of input signal.

Since noise can arise from a wide variety of sources, such as the environment where the input mechanism is

being used, eliminating all the noise from an input signal may not be feasible. Current noise removal/reduction

techniques, from simple filters to complex deep learning approaches, can remove a certain degree of noise,

15



more so if a certain type of noise is expected to occur frequently for that input mechanism (e.g., using a

band-stop or notch filter to remove the mains hum of electrical power lines). Conversely, this also means

that a certain amount of noise can be expected to appear in an input signal. This may be due to the device

being used in environments or states that are incompatible with the input mechanism itself (e.g., using a

camera-based gesture recognizer where the lighting creates shadows that obscures the user and their gestures)

or being used in such a way that designers did not intend for the input mechanism to be used (e.g., using

a speech recognizer to determine the lyrics of a song). Although more advanced noise reduction techniques

may aid in reducing interpretation errors made in these situations, a developer may find that the cost of

implementing such a technique outweighs its benefits. Since users expect a system to interpret their input

and output a system command in real time, the amount that a computer can process the input signal is

limited. Many commercial input mechanisms that are susceptible to noise perform noise reduction to varying

degrees, which not only ensures correct interpretations, but also improves user quality of life by reducing

the need for them to take corrective actions due to errors caused noise. As such, the amount of effort and

resources allocated to attenuating noise in an input mechanism needs to be balanced with how much noise

is acceptable for the user to manage.

If the source of the noise is well known, such as from nearby electrical equipment [77], filters can be used as

a basic method of attenuating the noisy signal [19, 38]. The function of filters can partially or fully suppress

certain frequencies of a signal. Different filters (e.g., Butterworth filter, Bessel filter, etc.) change the nature

of how a signal is attenuated. Furthermore, the signal that is removed by the filter depends on how the filter is

designed. For example, a high-pass filter will remove low frequency signals that are sometimes tied to changes

in electrode impedance caused by sweat or drift when using a BCI. Notch filters (i.e., band-stop filters) are

commonly used for specifically removing the 60 Hz mains hum from high-strength power lines. Filtering is

an effective technique to minimize noise when the noise occurs outside of the frequency range of the signal of

interest. However, filters need to be used carefully as they can also easily remove any useful information. As

such, filtering is usually done as a preprocessing step to prepare the signal for further deconstruction through

feature extraction and classification.

For researchers who study specific psychological events (e.g., event-related potentials [77]), other methods

are available that can help with limiting noise in the output data. Traditional uses of electroencephalography

record a set of brain electrical activity over a period of time and perform analysis after all of the raw data has

been gathered (i.e., offline processing). When a large number of trials are gathered for a particular time-locked

phenomenon, such as the brain activity that occurs immediately after pressing a button, the different signals

of all the trials can be averaged together [87]. By assuming that the noise is stationary and follows a normal

distribution (e.g., Gaussian noise), the averaging process will cause the noise to cancel itself out. Another

method possible with offline analysis is the manual identification and rejection of artifacts and noisy data

points. As with many other studies done in HCI, noisy data points or epochs can be manually removed from

the analysis. Naturally, this requires much manpower and time for the amount of data that is gathered from
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using an EEG, but an experienced researcher is able to identify known artifacts in the data (e.g., eye blinks,

muscle movement). However, BCIs require the analysis to happen in real time as the user performs inputs

(i.e., online processing), which makes it difficult to employ these techniques. There have been developments

in machine learning that use training sets to learn what noise or artifacts look like and remove them in real

time [136, 110]. Regression analysis has also improved the ability to extract the important features from the

noise, allowing for more consistent outputs [83]. Studies have also shown success with using morphological

component analysis to automatically remove eye movement and blink artifacts from both offline and online

EEG data [149, 79].

While many techniques are available that help with eliminating existing noise in EEG signals, many

researchers use procedures that minimize the amount of noise that can initially appear [77, 70]. For example,

when a user blinks while wearing an EEG, a large artifact is produced by the rapid changing polarity caused

by the eye movement. As such, users are often instructed to not blink as much as possible while using the

EEG. Similarly, a user physically moving around can cause the electrodes on their scalp to shift, leading to

movement artifacts in the data. Comfortable seating and relaxed posture can prevent the user from restlessly

moving about [77]. In laboratory studies, the environment can be controlled to reduce sources of noise from

interfering with the EEG recordings. A recording chamber that is also a Faraday cage can prevent external

electrical and magnetic signals from reaching the sensitive electrodes. Lowering the temperature of the room

can prevent the user from sweating such that the conductivity of the electrodes does not change over the

course of the experiment [153]. Unfortunately, for a practical BCI that functions in real time, these techniques

are typically not plausible for everyday use. Further work is required in this area to handle the additional

noise that may be generated in uncontrolled environments, such as using a BCI while walking and performing

other activities.
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3 Understanding Noise in Signal-Based Input

Mechanisms

When input mechanisms receive analog signals from a user’s input, the computer must interpret the input

in a way that reflects the user’s intent. However, noise can cause incorrect interpretations of the signal to

occur, which results in unexpected outputs. To better understand how interpretation errors affect these

types of alternative input mechanisms, a study on a motor imagery brain-computer interface was conducted

to assess the impact of noise on an input mechanism that is well known for its high rate of interpretation

error. BCIs are an excellent choice for investigation, because not only do they use a noisy channel as an

input signal (i.e., brain activity), they are also an input mechanism that is relatively new that will require

most users to learn an entirely new control paradigm to use. As such, the process of learning to use a noisy,

novel input mechanism can be studied with a BCI as a genuine real-world mechanism.

3.1 Brain-Computer Interfaces

BCIs are one of the several different forms of human-computer interfaces that use the electrical signals in a

person’s brain activity to control a computer system. They allow users to perform hands-free, gaze-free, and

voiceless actions on a computer through interpreted commands from their brain signals. This provides BCIs

with significant advantages as an input mechanism over other options; users only need to exert mental effort

to execute a command. BCIs are able to overcome some of the issues that arise for other alternative input

methods: speech recognition can fail in acoustically noisy environments, handwriting recognition requires the

user to have enough motor control to use a writing implement, and eye tracking technologies require the user

to maintain their gaze on specific areas.

BCIs also have major implications for computer users who have motor deficiencies [60, 37, 134]: they

have been developed for users to control robotic prosthetic limbs that allow them to regain function from a

missing limb [35]; mechanized wheelchairs can be controlled with a BCI to allow paraplegics to freely move

with their own will [71]; with brain activity alone, users can write and send emails at speeds and accuracy

comparable with able-bodied users [82]. Innovations and improvements to BCIs continue as the underlying

EEG technology improves and more commercial EEG devices become available to the public at lower costs

[32].
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3.1.1 Electroencephalography

Electroencephalography (EEG) is the monitoring and recording of a brain’s electrophysiological activity us-

ing electrodes. For applications when using with humans, these electrodes are typically non-invasive and

are placed at standardised locations on a person’s scalp [18]. There are also electrodes that can be applied

directly intracranially on the brain, which is known as intracranial electroencephalography (iEEG) or elec-

trocorticography (ECoG). While there are certain advantages of having direct electrode contact with the

brain, such as a significantly better signal-to-noise ratio and a higher spatial resolution [91], the need for an

invasive surgical procedure (i.e., incision into the skull) means that ECoG is often not feasible unless there

was already a need to expose the patient’s brain (e.g., treating intractable epilepsy [147]).

There are a variety of other techniques currently being used to study brain function, which include:

functional magnetic resonance imaging (fMRI) [117], positron emission topography (PET) [154], nuclear

magnetic resonance imaging (NMR), and functional near-infrared spectroscopy (fNIRS) [92]. The main

reason to use EEG over any of these techniques is the extremely high temporal resolution that can measure

brain activity in the order of milliseconds. This is the main focus of studying event-related potentials (ERP):

measuring how the brain responds to stimulated events [77]. This has led to the discovery of the P300

component (in response to decision-making processes) and the error-related negativity component (which is

elicited less than 100 ms after a mistake is made, whether the person consciously realized the mistake or

not). Another advantage of EEGs is the much lower comparative cost [137]. Commercial EEGs for personal

use are available for hundreds of dollars (e.g., NeuroSky offers single-electrode EEGs for approximately $100

[95]), as well as up to tens of thousands of dollars for advanced systems with 32 or more electrodes [94]. To

compare, MRI machines typically cost over hundreds of thousands of dollars [54]. The main disadvantages

of EEG come from its low spatial resolution and inability to measure electrical activity below the surface of

the brain. For these purposes, other techniques are desired and may sometimes be used in conjunction with

EEG (e.g., fMRI and PET can be used to precisely localize regions of the brain based on changes in blood

flow [117, 154]).

Scalp-based electrodes for EEG have been commonly used in clinical settings since their inception by Hans

Berger in the 1930s [131]. It is contemporarily used by physicians as a tool for diagnosing epilepsy and other

neurological disorders, such as encephalitis, stroke, and various sleep disorders. Furthermore, EEG is also

extensively used for studying cognitive function and understanding human psychology [77]. Silver chloride

(Ag/AgCl) electrodes are the main types of electrodes used for EEG as they provide potentials that do not

vary with environmental variables, such as temperature and time [1]. To detect the brain’s electrical activity

through the scalp, most conventional clinical EEGs require a conductive gel or paste to be applied at the

electrode-scalp interface to improve the conductivity of the contact. Dead skin cells and oils on the surface of

the skin may also increase the electrical impedance leading to worse conductivity [59]. Thus, gentle abrasion

will be performed at the contact area to lower the impedance. Recently, the development of dry electrodes

(i.e., does not require using a conductive gel), have allowed EEGs to become easier to use by reducing their
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necessary preparation and clean-up procedures [75].

Depending on the application, the number of electrodes/channels being used will depend on the desired

spatial resolution (i.e., higher spatial resolution will allow more accurate mapping of an electrical event to

a specific part of the brain). When attempting to diagnose patients for epilepsy, a clinician may use 16-25

electrodes to cover the scalp as they are more interested in when an epileptic event occurs and how long it

persists [85]. However, neuroscientists studying which part of the brain specific actions originate from may

require 256-512 electrodes in their studies [58, 14]. As more channels are used, more computing power will

be required to analyze the resulting data. As a result, BCI applications that require real-time analysis of

EEG data are limited by the computer’s processing power to analyze the data within a reasonable timeframe.

Typically, BCIs will use 8-32 channels depending on the spatial resolution needs [8].

3.1.2 Types of BCIs

The types of BCIs available are directly based on the underlying electrophysiological monitoring technology.

As such, there are both invasive and non-invasive BCIs being developed. Invasive BCIs are ones that require

electrodes to be implanted on a person’s brain through a surgical procedure. ECoG is mainly used for invasive

BCI purposes and is often applied as an array of electrodes directly on the surface of the brain underneath

the skull [115]. The use of ECoG as an interface can also sometimes be referred as a semi-invasive BCI; there

are more invasive methods that exist that require the implantation of electrodes into the brain itself to get

better signals from specific regions [12]. While invasive (and semi-invasive) methods provide much higher

spatial resolution and signal-to-noise ratio compared to EEG (i.e., scalp-based electrodes), bodily response

to foreign objects in the brain will lead to scar tissue developing over the electrodes and interfering with

the signal quality. Also, the high risk and cost of a neurological surgical procedure means that implanting

electrodes will only be done if a surgery is already required for a different reason (e.g., treating epilepsy [2])

or if the risk of reducing a person’s quality of life from the procedure is very low (e.g., implanting optical

prosthetics for blind patients [126]). As a consequence of the high risk, previous research that study invasive

BCIs are often focused on 2-3 users and their experiences with using the BCI over many months or years

[48].

Many invasive BCIs are developed for disabled users to help control prosthetic limbs [116]. Using BCI

commands to tell a mechanical arm prosthetic to grab an object is a more natural action than issuing the

same command from a traditional computer interface. It does not require the user to carry around a separate

device to use the limb, and their commands can remain private (e.g., using speech commands would mean

people nearby would hear the commands). Also, since the signal from an in vivo electrode is much more

reliable than scalp-based electrodes, errors from interpreting the user’s commands are less likely to occur.

With some training, users can become proficient enough with using the BCI that they can fluidly issue

commands to control their prosthetic. Passive forms of invasive BCIs can also be used to improve a person’s

quality of life without requiring active input from the user. For example, visual prosthetics (i.e., bionic eye
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[126]) can be connected to a user’s optical nerve to relay the visual information from the prosthetic directly

to the brain, allowing a blind or partially blind user’s vision to be restored. Although invasive BCIs provide a

wide variety of benefits, they are ultimately less practical for most users, since they require a highly invasive

surgery and are typically expensive to implant and maintain.

The main benefit of using a non-invasive BCI is that they are much more accessible for most users to

adopt in their daily lives. Non-invasive BCIs are often used as a cheaper, safer, and less permanent alternative

to invasive technologies for improving computer access to disabled or motor-impaired users. These types of

BCIs can also be developed for able-bodied users as another alternative input mechanism. However, it

requires that the underlying technologies that power the BCI needs to be inexpensive, portable, and, most

importantly, pose no adverse health risk for the user. As such, while many different non-invasive brain

monitoring technologies are available (e.g., fMRI), only EEG and fNIRS meet the criteria for use with BCI

devices [63]. fNIRS technologies work by projecting near-infrared light through a person’s scalp and measures

the differences caused by blood flow in the brain, such as change in flow rate or oxygenation levels. This

works similarly to fMRI and provides similar advantages as a brain sensing technique, namely, a high spatial

resolution. However, for the purposes of BCI as alternative input mechanism for issuing computer commands

quickly and accurately, EEG with its high temporal resolution is often preferred. There has been work in

successfully using fNIRS for monitoring passive user information, such as emotional affect which requires the

ability to locate where changes in the user’s brain are occurring [63, 62].

Since EEG-based BCIs are more commonly and cheaply available, a wider range of applications have been

developed for them. Video games have been created that use only brain-input controls (e.g., BrainBall sees

players competing against each other to relax and increase their alpha wave amplitude [50]), virtual reality

headsets can be integrated with BCI for more immersive controls (e.g., Neurable attachment for the HTC

Vive [123]), aiding in meditation (e.g., Muse Headband [127]), and monitoring a user’s attentiveness during

various tasks (e.g., Nijholt P300 study [97]). Naturally, non-invasive BCIs can still be used for assistive

purposes, such as providing an input method for writing emails or controls to drive a mechanical wheelchair

[71, 21].

3.1.3 Control Strategies

There are a few major control paradigms that currently exist for people to use a BCI: steady-state visually

evoked potentials (SSVEP), P300, and event-related desynchronization (ERD). While other control methods

also exist, these are the most popular for their ease of implementation and the better overall understanding

of the underlying brain functions that drive them. In existing literature, most BCI applications use either

SSVEP or P300 control strategies as they are reported to have lower rates of errors due to factors such as

noise.

SSVEP BCIs are based on the phenomenon that when a person sees an oscillation, the brain produces a

response at the same frequency of the stimulating oscillation [101]. In lab settings, this oscillation is usually
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a stimulus in the form of a light, shape, or image that flickers on and off at a specific frequency. When a user

focuses their attention on that stimulus, a relatively strong signal at the same frequency (and its harmonic

frequencies) can be observed near the participant’s visual cortex (i.e., the back of the head by the occipital

lobe). This phenomenon holds true even when multiple stimuli are presented at varying frequencies that do

not interfere with each other (e.g., frequencies at 11 Hz and 15 Hz do not share many harmonic frequencies and

are relatively far apart). While the participant focuses on a particular stimulus, that frequency will appear as

the strongest and the other peripheral stimuli will elicit weaker responses. As a computer interface, SSVEP

allows users to select a command by simply looking at their intended target. The BCI will then be able

to determine the difference in strength of the brain’s responses to determine which item should be selected.

The number of possible items/stimuli that can be displayed at once is limited by how different the oscillation

frequencies are from one another, as wrong interpretations are more likely to occur as frequencies are closer

together.

P300 BCIs are similar to SSVEP BCIs in that they rely on a user’s visual attention towards a particular

stimulus. The major difference between the two paradigms is that P300 stimuli flash instead of oscillating

[102]. P300 spellers are a common application that essentially provide a method of text entry using a P300

BCI [66]. A grid of letters, numbers, and symbols are ordinally laid out on a black background. A flash

stimulus is performed across each item, one at a time, in the grid by highlighting the item with a white

background for a short duration (e.g., 100 ms). While the user is focused on an item as the flash occurs for

that specific item, a response called the P300 (i.e., a positive peak in the brainwave occurring approximately

300 ms after the stimulus onset) is elicited from the user’s brain. Like with SSVEP, peripheral targets that are

not being attended to will have weaker P300 responses. Since the flashes occur quickly throughout the grid,

the BCI can wait and use multiple flashes to confirm a selection and reduce the likelihood of interpretation

errors. This has led P300 spellers to becoming a popular BCI tool for performing text-entry tasks in a

relatively quick and accurate manner (e.g., writing emails [71]).

ERD BCIs use imagined movements of the user’s body to elicit responses from different parts of their

brain; hence, these types of interfaces are sometimes known as motor imagery BCIs [61, 25]. µ waves (mu

waves) are the sensorimotor rhythms of brain activity that are related to voluntary movement. These waves

typically exhibit a frequency from between 7-13 Hz and are localized around the motor cortex (i.e., top of the

head). When a person performs a motor action (e.g., bending an arm), a suppression of the mu wave occurs,

which can be observed in a frequency-domain analysis as a decrease in amplitude at the 7-13 Hz range. This

response occurs in different areas of the brain depending on the action (e.g., bending of the left arm will

cause an ERD on the right side of the motor cortex). This suppression occurs because the affected neurons

are normally firing in synchrony when at rest but become desynchronized during an action as the neurons

fire in different and complex patterns. The ERD phenomenon also occurs if the person views someone else

performing an action; some researchers believe this is related to mirror neurons (i.e., a neuron that activates

when the person or animal sees another performing the same action). This also applies when a motor action
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is imagined (e.g., thinking about bending an arm), albeit to a weaker degree. By mapping different imagined

movements and their respective ERDs to different computer commands, the basis of motor imagery BCIs is

formed. With sufficient training, a user can effectively send mental commands to a computer without the

need for physical interaction and unlike methods that use visually-evoked potentials (e.g., SSVEP, P300),

the user does not need to visually attend to a stimulus.

There also exists another category of EEG-based BCI devices that monitor a user’s passive state, known

generally as passive BCIs [62, 150]. They monitor various underlying neurological processes as a user performs

tasks (either related with the BCI or not) and the BCI provides the computer with ways to improve the user’s

performance or quality of life. For example, a passive BCI monitoring the error-related negativity (ERN)

component [148] of a user’s brainwaves would be able to detect when a user makes a mistake and help them

make corrections faster than they normally could. The advantage of these passive BCIs is that they function

without the need for the user to be aware of them, meaning that they can be integrated with other control

paradigms as a hybrid BCI to aid and improve their usability (e.g., reducing command interpretation errors

using ERN detection [113]). While further understanding of the brain’s processes is still required, future

passive BCI devices may be able to guide users with planning and decision-making by being able to directly

look at the underlying processes as they occur.

3.1.4 Using a BCI

The idea that BCIs will allow users with motor deficiencies to be able to perform motor tasks is one of the

major draws of the technology. Being able to control a computer without the need for physical interaction

means that almost anyone can use it as an interface. Along with cheaper EEGs being made commercially

available, widespread adoption by able-bodied users should also be possible soon. However, the problem of

BCI illiteracy is a major obstacle to creating a single one-size-fits-all BCI.

To start, being able to effectively use a BCI (i.e., issuing commands with relatively high interpretation

accuracy) often requires a long and extensive training period. With most current EEG electrodes, slight

displacements of the electrodes can cause noise to appear in the input signal, which may interfere with a

BCI’s interpretation of the user command [81]. Another major source of noise comes from blinking (often

classified as an artifact), caused by the rapid muscle movement of the eyelid. As such, users need to be as

motionless as possible when attached to an EEG device and using a BCI to perform computer commands.

This means that even BCI control paradigms that are reacting to a user’s attended state, such as SSVEP or

P300, users must learn to remain as still as possible while the BCI is determining a command selection. For

BCIs that use ERD (e.g., motor imagery), most users will need to train themselves to produce stronger mu

wave suppressions when imagining movement, since imagined motor actions naturally produce weaker ERDs

than actual movement. An effective method of generating reliable signals for the BCI differs from person to

person, which means potential users will likely have to try different imagined motor actions to produce the

strongest ERD for them [72]. Repeatedly imagining and training the same motor action can also benefit from
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neuroplasticity; neuron pathways that facilitate mu wave suppression will be reinforced and become easier to

access at will.

While these pose initial problems to effectively using a BCI, they can be eventually resolved through

training and practice. However, even with practice, not all users are able to use BCIs. This anomaly that

affects approximately 20% of users is known as BCI illiteracy [3], which is defined as the inability to use one

or more BCI control paradigms. Even though brain functions are roughly located in the same area for most

people (e.g., the visual cortex near the back of the head controls sight), there are differences between people’s

brain structures; the individual pathways and neurons will vary. Since the most commonly used non-invasive

BCIs are based on EEGs with scalp-based electrodes, a person whose relevant brain activity that occurs

deeper in their brain may not produce a strong enough signal at the scalp surface to be able to use certain

BCIs. As such, there is no single, universal BCI paradigm that work for all users. For some users who are

illiterate with one paradigm, they could potentially use a different one, especially if the signals originate from

different areas of the brain (e.g., SSVEP signals at the visual cortex/back of the head; ERD signals at the

motor cortex/top of the head). However, there still exists a small amount of users that are completely unable

to use any currently available BCI paradigm. While researchers have attempted to provide both software and

hardware solutions to these issues, the greatest success thus far has been attempts at using machine learning

to make improvements for BCI-illiterate users [136].

3.1.5 Interpretation Errors in BCIs

Errors that occur during the interpretation of the input signal can result in wrong commands being executed

by the computer. For BCIs, one of the main sources of interpretation errors is caused by noisy brain activity

being recorded. This noise is primarily in the form of electrical noise and interference that is received through

the EEG electrodes, and often arises from nearby power supply lines in the wall, AC-powered lights, and other

nearby electronic equipment (e.g., computer monitors, signal amplifiers, Wi-Fi routers etc.) [77]. Similarly,

movement artifacts produced from the user can also be a cause of poor input interpretations. Any noise,

interference or artifacts affecting an electrical signal will modify the properties of the signal’s information,

which can make it extremely difficult to discern the effects of the modification if the original signal is unknown.

Strategies to reduce noise in EEG signals are discussed in Section 2.3.2.

3.2 Development of a Motor Imagery BCI

To determine the feasibility of using the brain as an alternative input for controlling computer systems, motor

imagery/ERD BCIs were studied. Motor imagery was mainly chosen as the BCI control paradigm due to the

input method being primarily neurological. As opposed to the SSVEP and P300 paradigms which require

the user to visually attend to a stimulus, motor imagery can be commanded with only the user’s thoughts

and intent. In practice, this means that motor imagery BCIs have several advantages over other BCI control
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paradigms, as well as alternative input mechanisms. Motor imagery does not require an external stimulus

to activate (e.g., the P300 component is detected when a change occurs to a visual stimulus that the person

is looking at), allows for complete input privacy from their physical surroundings (e.g., speech recognition

needs the user to speak their commands out loud, usually with a clear tone), and can be used continuously

(e.g., as long as the imagery is maintained in the user’s mind, an input signal will be continuously streamed

to the computer).

The current issues with using motor imagery as a control paradigm, and BCIs as an alternate input

mechanism, are also acknowledged. Since motor imagery is derived from the ERD signals that appear

from the imagination of physical movement, actual muscle activation located elsewhere in the body can

cause stronger ERD signals to appear (i.e., real motor actions typically produce stronger ERD events than

imagined or mirrored ones). For example, if a two-class motor imagery BCI (i.e., a BCI that uses two

distinct EEG events to differentiate inputs) is waiting for an input of either left arm or right arm imagery,

physical movement from the legs could be misconstrued by the system as an imagined arm motion and

potentially causing the wrong command to be executed. Thus, when using a motor imagery BCI, users are

often discouraged from physical movements, including those performed as a result of subconscious behaviour,

such as blinking or moving their tongue inside their mouth.

3.2.1 EEG Headset Selection

When considering the device to use to study BCI input, several important factors were considered. Currently,

there are no ready-to-use motor imagery BCIs that can be operated immediately out of the box. Most research

groups that study BCIs develop their own in-house system, since the requirements of the device and software

greatly vary depending on the interaction being studied. To start, different EEG devices were researched for

their suitability for studying how noise and interpretation errors affect the use and learning of BCIs as an

input mechanism. After comparing various commercial devices, the OpenBCI Ultracortex Mark IV Headset

was selected (shown in Figure 3.1). One of the major factors in deciding on the device was the cost. While

more expensive EEG systems could provide more accurate readings, these systems would be unreasonable

for most potential BCI users to afford. The Ultracortex headset allows for up to 16 channels whose locations

can be easily adjusted depending on the needs of the researcher or user. This means that electrodes can be

concentrated on the scalp over specific areas of interest (e.g., centrally over the motor cortex for detecting

ERD events). The Ultracortex headset is portable through its wireless connection through Bluetooth, which

also eliminates the possibility of interference from connecting wires. Also, the source code for the device is

entirely open source, allowing for a high degree of customization with its firmware to suit difference needs,

as well as the availability of online resources to aid in development and troubleshooting.

The Ultracortex electrodes are dry silver chloride (Ag-AgCl) electrodes. Using dry electrodes removes

the need for that conductive gel to be applied onto the user’s scalp, allowing for quicker preparation times,

less clean-up, and faster transitions from one user to another when used for consecutive participants in user
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studies. Duvinage et al. found that, while a dry electrode system is less accurate than the gel-based systems

(i.e., wet electrodes) often used in medical applications, it still performed at a level useful for non-critical

applications (e.g., BCIs for gaming) [29]. Although the ability in recording accurate signals is lower, dry

electrode EEG systems are still usable for non-critical applications (e.g., BCIs for gaming). When compared

with using a gel-based system that are commonly used for medical or research purposes, dry electrodes are

more likely to be used for BCI systems, since they can be used with minimal preparation (e.g., does not

require the application of a conductive gel). Reducing the time and effort necessary to prepare an EEG

device for BCI use is necessary for the input mechanism to reach higher rates of adoption by the general

population.

Figure 3.1: The OpenBCI Ultracortex EEG Headset used to study BCIs as a novel input mechanism.

3.2.2 EEG Headset Testing

Initial tests to understand the Ultracortex headset were performed by observing the elicitation of alpha waves

in several testers. This was done using OpenBCI’s own software, the OpenBCI Graphical User Interface

(GUI), designed for basic monitoring of raw EEG data with the Ultracortex and their other devices. The

GUI allows for real-time observation and recording of the electrical signals received at each electrode, in both

time and frequency domains. A heat map of the scalp is also available that shows activity based on the

location of the electrodes. An example of the GUI can be found in Figure 3.2. The Ultracortex was placed on

users in accordance with set-up instructions provided by the OpenBCI website. The set-up steps are similar

to the procedure used in the BCI study and is detailed in Section 3.2.4. Calibration is primarily done by

asking the participants to perform an action that elicits a strong response that can be seen throughout all

electrodes (e.g., blinking, clenching the jaw). In Figure 3.2, a blink artifact can be seen in all active electrodes
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at approximately -2.4 seconds.

Figure 3.2: The OpenBCI GUI that was used to calibrate the Ultracortex IV Headset. On the left
half of the GUI is a real-time visualization of the electrical amplitudes recorded by each electrode over
time. Active electrodes show activity and the current voltage being detected by the electrode, while
inactive electrodes shows a ”RAILED” reading. The graph in the upper right of the GUI shows a
real-time Fourier transform of all electrodes in the frequency domain. The lower right display shows a
heat map over the user’s scalp of the electrical activity detected by the electrodes.

The testers were then directed to perform a few different actions that elicit strong responses in the EEG

(e.g., blinking, clenching of the jaw, etc.), to test proper adherence of the electrodes. Finally, to detect their

alpha waves, the users were instructed to close their eyes and relax as much as possible. In the state of

relaxation, alpha waves are typically detected as increased oscillations across the occipital lobe (i.e., the back

of the head) in the 8-12 Hz range. Successful users would see an increase in their EEG amplitudes over

this range. After confirming the usability of the Ultracortex with the basic tests, a study was designed to

gather motor imagery data from a user study using an oddball paradigm (i.e., participants are presented

with repeating stimuli that are rarely interrupted by a non-conforming stimulus) [120].
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3.3 BCI Study: Detection of Mu Waves Using the Ultracortex

Headset

The BCI study was designed to test the capabilities of the Ultracortex headset with detecting and recording

motor imagery. Specifically, the brain activity of interest are mu waves that become supressed when an

event related synchronization event occurs, typically evoked through real or imagined muscle movement. A

secondary objective of the study was to test the responsiveness of system by gathering data in timed trials

and to test the offline analysis procedures.

Participants were asked to complete a series of tasks by moving their fingers when prompted by an on-

screen stimulus, with an occasional “oddball” stimulus [120]. Real movement was desired as opposed to

imagined motor actions, because the suppression of mu waves is more prominent (i.e., easier to detect) when

the movement actually occurs [17, 51]. To fulfill the secondary objective, this study used an oddball paradigm

to evoke a neurological event that can occurs after a short period of time from when the stimulus is received.

The oddball paradigm is commonly used for studying ERPs that are time-locked to a stimulus (i.e., brain

activity that occurs after a period from when the person receives a stimulus). Research into ERPs show that

there is a greater neurological reaction, specifically from the P300 component, during an oddball stimulus

when compared with normal stimuli. A previous study used similar methods to successfully locate both

P300 and ERD events in participants with drug-resistant epilepsy [119]. After data gathering was completed,

offline analysis of the EEG data was done in an attempt to isolate the ERD events.

3.3.1 Study System

The software used in this study was developed in Java and Python. To gather EEG data from the OpenBCI

Ultracortex headset, an open-source interface called the Lab Streaming Layer (LSL) was used to synchronize

the handling of data collection and operation of the study software. The headset would send EEG data

over the Bluetooth connection via the LSL, which could provide the data output to several different pro-

gramming/scripting languages for further analysis or manipulation, including Java, Python, and MATLAB.

However, initial testing of the output data found problems with some of the languages. For example, the

LSL Java output was lacking timestamps that would have allowed for determining the time a specific data

point occurred after the trial began. Some outputs also showed significant delay between the actual time that

the brain activity occurred and when the signal was received by the computer, where the delay was visibly

apparent during real-time monitoring of the EEG recording. As such, the LSL Python output was selected

for being able to provide the most accurate and detailed EEG recordings in real time.

The user study’s GUI was developed in Java using JavaFX. Since the incoming EEG data was being

received by a Python script, the data needed to be redirected into the Java program for synchronizing with

the ongoing study. A socket was implemented within both the Python script and Java program that allowed
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two-way, real-time communication between the two languages. This allowed continuous streaming of the EEG

data into the program controlling the operation of the study, as well as any other programs for monitoring

the neurological state of the participants.

The tasks involved performing a motor action (i.e., finger and hand movement of both hands) when

an on-screen prompt was received during a single trial. A fixation cross was present on the screen for 3

seconds. A high-pitch sound cue followed for 0.5 seconds that informed the participant of imminent start of

a trial, signalling for the participant to refrain from any movement, including blinking. Participants would

then receive one of four stimuli that instructed them with which hand to perform the motor actions. They

continuously moved their fingers on both hands in a chording motion for the duration that the stimulus was

visible on the screen, which lasted for 3 seconds. A 0.5 second low-pitch tone denoted the end of the stimulus

and for the participants to stop all movement again. Lastly, the fixation cross reappeared that marked the

end of a trial, although data recording continued for another 2 seconds. An inter-trial period was added

between the end of a trial and the start of the next trial to prevent participants from recognizing a pattern

and anticipating the start of the next trial. This period was chosen randomly from between 0.1 seconds and

0.8 seconds, as described by previous work [77, 132]. Participants were shown a solid black screen during the

inter-block periods, indicating that EEG data recording had been paused and were free to move. A diagram

of the procedure timeline is shown in Figure 3.3.

Figure 3.3: A timeline illustrating the sequence of events taken place during a single trial. EEG
activity was recorded during the events that are bounded with a solid box (from 3 seconds before
stimulus onset and until 5 seconds after). The inter-trial period was randomized between every trial.

Two different stimuli were used to instruct participants on whether to perform the motor actions during

the trial. The target stimulus was a solid green circle in the middle of the screen, which informed the

participant to move their fingers in the prescribed chording motions. The non-target stimulus was a solid

red circle, which indicated that the participants should not be moving at all during the trial.

The study involved 10 blocks of 10 trials each. Participants started and ended their session with a baseline

EEG test that recorded their neutral brain activity while staring at a black screen. The baselines allow for
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zeroing of the EEG data by eliminating individual differences between the participants. Participants were

allowed to blink and make small adjustments to their posture during the baseline tests but were still asked

to minimize such movements as much as possible. Within each block, 3 of the 10 trials were targets. These

oddball targets did not immediately follow with another target trial.

3.3.2 EEG Data Acquisition and Processing

EEG data was recorded from 7 silver chloride (Ag-AgCl) electrodes. The electrodes were distributed across

the scalp using a modified version of the International 10-20 system, with the electrodes being located at:

C3, C4, Cz, FC1, FC2, CP1, and CP2. Electrode locations are shown in Figure 3.4. The 10-20 system refers

to the standardized distribution of electrodes over the scalp [18]. The locations are divided into distances

that are at 10% intervals from the front to the back of the skull (i.e., from the nasion to the inion) and at

20% intervals from the left ear to the right ear. The electrode placements used in this study is from the 10-10

system, which is a higher resolution system that allows for more concentrated data gathering. The letters

denote the region of the brain that the electrode is reading signals from: central lobe (C), frontal lobe (F),

and parietal lobe (P). FC denotes that the electrode is between the frontal and central locations, and CP is

between the central and parietal locations. Odd numbers denote the site being on the left half of the head

and even numbers are used for the right half. A lower-case “z” is used for the centre line on the scalp that

connects the nasion and the inion. Reference nodes, used to ground the electrical signal, were located at

both left and right mastoids (i.e., ear lobes). The electrode locations for this study were selected such that a

higher concentration of data could be recorded from the area of the scalp best associated with motor imagery

(i.e., top of the head). Electrical impedances at each electrode were less than 5 kΩ for all participants. The

sampling rate of the EEG was 125 Hz.

The electrical signals were recorded with a sampling frequency of 125 Hz. MATLAB was used to perform

analysis after all participant data had been gathered. During offline analysis, the EEG data was filtered

using a 1 Hz high-pass filter and a 45 Hz low-pass filter.

3.3.3 Participants

Four participants (one man and three women) were recruited for the BCI study from the University of

Saskatchewan’s Human Computer Interaction Lab. Each participant was a student working at the lab

and were aged 21-29. None of the participants had previously used a BCI or EEG before, and had never

participated in any other EEG-related studies.

3.3.4 Study Design

This study had two main goals:
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Figure 3.4: A layout of the International 10-10 system used for EEG electrode placements. The
locations marked in green are the electrode locations used in the BCI study.

1. Understand the capabilities of the OpenBCI Ultracortex IV Headset to detect mu suppression associated

with ERD events.

2. Determine the LSL and study system’s responsiveness in recording EEG data.

The BCI study was conducted as a within-participants design, where each participant performed the same

set of tasks, under the same conditions.

3.3.5 Procedure

Participants provided their vocal consent before the start of the study. They were instructed the day before

their session to clean their head with shampoo and comb their hair. They were also asked to not use any hair
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products on the day of the study. The electrodes of the Ultracortex headset were used as a guide to find their

eventual resting locations on the scalp of the participant. After determining their locations, a small amount

of Nuprep EEG skin prep gel was applied to each location. Using a cotton swab, the gel was used to prepare

the electrode contact locations by abrading the skin to remove dead skin cells and any other contaminants.

The gel was cleaned off the skin before the headset was placed onto the participant’s head.

Adjustments to the headset and calibrations to the EEG headset were made using the OpenBCI GUI.

After the calibration, participants were given instructions for how to complete the study’s tasks. Partici-

pants then underwent a two-minute baseline test prior to completing the tasks. Following the baseline test,

the participants completed 10 blocks of tasks, with 10 trials per block. After all blocks were completed,

participants finished one final baseline test before being disconnected from the headset. Lastly, participants

were asked a series of subjective questions about their experience with wearing the Ultracortex headset and

completing the study’s tasks.

3.3.6 Results

Trials with eye blink artifacts, movement artifacts, and/or EEG amplitudes that exceed 5 SDs above or

below the trial’s mean were removed from offline data analysis as outliers. The EEG data recorded before

and after a trial was kept in analysis, as it could provide useful information to events that precede or follow

ERD and ERP events.

Participant Results

Participant EEG data was gathered from 7 electrodes as they completed the study. An example of the raw

EEG collected is shown in Figure 3.5. Individual trials are divided between target trials (oddball stimulus)

and non-target trials. An example of the raw EEG of an individual trial is shown in Figure 3.6. In both

plots, the y-axis served as a relative scale.

The participant data was filtered during offline analysis using a 1 Hz high-pass filter and a 45 Hz low-

pass filter. Outliers were removed through visual inspection of each trial. Individual participant data were

averaged, separated between target trials and non-target trials. Artifacts (i.e., blink, movement, etc.) that

occurred after the end of the instructed hand movements at the 4-second mark, were not considered to be

causes of outliers, since the data in this period was not used in the frequency domain analysis. Trials with

such artifacts were not removed from analysis. An example of a single participant’s trial averages is shown

in Figure 3.7.

Grand Averages

Grand averages of all trials, divided between target and non-target, were obtained by averaging the filtered

EEG data from each of the participants, over each of the seven electrodes. The grand averages were only
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Figure 3.5: Raw EEG data collected from a participant over the course of the study. Each node
represents one electrode attached to the participant’s scalp.

calculated for a period of 6.5 seconds, where the stimulus was evoked at the two-second mark. The time

domain plot of the grand averages is shown in Figure 3.8.

Fourier transforms were performed to convert the grand averages into the frequency domain at each

electrode site. The data used started at the time of stimulus onset and ended two seconds afterwards, when

the visual stimulus disappeared from the screen and the stop tone occurred. Difference waves were calculated

by subtracting non-target trial frequencies from target frequencies. The grand averages in the frequency

domain and the difference waves are shown in Figure 3.9.

3.3.7 Discussion

The results of the BCI study provided some insight into the EEG data being recorded by the Ultracortex IV

Headset. Although there were only four participants in the study, the trials collected enough data to form

grand averages that allow for review of the study system and methods used to gather motor imagery data.

Summary of Results

The results of the study can be summarized from the plots presented in the previous section.

1. Grand averages in the time domain showed small differences in responses at all electrode sites between

target trials and non-target trials approximately one second after stimulus onset.

2. Grand averages in the frequency domain showed inconsistent difference waves throughout all frequencies,

with the largest variance at lower frequencies.
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Figure 3.6: Raw EEG data of a single non-target trial at the Cz electrode, starting at three seconds
before stimulus onset and ending two seconds after hand movement.

3. All participants experienced signal drift (primarily downwards) at all electrode sites over the course of

the study.

Time Domain Results

The plots in Figure 3.8 show the time domain grand averages of the trials over the course of 6.5 seconds.

Before the stimulus appears on the screen, most of the centrally located electrodes (i.e., C3, C4, CP1, and

CP2) show a steady-state signal, which may point towards a relaxed user state as they wait for the stimuli to

appear. Small oscillations prior to the stimulus are seen in most of the electrodes, which can be attributed

to an anticipatory response as the participants were waiting for the stimuli to appear. Almost immediate

responses are seen in the small peaks near the stimulus onset (approximately a few hundred milliseconds).

These are likely the automatic responses to the stimulus, such as the P300 ERP component. One second after

the stimulus is presented, a large reaction can be observed, represented by a sharp positive peak. The great

change in brain activity is likely caused by a combination of the auditory tone that precedes the stimulus

and the visual occurrence of the coloured circle on the screen, both of which are being consciously noted by

the participant. Following the initial peak, most electrodes experience a few smaller negative and positive

peaks (e.g., Cz) before eventually settling towards a neutral state. The sharp decline at the end of the trial,

observed in all electrodes, is likely due to movement artifacts produced after the end of the trial (i.e., four

seconds after the start of the trial) in the inter-trial period.

The grand averages in the time domain showed several differences in the EEG between the target trials
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Figure 3.7: Averaged EEG activity at each electrode site for a single participant. Stimulus onset
occurs at 2 seconds, marked by a dotted line. Non-target trials are plotted in the top row (blue)
and target trials are plotted in the second row (red). The third-row plots overlay both target and
non-target trials for visual comparison. The bottom row shows the Fourier transform of the respective
electrode averages.

and non-target trials. The main difference is observed in higher, sharper peaks that occur in the target

trials approximately one second after the stimulus is evoked, followed immediately by a more negative-going

peak. This difference in the target trials is a common response seen in ERP studies as a reaction to oddball

stimuli [119], such as the less frequent targets that instruct the participant to perform the motor actions with

their hands. Infrequent stimuli elicit stronger EEG responses that can be used to isolate ERP components

that react to the stimulus. The target trials generally show more EEG activity than in non-target trials,

particularly noticeable when comparing the responses preceding the onset of a stimulus. This additional

activity could be potential brain activity from the participants as they anticipate an upcoming stimulus.

However, since the order of the trials were randomized without repetition, the participants should not have

known beforehand whether the upcoming stimulus was an oddball target. It is more likely that the extra

peaks observed before stimulus onset was the result of noise in the EEG data.

Similar plots were observed throughout the different electrode sites. Since both hands were used for the

motor actions during the target trials, it is expected that the EEGs from both sides of the head are about

equal. In both target and non-target trials, the electrode at Cz experienced more erratic peaks following

the stimulus onset. This could possibly be evidence of motor actions in the target trials and suppression of

movement in non-target trials. However, it is also possible that due to the position of the Cz electrode (i.e.,

directly on top of the head), it is more sensitive to small amounts of head movement, and the activity seen

in the results are simply movement artifacts.

Frequency Domain Results

Figure 3.9 shows the Fourier transform of the time domain plots for the two second period when the visual

stimulus was on screen. During this period, participants would have been performing the prescribed motor
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Figure 3.8: Grand averages of the trials for all participant EEG recordings at each of the electrode
sites. Stimulus onset occurs at 2 seconds, marked by a dotted line. Non-target trials are plotted in
the top row (blue) and target trials are plotted in the middle row (red). The bottom-row plots overlay
both target and non-target trials for visual comparison.

actions with their hands in target trials. The frequency range of the plots was limited to a maximum of 20

Hz, since the primary objective of the BCI study was to observe mu suppression (i.e., ERD events) related

to motor actions. Mu suppression typically occurs in the 8-13 Hz range [103] during a motor action, which

is usually observed as a decrease in amplitude at that range. However, from the difference waves, there is

inconclusive evidence to suggest mu suppression is being detected. Rather, the difference waves show a lot

of variance between target and non-target trials, which appears more like random noise. This variance is

greater in the lower frequencies, particularly at less than 1 Hz. Because the data was previously filtered with

a high-pass filter at 1 Hz, this is likely noise created from the filtering process and design of the filters.

Generally, the target trials had frequencies with much greater variance as indicated by their thin, sharp

peaks. This alternatively means that non-target trials experienced less activity during the stimulus. As

such, it can be assumed that the higher variance associated with the target trials is caused by the hand

movements. Although the difference waves do not to show the mu suppression that is usually correlated with

motor actions, the movements during target stimuli could have been detected by the electrodes on the scalp.

Similarly, slight head movements that the participant is unaware of could also lead to movement artifacts.

This idea is supported by the movement artifacts that can be potentially seen in the time domain plots.

The difference waves show some slight differences between electrodes. The frequencies above 10 Hz in the

C3, C4, CP1, and CP2 electrodes are slightly greater in target trials. This suggests some increased activity

in the central and parietal regions of the brain during motor actions of the hands. Since the hand movements

during target trials were conducted with both hands, there were no differences found in the electrodes located

on different sides of the head.
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Figure 3.9: Grand averages at each electrode in the frequency domain. The top row shows the
Fourier transform of the combined target trials (red) and non-target trials (blue). The bottom row
shows the difference waves of the grand frequency averages, with non-target trials subtracted from the
target trials.

Signal Drift

A downwards signal drift was experienced by all participants throughout the study. The effects were greatest

near the beginning of the study, but eventually settled by the end of the 30-minute session, with some upwards

drift starting to appear. A two-minute baseline was performed before the start of the study and another was

done following the study’s completion. These baselines were averaged and used to subtract from the study’s

data to minimize the effects of the signal drift. Furthermore, a high-pass filter was used to eliminate slow

changes to the EEG data, which is a technique that has previously helped in eliminating drift [42]. However,

these techniques of eliminating drift are usually done in offline analysis.

Offline Data Analysis

This study used offline analysis to procure the results shown in the previous section, as it provides several

advantages. The main benefit of processing the entire dataset after it has been fully collected is that it

allows for the calculation of grand averages. By averaging the data, some stationary noise can automatically

be eliminated as it cancels itself out over the numerous trials. Another benefit of offline data processing is

that it allows the researcher to spend time to carefully inspect the raw EEG data to remove outlying trials

that contain too much noise or artifacts. For example, when trained in how to visually detect eye blink

artifacts, a researcher can manually tag a trial when they find such an artifact. Furthermore, they can adjust

the frequency of the filters by varying amounts to gain higher fidelity of their desired frequency range and

observe the changes to the data that different filters produce. Various automatic techniques that extract and

classify EEG features, such as principal component analysis (PCA), can be tested to find the technique that

produces the best results for the desired feature [125]. These advantages of offline processing have been used
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extensively in traditional EEG research that study brain function; however, they do not typically apply for

BCIs, which require real-time, online processing to function as an input mechanism for a computer system.

Real-time analysis requires a sophisticated system that can perform the tasks of preprocessing, feature

extraction, and classification of incoming EEG data as quickly as possible. While other studies have shown

that this is possible with motor imagery data [25, 138], the incoming data must be free from noise to a

reasonable degree. Real-time filtering of frequencies that fall outside of the desired range can be easily done,

but it is more difficult to detect and remove artifacts. Artifacts produced through eye blinks typically follow

a usual pattern but shifts to the position of EEG electrodes can cause noise that appear as a feature. When

this kind of noise occurs during an input action for a BCI, the system may accidentally interpret the noise

as a feature, leading to the wrong command being produced. In cases where machine learning is used for

advanced feature extraction and classification, the system can be trained with offline BCI data to teach it

to recognize these artifacts. However, this would also require additional sessions to procure the training set

that would be unique and relevant for a single user.

Presence of Noise

From the time domain grand averages, noise was observed before the stimulus was evoked in most electrodes

during the target trials. There is not enough information with the current data to uncover the source of this

noise, but the effect of the noise is not simply isolated to before stimulus onset. Since the noise was present

before the stimulus appeared, there is no reason to suggest that it did not continue into data recorded after

stimulus onset during target trials. It is possible that this noise was part of the differences seen between

target and non-target trials. It is unclear why this noise was more apparent in target trials than non-target

ones.

The frequency domain shows the noise more clearly. Across the entire range, the frequency varies greatly

with sharp peaks. The highest amplitudes are found in the lowest frequencies (i.e., less than 1 Hz), which is

where the largest variations are found as well. The difference waves also exhibit a high degree of noise. When

looking at only the relevant frequency range for mu waves (i.e., 8-13 Hz), there appears to be no consistent

difference between target and non-target trials across all electrodes. The difference varies in a noise-like

fashion, with a mean around zero. With these noisy results, it is difficult to visually extract features or

patterns from the plots. The amplitudes of the noisy peaks in the difference waves appear greater than any

potential feature that could be discovered, even if a technique like PCA was used.

3.3.8 BCI Study Summary

The purpose of the BCI study was to understand how well the Ultracortex headset can detect mu suppression

events and its performance in recording EEG data. Offline analysis was used since the data processing

techniques are simpler and quicker to implement (i.e., an experienced researcher manually removing noisy

trials versus developing a system for real-time processing). From the observed results, it was difficult to find
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evidence of mu suppression occurring due to motor imagery. Rather, the noise that remained in the grand

averages after filtering and removing outlying trials showed that either the methods used were flawed, the

suppression was too weak to detect, or a combination of both.

The Ultracortex headset was capable of recording EEG data that showed differences when the user was

presented with an oddball stimulus. However, unknown sources of noise prior to stimulus onset meant that

this data was also subject to continuous noise in the target trials. Furthermore, when a Fourier transformed

was performed on the EEG recorded after a stimulus was evoked, the frequencies were too noisy to make out

any features or patterns in the results. The difference waves were also too noisy to find substantial differences

between the target and non-target trials.

3.4 Issues of Noise in EEG Data

The grand averages calculated from the EEG data recorded during the study were permeated with noise.

This noise made it difficult to visually appraise the information gathered from the electrodes and discover

any useful features or patterns from the results. Although a more aggressive approach to eliminating noise

could be used (e.g., filtering closer to the frequency range of interest), it is possible that useful information

can also be removed by this process. Similarly, additional noise could be generated from these methods if

used improperly. While some findings from the study can be speculated, substantial conclusions cannot be

drawn while the noise remains. Furthermore, developing a system that can automatically interpret these

results is difficult when the uncertainty caused by the noise is so prevalent.

For BCIs to function as an input mechanism, they need to be able to interpret the user’s input, in real

time, that comes in the form of EEG signals recorded from electrodes on the user’s scalp. These input signals

need to be correctly interpreted by the system such that the user’s intended command is executed when

the system has completed processing of the incoming data. To improve the user experience with using the

BCI, the processing of the input must occur as quickly as possible, meaning that the system must be able to

conduct the steps of preprocessing, feature extraction, and classification without any human oversight. As

such, any noise that interferes with this process can cause the system to misinterpret the input.

Since brain activity at the scalp is usually weak, the electrodes can detect the smallest changes in electrical

activity. Normally, this means that more underlying signals from the brain can be detected. However, this

also means that greater activity that is also detected by the electrodes will mask the desired signal. As shown

in the previous sections, EEG electrodes are highly sensitive to many sources of noise. This noise can come

from other nearby electrical signals in the surrounding environment, artifacts created from the user moving,

or even unrelated brain activity. When unrelated signals are introduced into the input, the data received by

the system becomes noisy.

While the EEG input remains highly susceptible to noise and artifacts, it becomes difficult to develop a

motor imagery BCI that can feasibly function as a novel, alternative input mechanism. Examples from pre-
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vious literature have shown successful implementations that allow users to control a computer with imagined

movement alone [25]. However, many studies also show a low degree of accuracy in the computer sys-

tem’s ability to correctly, and consistently, interpret the user’s input and execute the appropriate command

[106, 135]. It can be difficult to remove noise from the input signal, since many current solutions for offline

noise processing of EEG data (e.g., manual artifact rejection) cannot be realistically applied for real-time

BCI use. The ecological viability of BCIs as an alternative human-computer interface will continue to remain

limited until a universal method for easily and quickly removing noise from the EEG input is developed.

Until then, users who rely on BCIs as an input mechanism will need to be able to handle errors caused by

noisy input. This is even more important for new users of the device, as the effects of noise on learning is

still an underdeveloped field of study. These issues of noise encountered in interpreting the results of the BCI

study served as motivation for the following chapter and the work to investigate the effects of interpretation

errors in learning to use novel input mechanisms.
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4 Effects of Interpretation Error on Learning

The study of a brain-computer interface presented many issues regarding the noise found in the EEG

input. Due to the high rate of interpretation errors occurring because of the noise, it was unfeasible to

continue studying the BCI as a novel input mechanism. While further efforts of reduce the noise could

have produced better results (e.g., using morphological component analysis to remove artifacts [149]), its

presence would have remained. Interpretation errors that are the result of noise can affect a user’s ability to

successfully use an input mechanism regardless of their experience with using that mechanism. As such, it is

important to understand how noise and interpretation errors can impact a user.

While there has been previous research that has studied how computer system interpretation errors

affect a user’s performance and satisfaction with that system [129, 78], the effects of these errors have not

been assessed with their impact to learning how to use the system. Although the assumption that the

occurrence of interpretation errors may negatively affect the user’s learning, there have also been studies in

psychology and, more specifically, HCI that show a difficult learning process may improve their performance

through harder work. Two hypotheses were drawn from these ideas: an interference hypothesis, where more

interpretation errors will lead to worse learning of the input mechanism (and negatively impacting the user’s

ability to associate input actions with computer commands); and a retrieval effort hypothesis, where increased

interpretation errors will lead to users putting in more effort to better learn the system.

To better understand these hypotheses, two user studies were designed to determine the effects of in-

terpretation error on a user’s ability to learn how to use an input mechanism to perform simple selection

tasks.

4.1 Study 1: Effects of Interpretation Error Rate on Learning a

Command Set, with Immediate Feedback

The first study tasked participants with learning to use a set of commands to select a target item from

hierarchical menu. Menu-based selection was used as many input mechanisms use menus to navigate a com-

puter system (e.g., on-screen gestures). Participants were asked to repeatedly select twelve items, organized

into four categories, at different rates of interpretation error in their input. To study the effects of varying

error rates, artificial errors were added to keyboard arrow key inputs, an input mechanism that normally has

no interpretation errors. Participant’s performance was recorded through their task completion times and

correct selection accuracy throughout training blocks (where they were provided a visual guide) and memory
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tests (where they had to select the target based on recall).

4.1.1 Study System and Menu-Selection Task Design

A web-based application was developed in HTML, CSS, and JavaScript. A target item was displayed in the

middle of the screen, asking users to select that item using the arrow keys from a hierarchal menu. The menu

was organized into four categories of three items each with a layout matching the cardinal directions of the

keyboard’s arrow keys. An example of the menu layout is shown in Figure 4.1.

Figure 4.1: An example of the visual guide that participants could view using the Left Shift key.
The layout of the categories and items indicated the arrow key direction to press to select that cate-
gory/item.

To select an item, participants would first press the direction of the category that the item belonged to,

and then press the direction associated with the item (e.g., pressing Up in Figure 4.1 would select the Fruits

category and then pressing Left would select the Lemon item). Participants were given 500 ms following

an item selection to make a correction if either they or the system made an error. The duration for error

correction was determined through pilot testing of the system.

The study involved a total of nine training blocks and three memory tests; a memory test was completed

after every third training block. Both training blocks and memory tests required participants to select each

of the twelve items from the menu in a random order (sampling without replacement). During the training

blocks, participants were provided with a visual guide (e.g., Figure 4.1) that they could access at any time

(using the Shift key). While visible, the guide showed the participant’s current location in the menu by

highlighting their selection on the guide, as well as showing the item/category in a display box. When a

selection was resolved by the system, a correct/incorrect response was provided by the display box (i.e., a

green or red border, respectively). A screenshot of the system during the training blocks is provided in Figure

4.2.
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Figure 4.2: An example of the system interface that participants would see when completing a trial
in the training blocks in Study 1.

The memory tests were similar to the training blocks, except participants were not shown their location

in the menu, could not view the guide, and were given only one opportunity to select the correct item within

two keypress per target. To accurately measure participants’ performance, no interpretation errors were

included throughout the memory tests.

4.1.2 Experimental Conditions

Interpretation error rate (IER) is the rate at which the system added artificial errors to the participant’s

input. Each artificial error had an equally likely possibility of being either a misinterpretation or a false

negative. Misinterpretations would cause an input to be interpreted as a different one (e.g., pressing Left

resulted in the system detecting an Up press); the new input was chosen at random from one of the directions

not pressed. False negative errors would cause the input to be ignored (e.g., pressing Down resulted in no

change). The IER would emulate the rate at which incorrect interpretations occurred within the system.

Participants were all informed prior to the start of the tasks that there was a possibility of system-based

errors occurring during their inputs.

The study used three levels of interpretation error rate:

� Zero percent error : no interpretation errors were added to the participant’s input.

� Five percent error : each input towards selecting an item (i.e., arrow key press) had a 5% chance of
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being interpreted incorrectly as either a misinterpretation or false negative.

� Twenty percent error : probability of an interpretation error occurring was 20%.

In all conditions, user-borne errors (e.g., inadvertently pressing the wrong key, or incorrectly remember

the location of an item in the menu) were possible and were not manipulated by the study system. False

positive interpretation errors (e.g., pressing the wrong key, but the system selected the correct key; or the

system making a selection when no key was pressed) were not included in our study as a possible type of

error.

4.1.3 Participants

Participants were recruited through Amazon’s Mechanical Turk (MTurk) service, which is an online platform

where users (MTurk workers) can opt-in to complete Human Intelligence Tasks (HITs). Previous studies

in HCI have also used data gathered from MTurk [47, 64], but causes of outliers due to bots and negligent

workers had to be accounted for during data analysis. Only workers from the United States and with a HIT

acceptance rate of 90% or greater (a measure of work quality based on previous tasks) were accepted into the

study. Survey response times were recorded and checked to ensure that they were not completed too quickly

without reading the questions, or that the same answer was used for every response.

75 participants were recruited (51 men, 22 women, 2 non-binary) aged 20-72 (mean = 35.7, SD = 11.3).

Participants were all paid $4 for completing the study, which took approximately 20 minutes. Two par-

ticipants reported not having a standard arrow key layout: one reported that his Up and Down keys as

being fitted into the space between the Left and Right keys. Self-reported estimates of weekly computer

usage among participants averaged 39.9 hours (SD = 20.5 hours). Regarding their experience with alterna-

tive computer input mechanisms, 20 participants reported having used swipe typing, 20 had used gesture

commands, 28 had used speech commands, and 12 had used handwriting recognition. No participants were

removed from the study upon review of their survey responses.

Ethics approval for this study was provided by the ethics review board of the University of Saskatchewan.

4.1.4 Procedure

Participants completed an informed consent form before starting the study. They were then asked to complete

a demographics questionnaire and shown an instructional video that described the study’s tasks and how to

perform them. After finishing the video, they were directed to a one-minute timed practice session where they

used the arrow key controls to select items. Following the end of the practice session, participants completed

12 blocks (9 training blocks; 3 memory tests) of tasks, with 12 trials (i.e., target items) per block, for a single

IER condition. After completing all blocks, participants were asked to complete a final questionnaire that

included questions regarding their perceived effort (i.e., NASA Task Load Index [46]), and their perceived

learning and memorization of the items.
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4.1.5 Study Design

This study attempted to address three main research questions (RQ):

� RQ1-1: Does increasing interpretation error affect user learning (i.e., accuracy and completion time of

memory tests)?

� RQ1-2: Does increasing interpretation error affect performance in training (i.e., error rate and comple-

tion time of training blocks)?

� RQ1-3: Does increasing interpretation error affect user perception of effort or ease of learning (i.e.,

subjective questionnaire responses)?

The study used a two-factor design, 3x9 for the analysis of training blocks, and 3x3 for the analysis of

the memory testing conditions:

� Interpretation Error Rate (IER), between-subjects: Zero, Five, or Twenty percent error

� Block/Test, within-subjects, 1-9 for training blocks, and 1-3 for memory tests

The primary dependent variables considered were: accuracy and completion of memory tests, user error

count and completion time in training blocks, and subjective ratings of effort from post-session questionnaires.

Other measures were also gathered (e.g., the rate at which the guide was used during the training blocks,

time when the guide was accessed, time of the participant’s first keypress within a trial) to explore the

participant’s performance in further detail.

4.1.6 Results

The effect size for significant repeated-measures (RM) ANOVA results are reported as generalized eta-squared

for both studies: η2 (with values less than .01 considered small, approximately .06 considered medium, and

greater than .14 considered large [24]).

Outlier data points were determined as any trial with a completion time or first keypress time (i.e., the

duration between the start of a trial and when the participant first pressed an arrow key) greater than 3

SDs above the block’s mean completion time. In total, 404 trials out of 10800 total trials were removed

from the data analysis of Study 1. In training blocks, any trials with artificial interpretation errors (i.e.,

misinterpretations or false negatives) were also discarded from the analysis to prevent the average block

completion time from being inaccurately inflated. No artificial errors were added to any of the trials during

the memory tests.

All pairwise t-tests were corrected using the Holm-Bonferroni method.
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Effects of IER on User Learning

Overall accuracy in the memory tests was calculated as the number of correct selections made out of the 12

trials in each test; a correct selection required the participant to correctly choose both the correct category

and correct item in their first attempt. Overall, accuracy was 82.7% in the Zero condition, 72.0% in the Five

condition, and 70.0% in the Twenty condition. No trials were discarded in this analysis beyond the standard

outlier detection (i.e., completion time greater than 3 SDs). The accuracies over the three memory tests,

including overall accuracies and separate accuracies in category and item selection, are shown in Figure 4.3.

A two-way RM-ANOVA (IER×Test) showed significant effects of both IER and Test on accuracy (IER:

F2,216 = 5.4, p < .001, η2 = 0.047; Test: F2,216 = 14, p < .0001, η2 = 0.11). There was no interaction between

IER and Test (F4,216 = 0.0078, p = .99). Post-hoc pairwise t-tests showed significant differences between the

Zero condition and both Five and Twenty conditions (both p < .05), but not between the Five and Twenty

conditions (p = .65). Post-hoc testing between the memory tests also showed that the 2nd and 3rd tests had

significantly higher accuracy than in the 1st test (both p < .001), but no difference between the 2nd and 3rd

tests (p = .21).

Figure 4.3: Study 1. Mean selection accuracy in the memory tests, by IER and Test.

Completion time of the memory tests was measured as the time from when the target item appeared on

the screen until the time that the system registered an item selection (regardless if the selection was correct or

not). No trials were discarded in this analysis beyond the standard outlier detection. The average completion

time of the Zero condition was 2.51 s, of the Five condition was 2.32 s, and of the Twenty condition was 2.45

s. The mean completion times of each condition across the three memory tests are shown in Figure 4.4.

RM-ANOVA (IER×Test) showed a significant effect of Test on completion time (F2,216 = 10, p <

.0001, η2 = 0.088), but no effect of IER (F2,216 = 0.89, p = .41) and no interaction (F4,216 = 0.0021, p = .999).

Post-hoc t-tests showed significantly difference completion times between the 1st test and both 2nd and 3rd

tests (both p < .0001), but not between the 2nd and 3rd tests (p = .077).
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Figure 4.4: Study 1. Mean trial completion times in memory tests, by IER and Test.

Effects of IER on User Performance During Training

User errors during the training blocks were measured as the number of arrow keypresses made that were

incorrect, when the participant was in a position to perform the correct keypress (e.g., if the participant was

at the start of a trial, and the correct category was in the Left direction, but the participant pressed the Down

arrow key, one error was counted in this case). Errors made as the result of an artificial system interpretation

error were not considered as user errors. Any trials with an artificial error added to the participant’s input

were discarded from the analysis along with the standard outlier removal method.

The average user error rate of the Zero condition was 0.26 errors per trial, of the Five condition was 0.39

errors per trial, and of the Twenty condition was 0.83 errors per trial. User error rate of each condition across

the training blocks are shown in Figure 4.5.

RM-ANOVA (IER×Block) showed significant effects of both IER and Block on user errors (IER: F2,648 =

21, p < .0001, η2 = 0.060; Block: F8,648 = 6.2, p < .0001, η2 = 0.071). There was no interaction between

IER and Block (F16,648 = 0.91, p = .56). Post-hoc pairwise t-tests showed significant differences between all

IER conditions (all p < .01). Post-hoc tests on neighbouring training blocks only showed differences between

blocks 1 and 2 (p < .0001).

Trial completion time in the training blocks was measured from the time when the target item appeared

until the time that the system registered the correct item selection. Trials with artificial system interpretation

errors were discarded from analysis along with the standard outlier removal method. The average completion

time in the Zero condition was 2.81 s, in the Five condition was 2.66 s, and in the Twenty condition was 2.86

s. Completion times for each condition across the nine training blocks are shown in Figure 4.6.

RM-ANOVA (IER×Block) showed a significant effect of Block on completion time (F8,641 = 18, p <
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Figure 4.5: Study 1. Mean user errors per trial in training blocks, by IER and Block.

.0001, η2 = 0.19), but no effect of IER (F2,641 = 2.1, p = .13) and no interaction (F16,641 = 0.92, p = .54).

Post-hoc pairwise t-tests on neighbouring blocks showed significant differences between blocks 1-2 and blocks

2-3 (both p < .05).

The mean total training time of each condition was measured to determine whether differences in the

overall time spent in training would affect the differences seen in the various IER conditions. No trials were

discarded for this analysis. The overall completion time of the training blocks in the Zero condition was 308

s, in the Five condition was 336 s, and in the Twenty condition was 468 s. A one-way ANOVA of the overall

completion time of the training blocks showed a significant effect of IER (F2,72 = 11, p < .0001, η2 = 0.23).

Post-hoc pairwise t-tests found significant differences between the Twenty condition and both Zero and Five

conditions (both p < .01).

Subjective Measures

The perceived effort of participants was recorded using the NASA Task Load Index (TLX). The mean scores

are shown in Figure 4.7. Aligned Rank Transform (ART) were performed on the aggregated TLX responses

[146]. An ART was used to enable the calculation of ANOVAs for non-parametric data by transforming the

data to be suitable for an ANOVA. ARTs are often used in HCI studies to allow factorial analysis for examining

interaction effects of multiple experiment variables. Using ARTs, one-way ANOVAs were performed on each

of the TLX questions with the factor of IER. Significant effects were found in the responses for physical effort,

temporal effort, and frustration (all p < .05). The full results of the ANOVAs are tabulated in Table 4.1.

Post-hoc pairwise t-tests were performed on the questions that had significant effects. For both physical

and temporal effort, significant differences were only found between the Zero and Twenty conditions (p =
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Figure 4.6: Study 1. Mean trial completion times in the training blocks, by IER and Block.

Table 4.1: Study 1. Results of the ANOVAs conducted on each TLX effort question after an Aligned
Rank Transform.

TLX Question F2,72 p

Mental 3.0 .055

Physical 5.8 < .05

Temporal 5.2 < .05

Performance 0.068 .93

Effort 0.62 .54

Frustration 4.9 < .05

.0035 and p = .0057, respectively). For frustration, significant differences were found between the Twenty

condition and both Zero and Five conditions (both p < .05).

Participants were also asked to rate their perceived ease of learning and memorization on two separate

7-point Likert scales. The mean scores are shown in Figure 4.8. Using Aligned Rank Transform on the

aggregated responses, one-way ANOVAs were performed on each of the questions with the factor of IER. No

significant effects were found in the responses of either of the questions for ease of learning (F2,72 = 0.011, p =

.99) and ease of memorization (F2,72 = 1.2, p = .29).

4.1.7 Study 1 Summary

The main goal of Study 1 was to determine if interpretation errors would affect a user’s learning and transition

to expertise for a menu selection task, as well as their performance during training. Participant data was
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Figure 4.7: Study 1. Mean NASA Task Load Index scores, by IER.

gathered with a user study and analyzed their data using metrics such as accuracy and completion time

during the memory tests, and error rate and completion time during the training blocks. Participants were

also asked to rate their perceived effort, learning, and memorization of the study’s tasks.

During the memory tests, the Zero IER condition was significantly more accurate than both the Five and

Twenty conditions, but there was no difference in the completion times. Accuracy also increased significantly

after the first test, while completion time decreased in a similar manner, showing the greatest improvement

after having completed a memory test once.

During the training blocks, the Zero condition also had significantly lower user errors per trial, as well

as lower total completion time of the training blocks. There was no difference between conditions for the

average completion times of the individual trials. User errors were the highest in the first training block but

showed a significant decrease in the second block. Similarly, completion times also significantly decreased

within the first three blocks, showing that participants had the largest performance gains near the beginning

of the study.

Subjective responses for perceived effort (i.e., physical effort, temporal effort, and frustration) showed

a generally increasing trend as the rate of artificial errors increased, with the Zero condition requiring less

effort and the Twenty condition requiring the most effort. The different rates of interpretation error did not

affect participant’s perception towards how easy it was to learn and memorize the item set.

In general, this study showed that increasing IER would lead to a reduction in user performance and their

learning of item placements in a menu. This is represented by the decreasing accuracy in memory tests and

higher completion time in the training blocks (both overall time and average trial times) as IER increased.

This first study provided immediate feedback to whether a participant’s selection was correct. To determine

the ecological validity of these results in a real-world system, a second study was carried out that would

require participants to monitor their input and check if any errors had occurred.
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Figure 4.8: Study 1. Mean scores for perceived ease of learning and memorization, by IER.

4.2 Study 2: Effects of Interpretation Error Rate on Learning a

Command Set, with User Monitoring System Interpretations

The second study expands on the methods of the first study by requiring participants to manually check the

system’s interpretation of their selections. By doing so, this would mirror a real-world system more closely

as users often need to check their input for correctness (e.g., autocorrection on smartphones can sometimes

misinterpret a user’s word or even change a correct word into an incorrect one). Similar to the previous

study, this study asked participants to repeatedly select twelve items from a menu with differing rates of

interpretation error between participants. Instead of providing immediate feedback whether their interpreted

selection was correct, participants were required to monitor the output and compare the selections with the

targets themselves.

4.2.1 Study System and Menu-Selection Task Design

The system used in this second study was similar to the one used in Study 1. However, the main difference

was that instead of being shown a single target item at a time (and allowing participants to select an item

from the hierarchical menu to complete the trial), participants were provided with an ordered list of all of the

target items for the entire block at once. The target list was provided in a box on the left edge of the screen,

and the order of the items were randomized between each block. Participants were required to correctly

select each of the target items in the same order as presented in the list. Once a selection was made, it would

appear in a box on the right edge of the screen, mirroring the box for target items. Furthermore, unlike the
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previous study, the display box in the middle of the screen would not indicate whether a select was correct.

An example of the study screen is provided in Figure 4.9.

Figure 4.9: An example of the screen layout for Study 2. Participants selected targets in order from
the “Targets” list on the left; selections made by the participants were displayed in the “Selections”
box on the right.

If a selection were incorrect, the participant would not be able to proceed with the next trial until

they cleared (i.e., Ctrl-Z) the incorrect item. This would require participants to monitor their selection to

determine if any errors had occurred during their input, whether they were user errors or system interpretation

errors. Although participants were informed when they were not allowed to proceed with the next trial, the

feedback only occurred after the participant proceeded with the next trial without making corrections first.

This feedback was with regards to being unable to proceed with the study, as opposed to giving the participant

feedback on the correctness of their selections.

4.2.2 Experimental Conditions

The factors of this study were the same as in Study 1. Three levels were used for IER, between participants:

Zero, Five, and Twenty percent error. Each participant performed the tasks throughout nine training blocks

and three memory tests.

4.2.3 Participants

Using the same criteria from the previous study, 75 participants (54 men, 20 women, 1 did not disclosed)

aged 19-70 (mean = 37.5, SD = 11.5) through MTurk. Workers who had already participated in Study 1

(whether they completed the study or not) were disqualified from participating in this study. One participant

reported not having a standard arrow key layout (e.g., Up and Down keys were fitted between the Left and
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Right keys). Self-reported estimates of weekly computer usage among participants averaged 41.6 hours per

week (SD = 21.0). 29 participants reported they had previously used swipe typing, 23 had used gesture

commands, 20 had used voice commands, and 11 had used handwriting recognition. No participants were

removed from this study upon review of their survey responses and response times.

4.2.4 Procedure

The procedure for this study was the same as that for Study 1. Participants first completed the consent form

and demographics questionnaire. They watched an instructional video that taught them how to complete

the upcoming tasks and were provided a one-minute practice session. Afterwards, they completed 12 blocks

of the selection tasks (9 training blocks; 3 memory tests) for a single IER condition. After all blocks were

finished, the answered a final subjective questionnaire about their experience with the study.

4.2.5 Study Design

This second study addressed three different research questions (RQ):

� RQ2-1: Does increasing interpretation error affect user learning (i.e., accuracy and completion time of

memory tests) when users need to monitor their selections?

� RQ2-2: Does increasing interpretation error affect performance in training (i.e., error rate and comple-

tion time of training blocks) when users need to monitor their selections?

� RQ2-3: Does increasing interpretation error affect user perception of effort or ease of learning (i.e.,

subjective questionnaire responses) when users need to monitor their selections?

Study 2 used the same two-factor design as Study 1: 3x9 for the analysis of training blocks, and 3x3 for

the analysis of the memory testing conditions:

� Interpretation Error Rate (IER), between-subjects: Zero, Five, or Twenty percent error

� Block/Test, within-subjects, 1-9 for training blocks, and 1-3 for memory tests

The primary dependent variables considered were: accuracy and completion of memory tests, user error

count and completion time in training blocks, and subjective ratings of effort from post-session questionnaires.

Other measures were also gathered (e.g., the rate at which the guide was used during the training blocks,

time when the guide was accessed, time of the participant’s first keypress within a trial) to assess participant

performance.

4.2.6 Results

Similar to the previous study, outlier data points were determined as any trial with a completion time or

first keypress time greater than 3 SDs above the block’s mean completion time. In total, 343 trials out of
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10800 total trials were removed from the data analysis of Study 2. Trials during the training blocks that

had artificial interpretation errors (i.e., misinterpretations or false negatives) were also discarded from the

analysis. Again, no artificial errors were added to any of the trials during the memory tests.

All pairwise t-tests were corrected using the Holm-Bonferroni method.

Effects of IER on User Learning

Overall accuracy in the memory tests was 71.2% in the Zero condition, 69.5% in the Five condition, and 70.6%

in the Twenty condition. No trials were discarded in this analysis beyond the standard outlier detection.

The accuracies over the three memory tests, including overall accuracies and separate accuracies in category

and item selection, are shown in Figure 4.10.

A two-way RM-ANOVA (IER×Test) showed a significant effect of Test on accuracy (F2,216 = 17, p <

.0001, η2 = 0.13), but no effect of IER (F2,216 = 0.059, p = .94) and no interaction between IER and Test

(F4,216 = 0.25, p = .91). Post-hoc pairwise t-tests showed significant differences between all pairs of Test

levels (all p < .5).

Figure 4.10: Study 2. Mean selection accuracy in the memory tests, by IER and Test.

The average completion time of the Zero condition was 2.12 s, of the Five condition was 2.50 s, and of the

Twenty condition was 2.80 s. No trials were discarded in this analysis due to the standard outlier detection.

The mean completion times of each condition across the three memory tests are shown in Figure 4.11.

RM-ANOVA (IER×Test) showed significant effects of both IER and Test on completion time (IER:

F2,216 = 9.1, p < .001, η2 = 0.078; Test: F2,216 = 14, p < .0001, η2 = 0.11). There was no interaction between

IER and Test (F4,216 = 0.29, p = .88). Post-hoc t-tests on completion time showed significant difference

between all levels of IER (all p < .001) and all levels of Test (all p < .0001).
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Figure 4.11: Study 2. Mean trial completion times in memory tests, by IER and Test.

Effects of IER on User Performance During Training

The average user error rate of the Zero condition was 0.19 errors per trial, of the Five condition was 0.25

errors per trial, and of the Twenty condition was 0.51 errors per trial. Any trials with an artificial error

added to the participant’s input were discarded from the analysis along with the standard outlier removal

method. User error rate of each condition across the training blocks are shown in Figure 4.12.

RM-ANOVA (IER×Block) showed significant effects of both IER and Block on user errors (IER: F2,648 =

9.1, p < .001, η2 = 0.027; Block: F8,648 = 2.5, p = .0104, η2 = 0.030). There was no interaction between

IER and Block (F16,648 = 0.41, p = .98). Post-hoc pairwise t-tests showed significant differences between all

IER conditions (all p < .05). Post-hoc tests on neighbouring training blocks only showed differences between

blocks 1 and 2 (p < .001).

The average completion time in the Zero condition was 2.57 s, in the Five condition was 2.68 s, and

in the Twenty condition was 2.85 s. Trials with artificial system interpretation errors were discarded from

analysis along with the standard outlier removal method. Completion times for each condition across the

nine training blocks are shown in Figure 4.13.

RM-ANOVA (IER×Block) showed a significant effect of Block on completion time (F8,645 = 4.1, p <

.0001, η2 = 0.048), but no effect of IER (F2,645 = 0.49, p = .62) and no interaction (F16,645 = 0.43, p = .97).

Post-hoc pairwise t-tests on neighbouring blocks only showed significant differences between blocks 1-2 (both

p < .0001).

The mean total completion time of the training blocks in the Zero condition was 280 s, in the Five

condition was 333 s, and in the Twenty condition was 497 s. No trials were discarded for this analysis. A

one-way ANOVA of the overall completion time of the training blocks showed a significant effect of IER
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Figure 4.12: Study 2. Mean user errors per trial in training blocks, by IER and Block.

(F2,72 = 16, p < .0001, η2 = 0.31). Post-hoc pairwise t-tests found significant differences between the Twenty

condition and both Zero and Five conditions (both p < .001).

Subjective Measures

The mean scores of the TLX responses from Study 2 are shown in Figure 4.14. Using Aligned Rank Transform

on the aggregated responses, one-way ANOVAs were performed on each of the TLX questions with the factor

of IER. Significant effects were only found in the responses for frustration (F2,72 = 3.8, p < .05) and in none of

the other questions. Post-hoc pairwise t-tests performed on the responses for frustration only found significant

differences between the Zero and Twenty conditions (p < .05). Results of the ANOVAs are tabulated in 4.2.

Table 4.2: Study 2. Results of the ANOVAs conducted on each TLX effort question after an Aligned
Rank Transform.

TLX Question F2,72 p

Mental 1.1 .34

Physical 1.4 .26

Temporal 1.6 .22

Performance 1.8 .17

Effort 1.2 .32

Frustration 3.7 < .05

The mean scores for participants’ perceived ease of learning and memorization in Study 2 are shown

in Figure 4.15. Using Aligned Rank Transform on the aggregated responses, one-way ANOVAs found a
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Figure 4.13: Study 2. Mean trial completion times in the training blocks, by IER and Block.

significant effect on the perceived ease of memorization (F2,72 = 4.3, p < .05), but no effect on the perceived

ease of learning (F2,72 = 0.20, p = .82). Post-hoc t-tests on the responses of perceived ease of memorization

only found significant differences between the Five and Twenty conditions (p < .05).

4.2.7 Study 2 Summary

The goal of Study 2 was to determine if the results of Study 1 would be replicated in a setting that more

closely mirrored how users need to ensure that a system’s output matches their input. In other words, if

users needed to constantly check whether a computer system would interpret their input correctly, would their

learning of a system and performance with it be affected when system interpretation errors were present?

Using a similar procedure as Study 1, participant data was gathered through training blocks and memory

tests, and subjective responses were gathered through questionnaires.

During the memory tests, the Zero IER condition was significantly faster than both the Five and Twenty

conditions, but there was no difference in accuracy. These results contrast with the ones from Study 1, where

the Zero condition was more accurate, but not faster than the other conditions. As in Study 1, accuracy

increased throughout all three levels of Test for each of the IER conditions, while completion time decreased

similarly.

During the training blocks, the Zero condition had lower user errors per trial while also having a lower

total completion time. There were also no differences between IER conditions for the average completion

times of each trial. These differences between the conditions reflect the ones from Study 1 similarly. Likewise,

user errors were highest in the first training block for all IER conditions with a significant decrease by the

second block. However, when compared with the average rate of errors across all conditions, there were
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Figure 4.14: Study 2. Mean NASA Task Load Index scores, by IER.

generally less errors per trial occurring in Study 2 than in Study 1. Completion times followed a similar

trend with the highest times in the first block but decreased significantly in the second block.

In this second study, subjective responses for perceived effort only showed an increase in frustration as

the rate of artificial errors increased. Unlike the first study, participants in the Twenty condition felt that the

items were easier to memorize than the participants in the Five condition (where there were no differences

in the perceived ease of memorization in the first study).

This second study showed that when users had to monitor the system’s interpretation of their own inputs

(as opposed to receiving immediate feedback regarding their selection), there were some differences in how

they performed the tasks. The main difference was that in a no-error condition, users that needed to monitor

the system’s interpretations were faster during the memory tests, while users who were provided immediate

feedback were more accurate during the same tests. Users who monitored the interpretations also performed

less user errors overall during the training blocks. These differences show that the act of monitoring for

system interpretation errors could affect how a user performs a menu selection task.

4.3 Chapter 4 Summary

The two studies presented in this chapter provide evidence towards two competing ideas towards how interpre-

tation errors by the computer system could affect user learning. In one case, it is possible that interpretation

errors could negatively affect a user’s development and learning of how an input action translates to a com-

puter command. Alternatively, interpretation errors may cause users to work harder to better learn the

input-to-command associations, resulting in faster learning and improved performance.

The results of the investigation show that increasing rates of interpretation error has detrimental effects

on the accuracy of item selection and completion times of tasks during memory tests, as well as increased
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Figure 4.15: Study 2. Mean scores for perceived ease of learning and memorization, by IER.

user errors and perceived effort during training. When participants are forced to monitor their selections,

they tend to be faster at completing memory tests, as opposed to participants who were provided automatic

feedback by the system, who were more accurate. In both cases, participants found that completing tasks

with the presence of interpretation errors required more perceived effort; in particular, higher rates of error

made the tasks more frustrating.

The following chapter provides a more detailed explanation of the results, as well as how they generalize

to real-world environments. In more general terms, the implications of these results will also be discussed

regarding how noise (which can lead to system interpretation errors) can affect a user’s learning ability of an

alternative input mechanism, such as a BCI.
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5 Discussion

The problem of noise in input interpretation of novel user input techniques, specifically with BCIs, were

presented in Chapter 3. In arguing that noise in input will lead to interpretation errors by the computer

system, two studies in Chapter 4 provided evidence that noise can have an impact on how users are able to

learn and effectively use non-traditional input techniques. In this chapter, the results of the two interpretation

error studies will be explored in further detail and explanations for the results will be considered. The

implications of noise on learning novel input mechanisms, as well as limitations to the studies’ approach and

potential future work, will be discussed. Finally, the consequences of the interpretation error findings and

how they can affect learning to use novel input mechanisms, such as BCIs, are examined.

5.1 Summary of Findings

The investigation into the effects of system interpretation errors on learning input mechanisms found several

significant results between the two studies performed in Chapter 4:

� Learning occurred in all conditions for both studies: Accuracy in the memory tests showed improvement

as the tests progressed, user errors in the training blocks decreased, and completion times showed

significant decrease in both testing and training.

� The Zero-error condition had less user error in both studies: When compared with the conditions that

had artificial interpretation errors, the zero-error condition had significantly less user error occurring on

average. This occurred despite participants in the Zero-error condition spending less time in training

overall (i.e., lower total time to complete the training blocks), but having similar average completion

times for each trial.

� Study 1: The Zero-error condition was more accurate on memory tests: When provided with immediate

feedback regarding the correctness of their item selection, participants were significantly more accurate

during the memory tests than conditions that had artificial interpretation errors. However, there was

no difference in the completion time of memory tests between the different conditions.

� Study 2: The Zero-error condition was faster during memory tests: When participants were required

to monitor the system’s interpretation of their input, they were significantly faster at completing the

memory tests. Conversely, there was no difference in the accuracy of the memory tests between condi-

tions.
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� Interpretation errors affected the perception of effort for both studies: Participants from Study 1 felt

that tasks involving artificial interpretation errors required more physical and temporal effort, and

were more frustrating. Participants from Study 2 similarly found the higher IER conditions were more

frustrating.

5.2 Main Results

5.2.1 Why did the increased IER lead to reduced learning and performance?

Throughout both studies, the presence of system interpretation errors caused reductions in accuracy, longer

completion times, more frequent user errors, and higher perceptions of effort. To reflect on these results, the

two hypotheses presented at the start of Chapter 4 are used as a basis. The interference hypothesis states

that system interpretation errors will have a negative impact on user learning of new input mechanisms,

while the retrieval effort hypothesis conversely states that the increased effort and attention required due to

interpretation errors will cause users to learn new systems faster and have better retention. It is possible

that these two effects are occurring simultaneously at various levels and may even be competing. However,

the results primarily show that the negative interference from the interpretation errors outweigh any benefit

that would be gained from the increased effort placed into completing the tasks.

In both studies, the Five and Twenty IER conditions had significantly greater user errors on average (i.e.,

errors not caused artificially by the study system) when completing training block trials compared to the Zero

condition. This could be due to the occurrence of cue interference [11, 108]. The reinforcement of memory

pathways that associate a system command and its input action is disrupted by the presence of interpretation

errors, leading the participant to retrieve the wrong input for a certain target command due to confusion with

similar pathways [108]. It is also possible that higher rates of IER hinder the memorization of the correct

associations between command and input action. While participants could memorize an input action for a

command, they may not be able to recall if that action was correct. The addition of interpretation errors

meant that participants may have had greater trouble determining whether their input action-to-command

association was accurate, especially if the system’s feedback informed them otherwise. Since the study system

never changed an incorrect item selection to a correct selection due to an interpretation error, participants

only experienced perceived correct actions resulting in incorrect selections. Another explanation could be

that participants in higher IER conditions may incorrectly attribute a system interpretation error as a user

error caused by themselves. In other words, if an interpretation error occurred as a participant entered the

correct input action, causing them to select the wrong item, it would be more difficult for them to accept

that their previous action was supposed to be correct. This might lead them to second-guess their inputs

in the future and cause doubts about items that they may have already memorized. Participants may also

become more frustrated at their own perceived inability to perform the correct input actions, which can be

observed in the increased frustration perceived by participants in the higher error conditions (e.g., Figures
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4.7 and 4.14).

Finally, the higher IER conditions were perceived as more frustrating to complete in both studies. The

increased effort as a result may have led to participants feeling discouraged by the faulty system interpretation,

causing them to be less willing to try to memorize the input actions. This idea is also supported by the

increased time it took for participants to complete the training blocks (i.e., higher overall completion times)

in the Five and Twenty conditions, which could have led to greater fatigue.

5.2.2 Why was the Zero condition more accurate in Study 1, but faster in Study

2?

While both studies saw a decrease in learning and performance as the rate of interpretation error increased,

there were differences between the two studies in how the performance suffered, particularly during the

memory tests. Study 1 showed lower accuracy during the tests as IER increased without any difference in

completion times, while Study 2 tests were completed slower at higher IER with similar accuracy between

conditions. This can possibly be explained by how the studies’ tasks were presented to the participants.

Generally, command selection and memorization tasks, like the ones performed in the Chapter 4 studies,

have well-known trade-offs between completion speed and accuracy. That is, a faster completion time for

this type of task would require the user to sacrifice how precise they are in inputting correct commands, and

vice-versa. Between the two studies, the target stimuli were presented differently: single, discrete targets in

Study 1 (Figure 4.2), and an ordered list of all targets in Study 2 (Figure 4.9). As such, it can be assumed

that different stimuli presentation between the two studies caused participants in the Zero condition of Study

1 to value accuracy more than their counterparts in Study 2, who were more interested in speed. This

assumption is supported by the total training times for the Zero conditions: participants averaged 280 s to

complete all training blocks in Study 2, but participants in Study 1 spent more time with an average of 308

s. This contrasts with participants in the Twenty condition, who spent more time in Study 2 (497 s) than

Study 1 (468 s).

Another possible explanation could arise from how the two study systems provided feedback to the

participants regarding the correctness of their selections. In Study 1, participants received immediate feedback

after their selection was registered by the system. If they made an incorrect selection, they were prompted

again with the same target until they successfully selected the correct item. In Study 2, selections were added

to a list on the opposite edge of the screen of the target list. If an item was added to the selections list that did

not match with the targets list, the participants were prevented from continuing onto the next trial until they

fixed the incorrect item. These differences in the two studies’ systems meant that participants in Study 1 were

given immediate feedback to quickly correct any errors (user or system interpreted), while participants in

Study 2 expended more effort to make careful, accurate selections. As a result, Study 1 participants may have

felt that errors were less important since any errors they made were automatically resolved by the system (i.e.,

they did not need to perform a separate action to correct the errors as Study 2 participants needed to do).
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This meant that in the higher IER conditions, Study 2 participants were always aware of the cost of making

an error, resulting in similar accuracies when compared with the error-free condition. This has been seen

in other work, which shows that increased effort can lead to better memorization [30, 22]. Additionally, the

immediate feedback and error correction may be a digital equivalent to the concept of mechanical guidance,

which is a form of supervision during the learning process that sets physical restrictions on the user (i.e.,

the system or instructor forcing a particular response to a stimulus) [96]. Although mechanical guidance

is helpful for learning rote actions, it can also reduce a learner’s autonomy and their motivation to learn

[52]. That may explain why participants in Study 1 were less motivated to learn to use the interface when

immediate feedback, regarding whether they needed to repeat the task, was available.

Conversely, the increased completion time as IER increased in Study 2 may have been caused by requiring

participants to monitor the correctness of their selections more carefully. While the immediate feedback from

Study 1 allowed participants to quickly correct both user and interpretation errors, the system in Study 2

provided no clear feedback and participants needed to recognize and correct errors themselves. Thus, the

combination of higher IER and the need to identify errors themselves may have led participants to lose

confidence and second-guess their inputs, resulting in the higher observed completion times as the rate of

interpretation error increased.

In both studies, the negative effects of the interpretation errors were present despite participants in the

higher-error conditions having spent significantly more time in training overall. The results showed that they

affected both memory (more than 10% lower accuracy on average) and completion time of the tasks (half

a second longer per trial). While the interpretation errors may have led to participants putting more effort

towards completing the tasks, the errors were ultimately detrimental to the user.

5.3 Generalizing the Findings to Other Contexts

The two studies examining system interpretation errors and the effects on learning were performed using

a system that was designed to test their respective research questions. This meant that to reduce the

possibility of external factors affecting the results, the system made participants complete learning tasks

using an artificial input mechanism and commands not found in real-world computer systems. Arrow keys

were chosen for the input mechanism since it is a mechanism with no inherent interpretation error. This

allowed for the rate of interpretation errors to be precisely controlled for the purposes of the study. However,

there are generalizations that can be made based on the studies’ design to apply the results to real-world

contexts.

The user’s learning of the input mechanism and tasks followed Fitts and Posner’s stages of expertise

development [33] in a similar fashion to many real-world input mechanisms. This occurred despite the

artificial input mechanism (i.e., using arrow keys to perform menu selections) being specifically designed for

the study. The study system allows for novice users (i.e., in the cognitive stages) to use visual guidance
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to navigate the hierarchal menus while they were still inexperienced. As they became more familiar with

the input mechanism, users would eventually develop procedural memory routines (i.e., in the associative

and autonomous stages). This would allow these expert users to retrieve the whole, single unit of an input

sequence (e.g., the sequence needed to select the “Apple” item) from memory without needing to think

about which individual key to press. This type of learning process has been observed for other forms of

inputs, such as Appert and Zhai’s gestural stroke-based commands [6]. Moreover, the effective use of many

input techniques often relies on the user’s procedural memory for fast command execution (e.g., in-air and

above-the-surface gestures [76], marking menus [67], finger tap sequences [10], or pressure gestures [89, 141]).

Throughout each of the studies, participants were trained to use the input mechanism to complete the

tasks with a training process that reflects some methods used in real life. Flashcard-style systems, that utilize

a similar target-and-response system used to provide immediate feedback in Study 1, have been used to teach

new input mechanisms to users (e.g., using the Quizlet smartphone app to memorize command shortcuts

[111]). Although this memorization-based training approach can help with learning, its effectiveness can be

improved upon, such as by applying the technique of spaced practice [69]. Likewise, the learning process that

occurred in Study 2 was similar to how users would naturally use and learn a novel input mechanism (i.e.,

the user is required to monitor the system’s interpretation of their input and manually correct any errors).

These considerations are especially important when developing training programs for input mechanisms that

are likely to have system interpretation errors.

The scenarios experienced by the participants were artificially created to suit the purposes of the study

and have some differences with how users would typically interact with a real-world input mechanism. The

participants were MTurk workers being paid a fixed amount to complete a series of tasks using the instructions

provided to them. As such, they had little intrinsic motivation or interest in learning to use the artificial

input mechanism to complete the studies’ tasks. While it may have been in their interest to complete the

tasks as quickly as possible (to sooner move onto other MTurk tasks), the participants may not have put in

much effort into memorizing the items and their respective input commands that were only useful for these

studies. However, conducting studies on MTurk can provide advantages over a typical lab study, such as

better ecological validity. MTurk allows for vaster and quicker recruitment of participants from a more diverse

demographic range than normally seen in HCI studies. Between the two studies conducted in Chapter 4, a

total of 150 participants were recruited with an age range of 19 – 72. As such, the results can be interpreted

as being more realistically reflective of the population [47].

During the completion of the studies, participants engaged in a form of learning that shares similarities

with memory-based learning, but also carries aspects of cognitive-based learning. With this “memory plus

cognitive” form of learning, users are able to apply their previous experience with errors (from both the

user themselves and incorrect system interpretations) to make corrections when an error occurs, as well

as adjust their own behaviour to avoid similar errors in the future. This type of learning is often seen in

real-world situations where users are continuously improving their own behaviour by relying on previously
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gained knowledge about how a system works, whether it is a computer system or otherwise. When learning

how to use new input mechanisms, the system does not usually provide feedback when an error occurs that

the user can easily use to learn from or make future improvements. In general, input mechanisms and their

commands are predominantly learned using a “memory-only” (or “memory-mostly”) approach where the

user themself needs to recall how they successfully performed a specific command. For example, when using

speech recognition, an incorrect interpretation of the user’s speech command does not often provide helpful

feedback as to why the interpretation failed (e.g., the user’s accent, spoke too quietly, etc.). Similarly, the

occurrence of errors as a result of incorrect system interpretation could be seemingly random and erratic due

to the presence of environmental factors. For instance, visual recognition software (e.g., eye-tracking) can

sometimes fail due to lighting conditions that the user is unaware of, such as glare from bright light sources.

Since the user is not made aware of these situations, it can be difficult for them to fix the current mistake,

as well as change their actions to prevent similar errors from happening again.

Overall, the studies provide a strong foundation for future work, including additional experiments to repli-

cate the above results with real input mechanisms and systems with intrinsic interpretation error. However,

the current findings can already provide designers with new, practical information for creating novel input

mechanisms and improving existing ones. Particularly, designers using novel input mechanisms should be

aware that the presence of interpretation errors may have detrimental effects on a user’s ability to effectively

learn those new mechanisms. While there are potential benefits of using a novel system, the cost to the user

must be noted, such as the time and effort it would take to learn to use something new when compared

with using a more well-known and established mechanism (e.g., using the mouse for item selection). These

studies regarding the effects on learning also add to the previous literature that have identified other problems

when system interpretation errors occur; for example, autocorrect software making wrong (or unnecessary)

corrections cause users to distrust the software in making accurate corrections in the future [84].

5.4 Implications of Noise on Learning Novel Input Mechanisms

As discussed in Chapter 3, the presence of noise when using a novel input mechanism can often lead to the

system making interpretation errors. These errors can be a variety of different types: misinterpretations,

false negatives, or false positives. While the former two were used in the Chapter 4 studies as potential

results of artificial interpretation errors, false positives (i.e., errors where the system performs a command

when the user did not intend to provide an input) were not tested since their occurrence would be difficult

to control in a testing environment. However, this phenomenon can occur in real-world input mechanisms.

For example, a smartphone that can be accessed through voice activation (e.g., Google Assistant) may pick

up environmental sounds or another person’s conversation and incorrectly try to interpret it as a command.

As the complexity of the process increases, the number of interpretations that the system can generate also

rises, which can often lead to the system providing the wrong result. Using a BCI, which can detect small
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amounts of electrical activity over a person’s scalp, is often inaccurate as the range of possible inputs and

outputs is large, and the system is unable determine the user’s intent. This is because in input mechanisms

susceptible to noise, the additional useless information of the noise disrupts the system’s ability to accurately

interpret the input to provide the user’s intended output command.

By extrapolating the effects on input mechanisms caused by interpretation errors as a consequence of

noise, the results found in Chapter 4 can be applied to noisy inputs devices like the BCI. That is, as the

noisiness of an input stream increases, it can be predicted that a user’s performance will decrease. The noise

will also lower users’ ability to effectively learn a new input mechanism, requiring them to spend more time

and effort to gain expertise with that mechanism when compared with one that has little or no inherent noise

(e.g., keyboard and mouse). Since noise can cause unpredictable interpretation errors, it is likely that a user’s

learning process for a noisy input will follow a similar process as those of participants of the second Chapter

4 study. Users will need to monitor the system’s output more closely to ensure that a correct interpretation

of their input has been made. For BCI devices that suffer from a high degree of noise, it becomes much

more important and necessary that effective strategies are developed and used to reduce the amount of noise.

In some cases, this could even mean possibly reducing the number of recognized commands, such that the

remaining commands are more frequently interpreted accurately. With a limited number of commands, users

may be able to learn to use the device faster, as well as handle errors more efficiently.

Furthermore, the results showed that higher rates of interpretation errors lead to users making more errors

themselves. Needing to repeatedly fix these errors can cause the user to lose confidence in their ability to

differentiate between an error caused by the user and an error caused by noise, which may have consequences

when the user is attempting to associate input actions with their respective commands (i.e., cue interference).

This process is made much more difficult for BCI users, as the input (i.e., brain activity) is not something

that they can typically control at will. There have been examples from the literature that suggest training

can help improve command selection accuracy with BCIs [53, 93], but it can still be difficult to train users

to avoid or minimize errors, whether they come from the system or the user. Without proper feedback from

the system as to the cause of the error (e.g., specific details about what caused a command interpretation to

fail), users may not be able to effectively identify when an error might occur, which could prevent them from

changing their behaviour to experience errors less often. As such, a noisier input mechanism can be much

more difficult to learn and use to the same level of other alternatives.

5.5 Limitations

The studies conducted in Chapter 4 were performed in a controlled environment where the system interpre-

tation errors could be set at a desired rate, which led to some limitations in the approach and design of the

experiments. First, the arrow key input mechanism and menu selection tasks were specifically designed for

the purposes of the studies. Using the arrow keys as the input mechanism (i.e., one that inherently exhibits
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no interpretation errors) allowed for a system to be created that would introduce artificial interpretation

errors into the users’ input at controlled rates. The menu selection tasks allowed for participant performance

and their efforts to be observed, as well as comparisons to be made due to the different levels of IER. How-

ever, participants were simply asked to complete the tasks with no context as to why they were performing

them. Although the tasks were constructed to simulate learning and using a noisy novel input mechanism,

participants were not explicitly provided this information. The lack of context for completing the tasks may

have deprived motivation from the participants, leading them to put less effort into completing the study.

Similarly, the commands that participants were asked to select were unrealistic. The command set used in

the studies were selected to prevent knowledge transfer effects, resulting in categories such as ”Cities” and

”Fruits”. Nevertheless, these categories do not reflect what users of a real-world input mechanism might

encounter. Furthermore, successful selections that users made only led to further selection tasks. With a

real-world mechanism, a command selection would typically result in a command being executed or function

being performed by the system. Without such tangible feedback, it may have been more difficult for the par-

ticipants of the studies to learn and memorize the items, and they may have been less motivated to complete

the tasks.

Second, the rates of interpretation error that were chosen as levels in the studies (i.e., 0%, 5%, and

20% error) were based on previously published work regarding novel input mechanisms and their respective

intrinsic error rates. Depending on the mechanism, interpretation errors can occur at rates from as little

as 2% up to 40% at the worst [140]. While these rates are based on novel input mechanisms that might

not reflect established mechanisms that are used widely by the general population, they provide a realistic

example of how often a system might misinterpret a user’s input. However, these published error rates

are often measured in controlled lab settings that typically do not change from user to user. In real-world

use, input mechanisms are frequently used in differing environments that may affect the system’s ability

to correctly interpret a user’s input. For example, a smartphone’s speech recognition software may suffer

more errors in a noisy area, or an eye tracking device may fail to detect the user’s eyes in a dimly lit room.

In these cases, the error rates and the effects of the different environmental conditions on successful input

interpretation are not well known.

Third, the pair of studies made observations of the participants after a relatively short training period

with the input mechanism and the selection tasks. Although the participants showed improved recall of the

items towards the end of the testing, only the short-term retention and immediate effects of the training

could be observed. Between the two studies, the longest average time to complete the training blocks was

497 s for the Twenty percent error condition, where the higher rate of artificial interpretation errors would

expectedly require users to spend more time to fix those errors. Real-world learning of input mechanisms

often involves repeated practice over a much longer period (e.g., on the order of weeks to months). Practice

with a real-world input mechanism also typically involves using it to perform real tasks (e.g., using a speech

command to set an alarm), as opposed to simply completing a task for the sake of practice. The studies did
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not examine how longer or continued training would benefit memory or how well the input commands would

be retained over a longer period (e.g., hours or days after training). Memory tests were only conducted during

the duration of the studies, and no follow-up was performed. This meant that the long-term effects of the

learning were not observed for these two studies. The effects of continued practice over longer periods of time

and long-term retention were not tested. Likewise, the transfer effects of the learning were not investigated.

The input mechanism and system were designed such that participants would not have an advantage in

completing the tasks if they had previous experience with a similar mechanism. On the other hand, this also

meant that participants could not rely on their previous knowledge to improve their learning process with

this novel input mechanism. The participants would have a limited ability to transfer the things they learned

during the experiment to other mechanisms as well. These conditions used in the studies were necessary to

develop an initial baseline to understand how learning in the early training stages is affected by interpretation

errors.

Fourth, of the three stages of learning described by Fitts and Posner [33], the participants of the two

studies were only trained until the second, associative stage (i.e., participants were beginning to make the

connections between an input sequence and the item it selects). Since the user studies only examined the

participants ability to retain the item associations in the short term, they were not able to reach the final,

autonomous stage of the learning process, which would require a much greater amount of time and practice

with the input mechanism and system. Reaching this last stage would mean the users would have been able

to simply think of the item they wanted to select, then be able to perform its respective command without

needing to recall the input sequence. There is a possibility that once users reach automaticity, or are familiar

with a similar input mechanism, the presence of interpretation errors would cause greater problems towards

effectively using the new mechanism. This may be due to the added need to monitor the results of the

system’s interpretation; thus, preventing a user from simply inputting a command without remembering the

individual key presses.

Fifth, the difficulty of tasks throughout the studies were increased by adding artificial errors to the

participant’s input. Since participants needed to spend more effort and time paying attention to the system’s

interpretation, their ability to quickly and accurately complete tasks would decrease. This meant that

the participants in the Twenty percent error conditions would spend more time to complete the experiment

overall, while participants of the Zero percent error conditions could simply finish one task and move onto the

next without needing to check the interpretation or make subsequent corrections. This method of increasing

difficulty fits the principles described by Schmidt and Bjork for improving training techniques [114]. However,

the adjustment of difficulty is unlike the methods used by previous studies in HCI that investigate the same

phenomenon. For example, increasing the number of items or making items more similar to each other are

more typical approaches that researchers have tested different levels of difficulty. Although the studies in

Chapter 4 have varying levels of task completion difficulty, they are not directly comparable with difficulty

adjustments done for most other user studies.
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Sixth, the two types of artificial system interpretation errors used in the studies (i.e., misinterpretations

and false negatives) were added through random distribution. Both types of errors had an equally likely

probability of occurring. However, real-world recognition systems, such as in-air gesture recognition, often

have better recognition of certain inputs over others. They are typically biased to one type of error over the

others, which could influence how users approach avoiding or correcting of these errors. This phenomenon

could be further affected by how the user performs the input, such as how they pronounce a word for a speech

recognizer. Similarly, as users learn to use an input mechanism and become experts through natural use, they

may become more aware of interpretation errors occurring during specific commands and how they affect

their inputs, which may change how careful the users are when performing those commands. The random

distribution used in the studies provide a basic method to introducing artificial errors and allow for an initial

understanding of how interpretation errors affect the learning process. However, the artificial errors of the

studies did not include false positive errors (i.e., a selection is made by the system without user input). Only

misinterpretations and false negatives were included, as they were the more common type of interpretation

errors, but false positives are also possible in some real-world input mechanisms.

Finally, the data used for the studies were gathered using Amazon’s Mechanical Turk. Although previous

work have successfully used MTurk to carry out HCI studies [47, 64], the issues with conducting studies

remotely need to be considered. Since the participants completed their tasks online, it was difficult to

directly observe their interaction with the study system. For example, given that both studies had multiple

memory tests that disabled the guide during the duration of the tests, it was possible that some participants

cheated the tests by taking a screenshot or picture of the guide when it was available during the training

blocks. Participants were also in uncontrolled environments, which could have caused some participants to

become distracted by outside factors, such as other people in the same room. Furthermore, MTurk users are

not an accurate representation of the general population. Goodman et. al [39] discusses some weaknesses of

MTurk participants, including having different view of money and less likely to pay attention to experimental

materials. It was possible that some participants attempted to complete the tasks and questionnaires as

quickly as possible with little care for providing genuine responses to their experience, since MTurk pays

upon completion of the each study rather than time spent in the study.

5.6 Future Work

The limitations described in the previous section show possible improvements that can be made for future

studies in the same area of research. They also outline potential points of interest for further study as a

result of the studies’ findings.

Conducting the same studies from Chapter 4 using a more established input mechanism will allow the

results to more realistically reflect how user learning of a novel input mechanism is affected by interpretation

errors. One of the limitations of the studies was that they were performed using an input mechanism and set
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of selection tasks that were created specifically for use with the study. By using an input mechanism with es-

tablished real-world applications, such as stroke gestures used in marking menus [67], further understandings

can be gained by observing how interpretation errors in an input mechanism with high, intrinsic command

selection accuracy, using a similar method to add artificial interpretation errors into the user’s input stream.

Similarly, testing the input mechanism in various environmental conditions can provide more realistic proba-

bilities of an interpretation error occurring. For example, performing similar studies where users are learning

to use a new input mechanism, such as camera-based gesture trackers or speech recognizers, in an adverse

environment for the system (e.g., low lighting for cameras, white noise in the surroundings of a microphone,

etc.) may bring about poorer user performance and learning. This further work can provide knowledge

regarding the magnitude of the adverse effects that system interpretation errors cause in real-world input

mechanisms (i.e., how much worse are the interpretations when environmental noise is also a factor).

Examining the long-term effects of learning with the continual presence of interpretation errors in the

user’s input would allow designers of input mechanisms to have a better idea of how to improve their training

procedures. Since the Chapter 4 studies only looked at the short-term retention and performance, performing

longitudinal studies that observe the long-term effects can reveal new findings about how interpretation errors

affect the development of expertise. The participants of the studies only managed to reach the associative

stage of learning the input sequences and their respective commands. However, further studies that examine

longer training over days and weeks may find users reaching the autonomous stage where they will be able

to perform a command without needing to recall the individual actions (i.e., using muscle memory). The

length of time and practice required to reach automaticity may increase if the negative effects shown in short-

term continue throughout the whole training process. With interpretation errors occasionally disrupting this

learning process, it may even be possible that users will never reach the autonomous stage. The problems

caused by interpretation errors are increased even further if feedback from the system is not provided and the

user needs to monitor the system’s interpretation for potential errors. Users may find that the effort required

to manage a novel input mechanism with an unreliable output is too high for the benefits it may provide.

By adjusting the difficulty of the tasks imposed on the user, a relationship may be found between system

interpretation errors and the difficulty. The difficulty of the tasks in the studies were adjusted through

varying rates of interpretation errors. While this may force the participants to spend more time to complete

the tasks (by requiring them to correct the errors or retry failed tasks), this form of difficulty adjustment is not

typical of those done by other similar HCI studies. Making the tasks harder, such as increasing the number

of menu levels to traverse or increasing the total number of items, could cause the effects of interpretation

errors on learning to become more profound. Studying this possibility in a future study may provide better

knowledge of how using input mechanisms for complex tasks may affect the user’s ability to execute their

tasks effectively.

In a future work, it may also be interesting to examine how users can adapt to system interpretation

errors if they frequently experience the same errors. Although the artificial interpretation errors in the
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studies were randomly distributed between misinterpretations and false negatives, the errors of a real-world

input mechanism would typically be non-uniformly distributed. In other words, some errors would occur more

often than others, depending on the environmental conditions and how the user interacts with the mechanism.

As users become more familiar with an input mechanism and the system’s interpretation of their inputs, they

may find subtle techniques to avoid such errors by interacting with the system more carefully. For example,

users may feel less inclined to use a particular speech command if they find that the recognition system is

having trouble understanding their pronunciation of a certain word. While this could eventually reduce the

overall number of wrong interpretations, it is another facet of the system that the user will have to learn and

practice. Users who become experts with using such an input mechanism will also be able to navigate the

system with a much lower rate of errors than a user operating the mechanism for the first time. Furthermore,

developing a system that can provide feedback to users that help them adjust to minimize the number of

potential errors that could occur. Systems, such as autocorrect for smartphone keyboards, already exist

that aid users by suggesting similar commands or outputs that the user may be attempting to execute. By

observing how users adapt to unreliable systems, knowledge regarding how the user experience and user’s

learning processes for noisy inputs can also be established.

Determining an acceptable level of noise in an input is important such that users can learn how to use

the input mechanism without suffering the consequences of interpretation errors. While there exists much

previous work on the acceptable signal-to-noise ratio (SNR) for a variety of input streams, there are few

that consider the effects of the SNR on learning. By extending the results from Chapter 4, the users will

have diminished learning capabilities for novel input mechanisms that suffer from a high degree of noise in

the input. However, since it is unlikely that most input mechanisms will employ methods to completely

remove all noise from an input, the system must be subject to a small remainder of noise. In other words,

these systems will experience occasional interpretation errors as a result. A future study that examines how

frequent interpretation errors need to be before users start to experience learning and performance deficits,

as well as when users start to notice errors not borne from themselves, can provide insight towards how

much noise suppression is needed for the input stream. Significant effects were already occurring in the Five

percent error condition in the Chapter 4 studies (i.e., one interpretation error in every 20 key inputs), which

mean that the learning process is particularly sensitive to disruptions. Furthermore, the amount of noise

in an input varies with the input mechanism (e.g., BCIs have noisier sources of data when compared with

speech recognizers) but can also be proportional to the amount of incoming input data. Input mechanisms

like BCIs require much more data than other input mechanisms, which can be accidentally discarded as noise

if the noise reduction techniques are not carefully used. Since removing noise also potentially removes useful

information, the purity of the incoming data can be preserved by only removing as much noise as necessary.

Finding the upper limit of interpretation errors before these effects start happening might provide designers

with a guideline towards how much noise reduction should be applied to a user’s input.

While MTurk studies can provide benefits in recruiting a large number of participants and carrying out
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multiple studies in a short amount of time, the limitations of online, remote studies should be addressed in

future work. Many of the problems of MTurk studies, as described in the previous section, can be alleviated

by conducting the studies in a traditional, controlled lab setting. That is, being able to observe participants

directly while they perform the studies’ tasks can prevent participants from cheating during memory tests

and minimize distractions from drawing attention away from the tasks. Alternatively, different methods of

motivation could help improve attentiveness towards the tasks (e.g., using a payment model that is based

on the quality of work). Another benefit of lab studies is that participants are often recruited from an

environment (e.g., a university) that has people who are more likely to be interested or invested in the

findings of the studies that they are participating in, leading to them putting more care into their work.
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6 Conclusion

Users interact with computer systems by using input mechanisms as an interface for command selection.

Input mechanisms allows a user to translate their intent into a command that the computer executes. There

are a wide range of novel input mechanisms that allow different types of input, such as speech or hand

gestures. Brain-computer interfaces are one such input mechanism, allowing users to issue commands through

their thoughts and brain activity. Although alternative mechanisms can offer certain advantages over the

traditional inputs, an additional factor of interpreting the user’s input is required of the computer system.

Signals used by input mechanisms are often susceptible to noise that can arise from various sources, such as

the environment or from artifacts of the input. Noise can interfere and make it difficult to discern the useful

information in the signal. As a result, the system can incorrectly interpret a user’s input due to the noise,

causing an interpretation error to occur. This thesis explored the issue of noise in input signals of novel input

mechanisms and how it affects the interpretation of a user’s intended command.

An initial study was conducted with an EEG headset to understand its capabilities of this device as a

motor-imagery BCI input mechanism. The results were analyzed offline after data collection was completed

and found that there was too much noise in the EEG signals for the mu suppression associated with motor

actions to be conclusively detected. The noise persisted despite efforts to minimize noise through filtering

and remove artifacts through visual inspection of the raw EEG data. The findings of this study provided the

motivation for the following work on investigating the effects of noise on learning with novel input mechanisms.

Two studies were performed using an input mechanism with simulated noise to explore how interpretation

errors affect user learning. Both studies added artificial interpretation errors into the user’s tasks but differed

in how feedback was provided back to the user. The results of the two studies showed that interpretation

errors have a significant negative impact on a user’s ability to learn a novel input mechanism, as well as on

their perception of the effort required to complete the command selection tasks. The findings also indicate

that a user may prioritize speed and accuracy differently depending on whether the system provides feedback

when an error occurs. Despite any potential gains from increased effort in completing the tasks, interpretation

errors create adverse effects for users attempting to learn to use a novel input mechanism.

This thesis provided new understanding of how interpretation errors can affect users as they use novel

input mechanisms, particularly when learning to perform a set of commands. Users of novel input mechanisms

that use analog input signals may be susceptible to noise, leading to system interpretation errors. Although

previous literature had suggested two competing effects on learning while handling interpretation errors,

the negative effects of the errors were more substantial. By gaining a better understanding of the negative
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impact of noise and interpretation errors on learning, designers and developers of novel input mechanisms

can create higher quality training programs to teach both new and experienced users how to use input

mechanisms that are prone to interpretation errors. The findings can also be used as a foundation by

usability researchers to understand how well a signal-based input mechanism is perceived by the user base.

Furthermore, the knowledge of the effects of interpretation errors on learning can lead to more user-centred

designs that account for the possibility of errors from both the user and the system. Finally, the findings

of this work also provided directions for further investigations of novel input mechanisms, noise, and user

learning. The findings of this thesis can help to improve the design and learning of new input mechanisms

for human-computer interaction.
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Appendix A

Consent Form

Figure A.1: Chapter 4 Studies Consent Form, Part 1 of 2
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Figure A.2: Chapter 4 Studies Consent Form, Part 2 of 2
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Appendix B

Post-Condition Questionnaire

Figure B.1: Chapter 4 Studies Post-Condition Questionnaire, Part 1 of 2
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Figure B.2: Chapter 4 Studies Post-Condition Questionnaire, Part 2 of 2
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